Science.gov

Sample records for accurate parameter estimates

  1. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  2. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations

    SciTech Connect

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; Dechant, Lawrence

    2016-05-31

    Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.

  3. Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters.

    PubMed

    Damon, Bruce M; Heemskerk, Anneriet M; Ding, Zhaohua

    2012-06-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor magnetic resonance imaging fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image data sets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8 and 15.3 m(-1)), signal-to-noise ratio (50, 75, 100 and 150) and voxel geometry (13.8- and 27.0-mm(3) voxel volume with isotropic resolution; 13.5-mm(3) volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to second-order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m(-1)), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation.

  4. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  5. Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolin; Zhang, Shaoqing; Lin, Xiaopei; Li, Mingkui

    2017-03-01

    The uncertainties in values of coupled model parameters are an important source of model bias that causes model climate drift. The values can be calibrated by a parameter estimation procedure that projects observational information onto model parameters. The signal-to-noise ratio of error covariance between the model state and the parameter being estimated directly determines whether the parameter estimation succeeds or not. With a conceptual climate model that couples the stochastic atmosphere and slow-varying ocean, this study examines the sensitivity of state-parameter covariance on the accuracy of estimated model states in different model components of a coupled system. Due to the interaction of multiple timescales, the fast-varying atmosphere with a chaotic nature is the major source of the inaccuracy of estimated state-parameter covariance. Thus, enhancing the estimation accuracy of atmospheric states is very important for the success of coupled model parameter estimation, especially for the parameters in the air-sea interaction processes. The impact of chaotic-to-periodic ratio in state variability on parameter estimation is also discussed. This simple model study provides a guideline when real observations are used to optimize model parameters in a coupled general circulation model for improving climate analysis and predictions.

  6. Accurate kinetic parameter estimation during progress curve analysis of systems with endogenous substrate production.

    PubMed

    Goudar, Chetan T

    2011-10-01

    We have identified an error in the published integral form of the modified Michaelis-Menten equation that accounts for endogenous substrate production. The correct solution is presented and the error in both the substrate concentration, S, and the kinetic parameters Vm , Km , and R resulting from the incorrect solution was characterized. The incorrect integral form resulted in substrate concentration errors as high as 50% resulting in 7-50% error in kinetic parameter estimates. To better reflect experimental scenarios, noise containing substrate depletion data were analyzed by both the incorrect and correct integral equations. While both equations resulted in identical fits to substrate depletion data, the final estimates of Vm , Km , and R were different and Km and R estimates from the incorrect integral equation deviated substantially from the actual values. Another observation was that at R = 0, the incorrect integral equation reduced to the correct form of the Michaelis-Menten equation. We believe this combination of excellent fits to experimental data, albeit with incorrect kinetic parameter estimates, and the reduction to the Michaelis-Menten equation at R = 0 is primarily responsible for the incorrectness to go unnoticed. However, the resulting error in kinetic parameter estimates will lead to incorrect biological interpretation and we urge the use of the correct integral form presented in this study.

  7. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1990-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  8. Lower bound on reliability for Weibull distribution when shape parameter is not estimated accurately

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Porter, Albert A.

    1991-01-01

    The mathematical relationships between the shape parameter Beta and estimates of reliability and a life limit lower bound for the two parameter Weibull distribution are investigated. It is shown that under rather general conditions, both the reliability lower bound and the allowable life limit lower bound (often called a tolerance limit) have unique global minimums over a range of Beta. Hence lower bound solutions can be obtained without assuming or estimating Beta. The existence and uniqueness of these lower bounds are proven. Some real data examples are given to show how these lower bounds can be easily established and to demonstrate their practicality. The method developed here has proven to be extremely useful when using the Weibull distribution in analysis of no-failure or few-failures data. The results are applicable not only in the aerospace industry but anywhere that system reliabilities are high.

  9. Linear-In-The-Parameters Oblique Least Squares (LOLS) Provides More Accurate Estimates of Density-Dependent Survival

    PubMed Central

    Vieira, Vasco M. N. C. S.; Engelen, Aschwin H.; Huanel, Oscar R.; Guillemin, Marie-Laure

    2016-01-01

    Survival is a fundamental demographic component and the importance of its accurate estimation goes beyond the traditional estimation of life expectancy. The evolutionary stability of isomorphic biphasic life-cycles and the occurrence of its different ploidy phases at uneven abundances are hypothesized to be driven by differences in survival rates between haploids and diploids. We monitored Gracilaria chilensis, a commercially exploited red alga with an isomorphic biphasic life-cycle, having found density-dependent survival with competition and Allee effects. While estimating the linear-in-the-parameters survival function, all model I regression methods (i.e, vertical least squares) provided biased line-fits rendering them inappropriate for studies about ecology, evolution or population management. Hence, we developed an iterative two-step non-linear model II regression (i.e, oblique least squares), which provided improved line-fits and estimates of survival function parameters, while robust to the data aspects that usually turn the regression methods numerically unstable. PMID:27936048

  10. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  11. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Astrophysics Data System (ADS)

    Wheeler, K.; Knuth, K.; Castle, P.

    2005-12-01

    Typical estimates of standing wood derived from remote sensing sources take advantage of aggregate measurements of canopy heights (e.g. LIDAR) and canopy diameters (segmentation of IKONOS imagery) to obtain a wood volume estimate by assuming homogeneous species and a fixed function that returns volume. The validation of such techniques use manually measured diameter at breast height records (DBH). Our goal is to improve the accuracy and applicability of biomass estimation methods to heterogeneous forests and transitional areas. We are developing estimates with quantifiable uncertainty using a new form of estimation function, active sampling, and volumetric reconstruction image rendering for species specific mass truth. Initially we are developing a Bayesian adaptive sampling method for BRDF associated with the MISR Rahman model with respect to categorical biomes. This involves characterizing the probability distributions of the 3 free parameters of the Rahman model for the 6 categories of biomes used by MISR. Subsequently, these distributions can be used to determine the optimal sampling methodology to distinguish biomes during acquisition. We have a remotely controlled semi-autonomous helicopter that has stereo imaging, lidar, differential GPS, and spectrometers covering wavelengths from visible to NIR. We intend to automatically vary the way points of the flight path via the Bayesian adaptive sampling method. The second critical part of this work is in automating the validation of biomass estimates via using machine vision techniques. This involves taking 2-D pictures of trees of known species, and then via Bayesian techniques, reconstructing 3-D models of the trees to estimate the distribution moments associated with wood volume. Similar techniques have been developed by the medical imaging community. This then provides probability distributions conditional upon species. The final part of this work is in relating the BRDF actively sampled measurements to species

  12. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  13. Parameter estimating state reconstruction

    NASA Technical Reports Server (NTRS)

    George, E. B.

    1976-01-01

    Parameter estimation is considered for systems whose entire state cannot be measured. Linear observers are designed to recover the unmeasured states to a sufficient accuracy to permit the estimation process. There are three distinct dynamics that must be accommodated in the system design: the dynamics of the plant, the dynamics of the observer, and the system updating of the parameter estimation. The latter two are designed to minimize interaction of the involved systems. These techniques are extended to weakly nonlinear systems. The application to a simulation of a space shuttle POGO system test is of particular interest. A nonlinear simulation of the system is developed, observers designed, and the parameters estimated.

  14. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    methods. These techniques will help in the understanding of new physics contained in current and future data sets as well as benefit the research efforts of the cosmology community. Our idea is to shift the computationally intensive pieces of the parameter estimation framework to a parallel training step. We then provide a machine learning code that uses this training set to learn the relationship between the underlying cosmological parameters and the function we wish to compute. This code is very accurate and simple to evaluate. It can provide incredible speed- ups of parameter estimation codes. For some applications this provides the convenience of obtaining results faster, while in other cases this allows the use of codes that would be impossible to apply in the brute force setting. In this thesis we provide several examples where our method allows more accurate computation of functions important for data analysis than is currently possible. As the techniques developed in this work are very general, there are no doubt a wide array of applications both inside and outside of cosmology. We have already seen this interest as other scientists have presented ideas for using our algorithm to improve their computational work, indicating its importance as modern experiments push forward. In fact, our algorithm will play an important role in the parameter analysis of Planck, the next generation CMB space mission.

  15. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  16. Phenological Parameters Estimation Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.

    2010-01-01

    The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE

  17. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  18. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  19. Improved Estimates of Thermodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  20. Fast and accurate estimation for astrophysical problems in large databases

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.

    2010-10-01

    A recent flood of astronomical data has created much demand for sophisticated statistical and machine learning tools that can rapidly draw accurate inferences from large databases of high-dimensional data. In this Ph.D. thesis, methods for statistical inference in such databases will be proposed, studied, and applied to real data. I use methods for low-dimensional parametrization of complex, high-dimensional data that are based on the notion of preserving the connectivity of data points in the context of a Markov random walk over the data set. I show how this simple parameterization of data can be exploited to: define appropriate prototypes for use in complex mixture models, determine data-driven eigenfunctions for accurate nonparametric regression, and find a set of suitable features to use in a statistical classifier. In this thesis, methods for each of these tasks are built up from simple principles, compared to existing methods in the literature, and applied to data from astronomical all-sky surveys. I examine several important problems in astrophysics, such as estimation of star formation history parameters for galaxies, prediction of redshifts of galaxies using photometric data, and classification of different types of supernovae based on their photometric light curves. Fast methods for high-dimensional data analysis are crucial in each of these problems because they all involve the analysis of complicated high-dimensional data in large, all-sky surveys. Specifically, I estimate the star formation history parameters for the nearly 800,000 galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog, determine redshifts for over 300,000 galaxies in the SDSS photometric catalog, and estimate the types of 20,000 supernovae as part of the Supernova Photometric Classification Challenge. Accurate predictions and classifications are imperative in each of these examples because these estimates are utilized in broader inference problems

  1. Target parameter estimation

    NASA Technical Reports Server (NTRS)

    Hocking, W. K.

    1989-01-01

    The objective of any radar experiment is to determine as much as possible about the entities which scatter the radiation. This review discusses many of the various parameters which can be deduced in a radar experiment, and also critically examines the procedures used to deduce them. Methods for determining the mean wind velocity, the RMS fluctuating velocities, turbulence parameters, and the shapes of the scatterers are considered. Complications with these determinations are discussed. It is seen throughout that a detailed understanding of the shape and cause of the scatterers is important in order to make better determinations of these various quantities. Finally, some other parameters, which are less easily acquired, are considered. For example, it is noted that momentum fluxes due to buoyancy waves and turbulence can be determined, and on occasions radars can be used to determine stratospheric diffusion coefficients and even temperature profiles in the atmosphere.

  2. Accurate 3D quantification of the bronchial parameters in MDCT

    NASA Astrophysics Data System (ADS)

    Saragaglia, A.; Fetita, C.; Preteux, F.; Brillet, P. Y.; Grenier, P. A.

    2005-08-01

    The assessment of bronchial reactivity and wall remodeling in asthma plays a crucial role in better understanding such a disease and evaluating therapeutic responses. Today, multi-detector computed tomography (MDCT) makes it possible to perform an accurate estimation of bronchial parameters (lumen and wall areas) by allowing a quantitative analysis in a cross-section plane orthogonal to the bronchus axis. This paper provides the tools for such an analysis by developing a 3D investigation method which relies on 3D reconstruction of bronchial lumen and central axis computation. Cross-section images at bronchial locations interactively selected along the central axis are generated at appropriate spatial resolution. An automated approach is then developed for accurately segmenting the inner and outer bronchi contours on the cross-section images. It combines mathematical morphology operators, such as "connection cost", and energy-controlled propagation in order to overcome the difficulties raised by vessel adjacencies and wall irregularities. The segmentation accuracy was validated with respect to a 3D mathematically-modeled phantom of a pair bronchus-vessel which mimics the characteristics of real data in terms of gray-level distribution, caliber and orientation. When applying the developed quantification approach to such a model with calibers ranging from 3 to 10 mm diameter, the lumen area relative errors varied from 3.7% to 0.15%, while the bronchus area was estimated with a relative error less than 5.1%.

  3. Parameter estimation in food science.

    PubMed

    Dolan, Kirk D; Mishra, Dharmendra K

    2013-01-01

    Modeling includes two distinct parts, the forward problem and the inverse problem. The forward problem-computing y(t) given known parameters-has received much attention, especially with the explosion of commercial simulation software. What is rarely made clear is that the forward results can be no better than the accuracy of the parameters. Therefore, the inverse problem-estimation of parameters given measured y(t)-is at least as important as the forward problem. However, in the food science literature there has been little attention paid to the accuracy of parameters. The purpose of this article is to summarize the state of the art of parameter estimation in food science, to review some of the common food science models used for parameter estimation (for microbial inactivation and growth, thermal properties, and kinetics), and to suggest a generic method to standardize parameter estimation, thereby making research results more useful. Scaled sensitivity coefficients are introduced and shown to be important in parameter identifiability. Sequential estimation and optimal experimental design are also reviewed as powerful parameter estimation methods that are beginning to be used in the food science literature.

  4. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  5. Quantum estimation of unknown parameters

    NASA Astrophysics Data System (ADS)

    Martínez-Vargas, Esteban; Pineda, Carlos; Leyvraz, François; Barberis-Blostein, Pablo

    2017-01-01

    We discuss the problem of finding the best measurement strategy for estimating the value of a quantum system parameter. In general the optimum quantum measurement, in the sense that it maximizes the quantum Fisher information and hence allows one to minimize the estimation error, can only be determined if the value of the parameter is already known. A modification of the quantum Van Trees inequality, which gives a lower bound on the error in the estimation of a random parameter, is proposed. The suggested inequality allows us to assert if a particular quantum measurement, together with an appropriate estimator, is optimal. An adaptive strategy to estimate the value of a parameter, based on our modified inequality, is proposed.

  6. Accurate fundamental parameters for 23 bright solar-type stars

    NASA Astrophysics Data System (ADS)

    Bruntt, H.; Bedding, T. R.; Quirion, P.-O.; Lo Curto, G.; Carrier, F.; Smalley, B.; Dall, T. H.; Arentoft, T.; Bazot, M.; Butler, R. P.

    2010-07-01

    We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar-type stars, from spectral type F5 to K2 and luminosity classes III-V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4-15 per cent. From indirect methods we determine luminosity and radius to 3 per cent. We find evidence that the luminosity from the indirect method is slightly overestimated (~ 5 per cent) for the coolest stars, indicating that their bolometric corrections (BCs) are too negative. For Teff we find a slight offset of -40 +/- 20K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. The metallicity ranges from [Fe/H] = -1.7 to +0.4, and there is clear evidence for α-element enhancement in the metal-poor stars. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine v sin i and we present a new calibration of macroturbulence and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine Teff, log g and [Fe/H] with absolute accuracies of 80K, 0.08 and 0.07dex. Photometric calibrations of Strömgren indices provide accurate results for Teff and [Fe/H] but will be more uncertain for distant stars when interstellar reddening becomes important. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry

  7. Preparing Rapid, Accurate Construction Cost Estimates with a Personal Computer.

    ERIC Educational Resources Information Center

    Gerstel, Sanford M.

    1986-01-01

    An inexpensive and rapid method for preparing accurate cost estimates of construction projects in a university setting, using a personal computer, purchased software, and one estimator, is described. The case against defined estimates, the rapid estimating system, and adjusting standard unit costs are discussed. (MLW)

  8. Reionization history and CMB parameter estimation

    SciTech Connect

    Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y. E-mail: gnedin@fnal.edu

    2013-05-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.

  9. Frequency tracking and parameter estimation for robust quantum state estimation

    SciTech Connect

    Ralph, Jason F.; Jacobs, Kurt; Hill, Charles D.

    2011-11-15

    In this paper we consider the problem of tracking the state of a quantum system via a continuous weak measurement. If the system Hamiltonian is known precisely, this merely requires integrating the appropriate stochastic master equation. However, even a small error in the assumed Hamiltonian can render this approach useless. The natural answer to this problem is to include the parameters of the Hamiltonian as part of the estimation problem, and the full Bayesian solution to this task provides a state estimate that is robust against uncertainties. However, this approach requires considerable computational overhead. Here we consider a single qubit in which the Hamiltonian contains a single unknown parameter. We show that classical frequency estimation techniques greatly reduce the computational overhead associated with Bayesian estimation and provide accurate estimates for the qubit frequency.

  10. Attitude Estimation Using Modified Rodrigues Parameters

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Markley, F. Landis

    1996-01-01

    In this paper, a Kalman filter formulation for attitude estimation is derived using the Modified Rodrigues Parameters. The extended Kalman filter uses a gyro-based model for attitude propagation. Two solutions are developed for the sensitivity matrix in the Kalman filter. One is based upon an additive error approach, and the other is based upon a multiplicative error approach. It is shown that the two solutions are in fact equivalent. The Kalman filter is then used to estimate the attitude of a simulated spacecraft. Results indicate that then new algorithm produces accurate attitude estimates by determining actual gyro biases.

  11. Discriminative parameter estimation for random walks segmentation.

    PubMed

    Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan

    2013-01-01

    The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.

  12. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  13. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations

    PubMed Central

    2015-01-01

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules. PMID:26146493

  14. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  15. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  16. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations.

    PubMed

    Dral, Pavlo O; von Lilienfeld, O Anatole; Thiel, Walter

    2015-05-12

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  17. Rapid Compact Binary Coalescence Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Pankow, Chris; Brady, Patrick; O'Shaughnessy, Richard; Ochsner, Evan; Qi, Hong

    2016-03-01

    The first observation run with second generation gravitational-wave observatories will conclude at the beginning of 2016. Given their unprecedented and growing sensitivity, the benefit of prompt and accurate estimation of the orientation and physical parameters of binary coalescences is obvious in its coupling to electromagnetic astrophysics and observations. Popular Bayesian schemes to measure properties of compact object binaries use Markovian sampling to compute the posterior. While very successful, in some cases, convergence is delayed until well after the electromagnetic fluence has subsided thus diminishing the potential science return. With this in mind, we have developed a scheme which is also Bayesian and simply parallelizable across all available computing resources, drastically decreasing convergence time to a few tens of minutes. In this talk, I will emphasize the complementary use of results from low latency gravitational-wave searches to improve computational efficiency and demonstrate the capabilities of our parameter estimation framework with a simulated set of binary compact object coalescences.

  18. Computational approaches for RNA energy parameter estimation

    PubMed Central

    Andronescu, Mirela; Condon, Anne; Hoos, Holger H.; Mathews, David H.; Murphy, Kevin P.

    2010-01-01

    Methods for efficient and accurate prediction of RNA structure are increasingly valuable, given the current rapid advances in understanding the diverse functions of RNA molecules in the cell. To enhance the accuracy of secondary structure predictions, we developed and refined optimization techniques for the estimation of energy parameters. We build on two previous approaches to RNA free-energy parameter estimation: (1) the Constraint Generation (CG) method, which iteratively generates constraints that enforce known structures to have energies lower than other structures for the same molecule; and (2) the Boltzmann Likelihood (BL) method, which infers a set of RNA free-energy parameters that maximize the conditional likelihood of a set of reference RNA structures. Here, we extend these approaches in two main ways: We propose (1) a max-margin extension of CG, and (2) a novel linear Gaussian Bayesian network that models feature relationships, which effectively makes use of sparse data by sharing statistical strength between parameters. We obtain significant improvements in the accuracy of RNA minimum free-energy pseudoknot-free secondary structure prediction when measured on a comprehensive set of 2518 RNA molecules with reference structures. Our parameters can be used in conjunction with software that predicts RNA secondary structures, RNA hybridization, or ensembles of structures. Our data, software, results, and parameter sets in various formats are freely available at http://www.cs.ubc.ca/labs/beta/Projects/RNA-Params. PMID:20940338

  19. Accurate genome relative abundance estimation based on shotgun metagenomic reads.

    PubMed

    Xia, Li C; Cram, Jacob A; Chen, Ting; Fuhrman, Jed A; Sun, Fengzhu

    2011-01-01

    Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data-sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes.

  20. Direct computation of parameters for accurate polarizable force fields

    SciTech Connect

    Verstraelen, Toon Vandenbrande, Steven; Ayers, Paul W.

    2014-11-21

    We present an improved electronic linear response model to incorporate polarization and charge-transfer effects in polarizable force fields. This model is a generalization of the Atom-Condensed Kohn-Sham Density Functional Theory (DFT), approximated to second order (ACKS2): it can now be defined with any underlying variational theory (next to KS-DFT) and it can include atomic multipoles and off-center basis functions. Parameters in this model are computed efficiently as expectation values of an electronic wavefunction, obviating the need for their calibration, regularization, and manual tuning. In the limit of a complete density and potential basis set in the ACKS2 model, the linear response properties of the underlying theory for a given molecular geometry are reproduced exactly. A numerical validation with a test set of 110 molecules shows that very accurate models can already be obtained with fluctuating charges and dipoles. These features greatly facilitate the development of polarizable force fields.

  1. Estimation of bone permeability using accurate microstructural measurements.

    PubMed

    Beno, Thoma; Yoon, Young-June; Cowin, Stephen C; Fritton, Susannah P

    2006-01-01

    While interstitial fluid flow is necessary for the viability of osteocytes, it is also believed to play a role in bone's mechanosensory system by shearing bone cell membranes or causing cytoskeleton deformation and thus activating biochemical responses that lead to the process of bone adaptation. However, the fluid flow properties that regulate bone's adaptive response are poorly understood. In this paper, we present an analytical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity in bone. First, we estimate the total number of canaliculi emanating from each osteocyte lacuna based on published measurements from parallel-fibered shaft bones of several species (chick, rabbit, bovine, horse, dog, and human). Next, we determine the local three-dimensional permeability of the lacunar-canalicular porosity for these species using recent microstructural measurements and adapting a previously developed model. Results demonstrated that the number of canaliculi per osteocyte lacuna ranged from 41 for human to 115 for horse. Permeability coefficients were found to be different in three local principal directions, indicating local orthotropic symmetry of bone permeability in parallel-fibered cortical bone for all species examined. For the range of parameters investigated, the local lacunar-canalicular permeability varied more than three orders of magnitude, with the osteocyte lacunar shape and size along with the 3-D canalicular distribution determining the degree of anisotropy of the local permeability. This two-step theoretical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity will be useful for accurate quantification of interstitial fluid movement in bone.

  2. Accurate absolute GPS positioning through satellite clock error estimation

    NASA Astrophysics Data System (ADS)

    Han, S.-C.; Kwon, J. H.; Jekeli, C.

    2001-05-01

    An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them.

  3. Online Dynamic Parameter Estimation of Synchronous Machines

    NASA Astrophysics Data System (ADS)

    West, Michael R.

    Traditionally, synchronous machine parameters are determined through an offline characterization procedure. The IEEE 115 standard suggests a variety of mechanical and electrical tests to capture the fundamental characteristics and behaviors of a given machine. These characteristics and behaviors can be used to develop and understand machine models that accurately reflect the machine's performance. To perform such tests, the machine is required to be removed from service. Characterizing a machine offline can result in economic losses due to down time, labor expenses, etc. Such losses may be mitigated by implementing online characterization procedures. Historically, different approaches have been taken to develop methods of calculating a machine's electrical characteristics, without removing the machine from service. Using a machine's input and response data combined with a numerical algorithm, a machine's characteristics can be determined. This thesis explores such characterization methods and strives to compare the IEEE 115 standard for offline characterization with the least squares approximation iterative approach implemented on a 20 h.p. synchronous machine. This least squares estimation method of online parameter estimation shows encouraging results for steady-state parameters, in comparison with steady-state parameters obtained through the IEEE 115 standard.

  4. An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance

    PubMed Central

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  5. Parameter Estimation of Spacecraft Fuel Slosh Model

    NASA Technical Reports Server (NTRS)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  6. Parameter estimation for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of

  7. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  8. Towards accurate and precise estimates of lion density.

    PubMed

    Elliot, Nicholas B; Gopalaswamy, Arjun M

    2016-12-13

    Reliable estimates of animal density are fundamental to our understanding of ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation biology since wildlife authorities rely on these figures to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging species such as carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores. African lions (Panthera leo) provide an excellent example as although abundance indices have been shown to produce poor inferences, they continue to be used to estimate lion density and inform management and policy. In this study we adapt a Bayesian spatially explicit capture-recapture model to estimate lion density in the Maasai Mara National Reserve (MMNR) and surrounding conservancies in Kenya. We utilize sightings data from a three-month survey period to produce statistically rigorous spatial density estimates. Overall posterior mean lion density was estimated to be 16.85 (posterior standard deviation = 1.30) lions over one year of age per 100km(2) with a sex ratio of 2.2♀:1♂. We argue that such methods should be developed, improved and favored over less reliable methods such as track and call-up surveys. We caution against trend analyses based on surveys of differing reliability and call for a unified framework to assess lion numbers across their range in order for better informed management and policy decisions to be made. This article is protected by copyright. All rights reserved.

  9. Online parameter estimation for surgical needle steering model.

    PubMed

    Yan, Kai Guo; Podder, Tarun; Xiao, Di; Yu, Yan; Liu, Tien-I; Ling, Keck Voon; Ng, Wan Sing

    2006-01-01

    Estimation of the system parameters, given noisy input/output data, is a major field in control and signal processing. Many different estimation methods have been proposed in recent years. Among various methods, Extended Kalman Filtering (EKF) is very useful for estimating the parameters of a nonlinear and time-varying system. Moreover, it can remove the effects of noises to achieve significantly improved results. Our task here is to estimate the coefficients in a spring-beam-damper needle steering model. This kind of spring-damper model has been adopted by many researchers in studying the tissue deformation. One difficulty in using such model is to estimate the spring and damper coefficients. Here, we proposed an online parameter estimator using EKF to solve this problem. The detailed design is presented in this paper. Computer simulations and physical experiments have revealed that the simulator can estimate the parameters accurately with fast convergent speed and improve the model efficacy.

  10. Accurate estimators of correlation functions in Fourier space

    NASA Astrophysics Data System (ADS)

    Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.

    2016-08-01

    Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.

  11. Method for estimating solubility parameter

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Ingham, J. D.

    1973-01-01

    Semiempirical correlations have been developed between solubility parameters and refractive indices for series of model hydrocarbon compounds and organic polymers. Measurement of intermolecular forces is useful for assessment of material compatibility, glass-transition temperature, and transport properties.

  12. Kalman filter data assimilation: targeting observations and parameter estimation.

    PubMed

    Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex

    2014-06-01

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

  13. Kalman filter data assimilation: Targeting observations and parameter estimation

    SciTech Connect

    Bellsky, Thomas Kostelich, Eric J.; Mahalov, Alex

    2014-06-15

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

  14. Parameter estimation by genetic algorithms

    SciTech Connect

    Reese, G.M.

    1993-11-01

    Test/Analysis correlation, or structural identification, is a process of reconciling differences in the structural dynamic models constructed analytically (using the finite element (FE) method) and experimentally (from modal test). This is a methodology for assessing the reliability of the computational model, and is very important in building models of high integrity, which may be used as predictive tools in design. Both the analytic and experimental models evaluate the same quantities: the natural frequencies (or eigenvalues, ({omega}{sub i}), and the mode shapes (or eigenvectors, {var_phi}). In this paper, selected frequencies are reconciled in the two models by modifying physical parameters in the FE model. A variety of parameters may be modified such as the stiffness of a joint member or the thickness of a plate. Engineering judgement is required to identify important frequencies, and to characterize the uncertainty of the model design parameters.

  15. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  16. A parameter estimation subroutine package

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Nead, M. W.

    1978-01-01

    Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. In this report we document a library of FORTRAN subroutines that have been developed to facilitate analyses of a variety of estimation problems. Our purpose is to present an easy to use, multi-purpose set of algorithms that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given along with examples of how these routines can be used. The following outline indicates the scope of this report: Section (1) introduction with reference to background material; Section (2) examples and applications; Section (3) subroutine directory summary; Section (4) the subroutine directory user description with input, output, and usage explained; and Section (5) subroutine FORTRAN listings. The routines are compact and efficient and are far superior to the normal equation and Kalman filter data processing algorithms that are often used for least squares analyses.

  17. How utilities can achieve more accurate decommissioning cost estimates

    SciTech Connect

    Knight, R.

    1999-07-01

    The number of commercial nuclear power plants that are undergoing decommissioning coupled with the economic pressure of deregulation has increased the focus on adequate funding for decommissioning. The introduction of spent-fuel storage and disposal of low-level radioactive waste into the cost analysis places even greater concern as to the accuracy of the fund calculation basis. The size and adequacy of the decommissioning fund have also played a major part in the negotiations for transfer of plant ownership. For all of these reasons, it is important that the operating plant owner reduce the margin of error in the preparation of decommissioning cost estimates. To data, all of these estimates have been prepared via the building block method. That is, numerous individual calculations defining the planning, engineering, removal, and disposal of plant systems and structures are performed. These activity costs are supplemented by the period-dependent costs reflecting the administration, control, licensing, and permitting of the program. This method will continue to be used in the foreseeable future until adequate performance data are available. The accuracy of the activity cost calculation is directly related to the accuracy of the inventory of plant system component, piping and equipment, and plant structural composition. Typically, it is left up to the cost-estimating contractor to develop this plant inventory. The data are generated by searching and analyzing property asset records, plant databases, piping and instrumentation drawings, piping system isometric drawings, and component assembly drawings. However, experience has shown that these sources may not be up to date, discrepancies may exist, there may be missing data, and the level of detail may not be sufficient. Again, typically, the time constraints associated with the development of the cost estimate preclude perfect resolution of the inventory questions. Another problem area in achieving accurate cost

  18. Estimating random signal parameters from noisy images with nuisance parameters

    PubMed Central

    Whitaker, Meredith Kathryn; Clarkson, Eric; Barrett, Harrison H.

    2008-01-01

    In a pure estimation task, an object of interest is known to be present, and we wish to determine numerical values for parameters that describe the object. This paper compares the theoretical framework, implementation method, and performance of two estimation procedures. We examined the performance of these estimators for tasks such as estimating signal location, signal volume, signal amplitude, or any combination of these parameters. The signal is embedded in a random background to simulate the effect of nuisance parameters. First, we explore the classical Wiener estimator, which operates linearly on the data and minimizes the ensemble mean-squared error. The results of our performance tests indicate that the Wiener estimator can estimate amplitude and shape once a signal has been located, but is fundamentally unable to locate a signal regardless of the quality of the image. Given these new results on the fundamental limitations of Wiener estimation, we extend our methods to include more complex data processing. We introduce and evaluate a scanning-linear estimator that performs impressively for location estimation. The scanning action of the estimator refers to seeking a solution that maximizes a linear metric, thereby requiring a global-extremum search. The linear metric to be optimized can be derived as a special case of maximum a posteriori (MAP) estimation when the likelihood is Gaussian and a slowly varying covariance approximation is made. PMID:18545527

  19. Estimating a weighted average of stratum-specific parameters.

    PubMed

    Brumback, Babette A; Winner, Larry H; Casella, George; Ghosh, Malay; Hall, Allyson; Zhang, Jianyi; Chorba, Lorna; Duncan, Paul

    2008-10-30

    This article investigates estimators of a weighted average of stratum-specific univariate parameters and compares them in terms of a design-based estimate of mean-squared error (MSE). The research is motivated by a stratified survey sample of Florida Medicaid beneficiaries, in which the parameters are population stratum means and the weights are known and determined by the population sampling frame. Assuming heterogeneous parameters, it is common to estimate the weighted average with the weighted sum of sample stratum means; under homogeneity, one ignores the known weights in favor of precision weighting. Adaptive estimators arise from random effects models for the parameters. We propose adaptive estimators motivated from these random effects models, but we compare their design-based performance. We further propose selecting the tuning parameter to minimize a design-based estimate of mean-squared error. This differs from the model-based approach of selecting the tuning parameter to accurately represent the heterogeneity of stratum means. Our design-based approach effectively downweights strata with small weights in the assessment of homogeneity, which can lead to a smaller MSE. We compare the standard random effects model with identically distributed parameters to a novel alternative, which models the variances of the parameters as inversely proportional to the known weights. We also present theoretical and computational details for estimators based on a general class of random effects models. The methods are applied to estimate average satisfaction with health plan and care among Florida beneficiaries just prior to Medicaid reform.

  20. Practical Aspects of the Equation-Error Method for Aircraft Parameter Estimation

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene a.

    2006-01-01

    Various practical aspects of the equation-error approach to aircraft parameter estimation were examined. The analysis was based on simulated flight data from an F-16 nonlinear simulation, with realistic noise sequences added to the computed aircraft responses. This approach exposes issues related to the parameter estimation techniques and results, because the true parameter values are known for simulation data. The issues studied include differentiating noisy time series, maximum likelihood parameter estimation, biases in equation-error parameter estimates, accurate computation of estimated parameter error bounds, comparisons of equation-error parameter estimates with output-error parameter estimates, analyzing data from multiple maneuvers, data collinearity, and frequency-domain methods.

  1. Missing Data and IRT Item Parameter Estimation.

    ERIC Educational Resources Information Center

    DeMars, Christine

    The situation of nonrandomly missing data has theoretically different implications for item parameter estimation depending on whether joint maximum likelihood or marginal maximum likelihood methods are used in the estimation. The objective of this paper is to illustrate what potentially can happen, under these estimation procedures, when there is…

  2. Cosmological parameter estimation using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  3. Parameter Estimation using Numerical Merger Waveforms

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; McWilliams, S.; Kelly, B.; Fahey, R.; Arnaud, K.; Baker, J.

    2008-01-01

    Results: Developed parameter estimation model integrating complete waveforms and improved instrumental models. Initial results for equal-mass non-spinning systems indicate moderate improvement in most parameters, significant improvement in some Near-term improvement: a) Improved statistics; b) T-channel; c) Larger parameter space coverage. Combination with other results: a) Higher harmonics; b) Spin precession; c) Instrumental effects.

  4. Parameter Estimation of Partial Differential Equation Models.

    PubMed

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.

  5. Accurate Critical Parameters for the Modified Lennard-Jones Model

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuma; Fuchizaki, Kazuhiro

    2017-03-01

    The critical parameters of the modified Lennard-Jones system were examined. The isothermal-isochoric ensemble was generated by conducting a molecular dynamics simulation for the system consisting of 6912, 8788, 10976, and 13500 particles. The equilibrium between the liquid and vapor phases was judged from the chemical potential of both phases upon establishing the coexistence envelope, from which the critical temperature and density were obtained invoking the renormalization group theory. The finite-size scaling enabled us to finally determine the critical temperature, pressure, and density as Tc = 1.0762(2), pc = 0.09394(17), and ρc = 0.331(3), respectively.

  6. Quantifying uncertainty in state and parameter estimation.

    PubMed

    Parlitz, Ulrich; Schumann-Bischoff, Jan; Luther, Stefan

    2014-05-01

    Observability of state variables and parameters of a dynamical system from an observed time series is analyzed and quantified by means of the Jacobian matrix of the delay coordinates map. For each state variable and each parameter to be estimated, a measure of uncertainty is introduced depending on the current state and parameter values, which allows us to identify regions in state and parameter space where the specific unknown quantity can(not) be estimated from a given time series. The method is demonstrated using the Ikeda map and the Hindmarsh-Rose model.

  7. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2008-11-30

    Prediction of the microbial growth rate as a response to changing temperatures is an important aspect in the control of food safety and food spoilage. Accurate model predictions of the microbial evolution ask for correct model structures and reliable parameter values with good statistical quality. Given the widely accepted validity of the Cardinal Temperature Model with Inflection (CTMI) [Rosso, L., Lobry, J. R., Bajard, S. and Flandrois, J. P., 1995. Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Microbiology, 61: 610-616], this paper focuses on the accurate estimation of its four parameters (T(min), T(opt), T(max) and micro(opt)) by applying the technique of optimal experiment design for parameter estimation (OED/PE). This secondary model describes the influence of temperature on the microbial specific growth rate from the minimum to the maximum temperature for growth. Dynamic temperature profiles are optimized within two temperature regions ([15 degrees C, 43 degrees C] and [15 degrees C, 45 degrees C]), focusing on the minimization of the parameter estimation (co)variance (D-optimal design). The optimal temperature profiles are implemented in a computer controlled bioreactor, and the CTMI parameters are identified from the resulting experimental data. Approximately equal CTMI parameter values were derived irrespective of the temperature region, except for T(max). The latter could only be estimated accurately from the optimal experiments within [15 degrees C, 45 degrees C]. This observation underlines the importance of selecting the upper temperature constraint for OED/PE as close as possible to the true T(max). Cardinal temperature estimates resulting from designs within [15 degrees C, 45 degrees C] correspond with values found in literature, are characterized by a small uncertainty error and yield a good result during validation. As compared to estimates from non-optimized dynamic

  8. MODFLOW-style parameters in underdetermined parameter estimation

    USGS Publications Warehouse

    D'Oria, Marco D.; Fienen, Michael N.

    2012-01-01

    In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW_2005 and MODFLOW_2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes.

  9. MODFLOW-Style parameters in underdetermined parameter estimation.

    PubMed

    D'Oria, Marco; Fienen, Michael N

    2012-01-01

    In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW_2005 and MODFLOW_2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes.

  10. MODFLOW-style parameters in underdetermined parameter estimation

    USGS Publications Warehouse

    D'Oria, M.; Fienen, M.N.

    2012-01-01

    In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW-2005 and MODFLOW-2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes. ?? 2011, National Ground Water Association.

  11. GEODYN- ORBITAL AND GEODETIC PARAMETER ESTIMATION

    NASA Technical Reports Server (NTRS)

    Putney, B.

    1994-01-01

    The Orbital and Geodetic Parameter Estimation program, GEODYN, possesses the capability to estimate that set of orbital elements, station positions, measurement biases, and a set of force model parameters such that the orbital tracking data from multiple arcs of multiple satellites best fits the entire set of estimation parameters. The estimation problem can be divided into two parts: the orbit prediction problem, and the parameter estimation problem. GEODYN solves these two problems by employing Cowell's method for integrating the orbit and a Bayesian least squares statistical estimation procedure for parameter estimation. GEODYN has found a wide range of applications including determination of definitive orbits, tracking instrumentation calibration, satellite operational predictions, and geodetic parameter estimation, such as the estimations for global networks of tracking stations. The orbit prediction problem may be briefly described as calculating for some later epoch the new conditions of state for the satellite, given a set of initial conditions of state for some epoch, and the disturbing forces affecting the motion of the satellite. The user is required to supply only the initial conditions of state and GEODYN will provide the forcing function and integrate the equations of motion of the satellite. Additionally, GEODYN performs time and coordinate transformations to insure the continuity of operations. Cowell's method of numerical integration is used to solve the satellite equations of motion and the variational partials for force model parameters which are to be adjusted. This method uses predictor-corrector formulas for the equations of motion and corrector formulas only for the variational partials. The parameter estimation problem is divided into three separate parts: 1) instrument measurement modeling and partial derivative computation, 2) data error correction, and 3) statistical estimation of the parameters. Since all of the measurements modeled by

  12. Estimating nuisance parameters in inverse problems

    NASA Astrophysics Data System (ADS)

    Aravkin, Aleksandr Y.; van Leeuwen, Tristan

    2012-11-01

    Many inverse problems include nuisance parameters which, while not of direct interest, are required to recover primary parameters. The structure of these problems allows efficient optimization strategies—a well-known example is variable projection, where nonlinear least-squares problems which are linear in some parameters can be very efficiently optimized. In this paper, we extend the idea of projecting out a subset over the variables to a broad class of maximum likelihood and maximum a posteriori likelihood problems with nuisance parameters, such as variance or degrees of freedom (d.o.f.). As a result, we are able to incorporate nuisance parameter estimation into large-scale constrained and unconstrained inverse problem formulations. We apply the approach to a variety of problems, including estimation of unknown variance parameters in the Gaussian model, d.o.f. parameter estimation in the context of robust inverse problems, and automatic calibration. Using numerical examples, we demonstrate improvement in recovery of primary parameters for several large-scale inverse problems. The proposed approach is compatible with a wide variety of algorithms and formulations, and its implementation requires only minor modifications to existing algorithms.

  13. Estimating Respiratory Mechanical Parameters during Mechanical Ventilation

    PubMed Central

    Barbini, Paolo

    1982-01-01

    We propose an algorithm for the estimation of the parameters of the mechanical respiratory system. The algorithm is based on non linear regression analysis with a two-compartment respiratory system model. The model used allows us to take account of the non homogeneous properties of the lungs which may cause uneven distribution of ventilation and thus affect the gas exchange in the lungs. The estimation of the parameters of such a model permits the optimization of the type of ventilation to be used in patients undergoing respiratory treatment. This can be done bearing in mind the effects of the mechanical ventilation on venous return as well as the quality of gas exchange. We have valued the performances of the estimation algorithm which is proposed on the basis of the agreement between the data and the model response, of the stability of the parameter estimates and of the standard deviations of the parameters. The parameter estimation algorithm described does not have recourse to the examination of the impedance spectra and is completely independent of the type of ventilator employed.

  14. Fast and Accurate Learning When Making Discrete Numerical Estimates

    PubMed Central

    Sanborn, Adam N.; Beierholm, Ulrik R.

    2016-01-01

    Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155

  15. Interval Estimation of Seismic Hazard Parameters

    NASA Astrophysics Data System (ADS)

    Orlecka-Sikora, Beata; Lasocki, Stanislaw

    2017-03-01

    The paper considers Poisson temporal occurrence of earthquakes and presents a way to integrate uncertainties of the estimates of mean activity rate and magnitude cumulative distribution function in the interval estimation of the most widely used seismic hazard functions, such as the exceedance probability and the mean return period. The proposed algorithm can be used either when the Gutenberg-Richter model of magnitude distribution is accepted or when the nonparametric estimation is in use. When the Gutenberg-Richter model of magnitude distribution is used the interval estimation of its parameters is based on the asymptotic normality of the maximum likelihood estimator. When the nonparametric kernel estimation of magnitude distribution is used, we propose the iterated bias corrected and accelerated method for interval estimation based on the smoothed bootstrap and second-order bootstrap samples. The changes resulted from the integrated approach in the interval estimation of the seismic hazard functions with respect to the approach, which neglects the uncertainty of the mean activity rate estimates have been studied using Monte Carlo simulations and two real dataset examples. The results indicate that the uncertainty of mean activity rate affects significantly the interval estimates of hazard functions only when the product of activity rate and the time period, for which the hazard is estimated, is no more than 5.0. When this product becomes greater than 5.0, the impact of the uncertainty of cumulative distribution function of magnitude dominates the impact of the uncertainty of mean activity rate in the aggregated uncertainty of the hazard functions. Following, the interval estimates with and without inclusion of the uncertainty of mean activity rate converge. The presented algorithm is generic and can be applied also to capture the propagation of uncertainty of estimates, which are parameters of a multiparameter function, onto this function.

  16. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    The method proposed for estimating sensitivity derivatives is based on the Recursive Quadratic Programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This method is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RQP algorithm. Initial testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity.

  17. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL

    EPA Science Inventory

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...

  18. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb, we incorporated Pb-contaminated soils or Pb acetate into diets for Japanese quail (Coturnix japonica), fed the quail for 15 days, and ...

  19. LISA Parameter Estimation using Numerical Merger Waveforms

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; McWilliams, S.; Baker, J.

    2008-01-01

    Coalescing supermassive black holes are expected to provide the strongest sources for gravitational radiation detected by LISA. Recent advances in numerical relativity provide a detailed description of the waveforms of such signals. We present a preliminary study of LISA's sensitivity to waveform parameters using a hybrid numerical/analytic waveform describing the coalescence of two equal-mass, nonspinning black holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the waveform parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10(exp 6) deg M solar mass at a redshift of z is approximately 1 were found to decrease by a factor of slightly more than two when the merger was included.

  20. Comparison of Dam Breach Parameter Estimators

    DTIC Science & Technology

    2008-01-01

    from a large storm in 1975 (CEATI). The dam was constructed of a clay core containing shale. The upstream and downstream fill was homogeneous earth ...Comparison of Dam Breach Parameter Estimators D. Michael Gee1 1 Senior Hydraulic Engineer, Corps of Engineers Hydrologic Engineering...Center, 609 2nd St., Davis, CA 95616; email: michael.gee@usace.army.mil. ABSTRACT Analytical techniques for the estimation of dam breach

  1. Sequential ensemble-based optimal design for parameter estimation

    NASA Astrophysics Data System (ADS)

    Man, Jun; Zhang, Jiangjiang; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  2. Precision Parameter Estimation and Machine Learning

    NASA Astrophysics Data System (ADS)

    Wandelt, Benjamin D.

    2008-12-01

    I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.

  3. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  4. Estimation of Time-Varying Pilot Model Parameters

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2011-01-01

    Human control behavior is rarely completely stationary over time due to fatigue or loss of attention. In addition, there are many control tasks for which human operators need to adapt their control strategy to vehicle dynamics that vary in time. In previous studies on the identification of time-varying pilot control behavior wavelets were used to estimate the time-varying frequency response functions. However, the estimation of time-varying pilot model parameters was not considered. Estimating these parameters can be a valuable tool for the quantification of different aspects of human time-varying manual control. This paper presents two methods for the estimation of time-varying pilot model parameters, a two-step method using wavelets and a windowed maximum likelihood estimation method. The methods are evaluated using simulations of a closed-loop control task with time-varying pilot equalization and vehicle dynamics. Simulations are performed with and without remnant. Both methods give accurate results when no pilot remnant is present. The wavelet transform is very sensitive to measurement noise, resulting in inaccurate parameter estimates when considerable pilot remnant is present. Maximum likelihood estimation is less sensitive to pilot remnant, but cannot detect fast changes in pilot control behavior.

