Sample records for accurate physical model

  1. A physical-based gas-surface interaction model for rarefied gas flow simulation

    NASA Astrophysics Data System (ADS)

    Liang, Tengfei; Li, Qi; Ye, Wenjing

    2018-01-01

    Empirical gas-surface interaction models, such as the Maxwell model and the Cercignani-Lampis model, are widely used as the boundary condition in rarefied gas flow simulations. The accuracy of these models in the prediction of macroscopic behavior of rarefied gas flows is less satisfactory in some cases especially the highly non-equilibrium ones. Molecular dynamics simulation can accurately resolve the gas-surface interaction process at atomic scale, and hence can predict accurate macroscopic behavior. They are however too computationally expensive to be applied in real problems. In this work, a statistical physical-based gas-surface interaction model, which complies with the basic relations of boundary condition, is developed based on the framework of the washboard model. In virtue of its physical basis, this new model is capable of capturing some important relations/trends for which the classic empirical models fail to model correctly. As such, the new model is much more accurate than the classic models, and in the meantime is more efficient than MD simulations. Therefore, it can serve as a more accurate and efficient boundary condition for rarefied gas flow simulations.

  2. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many

  3. A methodology for reduced order modeling and calibration of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Mehta, Piyush M.; Linares, Richard

    2017-10-01

    Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.

  4. Importance of Nuclear Physics to NASA's Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.

  5. Parameterized reduced-order models using hyper-dual numbers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fike, Jeffrey A.; Brake, Matthew Robert

    2013-10-01

    The goal of most computational simulations is to accurately predict the behavior of a real, physical system. Accurate predictions often require very computationally expensive analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the computational cost of the simulations while still providing accurate results by including all of the salient physics of the real system in the ROM. However, real, physical systems often deviate from the idealized models used in simulations due to variations in manufacturing or other factors. One approach to this issue is to create a parameterized model in order to characterize themore » effect of perturbations from the nominal model on the behavior of the system. This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the derivatives necessary for the parameterization.« less

  6. A new model of physical evolution of Jupiter-family comets

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Szutowicz, S.; Wójcikowski, K.

    2014-07-01

    We aim to find the statistical physical lifetimes of Jupiter Family comets. For this purpose, we try to model the processes that govern the dynamical and physical evolution of comets. We pay special attention to physical evolution; attempts at such modelling have been made before, but we propose a more accurate model, which will include more physical effects. The model is tested on a sample of fictitious comets based on real Jupiter Family comets with some orbital elements changed to a state before the capture by Jupiter. We model four different physical effects: erosion by sublimation, dust mantling, rejuvenation (mantle blow-off), and splitting. While for sublimation and splitting there already are some models, like di Sisto et. al. (2009), and we only wish to make them more accurate, dust mantling and rejuvenation have not been included in previous, statistical physical evolution models. Each of these effects depends on one or more tunable parameters, which we establish by choosing the model that best fits the observed comet sample in a way similar to di Sisto et. al. (2009). In contrast to di Sisto et. al., our comparison also involves the observed active fractions vs. nuclear radii.

  7. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    DTIC Science & Technology

    2017-09-19

    Results show that the finite element computational models accurately match analytical calculations, and that the composite material studied in this...products. 15. SUBJECT TERMS Finite Element Analysis, Structural Acoustics, Fiber-Reinforced Composites, Physics-Based Modeling 16. SECURITY...2 4 FINITE ELEMENT MODEL DESCRIPTION

  8. A methodology to generate high-resolution digital elevation model (DEM) and surface water profile for a physical model using close range photogrammetric (CRP) technique

    NASA Astrophysics Data System (ADS)

    Mali, V. K.; Kuiry, S. N.