  5. ZASPE: Zonal Atmospheric Stellar Parameters Estimator

    NASA Astrophysics Data System (ADS)

    Brahm, Rafael; Jordan, Andres; Hartman, Joel; Bakos, Gaspar

    2016-07-01

    ZASPE (Zonal Atmospheric Stellar Parameters Estimator) computes the atmospheric stellar parameters (Teff, log(g), [Fe/H] and vsin(i)) from echelle spectra via least squares minimization with a pre-computed library of synthetic spectra. The minimization is performed only in the most sensitive spectral zones to changes in the atmospheric parameters. The uncertainities and covariances computed by ZASPE assume that the principal source of error is the systematic missmatch between the observed spectrum and the sythetic one that produces the best fit. ZASPE requires a grid of synthetic spectra and can use any pre-computed library minor modifications.

  6. How accurate are physical property estimation programs for organosilicon compounds?

    PubMed

    Boethling, Robert; Meylan, William

    2013-11-01

    Organosilicon compounds are important in chemistry and commerce, and nearly 10% of new chemical substances for which premanufacture notifications are processed by the US Environmental Protection Agency (USEPA) contain silicon (Si). Yet, remarkably few measured values are submitted for key physical properties, and the accuracy of estimation programs such as the Estimation Programs Interface (EPI) Suite and the SPARC Performs Automated Reasoning in Chemistry (SPARC) system is largely unknown. To address this issue, the authors developed an extensive database of measured property values for organic compounds containing Si and evaluated the performance of no-cost estimation programs for several properties of importance in environmental assessment. These included melting point (mp), boiling point (bp), vapor pressure (vp), water solubility, n-octanol/water partition coefficient (log KOW ), and Henry's law constant. For bp and the larger of 2 vp datasets, SPARC, MPBPWIN, and the USEPA's Toxicity Estimation Software Tool (TEST) had similar accuracy. For log KOW and water solubility, the authors tested 11 and 6 no-cost estimators, respectively. The best performers were Molinspiration and WSKOWWIN, respectively. The TEST's consensus mp method outperformed that of MPBPWIN by a considerable margin. Generally, the best programs estimated the listed properties of diverse organosilicon compounds with accuracy sufficient for chemical screening. The results also highlight areas where improvement is most needed.

  7. Effects of model deficiencies on parameter estimation

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.

    1988-01-01

    Reliable structural dynamic models will be required as a basis for deriving the reduced-order plant models used in control systems for large space structures. Ground vibration testing and model verification will play an important role in the development of these models; however, fundamental differences between the space environment and earth environment, as well as variations in structural properties due to as-built conditions, will make on-orbit identification essential. The efficiency, and perhaps even the success, of on-orbit identification will depend on having a valid model of the structure. It is envisioned that the identification process will primarily involve parametric methods. Given a correct model, a variety of estimation algorithms may be used to estimate parameter values. This paper explores the effects of modeling errors and model deficiencies on parameter estimation by reviewing previous case histories. The effects depend at least to some extent on the estimation algorithm being used. Bayesian estimation was used in the case histories presented here. It is therefore conceivable that the behavior of an estimation algorithm might be useful in detecting and possibly even diagnosing deficiencies. In practice, the task is complicated by the presence of systematic errors in experimental procedures and data processing and in the use of the estimation procedures themselves.

  8. New approaches to estimation of magnetotelluric parameters

    SciTech Connect

    Egbert, G.D.

    1991-01-01

    Fully efficient robust data processing procedures were developed and tested for single station and remote reference magnetotelluric (Mr) data. Substantial progress was made on development, testing and comparison of optimal procedures for single station data. A principal finding of this phase of the research was that the simplest robust procedures can be more heavily biased by noise in the (input) magnetic fields, than standard least squares estimates. To deal with this difficulty we developed a robust processing scheme which combined the regression M-estimate with coherence presorting. This hybrid approach greatly improves impedance estimates, particularly in the low signal-to-noise conditions often encountered in the dead band'' (0.1--0.0 hz). The methods, and the results of comparisons of various single station estimators are described in detail. Progress was made on developing methods for estimating static distortion parameters, and for testing hypotheses about the underlying dimensionality of the geological section.

  9. Reliability of parameter estimation in respirometric models.

    PubMed

    Checchi, Nicola; Marsili-Libelli, Stefano

    2005-09-01

    When modelling a biochemical system, the fact that model parameters cannot be estimated exactly stimulates the definition of tests for checking unreliable estimates and design better experiments. The method applied in this paper is a further development from Marsili-Libelli et al. [2003. Confidence regions of estimated parameters for ecological systems. Ecol. Model. 165, 127-146.] and is based on the confidence regions computed with the Fisher or the Hessian matrix. It detects the influence of the curvature, representing the distortion of the model response due to its nonlinear structure. If the test is passed then the estimation can be considered reliable, in the sense that the optimisation search has reached a point on the error surface where the effect of nonlinearities is negligible. The test is used here for an assessment of respirometric model calibration, i.e. checking the experimental design and estimation reliability, with an application to real-life data in the ASM context. Only dissolved oxygen measurements have been considered, because this is a very popular experimental set-up in wastewater modelling. The estimation of a two-step nitrification model using batch respirometric data is considered, showing that the initial amount of ammonium-N and the number of data play a crucial role in obtaining reliable estimates. From this basic application other results are derived, such as the estimation of the combined yield factor and of the second step parameters, based on a modified kinetics and a specific nitrite experiment. Finally, guidelines for designing reliable experiments are provided.

  10. Maximum likelihood estimates of polar motion parameters

    NASA Technical Reports Server (NTRS)

    Wilson, Clark R.; Vicente, R. O.

    1990-01-01

    Two estimators developed by Jeffreys (1940, 1968) are described and used in conjunction with polar-motion data to determine the frequency (Fc) and quality factor (Qc) of the Chandler wobble. Data are taken from a monthly polar-motion series, satellite laser-ranging results, and optical astrometry and intercompared for use via interpolation techniques. Maximum likelihood arguments were employed to develop the estimators, and the assumption that polar motion relates to a Gaussian random process is assessed in terms of the accuracies of the estimators. The present results agree with those from Jeffreys' earlier study but are inconsistent with the later estimator; a Monte Carlo evaluation of the estimators confirms that the 1968 method is more accurate. The later estimator method shows good performance because the Fourier coefficients derived from the data have signal/noise levels that are superior to those for an individual datum. The method is shown to be valuable for general spectral-analysis problems in which isolated peaks must be analyzed from noisy data.

  11. Estimating physiological skin parameters from hyperspectral signatures.

    PubMed

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  12. Estimating physiological skin parameters from hyperspectral signatures

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  13. Aquifer parameter estimation from surface resistivity data.

    PubMed

    Niwas, Sri; de Lima, Olivar A L

    2003-01-01

    This paper is devoted to the additional use, other than ground water exploration, of surface geoelectrical sounding data for aquifer hydraulic parameter estimation. In a mesoscopic framework, approximated analytical equations are developed separately for saline and for fresh water saturations. A few existing useful aquifer models, both for clean and shaley sandstones, are discussed in terms of their electrical and hydraulic effects, along with the linkage between the two. These equations are derived for insight and physical understanding of the phenomenon. In a macroscopic scale, a general aquifer model is proposed and analytical relations are derived for meaningful estimation, with a higher level of confidence, of hydraulic parameter from electrical parameters. The physical reasons for two different equations at the macroscopic level are explicitly explained to avoid confusion. Numerical examples from existing literature are reproduced to buttress our viewpoint.

  14. Moving target parameter estimation of SAR after two looks cancellation

    NASA Astrophysics Data System (ADS)

    Gan, Rongbing; Wang, Jianguo; Gao, Xiang

    2005-11-01

    Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.

  15. Accurate feature detection and estimation using nonlinear and multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Rudin, Leonid; Osher, Stanley

    1994-11-01

    A program for feature detection and estimation using nonlinear and multiscale analysis was completed. The state-of-the-art edge detection was combined with multiscale restoration (as suggested by the first author) and robust results in the presence of noise were obtained. Successful applications to numerous images of interest to DOD were made. Also, a new market in the criminal justice field was developed, based in part, on this work.

  16. Target parameter and error estimation using magnetometry

    NASA Astrophysics Data System (ADS)

    Norton, S. J.; Witten, A. J.; Won, I. J.; Taylor, D.

    The problem of locating and identifying buried unexploded ordnance from magnetometry measurements is addressed within the context of maximum likelihood estimation. In this approach, the magnetostatic theory is used to develop data templates, which represent the modeled magnetic response of a buried ferrous object of arbitrary location, iron content, size, shape, and orientation. It is assumed that these objects are characterized both by a magnetic susceptibility representing their passive response to the earth's magnetic field and by a three-dimensional magnetization vector representing a permanent dipole magnetization. Analytical models were derived for four types of targets: spheres, spherical shells, ellipsoids, and ellipsoidal shells. The models can be used to quantify the Cramer-Rao (error) bounds on the parameter estimates. These bounds give the minimum variance in the estimated parameters as a function of measurement signal-to-noise ratio, spatial sampling, and target characteristics. For cases where analytic expressions for the Cramer-Rao bounds can be derived, these expressions prove quite useful in establishing optimal sampling strategies. Analytic expressions for various Cramer-Rao bounds have been developed for spherical- and spherical shell-type objects. An maximum likelihood estimation algorithm has been developed and tested on data acquired at the Magnetic Test Range at the Naval Explosive Ordnance Disposal Tech Center in Indian Head, Maryland. This algorithm estimates seven target parameters. These parameters are the three Cartesian coordinates (x, y, z) identifying the buried ordnance's location, the three Cartesian components of the permanent dipole magnetization vector, and the equivalent radius of the ordnance assuming it is a passive solid iron sphere.

  17. Cosmological parameter estimation: impact of CMB aberration

    SciTech Connect

    Catena, Riccardo; Notari, Alessio E-mail: notari@ffn.ub.es

    2013-04-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a{sub lm}'s via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation.

  18. Muscle parameters estimation based on biplanar radiography.

    PubMed

    Dubois, G; Rouch, P; Bonneau, D; Gennisson, J L; Skalli, W

    2016-11-01

    The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography.

  19. Estimation of Soft Tissue Mechanical Parameters from Robotic Manipulation Data.

    PubMed

    Boonvisut, Pasu; Jackson, Russell; Cavuşoğlu, M Cenk

    2012-12-31

    Robotic motion planning algorithms used for task automation in robotic surgical systems rely on availability of accurate models of target soft tissue's deformation. Relying on generic tissue parameters in constructing the tissue deformation models is problematic; because, biological tissues are known to have very large (inter- and intra-subject) variability. A priori mechanical characterization (e.g., uniaxial bench test) of the target tissues before a surgical procedure is also not usually practical. In this paper, a method for estimating mechanical parameters of soft tissue from sensory data collected during robotic surgical manipulation is presented. The method uses force data collected from a multiaxial force sensor mounted on the robotic manipulator, and tissue deformation data collected from a stereo camera system. The tissue parameters are then estimated using an inverse finite element method. The effects of measurement and modeling uncertainties on the proposed method are analyzed in simulation. The results of experimental evaluation of the method are also presented.

  20. Estimation of Soft Tissue Mechanical Parameters from Robotic Manipulation Data.

    PubMed

    Boonvisut, Pasu; Cavuşoğlu, M Cenk

    2013-10-01

    Robotic motion planning algorithms used for task automation in robotic surgical systems rely on availability of accurate models of target soft tissue's deformation. Relying on generic tissue parameters in constructing the tissue deformation models is problematic because, biological tissues are known to have very large (inter- and intra-subject) variability. A priori mechanical characterization (e.g., uniaxial bench test) of the target tissues before a surgical procedure is also not usually practical. In this paper, a method for estimating mechanical parameters of soft tissue from sensory data collected during robotic surgical manipulation is presented. The method uses force data collected from a multiaxial force sensor mounted on the robotic manipulator, and tissue deformation data collected from a stereo camera system. The tissue parameters are then estimated using an inverse finite element method. The effects of measurement and modeling uncertainties on the proposed method are analyzed in simulation. The results of experimental evaluation of the method are also presented.

  1. Accurate tempo estimation based on harmonic + noise decomposition

    NASA Astrophysics Data System (ADS)

    Alonso, Miguel; Richard, Gael; David, Bertrand

    2006-12-01

    We present an innovative tempo estimation system that processes acoustic audio signals and does not use any high-level musical knowledge. Our proposal relies on a harmonic + noise decomposition of the audio signal by means of a subspace analysis method. Then, a technique to measure the degree of musical accentuation as a function of time is developed and separately applied to the harmonic and noise parts of the input signal. This is followed by a periodicity estimation block that calculates the salience of musical accents for a large number of potential periods. Next, a multipath dynamic programming searches among all the potential periodicities for the most consistent prospects through time, and finally the most energetic candidate is selected as tempo. Our proposal is validated using a manually annotated test-base containing 961 music signals from various musical genres. In addition, the performance of the algorithm under different configurations is compared. The robustness of the algorithm when processing signals of degraded quality is also measured.

  2. Fast and Accurate Estimates of Divergence Times from Big Data.

    PubMed

    Mello, Beatriz; Tao, Qiqing; Tamura, Koichiro; Kumar, Sudhir

    2017-01-01

    Ongoing advances in sequencing technology have led to an explosive expansion in the molecular data available for building increasingly larger and more comprehensive timetrees. However, Bayesian relaxed-clock approaches frequently used to infer these timetrees impose a large computational burden and discourage critical assessment of the robustness of inferred times to model assumptions, influence of calibrations, and selection of optimal data subsets. We analyzed eight large, recently published, empirical datasets to compare time estimates produced by RelTime (a non-Bayesian method) with those reported by using Bayesian approaches. We find that RelTime estimates are very similar to Bayesian approaches, yet RelTime requires orders of magnitude less computational time. This means that the use of RelTime will enable greater rigor in molecular dating, because faster computational speeds encourage more extensive testing of the robustness of inferred timetrees to prior assumptions (models and calibrations) and data subsets. Thus, RelTime provides a reliable and computationally thrifty approach for dating the tree of life using large-scale molecular datasets.

  3. Parameter estimation uncertainty: Comparing apples and apples?

    NASA Astrophysics Data System (ADS)

    Hart, D.; Yoon, H.; McKenna, S. A.

    2012-12-01

    Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests

  4. Renal parameter estimates in unrestrained dogs

    NASA Technical Reports Server (NTRS)

    Rader, R. D.; Stevens, C. M.

    1974-01-01

    A mathematical formulation has been developed to describe the hemodynamic parameters of a conceptualized kidney model. The model was developed by considering regional pressure drops and regional storage capacities within the renal vasculature. Estimation of renal artery compliance, pre- and postglomerular resistance, and glomerular filtration pressure is feasible by considering mean levels and time derivatives of abdominal aortic pressure and renal artery flow. Changes in the smooth muscle tone of the renal vessels induced by exogenous angiotensin amide, acetylcholine, and by the anaesthetic agent halothane were estimated by use of the model. By employing totally implanted telemetry, the technique was applied on unrestrained dogs to measure renal resistive and compliant parameters while the dogs were being subjected to obedience training, to avoidance reaction, and to unrestrained caging.

  5. CosmoSIS: Modular cosmological parameter estimation

    SciTech Connect

    Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis

  6. Bayesian parameter estimation for effective field theories

    NASA Astrophysics Data System (ADS)

    Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.

    2016-07-01

    We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.

  7. CosmoSIS: Modular cosmological parameter estimation

    DOE PAGES

    Zuntz, J.; Paterno, M.; Jennings, E.; ...

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmicmore » shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis« less

  8. Estimating recharge rates with analytic element models and parameter estimation

    USGS Publications Warehouse

    Dripps, W.R.; Hunt, R.J.; Anderson, M.P.

    2006-01-01

    Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).

  9. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    USGS Publications Warehouse

    Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John

    2016-01-01

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.

  10. Optimal design criteria - prediction vs. parameter estimation

    NASA Astrophysics Data System (ADS)

    Waldl, Helmut

    2014-05-01

    G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.

  11. Estimated hydrogeological parameters by artificial neurons network

    NASA Astrophysics Data System (ADS)

    Lin, H.; Chen, C.; Tan, Y.; Ke, K.

    2009-12-01

    In recent years, many approaches had been developed using artificial neurons network (ANN) model cooperated with Theis analytical solution to estimate the effective hydrological parameters for the homogenous and isotropic porous media, such as Lin and Chen approach [Lin and Chen, 2006] (or called the ANN approach hereafter), PC-ANN approach [Samani et al., 2008]. The above methods assumed a full superimposition of the type curve and the observed drawdown, and tried to use the first time-drawdown data as a match point to make a fine approximation of the effective parameters. However, using the first time-drawdown data or the early time-drawdown data is not always correct for the estimation of the hydrological parameters, especially for heterogeneous and anisotropic aquifers. Therefore, this paper mainly corrected the concept of superimposed plot by modifying the ANN approach and PC-ANN approach, as well as cooperating with Papadopoulos analytical solution, to estimate the transmissivities and storage coefficient for anisotropic, heterogeneous aquifers. The ANN model is trained with 4000 training sets of the well function, and tested with 1000 sets and 300 sets of synthetic time-drawdown generated from homogonous and heterogonous parameters, respectively. In-situ observation data, the time-drawdown at station Shi-Chou of the Chihuahua River alluvial fan, Taiwan, is further adopted to test the applicability and reliability of proposed methods, as well as comparing with Straight-line method and Type-curve method. Results suggested that both of the modified methods had better performance than the original ones. Using late time drawdown to optimize the effective parameters is shown better than using early-time drawdown. Additionally, results indicated that the modified ANN approach is better than the modified PC-ANN approach in terms of precision, while the efficiency of the modified PC-ANN approach is approximately three times better than the modified ANN approach.

  12. Parameter Estimation of a Spiking Silicon Neuron

    PubMed Central

    Russell, Alexander; Mazurek, Kevin; Mihalaş, Stefan; Niebur, Ernst; Etienne-Cummings, Ralph

    2012-01-01

    Spiking neuron models are used in a multitude of tasks ranging from understanding neural behavior at its most basic level to neuroprosthetics. Parameter estimation of a single neuron model, such that the model’s output matches that of a biological neuron is an extremely important task. Hand tuning of parameters to obtain such behaviors is a difficult and time consuming process. This is further complicated when the neuron is instantiated in silicon (an attractive medium in which to implement these models) as fabrication imperfections make the task of parameter configuration more complex. In this paper we show two methods to automate the configuration of a silicon (hardware) neuron’s parameters. First, we show how a Maximum Likelihood method can be applied to a leaky integrate and fire silicon neuron with spike induced currents to fit the neuron’s output to desired spike times. We then show how a distance based method which approximates the negative log likelihood of the lognormal distribution can also be used to tune the neuron’s parameters. We conclude that the distance based method is better suited for parameter configuration of silicon neurons due to its superior optimization speed. PMID:23852978

  13. Intraocular lens power estimation by accurate ray tracing for eyes underwent previous refractive surgeries

    NASA Astrophysics Data System (ADS)

    Yang, Que; Wang, Shanshan; Wang, Kai; Zhang, Chunyu; Zhang, Lu; Meng, Qingyu; Zhu, Qiudong

    2015-08-01

    For normal eyes without history of any ocular surgery, traditional equations for calculating intraocular lens (IOL) power, such as SRK-T, Holladay, Higis, SRK-II, et al., all were relativley accurate. However, for eyes underwent refractive surgeries, such as LASIK, or eyes diagnosed as keratoconus, these equations may cause significant postoperative refractive error, which may cause poor satisfaction after cataract surgery. Although some methods have been carried out to solve this problem, such as Hagis-L equation[1], or using preoperative data (data before LASIK) to estimate K value[2], no precise equations were available for these eyes. Here, we introduced a novel intraocular lens power estimation method by accurate ray tracing with optical design software ZEMAX. Instead of using traditional regression formula, we adopted the exact measured corneal elevation distribution, central corneal thickness, anterior chamber depth, axial length, and estimated effective lens plane as the input parameters. The calculation of intraocular lens power for a patient with keratoconus and another LASIK postoperative patient met very well with their visual capacity after cataract surgery.

  14. Bioaccessibility tests accurately estimate bioavailability of lead to quail.

    PubMed

    Beyer, W Nelson; Basta, Nicholas T; Chaney, Rufus L; Henry, Paula F P; Mosby, David E; Rattner, Barnett A; Scheckel, Kirk G; Sprague, Daniel T; Weber, John S

    2016-09-01

    Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of

  15. Parameter estimate of signal transduction pathways

    PubMed Central

    Arisi, Ivan; Cattaneo, Antonino; Rosato, Vittorio

    2006-01-01

    Background The "inverse" problem is related to the determination of unknown causes on the bases of the observation of their effects. This is the opposite of the corresponding "direct" problem, which relates to the prediction of the effects generated by a complete description of some agencies. The solution of an inverse problem entails the construction of a mathematical model and takes the moves from a number of experimental data. In this respect, inverse problems are often ill-conditioned as the amount of experimental conditions available are often insufficient to unambiguously solve the mathematical model. Several approaches to solving inverse problems are possible, both computational and experimental, some of which are mentioned in this article. In this work, we will describe in details the attempt to solve an inverse problem which arose in the study of an intracellular signaling pathway. Results Using the Genetic Algorithm to find the sub-optimal solution to the optimization problem, we have estimated a set of unknown parameters describing a kinetic model of a signaling pathway in the neuronal cell. The model is composed of mass action ordinary differential equations, where the kinetic parameters describe protein-protein interactions, protein synthesis and degradation. The algorithm has been implemented on a parallel platform. Several potential solutions of the problem have been computed, each solution being a set of model parameters. A sub-set of parameters has been selected on the basis on their small coefficient of variation across the ensemble of solutions. Conclusion Despite the lack of sufficiently reliable and homogeneous experimental data, the genetic algorithm approach has allowed to estimate the approximate value of a number of model parameters in a kinetic model of a signaling pathway: these parameters have been assessed to be relevant for the reproduction of the available experimental data. PMID:17118160

  16. Adaptive Estimation of Intravascular Shear Rate Based on Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Takeda, Naoto

    2008-05-01

    The relationships between the intravascular wall shear stress, controlled by flow dynamics, and the progress of arteriosclerosis plaque have been clarified by various studies. Since the shear stress is determined by the viscosity coefficient and shear rate, both factors must be estimated accurately. In this paper, an adaptive method for improving the accuracy of quantitative shear rate estimation was investigated. First, the parameter dependence of the estimated shear rate was investigated in terms of the differential window width and the number of averaged velocity profiles based on simulation and experimental data, and then the shear rate calculation was optimized. The optimized result revealed that the proposed adaptive method of shear rate estimation was effective for improving the accuracy of shear rate calculation.

  17. Advanced Method to Estimate Fuel Slosh Simulation Parameters

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl

    2005-01-01

    The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the

  18. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1988-01-01

    Parameter sensitivity is defined as the estimation of changes in the modeling functions and the design variables due to small changes in the fixed parameters of the formulation. There are currently several methods for estimating parameter sensitivities requiring either difficult to obtain second order information, or do not return reliable estimates for the derivatives. Additionally, all the methods assume that the set of active constraints does not change in a neighborhood of the estimation point. If the active set does in fact change, than any extrapolations based on these derivatives may be in error. The objective here is to investigate more efficient new methods for estimating parameter sensitivities when the active set changes. The new method is based on the recursive quadratic programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RPQ algorithm. Inital testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity. To handle changes in the active set, a deflection algorithm is proposed for those cases where the new set of active constraints remains linearly independent. For those cases where dependencies occur, a directional derivative is proposed. A few simple examples are included for the algorithm, but extensive testing has not yet been performed.

  19. Parameter Estimation and Model Selection in Computational Biology

    PubMed Central

    Lillacci, Gabriele; Khammash, Mustafa

    2010-01-01

    A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection. PMID:20221262

  20. Parameter estimation in tree graph metabolic networks

    PubMed Central

    Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D.; Groenenboom, Marian; Molenaar, Jaap J.

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings. PMID:27688960

  1. Uncertainty relation based on unbiased parameter estimations

    NASA Astrophysics Data System (ADS)

    Sun, Liang-Liang; Song, Yong-Shun; Qiao, Cong-Feng; Yu, Sixia; Chen, Zeng-Bing

    2017-02-01

    Heisenberg's uncertainty relation has been extensively studied in spirit of its well-known original form, in which the inaccuracy measures used exhibit some controversial properties and don't conform with quantum metrology, where the measurement precision is well defined in terms of estimation theory. In this paper, we treat the joint measurement of incompatible observables as a parameter estimation problem, i.e., estimating the parameters characterizing the statistics of the incompatible observables. Our crucial observation is that, in a sequential measurement scenario, the bias induced by the first unbiased measurement in the subsequent measurement can be eradicated by the information acquired, allowing one to extract unbiased information of the second measurement of an incompatible observable. In terms of Fisher information we propose a kind of information comparison measure and explore various types of trade-offs between the information gains and measurement precisions, which interpret the uncertainty relation as surplus variance trade-off over individual perfect measurements instead of a constraint on extracting complete information of incompatible observables.

  2. Compressing measurements in quantum dynamic parameter estimation

    NASA Astrophysics Data System (ADS)

    Magesan, Easwar; Cooper, Alexandre; Cappellaro, Paola

    2013-12-01

    We present methods that can provide an exponential savings in the resources required to perform dynamic parameter estimation using quantum systems. The key idea is to merge classical compressive sensing techniques with quantum control methods to significantly reduce the number of signal coefficients that are required for reconstruction of time-varying parameters with high fidelity. We show that incoherent measurement bases and, more generally, suitable random measurement matrices can be created by performing simple control sequences on the quantum system. Random measurement matrices satisfying the restricted isometry property can be used efficiently to reconstruct signals that are sparse in any basis. Because many physical processes are approximately sparse in some basis, these methods can benefit a variety of applications such as quantum sensing and magnetometry with nitrogen-vacancy centers.

  3. Real-Time Parameter Estimation Using Output Error

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  4. Estimation of Model Parameters for Steerable Needles

    PubMed Central

    Park, Wooram; Reed, Kyle B.; Okamura, Allison M.; Chirikjian, Gregory S.

    2010-01-01

    Flexible needles with bevel tips are being developed as useful tools for minimally invasive surgery and percutaneous therapy. When such a needle is inserted into soft tissue, it bends due to the asymmetric geometry of the bevel tip. This insertion with bending is not completely repeatable. We characterize the deviations in needle tip pose (position and orientation) by performing repeated needle insertions into artificial tissue. The base of the needle is pushed at a constant speed without rotating, and the covariance of the distribution of the needle tip pose is computed from experimental data. We develop the closed-form equations to describe how the covariance varies with different model parameters. We estimate the model parameters by matching the closed-form covariance and the experimentally obtained covariance. In this work, we use a needle model modified from a previously developed model with two noise parameters. The modified needle model uses three noise parameters to better capture the stochastic behavior of the needle insertion. The modified needle model provides an improvement of the covariance error from 26.1% to 6.55%. PMID:21643451

  5. Parameter estimation techniques for LTP system identification

    NASA Astrophysics Data System (ADS)

    Nofrarias Serra, Miquel

    LISA Pathfinder (LPF) is the precursor mission of LISA (Laser Interferometer Space Antenna) and the first step towards gravitational waves detection in space. The main instrument onboard the mission is the LTP (LISA Technology Package) whose scientific goal is to test LISA's drag-free control loop by reaching a differential acceleration noise level between two masses in √ geodesic motion of 3 × 10-14 ms-2 / Hz in the milliHertz band. The mission is not only challenging in terms of technology readiness but also in terms of data analysis. As with any gravitational wave detector, attaining the instrument performance goals will require an extensive noise hunting campaign to measure all contributions with high accuracy. But, opposite to on-ground experiments, LTP characterisation will be only possible by setting parameters via telecommands and getting a selected amount of information through the available telemetry downlink. These two conditions, high accuracy and high reliability, are the main restrictions that the LTP data analysis must overcome. A dedicated object oriented Matlab Toolbox (LTPDA) has been set up by the LTP analysis team for this purpose. Among the different toolbox methods, an essential part for the mission are the parameter estimation tools that will be used for system identification during operations: Linear Least Squares, Non-linear Least Squares and Monte Carlo Markov Chain methods have been implemented as LTPDA methods. The data analysis team has been testing those methods with a series of mock data exercises with the following objectives: to cross-check parameter estimation methods and compare the achievable accuracy for each of them, and to develop the best strategies to describe the physics underlying a complex controlled experiment as the LTP. In this contribution we describe how these methods were tested with simulated LTP-like data to recover the parameters of the model and we report on the latest results of these mock data exercises.

  6. A simple and accurate resist parameter extraction method for sub-80-nm DRAM patterns

    NASA Astrophysics Data System (ADS)

    Lee, Sook; Hwang, Chan; Park, Dong-Woon; Kim, In-Sung; Kim, Ho-Chul; Woo, Sang-Gyun; Cho, Han-Ku; Moon, Joo-Tae

    2004-05-01

    Due to the polarization effect of high NA lithography, the consideration of resist effect in lithography simulation becomes increasingly important. In spite of the importance of resist simulation, many process engineers are reluctant to consider resist effect in lithography simulation due to time-consuming procedure to extract required resist parameters and the uncertainty of measurement of some parameters. Weiss suggested simplified development model, and this model does not require the complex kinetic parameters. For the device fabrication engineers, there is a simple and accurate parameter extraction and optimizing method using Weiss model. This method needs refractive index, Dill"s parameters and development rate monitoring (DRM) data in parameter extraction. The parameters extracted using referred sequence is not accurate, so that we have to optimize the parameters to fit the critical dimension scanning electron microscopy (CD SEM) data of line and space patterns. Hence, the FiRM of Sigma-C is utilized as a resist parameter-optimizing program. According to our study, the illumination shape, the aberration and the pupil mesh point have a large effect on the accuracy of resist parameter in optimization. To obtain the optimum parameters, we need to find the saturated mesh points in terms of normalized intensity log slope (NILS) prior to an optimization. The simulation results using the optimized parameters by this method shows good agreement with experiments for iso-dense bias, Focus-Exposure Matrix data and sub 80nm device pattern simulation.

  7. [Automatic Measurement of the Stellar Atmospheric Parameters Based Mass Estimation].

    PubMed

    Tu, Liang-ping; Wei, Hui-ming; Luo, A-li; Zhao, Yong-heng

    2015-11-01

    We have collected massive stellar spectral data in recent years, which leads to the research on the automatic measurement of stellar atmospheric physical parameters (effective temperature Teff, surface gravity log g and metallic abundance [Fe/ H]) become an important issue. To study the automatic measurement of these three parameters has important significance for some scientific problems, such as the evolution of the universe and so on. But the research of this problem is not very widely, some of the current methods are not able to estimate the values of the stellar atmospheric physical parameters completely and accurately. So in this paper, an automatic method to predict stellar atmospheric parameters based on mass estimation was presented, which can achieve the prediction of stellar effective temperature Teff, surface gravity log g and metallic abundance [Fe/H]. This method has small amount of computation and fast training speed. The main idea of this method is that firstly it need us to build some mass distributions, secondly the original spectral data was mapped into the mass space and then to predict the stellar parameter with the support vector regression (SVR) in the mass space. we choose the stellar spectral data from the United States SDSS-DR8 for the training and testing. We also compared the predicted results of this method with the SSPP and achieve higher accuracy. The predicted results are more stable and the experimental results show that the method is feasible and can predict the stellar atmospheric physical parameters effectively.

  8. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    SciTech Connect

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan

    2015-09-15

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α{sub 2} ≃ 2α{sub 1}.

  9. Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters.

    PubMed

    Mathew, B; Bauer, A M; Koistinen, P; Reetz, T C; Léon, J; Sillanpää, M J

    2012-10-01

    Accurate and fast estimation of genetic parameters that underlie quantitative traits using mixed linear models with additive and dominance effects is of great importance in both natural and breeding populations. Here, we propose a new fast adaptive Markov chain Monte Carlo (MCMC) sampling algorithm for the estimation of genetic parameters in the linear mixed model with several random effects. In the learning phase of our algorithm, we use the hybrid Gibbs sampler to learn the covariance structure of the variance components. In the second phase of the algorithm, we use this covariance structure to formulate an effective proposal distribution for a Metropolis-Hastings algorithm, which uses a likelihood function in which the random effects have been integrated out. Compared with the hybrid Gibbs sampler, the new algorithm had better mixing properties and was approximately twice as fast to run. Our new algorithm was able to detect different modes in the posterior distribution. In addition, the posterior mode estimates from the adaptive MCMC method were close to the REML (residual maximum likelihood) estimates. Moreover, our exponential prior for inverse variance components was vague and enabled the estimated mode of the posterior variance to be practically zero, which was in agreement with the support from the likelihood (in the case of no dominance). The method performance is illustrated using simulated data sets with replicates and field data in barley.

  10. Poincaré dodecahedral space parameter estimates

    NASA Astrophysics Data System (ADS)

    Roukema, B. F.; Buliński, Z.; Gaudin, N. E.

    2008-12-01

    Context: Several studies have proposed that the preferred model of the comoving spatial 3-hypersurface of the Universe may be a Poincaré dodecahedral space (PDS) rather than a simply connected, infinite, flat space. Aims: Here, we aim to improve the surface of last scattering (SLS) optimal cross-correlation method and apply this to observational data and simulations. Methods: For a given “generalised” PDS orientation, we analytically derive the formulae required to exclude points on the sky that cannot be members of close SLS-SLS cross-pairs. These enable more efficient pair selection without sacrificing the uniformity of the underlying selection process. For a sufficiently small matched circle size α and a fixed number of randomly placed points selected for a cross-correlation estimate, the calculation time is decreased and the number of pairs per separation bin is increased. Using this faster method, and including the smallest separation bin when testing correlations, (i) we recalculate Monte Carlo Markov Chains (MCMC) on the five-year Wilkinson Microwave Anisotropy Probe (WMAP) data; and (ii) we seek PDS solutions in a small number of Gaussian random fluctuation (GRF) simulations in order to further explore the statistical significance of the PDS hypothesis. Results: For 5° < α < 60^circ, a calculation speed-up of 3-10 is obtained. (i) The best estimates of the PDS parameters for the five-year WMAP data are similar to those for the three-year data; (ii) comparison of the optimal solutions found by the MCMC chains in the observational map to those found in the simulated maps yields a slightly stronger rejection of the simply connected model using α rather than the twist angle φ. The best estimate of α implies that, given a large-scale auto-correlation as weak as that observed, the PDS-like cross-correlation signal in the WMAP data is expected with a probability of less than about 10%. The expected distribution of φ from the GRF simulations is not

  11. Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data.

    PubMed

    Schütt, Heiko H; Harmeling, Stefan; Macke, Jakob H; Wichmann, Felix A

    2016-05-01

    The psychometric function describes how an experimental variable, such as stimulus strength, influences the behaviour of an observer. Estimation of psychometric functions from experimental data plays a central role in fields such as psychophysics, experimental psychology and in the behavioural neurosciences. Experimental data may exhibit substantial overdispersion, which may result from non-stationarity in the behaviour of observers. Here we extend the standard binomial model which is typically used for psychometric function estimation to a beta-binomial model. We show that the use of the beta-binomial model makes it possible to determine accurate credible intervals even in data which exhibit substantial overdispersion. This goes beyond classical measures for overdispersion-goodness-of-fit-which can detect overdispersion but provide no method to do correct inference for overdispersed data. We use Bayesian inference methods for estimating the posterior distribution of the parameters of the psychometric function. Unlike previous Bayesian psychometric inference methods our software implementation-psignifit 4-performs numerical integration of the posterior within automatically determined bounds. This avoids the use of Markov chain Monte Carlo (MCMC) methods typically requiring expert knowledge. Extensive numerical tests show the validity of the approach and we discuss implications of overdispersion for experimental design. A comprehensive MATLAB toolbox implementing the method is freely available; a python implementation providing the basic capabilities is also available.

  12. Noncoherent sampling technique for communications parameter estimations

    NASA Technical Reports Server (NTRS)

    Su, Y. T.; Choi, H. J.

    1985-01-01

    This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.

  13. Developing population pharmacokinetic parameters for high-dose methotrexate therapy: implication of correlations among developed parameters for individual parameter estimation using the Bayesian least-squares method.

    PubMed

    Watanabe, Masahiro; Fukuoka, Noriyasu; Takeuchi, Toshiki; Yamaguchi, Kazunori; Motoki, Takahiro; Tanaka, Hiroaki; Kosaka, Shinji; Houchi, Hitoshi

    2014-01-01

    Bayesian estimation enables the individual pharmacokinetic parameters of the medication administrated to be estimated using only a few blood concentrations. Due to wide inter-individual variability in the pharmacokinetics of methotrexate (MTX), the concentration of MTX needs to be frequently determined during high-dose MTX therapy in order to prevent toxic adverse events. To apply the benefits of Bayesian estimation to cases treated with this therapy, we attempted to develop an estimation method using the Bayesian least-squares method, which is commonly used for therapeutic monitoring in a clinical setting. Because this method hypothesizes independency among population pharmacokinetic parameters, we focused on correlations among population pharmacokinetic parameters used to estimate individual parameters. A two-compartment model adequately described the observed concentration of MTX. The individual pharmacokinetic parameters of MTX were estimated in 57 cases using the maximum likelihood method. Among the available parameters accounting for a 2-compartment model, V1, k10, k12, and k21 were found to be the combination showing the weakest correlations, which indicated that this combination was best suited to the Bayesian least-squares method. Using this combination of population pharmacokinetic parameters, Bayesian estimation provided an accurate estimation of individual parameters. In addition, we demonstrated that the degree of correlation among population pharmacokinetic parameters used in the estimation affected the precision of the estimates. This result highlights the necessity of assessing correlations among the population pharmacokinetic parameters used in the Bayesian least-squares method.

  14. Accelerated gravitational wave parameter estimation with reduced order modeling.

    PubMed

    Canizares, Priscilla; Field, Scott E; Gair, Jonathan; Raymond, Vivien; Smith, Rory; Tiglio, Manuel

    2015-02-20

    Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current approaches to parameter estimation for these detectors require computationally expensive algorithms. Therefore, there is a pressing need for new, fast, and accurate Bayesian inference techniques. In this Letter, we demonstrate that a reduced order modeling approach enables rapid parameter estimation to be performed. By implementing a reduced order quadrature scheme within the LIGO Algorithm Library, we show that Bayesian inference on the 9-dimensional parameter space of nonspinning binary neutron star inspirals can be sped up by a factor of ∼30 for the early advanced detectors' configurations (with sensitivities down to around 40 Hz) and ∼70 for sensitivities down to around 20 Hz. This speedup will increase to about 150 as the detectors improve their low-frequency limit to 10 Hz, reducing to hours analyses which could otherwise take months to complete. Although these results focus on interferometric gravitational wave detectors, the techniques are broadly applicable to any experiment where fast Bayesian analysis is desirable.

  15. Accelerated Gravitational Wave Parameter Estimation with Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Canizares, Priscilla; Field, Scott E.; Gair, Jonathan; Raymond, Vivien; Smith, Rory; Tiglio, Manuel

    2015-02-01

    Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current approaches to parameter estimation for these detectors require computationally expensive algorithms. Therefore, there is a pressing need for new, fast, and accurate Bayesian inference techniques. In this Letter, we demonstrate that a reduced order modeling approach enables rapid parameter estimation to be performed. By implementing a reduced order quadrature scheme within the LIGO Algorithm Library, we show that Bayesian inference on the 9-dimensional parameter space of nonspinning binary neutron star inspirals can be sped up by a factor of ˜30 for the early advanced detectors' configurations (with sensitivities down to around 40 Hz) and ˜70 for sensitivities down to around 20 Hz. This speedup will increase to about 150 as the detectors improve their low-frequency limit to 10 Hz, reducing to hours analyses which could otherwise take months to complete. Although these results focus on interferometric gravitational wave detectors, the techniques are broadly applicable to any experiment where fast Bayesian analysis is desirable.

  16. Estimation of growth parameters using a nonlinear mixed Gompertz model.

    PubMed

    Wang, Z; Zuidhof, M J

    2004-06-01

    In order to maximize the utility of simulation models for decision making, accurate estimation of growth parameters and associated variances is crucial. A mixed Gompertz growth model was used to account for between-bird variation and heterogeneous variance. The mixed model had several advantages over the fixed effects model. The mixed model partitioned BW variation into between- and within-bird variation, and the covariance structure assumed with the random effect accounted for part of the BW correlation across ages in the same individual. The amount of residual variance decreased by over 55% with the mixed model. The mixed model reduced estimation biases that resulted from selective sampling. For analysis of longitudinal growth data, the mixed effects growth model is recommended.

  17. Point Estimation and Confidence Interval Estimation for Binomial and Multinomial Parameters

    DTIC Science & Technology

    1975-12-31

    AD-A021 208 POINT ESTIMATION AND CONFIDENCE INTERVAL ESTIMATION FOR BINOMIAL AND MULTINOMIAL PARAMETERS Ramesh Chandra Union College...I 00 064098 O < POINT ESTIMATION AND CONFIDENCE INTERVAL ESTIMATION FOR BINOMIAL AND MULTINOMIAL PARAMETERS AES-7514 ■ - 1976...AES-7514 2 COVT ACCESSION NO * TITLC fan« Submit) Point Estimation and Confidence Interval Estimation for Binomial and Multinomial Parameters

  18. The estimation of time-invariant parameters of noisy nonlinear oscillatory systems

    NASA Astrophysics Data System (ADS)

    Khalil, Mohammad; Sarkar, Abhijit; Adhikari, Sondipon; Poirel, Dominique

    2015-05-01

    The inverse problem of estimating time-invariant (static) parameters of a nonlinear system exhibiting noisy oscillation is considered in this paper. Firstly, a Markov Chain Monte Carlo (MCMC) simulation is used for the time-invariant parameter estimation which exploits a non-Gaussian filter, namely the Ensemble Kalman Filter (EnKF) for state estimation required to compute the likelihood function. Secondly, a recently proposed Particle Filter (PF) (that uses the EnKF for its proposal density for the state estimation) has been adapted for combined state and parameter estimation. Numerical illustrations highlight the strengths and limitations of the MCMC, EnKF and PF algorithms for time-invariant parameter estimation. For low measurement noise and dense measurement data, the performances of the MCMC, EnKF and PF algorithms are comparable. For high measurement noise and sparse observational data, the EnKF fails to provide accurate parameter estimates. Hence the adapted PF algorithm becomes necessary in order to obtain parameter estimates comparable in accuracy to the MCMC simulation with EnKF. It highlights the fact that the augmented state space model for the combined state and parameter estimation contains stronger nonlinearity than the original state space model. Hence the EnKF effectively handles the state estimation of the original state space model, but it fails for the combined state and parameter estimation using the augmented system. The effectiveness of the EnKF for the state estimation is therefore leveraged in the MCMC simulation for the time-invariant parameter estimation. In order to obtain accurate parameter estimates using the augmented system, the adapted PF becomes necessary to match the parameter estimates obtained using the MCMC simulation complemented by EnKF for likelihood function computation.

  19. The potential of more accurate InSAR covariance matrix estimation for land cover mapping

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Yong, Bin; Tian, Xin; Malhotra, Rakesh; Hu, Rui; Li, Zhiwei; Yu, Zhongbo; Zhang, Xinxin

    2017-04-01

    Synthetic aperture radar (SAR) and Interferometric SAR (InSAR) provide both structural and electromagnetic information for the ground surface and therefore have been widely used for land cover classification. However, relatively few studies have developed analyses that investigate SAR datasets over richly textured areas where heterogeneous land covers exist and intermingle over short distances. One of main difficulties is that the shapes of the structures in a SAR image cannot be represented in detail as mixed pixels are likely to occur when conventional InSAR parameter estimation methods are used. To solve this problem and further extend previous research into remote monitoring of urban environments, we address the use of accurate InSAR covariance matrix estimation to improve the accuracy of land cover mapping. The standard and updated methods were tested using the HH-polarization TerraSAR-X dataset and compared with each other using the random forest classifier. A detailed accuracy assessment complied for six types of surfaces shows that the updated method outperforms the standard approach by around 9%, with an overall accuracy of 82.46% over areas with rich texture in Zhuhai, China. This paper demonstrates that the accuracy of land cover mapping can benefit from the 3 enhancement of the quality of the observations in addition to classifiers selection and multi-source data ingratiation reported in previous studies.

  20. Maximum Likelihood and Bayesian Parameter Estimation in Item Response Theory.

    ERIC Educational Resources Information Center

    Lord, Frederic M.

    There are currently three main approaches to parameter estimation in item response theory (IRT): (1) joint maximum likelihood, exemplified by LOGIST, yielding maximum likelihood estimates; (2) marginal maximum likelihood, exemplified by BILOG, yielding maximum likelihood estimates of item parameters (ability parameters can be estimated…

  1. System and method for motor parameter estimation

    DOEpatents

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  2. Bayesian approach to decompression sickness model parameter estimation.

    PubMed

    Howle, L E; Weber, P W; Nichols, J M

    2017-03-01

    We examine both maximum likelihood and Bayesian approaches for estimating probabilistic decompression sickness model parameters. Maximum likelihood estimation treats parameters as fixed values and determines the best estimate through repeated trials, whereas the Bayesian approach treats parameters as random variables and determines the parameter probability distributions. We would ultimately like to know the probability that a parameter lies in a certain range rather than simply make statements about the repeatability of our estimator. Although both represent powerful methods of inference, for models with complex or multi-peaked likelihoods, maximum likelihood parameter estimates can prove more difficult to interpret than the estimates of the parameter distributions provided by the Bayesian approach. For models of decompression sickness, we show that while these two estimation methods are complementary, the credible intervals generated by the Bayesian approach are more naturally suited to quantifying uncertainty in the model parameters.

  3. Estimation of high altitude Martian dust parameters

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  4. Discrete state model and accurate estimation of loop entropy of RNA secondary structures.

    PubMed

    Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie

    2008-03-28

    Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html.

  5. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent.

    PubMed

    Browning, Sharon R; Browning, Brian L

    2015-09-03

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package.

  6. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent

    PubMed Central

    Browning, Sharon R.; Browning, Brian L.

    2015-01-01

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package. PMID:26299365

  7. LSimpute: accurate estimation of missing values in microarray data with least squares methods.

    PubMed

    Bø, Trond Hellem; Dysvik, Bjarte; Jonassen, Inge

    2004-02-20

    Microarray experiments generate data sets with information on the expression levels of thousands of genes in a set of biological samples. Unfortunately, such experiments often produce multiple missing expression values, normally due to various experimental problems. As many algorithms for gene expression analysis require a complete data matrix as input, the missing values have to be estimated in order to analyze the available data. Alternatively, genes and arrays can be removed until no missing values remain. However, for genes or arrays with only a small number of missing values, it is desirable to impute those values. For the subsequent analysis to be as informative as possible, it is essential that the estimates for the missing gene expression values are accurate. A small amount of badly estimated missing values in the data might be enough for clustering methods, such as hierachical clustering or K-means clustering, to produce misleading results. Thus, accurate methods for missing value estimation are needed. We present novel methods for estimation of missing values in microarray data sets that are based on the least squares principle, and that utilize correlations between both genes and arrays. For this set of methods, we use the common reference name LSimpute. We compare the estimation accuracy of our methods with the widely used KNNimpute on three complete data matrices from public data sets by randomly knocking out data (labeling as missing). From these tests, we conclude that our LSimpute methods produce estimates that consistently are more accurate than those obtained using KNNimpute. Additionally, we examine a more classic approach to missing value estimation based on expectation maximization (EM). We refer to our EM implementations as EMimpute, and the estimate errors using the EMimpute methods are compared with those our novel methods produce. The results indicate that on average, the estimates from our best performing LSimpute method are at least as

  8. Parameter Estimation for the Four Parameter Beta Distribution.

    DTIC Science & Technology

    1983-12-01

    ESTIMATOR* MME3 SFED 2 TRUE P: .500 TRUE Q’ .500 MEAN MEAN SOIJQARE STD ERROR STD DEV -°0405 .0448 .0093 . 2078 .0591 *1161 .0150 .3356 .2935 9.8500...64128 o1562 3o4931 -4,6183 22o2167 .0421 . 9424 .0002 .0000 .0000 00010 CORRELATION COEFFICIENTS* 11 000 -. 006 1.000 -. 912 .111 1.000 -. 223 .860 .413

  9. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  10. Estimation Methods for One-Parameter Testlet Models

    ERIC Educational Resources Information Center

    Jiao, Hong; Wang, Shudong; He, Wei

    2013-01-01

    This study demonstrated the equivalence between the Rasch testlet model and the three-level one-parameter testlet model and explored the Markov Chain Monte Carlo (MCMC) method for model parameter estimation in WINBUGS. The estimation accuracy from the MCMC method was compared with those from the marginalized maximum likelihood estimation (MMLE)…

  11. Parameter Estimation of Nonlinear Systems by Dynamic Cuckoo Search.

    PubMed

    Liao, Qixiang; Zhou, Shudao; Shi, Hanqing; Shi, Weilai

    2017-04-01

    In order to address with the problem of the traditional or improved cuckoo search (CS) algorithm, we propose a dynamic adaptive cuckoo search with crossover operator (DACS-CO) algorithm. Normally, the parameters of the CS algorithm are kept constant or adapted by empirical equation that may result in decreasing the efficiency of the algorithm. In order to solve the problem, a feedback control scheme of algorithm parameters is adopted in cuckoo search; Rechenberg's 1/5 criterion, combined with a learning strategy, is used to evaluate the evolution process. In addition, there are no information exchanges between individuals for cuckoo search algorithm. To promote the search progress and overcome premature convergence, the multiple-point random crossover operator is merged into the CS algorithm to exchange information between individuals and improve the diversification and intensification of the population. The performance of the proposed hybrid algorithm is investigated through different nonlinear systems, with the numerical results demonstrating that the method can estimate parameters accurately and efficiently. Finally, we compare the results with the standard CS algorithm, orthogonal learning cuckoo search algorithm (OLCS), an adaptive and simulated annealing operation with the cuckoo search algorithm (ACS-SA), a genetic algorithm (GA), a particle swarm optimization algorithm (PSO), and a genetic simulated annealing algorithm (GA-SA). Our simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  12. Space shuttle propulsion parameter estimation using optional estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A regression analyses on tabular aerodynamic data provided. A representative aerodynamic model for coefficient estimation. It also reduced the storage requirements for the "normal' model used to check out the estimation algorithms. The results of the regression analyses are presented. The computer routines for the filter portion of the estimation algorithm and the :"bringing-up' of the SRB predictive program on the computer was developed. For the filter program, approximately 54 routines were developed. The routines were highly subsegmented to facilitate overlaying program segments within the partitioned storage space on the computer.

  13. Sample Size Requirements for Accurate Estimation of Squared Semi-Partial Correlation Coefficients.

    ERIC Educational Resources Information Center

    Algina, James; Moulder, Bradley C.; Moser, Barry K.

    2002-01-01

    Studied the sample size requirements for accurate estimation of squared semi-partial correlation coefficients through simulation studies. Results show that the sample size necessary for adequate accuracy depends on: (1) the population squared multiple correlation coefficient (p squared); (2) the population increase in p squared; and (3) the…

  14. Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery

    PubMed Central

    Guggenheim, James A.; Bargigia, Ilaria; Farina, Andrea; Pifferi, Antonio; Dehghani, Hamid

    2016-01-01

    A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation. PMID:27699137

  15. Reduced order parameter estimation using quasilinearization and quadratic programming

    NASA Astrophysics Data System (ADS)

    Siade, Adam J.; Putti, Mario; Yeh, William W.-G.

    2012-06-01

    The ability of a particular model to accurately predict how a system responds to forcing is predicated on various model parameters that must be appropriately identified. There are many algorithms whose purpose is to solve this inverse problem, which is often computationally intensive. In this study, we propose a new algorithm that significantly reduces the computational burden associated with parameter identification. The algorithm is an extension of the quasilinearization approach where the governing system of differential equations is linearized with respect to the parameters. The resulting inverse problem therefore becomes a linear regression or quadratic programming problem (QP) for minimizing the sum of squared residuals; the solution becomes an update on the parameter set. This process of linearization and regression is repeated until convergence takes place. This algorithm has not received much attention, as the QPs can become quite large, often infeasible for real-world systems. To alleviate this drawback, proper orthogonal decomposition is applied to reduce the size of the linearized model, thereby reducing the computational burden of solving each QP. In fact, this study shows that the snapshots need only be calculated once at the very beginning of the algorithm, after which no further calculations of the reduced-model subspace are required. The proposed algorithm therefore only requires one linearized full-model run per parameter at the first iteration followed by a series of reduced-order QPs. The method is applied to a groundwater model with about 30,000 computation nodes where as many as 15 zones of hydraulic conductivity are estimated.

  16. Noniterative estimation of a nonlinear parameter

    NASA Technical Reports Server (NTRS)

    Bergstroem, A.

    1973-01-01

    An algorithm is described which solves the parameters X = (x1,x2,...,xm) and p in an approximation problem Ax nearly equal to y(p), where the parameter p occurs nonlinearly in y. Instead of linearization methods, which require an approximate value of p to be supplied as a priori information, and which may lead to the finding of local minima, the proposed algorithm finds the global minimum by permitting the use of series expansions of arbitrary order, exploiting an a priori knowledge that the addition of a particular function, corresponding to a new column in A, will not improve the goodness of the approximation.

  17. A Comparative Study of Distribution System Parameter Estimation Methods

    SciTech Connect

    Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup

    2016-07-17

    In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.

  18. Accurate Structure Parameters for Tunneling Ionization Rates of Gas-Phase Linear Molecules

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Li, Jian-Ke; Wang, Guo-Li; Li, Peng-Cheng; Zhou, Xiao-Xin

    2017-03-01

    In the molecular Ammosov–Delone–Krainov (MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402], the ionization rate depends on the structure parameters of the molecular orbital from which the electron is removed. We determine systematically and tabulate accurate structure parameters of the highest occupied molecular orbital (HOMO) for 123 gas-phase linear molecules by solving time-independent Schrödinger equation with B-spline functions and molecular potentials which are constructed numerically using the modified Leeuwen–Baerends (LBα) model. Supported by National Natural Science Foundation of China under Grant Nos. 11664035, 11674268, 11465016, 11364038, 11364039, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001 and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  19. Do We Know Whether Researchers and Reviewers are Estimating Risk and Benefit Accurately?

    PubMed

    Hey, Spencer Phillips; Kimmelman, Jonathan

    2016-10-01

    Accurate estimation of risk and benefit is integral to good clinical research planning, ethical review, and study implementation. Some commentators have argued that various actors in clinical research systems are prone to biased or arbitrary risk/benefit estimation. In this commentary, we suggest the evidence supporting such claims is very limited. Most prior work has imputed risk/benefit beliefs based on past behavior or goals, rather than directly measuring them. We describe an approach - forecast analysis - that would enable direct and effective measure of the quality of risk/benefit estimation. We then consider some objections and limitations to the forecasting approach.

  20. Towards an accurate estimation of the isosteric heat of adsorption - A correlation with the potential theory.

    PubMed

    Askalany, Ahmed A; Saha, Bidyut B

    2017-03-15

    Accurate estimation of the isosteric heat of adsorption is mandatory for a good modeling of adsorption processes. In this paper a thermodynamic formalism on adsorbed phase volume which is a function of adsorption pressure and temperature has been proposed for the precise estimation of the isosteric heat of adsorption. The estimated isosteric heat of adsorption using the new correlation has been compared with measured values of prudently selected several adsorbent-refrigerant pairs from open literature. Results showed that the proposed isosteric heat of adsorption correlation fits the experimentally measured values better than the Clausius-Clapeyron equation.

  1. Parameter and uncertainty estimation for mechanistic, spatially explicit epidemiological models

    NASA Astrophysics Data System (ADS)

    Finger, Flavio; Schaefli, Bettina; Bertuzzo, Enrico; Mari, Lorenzo; Rinaldo, Andrea

    2014-05-01

    Epidemiological models can be a crucially important tool for decision-making during disease outbreaks. The range of possible applications spans from real-time forecasting and allocation of health-care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. Our spatially explicit, mechanistic models for cholera epidemics have been successfully applied to several epidemics including, the one that struck Haiti in late 2010 and is still ongoing. Calibration and parameter estimation of such models represents a major challenge because of properties unusual in traditional geoscientific domains such as hydrology. Firstly, the epidemiological data available might be subject to high uncertainties due to error-prone diagnosis as well as manual (and possibly incomplete) data collection. Secondly, long-term time-series of epidemiological data are often unavailable. Finally, the spatially explicit character of the models requires the comparison of several time-series of model outputs with their real-world counterparts, which calls for an appropriate weighting scheme. It follows that the usual assumption of a homoscedastic Gaussian error distribution, used in combination with classical calibration techniques based on Markov chain Monte Carlo algorithms, is likely to be violated, whereas the construction of an appropriate formal likelihood function seems close to impossible. Alternative calibration methods, which allow for accurate estimation of total model uncertainty, particularly regarding the envisaged use of the models for decision-making, are thus needed. Here we present the most recent developments regarding methods for parameter and uncertainty estimation to be used with our mechanistic, spatially explicit models for cholera epidemics, based on informal measures of goodness of fit.

  2. Kinetic parameters estimation in an anaerobic digestion process using successive quadratic programming.

    PubMed

    Aceves-Lara, C A; Aguilar-Garnica, E; Alcaraz-González, V; González-Reynoso, O; Steyer, J P; Dominguez-Beltran, J L; González-Alvarez, V

    2005-01-01

    In this work, an optimization method is implemented in an anaerobic digestion model to estimate its kinetic parameters and yield coefficients. This method combines the use of advanced state estimation schemes and powerful nonlinear programming techniques to yield fast and accurate estimates of the aforementioned parameters. In this method, we first implement an asymptotic observer to provide estimates of the non-measured variables (such as biomass concentration) and good guesses for the initial conditions of the parameter estimation algorithm. These results are then used by the successive quadratic programming (SQP) technique to calculate the kinetic parameters and yield coefficients of the anaerobic digestion process. The model, provided with the estimated parameters, is tested with experimental data from a pilot-scale fixed bed reactor treating raw industrial wine distillery wastewater. It is shown that SQP reaches a fast and accurate estimation of the kinetic parameters despite highly noise corrupted experimental data and time varying inputs variables. A statistical analysis is also performed to validate the combined estimation method. Finally, a comparison between the proposed method and the traditional Marquardt technique shows that both yield similar results; however, the calculation time of the traditional technique is considerable higher than that of the proposed method.

  3. On the accurate estimation of gap fraction during daytime with digital cover photography

    NASA Astrophysics Data System (ADS)

    Hwang, Y. R.; Ryu, Y.; Kimm, H.; Macfarlane, C.; Lang, M.; Sonnentag, O.

    2015-12-01

    Digital cover photography (DCP) has emerged as an indirect method to obtain gap fraction accurately. Thus far, however, the intervention of subjectivity, such as determining the camera relative exposure value (REV) and threshold in the histogram, hindered computing accurate gap fraction. Here we propose a novel method that enables us to measure gap fraction accurately during daytime under various sky conditions by DCP. The novel method computes gap fraction using a single DCP unsaturated raw image which is corrected for scattering effects by canopies and a reconstructed sky image from the raw format image. To test the sensitivity of the novel method derived gap fraction to diverse REVs, solar zenith angles and canopy structures, we took photos in one hour interval between sunrise to midday under dense and sparse canopies with REV 0 to -5. The novel method showed little variation of gap fraction across different REVs in both dense and spares canopies across diverse range of solar zenith angles. The perforated panel experiment, which was used to test the accuracy of the estimated gap fraction, confirmed that the novel method resulted in the accurate and consistent gap fractions across different hole sizes, gap fractions and solar zenith angles. These findings highlight that the novel method opens new opportunities to estimate gap fraction accurately during daytime from sparse to dense canopies, which will be useful in monitoring LAI precisely and validating satellite remote sensing LAI products efficiently.

  4. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  5. A hybrid optimization approach to the estimation of distributed parameters in two-dimensional confined aquifers

    USGS Publications Warehouse

    Heidari, M.; Ranjithan, S.R.

    1998-01-01

    In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is

  6. Accurate Estimation of the Entropy of Rotation-Translation Probability Distributions.

    PubMed

    Fogolari, Federico; Dongmo Foumthuim, Cedrix Jurgal; Fortuna, Sara; Soler, Miguel Angel; Corazza, Alessandra; Esposito, Gennaro

    2016-01-12

    The estimation of rotational and translational entropies in the context of ligand binding has been the subject of long-time investigations. The high dimensionality (six) of the problem and the limited amount of sampling often prevent the required resolution to provide accurate estimates by the histogram method. Recently, the nearest-neighbor distance method has been applied to the problem, but the solutions provided either address rotation and translation separately, therefore lacking correlations, or use a heuristic approach. Here we address rotational-translational entropy estimation in the context of nearest-neighbor-based entropy estimation, solve the problem numerically, and provide an exact and an approximate method to estimate the full rotational-translational entropy.

  7. [Guidelines for Accurate and Transparent Health Estimates Reporting: the GATHER Statement].

    PubMed

    Stevens, Gretchen A; Alkema, Leontine; Black, Robert E; Boerma, J Ties; Collins, Gary S; Ezzati, Majid; Grove, John T; Hogan, Daniel R; Hogan, Margaret C; Horton, Richard; Lawn, Joy E; Marušic, Ana; Mathers, Colin D; Murray, Christopher J L; Rudan, Igor; Salomon, Joshua A; Simpson, Paul J; Vos, Theo; Welch, Vivian

    2017-01-01

    Measurements of health indicators are rarely available for every population and period of interest, and available data may not be comparable. The Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) define best reporting practices for studies that calculate health estimates for multiple populations (in time or space) using multiple information sources. Health estimates that fall within the scope of GATHER include all quantitative population-level estimates (including global, regional, national, or subnational estimates) of health indicators, including indicators of health status, incidence and prevalence of diseases, injuries, and disability and functioning; and indicators of health determinants, including health behaviours and health exposures. GATHER comprises a checklist of 18 items that are essential for best reporting practice. A more detailed explanation and elaboration document, describing the interpretation and rationale of each reporting item along with examples of good reporting, is available on the GATHER website (http://gather-statement.org).

  8. Space Shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The fifth monthly progress report includes corrections and additions to the previously submitted reports. The addition of the SRB propellant thickness as a state variable is included with the associated partial derivatives. During this reporting period, preliminary results of the estimation program checkout was presented to NASA technical personnel.

  9. Bias in parameter estimation of form errors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangchao; Zhang, Hao; He, Xiaoying; Xu, Min

    2014-09-01

    The surface form qualities of precision components are critical to their functionalities. In precision instruments algebraic fitting is usually adopted and the form deviations are assessed in the z direction only, in which case the deviations at steep regions of curved surfaces will be over-weighted, making the fitted results biased and unstable. In this paper the orthogonal distance fitting is performed for curved surfaces and the form errors are measured along the normal vectors of the fitted ideal surfaces. The relative bias of the form error parameters between the vertical assessment and orthogonal assessment are analytically calculated and it is represented as functions of the surface slopes. The parameter bias caused by the non-uniformity of data points can be corrected by weighting, i.e. each data is weighted by the 3D area of the Voronoi cell around the projection point on the fitted surface. Finally numerical experiments are given to compare different fitting methods and definitions of the form error parameters. The proposed definition is demonstrated to show great superiority in terms of stability and unbiasedness.

  10. Sample size planning for longitudinal models: accuracy in parameter estimation for polynomial change parameters.

    PubMed

    Kelley, Ken; Rausch, Joseph R

    2011-12-01

    Longitudinal studies are necessary to examine individual change over time, with group status often being an important variable in explaining some individual differences in change. Although sample size planning for longitudinal studies has focused on statistical power, recent calls for effect sizes and their corresponding confidence intervals underscore the importance of obtaining sufficiently accurate estimates of group differences in change. We derived expressions that allow researchers to plan sample size to achieve the desired confidence interval width for group differences in change for orthogonal polynomial change parameters. The approaches developed provide the expected confidence interval width to be sufficiently narrow, with an extension that allows some specified degree of assurance (e.g., 99%) that the confidence interval will be sufficiently narrow. We make computer routines freely available, so that the methods developed can be used by researchers immediately.

  11. Joint Multi-Fiber NODDI Parameter Estimation and Tractography Using the Unscented Information Filter

    PubMed Central

    Reddy, Chinthala P.; Rathi, Yogesh

    2016-01-01

    Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts. PMID:27147956

  12. Estimating winter wheat phenological parameters: Implications for crop modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop parameters, such as the timing of developmental events, are critical for accurate simulation results in crop simulation models, yet uncertainty often exists in determining the parameters. Factors contributing to the uncertainty include: a) sources of variation within a plant (i.e., within diffe...

  13. Periodic orbits of hybrid systems and parameter estimation via AD.

    SciTech Connect

    Guckenheimer, John.; Phipps, Eric Todd; Casey, Richard

    2004-07-01

    Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical models of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method [GM00, Phi03]. Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance

  14. Sample Size and Item Parameter Estimation Precision When Utilizing the One-Parameter "Rasch" Model

    ERIC Educational Resources Information Center

    Custer, Michael

    2015-01-01

    This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…

  15. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    ERIC Educational Resources Information Center

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  16. Attitudinal Data: Dimensionality and Start Values for Estimating Item Parameters.

    ERIC Educational Resources Information Center

    Nandakumar, Ratna; Hotchkiss, Larry; Roberts, James S.

    The purpose of this study was to assess the dimensionality of attitudinal data arising from unfolding models for discrete data and to compute rough estimates of item and individual parameters for use as starting values in other estimation parameters. One- and two-dimensional simulated test data were analyzed in this study. Results of limited…

  17. Equating Parameter Estimates from the Generalized Graded Unfolding Model.

    ERIC Educational Resources Information Center

    Roberts, James S.

    Three common methods for equating parameter estimates from binary item response theory models are extended to the generalized grading unfolding model (GGUM). The GGUM is an item response model in which single-peaked, nonmonotonic expected value functions are implemented for polytomous responses. GGUM parameter estimates are equated using extended…

  18. SFM signal parameter estimation based on an enhanced DSFMT algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Li, Xingguang; Chen, Dianren

    2017-01-01

    It is proposed a SFM signal parameter estimation method based on the Enhanced DSFMT(EDSFMT) algorithm and provided the derivation of transformation formulas in this paper .Analysis and simulations were performed, which proved its capability of arbitrary multi-component SFM signal parameter estimation.

  19. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-09-01

    Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.

  20. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  1. Robust and accurate fundamental frequency estimation based on dominant harmonic components.

    PubMed

    Nakatani, Tomohiro; Irino, Toshio

    2004-12-01

    This paper presents a new method for robust and accurate fundamental frequency (F0) estimation in the presence of background noise and spectral distortion. Degree of dominance and dominance spectrum are defined based on instantaneous frequencies. The degree of dominance allows one to evaluate the magnitude of individual harmonic components of the speech signals relative to background noise while reducing the influence of spectral distortion. The fundamental frequency is more accurately estimated from reliable harmonic components which are easy to select given the dominance spectra. Experiments are performed using white and babble background noise with and without spectral distortion as produced by a SRAEN filter. The results show that the present method is better than previously reported methods in terms of both gross and fine F0 errors.

  2. alphaPDE: A new multivariate technique for parameter estimation

    SciTech Connect

    Knuteson, B.; Miettinen, H.; Holmstrom, L.

    2002-06-01

    We present alphaPDE, a new multivariate analysis technique for parameter estimation. The method is based on a direct construction of joint probability densities of known variables and the parameters to be estimated. We show how posterior densities and best-value estimates are then obtained for the parameters of interest by a straightforward manipulation of these densities. The method is essentially non-parametric and allows for an intuitive graphical interpretation. We illustrate the method by outlining how it can be used to estimate the mass of the top quark, and we explain how the method is applied to an ensemble of events containing background.

  3. Parameter estimation of hydrologic models using data assimilation

    NASA Astrophysics Data System (ADS)

    Kaheil, Y. H.

    2005-12-01

    The uncertainties associated with the modeling of hydrologic systems sometimes demand that data should be incorporated in an on-line fashion in order to understand the behavior of the system. This paper represents a Bayesian strategy to estimate parameters for hydrologic models in an iterative mode. The paper presents a modified technique called localized Bayesian recursive estimation (LoBaRE) that efficiently identifies the optimum parameter region, avoiding convergence to a single best parameter set. The LoBaRE methodology is tested for parameter estimation for two different types of models: a support vector machine (SVM) model for predicting soil moisture, and the Sacramento Soil Moisture Accounting (SAC-SMA) model for estimating streamflow. The SAC-SMA model has 13 parameters that must be determined. The SVM model has three parameters. Bayesian inference is used to estimate the best parameter set in an iterative fashion. This is done by narrowing the sampling space by imposing uncertainty bounds on the posterior best parameter set and/or updating the "parent" bounds based on their fitness. The new approach results in fast convergence towards the optimal parameter set using minimum training/calibration data and evaluation of fewer parameter sets. The efficacy of the localized methodology is also compared with the previously used Bayesian recursive estimation (BaRE) algorithm.

  4. Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude

    DTIC Science & Technology

    2009-12-01

    TRACKER SYSTEM FOR ACCURATE ESTIMATION OF SPACECRAFT ATTITUDE by Jack A. Tappe December 2009 Thesis Co-Advisors: Jae Jun Kim Brij N... Brij N. Agrawal Co-Advisor Dr. Knox T. Millsaps Chairman, Department of Mechanical and Astronautical Engineering iv THIS PAGE...much with my studies here. I would like to especially thank Professors Barry Leonard, Brij Agrawal, Grand Master Shin, and Comrade Oleg Yakimenko

  5. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction

    PubMed Central

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-01-01

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions. PMID:27754469

  6. Accurate parameters of the oldest known rocky-exoplanet hosting system: Kepler-10 revisited

    SciTech Connect

    Fogtmann-Schulz, Alexandra; Hinrup, Brian; Van Eylen, Vincent; Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans; Silva Aguirre, Víctor; Tingley, Brandon

    2014-02-01

    Since the discovery of Kepler-10, the system has received considerable interest because it contains a small, rocky planet which orbits the star in less than a day. The system's parameters, announced by the Kepler team and subsequently used in further research, were based on only five months of data. We have reanalyzed this system using the full span of 29 months of Kepler photometric data, and obtained improved information about its star and the planets. A detailed asteroseismic analysis of the extended time series provides a significant improvement on the stellar parameters: not only can we state that Kepler-10 is the oldest known rocky-planet-harboring system at 10.41 ± 1.36 Gyr, but these parameters combined with improved planetary parameters from new transit fits gives us the radius of Kepler-10b to within just 125 km. A new analysis of the full planetary phase curve leads to new estimates on the planetary temperature and albedo, which remain degenerate in the Kepler band. Our modeling suggests that the flux level during the occultation is slightly lower than at the transit wings, which would imply that the nightside of this planet has a non-negligible temperature.

  7. Estimating Groundwater Flow Parameters Using Response Surface Methodology

    DTIC Science & Technology

    1994-04-01

    Best Available Copy AD-A280 630 DTI ELECT’ JUN2 4 ESTIMATING GROUNDWATER FLOW PARAMETERS USING RESPONSE SURFACE METHODOLOGY THESIS Leo C. Adams...GROUNDWATER FLOW PARAMETERS USING RESPONSE SURFACE METHODOLOGY THESIS Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute...Estimating Groundwater Flow Parameters Using Response Surface Methodology Committee Name/Department Signature dvisor. I Col Paul F. Auclair, Ph.D. j . j

  8. Consistency of Rasch Model Parameter Estimation: A Simulation Study.

    ERIC Educational Resources Information Center

    van den Wollenberg, Arnold L.; And Others

    1988-01-01

    The unconditional--simultaneous--maximum likelihood (UML) estimation procedure for the one-parameter logistic model produces biased estimators. The UML method is inconsistent and is not a good alternative to conditional maximum likelihood method, at least with small numbers of items. The minimum Chi-square estimation procedure produces unbiased…

  9. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities.

    PubMed

    Helb, Danica A; Tetteh, Kevin K A; Felgner, Philip L; Skinner, Jeff; Hubbard, Alan; Arinaitwe, Emmanuel; Mayanja-Kizza, Harriet; Ssewanyana, Isaac; Kamya, Moses R; Beeson, James G; Tappero, Jordan; Smith, David L; Crompton, Peter D; Rosenthal, Philip J; Dorsey, Grant; Drakeley, Christopher J; Greenhouse, Bryan

    2015-08-11

    Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual's recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86-0.93), whereas responses to six antigens accurately estimated an individual's malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.

  10. Online in-situ estimation of network parameters under intermittent excitation conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Jason Ashley

    2008-10-01

    Online in-situ estimation of network parameters is a potential tool to evaluate electrical network and conductor health. The integration of the physics-based models with stochastic models can provide important diagnostic and prognostic information. Correct diagnoses and prognoses using the model-based techniques therefore depend on accurate estimations of the physical parameters. As artificial excitation of the modeled dynamics is not always possible for in-situ applications, the information necessary to make accurate estimations can be intermittent over time. Continuous online estimation and tracking of physics-based parameters using recursive least-squares with directional forgetting is proposed to account for the intermittency in the excitation. This method makes optimal use of the available information while still allowing the solution to following time-varying parameter changes. Computationally efficient statistical inference measures are also provided to gauge the confidence of each parameter estimate. Additionally, identification requirements of the methods and multiple network and conductor models are determined. Finally, the method is shown to be effective in estimating and tracking parameter changes in both the DC and AC networks as well as both time and frequency domain models.

  11. Factors Affecting the Item Parameter Estimation and Classification Accuracy of the DINA Model

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Hong, Yuan; Deng, Weiling

    2010-01-01

    To better understand the statistical properties of the deterministic inputs, noisy "and" gate cognitive diagnosis (DINA) model, the impact of several factors on the quality of the item parameter estimates and classification accuracy was investigated. Results of the simulation study indicate that the fully Bayes approach is most accurate when the…

  12. Research on the estimation method for Earth rotation parameters

    NASA Astrophysics Data System (ADS)

    Yao, Yibin

    2008-12-01

    In this paper, the methods of earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in details. To estimate ERP, two different ways are involved: one is the parameter transformation method, and the other is direct adjustment method with restrictive conditions. With the IGS daily SINEX files produced by GPS tracking stations can be used to estimate ERP. The parameter transformation method can simplify the process. The process result indicates that the systemic error will exist in the estimated ERP by only using GPS observations. As to the daily GPS SINEX files, why the distinct systemic error is exist in the ERP, or whether this systemic error will affect other parameters estimation, and what its influenced magnitude being, it needs further study in the future.

  13. Estimating parameter of influenza transmission using regularized least square

    NASA Astrophysics Data System (ADS)

    Nuraini, N.; Syukriah, Y.; Indratno, S. W.

    2014-02-01

    Transmission process of influenza can be presented in a mathematical model as a non-linear differential equations system. In this model the transmission of influenza is determined by the parameter of contact rate of the infected host and susceptible host. This parameter will be estimated using a regularized least square method where the Finite Element Method and Euler Method are used for approximating the solution of the SIR differential equation. The new infected data of influenza from CDC is used to see the effectiveness of the method. The estimated parameter represents the contact rate proportion of transmission probability in a day which can influence the number of infected people by the influenza. Relation between the estimated parameter and the number of infected people by the influenza is measured by coefficient of correlation. The numerical results show positive correlation between the estimated parameters and the infected people.

  14. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  15. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images

    PubMed Central

    Lavoie, Benjamin R.; Okoniewski, Michal; Fear, Elise C.

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range. PMID:27611785

  16. Accurate estimates of age at maturity from the growth trajectories of fishes and other ectotherms.

    PubMed

    Honsey, Andrew E; Staples, David F; Venturelli, Paul A

    2017-01-01

    Age at maturity (AAM) is a key life history trait that provides insight into ecology, evolution, and population dynamics. However, maturity data can be costly to collect or may not be available. Life history theory suggests that growth is biphasic for many organisms, with a change-point in growth occurring at maturity. If so, then it should be possible to use a biphasic growth model to estimate AAM from growth data. To test this prediction, we used the Lester biphasic growth model in a likelihood profiling framework to estimate AAM from length at age data. We fit our model to simulated growth trajectories to determine minimum data requirements (in terms of sample size, precision in length at age, and the cost to somatic growth of maturity) for accurate AAM estimates. We then applied our method to a large walleye Sander vitreus data set and show that our AAM estimates are in close agreement with conventional estimates when our model fits well. Finally, we highlight the potential of our method by applying it to length at age data for a variety of ectotherms. Our method shows promise as a tool for estimating AAM and other life history traits from contemporary and historical samples.

  17. A simulation of water pollution model parameter estimation

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  18. Parameter Estimation in Epidemiology: from Simple to Complex Dynamics

    NASA Astrophysics Data System (ADS)

    Aguiar, Maíra; Ballesteros, Sebastién; Boto, João Pedro; Kooi, Bob W.; Mateus, Luís; Stollenwerk, Nico

    2011-09-01

    We revisit the parameter estimation framework for population biological dynamical systems, and apply it to calibrate various models in epidemiology with empirical time series, namely influenza and dengue fever. When it comes to more complex models like multi-strain dynamics to describe the virus-host interaction in dengue fever, even most recently developed parameter estimation techniques, like maximum likelihood iterated filtering, come to their computational limits. However, the first results of parameter estimation with data on dengue fever from Thailand indicate a subtle interplay between stochasticity and deterministic skeleton. The deterministic system on its own already displays complex dynamics up to deterministic chaos and coexistence of multiple attractors.

  19. Astrophysical Parameter Estimation for Gaia using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Tiede, C.; Smith, K.; Bailer-Jones, C. A. L.

    2008-08-01

    Gaia is the next astrometric mission from ESA and will measure objects up to a magnitude of about G=20. Depending on the kind of object (which will be determined automatically because Gaia does not hold an input catalogue), the specific astrophysical parameters will be estimated. The General Stellar Parametrizer (GSP-phot) estimates the astrophysical parameters based on low-dispersion spectra and parallax information for single stars. We show the results of machine learning algorithms trained on simulated data and further developments of the core algorithms which improve the accuracy of the estimated astrophysical parameters.

  20. A Joint Analytic Method for Estimating Aquitard Hydraulic Parameters.

    PubMed

    Zhuang, Chao; Zhou, Zhifang; Illman, Walter A

    2017-01-10

    The vertical hydraulic conductivity (Kv ), elastic (Sske ), and inelastic (Sskv ) skeletal specific storage of aquitards are three of the most critical parameters in land subsidence investigations. Two new analytic methods are proposed to estimate the three parameters. The first analytic method is based on a new concept of delay time ratio for estimating Kv and Sske of an aquitard subject to long-term stable, cyclic hydraulic head changes at boundaries. The second analytic method estimates the Sskv of the aquitard subject to linearly declining hydraulic heads at boundaries. Both methods are based on analytical solutions for flow within the aquitard, and they are jointly employed to obtain the three parameter estimates. This joint analytic method is applied to estimate the Kv , Sske , and Sskv of a 34.54-m thick aquitard for which the deformation progress has been recorded by an extensometer located in Shanghai, China. The estimated results are then calibrated by PEST (Doherty 2005), a parameter estimation code coupled with a one-dimensional aquitard-drainage model. The Kv and Sske estimated by the joint analytic method are quite close to those estimated via inverse modeling and performed much better in simulating elastic deformation than the estimates obtained from the stress-strain diagram method of Ye and Xue (2005). The newly proposed joint analytic method is an effective tool that provides reasonable initial values for calibrating land subsidence models.

  1. Unrealistic parameter estimates in inverse modelling: A problem or a benefit for model calibration?

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1996-01-01

    Estimation of unrealistic parameter values by inverse modelling is useful for constructed model discrimination. This utility is demonstrated using the three-dimensional, groundwater flow inverse model MODFLOWP to estimate parameters in a simple synthetic model where the true conditions and character of the errors are completely known. When a poorly constructed model is used, unreasonable parameter values are obtained even when using error free observations and true initial parameter values. This apparent problem is actually a benefit because it differentiates accurately and inaccurately constructed models. The problems seem obvious for a synthetic problem in which the truth is known, but are obscure when working with field data. Situations in which unrealistic parameter estimates indicate constructed model problems are illustrated in applications of inverse modelling to three field sites and to complex synthetic test cases in which it is shown that prediction accuracy also suffers when constructed models are inaccurate.

  2. A variational approach to parameter estimation in ordinary differential equations

    PubMed Central

    2012-01-01

    Background Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. Results The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. Conclusions The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields. PMID:22892133

  3. Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Boyle, Richard D.

    2014-01-01

    Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.

  4. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  5. Estimation of real-time runway surface contamination using flight data recorder parameters

    NASA Astrophysics Data System (ADS)

    Curry, Donovan

    Within this research effort, the development of an analytic process for friction coefficient estimation is presented. Under static equilibrium, the sum of forces and moments acting on the aircraft, in the aircraft body coordinate system, while on the ground at any instant is equal to zero. Under this premise the longitudinal, lateral and normal forces due to landing are calculated along with the individual deceleration components existent when an aircraft comes to a rest during ground roll. In order to validate this hypothesis a six degree of freedom aircraft model had to be created and landing tests had to be simulated on different surfaces. The simulated aircraft model includes a high fidelity aerodynamic model, thrust model, landing gear model, friction model and antiskid model. Three main surfaces were defined in the friction model; dry, wet and snow/ice. Only the parameters recorded by an FDR are used directly from the aircraft model all others are estimated or known a priori. The estimation of unknown parameters is also presented in the research effort. With all needed parameters a comparison and validation with simulated and estimated data, under different runway conditions, is performed. Finally, this report presents results of a sensitivity analysis in order to provide a measure of reliability of the analytic estimation process. Linear and non-linear sensitivity analysis has been performed in order to quantify the level of uncertainty implicit in modeling estimated parameters and how they can affect the calculation of the instantaneous coefficient of friction. Using the approach of force and moment equilibrium about the CG at landing to reconstruct the instantaneous coefficient of friction appears to be a reasonably accurate estimate when compared to the simulated friction coefficient. This is also true when the FDR and estimated parameters are introduced to white noise and when crosswind is introduced to the simulation. After the linear analysis the

  6. READSCAN: a fast and scalable pathogen discovery program with accurate genome relative abundance estimation

    PubMed Central

    Rashid, Mamoon; Pain, Arnab

    2013-01-01

    Summary: READSCAN is a highly scalable parallel program to identify non-host sequences (of potential pathogen origin) and estimate their genome relative abundance in high-throughput sequence datasets. READSCAN accurately classified human and viral sequences on a 20.1 million reads simulated dataset in <27 min using a small Beowulf compute cluster with 16 nodes (Supplementary Material). Availability: http://cbrc.kaust.edu.sa/readscan Contact: arnab.pain@kaust.edu.sa or raeece.naeem@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23193222

  7. Multiple-hit parameter estimation in monolithic detectors

    PubMed Central

    Hunter, William C. J.; Barrett, Harrison H.; Miyaoka, Robert S.; Lewellen, Tom K.

    2012-01-01

    We examine a maximum-a-priori (MAP) method for estimating the primary interaction position of gamma rays with multiple-interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square LSO block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation-camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a conventional ML estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1–12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photo peak events and positioned without loss of resolution by a 1-or-2-hit estimator. PMID:23238325

  8. Accurate parameters for HD 209458 and its planet from HST spectrophotometry

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Allende Prieto, C.

    2016-12-01

    We present updated parameters for the star HD 209458 and its transiting giant planet. The stellar angular diameter θ = 0.2254 ± 0.0017 mas is obtained from the average ratio between the absolute flux observed with the Hubble Space Telescope and that of the best-fitting Kurucz model atmosphere. This angular diameter represents an improvement in precision of more than four times compared to available interferometric determinations. The stellar radius R⋆ = 1.20 ± 0.05 R⊙ is ascertained by combining the angular diameter with the Hipparcos trigonometric parallax, which is the main contributor to its uncertainty, and therefore the radius accuracy should be significantly improved with Gaia's measurements. The radius of the exoplanet Rp = 1.41 ± 0.06 RJ is derived from the corresponding transit depth in the light curve and our stellar radius. From the model fitting, we accurately determine the effective temperature, Teff = 6071 ± 20 K, which is in perfect agreement with the value of 6070 ± 24 K calculated from the angular diameter and the integrated spectral energy distribution. We also find precise values from recent Padova isochrones, such as R⋆ = 1.20 ± 0.06 R⊙ and Teff = 6099 ± 41 K. We arrive at a consistent picture from these methods and compare the results with those from the literature.

  9. On a variational approach to some parameter estimation problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.

    1985-01-01

    Examples (1-D seismic, large flexible structures, bioturbation, nonlinear population dispersal) in which a variation setting can provide a convenient framework for convergence and stability arguments in parameter estimation problems are considered. Some of these examples are 1-D seismic, large flexible structures, bioturbation, and nonlinear population dispersal. Arguments for convergence and stability via a variational approach of least squares formulations of parameter estimation problems for partial differential equations is one aspect of the problem considered.

  10. Numerical Testing of Parameterization Schemes for Solving Parameter Estimation Problems

    DTIC Science & Technology

    2008-12-01

    1 NUMERICAL TESTING OF PARAMETERIZATION SCHEMES FOR SOLVING PARAMETER ESTIMATION PROBLEMS L. Velázquez*, M. Argáez and C. Quintero The...performance computing (HPC). 1. INTRODUCTION In this paper we present the numerical performance of three parameterization approaches, SVD...wavelets, and the combination of wavelet-SVD for solving automated parameter estimation problems based on the SPSA described in previous reports of this

  11. Identification of Neurofuzzy models using GTLS parameter estimation.

    PubMed

    Jakubek, Stefan; Hametner, Christoph

    2009-10-01

    In this paper, nonlinear system identification utilizing generalized total least squares (GTLS) methodologies in neurofuzzy systems is addressed. The problem involved with the estimation of the local model parameters of neurofuzzy networks is the presence of noise in measured data. When some or all input channels are subject to noise, the GTLS algorithm yields consistent parameter estimates. In addition to the estimation of the parameters, the main challenge in the design of these local model networks is the determination of the region of validity for the local models. The method presented in this paper is based on an expectation-maximization algorithm that uses a residual from the GTLS parameter estimation for proper partitioning. The performance of the resulting nonlinear model with local parameters estimated by weighted GTLS is a product both of the parameter estimation itself and the associated residual used for the partitioning process. The applicability and benefits of the proposed algorithm are demonstrated by means of illustrative examples and an automotive application.

  12. The estimation of tumor cell percentage for molecular testing by pathologists is not accurate.

    PubMed

    Smits, Alexander J J; Kummer, J Alain; de Bruin, Peter C; Bol, Mijke; van den Tweel, Jan G; Seldenrijk, Kees A; Willems, Stefan M; Offerhaus, G Johan A; de Weger, Roel A; van Diest, Paul J; Vink, Aryan

    2014-02-01

    Molecular pathology is becoming more and more important in present day pathology. A major challenge for any molecular test is its ability to reliably detect mutations in samples consisting of mixtures of tumor cells and normal cells, especially when the tumor content is low. The minimum percentage of tumor cells required to detect genetic abnormalities is a major variable. Information on tumor cell percentage is essential for a correct interpretation of the result. In daily practice, the percentage of tumor cells is estimated by pathologists on hematoxylin and eosin (H&E)-stained slides, the reliability of which has been questioned. This study aimed to determine the reliability of estimated tumor cell percentages in tissue samples by pathologists. On 47 H&E-stained slides of lung tumors a tumor area was marked. The percentage of tumor cells within this area was estimated independently by nine pathologists, using categories of 0-5%, 6-10%, 11-20%, 21-30%, and so on, until 91-100%. As gold standard, the percentage of tumor cells was counted manually. On average, the range between the lowest and the highest estimate per sample was 6.3 categories. In 33% of estimates, the deviation from the gold standard was at least three categories. The mean absolute deviation was 2.0 categories (range between observers 1.5-3.1 categories). There was a significant difference between the observers (P<0.001). If 20% of tumor cells were considered the lower limit to detect a mutation, samples with an insufficient tumor cell percentage (<20%) would have been estimated to contain enough tumor cells in 27/72 (38%) observations, possibly causing false negative results. In conclusion, estimates of tumor cell percentages on H&E-stained slides are not accurate, which could result in misinterpretation of test results. Reliability could possibly be improved by using a training set with feedback.

  13. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-07

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems.

  14. A new method for parameter estimation in nonlinear dynamical equations

    NASA Astrophysics Data System (ADS)

    Wang, Liu; He, Wen-Ping; Liao, Le-Jian; Wan, Shi-Quan; He, Tao

    2015-01-01

    Parameter estimation is an important scientific problem in various fields such as chaos control, chaos synchronization and other mathematical models. In this paper, a new method for parameter estimation in nonlinear dynamical equations is proposed based on evolutionary modelling (EM). This will be achieved by utilizing the following characteristics of EM which includes self-organizing, adaptive and self-learning features which are inspired by biological natural selection, and mutation and genetic inheritance. The performance of the new method is demonstrated by using various numerical tests on the classic chaos model—Lorenz equation (Lorenz 1963). The results indicate that the new method can be used for fast and effective parameter estimation irrespective of whether partial parameters or all parameters are unknown in the Lorenz equation. Moreover, the new method has a good convergence rate. Noises are inevitable in observational data. The influence of observational noises on the performance of the presented method has been investigated. The results indicate that the strong noises, such as signal noise ratio (SNR) of 10 dB, have a larger influence on parameter estimation than the relatively weak noises. However, it is found that the precision of the parameter estimation remains acceptable for the relatively weak noises, e.g. SNR is 20 or 30 dB. It indicates that the presented method also has some anti-noise performance.