    2015-12-01

    Comprehensive understanding of the river flow dynamics with varying topography in a real field is very intricate and difficult. Conventional experimental methods based on manual data collection are time consuming and prone to many errors. Recently, remotely sensed satellite imageries are at the best to provide necessary information for large area provided the high resolution but which are very expensive and untimely, consequently, attaining accurate river bathymetry from relatively course resolution and untimely imageries are inaccurate and impractical. Despite of that, these data are often being used to calibrate the river flow models, though these models require highly accurate morpho-dynamic data in order to predict the flow field precisely. Under this circumstance, these data could be supplemented through experimental observations in a physical model with modern techniques. This paper proposes a methodology to generate highly accurate river bathymetry and water surface (WS) profile for a physical model of river network system using CRP technique. For the task accomplishment, a number of DSLR Nikon D5300 cameras (mounted at 3.5 m above the river bed) were used to capture the images of the physical model and the flooding scenarios during the experiments. During experiment, non-specular materials were introduced at the inlet and images were taken simultaneously from different orientations and altitudes with significant overlap of 80%. Ground control points were surveyed using two ultrasonic sensors with ±0.5 mm vertical accuracy. The captured images are, then processed in PhotoScan software to generate the DEM and WS profile. The generated data were then passed through statistical analysis to identify errors. Accuracy of WS profile was limited by extent and density of non-specular powder and stereo-matching discrepancies. Furthermore, several factors of camera including orientation, illumination and altitude of camera. The CRP technique for a large scale physical model can significantly reduce the time and manual labour and avoids human errors in taking data using point gauge. Obtained highly accurate DEM and WS profile can be used in mathematical models for accurate prediction of river dynamics. This study would be very helpful for sediment transport study and can also be extended for real case studies.

  9. A methodology to generate high-resolution digital elevation model (DEM) and surface water profile for a physical model using close range photogrammetric (CRP) technique

    NASA Astrophysics Data System (ADS)

    Méndez Incera, F. J.; Erikson, L. H.; Ruggiero, P.; Barnard, P.; Camus, P.; Rueda Zamora, A. C.

    2014-12-01

    Comprehensive understanding of the river flow dynamics with varying topography in a real field is very intricate and difficult. Conventional experimental methods based on manual data collection are time consuming and prone to many errors. Recently, remotely sensed satellite imageries are at the best to provide necessary information for large area provided the high resolution but which are very expensive and untimely, consequently, attaining accurate river bathymetry from relatively course resolution and untimely imageries are inaccurate and impractical. Despite of that, these data are often being used to calibrate the river flow models, though these models require highly accurate morpho-dynamic data in order to predict the flow field precisely. Under this circumstance, these data could be supplemented through experimental observations in a physical model with modern techniques. This paper proposes a methodology to generate highly accurate river bathymetry and water surface (WS) profile for a physical model of river network system using CRP technique. For the task accomplishment, a number of DSLR Nikon D5300 cameras (mounted at 3.5 m above the river bed) were used to capture the images of the physical model and the flooding scenarios during the experiments. During experiment, non-specular materials were introduced at the inlet and images were taken simultaneously from different orientations and altitudes with significant overlap of 80%. Ground control points were surveyed using two ultrasonic sensors with ±0.5 mm vertical accuracy. The captured images are, then processed in PhotoScan software to generate the DEM and WS profile. The generated data were then passed through statistical analysis to identify errors. Accuracy of WS profile was limited by extent and density of non-specular powder and stereo-matching discrepancies. Furthermore, several factors of camera including orientation, illumination and altitude of camera. The CRP technique for a large scale physical model can significantly reduce the time and manual labour and avoids human errors in taking data using point gauge. Obtained highly accurate DEM and WS profile can be used in mathematical models for accurate prediction of river dynamics. This study would be very helpful for sediment transport study and can also be extended for real case studies.

  10. Validation of High-Fidelity CFD/CAA Framework for Launch Vehicle Acoustic Environment Simulation against Scale Model Test Data

    NASA Technical Reports Server (NTRS)

    Liever, Peter A.; West, Jeffrey S.

    2016-01-01

    A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.

  11. Characterization of structural connections using free and forced response test data

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Huckelbridge, Arthur A.

    1989-01-01

    The accurate prediction of system dynamic response often has been limited by deficiencies in existing capabilities to characterize connections adequately. Connections between structural components often are complex mechanically, and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic preditions. A procedure for identifying physical connection properties from free and forced response test data is developed, then verified utilizing a system having both a linear and nonlinear connection. Connection properties are computed in terms of physical parameters so that the physical characteristics of the connections can better be understood, in addition to providing improved input for the system model. The identification procedure is applicable to multi-degree of freedom systems, and does not require that the test data be measured directly at the connection locations.