  15. Bayesian Modal Estimation of the Four-Parameter Item Response Model in Real, Realistic, and Idealized Data Sets.

    PubMed

    Waller, Niels G; Feuerstahler, Leah

    2017-03-17

    In this study, we explored item and person parameter recovery of the four-parameter model (4PM) in over 24,000 real, realistic, and idealized data sets. In the first analyses, we fit the 4PM and three alternative models to data from three Minnesota Multiphasic Personality Inventory-Adolescent form factor scales using Bayesian modal estimation (BME). Our results indicated that the 4PM fits these scales better than simpler item Response Theory (IRT) models. Next, using the parameter estimates from these real data analyses, we estimated 4PM item parameters in 6,000 realistic data sets to establish minimum sample size requirements for accurate item and person parameter recovery. Using a factorial design that crossed discrete levels of item parameters, sample size, and test length, we also fit the 4PM to an additional 18,000 idealized data sets to extend our parameter recovery findings. Our combined results demonstrated that 4PM item parameters and parameter functions (e.g., item response functions) can be accurately estimated using BME in moderate to large samples (N ⩾ 5, 000) and person parameters can be accurately estimated in smaller samples (N ⩾ 1, 000). In the supplemental files, we report annotated [Formula: see text] code that shows how to estimate 4PM item and person parameters in [Formula: see text] (Chalmers, 2012 ).

  16. A Simple Technique for Estimating Latent Trait Mental Test Parameters

    ERIC Educational Resources Information Center

    Jensema, Carl

    1976-01-01

    A simple and economical method for estimating initial parameter values for the normal ogive or logistic latent trait mental test model is outlined. The accuracy of the method in comparison with maximum likelihood estimation is investigated through the use of Monte-Carlo data. (Author)

  17. A Comparison of Approximate Interval Estimators for the Bernoulli Parameter

    DTIC Science & Technology

    1993-12-01

    The goal of this paper is to compare the accuracy of two approximate confidence interval estimators for the Bernoulli parameter p. The approximate...is appropriate for certain sample sizes and point estimators. Confidence interval , Binomial distribution, Bernoulli distribution, Poisson distribution.

  18. A comparison of approximate interval estimators for the Bernoulli parameter

    NASA Technical Reports Server (NTRS)

    Leemis, Lawrence; Trivedi, Kishor S.

    1993-01-01

    The goal of this paper is to compare the accuracy of two approximate confidence interval estimators for the Bernoulli parameter p. The approximate confidence intervals are based on the normal and Poisson approximations to the binomial distribution. Charts are given to indicate which approximation is appropriate for certain sample sizes and point estimators.

  19. Parameter estimation of gravitational wave compact binary coalescences

    NASA Astrophysics Data System (ADS)

    Haster, Carl-Johan; LIGO Scientific Collaboration Collaboration

    2017-01-01

    The first detections of gravitational waves from coalescing binary black holes have allowed unprecedented inference on the astrophysical parameters of such binaries. Given recent updates in detector capabilities, gravitational wave model templates and data analysis techniques, in this talk I will describe the prospects of parameter estimation of compact binary coalescences during the second observation run of the LIGO-Virgo collaboration.

  20. Accurate dynamic power estimation for CMOS combinational logic circuits with real gate delay model.

    PubMed

    Fadl, Omnia S; Abu-Elyazeed, Mohamed F; Abdelhalim, Mohamed B; Amer, Hassanein H; Madian, Ahmed H

    2016-01-01

    Dynamic power estimation is essential in designing VLSI circuits where many parameters are involved but the only circuit parameter that is related to the circuit operation is the nodes' toggle rate. This paper discusses a deterministic and fast method to estimate the dynamic power consumption for CMOS combinational logic circuits using gate-level descriptions based on the Logic Pictures concept to obtain the circuit nodes' toggle rate. The delay model for the logic gates is the real-delay model. To validate the results, the method is applied to several circuits and compared against exhaustive, as well as Monte Carlo, simulations. The proposed technique was shown to save up to 96% processing time compared to exhaustive simulation.

  1. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    SciTech Connect

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-18

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1–2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S{sub 0} and A{sub 0}, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A{sub 0} to thickness variations was shown to be superior to S{sub 0}, however, the attenuation from A{sub 0} when a liquid loading was present was much higher than S{sub 0}. A{sub 0} was less sensitive to the presence of coatings on the surface of than S{sub 0}.

  2. Magnetic gaps in organic tri-radicals: From a simple model to accurate estimates

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo

    2017-03-01

    The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results for the systems of current fundamental and technological interest. From the other side, proper parameterization of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic physical effects, unraveling the role played by electron delocalization, Coulomb repulsion, and effective exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three prototypical organic tri-radicals, namely, 1,3,5-trimethylenebenzene, 1,3,5-tridehydrobenzene, and 1,2,3-tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences among the three species and their consequences on the magnetic properties in terms of the simple model mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and the final results are discussed and compared to both available experimental and computational estimates.

  3. Noise reduction for modal parameters estimation using algorithm of solving partially described inverse singular value problem

    NASA Astrophysics Data System (ADS)

    Bao, Xingxian; Cao, Aixia; Zhang, Jing

    2016-07-01

    Modal parameters estimation plays an important role for structural health monitoring. Accurately estimating the modal parameters of structures is more challenging as the measured vibration response signals are contaminated with noise. This study develops a mathematical algorithm of solving the partially described inverse singular value problem (PDISVP) combined with the complex exponential (CE) method to estimate the modal parameters. The PDISVP solving method is to reconstruct an L2-norm optimized (filtered) data matrix from the measured (noisy) data matrix, when the prescribed data constraints are one or several sets of singular triplets of the matrix. The measured data matrix is Hankel structured, which is constructed based on the measured impulse response function (IRF). The reconstructed matrix must maintain the Hankel structure, and be lowered in rank as well. Once the filtered IRF is obtained, the CE method can be applied to extract the modal parameters. Two physical experiments, including a steel cantilever beam with 10 accelerometers mounted, and a steel plate with 30 accelerometers mounted, excited by an impulsive load, respectively, are investigated to test the applicability of the proposed scheme. In addition, the consistency diagram is proposed to exam the agreement among the modal parameters estimated from those different accelerometers. Results indicate that the PDISVP-CE method can significantly remove noise from measured signals and accurately estimate the modal frequencies and damping ratios.

  4. Do modelled or satellite-based estimates of surface solar irradiance accurately describe its temporal variability?

    NASA Astrophysics Data System (ADS)

    Bengulescu, Marc; Blanc, Philippe; Boilley, Alexandre; Wald, Lucien

    2017-02-01

    This study investigates the characteristic time-scales of variability found in long-term time-series of daily means of estimates of surface solar irradiance (SSI). The study is performed at various levels to better understand the causes of variability in the SSI. First, the variability of the solar irradiance at the top of the atmosphere is scrutinized. Then, estimates of the SSI in cloud-free conditions as provided by the McClear model are dealt with, in order to reveal the influence of the clear atmosphere (aerosols, water vapour, etc.). Lastly, the role of clouds on variability is inferred by the analysis of in-situ measurements. A description of how the atmosphere affects SSI variability is thus obtained on a time-scale basis. The analysis is also performed with estimates of the SSI provided by the satellite-derived HelioClim-3 database and by two numerical weather re-analyses: ERA-Interim and MERRA2. It is found that HelioClim-3 estimates render an accurate picture of the variability found in ground measurements, not only globally, but also with respect to individual characteristic time-scales. On the contrary, the variability found in re-analyses correlates poorly with all scales of ground measurements variability.

  5. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.

    PubMed

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Lebel, Luc; Kolus, Ahmet

    2016-05-01

    Heart rate (HR) was monitored continuously in 41 forest workers performing brushcutting or tree planting work. 10-min seated rest periods were imposed during the workday to estimate the HR thermal component (ΔHRT) per Vogt et al. (1970, 1973). VO2 was measured using a portable gas analyzer during a morning submaximal step-test conducted at the work site, during a work bout over the course of the day (range: 9-74 min), and during an ensuing 10-min rest pause taken at the worksite. The VO2 estimated, from measured HR and from corrected HR (thermal component removed), were compared to VO2 measured during work and rest. Varied levels of HR thermal component (ΔHRTavg range: 0-38 bpm) originating from a wide range of ambient thermal conditions, thermal clothing insulation worn, and physical load exerted during work were observed. Using raw HR significantly overestimated measured work VO2 by 30% on average (range: 1%-64%). 74% of VO2 prediction error variance was explained by the HR thermal component. VO2 estimated from corrected HR, was not statistically different from measured VO2. Work VO2 can be estimated accurately in the presence of thermal stress using Vogt et al.'s method, which can be implemented easily by the practitioner with inexpensive instruments.

  6. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets

    PubMed Central

    Granata, Daniele; Carnevale, Vincenzo

    2016-01-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant “collective” variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset. PMID:27510265

  7. Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets

    NASA Astrophysics Data System (ADS)

    Granata, Daniele; Carnevale, Vincenzo

    2016-08-01

    The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant “collective” variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset.

  8. EFFECT OF UNCERTAINTIES IN STELLAR MODEL PARAMETERS ON ESTIMATED MASSES AND RADII OF SINGLE STARS

    SciTech Connect

    Basu, Sarbani; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne E-mail: gav@bison.ph.bham.ac.uk E-mail: y.p.elsworth@bham.ac.uk

    2012-02-10

    Accurate and precise values of radii and masses of stars are needed to correctly estimate properties of extrasolar planets. We examine the effect of uncertainties in stellar model parameters on estimates of the masses, radii, and average densities of solar-type stars. We find that in the absence of seismic data on solar-like oscillations, stellar masses can be determined to a greater accuracy than either stellar radii or densities; but to get reasonably accurate results the effective temperature, log g, and metallicity must be measured to high precision. When seismic data are available, stellar density is the most well-determined property, followed by radius, with mass the least well-determined property. Uncertainties in stellar convection, quantified in terms of uncertainties in the value of the mixing length parameter, cause the most significant errors in the estimates of stellar properties.

  9. MIDAS robust trend estimator for accurate GPS station velocities without step detection.

    PubMed

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij  = (xj-xi )/(tj-ti ) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  10. Methods for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, M.R.; Bland, R.

    2000-01-01

    Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three

  11. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  12. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    PubMed Central

    Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-01-01

    Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil‐Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj–xi)/(tj–ti) computed between all data pairs i > j. For normally distributed data, Theil‐Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil‐Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one‐sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root‐mean‐square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences. PMID:27668140

  13. Estimation of the input parameters in the Feller neuronal model

    NASA Astrophysics Data System (ADS)

    Ditlevsen, Susanne; Lansky, Petr

    2006-06-01

    The stochastic Feller neuronal model is studied, and estimators of the model input parameters, depending on the firing regime of the process, are derived. Closed expressions for the first two moments of functionals of the first-passage time (FTP) through a constant boundary in the suprathreshold regime are derived, which are used to calculate moment estimators. In the subthreshold regime, the exponentiality of the FTP is utilized to characterize the input parameters. The methods are illustrated on simulated data. Finally, approximations of the first-passage-time moments are suggested, and biological interpretations and comparisons of the parameters in the Feller and the Ornstein-Uhlenbeck models are discussed.

  14. Analyzing and constraining signaling networks: parameter estimation for the user.

    PubMed

    Geier, Florian; Fengos, Georgios; Felizzi, Federico; Iber, Dagmar

    2012-01-01

    The behavior of most dynamical models not only depends on the wiring but also on the kind and strength of interactions which are reflected in the parameter values of the model. The predictive value of mathematical models therefore critically hinges on the quality of the parameter estimates. Constraining a dynamical model by an appropriate parameterization follows a 3-step process. In an initial step, it is important to evaluate the sensitivity of the parameters of the model with respect to the model output of interest. This analysis points at the identifiability of model parameters and can guide the design of experiments. In the second step, the actual fitting needs to be carried out. This step requires special care as, on the one hand, noisy as well as partial observations can corrupt the identification of system parameters. On the other hand, the solution of the dynamical system usually depends in a highly nonlinear fashion on its parameters and, as a consequence, parameter estimation procedures get easily trapped in local optima. Therefore any useful parameter estimation procedure has to be robust and efficient with respect to both challenges. In the final step, it is important to access the validity of the optimized model. A number of reviews have been published on the subject. A good, nontechnical overview is provided by Jaqaman and Danuser (Nat Rev Mol Cell Biol 7(11):813-819, 2006) and a classical introduction, focussing on the algorithmic side, is given in Press (Numerical recipes: The art of scientific computing, Cambridge University Press, 3rd edn., 2007, Chapters 10 and 15). We will focus on the practical issues related to parameter estimation and use a model of the TGFβ-signaling pathway as an educative example. Corresponding parameter estimation software and models based on MATLAB code can be downloaded from the authors's web page ( http://www.bsse.ethz.ch/cobi ).

  15. Linear Parameter Varying Control Synthesis for Actuator Failure, Based on Estimated Parameter

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine

    2002-01-01

    The design of a linear parameter varying (LPV) controller for an aircraft at actuator failure cases is presented. The controller synthesis for actuator failure cases is formulated into linear matrix inequality (LMI) optimizations based on an estimated failure parameter with pre-defined estimation error bounds. The inherent conservatism of an LPV control synthesis methodology is reduced using a scaling factor on the uncertainty block which represents estimated parameter uncertainties. The fault parameter is estimated using the two-stage Kalman filter. The simulation results of the designed LPV controller for a HiMXT (Highly Maneuverable Aircraft Technology) vehicle with the on-line estimator show that the desired performance and robustness objectives are achieved for actuator failure cases.

  16. Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter

    SciTech Connect

    Fan, Rui; Huang, Zhenyu; Wang, Shaobu; Diao, Ruisheng; Meng, Da

    2015-07-30

    With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKF method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.

  17. Parameter estimation of copula functions using an optimization-based method

    NASA Astrophysics Data System (ADS)

    Abdi, Amin; Hassanzadeh, Yousef; Talatahari, Siamak; Fakheri-Fard, Ahmad; Mirabbasi, Rasoul

    2016-02-01

    Application of the copulas can be useful for the accurate multivariate frequency analysis of hydrological phenomena. There are many copula functions and some methods were proposed for estimating the copula parameters. Since the copula functions are mathematically complicated, estimating of the copula parameter is an effortful work. In the present study, an optimization-based method (OBM) is proposed to obtain the parameters of copulas. The usefulness of the proposed method is illustrated on drought events. For this purpose, three commonly used copulas of Archimedean family, namely, Clayton, Frank, and Gumbel copulas are used to construct the joint probability distribution of drought characteristics of 60 gauging sites located in East-Azarbaijan province, Iran. The performance of OBM was compared with two conventional methods, namely, method of moments and inference function for margins. The results illustrate the supremacy of the OBM to estimate the copula parameters compared to the other considered methods.

  18. Iterative methods for distributed parameter estimation in parabolic PDE

    SciTech Connect

    Vogel, C.R.; Wade, J.G.

    1994-12-31

    The goal of the work presented is the development of effective iterative techniques for large-scale inverse or parameter estimation problems. In this extended abstract, a detailed description of the mathematical framework in which the authors view these problem is presented, followed by an outline of the ideas and algorithms developed. Distributed parameter estimation problems often arise in mathematical modeling with partial differential equations. They can be viewed as inverse problems; the `forward problem` is that of using the fully specified model to predict the behavior of the system. The inverse or parameter estimation problem is: given the form of the model and some observed data from the system being modeled, determine the unknown parameters of the model. These problems are of great practical and mathematical interest, and the development of efficient computational algorithms is an active area of study.

  19. Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation.

    PubMed

    Ralph, Duncan K; Matsen, Frederick A

    2016-01-01

    VDJ rearrangement and somatic hypermutation work together to produce antibody-coding B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to sequence these BCRs in high throughput; analysis of these sequences is bringing new insight into how antibodies develop, in particular for broadly-neutralizing antibodies against HIV and influenza. A fundamental step in such sequence analysis is to annotate each base as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-templated insertion). Previous work has used simple parametric distributions to model transitions from state to state in a hidden Markov model (HMM) of VDJ recombination, and assumed that mutations occur via the same process across sites. However, codon frame and other effects have been observed to violate these parametric assumptions for such coding sequences, suggesting that a non-parametric approach to modeling the recombination process could be useful. In our paper, we find that indeed large modern data sets suggest a model using parameter-rich per-allele categorical distributions for HMM transition probabilities and per-allele-per-position mutation probabilities, and that using such a model for inference leads to significantly improved results. We present an accurate and efficient BCR sequence annotation software package using a novel HMM "factorization" strategy. This package, called partis (https://github.com/psathyrella/partis/), is built on a new general-purpose HMM compiler that can perform efficient inference given a simple text description of an HMM.

  20. Accurate relative location estimates for the North Korean nuclear tests using empirical slowness corrections

    NASA Astrophysics Data System (ADS)

    Gibbons, S. J.; Pabian, F.; Näsholm, S. P.; Kværna, T.; Mykkeltveit, S.

    2017-01-01

    velocity gradients reduce the residuals, the relative location uncertainties and the sensitivity to the combination of stations used. The traveltime gradients appear to be overestimated for the regional phases, and teleseismic relative location estimates are likely to be more accurate despite an apparent lower precision. Calibrations for regional phases are essential given that smaller magnitude events are likely not to be recorded teleseismically. We discuss the implications for the absolute event locations. Placing the 2006 event under a local maximum of overburden at 41.293°N, 129.105°E would imply a location of 41.299°N, 129.075°E for the January 2016 event, providing almost optimal overburden for the later four events.

  1. Accurate Relative Location Estimates for the North Korean Nuclear Tests Using Empirical Slowness Corrections

    NASA Astrophysics Data System (ADS)

    Gibbons, S. J.; Pabian, F.; Näsholm, S. P.; Kværna', T.; Mykkeltveit, S.

    2016-10-01

    modified velocity gradients reduce the residuals, the relative location uncertainties, and the sensitivity to the combination of stations used. The traveltime gradients appear to be overestimated for the regional phases, and teleseismic relative location estimates are likely to be more accurate despite an apparent lower precision. Calibrations for regional phases are essential given that smaller magnitude events are likely not to be recorded teleseismically. We discuss the implications for the absolute event locations. Placing the 2006 event under a local maximum of overburden at 41.293°N, 129.105°E would imply a location of 41.299°N, 129.075°E for the January 2016 event, providing almost optimal overburden for the later four events.

  2. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.

    PubMed

    Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong

    2016-05-30

    Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.

  3. Parameter estimation of optical fringes with quadratic phase using the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Feng; Zhang, Feng; Tao, Ran; Ni, Guo-Qiang; Bai, Ting-Zhu; Yang, Wen-Ming

    2015-11-01

    Optical fringes with a quadratic phase are often encountered in optical metrology. Parameter estimation of such fringes plays an important role in interferometric measurements. A novel method is proposed for accurate and direct parameter estimation using the fractional Fourier transform (FRFT), even in the presence of noise and obstacles. We take Newton's rings fringe patterns and electronic speckle pattern interferometry (ESPI) interferograms as classic examples of optical fringes that have a quadratic phase and present simulation and experimental results demonstrating the performance of the proposed method.

  4. Estimation of Temperature Dependent Parameters of a Batch Alcoholic Fermentation Process

    NASA Astrophysics Data System (ADS)

    de Andrade, Rafael Ramos; Rivera, Elmer Ccopa; Costa, Aline C.; Atala, Daniel I. P.; Filho, Francisco Maugeri; Filho, Rubens Maciel

    In this work, a procedure was established to develop a mathematical model considering the effect of temperature on reaction kinetics. Experiments were performed in batch mode in temperatures from 30 to 38°C. The microorganism used was Saccharomyces cerevisiae and the culture media, sugarcane molasses. The objective is to assess the difficulty in updating the kinetic parameters when there are changes in fermentation conditions. We conclude that, although the re-estimation is a time-consuming task, it is possible to accurately describe the process when there are changes in raw material composition if a re-estimation of parameters is performed.

  5. Simultaneous parameter and state estimation of shear buildings

    NASA Astrophysics Data System (ADS)

    Concha, Antonio; Alvarez-Icaza, Luis; Garrido, Rubén

    2016-03-01

    This paper proposes an adaptive observer that simultaneously estimates the damping/mass and stiffness/mass ratios, and the state of a seismically excited building. The adaptive observer uses only acceleration measurements of the ground and floors for both parameter and state estimation; it identifies all the parameter ratios, velocities and displacements of the structure if all the floors are instrumented; and it also estimates the state and the damping/mass and stiffness/mass ratios of a reduced model of the building if only some floors are equipped with accelerometers. This observer does not resort to any particular canonical form and employs the Least Squares (LS) algorithm and a Luenberger state estimator. The LS method is combined with a smooth parameter projection technique that provides only positive estimates, which are employed by the state estimator. Boundedness of the estimate produced by the LS algorithm does not depend on the boundedness of the state estimates. Moreover, the LS method uses a parametrization based on Linear Integral Filters that eliminate offsets in the acceleration measurements in finite time and attenuate high-frequency measurement noise. Experimental results obtained using a reduced-scale five-story confirm the effectiveness of the proposed adaptive observer.

  6. Simulation and parameter estimation of dynamics of synaptic depression.

    PubMed

    Aristizabal, F; Glavinovic, M I

    2004-01-01

    Synaptic release was simulated using a Simulink sequential storage model with three vesicular pools. Modeling was modular and easily extendable to the systems with greater number of vesicular pools, parallel input, or time-varying parameters. Given an input (short or long tetanic trains, patterned or random stimulation) and the storage model, the vesicular release, the replenishment of various vesicular pools, and the vesicular content of all pools could be simulated for the time-invariant and time-varying storage systems. From the input stimuli and either a noiseless or a noisy output, the parameters of such storage systems could also be estimated using the optimization technique that minimizes in the least square sense the error between the observed release and the predicted release. All parameters of the storage model could be evaluated with sufficiently long input-output data pairs. Not surprisingly, the parameters characterizing the processes near the release locus, such as the fractional release and the size of the immediately available pool and its coupling to the small store, as well as the state variables associated with the immediately available pool, such as its vesicular content and replenishment, could be determined with fewer stimuli. The possibility of estimating parameters with random inputs extends the applicability of the method to in vivo synapses with the physiological inputs. The parameter estimation was also possible under the time-variant, but slowly changing, conditions as well as for open systems that are part of larger vesicular storage systems but whose parameters can either not be reliably determined or are of no interest. The quality of parameter estimation was monitored continuously by comparing the observed and predicted output and/or estimated parameters with the true values. Finally, the method was tested experimentally using the rat phrenic-diaphragm neuromuscular junction.

  7. Quantiles, Parametric-Select Density Estimations, and Bi-Information Parameter Estimators.

    DTIC Science & Technology

    1982-06-01

    A non- parametric estimation method forms estimators which are not based on parametric models. Important examples of non-parametric estimators of a...raw descriptive functions F, f, Q, q, fQ. One distinguishes between parametric and non-parametric methods of estimating smooth functions. A parametric ... estimation method : (1) assumes a family F8, fo’ Q0, qo’ foQ8 of functions, called parametric models, which are indexed by a parameter 6 = ( l

  8. Evaluation of the Covariance Matrix of Estimated Resonance Parameters

    NASA Astrophysics Data System (ADS)

    Becker, B.; Capote, R.; Kopecky, S.; Massimi, C.; Schillebeeckx, P.; Sirakov, I.; Volev, K.

    2014-04-01

    In the resonance region nuclear resonance parameters are mostly obtained by a least square adjustment of a model to experimental data. Derived parameters can be mutually correlated through the adjustment procedure as well as through common experimental or model uncertainties. In this contribution we investigate four different methods to propagate the additional covariance caused by experimental or model uncertainties into the evaluation of the covariance matrix of the estimated parameters: (1) including the additional covariance into the experimental covariance matrix based on calculated or theoretical estimates of the data; (2) including the uncertainty affected parameter in the adjustment procedure; (3) evaluation of the full covariance matrix by Monte Carlo sampling of the common parameter; and (4) retroactively including the additional covariance by using the marginalization procedure of Habert et al.

  9. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  10. Stellar atmospheric parameter estimation using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Bu, Yude; Pan, Jingchang

    2015-02-01

    As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.

  11. Forest biophysical parameter estimation using space-borne bistatic PolInSAR measurements

    NASA Astrophysics Data System (ADS)

    Khati, Unmesh; Singh, Gulab; Mohanty, Shradha

    2016-05-01

    Forest height is an important indicator of the health of the forest ecosystem and can be utilized for accurate estimation of important parameters such as forest above-ground biomass. PolInSAR techniques have been utilized for forest height estimation using airborne and space-borne platforms. However, temporal decorrelation severely limits the ability of space-borne PolInSAR observations for meaningful height inversion. With the launch of the TerraSAR-X/TanDEM-X platforms, acquisition of Polarimetric SAR data in bistatic mode, without the undesired effects of temporal decorrelation, is possible. Full-PolInSAR bistatic data is acquired over Indian tropical forests and the height inversion results are presented in this research article. The inverted height shows a good correlation with field measured height, with r = 0.8. The inversion shows over-estimation over low height forests, while providing an accurate estimation for tall forested areas.

  12. Accurate estimation of the RMS emittance from single current amplifier data

    SciTech Connect

    Stockli, Martin P.; Welton, R.F.; Keller, R.; Letchford, A.P.; Thomae, R.W.; Thomason, J.W.G.

    2002-05-31

    This paper presents the SCUBEEx rms emittance analysis, a self-consistent, unbiased elliptical exclusion method, which combines traditional data-reduction methods with statistical methods to obtain accurate estimates for the rms emittance. Rather than considering individual data, the method tracks the average current density outside a well-selected, variable boundary to separate the measured beam halo from the background. The average outside current density is assumed to be part of a uniform background and not part of the particle beam. Therefore the average outside current is subtracted from the data before evaluating the rms emittance within the boundary. As the boundary area is increased, the average outside current and the inside rms emittance form plateaus when all data containing part of the particle beam are inside the boundary. These plateaus mark the smallest acceptable exclusion boundary and provide unbiased estimates for the average background and the rms emittance. Small, trendless variations within the plateaus allow for determining the uncertainties of the estimates caused by variations of the measured background outside the smallest acceptable exclusion boundary. The robustness of the method is established with complementary variations of the exclusion boundary. This paper presents a detailed comparison between traditional data reduction methods and SCUBEEx by analyzing two complementary sets of emittance data obtained with a Lawrence Berkeley National Laboratory and an ISIS H{sup -} ion source.

  13. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.

  14. Subsonic flight test evaluation of a propulsion system parameter estimation process for the F100 engine

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1992-01-01

    Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.

  15. Dynamic simulation and parameter estimation in river streams.

    PubMed

    Karadurmus, E; Berber, R

    2004-04-01

    Predictions and quality management issues for environmental protection in river basins rely on water-quality models. The key step in model calibration and verification is obtaining the right values of the model parameters. Current practice in model calibration is such that the reaction coefficients are adjusted by trial-and-error until the predicted values and measured data are within a pre-selected margin of error, and this may be a very time consuming task. This study is directed towards developing a parameter estimation strategy coupled with the simulation of water quality models so that the heavy burden of finding reaction rate coefficients is overcome. Dynamic mass balances for different forms of nitrogen and phosphorus, biological oxygen demand, dissolved oxygen, coliforms, nonconservative constituent and algae were written for a single computational element. The model parameters conforming to those in QUAL2E water quality model were estimated by a nonlinear multi-response parameter estimation strategy coupled with a stiff integrator. Yesilirmak river basin around the city of Amasya in Turkey served as the prototype system for the model development. Samples were collected simultaneously from two stations, and concentrations of many water-quality constituents were determined either on-site or in laboratory. This dynamic data was then used for numerical parameter estimation during computer simulation. When the model was simulated with the estimated parameters, it was seen that the model was quite able to predict the dynamics of major water quality constituents. It is concluded that the proposed method shows promise for automatically generating reliable estimates of model parameters.

  16. Analysis of the Second Model Parameter Estimation Experiment Workshop Results

    NASA Astrophysics Data System (ADS)

    Duan, Q.; Schaake, J.; Koren, V.; Mitchell, K.; Lohmann, D.

    2002-05-01

    The goal of Model Parameter Estimation Experiment (MOPEX) is to investigate techniques for the a priori parameter estimation for land surface parameterization schemes of atmospheric models and for hydrologic models. A comprehensive database has been developed which contains historical hydrometeorologic time series data and land surface characteristics data for 435 basins in the United States and many international basins. A number of international MOPEX workshops have been convened or planned for MOPEX participants to share their parameter estimation experience. The Second International MOPEX Workshop is held in Tucson, Arizona, April 8-10, 2002. This paper presents the MOPEX goal/objectives and science strategy. Results from our participation in developing and testing of the a priori parameter estimation procedures for the National Weather Service (NWS) Sacramento Soil Moisture Accounting (SAC-SMA) model, the Simple Water Balance (SWB) model, and the National Center for Environmental Prediction Center (NCEP) NOAH Land Surface Model (NOAH LSM) are highlighted. The test results will include model simulations using both a priori parameters and calibrated parameters for 12 basins selected for the Tucson MOPEX Workshop.

  17. Evaluating parasite densities and estimation of parameters in transmission systems.

    PubMed

    Heinzmann, D; Torgerson, P R

    2008-09-01

    Mathematical modelling of parasite transmission systems can provide useful information about host parasite interactions and biology and parasite population dynamics. In addition good predictive models may assist in designing control programmes to reduce the burden of human and animal disease. Model building is only the first part of the process. These models then need to be confronted with data to obtain parameter estimates and the accuracy of these estimates has to be evaluated. Estimation of parasite densities is central to this. Parasite density estimates can include the proportion of hosts infected with parasites (prevalence) or estimates of the parasite biomass within the host population (abundance or intensity estimates). Parasite density estimation is often complicated by highly aggregated distributions of parasites within the hosts. This causes additional challenges when calculating transmission parameters. Using Echinococcus spp. as a model organism, this manuscript gives a brief overview of the types of descriptors of parasite densities, how to estimate them and on the use of these estimates in a transmission model.

  18. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems

    PubMed Central

    Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.

    2016-01-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060

  19. Rapid estimation of drifting parameters in continuously measured quantum systems

    NASA Astrophysics Data System (ADS)

    Cortez, Luis; Chantasri, Areeya; García-Pintos, Luis Pedro; Dressel, Justin; Jordan, Andrew N.

    2017-01-01

    We investigate the determination of a Hamiltonian parameter in a quantum system undergoing continuous measurement. We demonstrate a computationally rapid method to estimate an unknown and possibly time-dependent parameter, where we maximize the likelihood of the observed stochastic readout. By dealing directly with the raw measurement record rather than the quantum-state trajectories, the estimation can be performed while the data are being acquired, permitting continuous tracking of the parameter during slow drifts in real time. Furthermore, we incorporate realistic nonidealities, such as decoherence processes and measurement inefficiency. As an example, we focus on estimating the value of the Rabi frequency of a continuously measured qubit and compare maximum likelihood estimation to a simpler fast Fourier transform. Using this example, we discuss how the quality of the estimation depends on both the strength and the duration of the measurement; we also discuss the trade-off between the accuracy of the estimate and the sensitivity to drift as the estimation duration is varied.

  20. Accurate and Robust Attitude Estimation Using MEMS Gyroscopes and a Monocular Camera

    NASA Astrophysics Data System (ADS)

    Kobori, Norimasa; Deguchi, Daisuke; Takahashi, Tomokazu; Ide, Ichiro; Murase, Hiroshi

    In order to estimate accurate rotations of mobile robots and vehicle, we propose a hybrid system which combines a low-cost monocular camera with gyro sensors. Gyro sensors have drift errors that accumulate over time. On the other hand, a camera cannot obtain the rotation continuously in the case where feature points cannot be extracted from images, although the accuracy is better than gyro sensors. To solve these problems we propose a method for combining these sensors based on Extended Kalman Filter. The errors of the gyro sensors are corrected by referring to the rotations obtained from the camera. In addition, by using the reliability judgment of camera rotations and devising the state value of the Extended Kalman Filter, even when the rotation is not continuously observable from the camera, the proposed method shows a good performance. Experimental results showed the effectiveness of the proposed method.

  1. Multiple-Hit Parameter Estimation in Monolithic Detectors

    PubMed Central

    Barrett, Harrison H.; Lewellen, Tom K.; Miyaoka, Robert S.

    2014-01-01

    We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%–12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied. PMID:23193231

  2. Phase noise effects on turbulent weather radar spectrum parameter estimation

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil; Baxa, Ernest G., Jr.

    1990-01-01

    Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.

  3. Two-wavelength interferometry: extended range and accurate optical path difference analytical estimator.

    PubMed

    Houairi, Kamel; Cassaing, Frédéric

    2009-12-01

    Two-wavelength interferometry combines measurement at two wavelengths lambda(1) and lambda(2) in order to increase the unambiguous range (UR) for the measurement of an optical path difference. With the usual algorithm, the UR is equal to the synthetic wavelength Lambda=lambda(1)lambda(2)/|lambda(1)-lambda(2)|, and the accuracy is a fraction of Lambda. We propose here a new analytical algorithm based on arithmetic properties, allowing estimation of the absolute fringe order of interference in a noniterative way. This algorithm has nice properties compared with the usual algorithm: it is at least as accurate as the most accurate measurement at one wavelength, whereas the UR is extended to several times the synthetic wavelength. The analysis presented shows how the actual UR depends on the wavelengths and different sources of error. The simulations presented are confirmed by experimental results, showing that the new algorithm has enabled us to reach an UR of 17.3 microm, much larger than the synthetic wavelength, which is only Lambda=2.2 microm. Applications to metrology and fringe tracking are discussed.

  4. Cramer-Rao bound on watermark desynchronization parameter estimation accuracy

    NASA Astrophysics Data System (ADS)

    Sadasivam, Shankar; Moulin, Pierre

    2007-02-01

    Various decoding algorithms have been proposed in the literature to combat desynchronization attacks on quantization index modulation (QIM) blind watermarking schemes. Nevertheless, these results have been fairly poor so far. The need to investigate fundamental limitations on the decoder's performance under a desynchronization attack is thus clear. In this paper, we look at the class of estimator-decoders which estimate the desynchronization attack parameter(s) for using in the decoding step. We model the desynchronization attack as an arbitrary (but invertible) linear time-invariant (LTI) system. We then come up with an encoding-decoding scheme for these attacks on cubic QIM watermarking schemes, and derive Cramer-Rao bounds on the estimation error for the desynchronization parameter at the decoder. As an example, we consider the case of a cyclic shift attack and present some numerical findings.

  5. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms

    PubMed Central

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes’ principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of ‘unellipticity’ introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices. PMID:27195667

  6. Accurate biopsy-needle depth estimation in limited-angle tomography using multi-view geometry

    NASA Astrophysics Data System (ADS)

    van der Sommen, Fons; Zinger, Sveta; de With, Peter H. N.

    2016-03-01

    Recently, compressed-sensing based algorithms have enabled volume reconstruction from projection images acquired over a relatively small angle (θ < 20°). These methods enable accurate depth estimation of surgical tools with respect to anatomical structures. However, they are computationally expensive and time consuming, rendering them unattractive for image-guided interventions. We propose an alternative approach for depth estimation of biopsy needles during image-guided interventions, in which we split the problem into two parts and solve them independently: needle-depth estimation and volume reconstruction. The complete proposed system consists of the previous two steps, preceded by needle extraction. First, we detect the biopsy needle in the projection images and remove it by interpolation. Next, we exploit epipolar geometry to find point-to-point correspondences in the projection images to triangulate the 3D position of the needle in the volume. Finally, we use the interpolated projection images to reconstruct the local anatomical structures and indicate the position of the needle within this volume. For validation of the algorithm, we have recorded a full CT scan of a phantom with an inserted biopsy needle. The performance of our approach ranges from a median error of 2.94 mm for an distributed viewing angle of 1° down to an error of 0.30 mm for an angle larger than 10°. Based on the results of this initial phantom study, we conclude that multi-view geometry offers an attractive alternative to time-consuming iterative methods for the depth estimation of surgical tools during C-arm-based image-guided interventions.

  7. AMT-200S Motor Glider Parameter and Performance Estimation

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2011-01-01

    Parameter and performance estimation of an instrumented motor glider was conducted at the National Aeronautics and Space Administration Dryden Flight Research Center in order to provide the necessary information to create a simulation of the aircraft. An output-error technique was employed to generate estimates from doublet maneuvers, and performance estimates were compared with results from a well-known flight-test evaluation of the aircraft in order to provide a complete set of data. Aircraft specifications are given along with information concerning instrumentation, flight-test maneuvers flown, and the output-error technique. Discussion of Cramer-Rao bounds based on both white noise and colored noise assumptions is given. Results include aerodynamic parameter and performance estimates for a range of angles of attack.

  8. An Indirect System Identification Technique for Stable Estimation of Continuous-Time Parameters of the Vestibulo-Ocular Reflex (VOR)

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Wallin, Ragnar; Boyle, Richard D.

    2013-01-01

    The vestibulo-ocular reflex (VOR) is a well-known dual mode bifurcating system that consists of slow and fast modes associated with nystagmus and saccade, respectively. Estimation of continuous-time parameters of nystagmus and saccade models are known to be sensitive to estimation methodology, noise and sampling rate. The stable and accurate estimation of these parameters are critical for accurate disease modelling, clinical diagnosis, robotic control strategies, mission planning for space exploration and pilot safety, etc. This paper presents a novel indirect system identification method for the estimation of continuous-time parameters of VOR employing standardised least-squares with dual sampling rates in a sparse structure. This approach permits the stable and simultaneous estimation of both nystagmus and saccade data. The efficacy of this approach is demonstrated via simulation of a continuous-time model of VOR with typical parameters found in clinical studies and in the presence of output additive noise.

  9. Estimation of octanol/water partition coefficients using LSER parameters

    USGS Publications Warehouse

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.

    1998-01-01

    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  10. Inversion of canopy reflectance models for estimation of vegetation parameters

    NASA Technical Reports Server (NTRS)

    Goel, Narendra S.

    1987-01-01

    One of the keys to successful remote sensing of vegetation is to be able to estimate important agronomic parameters like leaf area index (LAI) and biomass (BM) from the bidirectional canopy reflectance (CR) data obtained by a space-shuttle or satellite borne sensor. One approach for such an estimation is through inversion of CR models which relate these parameters to CR. The feasibility of this approach was shown. The overall objective of the research carried out was to address heretofore uninvestigated but important fundamental issues, develop the inversion technique further, and delineate its strengths and limitations.

  11. Estimation of effective hydrogeological parameters in heterogeneous and anisotropic aquifers

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-Tsung; Tan, Yih-Chi; Chen, Chu-Hui; Yu, Hwa-Lung; Wu, Shih-Ching; Ke, Kai-Yuan

    2010-07-01

    SummaryObtaining reasonable hydrological input parameters is a key challenge in groundwater modeling. Analysis of temporal evolution during pump-induced drawdown is one common approach used to estimate the effective transmissivity and storage coefficients in a heterogeneous aquifer. In this study, we propose a Modified Tabu search Method (MTM), an improvement drawn from an alliance between the Tabu Search (TS) and the Adjoint State Method (ASM) developed by Tan et al. (2008). The latter is employed to estimate effective parameters for anisotropic, heterogeneous aquifers. MTM is validated by several numerical pumping tests. Comparisons are made to other well-known techniques, such as the type-curve method (TCM) and the straight-line method (SLM), to provide insight into the challenge of determining the most effective parameter for an anisotropic, heterogeneous aquifer. The results reveal that MTM can efficiently obtain the best representative and effective aquifer parameters in terms of the least mean square errors of the drawdown estimations. The use of MTM may involve less artificial errors than occur with TCM and SLM, and lead to better solutions. Therefore, effective transmissivity is more likely to be comprised of the geometric mean of all transmissivities within the cone of depression based on a precise estimation of MTM. Further investigation into the applicability of MTM shows that a higher level of heterogeneity in an aquifer can induce an uncertainty in estimations, while the changes in correlation length will affect the accuracy of MTM only once the degree of heterogeneity has also risen.

  12. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    The overall remotely piloted drop model operation, descriptions, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods are discussed. Static and dynamic stability derivatives were obtained for an angle attack range from -20 deg to 53 deg. It is indicated that the variations of the estimates with angle of attack are consistent for most of the static derivatives, and the effects of configuration modifications to the model were apparent in the static derivative estimates.

  13. Parameter Estimation for Single Diode Models of Photovoltaic Modules

    SciTech Connect

    Hansen, Clifford

    2015-03-01

    Many popular models for photovoltaic system performance employ a single diode model to compute the I - V curve for a module or string of modules at given irradiance and temperature conditions. A single diode model requires a number of parameters to be estimated from measured I - V curves. Many available parameter estimation methods use only short circuit, o pen circuit and maximum power points for a single I - V curve at standard test conditions together with temperature coefficients determined separately for individual cells. In contrast, module testing frequently records I - V curves over a wide range of irradi ance and temperature conditions which, when available , should also be used to parameterize the performance model. We present a parameter estimation method that makes use of a fu ll range of available I - V curves. We verify the accuracy of the method by recov ering known parameter values from simulated I - V curves . We validate the method by estimating model parameters for a module using outdoor test data and predicting the outdoor performance of the module.

  14. Estimation and Analysis of Parameters for Reference Frame Transformation

    NASA Astrophysics Data System (ADS)

    Yang, T. G.; Gao, Y. P.; Tong, M. L.; Zhao, C. S.; Gao, F.

    2016-07-01

    Based on the estimation method of parameters for reference frame transformation, the parameters used for transformation between different modern DE (Develop-ment Ephemeris) ephemeris pairs are derived using the data of heliocentric coordinates of Earth-Moon barycenter from DE ephemeris pairs, and the transformation parameters between DE ephemeris dynamic reference frame and ICRF (International Celestial Reference Frame) are estimated by using the timing data and VLBI (Very Long Baseline Interferometry) observation results of millisecond pulsars. The estimated parameters for the reference frame transformation include three rotational angles of rotational matrix and their derivatives of time. The reference epoch of estimated parameters for the reference frame transformation is MJD51545, that is J2000.0. Our results show that the absolute maximum value of rotational angles for the transformation of DE200 to DE405 ephemeris is 13 mas, and its derivative of time is -0.0007 mas/d. No absolute value of rotational angles is larger than 0.1 mas for the transformation of DE414 to DE421 ephemeris. The absolute maximum value of rotational angles of rotation matrix for the transformation of DE421 ephemeris to ICRF is 3 mas, and the time derivatives of three rotational angles are also necessarily included.

  15. Comparison of State and Parameter Estimation Methods for Soil Moisture Data Assimilation

    NASA Astrophysics Data System (ADS)

    Huang, C.; Chen, W.; Shen, H.; Li, X.

    2015-12-01

    Model parameters are a source of uncertainty that can easily cause systematic deviation and significantly affect the accuracy of soil moisture generation in assimilation systems. This study addresses the issue of retrieving model parameters related to soil moisture via the simultaneous estimation of states and parameters based on the Common Land Model (CoLM). The state-parameter estimation algorithms AEnKF (Augmented Ensemble Kalman Filter) DEnKF (Dual Ensemble Kalman Filter) and SODA (Simultaneous optimization and data assimilation) are entirely implemented within an EnKF framework to investigate how the three algorithms can correct model parameters and improve the accuracy of soil moisture estimation. The analysis is illustrated by assimilating the surface soil moisture levels from varying observation intervals using data from Mongolian plateau sites. Furthermore, a radiation transfer model is introduced as an observation operator to analyze the influence of brightness temperature assimilation on states and parameters that are estimated at different microwave signal frequencies. Three cases were analyzed for both soil moisture and brightness temperature assimilation, focusing on the progressive incorporation of parameter uncertainty, forcing data uncertainty and model uncertainty. It has been demonstrated that EnKF is outperformed by all other methods, as it consistently maintains a bias. State-parameter estimation algorithms can provide a more accurate estimation of soil moisture than EnKF. AEnKF is the most robust method, with the lowest RMSE values for retrieving states and parameters dealing only with parameter uncertainty, but it possesses disadvantages related to increasing sources of uncertainty and decreasing numbers of observations. SODA performs well under the complex situations in which DEnKF shows slight disadvantages in terms of statistical indicators; however, the former consumes far more memory and time than the latter.

  16. Comparison of ensemble-based state and parameter estimation methods for soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Li, Xin

    2015-12-01

    Model parameters are a source of uncertainty that can easily cause systematic deviation and significantly affect the accuracy of soil moisture generation in assimilation systems. This study addresses the issue of retrieving model parameters related to soil moisture via the simultaneous estimation of states and parameters based on the Common Land Model (CoLM). The state-parameter estimation algorithms AEnKF (Augmented Ensemble Kalman Filter), DEnKF (Dual Ensemble Kalman Filter) and SODA (Simultaneous optimization and data assimilation) are entirely implemented within an EnKF framework to investigate how the three algorithms can correct model parameters and improve the accuracy of soil moisture estimation. The analysis is illustrated by assimilating the surface soil moisture levels from varying observation intervals using data from Mongolian plateau sites. Furthermore, a radiation transfer model is introduced as an observation operator to analyze the influence of brightness temperature assimilation on states and parameters that are estimated at different microwave signal frequencies. Three cases were analyzed for both soil moisture and brightness temperature assimilation, focusing on the progressive incorporation of parameter uncertainty, forcing data uncertainty and model uncertainty. It has been demonstrated that EnKF is outperformed by all other methods, as it consistently maintains a bias. State-parameter estimation algorithms can provide a more accurate estimation of soil moisture than EnKF. AEnKF is the most robust method, with the lowest RMSE values for retrieving states and parameters dealing only with parameter uncertainty, but it possesses disadvantages related to increasing sources of uncertainty and decreasing numbers of observations. SODA performs well under the complex situations in which DEnKF shows slight disadvantages in terms of statistical indicators; however, the former consumes far more memory and time than the latter.

  17. Targeted estimation of nuisance parameters to obtain valid statistical inference.

    PubMed

    van der Laan, Mark J

    2014-01-01

    In order to obtain concrete results, we focus on estimation of the treatment specific mean, controlling for all measured baseline covariates, based on observing independent and identically distributed copies of a random variable consisting of baseline covariates, a subsequently assigned binary treatment, and a final outcome. The statistical model only assumes possible restrictions on the conditional distribution of treatment, given the covariates, the so-called propensity score. Estimators of the treatment specific mean involve estimation of the propensity score and/or estimation of the conditional mean of the outcome, given the treatment and covariates. In order to make these estimators asymptotically unbiased at any data distribution in the statistical model, it is essential to use data-adaptive estimators of these nuisance parameters such as ensemble learning, and specifically super-learning. Because such estimators involve optimal trade-off of bias and variance w.r.t. the infinite dimensional nuisance parameter itself, they result in a sub-optimal bias/variance trade-off for the resulting real-valued estimator of the estimand. We demonstrate that additional targeting of the estimators of these nuisance parameters guarantees that this bias for the estimand is second order and thereby allows us to prove theorems that establish asymptotic linearity of the estimator of the treatment specific mean under regularity conditions. These insights result in novel targeted minimum loss-based estimators (TMLEs) that use ensemble learning with additional targeted bias reduction to construct estimators of the nuisance parameters. In particular, we construct collaborative TMLEs (C-TMLEs) with known influence curve allowing for statistical inference, even though these C-TMLEs involve variable selection for the propensity score based on a criterion that measures how effective the resulting fit of the propensity score is in removing bias for the estimand. As a particular special

  18. Human ECG signal parameters estimation during controlled physical activity

    NASA Astrophysics Data System (ADS)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  19. Adaptive Detection and Parameter Estimation for Multidimensional Signal Models

    DTIC Science & Technology

    1989-04-19

    expected value of the non-adaptive parameter array estimator directly from Equation (5-1), using the fact that .zP = dppH = d We obtain EbI = (e-H E eI 1...depend only on the dimensional parameters of tlc problem. We will caerive these properties shcrLly, but first we wish to express the conditional pdf

  20. Accuracy of Parameter Estimation in Gibbs Sampling under the Two-Parameter Logistic Model.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho; Cohen, Allan S.

    The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for estimation of item and ability parameters under the two-parameter logistic model. Memory test data were analyzed to illustrate the Gibbs sampling procedure. Simulated data sets were analyzed using Gibbs sampling and the marginal Bayesian method. The marginal…

  1. Accurate Estimation of Fungal Diversity and Abundance through Improved Lineage-Specific Primers Optimized for Illumina Amplicon Sequencing

    PubMed Central

    Walters, William A.; Lennon, Niall J.; Bochicchio, James; Krohn, Andrew; Pennanen, Taina

    2016-01-01

    ABSTRACT While high-throughput sequencing methods are revolutionizing fungal ecology, recovering accurate estimates of species richness and abundance has proven elusive. We sought to design internal transcribed spacer (ITS) primers and an Illumina protocol that would maximize coverage of the kingdom Fungi while minimizing nontarget eukaryotes. We inspected alignments of the 5.8S and large subunit (LSU) ribosomal genes and evaluated potential primers using PrimerProspector. We tested the resulting primers using tiered-abundance mock communities and five previously characterized soil samples. We recovered operational taxonomic units (OTUs) belonging to all 8 members in both mock communities, despite DNA abundances spanning 3 orders of magnitude. The expected and observed read counts were strongly correlated (r = 0.94 to 0.97). However, several taxa were consistently over- or underrepresented, likely due to variation in rRNA gene copy numbers. The Illumina data resulted in clustering of soil samples identical to that obtained with Sanger sequence clone library data using different primers. Furthermore, the two methods produced distance matrices with a Mantel correlation of 0.92. Nonfungal sequences comprised less than 0.5% of the soil data set, with most attributable to vascular plants. Our results suggest that high-throughput methods can produce fairly accurate estimates of fungal abundances in complex communities. Further improvements might be achieved through corrections for rRNA copy number and utilization of standardized mock communities. IMPORTANCE Fungi play numerous important roles in the environment. Improvements in sequencing methods are providing revolutionary insights into fungal biodiversity, yet accurate estimates of the number of fungal species (i.e., richness) and their relative abundances in an environmental sample (e.g., soil, roots, water, etc.) remain difficult to obtain. We present improved methods for high-throughput Illumina sequencing of the

  2. Model-Based IN SITU Parameter Estimation of Ultrasonic Guided Waves in AN Isotropic Plate

    NASA Astrophysics Data System (ADS)

    Hall, James S.; Michaels, Jennifer E.

    2010-02-01

    Most ultrasonic systems employing guided waves for flaw detection require information such as dispersion curves, transducer locations, and expected propagation loss. Degraded system performance may result if assumed parameter values do not accurately reflect the actual environment. By characterizing the propagating environment in situ at the time of test, potentially erroneous a priori estimates are avoided and performance of ultrasonic guided wave systems can be improved. A four-part model-based algorithm is described in the context of previous work that estimates model parameters whereby an assumed propagation model is used to describe the received signals. This approach builds upon previous work by demonstrating the ability to estimate parameters for the case of single mode propagation. Performance is demonstrated on signals obtained from theoretical dispersion curves, finite element modeling, and experimental data.

  3. Estimating Parameters of Aquifer Heterogeneity Using Pumping Tests - a Paradigm for Field Applications

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Arnold, Sven; Schneider, Christoph; Attinger, Sabine

    2013-04-01

    The vast majority of natural aquifers are characterized by heterogeneity which can be statistically represented by parameters such as geometric mean, correlation lengths and variance of hydraulic conductivity. Head measurements of pumping tests are commonly used to estimate the hydraulic properties of porous media. Zech et al. 2012, WRR introduced the effective well flow method allowing a direct parameter estimation from steady state pumping test drawdowns. However, in contrast to simulated pumping tests, the number and spatial distribution of piezometers is limited for on-site pumping tests. We analyze the capability of the effective well flow method to provide accurate and confident parameter estimates of a heterogeneous aquifer under limited availability of head measurements. We use simulated pumping tests to systematically reduce sampling size while also determining the accuracy and uncertainty of estimates at each level of data availability. The same analytical solution is then applied to estimate the statistical parameters of a fluvial heterogeneous aquifer at the test site Horkheimer Insel, Germany. We thereby close the gap between theoretical and practical application of an analytical solution describing three-dimensional steady state well flow. Our findings indicate how accuracy and uncertainty of estimated parameters, like mean conductivities and correlation lengths correlate to number and spatial distribution of head measurements. The results provide valuable implications regarding the conceptual design of ground water pumping tests and the predictive power of established pumping test sites.

  4. Can student health professionals accurately estimate alcohol content in commonly occurring drinks?

    PubMed Central

    Sinclair, Julia; Searle, Emma

    2016-01-01

    Objectives: Correct identification of alcohol as a contributor to, or comorbidity of, many psychiatric diseases requires health professionals to be competent and confident to take an accurate alcohol history. Being able to estimate (or calculate) the alcohol content in commonly consumed drinks is a prerequisite for quantifying levels of alcohol consumption. The aim of this study was to assess this ability in medical and nursing students. Methods: A cross-sectional survey of 891 medical and nursing students across different years of training was conducted. Students were asked the alcohol content of 10 different alcoholic drinks by seeing a slide of the drink (with picture, volume and percentage of alcohol by volume) for 30 s. Results: Overall, the mean number of correctly estimated drinks (out of the 10 tested) was 2.4, increasing to just over 3 if a 10% margin of error was used. Wine and premium strength beers were underestimated by over 50% of students. Those who drank alcohol themselves, or who were further on in their clinical training, did better on the task, but overall the levels remained low. Conclusions: Knowledge of, or the ability to work out, the alcohol content of commonly consumed drinks is poor, and further research is needed to understand the reasons for this and the impact this may have on the likelihood to undertake screening or initiate treatment. PMID:27536344

  5. Greater contrast in Martian hydrological history from more accurate estimates of paleodischarge

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. E.; Burr, D. M.

    2016-09-01

    Correlative width-discharge relationships from the Missouri River Basin are commonly used to estimate fluvial paleodischarge on Mars. However, hydraulic geometry provides alternative, and causal, width-discharge relationships derived from broader samples of channels, including those in reduced-gravity (submarine) environments. Comparison of these relationships implies that causal relationships from hydraulic geometry should yield more accurate and more precise discharge estimates. Our remote analysis of a Martian-terrestrial analog channel, combined with in situ discharge data, substantiates this implication. Applied to Martian features, these results imply that paleodischarges of interior channels of Noachian-Hesperian (~3.7 Ga) valley networks have been underestimated by a factor of several, whereas paleodischarges for smaller fluvial deposits of the Late Hesperian-Early Amazonian (~3.0 Ga) have been overestimated. Thus, these new paleodischarges significantly magnify the contrast between early and late Martian hydrologic activity. Width-discharge relationships from hydraulic geometry represent validated tools for quantifying fluvial input near candidate landing sites of upcoming missions.

  6. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  7. Bayesian Estimation in the One-Parameter Latent Trait Model.

    DTIC Science & Technology

    1980-03-01

    3 MASSACHUSETTS LNIV AMHERST LAB OF PSYCHOMETRIC AND -- ETC F/G 12/1 BAYESIAN ESTIMATION IN THE ONE-PARA1ETER LATENT TRAIT MODEL. (U) MAR 80 H...TEST CHART VVNN lfl’ ,. [’ COD BAYESIAN ESTIMATION IN THE ONE-PARAMETER LATENT TRAIT MODEL 0 wtHAR IHARAN SWA I NATHAN AND JANICE A. GIFFORD Research...block numbef) latent trait theory Bayesain estimation 20. ABSTRACT (Continue on reveso aide If neceaar and identlfy by Nock mambe) ,-When several

  8. Third-Order Doppler Parameter Estimation of Bistatic Forward-Looking SAR Based on Modified Cubic Phase Function

    NASA Astrophysics Data System (ADS)

    Li, Wenchao; Yang, Jianyu; Huang, Yulin; Kong, Lingjiang

    For Doppler parameter estimation of forward-looking SAR, the third-order Doppler parameter can not be neglected. In this paper, the azimuth signal of the transmitter fixed bistatic forward-looking SAR is modeled as a cubic polynomial phase signal (CPPS) and multiple time-overlapped CPPSs, and the modified cubic phase function is presented to estimate the third-order Doppler parameter. By combining the cubic phase function (CPF) with Radon transform, the method can give an accurate estimation of the third-order Doppler parameter. Simulations validate the effectiveness of the algorithm.

  9. Estimation of Saxophone Control Parameters by Convex Optimization

    PubMed Central

    Wang, Cheng-i; Smyth, Tamara; Lipton, Zachary C.

    2015-01-01

    In this work, an approach to jointly estimating the tone hole configuration (fingering) and reed model parameters of a saxophone is presented. The problem isn't one of merely estimating pitch as one applied fingering can be used to produce several different pitches by bugling or overblowing. Nor can a fingering be estimated solely by the spectral envelope of the produced sound (as it might for estimation of vocal tract shape in speech) since one fingering can produce markedly different spectral envelopes depending on the player's embouchure and control of the reed. The problem is therefore addressed by jointly estimating both the reed (source) parameters and the fingering (filter) of a saxophone model using convex optimization and 1) a bank of filter frequency responses derived from measurement of the saxophone configured with all possible fingerings and 2) sample recordings of notes produced using all possible fingerings, played with different overblowing, dynamics and timbre. The saxophone model couples one of several possible frequency response pairs (corresponding to the applied fingering), and a quasi-static reed model generating input pressure at the mouthpiece, with control parameters being blowing pressure and reed stiffness. Applied fingering and reed parameters are estimated for a given recording by formalizing a minimization problem, where the cost function is the error between the recording and the synthesized sound produced by the model having incremental parameter values for blowing pressure and reed stiffness. The minimization problem is nonlinear and not differentiable and is made solvable using convex optimization. The performance of the fingering identification is evaluated with better accuracy than previous reported value. PMID:27754493

  10. Estimating Ability with Three Item Response Models when the Models are Wrong and Their Parameters are Inaccurate.

    ERIC Educational Resources Information Center

    Jones, Douglas H.; And Others

    How accurately ability is estimated when the test model does not fit the data is considered. To address this question, this study investigated the accuracy of the maximum likelihood estimator of ability for the one-, two- and three-parameter logistic (PL) models. The models were fitted into generated item characteristic curves derived from the…

  11. Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique

    USGS Publications Warehouse

    Simunek, J.; Nimmo, J.R.

    2005-01-01

    A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time-variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field. Copyright 2005 by the American Geophysical Union.

  12. Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors

    PubMed Central

    2011-01-01

    Background Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck). PMID:22185645

  13. Estimation of coefficients and boundary parameters in hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Murphy, K. A.

    1984-01-01

    Semi-discrete Galerkin approximation schemes are considered in connection with inverse problems for the estimation of spatially varying coefficients and boundary condition parameters in second order hyperbolic systems typical of those arising in 1-D surface seismic problems. Spline based algorithms are proposed for which theoretical convergence results along with a representative sample of numerical findings are given.

  14. Online vegetation parameter estimation using passive microwave remote sensing observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In adaptive system identification the Kalman filter can be used to identify the coefficient of the observation operator of a linear system. Here the ensemble Kalman filter is tested for adaptive online estimation of the vegetation opacity parameter of a radiative transfer model. A state augmentatio...

  15. Parameter Estimates in Differential Equation Models for Population Growth

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  16. Loss of Information in Estimating Item Parameters in Incomplete Designs

    ERIC Educational Resources Information Center

    Eggen, Theo J. H. M.; Verelst, Norman D.

    2006-01-01

    In this paper, the efficiency of conditional maximum likelihood (CML) and marginal maximum likelihood (MML) estimation of the item parameters of the Rasch model in incomplete designs is investigated. The use of the concept of F-information (Eggen, 2000) is generalized to incomplete testing designs. The scaled determinant of the F-information…

  17. Parameter estimation and infiltration tests at the repeat facility

    NASA Astrophysics Data System (ADS)

    Burns, P.; Armstrong, P.; Winn, B.

    1983-11-01

    Work performed in the reconfigurable passive evaluation analysis and test (REPEAT) facility is reviewed. The physical characteristics of the building and the instrumentation are described. Collected data are discussed. Treatment of parameter estimation ensures with example calculations. Infiltration instrumentation and tests are described. Flow visualization studies are discussed.

  18. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    NASA Astrophysics Data System (ADS)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  19. Accurate measurement method of Fabry-Perot cavity parameters via optical transfer function

    SciTech Connect

    Bondu, Francois; Debieu, Olivier

    2007-05-10

    It is shown how the transfer function from frequency noise to a Pound-Drever-Hall signal for a Fabry-Perot cavity can be used to accurately measure cavity length, cavity linewidth, mirror curvature, misalignments, laser beam shape mismatching with resonant beam shape, and cavity impedance mismatching with respect to vacuum.

  20. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    PubMed

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements.

  1. Matched filtering and parameter estimation of ringdown waveforms

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Cardoso, Jaime; Cardoso, Vitor; Cavaglià, Marco

    2007-11-01

    Using recent results from numerical relativity simulations of nonspinning binary black hole mergers, we revisit the problem of detecting ringdown waveforms and of estimating the source parameters, considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could detect intermediate-mass black holes of mass up to ˜103M⊙ out to a luminosity distance of a few Gpc. For typical multipolar energy distributions, we show that the single-mode ringdown templates presently used for ringdown searches in the LIGO data stream can produce a significant event loss (>10% for all detectors in a large interval of black hole masses) and very large parameter estimation errors on the black hole’s mass and spin. We estimate that more than ˜106 templates would be needed for a single-stage multimode search. Therefore, we recommend a “two-stage” search to save on computational costs: single-mode templates can be used for detection, but multimode templates or Prony methods should be used to estimate parameters once a detection has been made. We update estimates of the critical signal-to-noise ratio required to test the hypothesis that two or more modes are present in the signal and to resolve their frequencies, showing that second-generation Earth-based detectors and LISA have the potential to perform no-hair tests.

  2. Matched filtering and parameter estimation of ringdown waveforms

    SciTech Connect

    Berti, Emanuele; Cardoso, Jaime; Cardoso, Vitor; Cavaglia, Marco

    2007-11-15

    Using recent results from numerical relativity simulations of nonspinning binary black hole mergers, we revisit the problem of detecting ringdown waveforms and of estimating the source parameters, considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could detect intermediate-mass black holes of mass up to {approx}10{sup 3}M{sub {center_dot}} out to a luminosity distance of a few Gpc. For typical multipolar energy distributions, we show that the single-mode ringdown templates presently used for ringdown searches in the LIGO data stream can produce a significant event loss (>10% for all detectors in a large interval of black hole masses) and very large parameter estimation errors on the black hole's mass and spin. We estimate that more than {approx}10{sup 6} templates would be needed for a single-stage multimode search. Therefore, we recommend a ''two-stage'' search to save on computational costs: single-mode templates can be used for detection, but multimode templates or Prony methods should be used to estimate parameters once a detection has been made. We update estimates of the critical signal-to-noise ratio required to test the hypothesis that two or more modes are present in the signal and to resolve their frequencies, showing that second-generation Earth-based detectors and LISA have the potential to perform no-hair tests.

  3. Parameter identifiability and estimation of HIV/AIDS dynamic models.

    PubMed

    Wu, Hulin; Zhu, Haihong; Miao, Hongyu; Perelson, Alan S

    2008-04-01

    We use a technique from engineering (Xia and Moog, in IEEE Trans. Autom. Contr. 48(2):330-336, 2003; Jeffrey and Xia, in Tan, W.Y., Wu, H. (Eds.), Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention, 2005) to investigate the algebraic identifiability of a popular three-dimensional HIV/AIDS dynamic model containing six unknown parameters. We find that not all six parameters in the model can be identified if only the viral load is measured, instead only four parameters and the product of two parameters (N and lambda) are identifiable. We introduce the concepts of an identification function and an identification equation and propose the multiple time point (MTP) method to form the identification function which is an alternative to the previously developed higher-order derivative (HOD) method (Xia and Moog, in IEEE Trans. Autom. Contr. 48(2):330-336, 2003; Jeffrey and Xia, in Tan, W.Y., Wu, H. (Eds.), Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention, 2005). We show that the newly proposed MTP method has advantages over the HOD method in the practical implementation. We also discuss the effect of the initial values of state variables on the identifiability of unknown parameters. We conclude that the initial values of output (observable) variables are part of the data that can be used to estimate the unknown parameters, but the identifiability of unknown parameters is not affected by these initial values if the exact initial values are measured with error. These noisy initial values only increase the estimation error of the unknown parameters. However, having the initial values of the latent (unobservable) state variables exactly known may help to identify more parameters. In order to validate the identifiability results, simulation studies are performed to estimate the unknown parameters and initial values from simulated noisy data. We also apply the proposed methods to a clinical data set

  4. Inverse estimation of parameters for an estuarine eutrophication model

    SciTech Connect

    Shen, J.; Kuo, A.Y.

    1996-11-01

    An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulations with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.

  5. Effect of noncircularity of experimental beam on CMB parameter estimation

    SciTech Connect

    Das, Santanu; Mitra, Sanjit; Paulson, Sonu Tabitha E-mail: sanjit@iucaa.ernet.in

    2015-03-01

    Measurement of Cosmic Microwave Background (CMB) anisotropies has been playing a lead role in precision cosmology by providing some of the tightest constrains on cosmological models and parameters. However, precision can only be meaningful when all major systematic effects are taken into account. Non-circular beams in CMB experiments can cause large systematic deviation in the angular power spectrum, not only by modifying the measurement at a given multipole, but also introducing coupling between different multipoles through a deterministic bias matrix. Here we add a mechanism for emulating the effect of a full bias matrix to the PLANCK likelihood code through the parameter estimation code SCoPE. We show that if the angular power spectrum was measured with a non-circular beam, the assumption of circular Gaussian beam or considering only the diagonal part of the bias matrix can lead to huge error in parameter estimation. We demonstrate that, at least for elliptical Gaussian beams, use of scalar beam window functions obtained via Monte Carlo simulations starting from a fiducial spectrum, as implemented in PLANCK analyses for example, leads to only few percent of sigma deviation of the best-fit parameters. However, we notice more significant differences in the posterior distributions for some of the parameters, which would in turn lead to incorrect errorbars. These differences can be reduced, so that the errorbars match within few percent, by adding an iterative reanalysis step, where the beam window function would be recomputed using the best-fit spectrum estimated in the first step.

  6. Estimation of uncertain material parameters using modal test data

    SciTech Connect

    Veers, P.S.; Laird, D.L.; Carne, T.G.; Sagartz, M.J.

    1997-11-01

    Analytical models of wind turbine blades have many uncertainties, particularly with composite construction where material properties and cross-sectional dimension may not be known or precisely controllable. In this paper the authors demonstrate how modal testing can be used to estimate important material parameters and to update and improve a finite-element (FE) model of a prototype wind turbine blade. An example of prototype blade is used here to demonstrate how model parameters can be identified. The starting point is an FE model of the blade, using best estimates for the material constants. Frequencies of the lowest fourteen modes are used as the basis for comparisons between model predictions and test data. Natural frequencies and mode shapes calculated with the FE model are used in an optimal test design code to select instrumentation (accelerometer) and excitation locations that capture all the desired mode shapes. The FE model is also used to calculate sensitivities of the modal frequencies to each of the uncertain material parameters. These parameters are estimated, or updated, using a weighted least-squares technique to minimize the difference between test frequencies and predicted results. Updated material properties are determined for axial, transverse, and shear moduli in two separate regions of the blade cross section: in the central box, and in the leading and trailing panels. Static FE analyses are then conducted with the updated material parameters to determine changes in effective beam stiffness and buckling loads.

  7. Parameter estimation of an air-bearing suspended test table

    NASA Astrophysics Data System (ADS)

    Fu, Zhenxian; Lin, Yurong; Liu, Yang; Chen, Xinglin; Chen, Fang

    2015-02-01

    A parameter estimation approach is proposed for parameter determination of a 3-axis air-bearing suspended test table. The table is to provide a balanced and frictionless environment for spacecraft ground test. To balance the suspension, the mechanical parameters of the table, including its angular inertias and centroid deviation from its rotating center, have to be determined first. Then sliding masses on the table can be adjusted by stepper motors to relocate the centroid of the table to its rotating center. Using the angular momentum theorem and the coriolis theorem, dynamic equations are derived describing the rotation of the table under the influence of gravity imbalance torque and activating torques. To generate the actuating torques, use of momentum wheels is proposed, whose virtue is that no active control is required to the momentum wheels, which merely have to spin at constant rates, thus avoiding the singularity problem and the difficulty of precisely adjusting the output torques, issues associated with control moment gyros. The gyroscopic torques generated by the momentum wheels, as they are forced by the table to precess, are sufficient to activate the table for parameter estimation. Then least-square estimation is be employed to calculate the desired parameters. The effectiveness of the method is validated by simulation.

  8. ORAN- ORBITAL AND GEODETIC PARAMETER ESTIMATION ERROR ANALYSIS

    NASA Technical Reports Server (NTRS)

    Putney, B.

    1994-01-01

    The Orbital and Geodetic Parameter Estimation Error Analysis program, ORAN, was developed as a Bayesian least squares simulation program for orbital trajectories. ORAN does not process data, but is intended to compute the accuracy of the results of a data reduction, if measurements of a given accuracy are available and are processed by a minimum variance data reduction program. Actual data may be used to provide the time when a given measurement was available and the estimated noise on that measurement. ORAN is designed to consider a data reduction process in which a number of satellite data periods are reduced simultaneously. If there is more than one satellite in a data period, satellite-to-satellite tracking may be analyzed. The least squares estimator in most orbital determination programs assumes that measurements can be modeled by a nonlinear regression equation containing a function of parameters to be estimated and parameters which are assumed to be constant. The partitioning of parameters into those to be estimated (adjusted) and those assumed to be known (unadjusted) is somewhat arbitrary. For any particular problem, the data will be insufficient to adjust all parameters subject to uncertainty, and some reasonable subset of these parameters is selected for estimation. The final errors in the adjusted parameters may be decomposed into a component due to measurement noise and a component due to errors in the assumed values of the unadjusted parameters. Error statistics associated with the first component are generally evaluated in an orbital determination program. ORAN is used to simulate the orbital determination processing and to compute error statistics associated with the second component. Satellite observations may be simulated with desired noise levels given in many forms including range and range rate, altimeter height, right ascension and declination, direction cosines, X and Y angles, azimuth and elevation, and satellite-to-satellite range and

  9. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  10. Prediction and simulation errors in parameter estimation for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Aguirre, Luis A.; Barbosa, Bruno H. G.; Braga, Antônio P.

    2010-11-01

    This article compares the pros and cons of using prediction error and simulation error to define cost functions for parameter estimation in the context of nonlinear system identification. To avoid being influenced by estimators of the least squares family (e.g. prediction error methods), and in order to be able to solve non-convex optimisation problems (e.g. minimisation of some norm of the free-run simulation error), evolutionary algorithms were used. Simulated examples which include polynomial, rational and neural network models are discussed. Our results—obtained using different model classes—show that, in general the use of simulation error is preferable to prediction error. An interesting exception to this rule seems to be the equation error case when the model structure includes the true model. In the case of error-in-variables, although parameter estimation is biased in both cases, the algorithm based on simulation error is more robust.

  11. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.

  12. Modal parameters estimation using ant colony optimisation algorithm

    NASA Astrophysics Data System (ADS)

    Sitarz, Piotr; Powałka, Bartosz

    2016-08-01

    The paper puts forward a new estimation method of modal parameters for dynamical systems. The problem of parameter estimation has been simplified to optimisation which is carried out using the ant colony system algorithm. The proposed method significantly constrains the solution space, determined on the basis of frequency plots of the receptance FRFs (frequency response functions) for objects presented in the frequency domain. The constantly growing computing power of readily accessible PCs makes this novel approach a viable solution. The combination of deterministic constraints of the solution space with modified ant colony system algorithms produced excellent results for systems in which mode shapes are defined by distinctly different natural frequencies and for those in which natural frequencies are similar. The proposed method is fully autonomous and the user does not need to select a model order. The last section of the paper gives estimation results for two sample frequency plots, conducted with the proposed method and the PolyMAX algorithm.

  13. Estimation of the sea surface's two-scale backscatter parameters

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1978-01-01

    The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error.

  14. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-01

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  15. Aerodynamic parameter estimation via Fourier modulating function techniques

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1995-01-01

    Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.

  16. Parameter estimation and forecasting for multiplicative log-normal cascades

    NASA Astrophysics Data System (ADS)

    Leövey, Andrés E.; Lux, Thomas

    2012-04-01

    We study the well-known multiplicative log-normal cascade process in which the multiplication of Gaussian and log normally distributed random variables yields time series with intermittent bursts of activity. Due to the nonstationarity of this process and the combinatorial nature of such a formalism, its parameters have been estimated mostly by fitting the numerical approximation of the associated non-Gaussian probability density function to empirical data, cf. Castaing [Physica DPDNPDT0167-278910.1016/0167-2789(90)90035-N 46, 177 (1990)]. More recently, alternative estimators based upon various moments have been proposed by Beck [Physica DPDNPDT0167-278910.1016/j.physd.2004.01.020 193, 195 (2004)] and Kiyono [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.76.041113 76, 041113 (2007)]. In this paper, we pursue this moment-based approach further and develop a more rigorous generalized method of moments (GMM) estimation procedure to cope with the documented difficulties of previous methodologies. We show that even under uncertainty about the actual number of cascade steps, our methodology yields very reliable results for the estimated intermittency parameter. Employing the Levinson-Durbin algorithm for best linear forecasts, we also show that estimated parameters can be used for forecasting the evolution of the turbulent flow. We compare forecasting results from the GMM and Kiyono 's procedure via Monte Carlo simulations. We finally test the applicability of our approach by estimating the intermittency parameter and forecasting of volatility for a sample of financial data from stock and foreign exchange markets.

  17. Estimating Building Simulation Parameters via Bayesian Structure Learning

    SciTech Connect

    Edwards, Richard E; New, Joshua Ryan; Parker, Lynne Edwards

    2013-01-01

    Many key building design policies are made using sophisticated computer simulations such as EnergyPlus (E+), the DOE flagship whole-building energy simulation engine. E+ and other sophisticated computer simulations have several major problems. The two main issues are 1) gaps between the simulation model and the actual structure, and 2) limitations of the modeling engine's capabilities. Currently, these problems are addressed by having an engineer manually calibrate simulation parameters to real world data or using algorithmic optimization methods to adjust the building parameters. However, some simulations engines, like E+, are computationally expensive, which makes repeatedly evaluating the simulation engine costly. This work explores addressing this issue by automatically discovering the simulation's internal input and output dependencies from 20 Gigabytes of E+ simulation data, future extensions will use 200 Terabytes of E+ simulation data. The model is validated by inferring building parameters for E+ simulations with ground truth building parameters. Our results indicate that the model accurately represents parameter means with some deviation from the means, but does not support inferring parameter values that exist on the distribution's tail.

  18. Estimation of Cometary Rotation Parameters Based on Camera Images

    NASA Technical Reports Server (NTRS)

    Spindler, Karlheinz

    2007-01-01

    The purpose of the Rosetta mission is the in situ analysis of a cometary nucleus using both remote sensing equipment and scientific instruments delivered to the comet surface by a lander and transmitting measurement data to the comet-orbiting probe. Following a tour of planets including one Mars swing-by and three Earth swing-bys, the Rosetta probe is scheduled to rendezvous with comet 67P/Churyumov-Gerasimenko in May 2014. The mission poses various flight dynamics challenges, both in terms of parameter estimation and maneuver planning. Along with spacecraft parameters, the comet's position, velocity, attitude, angular velocity, inertia tensor and gravitatonal field need to be estimated. The measurements on which the estimation process is based are ground-based measurements (range and Doppler) yielding information on the heliocentric spacecraft state and images taken by an on-board camera yielding informaton on the comet state relative to the spacecraft. The image-based navigation depends on te identification of cometary landmarks (whose body coordinates also need to be estimated in the process). The paper will describe the estimation process involved, focusing on the phase when, after orbit insertion, the task arises to estimate the cometary rotational motion from camera images on which individual landmarks begin to become identifiable.

  19. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models

    PubMed Central

    Karr, Jonathan R.; Williams, Alex H.; Zucker, Jeremy D.; Raue, Andreas; Steiert, Bernhard; Timmer, Jens; Kreutz, Clemens; Wilkinson, Simon; Allgood, Brandon A.; Bot, Brian M.; Hoff, Bruce R.; Kellen, Michael R.; Covert, Markus W.; Stolovitzky, Gustavo A.; Meyer, Pablo

    2015-01-01

    Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation. PMID:26020786

  20. Application of high-resolution, remotely sensed data for transient storage modeling parameter estimation

    NASA Astrophysics Data System (ADS)

    Bingham, Q. G.; Neilson, B. T.; Neale, C. M. U.; Cardenas, M. B.

    2012-08-01

    This paper presents a method that uses high-resolution multispectral and thermal infrared imagery from airborne remote sensing for estimating two model parameters within the two-zone in-stream temperature and solute (TZTS) model. Previous TZTS modeling efforts have provided accurate in-stream temperature predictions; however, model parameter ranges resulting from the multiobjective calibrations were quite large. In addition to the data types previously required to populate and calibrate the TZTS model, high-resolution, remotely sensed thermal infrared (TIR) and near-infrared, red, and green (multispectral) band imagery were collected to help estimate two previously calibrated parameters: (1) average total channel width (BTOT) and (2) the fraction of the channel comprising surface transient storage zones (β). Multispectral imagery in combination with the TIR imagery provided high-resolution estimates ofBTOT. In-stream temperature distributions provided by the TIR imagery enabled the calculation of temperature thresholds at which main channel temperatures could be delineated from surface transient storage, permitting the estimation ofβ. It was found that an increase in the resolution and frequency at which BTOT and β were physically estimated resulted in similar objective functions in the main channel and transient storage zones, but the uncertainty associated with the estimated parameters decreased.

  1. Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation

    PubMed Central

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies. PMID:25685797

  2. Tumor parameter estimation considering the body geometry by thermography.

    PubMed

    Hossain, Shazzat; Mohammadi, Farah A

    2016-09-01

    Implementation of non-invasive, non-contact, radiation-free thermal diagnostic tools requires an accurate correlation between surface temperature and interior physiology derived from living bio-heat phenomena. Such associations in the chest, forearm, and natural and deformed breasts have been investigated using finite element analysis (FEA), where the geometry and heterogeneity of an organ are accounted for by creating anatomically-accurate FEA models. The quantitative links are involved in the proposed evolutionary methodology for forecasting unknown Physio-thermo-biological parameters, including the depth, size and metabolic rate of the underlying nodule. A Custom Genetic Algorithm (GA) is tailored to parameterize a tumor by minimizing a fitness function. The study has employed the finite element method to develop simulated data sets and gradient matrix. Furthermore, simulated thermograms are obtained by enveloping the data sets with ±10% random noise.

  3. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  4. Accurate optical flow field estimation using mechanical properties of soft tissues

    NASA Astrophysics Data System (ADS)

    Mehrabian, Hatef; Karimi, Hirad; Samani, Abbas

    2009-02-01

    A novel optical flow based technique is presented in this paper to measure the nodal displacements of soft tissue undergoing large deformations. In hyperelasticity imaging, soft tissues maybe compressed extensively [1] and the deformation may exceed the number of pixels ordinary optical flow approaches can detect. Furthermore in most biomedical applications there is a large amount of image information that represent the geometry of the tissue and the number of tissue types present in the organ of interest. Such information is often ignored in applications such as image registration. In this work we incorporate the information pertaining to soft tissue mechanical behavior (Neo-Hookean hyperelastic model is used here) in addition to the tissue geometry before compression into a hierarchical Horn-Schunck optical flow method to overcome this large deformation detection weakness. Applying the proposed method to a phantom using several compression levels proved that it yields reasonably accurate displacement fields. Estimated displacement results of this phantom study obtained for displacement fields of 85 pixels/frame and 127 pixels/frame are reported and discussed in this paper.

  5. Anisotropic parameter estimation using velocity variation with offset analysis

    SciTech Connect

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A.

    2013-09-09

    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ε and δ, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter δ. The second method is inversion method using linear approach where vertical velocity, δ, and ε is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that δ value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ε value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  6. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

    NASA Astrophysics Data System (ADS)

    Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.

    2016-11-01

    With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.

  7. Model and Parameter Discretization Impacts on Estimated ASR Recovery Efficiency

    NASA Astrophysics Data System (ADS)

    Forghani, A.; Peralta, R. C.

    2015-12-01

    We contrast computed recovery efficiency of one Aquifer Storage and Recovery (ASR) well using several modeling situations. Test situations differ in employed finite difference grid discretization, hydraulic conductivity, and storativity. We employ a 7-layer regional groundwater model calibrated for Salt Lake Valley. Since the regional model grid is too coarse for ASR analysis, we prepare two local models with significantly smaller discretization capable of analyzing ASR recovery efficiency. Some addressed situations employ parameters interpolated from the coarse valley model. Other situations employ parameters derived from nearby well logs or pumping tests. The intent of the evaluations and subsequent sensitivity analysis is to show how significantly the employed discretization and aquifer parameters affect estimated recovery efficiency. Most of previous studies to evaluate ASR recovery efficiency only consider hypothetical uniform specified boundary heads and gradient assuming homogeneous aquifer parameters. The well is part of the Jordan Valley Water Conservancy District (JVWCD) ASR system, that lies within Salt Lake Valley.

  8. Estimating demographic parameters using a combination of known-fate and open N-mixture models

    USGS Publications Warehouse

    Schmidt, Joshua H.; Johnson, Devin S.; Lindberg, Mark S.; Adams, Layne G.

    2015-01-01

    Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark–resight data sets. We provide implementations in both the BUGS language and an R package.

  9. Analytic Nakagami fading parameter estimation in dependent noise channel using copula

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Mohammad Hossein; Amindavar, Hamidreza; Ritcey, James A.

    2013-12-01

    In this paper, the probability density function (PDF) estimation is introduced in the framework of estimating the Nakagami fading parameter. This approach provides an analytic procedure for finding the fading parameter. Using the copula theory, an accurate PDF estimate is obtained even when the desired signal is corrupted in a noisy environment. In the real world, the noise samples could be highly dependent on the main signal. Copula-based models are a general set of statistical models defined for any multivariate random variable. Thus, they depict the statistical behavior of a received signal including two dependent terms, representative of the desired signal and noise. Previous works in the Nakagami parameter determination have mainly examined estimation based on either a noiseless sample model or an independent trivial noisy one. In this paper, we consider a more comprehensive situation about the noise destruction and our investigation is done in low signal-to-noise ratios. The parametric bootstrap method approves the accuracy of the analytically estimated PDF, and simulation results show that the new estimator has superior performance over conventional estimators.

  10. Confidence interval based parameter estimation--a new SOCR applet and activity.

    PubMed

    Christou, Nicolas; Dinov, Ivo D

    2011-01-01

    Many scientific investigations depend on obtaining data-driven, accurate, robust and computationally-tractable parameter estimates. In the face of unavoidable intrinsic variability, there are different algorithmic approaches, prior assumptions and fundamental principles for computing point and interval estimates. Efficient and reliable parameter estimation is critical in making inference about observable experiments, summarizing process characteristics and prediction of experimental behaviors. In this manuscript, we demonstrate simulation, construction, validation and interpretation of confidence intervals, under various assumptions, using the interactive web-based tools provided by the Statistics Online Computational Resource (http://www.SOCR.ucla.edu). Specifically, we present confidence interval examples for population means, with known or unknown population standard deviation; population variance; population proportion (exact and approximate), as well as confidence intervals based on bootstrapping or the asymptotic properties of the maximum likelihood estimates. Like all SOCR resources, these confidence interval resources may be openly accessed via an Internet-connected Java-enabled browser. The SOCR confidence interval applet enables the user to empirically explore and investigate the effects of the confidence-level, the sample-size and parameter of interest on the corresponding confidence interval. Two applications of the new interval estimation computational library are presented. The first one is a simulation of confidence interval estimating the US unemployment rate and the second application demonstrates the computations of point and interval estimates of hippocampal surface complexity for Alzheimers disease patients, mild cognitive impairment subjects and asymptomatic controls.

  11. Estimating demographic parameters using a combination of known-fate and open N-mixture models.

    PubMed

    Schmidt, Joshua H; Johnson, Devin S; Lindberg, Mark S; Adams, Layne G

    2015-10-01

    Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark-resight data sets. We provide implementations in both the BUGS language and an R package.

  12. Parameter estimation method for blurred cell images from fluorescence microscope

    NASA Astrophysics Data System (ADS)

    He, Fuyun; Zhang, Zhisheng; Luo, Xiaoshu; Zhao, Shulin

    2016-10-01

    Microscopic cell image analysis is indispensable to cell biology. Images of cells can easily degrade due to optical diffraction or focus shift, as this results in low signal-to-noise ratio (SNR) and poor image quality, hence affecting the accuracy of cell analysis and identification. For a quantitative analysis of cell images, restoring blurred images to improve the SNR is the first step. A parameter estimation method for defocused microscopic cell images based on the power law properties of the power spectrum of cell images is proposed. The circular radon transform (CRT) is used to identify the zero-mode of the power spectrum. The parameter of the CRT curve is initially estimated by an improved differential evolution algorithm. Following this, the parameters are optimized through the gradient descent method. Using synthetic experiments, it was confirmed that the proposed method effectively increased the peak SNR (PSNR) of the recovered images with high accuracy. Furthermore, experimental results involving actual microscopic cell images verified that the superiority of the proposed parameter estimation method for blurred microscopic cell images other method in terms of qualitative visual sense as well as quantitative gradient and PSNR.

  13. Informed spectral analysis: audio signal parameter estimation using side information

    NASA Astrophysics Data System (ADS)

    Fourer, Dominique; Marchand, Sylvain

    2013-12-01

    Parametric models are of great interest for representing and manipulating sounds. However, the quality of the resulting signals depends on the precision of the parameters. When the signals are available, these parameters can be estimated, but the presence of noise decreases the resulting precision of the estimation. Furthermore, the Cramér-Rao bound shows the minimal error reachable with the best estimator, which can be insufficient for demanding applications. These limitations can be overcome by using the coding approach which consists in directly transmitting the parameters with the best precision using the minimal bitrate. However, this approach does not take advantage of the information provided by the estimation from the signal and may require a larger bitrate and a loss of compatibility with existing file formats. The purpose of this article is to propose a compromised approach, called the 'informed approach,' which combines analysis with (coded) side information in order to increase the precision of parameter estimation using a lower bitrate than pure coding approaches, the audio signal being known. Thus, the analysis problem is presented in a coder/decoder configuration where the side information is computed and inaudibly embedded into the mixture signal at the coder. At the decoder, the extra information is extracted and is used to assist the analysis process. This study proposes applying this approach to audio spectral analysis using sinusoidal modeling which is a well-known model with practical applications and where theoretical bounds have been calculated. This work aims at uncovering new approaches for audio quality-based applications. It provides a solution for challenging problems like active listening of music, source separation, and realistic sound transformations.

  14. Improving the quality of parameter estimates obtained from slug tests

    USGS Publications Warehouse

    Butler, J.J.; McElwee, C.D.; Liu, W.

    1996-01-01

    The slug test is one of the most commonly used field methods for obtaining in situ estimates of hydraulic conductivity. Despite its prevalence, this method has received criticism from many quarters in the ground-water community. This criticism emphasizes the poor quality of the estimated parameters, a condition that is primarily a product of the somewhat casual approach that is often employed in slug tests. Recently, the Kansas Geological Survey (KGS) has pursued research directed it improving methods for the performance and analysis of slug tests. Based on extensive theoretical and field research, a series of guidelines have been proposed that should enable the quality of parameter estimates to be improved. The most significant of these guidelines are: (1) three or more slug tests should be performed at each well during a given test period; (2) two or more different initial displacements (Ho) should be used at each well during a test period; (3) the method used to initiate a test should enable the slug to be introduced in a near-instantaneous manner and should allow a good estimate of Ho to be obtained; (4) data-acquisition equipment that enables a large quantity of high quality data to be collected should be employed; (5) if an estimate of the storage parameter is needed, an observation well other than the test well should be employed; (6) the method chosen for analysis of the slug-test data should be appropriate for site conditions; (7) use of pre- and post-analysis plots should be an integral component of the analysis procedure, and (8) appropriate well construction parameters should be employed. Data from slug tests performed at a number of KGS field sites demonstrate the importance of these guidelines.

  15. Accurate Estimation of Expression Levels of Homologous Genes in RNA-seq Experiments

    NASA Astrophysics Data System (ADS)

    Paşaniuc, Bogdan; Zaitlen, Noah; Halperin, Eran

    Next generation high throughput sequencing (NGS) is poised to replace array based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naïve algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

  16. Accurate estimation of expression levels of homologous genes in RNA-seq experiments.

    PubMed

    Paşaniuc, Bogdan; Zaitlen, Noah; Halperin, Eran

    2011-03-01

    Abstract Next generation high-throughput sequencing (NGS) is poised to replace array-based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naive algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood-based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

  17. How accurately can we estimate energetic costs in a marine top predator, the king penguin?

    PubMed

    Halsey, Lewis G; Fahlman, Andreas; Handrich, Yves; Schmidt, Alexander; Woakes, Anthony J; Butler, Patrick J

    2007-01-01

    King penguins (Aptenodytes patagonicus) are one of the greatest consumers of marine resources. However, while their influence on the marine ecosystem is likely to be significant, only an accurate knowledge of their energy demands will indicate their true food requirements. Energy consumption has been estimated for many marine species using the heart rate-rate of oxygen consumption (f(H) - V(O2)) technique, and the technique has been applied successfully to answer eco-physiological questions. However, previous studies on the energetics of king penguins, based on developing or applying this technique, have raised a number of issues about the degree of validity of the technique for this species. These include the predictive validity of the present f(H) - V(O2) equations across different seasons and individuals and during different modes of locomotion. In many cases, these issues also apply to other species for which the f(H) - V(O2) technique has been applied. In the present study, the accuracy of three prediction equations for king penguins was investigated based on validity studies and on estimates of V(O2) from published, field f(H) data. The major conclusions from the present study are: (1) in contrast to that for walking, the f(H) - V(O2) relationship for swimming king penguins is not affected by body mass; (2) prediction equation (1), log(V(O2) = -0.279 + 1.24log(f(H) + 0.0237t - 0.0157log(f(H)t, derived in a previous study, is the most suitable equation presently available for estimating V(O2) in king penguins for all locomotory and nutritional states. A number of possible problems associated with producing an f(H) - V(O2) relationship are discussed in the present study. Finally, a statistical method to include easy-to-measure morphometric characteristics, which may improve the accuracy of f(H) - V(O2) prediction equations, is explained.

  18. Estimation of economic parameters of U.S. hydropower resources

    SciTech Connect

    Hall, Douglas G.; Hunt, Richard T.; Reeves, Kelly S.; Carroll, Greg R.