  12. A novel phenomenological multi-physics model of Li-ion battery cells

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Samad, Nassim A.; Kim, Youngki; Siegel, Jason B.; Stefanopoulou, Anna G.; Epureanu, Bogdan I.

    2016-09-01

    A novel phenomenological multi-physics model of Lithium-ion battery cells is developed for control and state estimation purposes. The model can capture electrical, thermal, and mechanical behaviors of battery cells under constrained conditions, e.g., battery pack conditions. Specifically, the proposed model predicts the core and surface temperatures and reaction force induced from the volume change of battery cells because of electrochemically- and thermally-induced swelling. Moreover, the model incorporates the influences of changes in preload and ambient temperature on the force considering severe environmental conditions electrified vehicles face. Intensive experimental validation demonstrates that the proposed multi-physics model accurately predicts the surface temperature and reaction force for a wide operational range of preload and ambient temperature. This high fidelity model can be useful for more accurate and robust state of charge estimation considering the complex dynamic behaviors of the battery cell. Furthermore, the inherent simplicity of the mechanical measurements offers distinct advantages to improve the existing power and thermal management strategies for battery management.

  13. Mark Stock | NREL

    Science.gov Websites

    , he started the Boston Virtual Reality Meetup group, develops physics plugins for games and demos for physically accurate lighting model, Second Conference on Computational Semiotics for Games and New Media

  14. Inferring mass in complex scenes by mental simulation.

    PubMed

    Hamrick, Jessica B; Battaglia, Peter W; Griffiths, Thomas L; Tenenbaum, Joshua B

    2016-12-01

    After observing a collision between two boxes, you can immediately tell which is empty and which is full of books based on how the boxes moved. People form rich perceptions about the physical properties of objects from their interactions, an ability that plays a crucial role in learning about the physical world through our experiences. Here, we present three experiments that demonstrate people's capacity to reason about the relative masses of objects in naturalistic 3D scenes. We find that people make accurate inferences, and that they continue to fine-tune their beliefs over time. To explain our results, we propose a cognitive model that combines Bayesian inference with approximate knowledge of Newtonian physics by estimating probabilities from noisy physical simulations. We find that this model accurately predicts judgments from our experiments, suggesting that the same simulation mechanism underlies both peoples' predictions and inferences about the physical world around them. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Physical and numerical studies of a fracture system model

    NASA Astrophysics Data System (ADS)

    Piggott, Andrew R.; Elsworth, Derek

    1989-03-01

    Physical and numerical studies of transient flow in a model of discretely fractured rock are presented. The physical model is a thermal analogue to fractured media flow consisting of idealized disc-shaped fractures. The numerical model is used to predict the behavior of the physical model. The use of different insulating materials to encase the physical model allows the effects of differing leakage magnitudes to be examined. A procedure for determining appropriate leakage parameters is documented. These parameters are used in forward analysis to predict the thermal response of the physical model. Knowledge of the leakage parameters and of the temporal variation of boundary conditions are shown to be essential to an accurate prediction. Favorable agreement is illustrated between numerical and physical results. The physical model provides a data source for the benchmarking of alternative numerical algorithms.

  16. Validation of High-Fidelity CFD/CAA Framework for Launch Vehicle Acoustic Environment Simulation against Scale Model Test Data

    NASA Technical Reports Server (NTRS)

    Liever, Peter A.; West, Jeffrey S.; Harris, Robert E.

    2016-01-01

    A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate Discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured mesh Discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.

  17. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE PAGES

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.; ...

    2017-07-12

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  18. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  19. Self-consistent core-pedestal transport simulations with neural network accelerated models

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.

    2017-08-01

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.