    2003-06-01

    Tools for estimating the cost of developing and operating and maintaining hydropower resources in the form of regression curves were developed based on historical plant data. Development costs that were addressed included: licensing, construction, and five types of environmental mitigation. It was found that the data for each type of cost correlated well with plant capacity. A tool for estimating the annual and monthly electric generation of hydropower resources was also developed. Additional tools were developed to estimate the cost of upgrading a turbine or a generator. The development and operation and maintenance cost estimating tools, and the generation estimating tool were applied to 2,155 U.S. hydropower sites representing a total potential capacity of 43,036 MW. The sites included totally undeveloped sites, dams without a hydroelectric plant, and hydroelectric plants that could be expanded to achieve greater capacity. Site characteristics and estimated costs and generation for each site were assembled in a database in Excel format that is also included within the EERE Library under the title, “Estimation of Economic Parameters of U.S. Hydropower Resources - INL Hydropower Resource Economics Database.”

  19. Estimation of atmospheric parameters from time-lapse imagery

    NASA Astrophysics Data System (ADS)

    McCrae, Jack E.; Basu, Santasri; Fiorino, Steven T.

    2016-05-01

    A time-lapse imaging experiment was conducted to estimate various atmospheric parameters for the imaging path. Atmospheric turbulence caused frame-to-frame shifts of the entire image as well as parts of the image. The statistics of these shifts encode information about the turbulence strength (as characterized by Cn2, the refractive index structure function constant) along the optical path. The shift variance observed is simply proportional to the variance of the tilt of the optical field averaged over the area being tracked. By presuming this turbulence follows the Kolmogorov spectrum, weighting functions can be derived which relate the turbulence strength along the path to the shifts measured. These weighting functions peak at the camera and fall to zero at the object. The larger the area observed, the more quickly the weighting function decays. One parameter we would like to estimate is r0 (the Fried parameter, or atmospheric coherence diameter.) The weighting functions derived for pixel sized or larger parts of the image all fall faster than the weighting function appropriate for estimating the spherical wave r0. If we presume Cn2 is constant along the path, then an estimate for r0 can be obtained for each area tracked, but since the weighting function for r0 differs substantially from that for every realizable tracked area, it can be expected this approach would yield a poor estimator. Instead, the weighting functions for a number of different patch sizes can be combined through the Moore-Penrose pseudo-inverse to create a new weighting function which yields the least-squares optimal linear combination of measurements for estimation of r0. This approach is carried out, and it is observed that this approach is somewhat noisy because the pseudo-inverse assigns weights much greater than one to many of the observations.

  20. Estimation of Nutation Time Constant Model Parameters for On-Axis Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Sudermann, James

    2008-01-01

    Calculating an accurate nutation time constant for a spinning spacecraft is an important step for ensuring mission success. Spacecraft nutation is caused by energy dissipation about the spin axis. Propellant slosh in the spacecraft fuel tanks is the primary source for this dissipation and can be simulated using a forced motion spin table. Mechanical analogs, such as pendulums and rotors, are typically used to simulate propellant slosh. A strong desire exists for an automated method to determine these analog parameters. The method presented accomplishes this task by using a MATLAB Simulink/SimMechanics based simulation that utilizes the Parameter Estimation Tool.

  1. A fast schema for parameter estimation in diffusion kurtosis imaging

    PubMed Central

    Yan, Xu; Zhou, Minxiong; Ying, Lingfang; Liu, Wei; Yang, Guang; Wu, Dongmei; Zhou, Yongdi; Peterson, Bradley S.; Xu, Dongrong

    2014-01-01

    Diffusion kurtosis imaging (DKI) is a new model in magnetic resonance imaging (MRI) characterizing restricted diffusion of water molecules in living tissues. We propose a method for fast estimation of the DKI parameters. These parameters –apparent diffusion coefficient (ADC) and apparent kurtosis coefficient (AKC) – are evaluated using an alternative iteration schema (AIS). This schema first roughly estimates a pair of ADC and AKC values from a subset of the DKI data acquired at 3 b-values. It then iteratively and alternately updates the ADC and AKC until they are converged. This approach employs the technique of linear least square fitting to minimize estimation error in each iteration. In addition to the common physical and biological constrains that set the upper and lower boundaries of the ADC and AKC values, we use a smoothing procedure to ensure that estimation is robust. Quantitative comparisons between our AIS methods and the conventional methods of unconstrained nonlinear least square (UNLS) using both synthetic and real data showed that our unconstrained AIS method can significantly accelerate the estimation procedure without compromising its accuracy, with the computational time for a DKI dataset successfully reduced to only one or two minutes. Moreover, the incorporation of the smoothing procedure using one of our AIS methods can significantly enhance the contrast of AKC maps and greatly improve the visibility of details in fine structures. PMID:25016957

  2. Beef quality parameters estimation using ultrasound and color images

    PubMed Central

    2015-01-01

    Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. Proposal An algorithm based on curve evolution is implemented to calculate the rib eye area. The backfat thickness is estimated from the profile of distances between two curves that limit the steak and the rib eye, previously detected. A model base in Support Vector Regression (SVR) is trained to estimate the intramuscular fat percentage. A series of features extracted on a region of interest, previously detected in both ultrasound and color images, were proposed. In all cases, a complete evaluation was performed with different databases including: color and ultrasound images acquired by a beef industry expert, intramuscular fat estimation obtained by an expert using a commercial software, and chemical analysis. Conclusions The proposed algorithms show good results to calculate the rib eye area and the backfat thickness measure and profile. They are also promising in predicting the percentage of intramuscular fat. PMID:25734452

  3. Parameter Estimation for Groundwater Models under Uncertain Irrigation Data.

    PubMed

    Demissie, Yonas; Valocchi, Albert; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  4. Estimation of parameters for the elimination of an orally administered test substance with unknown absorption.

    PubMed

    Vogt, Josef A; Denzer, Christian

    2013-04-01

    Assessment of the elimination of an oral test dose based on plasma concentration values requires correction for the effect of gastric release and absorption. Irregular uptake processes should be described 'model independently', which requires estimation of a large number of absorption parameters. To limit the associated computational effort a new approach is developed with a reduced number of unknown parameters. A marginalized and regularized absorption approach (MRA) is defined, which uses for the uptake just one parameter to control rigidity of the uptake curve. For validation, elimination and absorption were reproduced using published IVIVC data and a synthetic data set for comparison with approaches using a 'model-free'--staircase function or mechanistic models to describe absorption. MRA performed almost as accurate as well specified mechanistic models, which gave the best reproduction. MRA demonstrated a 50fold increase in computational efficiency compared to other approaches. The absorption estimated for the IVIVC study demonstrated an in vivo-in vitro correlation comparable to published values. The newly developed MRA approach can be used to efficiently and accurately estimate elimination and absorption with a restricted number of adaptive parameters and with automatic adjustment of the complexity of the uptake.

  5. A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates

    NASA Astrophysics Data System (ADS)

    Savanevych, V. E.; Briukhovetskyi, O. B.; Sokovikova, N. S.; Bezkrovny, M. M.; Vavilova, I. B.; Ivashchenko, Yu. M.; Elenin, L. V.; Khlamov, S. V.; Movsesian, Ia. S.; Dashkova, A. M.; Pogorelov, A. V.

    2015-08-01

    We describe a new iteration method to estimate asteroid coordinates, based on a subpixel Gaussian model of the discrete object image. The method operates by continuous parameters (asteroid coordinates) in a discrete observational space (the set of pixel potentials) of the CCD frame. In this model, the kind of coordinate distribution of the photons hitting a pixel of the CCD frame is known a priori, while the associated parameters are determined from a real digital object image. The method that is developed, which is flexible in adapting to any form of object image, has a high measurement accuracy along with a low calculating complexity, due to the maximum-likelihood procedure that is implemented to obtain the best fit instead of a least-squares method and Levenberg-Marquardt algorithm for minimization of the quadratic form. Since 2010, the method has been tested as the basis of our Collection Light Technology (COLITEC) software, which has been installed at several observatories across the world with the aim of the automatic discovery of asteroids and comets in sets of CCD frames. As a result, four comets (C/2010 X1 (Elenin), P/2011 NO1(Elenin), C/2012 S1 (ISON) and P/2013 V3 (Nevski)) as well as more than 1500 small Solar system bodies (including five near-Earth objects (NEOs), 21 Trojan asteroids of Jupiter and one Centaur object) have been discovered. We discuss these results, which allowed us to compare the accuracy parameters of the new method and confirm its efficiency. In 2014, the COLITEC software was recommended to all members of the Gaia-FUN-SSO network for analysing observations as a tool to detect faint moving objects in frames.

  6. Observable Priors: Limiting Biases in Estimated Parameters for Incomplete Orbits

    NASA Astrophysics Data System (ADS)

    Kosmo, Kelly; Martinez, Gregory; Hees, Aurelien; Witzel, Gunther; Ghez, Andrea M.; Do, Tuan; Sitarski, Breann; Chu, Devin; Dehghanfar, Arezu

    2017-01-01

    Over twenty years of monitoring stellar orbits at the Galactic center has provided an unprecedented opportunity to study the physics and astrophysics of the supermassive black hole (SMBH) at the center of the Milky Way Galaxy. In order to constrain the mass of and distance to the black hole, and to evaluate its gravitational influence on orbiting bodies, we use Bayesian statistics to infer black hole and stellar orbital parameters from astrometric and radial velocity measurements of stars orbiting the central SMBH. Unfortunately, most of the short period stars in the Galactic center have periods much longer than our twenty year time baseline of observations, resulting in incomplete orbital phase coverage--potentially biasing fitted parameters. Using the Bayesian statistical framework, we evaluate biases in the black hole and orbital parameters of stars with varying phase coverage, using various prior models to fit the data. We present evidence that incomplete phase coverage of an orbit causes prior assumptions to bias statistical quantities, and propose a solution to reduce these biases for orbits with low phase coverage. The explored solution assumes uniformity in the observables rather than in the inferred model parameters, as is the current standard method of orbit fitting. Of the cases tested, priors that assume uniform astrometric and radial velocity observables reduce the biases in the estimated parameters. The proposed method will not only improve orbital estimates of stars orbiting the central SMBH, but can also be extended to other orbiting bodies with low phase coverage such as visual binaries and exoplanets.

  7. ESTIMATION OF DISTANCES TO STARS WITH STELLAR PARAMETERS FROM LAMOST

    SciTech Connect

    Carlin, Jeffrey L.; Newberg, Heidi Jo; Liu, Chao; Deng, Licai; Li, Guangwei; Luo, A-Li; Wu, Yue; Yang, Ming; Zhang, Haotong; Beers, Timothy C.; Chen, Li; Hou, Jinliang; Smith, Martin C.; Guhathakurta, Puragra; Lépine, Sébastien; Yanny, Brian; Zheng, Zheng

    2015-07-15

    We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star’s absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ∼5° diameter “plate” that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ∼20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ∼40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.

  8. Systematic parameter estimation for PEM fuel cell models

    NASA Astrophysics Data System (ADS)

    Carnes, Brian; Djilali, Ned

    The problem of parameter estimation is considered for the case of mathematical models for polymer electrolyte membrane fuel cells (PEMFCs). An algorithm for nonlinear least squares constrained by partial differential equations is defined and applied to estimate effective membrane conductivity, exchange current densities and oxygen diffusion coefficients in a one-dimensional PEMFC model for transport in the principal direction of current flow. Experimental polarization curves are fitted for conventional and low current density PEMFCs. Use of adaptive mesh refinement is demonstrated to increase the computational efficiency.

  9. Parameter Estimation as a Problem in Statistical Thermodynamics

    NASA Astrophysics Data System (ADS)

    Earle, Keith A.; Schneider, David J.

    2011-03-01

    In this work, we explore the connections between parameter fitting and statistical thermodynamics using the maxent principle of Jaynes as a starting point. In particular, we show how signal averaging may be described by a suitable one particle partition function, modified for the case of a variable number of particles. These modifications lead to an entropy that is extensive in the number of measurements in the average. Systematic error may be interpreted as a departure from ideal gas behavior. In addition, we show how to combine measurements from different experiments in an unbiased way in order to maximize the entropy of simultaneous parameter fitting. We suggest that fit parameters may be interpreted as generalized coordinates and the forces conjugate to them may be derived from the system partition function. From this perspective, the parameter fitting problem may be interpreted as a process where the system (spectrum) does work against internal stresses (non-optimum model parameters) to achieve a state of minimum free energy/maximum entropy. Finally, we show how the distribution function allows us to define a geometry on parameter space, building on previous work[1, 2]. This geometry has implications for error estimation and we outline a program for incorporating these geometrical insights into an automated parameter fitting algorithm.

  10. Estimation of the parameters of ETAS models by Simulated Annealing.

    PubMed

    Lombardi, Anna Maria

    2015-02-12

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context.

  11. Estimation of the parameters of ETAS models by Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Lombardi, Anna Maria

    2015-02-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context.

  12. Estimation of the parameters of ETAS models by Simulated Annealing

    PubMed Central

    Lombardi, Anna Maria

    2015-01-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context. PMID:25673036

  13. Parameter estimation in X-ray astronomy using maximum likelihood

    NASA Technical Reports Server (NTRS)

    Wachter, K.; Leach, R.; Kellogg, E.

    1979-01-01

    Methods of estimation of parameter values and confidence regions by maximum likelihood and Fisher efficient scores starting from Poisson probabilities are developed for the nonlinear spectral functions commonly encountered in X-ray astronomy. It is argued that these methods offer significant advantages over the commonly used alternatives called minimum chi-squared because they rely on less pervasive statistical approximations and so may be expected to remain valid for data of poorer quality. Extensive numerical simulations of the maximum likelihood method are reported which verify that the best-fit parameter value and confidence region calculations are correct over a wide range of input spectra.

  14. Estimation of drying parameters in rotary dryers using differential evolution

    NASA Astrophysics Data System (ADS)

    Lobato, F. S.; Steffen, V., Jr.; Arruda, E. B.; Barrozo, M. A. S.

    2008-11-01

    Inverse problems arise from the necessity of obtaining parameters of theoretical models to simulate the behavior of the system for different operating conditions. Several heuristics that mimic different phenomena found in nature have been proposed for the solution of this kind of problem. In this work, the Differential Evolution Technique is used for the estimation of drying parameters in realistic rotary dryers, which is formulated as an optimization problem by using experimental data. Test case results demonstrate both the feasibility and the effectiveness of the proposed methodology.

  15. Parameters estimation for reactive transport: A way to test the validity of a reactive model

    NASA Astrophysics Data System (ADS)

    Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme

    The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.

  16. Adaptive approximation method for joint parameter estimation and identical synchronization of chaotic systems.

    PubMed

    Mariño, Inés P; Míguez, Joaquín

    2005-11-01

    We introduce a numerical approximation method for estimating an unknown parameter of a (primary) chaotic system which is partially observed through a scalar time series. Specifically, we show that the recursive minimization of a suitably designed cost function that involves the dynamic state of a fully observed (secondary) system and the observed time series can lead to the identical synchronization of the two systems and the accurate estimation of the unknown parameter. The salient feature of the proposed technique is that the only external input to the secondary system is the unknown parameter which needs to be adjusted. We present numerical examples for the Lorenz system which show how our algorithm can be considerably faster than some previously proposed methods.

  17. Determination of power system component parameters using nonlinear dead beat estimation method

    NASA Astrophysics Data System (ADS)

    Kolluru, Lakshmi

    Power systems are considered the most complex man-made wonders in existence today. In order to effectively supply the ever increasing demands of the consumers, power systems are required to remain stable at all times. Stability and monitoring of these complex systems are achieved by strategically placed computerized control centers. State and parameter estimation is an integral part of these facilities, as they deal with identifying the unknown states and/or parameters of the systems. Advancements in measurement technologies and the introduction of phasor measurement units (PMU) provide detailed and dynamic information of all measurements. Accurate availability of dynamic measurements provides engineers the opportunity to expand and explore various possibilities in power system dynamic analysis/control. This thesis discusses the development of a parameter determination algorithm for nonlinear power systems, using dynamic data obtained from local measurements. The proposed algorithm was developed by observing the dead beat estimator used in state space estimation of linear systems. The dead beat estimator is considered to be very effective as it is capable of obtaining the required results in a fixed number of steps. The number of steps required is related to the order of the system and the number of parameters to be estimated. The proposed algorithm uses the idea of dead beat estimator and nonlinear finite difference methods to create an algorithm which is user friendly and can determine the parameters fairly accurately and effectively. The proposed algorithm is based on a deterministic approach, which uses dynamic data and mathematical models of power system components to determine the unknown parameters. The effectiveness of the algorithm is tested by implementing it to identify the unknown parameters of a synchronous machine. MATLAB environment is used to create three test cases for dynamic analysis of the system with assumed known parameters. Faults are

  18. Space Shuttle propulsion parameter estimation using optimal estimation techniques, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The mathematical developments and their computer program implementation for the Space Shuttle propulsion parameter estimation project are summarized. The estimation approach chosen is the extended Kalman filtering with a modified Bryson-Frazier smoother. Its use here is motivated by the objective of obtaining better estimates than those available from filtering and to eliminate the lag associated with filtering. The estimation technique uses as the dynamical process the six degree equations-of-motion resulting in twelve state vector elements. In addition to these are mass and solid propellant burn depth as the ""system'' state elements. The ""parameter'' state elements can include aerodynamic coefficient, inertia, center-of-gravity, atmospheric wind, etc. deviations from referenced values. Propulsion parameter state elements have been included not as options just discussed but as the main parameter states to be estimated. The mathematical developments were completed for all these parameters. Since the systems dynamics and measurement processes are non-linear functions of the states, the mathematical developments are taken up almost entirely by the linearization of these equations as required by the estimation algorithms.

  19. Markov chain Monte Carlo estimation of a multiparameter decision model: consistency of evidence and the accurate assessment of uncertainty.

    PubMed

    Ades, A E; Cliffe, S

    2002-01-01

    Decision models are usually populated 1 parameter at a time, with 1 item of information informing each parameter. Often, however, data may not be available on the parameters themselves but on several functions of parameters, and there may be more items of information than there are parameters to be estimated. The authors show how in these circumstances all the model parameters can be estimated simultaneously using Bayesian Markov chain Monte Carlo methods. Consistency of the information and/or the adequacy of the model can also be assessed within this framework. Statistical evidence synthesis using all available data should result in more precise estimates of parameters and functions of parameters, and is compatible with the emphasis currently placed on systematic use of evidence. To illustrate this, WinBUGS software is used to estimate a simple 9-parameter model of the epidemiology of HIV in women attending prenatal clinics, using information on 12 functions of parameters, and to thereby compute the expected net benefit of 2 alternative prenatal testing strategies, universal testing and targeted testing of high-risk groups. The authors demonstrate improved precision of estimates, and lower estimates of the expected value of perfect information, resulting from the use of all available data.

  20. Estimation of multidimensional precipitation parameters by areal estimates of oceanic rainfall

    NASA Technical Reports Server (NTRS)

    Valdes, J. B.; Nakamoto, S.; Shen, S. S. P.; North, G. R.

    1990-01-01

    The parameters of the multidimensional precipitation model proposed by Waymire et al. (1984) are estimated using the areal-averaged radar measurements of precipitation of the Global Atlantic Tropical Experiment (GATE) data set. The procedure followed was the fitting of the first- and second-order moments at different aggregation scales by nonlinear regression techniques. The numerical estimates of the parameters using different subsets of GATE information were reasonably stable, i.e., they were not affected by changes of the area-averaging size, temporal length of the records, and percentage of areal coverage of rainfall. This suggests that the estimation procedure is relatively robust and suitable to estimate the parameters of the multidimensional model in areas of sparse density of rain gages. The use of the space-time spectrum of rainfall to help in the determination of sampling errors due to intermittent visits of future space-borne low-altitude sensors of precipitation is also discussed.

  1. CosmoSIS: A System for MC Parameter Estimation

    SciTech Connect

    Zuntz, Joe; Paterno, Marc; Jennings, Elise; Rudd, Douglas; Manzotti, Alessandro; Dodelson, Scott; Bridle, Sarah; Sehrish, Saba; Kowalkowski, James

    2015-01-01

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in Cosmo- SIS, including camb, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis.

  2. On Using Exponential Parameter Estimators with an Adaptive Controller

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  3. Probabilistic estimation of the constitutive parameters of polymers

    NASA Astrophysics Data System (ADS)

    Foley, J. R.; Jordan, J. L.; Siviour, C. R.

    2012-08-01

    The Mulliken-Boyce constitutive model predicts the dynamic response of crystalline polymers as a function of strain rate and temperature. This paper describes the Mulliken-Boyce model-based estimation of the constitutive parameters in a Bayesian probabilistic framework. Experimental data from dynamic mechanical analysis and dynamic compression of PVC samples over a wide range of strain rates are analyzed. Both experimental uncertainty and natural variations in the material properties are simultaneously considered as independent and joint distributions; the posterior probability distributions are shown and compared with prior estimates of the material constitutive parameters. Additionally, particular statistical distributions are shown to be effective at capturing the rate and temperature dependence of internal phase transitions in DMA data.

  4. Bayesian parameter estimation for chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Wesolowski, Sarah; Furnstahl, Richard; Phillips, Daniel; Klco, Natalie

    2016-09-01

    The low-energy constants (LECs) of a chiral effective field theory (EFT) interaction in the two-body sector are fit to observable data using a Bayesian parameter estimation framework. By using Bayesian prior probability distributions (pdfs), we quantify relevant physical expectations such as LEC naturalness and include them in the parameter estimation procedure. The final result is a posterior pdf for the LECs, which can be used to propagate uncertainty resulting from the fit to data to the final observable predictions. The posterior pdf also allows an empirical test of operator redundancy and other features of the potential. We compare results of our framework with other fitting procedures, interpreting the underlying assumptions in Bayesian probabilistic language. We also compare results from fitting all partial waves of the interaction simultaneously to cross section data compared to fitting to extracted phase shifts, appropriately accounting for correlations in the data. Supported in part by the NSF and DOE.

  5. Estimation of Geodetic and Geodynamical Parameters with VieVS

    NASA Technical Reports Server (NTRS)

    Spicakova, Hana; Bohm, Johannes; Bohm, Sigrid; Nilsson, tobias; Pany, Andrea; Plank, Lucia; Teke, Kamil; Schuh, Harald

    2010-01-01

    Since 2008 the VLBI group at the Institute of Geodesy and Geophysics at TU Vienna has focused on the development of a new VLBI data analysis software called VieVS (Vienna VLBI Software). One part of the program, currently under development, is a unit for parameter estimation in so-called global solutions, where the connection of the single sessions is done by stacking at the normal equation level. We can determine time independent geodynamical parameters such as Love and Shida numbers of the solid Earth tides. Apart from the estimation of the constant nominal values of Love and Shida numbers for the second degree of the tidal potential, it is possible to determine frequency dependent values in the diurnal band together with the resonance frequency of Free Core Nutation. In this paper we show first results obtained from the 24-hour IVS R1 and R4 sessions.

  6. Identification of vehicle parameters and estimation of vertical forces

    NASA Astrophysics Data System (ADS)

    Imine, H.; Fridman, L.; Madani, T.

    2015-12-01

    The aim of the present work is to estimate the vertical forces and to identify the unknown dynamic parameters of a vehicle using the sliding mode observers approach. The estimation of vertical forces needs a good knowledge of dynamic parameters such as damping coefficient, spring stiffness and unsprung masses, etc. In this paper, suspension stiffness and unsprung masses have been identified by the Least Square Method. Real-time tests have been carried out on an instrumented static vehicle, excited vertically by hydraulic jacks. The vehicle is equipped with different sensors in order to measure its dynamics. The measurements coming from these sensors have been considered as unknown inputs of the system. However, only the roll angle and the suspension deflection measurements have been used in order to perform the observer. Experimental results are presented and discussed to show the quality of the proposed approach.

  7. Micro-vibration model and parameter estimation method of a reaction wheel assembly

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kwan

    2014-09-01

    Reaction wheel assemblies (RWAs) are a source of disturbance in satellites, and they are regarded as the largest jitter contributor in optical payloads. In order to ensure a stringent jitter requirement, the wheel disturbance effects on spacecraft should be predicted precisely prior to launch through analytical or experimental approaches. For this purpose, the wheel disturbance should be identified and modeled accurately. In the present study, a micro-vibration model of the RWA is introduced through coupling an analytical wheel model and an empirical disturbance model; furthermore, a parameter estimation process of the coupled model from the micro-vibration disturbance data is proposed. In order to verify the modeling and estimation techniques, a micro-vibration model of a numerical RWA is established and its estimation error is validated. Then, the micro-vibration model is extended to consider an axial disturbance and a measurement offset effect. Finally, the micro-vibration model is applied to a commercial RWA and the model parameters are extracted from the disturbance test data of the RWA using the parameter estimation process. The analytical and experimental results demonstrate that the proposed micro-vibration model and parameter estimation process are effective in the dynamic disturbance modeling of RWAs.

  8. Estimating Sea Ice Parameters from Multi-Look SAR Images Using - and Second-Order Variograms

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojian; Li, Yu; Zhao, Quanhua

    2016-06-01

    The spatial structures revealed in SAR intensity imagery provide essential information characterizing the natural variation processes of sea ice. This paper proposes a new method to extract the spatial structures of sea ice based on two spatial stochastic models. One is a multi-Gamma model, which characterizes continuous variations corresponding to ice-free area or the background. The other is a Poisson line mosaic model, which characterizes the regional variations of sea ice with different types. The linear combination of the two models builds the mixture model to represent spatial structures of sea ice within SAR intensity imagery. To estimate different sea ice parameters, such as its concentration, scale etc. We define two kinds of geostatistic metrics, theoretical first- and second-order variograms. Their experimental alternatives can be calculated from the SAR intensity imagery directly, then the parameters of the mixture model are estimated through fitting the theoretical variograms to the experimental ones, and by comparing the estimated parameters to the egg code, it is verified that the estimated parameters can indicate sea ice structure information showing in the egg code. The proposed method is applied to simulated images and Radarsat-1 images. The results of the experiments show that the proposed method can estimate the sea ice concentration and floe size accurately and stably within SAR testing images.

  9. An Integrated Tool for Estimation of Material Model Parameters (PREPRINT)

    DTIC Science & Technology

    2010-04-01

    irrevocable worldwide license to use, modify, reproduce, release, perform, display, or disclose the work by or on behalf of the U.S. Government. 14 ... vf , and wf. The filtered v profiles are shown in Figure 4. For the plastic deformation data we found that the filtering could not correct the...wf near the top right corner. We need to use the vf data for our parameter estimation. Since the geometry and loading are symmetric in the FEM

  10. Estimation of Parameters from Discrete Random Nonstationary Time Series

    NASA Astrophysics Data System (ADS)

    Takayasu, H.; Nakamura, T.

    For the analysis of nonstationary stochastic time series we introduce a formulation to estimate the underlying time-dependent parameters. This method is designed for random events with small numbers that are out of the applicability range of the normal distribution. The method is demonstrated for numerical data generated by a known system, and applied to time series of traffic accidents, batting average of a baseball player and sales volume of home electronics.

  11. Estimation of discontinuous coefficients and boundary parameters for hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Lamm, P. K.; Murphy, K. A.

    1986-01-01

    The problem of estimating discontinuous coefficients, including locations of discontinuities, that occur in second order hyperbolic systems typical of those arising in I-D surface seismic problems is discussed. In addition, the problem of identifying unknown parameters that appear in boundary conditions for the system is treated. A spline-based approximation theory is presented, together with related convergence findings and representative numerical examples.

  12. Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions

    PubMed Central

    Chaudhuri, Shomesh E.; Merfeld, Daniel M.

    2012-01-01

    Psychophysics generally relies on estimating a subject’s ability to perform a specific task as a function of an observed stimulus. For threshold studies, the fitted functions are called psychometric functions. While fitting psychometric functions to data acquired using adaptive sampling procedures (e.g., “staircase” procedures), investigators have encountered a bias in the spread (“slope” or “threshold”) parameter that has been attributed to the serial dependency of the adaptive data. Using simulations, we confirm this bias for cumulative Gaussian parametric maximum likelihood fits on data collected via adaptive sampling procedures, and then present a bias-reduced maximum likelihood fit that substantially reduces the bias without reducing the precision of the spread parameter estimate and without reducing the accuracy or precision of the other fit parameters. As a separate topic, we explain how to implement this bias-reduction technique using generalized linear model fits as well as other numeric maximum likelihood techniques such as the Nelder-Mead simplex. We then provide a comparison of the iterative bootstrap and observed information matrix techniques for estimating parameter fit variance from adaptive sampling procedure data sets. The iterative bootstrap technique is shown to be slightly more accurate; however, the observed information technique executes in a small fraction (0.005%) of the time required by the iterative bootstrap technique, which is an advantage when a real-time estimate of parameter fit variance is required. PMID:23250442

  13. Rapid estimation of high-parameter auditory-filter shapes.

    PubMed

    Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M

    2014-10-01

    A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials.

  14. Estimating Hydraulic Parameters When Poroelastic Effects Are Significant

    USGS Publications Warehouse

    Berg, S.J.; Hsieh, P.A.; Illman, W.A.

    2011-01-01

    For almost 80 years, deformation-induced head changes caused by poroelastic effects have been observed during pumping tests in multilayered aquifer-aquitard systems. As water in the aquifer is released from compressive storage during pumping, the aquifer is deformed both in the horizontal and vertical directions. This deformation in the pumped aquifer causes deformation in the adjacent layers, resulting in changes in pore pressure that may produce drawdown curves that differ significantly from those predicted by traditional groundwater theory. Although these deformation-induced head changes have been analyzed in several studies by poroelasticity theory, there are at present no practical guidelines for the interpretation of pumping test data influenced by these effects. To investigate the impact that poroelastic effects during pumping tests have on the estimation of hydraulic parameters, we generate synthetic data for three different aquifer-aquitard settings using a poroelasticity model, and then analyze the synthetic data using type curves and parameter estimation techniques, both of which are based on traditional groundwater theory and do not account for poroelastic effects. Results show that even when poroelastic effects result in significant deformation-induced head changes, it is possible to obtain reasonable estimates of hydraulic parameters using methods based on traditional groundwater theory, as long as pumping is sufficiently long so that deformation-induced effects have largely dissipated. ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.

  15. Hydraulic parameters estimation from well logging resistivity and geoelectrical measurements

    NASA Astrophysics Data System (ADS)

    Perdomo, S.; Ainchil, J. E.; Kruse, E.

    2014-06-01

    In this paper, a methodology is suggested for deriving hydraulic parameters, such as hydraulic conductivity or transmissivity combining classical hydrogeological data with geophysical measurements. Estimates values of transmissivity and conductivity, with this approach, can reduce uncertainties in numerical model calibration and improve data coverage, reducing time and cost of a hydrogeological investigation at a regional scale. The conventional estimation of hydrogeological parameters needs to be done by analyzing wells data or laboratory measurements. Furthermore, to make a regional survey many wells should be considered, and the location of each one plays an important role in the interpretation stage. For this reason, the use of geoelectrical methods arises as an effective complementary technique, especially in developing countries where it is necessary to optimize resources. By combining hydraulic parameters from pumping tests and electrical resistivity from well logging profiles, it was possible to adjust three empirical laws in a semi-confined alluvial aquifer in the northeast of the province of Buenos Aires (Argentina). These relations were also tested to be used with surficial geoelectrical data. The hydraulic conductivity and transmissivity estimated in porous material were according to expected values for the region (20 m/day; 457 m2/day), and are very consistent with previous results from other authors (25 m/day and 500 m2/day). The methodology described could be used with similar data sets and applied to other areas with similar hydrogeological conditions.

  16. Accurate Parameters for the Most Massive Stars in the Local Universe: the Brightest Eclipsing Binaries in M33

    NASA Astrophysics Data System (ADS)

    Prieto, José L.; Bonanos, Alceste; Stanek, Krzysztof

    2007-08-01

    Eclipsing binaries are the only systems that provide accurate fundamental parameters of distant stars. Currently, only a handful of accurate measurements of stars with masses between 40-80 Msun have been made. We propose to make accurate measurements of the masses, radii and luminosities of the most massive eclipsing binaries in M33. The results of this study will provide much needed constraints on theories that model the formation and evolution of massive stars and binary systems. Furthermore, it will provide vital statistics on the occurrence of massive binary twins, like the 80+80 solar masses WR 20a system and the 30+30 solar masses detached eclipsing binary in M33.

  17. Estimating cellular parameters through optimization procedures: elementary principles and applications

    PubMed Central

    Kimura, Akatsuki; Celani, Antonio; Nagao, Hiromichi; Stasevich, Timothy; Nakamura, Kazuyuki

    2015-01-01

    Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest. PMID:25784880

  18. Estimating cellular parameters through optimization procedures: elementary principles and applications.

    PubMed

    Kimura, Akatsuki; Celani, Antonio; Nagao, Hiromichi; Stasevich, Timothy; Nakamura, Kazuyuki

    2015-01-01

    Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.

  19. Automatic estimation of aquifer parameters using long-term water supply pumping and injection records

    NASA Astrophysics Data System (ADS)

    Luo, Ning; Illman, Walter A.

    2016-09-01

    Analyses are presented of long-term hydrographs perturbed by variable pumping/injection events in a confined aquifer at a municipal water-supply well field in the Region of Waterloo, Ontario (Canada). Such records are typically not considered for aquifer test analysis. Here, the water-level variations are fingerprinted to pumping/injection rate changes using the Theis model implemented in the WELLS code coupled with PEST. Analyses of these records yield a set of transmissivity ( T) and storativity ( S) estimates between each monitoring and production borehole. These individual estimates are found to poorly predict water-level variations at nearby monitoring boreholes not used in the calibration effort. On the other hand, the geometric means of the individual T and S estimates are similar to those obtained from previous pumping tests conducted at the same site and adequately predict water-level variations in other boreholes. The analyses reveal that long-term municipal water-level records are amenable to analyses using a simple analytical solution to estimate aquifer parameters. However, uniform parameters estimated with analytical solutions should be considered as first rough estimates. More accurate hydraulic parameters should be obtained by calibrating a three-dimensional numerical model that rigorously captures the complexities of the site with these data.

  20. Estimation of longitudinal aircraft characteristics using parameter identification techniques

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1978-01-01

    This study compares the results from different parameter identification methods used to determine longitudinal aircraft characteristics from flight data. In general, these comparisons have found that the estimated short-period dynamics (natural frequency, damping, transfer functions) are only weakly affected by the type of identification method, however, the estimated aerodynamic coefficients may be strongly affected by the type of identification method. The estimated values for aerodynamic coefficients were found to depend upon the type of math model and type of test data used with each of the identification methods. The use of fairly complete math models and the use of long data lengths, combining both steady and nonsteady motion, are shown to provide aerodynamic coefficient values that compare favorably with the results from other testing methods such as steady-state flight and full-scale wind-tunnel experiments.

  1. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

    PubMed Central

    Kaltenbacher, Barbara; Hasenauer, Jan

    2017-01-01

    Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351

  2. Automatic estimation of elasticity parameters in breast tissue

    NASA Astrophysics Data System (ADS)

    Skerl, Katrin; Cochran, Sandy; Evans, Andrew

    2014-03-01

    Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.

  3. CosmoSIS: A system for MC parameter estimation

    DOE PAGES

    Bridle, S.; Dodelson, S.; Jennings, E.; ...

    2015-12-23

    CosmoSIS is a modular system for cosmological parameter estimation, based on Markov Chain Monte Carlo and related techniques. It provides a series of samplers, which drive the exploration of the parameter space, and a series of modules, which calculate the likelihood of the observed data for a given physical model, determined by the location of a sample in the parameter space. While CosmoSIS ships with a set of modules that calculate quantities of interest to cosmologists, there is nothing about the framework itself, nor in the Markov Chain Monte Carlo technique, that is specific to cosmology. Thus CosmoSIS could bemore » used for parameter estimation problems in other fields, including HEP. This paper describes the features of CosmoSIS and show an example of its use outside of cosmology. Furthermore, it also discusses how collaborative development strategies differ between two different communities: that of HEP physicists, accustomed to working in large collaborations, and that of cosmologists, who have traditionally not worked in large groups.« less

  4. CosmoSIS: A system for MC parameter estimation

    SciTech Connect

    Bridle, S.; Dodelson, S.; Jennings, E.; Kowalkowski, J.; Manzotti, A.; Paterno, M.; Rudd, D.; Sehrish, S.; Zuntz, J.

    2015-12-23

    CosmoSIS is a modular system for cosmological parameter estimation, based on Markov Chain Monte Carlo and related techniques. It provides a series of samplers, which drive the exploration of the parameter space, and a series of modules, which calculate the likelihood of the observed data for a given physical model, determined by the location of a sample in the parameter space. While CosmoSIS ships with a set of modules that calculate quantities of interest to cosmologists, there is nothing about the framework itself, nor in the Markov Chain Monte Carlo technique, that is specific to cosmology. Thus CosmoSIS could be used for parameter estimation problems in other fields, including HEP. This paper describes the features of CosmoSIS and show an example of its use outside of cosmology. Furthermore, it also discusses how collaborative development strategies differ between two different communities: that of HEP physicists, accustomed to working in large collaborations, and that of cosmologists, who have traditionally not worked in large groups.

  5. Estimates of Running Ground Reaction Force Parameters from Motion Analysis.

    PubMed

    Pavei, Gaspare; Seminati, Elena; Storniolo, Jorge L L; Peyré-Tartaruga, Leonardo A

    2017-02-01

    We compared running mechanics parameters determined from ground reaction force (GRF) measurements with estimated forces obtained from double differentiation of kinematic (K) data from motion analysis in a broad spectrum of running speeds (1.94-5.56 m⋅s(-1)). Data were collected through a force-instrumented treadmill and compared at different sampling frequencies (900 and 300 Hz for GRF, 300 and 100 Hz for K). Vertical force peak, shape, and impulse were similar between K methods and GRF. Contact time, flight time, and vertical stiffness (kvert) obtained from K showed the same trend as GRF with differences < 5%, whereas leg stiffness (kleg) was not correctly computed by kinematics. The results revealed that the main vertical GRF parameters can be computed by the double differentiation of the body center of mass properly calculated by motion analysis. The present model provides an alternative accessible method for determining temporal and kinetic parameters of running without an instrumented treadmill.

  6. Orientational order parameter estimated from molecular polarizabilities - an optical study

    NASA Astrophysics Data System (ADS)

    Lalitha Kumari, J.; Datta Prasad, P. V.; Madhavi Latha, D.; Pisipati, V. G. K. M.

    2012-01-01

    An optical study of N-(p-n-alkyloxybenzylidene)-p-n-butyloxyanilines, nO.O4 compounds with the alkoxy chain number n = 1, 3, 6, 7, and 10 has been carried out by measuring the refractive indices using modified spectrometer and direct measurement of birefringence employing the Newton's rings method. Further, the molecular polarizability anisotropies are evaluated using Lippincott δ-function model, the molecular vibration method, Haller's extrapolation method, and scaling factor method. The molecular polarizabilities α e and α 0 are calculated using Vuk's isotropic and Neugebauer anisotropic local field models. The order parameter S is estimated by employing the molecular polarizability values determined from experimental refractive indices and density data and the polarizability anisotropy values. Further, the order parameter S is also obtained directly from the birefringence data. A comparison has been carried out among the order parameter obtained from different ways and the results are compared with the body of the data available in the literature.

  7. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    SciTech Connect

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four

  8. Sediment load estimation using statistical distributions with streamflow dependent parameters

    NASA Astrophysics Data System (ADS)

    Mailhot, A.; Rousseau, A. N.; Talbot, G.; Quilbé, R.

    2005-12-01

    The classical approaches to estimate sediment and chemical loads are all deterministic: averaging methods, ratio estimators, regression methods (rating curves) and planning level load estimation methods. However, none of these methods is satisfactory since they are often inaccurate and do not take into account nor quantify uncertainty. To fill this gap, statistical methods have to be investigated. This presentation proposes a new statistical method in which sediment concentration is assimilated to a random variable and is described by distribution functions. Three types of distributions are considered: Log-Normal, Gamma and Weibull distributions. Correlation between sediment concentrations and streamflows is integrated to the model by assuming that distribution parameters (mean and coefficient of variation) are related to streamflow using several different functional forms: exponential, quadratic and power law forms for the mean, constant and linear for the coefficient of variation. Parameter estimation is realized through maximization of the likelihood function. This approach is applied on a data set (1989 to 2004) from the Beaurivage River (Quebec, Canada) with weekly to monthly sampling for sediment concentration. A comparison of different models (selection of a distribution function with functional forms relating the mean and the coefficient of variation to streamflow) shows that the Log-Normal distribution with power law mean and coefficient of variation independent of streamflow provides the best result. When comparing annual load results with those obtained using deterministic methods, we observe that ratio estimators values are rarely within the [0.1, 0.9] quantile interval. For the 1997-2004 period, ratio estimator values are almost systematically smaller than the 0.1 quantile. This could presumably be due to the small number of sediment concentration samples for these years. This study suggests that, if deterministic methods such as the ratio estimator

  9. Joint Estimation of Hydraulic and Poroelastic Parameters from a Pumping Test.

    PubMed

    Berg, Steven J; Illman, Walter A; Mok, Chin Man W

    2015-01-01

    The coupling of hydraulic and poroelastic processes is critical in predicting processes involving the deformation of the geologic medium in response to fluid extraction or injection. Numerical models that consider the coupling of hydraulic and poroelastic processes require the knowledge of relevant parameters for both aquifer and aquitard units. In this study, we jointly estimated hydraulic and poroelastic parameters from pumping test data exhibiting "reverse water level fluctuations," known as the Noordbergum effect, in aquitards adjacent to a pumped aquifer. The joint estimation was performed by coupling BIOT2, a finite element, two-dimensional, axisymmetric, groundwater model that considers poroelastic effects with the parameter estimation code PEST. We first tested our approach using a synthetic data set with known parameters. Results of the synthetic case showed that for a simple layered system, it was possible to reproduce accurately both the hydraulic and poroelastic properties for each layer. We next applied the approach to pumping test data collected at the North Campus Research Site (NCRS) on the University of Waterloo (UW) campus. Based on the detailed knowledge of stratigraphy, a five-layer system was modeled. Parameter estimation was performed by: (1) matching drawdown data individually from each observation port and (2) matching drawdown data from all ports at a single well simultaneously. The estimated hydraulic parameters were compared to those obtained by other means at the site yielding good agreement. However, the estimated shear modulus was higher than the static shear modulus, but was within the range of dynamic shear modulus reported in the literature, potentially suggesting a loading rate effect.

  10. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1983-01-01

    Alternatives to sampling-theory stratified and regression estimators of crop production and timber biomass were examined. An alternative estimator which is viewed as especially promising is the errors-in-variable regression estimator. Investigations established the need for caution with this estimator when the ratio of two error variances is not precisely known.

  11. Volcano deformation source parameters estimated from InSAR: Sensitivities to uncertainties in seismic tomography

    NASA Astrophysics Data System (ADS)

    Masterlark, Timothy; Donovan, Theodore; Feigl, Kurt L.; Haney, Matthew; Thurber, Clifford H.; Tung, Sui

    2016-04-01

    The eruption cycle of a volcano is controlled in part by the upward migration of magma. The characteristics of the magma flux produce a deformation signature at the Earth's surface. Inverse analyses use geodetic data to estimate strategic controlling parameters that describe the position and pressurization of a magma chamber at depth. The specific distribution of material properties controls how observed surface deformation translates to source parameter estimates. Seismic tomography models describe the spatial distributions of material properties that are necessary for accurate models of volcano deformation. This study investigates how uncertainties in seismic tomography models propagate into variations in the estimates of volcano deformation source parameters inverted from geodetic data. We conduct finite element model-based nonlinear inverse analyses of interferometric synthetic aperture radar (InSAR) data for Okmok volcano, Alaska, as an example. We then analyze the estimated parameters and their uncertainties to characterize the magma chamber. Analyses are performed separately for models simulating a pressurized chamber embedded in a homogeneous domain as well as for a domain having a heterogeneous distribution of material properties according to seismic tomography. The estimated depth of the source is sensitive to the distribution of material properties. The estimated depths for the homogeneous and heterogeneous domains are 2666 ± 42 and 3527 ± 56 m below mean sea level, respectively (99% confidence). A Monte Carlo analysis indicates that uncertainties of the seismic tomography cannot account for this discrepancy at the 99% confidence level. Accounting for the spatial distribution of elastic properties according to seismic tomography significantly improves the fit of the deformation model predictions and significantly influences estimates for parameters that describe the location of a pressurized magma chamber.

  12. Basin structure of optimization based state and parameter estimation

    NASA Astrophysics Data System (ADS)

    Schumann-Bischoff, Jan; Parlitz, Ulrich; Abarbanel, Henry D. I.; Kostuk, Mark; Rey, Daniel; Eldridge, Michael; Luther, Stefan

    2015-05-01

    Most data based state and parameter estimation methods require suitable initial values or guesses to achieve convergence to the desired solution, which typically is a global minimum of some cost function. Unfortunately, however, other stable solutions (e.g., local minima) may exist and provide suboptimal or even wrong estimates. Here, we demonstrate for a 9-dimensional Lorenz-96 model how to characterize the basin size of the global minimum when applying some particular optimization based estimation algorithm. We compare three different strategies for generating suitable initial guesses, and we investigate the dependence of the solution on the given trajectory segment (underlying the measured time series). To address the question of how many state variables have to be measured for optimal performance, different types of multivariate time series are considered consisting of 1, 2, or 3 variables. Based on these time series, the local observability of state variables and parameters of the Lorenz-96 model is investigated and confirmed using delay coordinates. This result is in good agreement with the observation that correct state and parameter estimation results are obtained if the optimization algorithm is initialized with initial guesses close to the true solution. In contrast, initialization with other exact solutions of the model equations (different from the true solution used to generate the time series) typically fails, i.e., the optimization procedure ends up in local minima different from the true solution. Initialization using random values in a box around the attractor exhibits success rates depending on the number of observables and the available time series (trajectory segment).