  20. Prototyping of cerebral vasculature physical models.

    PubMed

    Khan, Imad S; Kelly, Patrick D; Singer, Robert J

    2014-01-01

    Prototyping of cerebral vasculature models through stereolithographic methods have the ability to accurately depict the 3D structures of complicated aneurysms with high accuracy. We describe the method to manufacture such a model and review some of its uses in the context of treatment planning, research, and surgical training. We prospectively used the data from the rotational angiography of a 40-year-old female who presented with an unruptured right paraclinoid aneurysm. The 3D virtual model was then converted to a physical life-sized model. The model constructed was shown to be a very accurate depiction of the aneurysm and its associated vasculature. It was found to be useful, among other things, for surgical training and as a patient education tool. With improving and more widespread printing options, these models have the potential to become an important part of research and training modalities.

  1. Modelling the physics in iterative reconstruction for transmission computed tomography

    PubMed Central

    Nuyts, Johan; De Man, Bruno; Fessler, Jeffrey A.; Zbijewski, Wojciech; Beekman, Freek J.

    2013-01-01

    There is an increasing interest in iterative reconstruction (IR) as a key tool to improve quality and increase applicability of X-ray CT imaging. IR has the ability to significantly reduce patient dose, it provides the flexibility to reconstruct images from arbitrary X-ray system geometries and it allows to include detailed models of photon transport and detection physics, to accurately correct for a wide variety of image degrading effects. This paper reviews discretisation issues and modelling of finite spatial resolution, Compton scatter in the scanned object, data noise and the energy spectrum. Widespread implementation of IR with highly accurate model-based correction, however, still requires significant effort. In addition, new hardware will provide new opportunities and challenges to improve CT with new modelling. PMID:23739261

  2. a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images

    NASA Astrophysics Data System (ADS)

    Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei

    2018-04-01

    Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.

  3. Bayesian calibration for electrochemical thermal model of lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Tagade, Piyush; Hariharan, Krishnan S.; Basu, Suman; Verma, Mohan Kumar Singh; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2016-07-01

    Pseudo-two dimensional electrochemical thermal (P2D-ECT) model contains many parameters that are difficult to evaluate experimentally. Estimation of these model parameters is challenging due to computational cost and the transient model. Due to lack of complete physical understanding, this issue gets aggravated at extreme conditions like low temperature (LT) operations. This paper presents a Bayesian calibration framework for estimation of the P2D-ECT model parameters. The framework uses a matrix variate Gaussian process representation to obtain a computationally tractable formulation for calibration of the transient model. Performance of the framework is investigated for calibration of the P2D-ECT model across a range of temperatures (333 Ksbnd 263 K) and operating protocols. In the absence of complete physical understanding, the framework also quantifies structural uncertainty in the calibrated model. This information is used by the framework to test validity of the new physical phenomena before incorporation in the model. This capability is demonstrated by introducing temperature dependence on Bruggeman's coefficient and lithium plating formation at LT. With the incorporation of new physics, the calibrated P2D-ECT model accurately predicts the cell voltage with high confidence. The accurate predictions are used to obtain new insights into the low temperature lithium ion cell behavior.

  4. Optimization of the ANFIS using a genetic algorithm for physical work rate classification.

    PubMed

    Habibi, Ehsanollah; Salehi, Mina; Yadegarfar, Ghasem; Taheri, Ali

    2018-03-13

    Recently, a new method was proposed for physical work rate classification based on an adaptive neuro-fuzzy inference system (ANFIS). This study aims to present a genetic algorithm (GA)-optimized ANFIS model for a highly accurate classification of physical work rate. Thirty healthy men participated in this study. Directly measured heart rate and oxygen consumption of the participants in the laboratory were used for training the ANFIS classifier model in MATLAB version 8.0.0 using a hybrid algorithm. A similar process was done using the GA as an optimization technique. The accuracy, sensitivity and specificity of the ANFIS classifier model were increased successfully. The mean accuracy of the model was increased from 92.95 to 97.92%. Also, the calculated root mean square error of the model was reduced from 5.4186 to 3.1882. The maximum estimation error of the optimized ANFIS during the network testing process was ± 5%. The GA can be effectively used for ANFIS optimization and leads to an accurate classification of physical work rate. In addition to high accuracy, simple implementation and inter-individual variability consideration are two other advantages of the presented model.

  5. Multi-representation ability of students on the problem solving physics

    NASA Astrophysics Data System (ADS)

    Theasy, Y.; Wiyanto; Sujarwata

    2018-03-01

    Accuracy in representing knowledge possessed by students will show how the level of student understanding. The multi-representation ability of students on the problem solving of physics has been done through qualitative method of grounded theory model and implemented on physics education student of Unnes academic year 2016/2017. Multiforms of representation used are verbal (V), images/diagrams (D), graph (G), and mathematically (M). High and low category students have an accurate use of graphical representation (G) of 83% and 77.78%, and medium category has accurate use of image representation (D) equal to 66%.

  6. Prototyping of cerebral vasculature physical models

    PubMed Central

    Khan, Imad S.; Kelly, Patrick D.; Singer, Robert J.

    2014-01-01

    Background: Prototyping of cerebral vasculature models through stereolithographic methods have the ability to accurately depict the 3D structures of complicated aneurysms with high accuracy. We describe the method to manufacture such a model and review some of its uses in the context of treatment planning, research, and surgical training. Methods: We prospectively used the data from the rotational angiography of a 40-year-old female who presented with an unruptured right paraclinoid aneurysm. The 3D virtual model was then converted to a physical life-sized model. Results: The model constructed was shown to be a very accurate depiction of the aneurysm and its associated vasculature. It was found to be useful, among other things, for surgical training and as a patient education tool. Conclusion: With improving and more widespread printing options, these models have the potential to become an important part of research and training modalities. PMID:24678427

  7. Physically-Based Reduced Order Modelling of a Uni-Axial Polysilicon MEMS Accelerometer

    PubMed Central

    Ghisi, Aldo; Mariani, Stefano; Corigliano, Alberto; Zerbini, Sarah

    2012-01-01

    In this paper, the mechanical response of a commercial off-the-shelf, uni-axial polysilicon MEMS accelerometer subject to drops is numerically investigated. To speed up the calculations, a simplified physically-based (beams and plate), two degrees of freedom model of the movable parts of the sensor is adopted. The capability and the accuracy of the model are assessed against three-dimensional finite element simulations, and against outcomes of experiments on instrumented samples. It is shown that the reduced order model provides accurate outcomes as for the system dynamics. To also get rather accurate results in terms of stress fields within regions that are prone to fail upon high-g shocks, a correction factor is proposed by accounting for the local stress amplification induced by re-entrant corners. PMID:23202031

  8. A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations

    NASA Astrophysics Data System (ADS)

    Messner, Mark C.; Rhee, Moono; Arsenlis, Athanasios; Barton, Nathan R.

    2017-06-01

    This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning—feature selection by regularized regression and cross-validation—to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.

  9. High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.

    1994-01-01

    Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.

  10. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less

  11. Focus group discussion in mathematical physics learning

    NASA Astrophysics Data System (ADS)

    Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.

    2018-03-01

    The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.

  12. System Identification and Verification of Rotorcraft UAVs

    NASA Astrophysics Data System (ADS)

    Carlton, Zachary M.

    The task of a controls engineer is to design and implement control logic. To complete this task, it helps tremendously to have an accurate model of the system to be controlled. Obtaining a very accurate system model is not a trivial one, as much time and money is usually associated with the development of such a model. A typical physics based approach can require hundreds of hours of flight time. In an iterative process the model is tuned in such a way that it accurately models the physical system's response. This process becomes even more complicated for unstable and highly non-linear systems such as the dynamics of rotorcraft. An alternate approach to solving this problem is to extract an accurate model by analyzing the frequency response of the system. This process involves recording the system's responses for a frequency range of input excitations. From this data, an accurate system model can then be deduced. Furthermore, it has been shown that with use of the software package CIFER® (Comprehensive Identification from FrEquency Responses), this process can both greatly reduce the cost of modeling a dynamic system and produce very accurate results. The topic of this thesis is to apply CIFER® to a quadcopter to extract a system model for the flight condition of hover. The quadcopter itself is comprised of off-the-shelf components with a Pixhack flight controller board running open source Ardupilot controller logic. In this thesis, both the closed and open loop systems are identified. The model is next compared to dissimilar flight data and verified in the time domain. Additionally, the ESC (Electronic Speed Controller) motor/rotor subsystem, which is comprised of all the vehicle's actuators, is also identified. This process required the development of a test bench environment, which included a GUI (Graphical User Interface), data pre and post processing, as well as the augmentation of the flight controller source code. This augmentation of code allowed for proper data logging rates of all needed parameters.