  13. Basin structure of optimization based state and parameter estimation.

    PubMed

    Schumann-Bischoff, Jan; Parlitz, Ulrich; Abarbanel, Henry D I; Kostuk, Mark; Rey, Daniel; Eldridge, Michael; Luther, Stefan

    2015-05-01

    Most data based state and parameter estimation methods require suitable initial values or guesses to achieve convergence to the desired solution, which typically is a global minimum of some cost function. Unfortunately, however, other stable solutions (e.g., local minima) may exist and provide suboptimal or even wrong estimates. Here, we demonstrate for a 9-dimensional Lorenz-96 model how to characterize the basin size of the global minimum when applying some particular optimization based estimation algorithm. We compare three different strategies for generating suitable initial guesses, and we investigate the dependence of the solution on the given trajectory segment (underlying the measured time series). To address the question of how many state variables have to be measured for optimal performance, different types of multivariate time series are considered consisting of 1, 2, or 3 variables. Based on these time series, the local observability of state variables and parameters of the Lorenz-96 model is investigated and confirmed using delay coordinates. This result is in good agreement with the observation that correct state and parameter estimation results are obtained if the optimization algorithm is initialized with initial guesses close to the true solution. In contrast, initialization with other exact solutions of the model equations (different from the true solution used to generate the time series) typically fails, i.e., the optimization procedure ends up in local minima different from the true solution. Initialization using random values in a box around the attractor exhibits success rates depending on the number of observables and the available time series (trajectory segment).

  14. Estimating unknown parameters in haemophilia using expert judgement elicitation.

    PubMed

    Fischer, K; Lewandowski, D; Janssen, M P

    2013-09-01

    The increasing attention to healthcare costs and treatment efficiency has led to an increasing demand for quantitative data concerning patient and treatment characteristics in haemophilia. However, most of these data are difficult to obtain. The aim of this study was to use expert judgement elicitation (EJE) to estimate currently unavailable key parameters for treatment models in severe haemophilia A. Using a formal expert elicitation procedure, 19 international experts provided information on (i) natural bleeding frequency according to age and onset of bleeding, (ii) treatment of bleeds, (iii) time needed to control bleeding after starting secondary prophylaxis, (iv) dose requirements for secondary prophylaxis according to onset of bleeding, and (v) life-expectancy. For each parameter experts provided their quantitative estimates (median, P10, P90), which were combined using a graphical method. In addition, information was obtained concerning key decision parameters of haemophilia treatment. There was most agreement between experts regarding bleeding frequencies for patients treated on demand with an average onset of joint bleeding (1.7 years): median 12 joint bleeds per year (95% confidence interval 0.9-36) for patients ≤ 18, and 11 (0.8-61) for adult patients. Less agreement was observed concerning estimated effective dose for secondary prophylaxis in adults: median 2000 IU every other day The majority (63%) of experts expected that a single minor joint bleed could cause irreversible damage, and would accept up to three minor joint bleeds or one trauma related joint bleed annually on prophylaxis. Expert judgement elicitation allowed structured capturing of quantitative expert estimates. It generated novel data to be used in computer modelling, clinical care, and trial design.

  15. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems

    PubMed Central

    Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R

    2006-01-01

    Background We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark

  16. The challenges of accurately estimating time of long bone injury in children.

    PubMed

    Pickett, Tracy A

    2015-07-01

    The ability to determine the time an injury occurred can be of crucial significance in forensic medicine and holds special relevance to the investigation of child abuse. However, dating paediatric long bone injury, including fractures, is nuanced by complexities specific to the paediatric population. These challenges include the ability to identify bone injury in a growing or only partially-calcified skeleton, different injury patterns seen within the spectrum of the paediatric population, the effects of bone growth on healing as a separate entity from injury, differential healing rates seen at different ages, and the relative scarcity of information regarding healing rates in children, especially the very young. The challenges posed by these factors are compounded by a lack of consistency in defining and categorizing healing parameters. This paper sets out the primary limitations of existing knowledge regarding estimating timing of paediatric bone injury. Consideration and understanding of the multitude of factors affecting bone injury and healing in children will assist those providing opinion in the medical-legal forum.

  17. Error Estimation And Accurate Mapping Based ALE Formulation For 3D Simulation Of Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Guerdoux, Simon; Fourment, Lionel

    2007-05-01

    An Arbitrary Lagrangian Eulerian (ALE) formulation is developed to simulate the different stages of the Friction Stir Welding (FSW) process with the FORGE3® F.E. software. A splitting method is utilized: a) the material velocity/pressure and temperature fields are calculated, b) the mesh velocity is derived from the domain boundary evolution and an adaptive refinement criterion provided by error estimation, c) P1 and P0 variables are remapped. Different velocity computation and remap techniques have been investigated, providing significant improvement with respect to more standard approaches. The proposed ALE formulation is applied to FSW simulation. Steady state welding, but also transient phases are simulated, showing good robustness and accuracy of the developed formulation. Friction parameters are identified for an Eulerian steady state simulation by comparison with experimental results. Void formation can be simulated. Simulations of the transient plunge and welding phases help to better understand the deposition process that occurs at the trailing edge of the probe. Flexibility and robustness of the model finally allows investigating the influence of new tooling designs on the deposition process.

  18. Revised Charge Equilibration Parameters for More Accurate Hydration Free Energies of Alkanes.

    PubMed

    Davis, Joseph E; Patel, Sandeep

    2010-01-01

    We present a refined alkane charge equilibration (CHEQ) force field, improving our previously reported CHEQ alkane force field[1] to better reproduce experimental hydration free energies. Experimental hydration free energies of ethane, propane, butane, pentane, hexane, and heptane are reproduced to within 3.6% on average. We demonstrate that explicit polarization results in a shift in molecular dipole moment for water molecules associated with the alkane molecule. We also show that our new parameters do not have a significant effect on the alkane-water interactions as measured by the radial distribution function (RDF).

  19. Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature).

    PubMed

    Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.

  20. Accurate Prediction of Severe Allergic Reactions by a Small Set of Environmental Parameters (NDVI, Temperature)

    PubMed Central

    Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106

  1. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS

    PubMed Central

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-01-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154

  2. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS.

    PubMed

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-12-04

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller.

  3. Estimation of genetic parameters for reproductive traits in Shall sheep.

    PubMed

    Amou Posht-e-Masari, Hesam; Shadparvar, Abdol Ahad; Ghavi Hossein-Zadeh, Navid; Hadi Tavatori, Mohammad Hossein

    2013-06-01

    The objective of this study was to estimate genetic parameters for reproductive traits in Shall sheep. Data included 1,316 records on reproductive performances of 395 Shall ewes from 41 sires and 136 dams which were collected from 2001 to 2007 in Shall breeding station in Qazvin province at the Northwest of Iran. Studied traits were litter size at birth (LSB), litter size at weaning (LSW), litter mean weight per lamb born (LMWLB), litter mean weight per lamb weaned (LMWLW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW). Test of significance to include fixed effects in the statistical model was performed using the general linear model procedure of SAS. The effects of lambing year and ewe age at lambing were significant (P<0.05). Genetic parameters were estimated using restricted maximum likelihood procedure, under repeatability animal models. Direct heritability estimates were 0.02, 0.01, 0.47, 0.40, 0.15, and 0.03 for LSB, LSW, LMWLB, LMWLW, TLWB, and TLWW, respectively, and corresponding repeatabilities were 0.02, 0.01, 0.73, 0.41, 0.27, and 0.03. Genetic correlation estimates between traits ranged from -0.99 for LSW-LMWLW to 0.99 for LSB-TLWB, LSW-TLWB, and LSW-TLWW. Phenotypic correlations ranged from -0.71 for LSB-LMWLW to 0.98 for LSB-TLWW and environmental correlations ranged from -0.89 for LSB-LMWLW to 0.99 for LSB-TLWW. Results showed that the highest heritability estimates were for LMWLB and LMWLW suggesting that direct selection based on these traits could be effective. Also, strong positive genetic correlations of LMWLB and LMWLW with other traits may improve meat production efficiency in Shall sheep.

  4. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    PubMed

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories.

  5. Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Ardani, S.; Kaihatu, J. M.

    2012-12-01

    Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques

  6. Bayesian or Non-Bayesian: A Comparison Study of Item Parameter Estimation in the Three-Parameter Logistic Model

    ERIC Educational Resources Information Center

    Gao, Furong; Chen, Lisue

    2005-01-01

    Through a large-scale simulation study, this article compares item parameter estimates obtained by the marginal maximum likelihood estimation (MMLE) and marginal Bayes modal estimation (MBME) procedures in the 3-parameter logistic model. The impact of different prior specifications on the MBME estimates is also investigated using carefully…

  7. Temporal Parameters Estimation for Wheelchair Propulsion Using Wearable Sensors

    PubMed Central

    Ojeda, Manoela; Ding, Dan

    2014-01-01

    Due to lower limb paralysis, individuals with spinal cord injury (SCI) rely on their upper limbs for mobility. The prevalence of upper extremity pain and injury is high among this population. We evaluated the performance of three triaxis accelerometers placed on the upper arm, wrist, and under the wheelchair, to estimate temporal parameters of wheelchair propulsion. Twenty-six participants with SCI were asked to push their wheelchair equipped with a SMARTWheel. The estimated stroke number was compared with the criterion from video observations and the estimated push frequency was compared with the criterion from the SMARTWheel. Mean absolute errors (MAE) and mean absolute percentage of error (MAPE) were calculated. Intraclass correlation coefficients and Bland-Altman plots were used to assess the agreement. Results showed reasonable accuracies especially using the accelerometer placed on the upper arm where the MAPE was 8.0% for stroke number and 12.9% for push frequency. The ICC was 0.994 for stroke number and 0.916 for push frequency. The wrist and seat accelerometer showed lower accuracy with a MAPE for the stroke number of 10.8% and 13.4% and ICC of 0.990 and 0.984, respectively. Results suggested that accelerometers could be an option for monitoring temporal parameters of wheelchair propulsion. PMID:25105133

  8. Semivariogram Estimation Using Ant Colony Optimization and Ensemble Kriging Accounting for Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    Cardiff, M. A.; Kitanidis, P. K.

    2005-12-01

    In this presentation we revisit the problem of semivariogram estimation and present a modular, reusable, and encapsulated set of MATLAB programs that use a hybrid Ant Colony Optimization (ACO) heuristic to solve the "optimal fit" problem. Though the ACO heuristic involves a stochastic component, advantages of the heuristic over traditional gradient-search methods, like the Gauss-Newton method, include the ability to estimate model semivariogram parameters accurately without initial guesses input by the user. The ACO heuristic is also superiorly suited for strongly nonlinear optimization over spaces that may contain several local minima. The presentation will focus on the application of ACO to existing weighted least squares and restricted maximum likelihood estimation methods with a comparison of results. The presentation will also discuss parameter uncertainty, particularly in the context of restricted maximum likelihood and Bayesian methods. We compare the local linearized parameter estimates (or Cramer-Rao lower bounds) with modern Monte Carlo methods, such as acceptance-rejection. Finally, we present ensemble kriging in which conditional realizations are generated in a way that uncertainty in semi-variogram parameters is fully accounted for. Results for a variety of sample problems will be presented along with a discussion of solution accuracy and computational efficiency.

  9. Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.

  10. Plasma parameter estimation from multistatic, multibeam incoherent scatter data

    NASA Astrophysics Data System (ADS)

    Virtanen, I. I.; McKay-Bukowski, D.; Vierinen, J.; Aikio, A.; Fallows, R.; Roininen, L.

    2014-12-01

    Multistatic incoherent scatter radars are superior to monostatic facilities in the sense that multistatic systems can measure plasma parameters from multiple directions in volumes limited by beam dimensions and measurement range resolution. We propose a new incoherent scatter analysis technique that uses data from all receiver beams of a multistatic, multibeam radar system and produces, in addition to the plasma parameters typically measured with monostatic radars, estimates of ion velocity vectors and ion temperature anisotropies. Because the total scattered energy collected with remote receivers of a modern multistatic, multibeam radar system may even exceed the energy collected with the core transmit-and-receive site, the remote data improve the accuracy of all plasma parameter estimates, including those that could be measured with the core site alone. We apply the new multistatic analysis method for data measured by the tristatic European Incoherent Scatter VHF radar and the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) multibeam receiver and show that a significant improvement in accuracy is obtained by adding KAIRA data in the multistatic analysis. We also demonstrate the development of a pronounced ion temperature anisotropy during high-speed ionospheric plasma flows in substorm conditions.

  11. Noise estimation from averaged diffusion weighted images: Can unbiased quantitative decay parameters assist cancer evaluation?

    PubMed Central

    Dikaios, Nikolaos; Punwani, Shonit; Hamy, Valentin; Purpura, Pierpaolo; Rice, Scott; Forster, Martin; Mendes, Ruheena; Taylor, Stuart; Atkinson, David

    2014-01-01

    Purpose Multiexponential decay parameters are estimated from diffusion-weighted-imaging that generally have inherently low signal-to-noise ratio and non-normal noise distributions, especially at high b-values. Conventional nonlinear regression algorithms assume normally distributed noise, introducing bias into the calculated decay parameters and potentially affecting their ability to classify tumors. This study aims to accurately estimate noise of averaged diffusion-weighted-imaging, to correct the noise induced bias, and to assess the effect upon cancer classification. Methods A new adaptation of the median-absolute-deviation technique in the wavelet-domain, using a closed form approximation of convolved probability-distribution-functions, is proposed to estimate noise. Nonlinear regression algorithms that account for the underlying noise (maximum probability) fit the biexponential/stretched exponential decay models to the diffusion-weighted signal. A logistic-regression model was built from the decay parameters to discriminate benign from metastatic neck lymph nodes in 40 patients. Results The adapted median-absolute-deviation method accurately predicted the noise of simulated (R2 = 0.96) and neck diffusion-weighted-imaging (averaged once or four times). Maximum probability recovers the true apparent-diffusion-coefficient of the simulated data better than nonlinear regression (up to 40%), whereas no apparent differences were found for the other decay parameters. Conclusions Perfusion-related parameters were best at cancer classification. Noise-corrected decay parameters did not significantly improve classification for the clinical data set though simulations show benefit for lower signal-to-noise ratio acquisitions. PMID:23913479

  12. Estimation of Filling and Afterload Conditions by Pump Intrinsic Parameters in a Pulsatile Total Artificial Heart.

    PubMed

    Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-07-01

    A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH.

  13. Estimating Model Parameters of Adaptive Software Systems in Real-Time

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Tantawi, Asser; Zhang, Li

    Adaptive software systems have the ability to adapt to changes in workload and execution environment. In order to perform resource management through model based control in such systems, an accurate mechanism for estimating the software system's model parameters is required. This paper deals with real-time estimation of a performance model for adaptive software systems that process multiple classes of transactional workload. First, insights in to the static performance model estimation problem are provided. Then an Extended Kalman Filter (EKF) design is combined with an open queueing network model to dynamically estimate the model parameters in real-time. Specific problems that are encountered in the case of multiple classes of workload are analyzed. These problems arise mainly due to the under-deterministic nature of the estimation problem. This motivates us to propose a modified design of the filter. Insights for choosing tuning parameters of the modified design, i.e., number of constraints and sampling intervals are provided. The modified filter design is shown to effectively tackle problems with multiple classes of workload through experiments.

  14. Aerodynamic Parameter Estimation for the X-43A (Hyper-X) from Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Derry, Stephen D.; Smith, Mark S.

    2005-01-01

    Aerodynamic parameters were estimated based on flight data from the third flight of the X-43A hypersonic research vehicle, also called Hyper-X. Maneuvers were flown using multiple orthogonal phase-optimized sweep inputs applied as simultaneous control surface perturbations at Mach 8, 7, 6, 5, 4, and 3 during the vehicle descent. Aerodynamic parameters, consisting of non-dimensional longitudinal and lateral stability and control derivatives, were estimated from flight data at each Mach number. Multi-step inputs at nearly the same flight conditions were also flown to assess the prediction capability of the identified models. Prediction errors were found to be comparable in magnitude to the modeling errors, which indicates accurate modeling. Aerodynamic parameter estimates were plotted as a function of Mach number, and compared with estimates from the pre-flight aerodynamic database, which was based on wind-tunnel tests and computational fluid dynamics. Agreement between flight estimates and values computed from the aerodynamic database was excellent overall.

  15. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].

    PubMed

    Wu, Qian; Sun, Hong; Li, Min-zan; Song, Yuan-yuan; Zhang, Yan-e

    2015-01-01

    In order to rapidly acquire maize growing information in the field, a non-destructive method of maize chlorophyll content index measurement was conducted based on multi-spectral imaging technique and imaging processing technology. The experiment was conducted at Yangling in Shaanxi province of China and the crop was Zheng-dan 958 planted in about 1 000 m X 600 m experiment field. Firstly, a 2-CCD multi-spectral image monitoring system was available to acquire the canopy images. The system was based on a dichroic prism, allowing precise separation of the visible (Blue (B), Green (G), Red (R): 400-700 nm) and near-infrared (NIR, 760-1 000 nm) band. The multispectral images were output as RGB and NIR images via the system vertically fixed to the ground with vertical distance of 2 m and angular field of 50°. SPAD index of each sample was'measured synchronously to show the chlorophyll content index. Secondly, after the image smoothing using adaptive smooth filtering algorithm, the NIR maize image was selected to segment the maize leaves from background, because there was a big difference showed in gray histogram between plant and soil background. The NIR image segmentation algorithm was conducted following steps of preliminary and accuracy segmentation: (1) The results of OTSU image segmentation method and the variable threshold algorithm were discussed. It was revealed that the latter was better one in corn plant and weed segmentation. As a result, the variable threshold algorithm based on local statistics was selected for the preliminary image segmentation. The expansion and corrosion were used to optimize the segmented image. (2) The region labeling algorithm was used to segment corn plants from soil and weed background with an accuracy of 95. 59 %. And then, the multi-spectral image of maize canopy was accurately segmented in R, G and B band separately. Thirdly, the image parameters were abstracted based on the segmented visible and NIR images. The average gray

  16. Accurate structure and dynamics of the metal-site of paramagnetic metalloproteins from NMR parameters using natural bond orbitals.

    PubMed

    Hansen, D Flemming; Westler, William M; Kunze, Micha B A; Markley, John L; Weinhold, Frank; Led, Jens J

    2012-03-14

    A natural bond orbital (NBO) analysis of unpaired electron spin density in metalloproteins is presented, which allows a fast and robust calculation of paramagnetic NMR parameters. Approximately 90% of the unpaired electron spin density occupies metal-ligand NBOs, allowing the majority of the density to be modeled by only a few NBOs that reflect the chemical bonding environment. We show that the paramagnetic relaxation rate of protons can be calculated accurately using only the metal-ligand NBOs and that these rates are in good agreement with corresponding rates measured experimentally. This holds, in particular, for protons of ligand residues where the point-dipole approximation breaks down. To describe the paramagnetic relaxation of heavy nuclei, also the electron spin density in the local orbitals must be taken into account. Geometric distance restraints for (15)N can be derived from the paramagnetic relaxation enhancement and the Fermi contact shift when local NBOs are included in the analysis. Thus, the NBO approach allows us to include experimental paramagnetic NMR parameters of (15)N nuclei as restraints in a structure optimization protocol. We performed a molecular dynamics simulation and structure determination of oxidized rubredoxin using the experimentally obtained paramagnetic NMR parameters of (15)N. The corresponding structures obtained are in good agreement with the crystal structure of rubredoxin. Thus, the NBO approach allows an accurate description of the geometric structure and the dynamics of metalloproteins, when NMR parameters are available of nuclei in the immediate vicinity of the metal-site.

  17. Improvement of electrical blood hematocrit measurements under various plasma conditions using a novel hematocrit estimation parameter.

    PubMed

    Kim, Myounggon; Kim, Ayoung; Kim, Sohee; Yang, Sung

    2012-05-15

    This paper presents an electrical method for measurement of Hematocrit (HCT) using a novel HCT estimation parameter. Particularly in the case of electrical HCT measurements, the measurement error generally increases with changes in the electrical conditions of the plasma such as conductivity and osmolality. This is because the electrical properties of blood are a function not only of HCT, but also of the electrical conditions in the plasma. In an attempt to reduce the measurement errors, we herein propose a novel HCT estimation parameter reflecting the characteristics of both the changes in volume of red blood cells (RBCs) and electrical conditions of plasma, simultaneously. In order to characterize the proposed methods under various electrical conditions of plasma, we prepared twelve blood samples such as four kinds of plasma conditions (hypotonic, isotonic, two kinds of hypertonic conditions) at three different HCT levels. Using linear regression analysis, we confirmed that the proposed parameter was highly correlated with reference HCT (HCT(ref.)) values measured by microcentrifugation. Thus, the HCT measurement error was less than 4%, despite considerable variations in the conductivity and osmolality of the plasma at conditions of the HCT(ref.) of 20%. Multiple linear regression analysis showed that the proposed HCT estimation parameter also yielded a lower measurement error (1%) than the other parameter previously used for the same purpose. Thus, these preliminary results suggest that proposed method could be used for accurate, fast, easy, and reproducible HCT measurements in medical procedures.

  18. Application of a virtual coordinate measuring machine for measurement uncertainty estimation of aspherical lens parameters

    NASA Astrophysics Data System (ADS)

    Küng, Alain; Meli, Felix; Nicolet, Anaïs; Thalmann, Rudolf

    2014-09-01

    Tactile ultra-precise coordinate measuring machines (CMMs) are very attractive for accurately measuring optical components with high slopes, such as aspheres. The METAS µ-CMM, which exhibits a single point measurement repeatability of a few nanometres, is routinely used for measurement services of microparts, including optical lenses. However, estimating the measurement uncertainty is very demanding. Because of the many combined influencing factors, an analytic determination of the uncertainty of parameters that are obtained by numerical fitting of the measured surface points is almost impossible. The application of numerical simulation (Monte Carlo methods) using a parametric fitting algorithm coupled with a virtual CMM based on a realistic model of the machine errors offers an ideal solution to this complex problem: to each measurement data point, a simulated measurement variation calculated from the numerical model of the METAS µ-CMM is added. Repeated several hundred times, these virtual measurements deliver the statistical data for calculating the probability density function, and thus the measurement uncertainty for each parameter. Additionally, the eventual cross-correlation between parameters can be analyzed. This method can be applied for the calibration and uncertainty estimation of any parameter of the equation representing a geometric element. In this article, we present the numerical simulation model of the METAS µ-CMM and the application of a Monte Carlo method for the uncertainty estimation of measured asphere parameters.

  19. Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control

    NASA Astrophysics Data System (ADS)

    Eshak, Peter B.

    Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to

  20. Estimating Regression Parameters in an Extended Proportional Odds Model

    PubMed Central

    Chen, Ying Qing; Hu, Nan; Cheng, Su-Chun; Musoke, Philippa; Zhao, Lue Ping

    2012-01-01

    The proportional odds model may serve as a useful alternative to the Cox proportional hazards model to study association between covariates and their survival functions in medical studies. In this article, we study an extended proportional odds model that incorporates the so-called “external” time-varying covariates. In the extended model, regression parameters have a direct interpretation of comparing survival functions, without specifying the baseline survival odds function. Semiparametric and maximum likelihood estimation procedures are proposed to estimate the extended model. Our methods are demonstrated by Monte-Carlo simulations, and applied to a landmark randomized clinical trial of a short course Nevirapine (NVP) for mother-to-child transmission (MTCT) of human immunodeficiency virus type-1 (HIV-1). Additional application includes analysis of the well-known Veterans Administration (VA) Lung Cancer Trial. PMID:22904583

  1. Estimation of Aircraft Nonlinear Unsteady Parameters From Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    Aerodynamic equations were formulated for an aircraft in one-degree-of-freedom large amplitude motion about each of its body axes. The model formulation based on indicial functions separated the resulting aerodynamic forces and moments into static terms, purely rotary terms and unsteady terms. Model identification from experimental data combined stepwise regression and maximum likelihood estimation in a two-stage optimization algorithm that can identify the unsteady term and rotary term if necessary. The identification scheme was applied to oscillatory data in two examples. The model identified from experimental data fit the data well, however, some parameters were estimated with limited accuracy. The resulting model was a good predictor for oscillatory and ramp input data.

  2. Characteristics of aquifer hydraulic parameters estimated by PEST using MODFLOW for the Kurobe River Alluvial fan, Japan

    NASA Astrophysics Data System (ADS)

    Tebakari, Taichi; Kita, Ryuhei

    2014-05-01

    The purpose of this study is to improve precision of three dimensional unsteady groundwater flow model using MODFLOW for the Kurobe River alluvial fan, Japan. Groundwater hydraulic parameters (hydraulic conductivity; kx, ky, kz, specific storage;ss and specific yield; sy) were estimated using PEST (Parameter ESTimation) and studied the characteristics of estimated parameters. Hydraulic conductivities (kz) were estimated using 346 observation well data. As a result, maximum hydraulic conductivity was 2.02 cm/s, minimum was 2.24×10-5 cm/s, average was 4.90×10-2 cm/s. As a result of numerical simulation, kz was estimated almost same as observation data. In order to quantitatively and accurately estimate hydraulic conductivity, uniformly location of observation wells was needed.

  3. Linearly Supporting Feature Extraction for Automated Estimation of Stellar Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Li, Xiangru; Lu, Yu; Comte, Georges; Luo, Ali; Zhao, Yongheng; Wang, Yongjun

    2015-05-01

    We describe a scheme to extract linearly supporting (LSU) features from stellar spectra to automatically estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H]. “Linearly supporting” means that the atmospheric parameters can be accurately estimated from the extracted features through a linear model. The successive steps of the process are as follow: first, decompose the spectrum using a wavelet packet (WP) and represent it by the derived decomposition coefficients; second, detect representative spectral features from the decomposition coefficients using the proposed method Least Absolute Shrinkage and Selection Operator (LARS)bs; third, estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H] from the detected features using a linear regression method. One prominent characteristic of this scheme is its ability to evaluate quantitatively the contribution of each detected feature to the atmospheric parameter estimate and also to trace back the physical significance of that feature. This work also shows that the usefulness of a component depends on both the wavelength and frequency. The proposed scheme has been evaluated on both real spectra from the Sloan Digital Sky Survey (SDSS)/SEGUE and synthetic spectra calculated from Kurucz's NEWODF models. On real spectra, we extracted 23 features to estimate {{T}{\\tt{eff} }}, 62 features for log g, and 68 features for [Fe/H]. Test consistencies between our estimates and those provided by the Spectroscopic Parameter Pipeline of SDSS show that the mean absolute errors (MAEs) are 0.0062 dex for log {{T}{\\tt{eff} }} (83 K for {{T}{\\tt{eff} }}), 0.2345 dex for log g, and 0.1564 dex for [Fe/H]. For the synthetic spectra, the MAE test accuracies are 0.0022 dex for log {{T}{\\tt{eff} }} (32 K for {{T}{\\tt{eff} }}), 0.0337 dex for log g, and 0.0268 dex for [Fe/H].

  4. Key parameters for precise lateral displacement estimation in ultrasound elastography.

    PubMed

    Luo, Jianwen; Konofagou, Elisa E

    2009-01-01

    Complementary to axial, lateral and elevational displacement and strain can provide important information on the mechanical properties of biological soft tissues. In this paper, the effects of key parameters on the lateral displacement estimation were investigated in simulations and validated in phantom experiments. The performance of the lateral estimator was evaluated by measuring its associated bias, and jitter (i.e., standard deviation). Simulation results showed that the bias and jitter undergo periodic variations depending on the lateral displacement, with a period equal to the pitch (i.e., adjacent element distance). The performance of the lateral estimation was improved, when a smaller pitch, or a larger beamwidth, was used. The effects of the pitch were found to be greater than those of the beamwidth. The results of the phantom experiments were shown in good agreement with the simulation findings, including the periodic variation of the performance with lateral displacement, effects of pitch and beamwidth. In conclusion, smaller pitches and wider beamwidths were found to be key in reducing the jitter error in the lateral displacement estimation. The same results also hold for tracking in the elevational direction.

  5. Error estimation and adaptivity for transport problems with uncertain parameters

    NASA Astrophysics Data System (ADS)

    Sahni, Onkar; Li, Jason; Oberai, Assad

    2016-11-01

    Stochastic partial differential equations (PDEs) with uncertain parameters and source terms arise in many transport problems. In this study, we develop and apply an adaptive approach based on the variational multiscale (VMS) formulation for discretizing stochastic PDEs. In this approach we employ finite elements in the physical domain and generalize polynomial chaos based spectral basis in the stochastic domain. We demonstrate our approach on non-trivial transport problems where the uncertain parameters are such that the advective and diffusive regimes are spanned in the stochastic domain. We show that the proposed method is effective as a local error estimator in quantifying the element-wise error and in driving adaptivity in the physical and stochastic domains. We will also indicate how this approach may be extended to the Navier-Stokes equations. NSF Award 1350454 (CAREER).

  6. Acoustical estimation of parameters of porous road pavement

    NASA Astrophysics Data System (ADS)

    Valyaev, V. Yu.; Shanin, A. V.

    2012-11-01

    In the simplest case, porous road pavement of a known thickness is described by such parameters as porosity, tortuosity, and flow resistance. The problem of estimating these parameters is investigated in this paper. An acoustic signal reflected by the pavement is used for this. It is shown that this problem can be solved by an experiment conducted in the time domain (i.e., the pulse response of the media is recorded). The incident sound wave is thrown at a grazing angle to the surface between the pavement and the air to improve penetration into the porous medium. The procedure of computing of the pulse response using the Morse-Ingard model is described in detail.

  7. Spherical Harmonics Functions Modelling of Meteorological Parameters in PWV Estimation

    NASA Astrophysics Data System (ADS)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2016-08-01

    Aim of this study is to derive temperature, pressure and humidity observations using spherical harmonics modelling and to interpolate for the derivation of precipitable water vapor (PWV) of TUSAGA-Active stations in the test area encompassing 38.0°-42.0° northern latitudes and 28.0°-34.0° eastern longitudes of Turkey. In conclusion, the meteorological parameters computed by using GNSS observations for the study area have been modelled with a precision of ±1.74 K in temperature, ±0.95 hPa in pressure and ±14.88 % in humidity. Considering studies on the interpolation of meteorological parameters, the precision of temperature and pressure models provide adequate solutions. This study funded by the Scientific and Technological Research Council of Turkey (TUBITAK) (The Estimation of Atmospheric Water Vapour with GPS Project, Project No: 112Y350).

  8. Earth-moon system: Dynamics and parameter estimation

    NASA Technical Reports Server (NTRS)

    Breedlove, W. J., Jr.

    1975-01-01

    A theoretical development of the equations of motion governing the earth-moon system is presented. The earth and moon were treated as finite rigid bodies and a mutual potential was utilized. The sun and remaining planets were treated as particles. Relativistic, non-rigid, and dissipative effects were not included. The translational and rotational motion of the earth and moon were derived in a fully coupled set of equations. Euler parameters were used to model the rotational motions. The mathematical model is intended for use with data analysis software to estimate physical parameters of the earth-moon system using primarily LURE type data. Two program listings are included. Program ANEAMO computes the translational/rotational motion of the earth and moon from analytical solutions. Program RIGEM numerically integrates the fully coupled motions as described above.

  9. Estimation of Modal Parameters Using a Wavelet-Based Approach

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty; Haley, Sidney M.

    1997-01-01

    Modal stability parameters are extracted directly from aeroservoelastic flight test data by decomposition of accelerometer response signals into time-frequency atoms. Logarithmic sweeps and sinusoidal pulses are used to generate DAST closed loop excitation data. Novel wavelets constructed to extract modal damping and frequency explicitly from the data are introduced. The so-called Haley and Laplace wavelets are used to track time-varying modal damping and frequency in a matching pursuit algorithm. Estimation of the trend to aeroservoelastic instability is demonstrated successfully from analysis of the DAST data.

  10. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches.

    PubMed

    Bérénos, Camillo; Ellis, Philip A; Pilkington, Jill G; Pemberton, Josephine M

    2014-07-01

    The estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long-term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation-derived maternal links and microsatellite-derived paternal links; (ii) Pedigree 2, using SNP-derived assignment of both maternity and paternity; and (iii) whole-genome relatedness at 37 037 autosomal SNPs. In initial analyses, heritability estimates were strikingly similar for all three methods, while standard errors were systematically lower in analyses based on Pedigree 2 and genomic relatedness. Genetic correlations were generally strong, differed little between the three estimates of relatedness and the standard errors declined only very slightly with improved relatedness information. When partitioning maternal effects into separate genetic and environmental components, maternal genetic effects found in juvenile traits increased substantially across the three relatedness estimates. Heritability declined compared to parallel models where only a maternal environment effect was fitted, suggesting that maternal genetic effects are confounded with direct genetic effects and that more accurate estimates of relatedness were better able to separate maternal genetic effects from direct genetic effects. We found that the heritability captured by SNP markers asymptoted at about half the SNPs available, suggesting that denser marker panels are not necessarily required for precise and unbiased heritability estimates. Finally, we present guidelines for the use of genomic relatedness in future quantitative genetics

  11. A Modified Rodrigues Parameter-based Nonlinear Observer Design for Spacecraft Gyroscope Parameters Estimation

    NASA Astrophysics Data System (ADS)

    Yong, Kilyuk; Jo, Sujang; Bang, Hyochoong

    This paper presents a modified Rodrigues parameter (MRP)-based nonlinear observer design to estimate bias, scale factor and misalignment of gyroscope measurements. A Lyapunov stability analysis is carried out for the nonlinear observer. Simulation is performed and results are presented illustrating the performance of the proposed nonlinear observer under the condition of persistent excitation maneuver. In addition, a comparison between the nonlinear observer and alignment Kalman filter (AKF) is made to highlight favorable features of the nonlinear observer.

  12. Estimating canopy fuel parameters for Atlantic Coastal Plain forest types.

    SciTech Connect

    Parresol, Bernard, R.

    2007-01-15

    Abstract It is necessary to quantify forest canopy characteristics to assess crown fire hazard, prioritize treatment areas, and design treatments to reduce crown fire potential. A number of fire behavior models such as FARSITE, FIRETEC, and NEXUS require as input four particular canopy fuel parameters: 1) canopy cover, 2) stand height, 3) crown base height, and 4) canopy bulk density. These canopy characteristics must be mapped across the landscape at high spatial resolution to accurately simulate crown fire. Currently no models exist to forecast these four canopy parameters for forests of the Atlantic Coastal Plain, a region that supports millions of acres of loblolly, longleaf, and slash pine forests as well as pine-broadleaf forests and mixed species broadleaf forests. Many forest cover types are recognized, too many to efficiently model. For expediency, forests of the Savannah River Site are categorized as belonging to 1 of 7 broad forest type groups, based on composition: 1) loblolly pine, 2) longleaf pine, 3) slash pine, 4) pine-hardwood, 5) hardwood-pine, 6) hardwoods, and 7) cypress-tupelo. These 7 broad forest types typify forests of the Atlantic Coastal Plain region, from Maryland to Florida.

  13. Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Moaveni, Babak

    2016-07-01

    This paper presents a Hierarchical Bayesian model updating framework to account for the effects of ambient temperature and excitation amplitude. The proposed approach is applied for model calibration, response prediction and damage identification of a footbridge under changing environmental/ambient conditions. The concrete Young's modulus of the footbridge deck is the considered updating structural parameter with its mean and variance modeled as functions of temperature and excitation amplitude. The identified modal parameters over 27 months of continuous monitoring of the footbridge are used to calibrate the updating parameters. One of the objectives of this study is to show that by increasing the levels of information in the updating process, the posterior variation of the updating structural parameter (concrete Young's modulus) is reduced. To this end, the calibration is performed at three information levels using (1) the identified modal parameters, (2) modal parameters and ambient temperatures, and (3) modal parameters, ambient temperatures, and excitation amplitudes. The calibrated model is then validated by comparing the model-predicted natural frequencies and those identified from measured data after deliberate change to the structural mass. It is shown that accounting for modeling error uncertainties is crucial for reliable response prediction, and accounting only the estimated variability of the updating structural parameter is not sufficient for accurate response predictions. Finally, the calibrated model is used for damage identification of the footbridge.

  14. Novel method for incorporating model uncertainties into gravitational wave parameter estimates.

    PubMed

    Moore, Christopher J; Gair, Jonathan R

    2014-12-19

    Posterior distributions on parameters computed from experimental data using Bayesian techniques are only as accurate as the models used to construct them. In many applications, these models are incomplete, which both reduces the prospects of detection and leads to a systematic error in the parameter estimates. In the analysis of data from gravitational wave detectors, for example, accurate waveform templates can be computed using numerical methods, but the prohibitive cost of these simulations means this can only be done for a small handful of parameters. In this Letter, a novel method to fold model uncertainties into data analysis is proposed; the waveform uncertainty is analytically marginalized over using with a prior distribution constructed by using Gaussian process regression to interpolate the waveform difference from a small training set of accurate templates. The method is well motivated, easy to implement, and no more computationally expensive than standard techniques. The new method is shown to perform extremely well when applied to a toy problem. While we use the application to gravitational wave data analysis to motivate and illustrate the technique, it can be applied in any context where model uncertainties exist.

  15. Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance

    PubMed Central

    Beibei, Zhou; Quanjiu, Wang; Shuai, Tan

    2014-01-01

    A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664

  16. Surrogate models of precessing numerical relativity gravitational waveforms for use in parameter estimation

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Field, Scott; Galley, Chad; Hemberger, Daniel; Scheel, Mark; Schmidt, Patricia; Smith, Rory; SXS Collaboration Collaboration

    2016-03-01

    We are now in the advanced detector era of gravitational wave astronomy, and the merger of two black holes (BHs) is one of the most promising sources of gravitational waves that could be detected on earth. To infer the BH masses and spins, the observed signal must be compared to waveforms predicted by general relativity for millions of binary configurations. Numerical relativity (NR) simulations can produce accurate waveforms, but are prohibitively expensive to use for parameter estimation. Other waveform models are fast enough but may lack accuracy in portions of the parameter space. Numerical relativity surrogate models attempt to rapidly predict the results of a NR code with a small or negligible modeling error, after being trained on a set of input waveforms. Such surrogate models are ideal for parameter estimation, as they are both fast and accurate, and have already been built for the case of non-spinning BHs. Using 250 input waveforms, we build a surrogate model for waveforms from the Spectral Einstein Code (SpEC) for a subspace of precessing systems.

  17. A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol.

    PubMed

    Gast, P; Mance, D; Zurlo, E; Ivanov, K L; Baldus, M; Huber, M

    2017-02-01

    To understand the dynamic nuclear polarization (DNP) enhancements of biradical polarizing agents, the magnetic resonance parameters need to be known. We describe a tailored EPR approach to accurately determine electron spin-spin coupling parameters using a combination of standard (9 GHz), high (95 GHz) and ultra-high (275 GHz) frequency EPR. Comparing liquid- and frozen-solution continuous-wave EPR spectra provides accurate anisotropic dipolar interaction D and isotropic exchange interaction J parameters of the DNP biradical AMUPol. We found that D was larger by as much as 30% compared to earlier estimates, and that J is 43 MHz, whereas before it was considered to be negligible. With the refined data, quantum mechanical calculations confirm that an increase in dipolar electron-electron couplings leads to higher cross-effect DNP efficiencies. Moreover, the DNP calculations qualitatively reproduce the difference of TOTAPOL and AMUPol DNP efficiencies found experimentally and suggest that AMUPol is particularly effective in improving the DNP efficiency at magnetic fields higher than 500 MHz. The multi-frequency EPR approach will aid in predicting the optimal structures for future DNP agents.

  18. Estimates of genetic parameters for growth traits in Kermani sheep.

    PubMed

    Bahreini Behzadi, M R; Shahroudi, F E; Van Vleck, L D

    2007-10-01

    Birth weight (BW), weaning weight (WW), 6-month weight (W6), 9-month weight (W9) and yearling weight (YW) of Kermani lambs were used to estimate genetic parameters. The data were collected from Shahrbabak Sheep Breeding Research Station in Iran during the period of 1993-1998. The fixed effects in the model were lambing year, sex, type of birth and age of dam. Number of days between birth date and the date of obtaining measurement of each record was used as a covariate. Estimates of (co)variance components and genetic parameters were obtained by restricted maximum likelihood, using single and two-trait animal models. Based on the most appropriate fitted model, direct and maternal heritabilities of BW, WW, W6, W9 and YW were estimated to be 0.10 +/- 0.06 and 0.27 +/- 0.04, 0.22 +/- 0.09 and 0.19 +/- 0.05, 0.09 +/- 0.06 and 0.25 +/- 0.04, 0.13 +/- 0.08 and 0.18 +/- 0.05, and 0.14 +/- 0.08 and 0.14 +/- 0.06 respectively. Direct and maternal genetic correlations between the lamb weights varied between 0.66 and 0.99, and 0.11 and 0.99. The results showed that the maternal influence on lamb weights decreased with age at measurement. Ignoring maternal effects in the model caused overestimation of direct heritability. Maternal effects are significant sources of variation for growth traits and ignoring maternal effects in the model would cause inaccurate genetic evaluation of lambs.

  19. Unbiased simultaneous estimation of soil hydraulic properties and dynamic nonequilibrium parameters from transient outflow experiments

    NASA Astrophysics Data System (ADS)

    Iden, S. C.; Diamantopoulos, E.; Durner, W.

    2012-04-01

    Simulation of variably saturated water flow in soils requires accurate knowledge of soil hydraulic properties. Transient flow experiments like the multistep outflow and evaporation methods are now routinely applied to determine soil hydraulic parameters by inverse modelling. Recent experimental evidence suggests that the water content dynamics during such flow experiments is subject to dynamic non-equilibrium. The extent to which this affects the accuracy of determining the equilibrium soil hydraulic properties is still unknown. Conversely, any bias in the equilibrium soil hydraulic properties caused by an inappropriate parameterization must be expected to lead to biased estimates of the parameters describing the hydraulic non-equilibrium. We coupled a dual porosity non-equilibrium model which combines the Richards equation and the Ross and Smettem approach for non-equilibrium with a free-form inversion algorithm. The free-form method has been shown before to guarantee an unbiased estimation of soil hydraulic properties. The freeform non-equilibrium estimation method was applied to data from various multistep outflow experiments. The results confirm that errors in the parameterization of the soil hydraulic properties cause biased estimates of non-equilibrium parameters. Such bias can be minimized or even eliminated with the free-form approach.

  20. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  1. Learn-as-you-go acceleration of cosmological parameter estimates

    SciTech Connect

    Aslanyan, Grigor; Easther, Richard; Price, Layne C. E-mail: r.easther@auckland.ac.nz

    2015-09-01

    Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly.

  2. Children Can Accurately Monitor and Control Their Number-Line Estimation Performance

    ERIC Educational Resources Information Center

    Wall, Jenna L.; Thompson, Clarissa A.; Dunlosky, John; Merriman, William E.

    2016-01-01

    Accurate monitoring and control are essential for effective self-regulated learning. These metacognitive abilities may be particularly important for developing math skills, such as when children are deciding whether a math task is difficult or whether they made a mistake on a particular item. The present experiments investigate children's ability…

  3. Bi-fluorescence imaging for estimating accurately the nuclear condition of Rhizoctonia spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To simplify the determination of the nuclear condition of the pathogenic Rhizoctonia, which currently needs to be performed either using two fluorescent dyes, thus is more costly and time-consuming, or using only one fluorescent dye, and thus less accurate. Methods and Results: A red primary ...

  4. Automatic parameter estimation for atmospheric turbulence mitigation techniques

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron; Kelmelis, Eric

    2015-05-01

    Several image processing techniques for turbulence mitigation have been shown to be effective under a wide range of long-range capture conditions; however, complex, dynamic scenes have often required manual interaction with the algorithm's underlying parameters to achieve optimal results. While this level of interaction is sustainable in some workflows, in-field determination of ideal processing parameters greatly diminishes usefulness for many operators. Additionally, some use cases, such as those that rely on unmanned collection, lack human-in-the-loop usage. To address this shortcoming, we have extended a well-known turbulence mitigation algorithm based on bispectral averaging with a number of techniques to greatly reduce (and often eliminate) the need for operator interaction. Automations were made in the areas of turbulence strength estimation (Fried's parameter), as well as the determination of optimal local averaging windows to balance turbulence mitigation and the preservation of dynamic scene content (non-turbulent motions). These modifications deliver a level of enhancement quality that approaches that of manual interaction, without the need for operator interaction. As a consequence, the range of operational scenarios where this technology is of benefit has been significantly expanded.

  5. Estimating negative binomial parameters from occurrence data with detection times.

    PubMed

    Hwang, Wen-Han; Huggins, Richard; Stoklosa, Jakub

    2016-11-01

    The negative binomial distribution is a common model for the analysis of count data in biology and ecology. In many applications, we may not observe the complete frequency count in a quadrat but only that a species occurred in the quadrat. If only occurrence data are available then the two parameters of the negative binomial distribution, the aggregation index and the mean, are not identifiable. This can be overcome by data augmentation or through modeling the dependence between quadrat occupancies. Here, we propose to record the (first) detection time while collecting occurrence data in a quadrat. We show that under what we call proportionate sampling, where the time to survey a region is proportional to the area of the region, that both negative binomial parameters are estimable. When the mean parameter is larger than two, our proposed approach is more efficient than the data augmentation method developed by Solow and Smith (, Am. Nat. 176, 96-98), and in general is cheaper to conduct. We also investigate the effect of misidentification when collecting negative binomially distributed data, and conclude that, in general, the effect can be simply adjusted for provided that the mean and variance of misidentification probabilities are known. The results are demonstrated in a simulation study and illustrated in several real examples.

  6. Thermodynamic criteria for estimating the kinetic parameters of catalytic reactions

    NASA Astrophysics Data System (ADS)

    Mitrichev, I. I.; Zhensa, A. V.; Kol'tsova, E. M.

    2017-01-01

    Kinetic parameters are estimated using two criteria in addition to the traditional criterion that considers the consistency between experimental and modeled conversion data: thermodynamic consistency and the consistency with entropy production (i.e., the absolute rate of the change in entropy due to exchange with the environment is consistent with the rate of entropy production in the steady state). A special procedure is developed and executed on a computer to achieve the thermodynamic consistency of a set of kinetic parameters with respect to both the standard entropy of a reaction and the standard enthalpy of a reaction. A problem of multi-criterion optimization, reduced to a single-criterion problem by summing weighted values of the three criteria listed above, is solved. Using the reaction of NO reduction with CO on a platinum catalyst as an example, it is shown that the set of parameters proposed by D.B. Mantri and P. Aghalayam gives much worse agreement with experimental values than the set obtained on the basis of three criteria: the sum of the squares of deviations for conversion, the thermodynamic consistency, and the consistency with entropy production.

  7. Estimation of the poroelastic parameters of cortical bone.

    PubMed

    Smit, Theo H; Huyghe, Jacques M; Cowin, Stephen C

    2002-06-01

    Cortical bone has two systems of interconnected channels. The largest of these is the vascular porosity consisting of Haversian and Volkmann's canals, with a diameter of about 50 microm, which contains a.o. blood vessels and nerves. The smaller is the system consisting of the canaliculi and lacunae: the canaliculi are at the submicron level and house the protrusions of the osteocytes. When bone is differentially loaded, fluids within the solid matrix sustain a pressure gradient that drives a flow. It is generally assumed that the flow of extracellular fluid around osteocytes plays an important role not only in the nutrition of these cells, but also in the bone's mechanosensory system. The interaction between the deformation of the bone matrix and the flow of fluid can be modelled using Biot's theory of poroelasticity. However, due to the inhomogeneity of the bone matrix and the scale of the porosities, it is not possible to experimentally determine all the parameters that are needed for numerical implementation. The purpose of this paper is to derive these parameters using composite modelling and experimental data from literature. A full set of constants is estimated for a linear isotropic description of cortical bone as a two-level porous medium. Bone, however, has a wide variety of mechanical and structural properties; with the theoretical relationships described in this note, poroelastic parameters can be derived for other bone types using their specific experimental data sets.

  8. Estimating the gas transfer velocity: a prerequisite for more accurate and higher resolution GHG fluxes (lower Aare River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Sollberger, S.; Perez, K.; Schubert, C. J.; Eugster, W.; Wehrli, B.; Del Sontro, T.

    2013-12-01

    Currently, carbon dioxide (CO2) and methane (CH4) emissions from lakes, reservoirs and rivers are readily investigated due to the global warming potential of those gases and the role these inland waters play in the carbon cycle. However, there is a lack of high spatiotemporally-resolved emission estimates, and how to accurately assess the gas transfer velocity (K) remains controversial. In anthropogenically-impacted systems where run-of-river reservoirs disrupt the flow of sediments by increasing the erosion and load accumulation patterns, the resulting production of carbonic greenhouse gases (GH-C) is likely to be enhanced. The GH-C flux is thus counteracting the terrestrial carbon sink in these environments that act as net carbon emitters. The aim of this project was to determine the GH-C emissions from a medium-sized river heavily impacted by several impoundments and channelization through a densely-populated region of Switzerland. Estimating gas emission from rivers is not trivial and recently several models have been put forth to do so; therefore a second goal of this project was to compare the river emission models available with direct measurements. Finally, we further validated the modeled fluxes by using a combined approach with water sampling, chamber measurements, and highly temporal GH-C monitoring using an equilibrator. We conducted monthly surveys along the 120 km of the lower Aare River where we sampled for dissolved CH4 (';manual' sampling) at a 5-km sampling resolution, and measured gas emissions directly with chambers over a 35 km section. We calculated fluxes (F) via the boundary layer equation (F=K×(Cw-Ceq)) that uses the water-air GH-C concentration (C) gradient (Cw-Ceq) and K, which is the most sensitive parameter. K was estimated using 11 different models found in the literature with varying dependencies on: river hydrology (n=7), wind (2), heat exchange (1), and river width (1). We found that chamber fluxes were always higher than boundary

  9. Excitations for Rapidly Estimating Flight-Control Parameters

    NASA Technical Reports Server (NTRS)

    Moes, Tim; Smith, Mark; Morelli, Gene

    2006-01-01

    A flight test on an F-15 airplane was performed to evaluate the utility of prescribed simultaneous independent surface excitations (PreSISE) for real-time estimation of flight-control parameters, including stability and control derivatives. The ability to extract these derivatives in nearly real time is needed to support flight demonstration of intelligent flight-control system (IFCS) concepts under development at NASA, in academia, and in industry. Traditionally, flight maneuvers have been designed and executed to obtain estimates of stability and control derivatives by use of a post-flight analysis technique. For an IFCS, it is required to be able to modify control laws in real time for an aircraft that has been damaged in flight (because of combat, weather, or a system failure). The flight test included PreSISE maneuvers, during which all desired control surfaces are excited simultaneously, but at different frequencies, resulting in aircraft motions about all coordinate axes. The objectives of the test were to obtain data for post-flight analysis and to perform the analysis to determine: 1) The accuracy of derivatives estimated by use of PreSISE, 2) The required durations of PreSISE inputs, and 3) The minimum required magnitudes of PreSISE inputs. The PreSISE inputs in the flight test consisted of stacked sine-wave excitations at various frequencies, including symmetric and differential excitations of canard and stabilator control surfaces and excitations of aileron and rudder control surfaces of a highly modified F-15 airplane. Small, medium, and large excitations were tested in 15-second maneuvers at subsonic, transonic, and supersonic speeds. Typical excitations are shown in Figure 1. Flight-test data were analyzed by use of pEst, which is an industry-standard output-error technique developed by Dryden Flight Research Center. Data were also analyzed by use of Fourier-transform regression (FTR), which was developed for onboard, real-time estimation of the

  10. Cosmological parameter constraints via Gibbs sampling and the Blackwell-Rao estimator

    NASA Astrophysics Data System (ADS)

    Chu, I.-Wen Mike

    We study the Blackwell-Rao (BR) estimator of the probability distribution of the angular power spectrum, P ( C [cursive l] | d ), generated via Gibbs sampling of the Cosmic Microwave Background (CMB) data. From simulated samples of full-sky no-noise CMB maps, we find the estimator to be very fast and also highly accurate. We also find that the number of samples required for convergence of the BR estimate rises rapidly with increasing [cursive l], at least at low [cursive l]. Our existing sample chains as applied to the Wilkinson Microwave Anistropy Probe (WMAP) data are only long enough to achieve convergence at [cursive l] [Special characters omitted.] 40. In comparison with P ( C [cursive l] | d ) as reported by the WMAP team we find significant differences at these low [cursive l] values. These differences lead to up to ~ 0.5 s shifts in the estimates of parameters in a 7-parameter LCDM model with non-zero d n s /d ln k , the running in the spectral index. Fixing d n s /dln k = 0 makes these shifts much less significant. Unlike existing analytic approximations, the BR estimator can be straightforwardly extended for the case of power spectra from correlated fields, such as temperature and polarization. We discuss challenges to extending the procedure to higher [cursive l] and provide some solutions.

  11. Estimation of distributional parameters for censored trace level water quality data. 1. Estimation techniques

    USGS Publications Warehouse

    Gilliom, R.J.; Helsel, D.R.

    1986-01-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations, for determining the best performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores.

  12. Ensemble data assimilation for ocean biogeochemical state and parameter estimation at different sites

    NASA Astrophysics Data System (ADS)

    Gharamti, M. E.; Tjiputra, J.; Bethke, I.; Samuelsen, A.; Skjelvan, I.; Bentsen, M.; Bertino, L.

    2017-04-01

    We develop an efficient data assimilation system that aims at quantifying the uncertainties of various biogeochemical states and parameters. We explore the use of four different ensemble estimation techniques for tuning poorly constrained ecosystem parameters using a one-dimensional configuration of the Ocean Biogeochemical General Circulation Model. The schemes are all EnKF-based operating sequentially in time but have different correction equations. The 1D model is used to simulate the biogeochemical cycle at three different stations in mid and high latitudes. We assimilate monthly climatological profiles of nitrate, silicate, phosphate and oxygen in addition to seasonal surface pCO2 data, between 2006 and 2010. We use the data to optimize eleven ecosystem parameters in addition to all state variables of the model, describing the dynamical processes of the water column. Our assimilation results suggest the following: (1) Among all tested schemes, the one-step-ahead smoothing-based ensemble Kalman filter (OSA-EnKF) is robust and the most accurate, providing consistent and reliable state-parameter ensemble realizations. (2) Given the large uncertainties associated with the ecosystem parameters, estimating only the state variables is generally inconclusive and biased. (3) The OSA-EnKF successfully recovers the observed seasonal variability of the ecosystem dynamics at all stations and helps optimizing the parameters, eventually reducing the prediction errors of the nutrients' concentrations. (4) The estimates of the parameters may have some temporally correlated features and they can also vary spatially between different regions depending on the magnitude of the bias in the observed variables and other factors such as the intensity of the bloom period. We further show that the presented assimilation system has the potential to be used in global models.

  13. Accurate state estimation for a hydraulic actuator via a SDRE nonlinear filter

    NASA Astrophysics Data System (ADS)

    Strano, Salvatore; Terzo, Mario

    2016-06-01

    The state estimation in hydraulic actuators is a fundamental tool for the detection of faults or a valid alternative to the installation of sensors. Due to the hard nonlinearities that characterize the hydraulic actuators, the performances of the linear/linearization based techniques for the state estimation are strongly limited. In order to overcome these limits, this paper focuses on an alternative nonlinear estimation method based on the State-Dependent-Riccati-Equation (SDRE). The technique is able to fully take into account the system nonlinearities and the measurement noise. A fifth order nonlinear model is derived and employed for the synthesis of the estimator. Simulations and experimental tests have been conducted and comparisons with the largely used Extended Kalman Filter (EKF) are illustrated. The results show the effectiveness of the SDRE based technique for applications characterized by not negligible nonlinearities such as dead zone and frictions.

  14. Accurate liability estimation improves power in ascertained case-control studies.

    PubMed

    Weissbrod, Omer; Lippert, Christoph; Geiger, Dan; Heckerman, David

    2015-04-01

    Linear mixed models (LMMs) have emerged as the method of choice for confounded genome-wide association studies. However, the performance of LMMs in nonrandomly ascertained case-control studies deteriorates with increasing sample size. We propose a framework called LEAP (liability estimator as a phenotype; https://github.com/omerwe/LEAP) that tests for association with estimated latent values corresponding to severity of phenotype, and we demonstrate that this can lead to a substantial power increase.

  15. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.

  16. Robust and Accurate Vision-Based Pose Estimation Algorithm Based on Four Coplanar Feature Points

    PubMed Central

    Zhang, Zimiao; Zhang, Shihai; Li, Qiu

    2016-01-01

    Vision-based pose estimation is an important application of machine vision. Currently, analytical and iterative methods are used to solve the object pose. The analytical solutions generally take less computation time. However, the analytical solutions are extremely susceptible to noise. The iterative solutions minimize the distance error between feature points based on 2D image pixel coordinates. However, the non-linear optimization needs a good initial estimate of the true solution, otherwise they are more time consuming than analytical solutions. Moreover, the image processing error grows rapidly with measurement range increase. This leads to pose estimation errors. All the reasons mentioned above will cause accuracy to decrease. To solve this problem, a novel pose estimation method based on four coplanar points is proposed. Firstly, the coordinates of feature points are determined according to the linear constraints formed by the four points. The initial coordinates of feature points acquired through the linear method are then optimized through an iterative method. Finally, the coordinate system of object motion is established and a method is introduced to solve the object pose. The growing image processing error causes pose estimation errors the measurement range increases. Through the coordinate system, the pose estimation errors could be decreased. The proposed method is compared with two other existing methods through experiments. Experimental results demonstrate that the proposed method works efficiently and stably. PMID:27999338

  17. Accurate and efficient velocity estimation using Transmission matrix formalism based on the domain decomposition method

    NASA Astrophysics Data System (ADS)

    Wang, Benfeng; Jakobsen, Morten; Wu, Ru-Shan; Lu, Wenkai; Chen, Xiaohong

    2017-03-01

    Full waveform inversion (FWI) has been regarded as an effective tool to build the velocity model for the following pre-stack depth migration. Traditional inversion methods are built on Born approximation and are initial model dependent, while this problem can be avoided by introducing Transmission matrix (T-matrix), because the T-matrix includes all orders of scattering effects. The T-matrix can be estimated from the spatial aperture and frequency bandwidth limited seismic data using linear optimization methods. However the full T-matrix inversion method (FTIM) is always required in order to estimate velocity perturbations, which is very time consuming. The efficiency can be improved using the previously proposed inverse thin-slab propagator (ITSP) method, especially for large scale models. However, the ITSP method is currently designed for smooth media, therefore the estimation results are unsatisfactory when the velocity perturbation is relatively large. In this paper, we propose a domain decomposition method (DDM) to improve the efficiency of the velocity estimation for models with large perturbations, as well as guarantee the estimation accuracy. Numerical examples for smooth Gaussian ball models and a reservoir model with sharp boundaries are performed using the ITSP method, the proposed DDM and the FTIM. The estimated velocity distributions, the relative errors and the elapsed time all demonstrate the validity of the proposed DDM.

  18. Modal parameters estimation in the Z-domain

    NASA Astrophysics Data System (ADS)

    Fasana, Alessandro

    2009-01-01

    This paper aims to explain in a clear, plain and detailed way a modal parameter estimation method in the frequency domain, or similarly in the Z-domain, valid for multi degrees-of-freedom systems. The technique is based on the rational fraction polynomials (RFP) representation of the frequency-response function (FRF) of a single input single output (SISO) system but is simply extended to multi input multi output (MIMO) and output only problems. A least-squares approach is adopted to take into account the information of all the FRFs but, when large data sets are used, the solution of the resulting system of algebraic linear equations can be a long and difficult task. A procedure to drastically reduce the problem dimensions is then adopted and fully explained; some practical hints are also given in order to achieve well-conditioned matrices. The method is validated through numerical and experimental examples.

  19. Enhancing parameter precision of optimal quantum estimation by quantum screening

    NASA Astrophysics Data System (ADS)

    Jiang, Huang; You-Neng, Guo; Qin, Xie

    2016-02-01

    We propose a scheme of quantum screening to enhance the parameter-estimation precision in open quantum systems by means of the dynamics of quantum Fisher information. The principle of quantum screening is based on an auxiliary system to inhibit the decoherence processes and erase the excited state to the ground state. By comparing the case without quantum screening, the results show that the dynamics of quantum Fisher information with quantum screening has a larger value during the evolution processes. Project supported by the National Natural Science Foundation of China (Grant No. 11374096), the Natural Science Foundation of Guangdong Province, China (Grants No. 2015A030310354), and the Project of Enhancing School with Innovation of Guangdong Ocean University (Grants Nos. GDOU2014050251 and GDOU2014050252).

  20. Simplified horn antenna parameter estimation using selective criteria

    SciTech Connect

    Ewing, P.D.

    1991-01-01

    An approximation can be used to avoid the complex mathematics and computation methods typically required for calculating the gain and radiation pattern of electromagnetic horn antenna. Because of the curvature of the antenna wave front, calculations using conventional techniques involve solving the Fresnel integrals and using computer-aided numerical integration. With this model, linear approximations give a reasonable estimate of the gain and radiation pattern using simple trigonometric functions, thereby allowing a hand calculator to replace the computer. Applying selected criteria, the case of the E-plane horn antenna was used to evaluate this technique. Results showed that the gain approximation holds for an antenna flare angle of less than 10{degree} for typical antenna dimensions, and the E field radiation pattern approximation holds until the antenna's phase error approaches 60{degree}, both within typical design parameters. This technique is a useful engineering tool. 4 refs., 11 figs.

  1. Optimal segmentation of pupillometric images for estimating pupil shape parameters.

    PubMed

    De Santis, A; Iacoviello, D

    2006-12-01

    The problem of determining the pupil morphological parameters from pupillometric data is considered. These characteristics are of great interest for non-invasive early diagnosis of the central nervous system response to environmental stimuli of different nature, in subjects suffering some typical diseases such as diabetes, Alzheimer disease, schizophrenia, drug and alcohol addiction. Pupil geometrical features such as diameter, area, centroid coordinates, are estimated by a procedure based on an image segmentation algorithm. It exploits the level set formulation of the variational problem related to the segmentation. A discrete set up of this problem that admits a unique optimal solution is proposed: an arbitrary initial curve is evolved towards the optimal segmentation boundary by a difference equation; therefore no numerical approximation schemes are needed, as required in the equivalent continuum formulation usually adopted in the relevant literature.

  2. Virtual parameter-estimation experiments in Bioprocess-Engineering education.

    PubMed

    Sessink, Olivier D T; Beeftink, Hendrik H; Hartog, Rob J M; Tramper, Johannes

    2006-05-01

    Cell growth kinetics and reactor concepts constitute essential knowledge for Bioprocess-Engineering students. Traditional learning of these concepts is supported by lectures, tutorials, and practicals: ICT offers opportunities for improvement. A virtual-experiment environment was developed that supports both model-related and experimenting-related learning objectives. Students have to design experiments to estimate model parameters: they choose initial conditions and 'measure' output variables. The results contain experimental error, which is an important constraint for experimental design. Students learn from these results and use the new knowledge to re-design their experiment. Within a couple of hours, students design and run many experiments that would take weeks in reality. Usage was evaluated in two courses with questionnaires and in the final exam. The faculties involved in the two courses are convinced that the experiment environment supports essential learning objectives well.

  3. Comparing the standards of one metabolic equivalent of task in accurately estimating physical activity energy expenditure based on acceleration.

    PubMed

    Kim, Dohyun; Lee, Jongshill; Park, Hoon Ki; Jang, Dong Pyo; Song, Soohwa; Cho, Baek Hwan; Jung, Yoo-Suk; Park, Rae-Woong; Joo, Nam-Seok; Kim, In Young

    2016-08-24

    The purpose of the study is to analyse how the standard of resting metabolic rate (RMR) affects estimation of the metabolic equivalent of task (MET) using an accelerometer. In order to investigate the effect on estimation according to intensity of activity, comparisons were conducted between the 3.5 ml O2 · kg(-1) · min(-1) and individually measured resting VO2 as the standard of 1 MET. MET was estimated by linear regression equations that were derived through five-fold cross-validation using 2 types of MET values and accelerations; the accuracy of estimation was analysed through cross-validation, Bland and Altman plot, and one-way ANOVA test. There were no significant differences in the RMS error after cross-validation. However, the individual RMR-based estimations had as many as 0.5 METs of mean difference in modified Bland and Altman plots than RMR of 3.5 ml O2 · kg(-1) · min(-1). Finally, the results of an ANOVA test indicated that the individual RMR-based estimations had less significant differences between the reference and estimated values at each intensity of activity. In conclusion, the RMR standard is a factor that affects accurate estimation of METs by acceleration; therefore, RMR requires individual specification when it is used for estimation of METs using an accelerometer.

  4. Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography

    NASA Astrophysics Data System (ADS)

    SchöNiger, A.; Nowak, W.; Hendricks Franssen, H.-J.

    2012-04-01

    Ensemble Kalman filters (EnKFs) are a successful tool for estimating state variables in atmospheric and oceanic sciences. Recent research has prepared the EnKF for parameter estimation in groundwater applications. EnKFs are optimal in the sense of Bayesian updating only if all involved variables are multivariate Gaussian. Subsurface flow and transport state variables, however, generally do not show Gaussian dependence on hydraulic log conductivity and among each other, even if log conductivity is multi-Gaussian. To improve EnKFs in this context, we apply nonlinear, monotonic transformations to the observed states, rendering them Gaussian (Gaussian anamorphosis, GA). Similar ideas have recently been presented by Béal et al. (2010) in the context of state estimation. Our work transfers and adapts this methodology to parameter estimation. Additionally, we address the treatment of measurement errors in the transformation and provide several multivariate analysis tools to evaluate the expected usefulness of GA beforehand. For illustration, we present a first-time application of an EnKF to parameter estimation from 3-D hydraulic tomography in multi-Gaussian log conductivity fields. Results show that (1) GA achieves an implicit pseudolinearization of drawdown data as a function of log conductivity and (2) this makes both parameter identification and prediction of flow and transport more accurate. Combining EnKFs with GA yields a computationally efficient tool for nonlinear inversion of data with improved accuracy. This is an attractive benefit, given that linearization-free methods such as particle filters are computationally extremely demanding.

  5. Radial basis network analysis of color parameters to estimate lycopene content on tomato fruits.

    PubMed

    Fernández-Ruiz, Virginia; Torrecilla, José S; Cámara, Montaña; Mata, Ma Cortes Sánchez; Shoemaker, Charles

    2010-11-15

    With the purpose of estimating the lycopene concentration in tomato food samples, in an non-destructive way, several types of linear models of color parameters have been tested using individual values of L*, a* and b* values, (a*/b*), (a*(2)/b*(2)) and chroma parameters from tomato juice and fresh tomato fruits obtained with two different apparatus (Minolta CR-200b triestimulus colorimeter and HunterLab LabScan XE). Lycopene concentrations of fresh tomato and tomato juice (used as an input) were analyzed by UV-Vis spectroscopy. For all linear methods applied, the best one to estimate the lycopene concentration in tomato was the L*, a* and b* values of tomato juice measured with Hunter colorimeters (adjusted correlation coefficient, R(a)(2)>0.86 and mean prediction error, MPE<6.59%). Four different RBEF models were designed firstly using three color parameters (L*, a* and b*) designated as "Lab case", and secondly individually by the (a*/b*), (a*(2)/b*(2)) and chroma parameters. The lycopene concentration estimations were carried out with the lowest MPE and highest R(a)(2) values possible. In order to test the reliability of the non-linear models, external validation process was also performed. From the testing of the all non-linear models applied, the RBEF Lab case model was the best to estimate lycopene content from color parameters (L*, a* and b*) using Minolta or Hunter equipments (MPE lower than 0.009 and R(a)(2) higher than 0.997). This was a simple non-destructive method for predicting lycopene concentration in tomato fruits and tomato juice, which was reproducible and accurate enough to substitute chemical extraction determinations, and may be a useful tool for tomato industry.

  6. Parameter Estimation in Ultrasonic Measurements on Trabecular Bone

    NASA Astrophysics Data System (ADS)

    Marutyan, Karen R.; Anderson, Christian C.; Wear, Keith A.; Holland, Mark R.; Miller, James G.; Bretthorst, G. Larry

    2007-11-01

    Ultrasonic tissue characterization has shown promise for clinical diagnosis of diseased bone (e.g., osteoporosis) by establishing correlations between bone ultrasonic characteristics and the state of disease. Porous (trabecular) bone supports propagation of two compressional modes, a fast wave and a slow wave, each of which is characterized by an approximately linear-with-frequency attenuation coefficient and monotonically increasing with frequency phase velocity. Only a single wave, however, is generally apparent in the received signals. The ultrasonic parameters that govern propagation of this single wave appear to be causally inconsistent [1]. Specifically, the attenuation coefficient rises approximately linearly with frequency, but the phase velocity exhibits a decrease with frequency. These inconsistent results are obtained when the data are analyzed under the assumption that the received signal is composed of one wave. The inconsistency disappears if the data are analyzed under the assumption that the signal is composed of superposed fast and slow waves. In the current investigation, Bayesian probability theory is applied to estimate the ultrasonic characteristics underlying the propagation of the fast and slow wave from computer simulations. Our motivation is the assumption that identifying the intrinsic material properties of bone will provide more reliable estimates of bone quality and fracture risk than the apparent properties derived by analyzing the data using a one-mode model.

  7. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations...estimation is extended to include the various surface parameters associated with the bidirectional reflectance distribution function (BRDF... parameters are estimated simultaneously Keywords—estimation; data fusion; BRDF I. INTRODUCTION Wetterer and Jah [1] first demonstrated how brightness

  8. Forage quantity estimation from MERIS using band depth parameters

    NASA Astrophysics Data System (ADS)

    Ullah, Saleem; Yali, Si; Schlerf, Martin

    Saleem Ullah1 , Si Yali1 , Martin Schlerf1 Forage quantity is an important factor influencing feeding pattern and distribution of wildlife. The main objective of this study was to evaluate the predictive performance of vegetation indices and band depth analysis parameters for estimation of green biomass using MERIS data. Green biomass was best predicted by NBDI (normalized band depth index) and yielded a calibration R2 of 0.73 and an accuracy (independent validation dataset, n=30) of 136.2 g/m2 (47 % of the measured mean) compared to a much lower accuracy obtained by soil adjusted vegetation index SAVI (444.6 g/m2, 154 % of the mean) and by other vegetation indices. This study will contribute to map and monitor foliar biomass over the year at regional scale which intern can aid the understanding of bird migration pattern. Keywords: Biomass, Nitrogen density, Nitrogen concentration, Vegetation indices, Band depth analysis parameters 1 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, The Netherlands

  9. Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings

    PubMed Central

    Huys, Quentin J. M.; Paninski, Liam

    2009-01-01

    Biophysically detailed models of single cells are difficult to fit to real data. Recent advances in imaging techniques allow simultaneous access to various intracellular variables, and these data can be used to significantly facilitate the modelling task. These data, however, are noisy, and current approaches to building biophysically detailed models are not designed to deal with this. We extend previous techniques to take the noisy nature of the measurements into account. Sequential Monte Carlo (“particle filtering”) methods, in combination with a detailed biophysical description of a cell, are used for principled, model-based smoothing of noisy recording data. We also provide an alternative formulation of smoothing where the neural nonlinearities are estimated in a non-parametric manner. Biophysically important parameters of detailed models (such as channel densities, intercompartmental conductances, input resistances, and observation noise) are inferred automatically from noisy data via expectation-maximisation. Overall, we find that model-based smoothing is a powerful, robust technique for smoothing of noisy biophysical data and for inference of biophysical parameters in the face of recording noise. PMID:19424506

  10. Tradeoffs among watershed model calibration targets for parameter estimation

    NASA Astrophysics Data System (ADS)

    Price, Katie; Purucker, S. Thomas; Kraemer, Stephen R.; Babendreier, Justin E.

    2012-10-01

    Hydrologic models are commonly calibrated by optimizing a single objective function target to compare simulated and observed flows, although individual targets are influenced by specific flow modes. Nash-Sutcliffe efficiency (NSE) emphasizes flood peaks in evaluating simulation fit, while modified Nash-Sutcliffe efficiency (MNS) emphasizes lower flows, and the ratio of the simulated to observed standard deviations (RSD) prioritizes flow variability. We investigated tradeoffs of calibrating streamflow on three standard objective functions (NSE, MNS, and RSD), as well as a multiobjective function aggregating these three targets to simultaneously address a range of flow conditions, for calibration of the Soil and Water Assessment Tool (SWAT) daily streamflow simulations in two watersheds. A suite of objective functions was explored to select a minimally redundant set of metrics addressing a range of flow characteristics. After each pass of 2001 simulations, an iterative informal likelihood procedure was used to subset parameter ranges. The ranges from each best-fit simulation set were used for model validation. Values for optimized parameters vary among calibrations using different objective functions, which underscores the importance of linking modeling objectives to calibration target selection. The simulation set approach yielded validated models of similar quality as seen with a single best-fit parameter set, with the added benefit of uncertainty estimations. Our approach represents a novel compromise between equifinality-based approaches and Pareto optimization. Combining the simulation set approach with the multiobjective function was demonstrated to be a practicable and flexible approach for model calibration, which can be readily modified to suit modeling goals, and is not model or location specific.

  11. Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics

    SciTech Connect

    Wang, Gangsheng; Post, Wilfred M; Mayes, Melanie; Frerichs, Joshua T; Jagadamma, Sindhu

    2012-01-01

    While soil enzymes have been explicitly included in the soil organic carbon (SOC) decomposition models, there is a serious lack of suitable data for model parameterization. This study provides well-documented enzymatic parameters for application in enzyme-driven SOC decomposition models from a compilation and analysis of published measurements. In particular, we developed appropriate kinetic parameters for five typical ligninolytic and cellulolytic enzymes ( -glucosidase, cellobiohydrolase, endo-glucanase, peroxidase, and phenol oxidase). The kinetic parameters included the maximum specific enzyme activity (Vmax) and half-saturation constant (Km) in the Michaelis-Menten equation. The activation energy (Ea) and the pH optimum and sensitivity (pHopt and pHsen) were also analyzed. pHsen was estimated by fitting an exponential-quadratic function. The Vmax values, often presented in different units under various measurement conditions, were converted into the same units at a reference temperature (20 C) and pHopt. Major conclusions are: (i) Both Vmax and Km were log-normal distributed, with no significant difference in Vmax exhibited between enzymes originating from bacteria or fungi. (ii) No significant difference in Vmax was found between cellulases and ligninases; however, there was significant difference in Km between them. (iii) Ligninases had higher Ea values and lower pHopt than cellulases; average ratio of pHsen to pHopt ranged 0.3 0.4 for the five enzymes, which means that an increase or decrease of 1.1 1.7 pH units from pHopt would reduce Vmax by 50%. (iv) Our analysis indicated that the Vmax values from lab measurements with purified enzymes were 1 2 orders of magnitude higher than those for use in SOC decomposition models under field conditions.

  12. Alpha's standard error (ASE): an accurate and precise confidence interval estimate.

    PubMed

    Duhachek, Adam; Lacobucci, Dawn

    2004-10-01

    This research presents the inferential statistics for Cronbach's coefficient alpha on the basis of the standard statistical assumption of multivariate normality. The estimation of alpha's standard error (ASE) and confidence intervals are described, and the authors analytically and empirically investigate the effects of the components of these equations. The authors then demonstrate the superiority of this estimate compared with previous derivations of ASE in a separate Monte Carlo simulation. The authors also present a sampling error and test statistic for a test of independent sample alphas. They conclude with a recommendation that all alpha coefficients be reported in conjunction with standard error or confidence interval estimates and offer SAS and SPSS programming codes for easy implementation.

  13. Precision Pointing Control to and Accurate Target Estimation of a Non-Cooperative Vehicle

    NASA Technical Reports Server (NTRS)

    VanEepoel, John; Thienel, Julie; Sanner, Robert M.

    2006-01-01

    In 2004, NASA began investigating a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates in order to achieve capture by the proposed Hubble Robotic Vehicle (HRV), but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST. To generalize the situation, HST is the target vehicle and HRV is the chaser. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a control scheme. Non-cooperative in this context relates to the target vehicle no longer having the ability to maintain attitude control or transmit attitude knowledge.

  14. Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2006-01-01

    Autonomous space rendezvous scenarios require knowledge of the target vehicle state in order to safely dock with the chaser vehicle. Ideally, the target vehicle state information is derived from telemetered data, or with the use of known tracking points on the target vehicle. However, if the target vehicle is non-cooperative and does not have the ability to maintain attitude control, or transmit attitude knowledge, the docking becomes more challenging. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a tracking control scheme. The approach is tested with the robotic servicing mission concept for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates, but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST.

  15. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    PubMed Central

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  16. Improving a regional model using reduced complexity and parameter estimation

    USGS Publications Warehouse

    Kelson, Victor A.; Hunt, Randall J.; Haitjema, Henk M.

    2002-01-01

    The availability of powerful desktop computers and graphical user interfaces for ground water flow models makes possible the construction of ever more complex models. A proposed copper-zinc sulfide mine in northern Wisconsin offers a unique case in which the same hydrologic system has been modeled using a variety of techniques covering a wide range of sophistication and complexity. Early in the permitting process, simple numerical models were used to evaluate the necessary amount of water to be pumped from the mine, reductions in streamflow, and the drawdowns in the regional aquifer. More complex models have subsequently been used in an attempt to refine the predictions. Even after so much modeling effort, questions regarding the accuracy and reliability of the predictions remain. We have performed a new analysis of the proposed mine using the two-dimensional analytic element code GFLOW coupled with the nonlinear parameter estimation code UCODE. The new model is parsimonious, containing fewer than 10 parameters, and covers a region several times larger in areal extent than any of the previous models. The model demonstrates the suitability of analytic element codes for use with parameter estimation codes. The simplified model results are similar to the more complex models; predicted mine inflows and UCODE-derived 95% confidence intervals are consistent with the previous predictions. More important, the large areal extent of the model allowed us to examine hydrological features not included in the previous models, resulting in new insights about the effects that far-field boundary conditions can have on near-field model calibration and parameterization. In this case, the addition of surface water runoff into a lake in the headwaters of a stream while holding recharge constant moved a regional ground watershed divide and resulted in some of the added water being captured by the adjoining basin. Finally, a simple analytical solution was used to clarify the GFLOW model

  17. Fast and accurate probability density estimation in large high dimensional astronomical datasets

    NASA Astrophysics Data System (ADS)

    Gupta, Pramod; Connolly, Andrew J.; Gardner, Jeffrey P.

    2015-01-01

    Astronomical surveys will generate measurements of hundreds of attributes (e.g. color, size, shape) on hundreds of millions of sources. Analyzing these large, high dimensional data sets will require efficient algorithms for data analysis. An example of this is probability density estimation that is at the heart of many classification problems such as the separation of stars and quasars based on their colors. Popular density estimation techniques use binning or kernel density estimation. Kernel density estimation has a small memory footprint but often requires large computational resources. Binning has small computational requirements but usually binning is implemented with multi-dimensional arrays which leads to memory requirements which scale exponentially with the number of dimensions. Hence both techniques do not scale well to large data sets in high dimensions. We present an alternative approach of binning implemented with hash tables (BASH tables). This approach uses the sparseness of data in the high dimensional space to ensure that the memory requirements are small. However hashing requires some extra computation so a priori it is not clear if the reduction in memory requirements will lead to increased computational requirements. Through an implementation of BASH tables in C++ we show that the additional computational requirements of hashing are negligible. Hence this approach has small memory and computational requirements. We apply our density estimation technique to photometric selection of quasars using non-parametric Bayesian classification and show that the accuracy of the classification is same as the accuracy of earlier approaches. Since the BASH table approach is one to three orders of magnitude faster than the earlier approaches it may be useful in various other applications of density estimation in astrostatistics.

  18. Parameter Estimation and Energy Minimization for Region-Based Semantic Segmentation.

    PubMed

    Kumar, M Pawan; Turki, Haithem; Preston, Dan; Koller, Daphne

    2015-07-01

    We consider the problem of parameter estimation and energy minimization for a region-based semantic segmentation model. The model divides the pixels of an image into non-overlapping connected regions, each of which is to a semantic class. In the context of energy minimization, the main problem we face is the large number of putative pixel-to-region assignments. We address this problem by designing an accurate linear programming based approach for selecting the best set of regions from a large dictionary. The dictionary is constructed by merging and intersecting segments obtained from multiple bottom-up over-segmentations. The linear program is solved efficiently using dual decomposition. In the context of parameter estimation, the main problem we face is the lack of fully supervised data. We address this issue by developing a principled framework for parameter estimation using diverse data. More precisely, we propose a latent structural support vector machine formulation, where the latent variables model any missing information in the human annotation. Of particular interest to us are three types of annotations: (i) images segmented using generic foreground or background classes; (ii) images with bounding boxes specified for objects; and (iii) images labeled to indicate the presence of a class. Using large, publicly available datasets we show that our methods are able to significantly improve the accuracy of the region-based model.

  19. Spectral estimation from laser scanner data for accurate color rendering of objects

    NASA Astrophysics Data System (ADS)

    Baribeau, Rejean

    2002-06-01

    Estimation methods are studied for the recovery of the spectral reflectance across the visible range from the sensing at just three discrete laser wavelengths. Methods based on principal component analysis and on spline interpolation are judged based on the CIE94 color differences for some reference data sets. These include the Macbeth color checker, the OSA-UCS color charts, some artist pigments, and a collection of miscellaneous surface colors. The optimal three sampling wavelengths are also investigated. It is found that color can be estimated with average accuracy ΔE94 = 2.3 when optimal wavelengths 455 nm, 540 n, and 610 nm are used.

  20. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1985-01-01

    Research activities conducted under the auspices of National Aeronautics and Space Administration Cooperative Agreement NCC 9-9 are discussed. During this contract period research efforts are concentrated in two primary areas. The first are is an investigation of the use of measurement error models as alternatives to least squares regression estimators of crop production or timber biomass. The secondary primary area of investigation is on the estimation of the mixing proportion of two-component mixture models. This report lists publications, technical reports, submitted manuscripts, and oral presentation generated by these research efforts. Possible areas of future research are mentioned.

  1. Data Anonymization that Leads to the Most Accurate Estimates of Statistical Characteristics: Fuzzy-Motivated Approach

    PubMed Central

    Xiang, G.; Ferson, S.; Ginzburg, L.; Longpré, L.; Mayorga, E.; Kosheleva, O.

    2013-01-01

    To preserve privacy, the original data points (with exact values) are replaced by boxes containing each (inaccessible) data point. This privacy-motivated uncertainty leads to uncertainty in the statistical characteristics computed based on this data. In a previous paper, we described how to minimize this uncertainty under the assumption that we use the same standard statistical estimates for the desired characteristics. In this paper, we show that we can further decrease the resulting uncertainty if we allow fuzzy-motivated weighted estimates, and we explain how to optimally select the corresponding weights. PMID:25187183

  2. Quantiles, parametric-select density estimation, and bi-information parameter estimators

    NASA Technical Reports Server (NTRS)

    Parzen, E.

    1982-01-01

    A quantile-based approach to statistical analysis and probability modeling of data is presented which formulates statistical inference problems as functional inference problems in which the parameters to be estimated are density functions. Density estimators can be non-parametric (computed independently of model identified) or parametric-select (approximated by finite parametric models that can provide standard models whose fit can be tested). Exponential models and autoregressive models are approximating densities which can be justified as maximum entropy for respectively the entropy of a probability density and the entropy of a quantile density. Applications of these ideas are outlined to the problems of modeling: (1) univariate data; (2) bivariate data and tests for independence; and (3) two samples and likelihood ratios. It is proposed that bi-information estimation of a density function can be developed by analogy to the problem of identification of regression models.

  3. Accurate and unbiased estimation of power-law exponents from single-emitter blinking data.

    PubMed

    Hoogenboom, Jacob P; den Otter, Wouter K; Offerhaus, Herman L

    2006-11-28

    Single emitter blinking with a power-law distribution for the on and off times has been observed on a variety of systems including semiconductor nanocrystals, conjugated polymers, fluorescent proteins, and organic fluorophores. The origin of this behavior is still under debate. Reliable estimation of power exponents from experimental data is crucial in validating the various models under consideration. We derive a maximum likelihood estimator for power-law distributed data and analyze its accuracy as a function of data set size and power exponent both analytically and numerically. Results are compared to least-squares fitting of the double logarithmically transformed probability density. We demonstrate that least-squares fitting introduces a severe bias in the estimation result and that the maximum likelihood procedure is superior in retrieving the correct exponent and reducing the statistical error. For a data set as small as 50 data points, the error margins of the maximum likelihood estimator are already below 7%, giving the possibility to quantify blinking behavior when data set size is limited, e.g., due to photobleaching.

  4. How Accurate and Robust Are the Phylogenetic Estimates of Austronesian Language Relationships?

    PubMed Central

    Greenhill, Simon J.; Drummond, Alexei J.; Gray, Russell D.

    2010-01-01

    We recently used computational phylogenetic methods on lexical data to test between two scenarios for the peopling of the Pacific. Our analyses of lexical data supported a pulse-pause scenario of Pacific settlement in which the Austronesian speakers originated in Taiwan around 5,200 years ago and rapidly spread through the Pacific in a series of expansion pulses and settlement pauses. We claimed that there was high congruence between traditional language subgroups and those observed in the language phylogenies, and that the estimated age of the Austronesian expansion at 5,200 years ago was consistent with the archaeological evidence. However, the congruence between the language phylogenies and the evidence from historical linguistics was not quantitatively assessed using tree comparison metrics. The robustness of the divergence time estimates to different calibration points was also not investigated exhaustively. Here we address these limitations by using a systematic tree comparison metric to calculate the similarity between the Bayesian phylogenetic trees and the subgroups proposed by historical linguistics, and by re-estimating the age of the Austronesian expansion using only the most robust calibrations. The results show that the Austronesian language phylogenies are highly congruent with the traditional subgroupings, and the date estimates are robust even when calculated using a restricted set of historical calibrations. PMID:20224774

  5. Investigating the Impact of Uncertainty about Item Parameters on Ability Estimation

    ERIC Educational Resources Information Center

    Zhang, Jinming; Xie, Minge; Song, Xiaolan; Lu, Ting

    2011-01-01

    Asymptotic expansions of the maximum likelihood estimator (MLE) and weighted likelihood estimator (WLE) of an examinee's ability are derived while item parameter estimators are treated as covariates measured with error. The asymptotic formulae present the amount of bias of the ability estimators due to the uncertainty of item parameter estimators.…

  6. Genetic parameter estimation of reproductive traits of Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Tan, Jian; Kong, Jie; Cao, Baoxiang; Luo, Kun; Liu, Ning; Meng, Xianhong; Xu, Shengyu; Guo, Zhaojia; Chen, Guoliang; Luan, Sheng

    2017-02-01

    In this study, the heritability, repeatability, phenotypic correlation, and genetic correlation of the reproductive and growth traits of L. vannamei were investigated and estimated. Eight traits of 385 shrimps from forty-two families, including the number of eggs (EN), number of nauplii (NN), egg diameter (ED), spawning frequency (SF), spawning success (SS), female body weight (BW) and body length (BL) at insemination, and condition factor (K), were measured,. A total of 519 spawning records including multiple spawning and 91 no spawning records were collected. The genetic parameters were estimated using an animal model, a multinomial logit model (for SF), and a sire-dam and probit model (for SS). Because there were repeated records, permanent environmental effects were included in the models. The heritability estimates for BW, BL, EN, NN, ED, SF, SS, and K were 0.49 ± 0.14, 0.51 ± 0.14, 0.12 ± 0.08, 0, 0.01 ± 0.04, 0.06 ± 0.06, 0.18 ± 0.07, and 0.10 ± 0.06, respectively. The genetic correlation was 0.99 ± 0.01 between BW and BL, 0.90 ± 0.19 between BW and EN, 0.22 ± 0.97 between BW and ED, -0.77 ± 1.14 between EN and ED, and -0.27 ± 0.36 between BW and K. The heritability of EN estimated without a covariate was 0.12 ± 0.08, and the genetic correlation was 0.90 ± 0.19 between BW and EN, indicating that improving BW may be used in selection programs to genetically improve the reproductive output of L. vannamei during the breeding. For EN, the data were also analyzed using body weight as a covariate (EN-2). The heritability of EN-2 was 0.03 ± 0.05, indicating that it is difficult to improve the reproductive output by genetic improvement. Furthermore, excessive pursuit of this selection is often at the expense of growth speed. Therefore, the selection of high-performance spawners using BW and SS may be an important strategy to improve nauplii production.

  7. Probabilistic Analysis and Density Parameter Estimation Within Nessus

    NASA Technical Reports Server (NTRS)

    Godines, Cody R.; Manteufel, Randall D.; Chamis, Christos C. (Technical Monitor)

    2002-01-01

    , and 99th percentile of the four responses at the 50 percent confidence level and using the same number of response evaluations for each method. In addition, LHS requires fewer calculations than MC in order to be 99.7 percent confident that a single mean, standard deviation, or 99th percentile estimate will be within at most 3 percent of the true value of the each parameter. Again, this is shown for all of the test cases studied. For that reason it can be said that NESSUS is an important reliability tool that has a variety of sound probabilistic methods a user can employ; furthermore, the newest LHS module is a valuable new enhancement of the program.

  8. A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice

    PubMed Central

    Wang, Yong; Ma, Xiaolei; Liu, Yong; Gong, Ke; Henricakson, Kristian C.; Xu, Maozeng; Wang, Yinhai

    2016-01-01

    This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers’ route choice behavior. PMID:26761209

  9. A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice.

    PubMed

    Wang, Yong; Ma, Xiaolei; Liu, Yong; Gong, Ke; Henrickson, Kristian C; Henricakson, Kristian C; Xu, Maozeng; Wang, Yinhai

    2016-01-01

    This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers' route choice behavior.

  10. Estimating maize grain yield from crop biophysical parameters using remote sensing

    NASA Astrophysi