  13. Subthreshold SPICE Model Optimization

    NASA Astrophysics Data System (ADS)

    Lum, Gregory; Au, Henry; Neff, Joseph; Bozeman, Eric; Kamin, Nick; Shimabukuro, Randy

    2011-04-01

    The first step in integrated circuit design is the simulation of said design in software to verify proper functionally and design requirements. Properties of the process are provided by fabrication foundries in the form of SPICE models. These SPICE models contain the electrical data and physical properties of the basic circuit elements. A limitation of these models is that the data collected by the foundry only accurately model the saturation region. This is fine for most users, but when operating devices in the subthreshold region they are inadequate for accurate simulation results. This is why optimizing the current SPICE models to characterize the subthreshold region is so important. In order to accurately simulate this region of operation, MOSFETs of varying widths and lengths are fabricated and the electrical test data is collected. From the data collected the parameters of the model files are optimized through parameter extraction rather than curve fitting. With the completed optimized models the circuit designer is able to simulate circuit designs for the sub threshold region accurately.

  14. Passive Optical Technique to Measure Physical Properties of a Vibrating Surface

    DTIC Science & Technology

    2014-01-01

    it is not necessary to understand the details of a non-Lambertian BRDF to detect surface vibration phenomena, an accurate model incorporating physics...summarize the discussion of BRDF , while a physics-based BRDF model is not necessary to use scattered light as a surface vibration diagnostic, it may...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2014 2

  15. Prediction of energy expenditure and physical activity in preschoolers

    USDA-ARS?s Scientific Manuscript database

    Accurate, nonintrusive, and feasible methods are needed to predict energy expenditure (EE) and physical activity (PA) levels in preschoolers. Herein, we validated cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on accelerometry and heart rate (HR) ...

  16. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    PubMed Central

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  17. 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Waters, Jiajia

    Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.

  18. Near Identifiability of Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.

  19. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    PubMed Central

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Physical performance emerges from complex interactions among many physiological systems that are largely driven by the metabolic energy demanded. Quantifying metabolic demand is an essential step for revealing the many mechanisms of physical performance decrement, but accurate predictive models do not exist. The goal of this study was to investigate if a recently developed model of muscle energetics and force could be extended to reproduce the kinematics, kinetics, and metabolic demand of submaximal effort movement. Upright dynamic knee extension against various levels of ergometer load was simulated. Task energetics were estimated by combining the model of muscle contraction with validated models of lower limb musculotendon paths and segment dynamics. A genetic algorithm was used to compute the muscle excitations that reproduced the movement with the lowest energetic cost, which was determined to be an appropriate criterion for this task. Model predictions of oxygen uptake rate (VO2) were well within experimental variability for the range over which the model parameters were confidently known. The model's accurate estimates of metabolic demand make it useful for assessing the likelihood and severity of physical performance decrement for a given task as well as investigating underlying physiologic mechanisms. PMID:27248429

  20. Peppytides: Interactive Models of Polypeptide Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuckermann, Ron; Chakraborty, Promita; Derisi, Joe

    2014-01-21

    Peppytides are scaled, 3D-printed models of polypeptide chains that can be folded into accurate protein structures. Designed and created by Berkeley Lab Researcher, Promita Chakraborty, and Berkeley Lab Senior Scientist, Dr. Ron Zuckermann, Peppytides are accurate physical models of polypeptide chains that anyone can interact with and fold intro various protein structures - proving to be a great educational tool, resulting in a deeper understanding of these fascinating structures and how they function. Build your own Peppytide model and learn about how nature's machines fold into their intricate architectures!

  1. Peppytides: Interactive Models of Polypeptide Chains

    ScienceCinema

    Zuckermann, Ron; Chakraborty, Promita; Derisi, Joe

    2018-06-08

    Peppytides are scaled, 3D-printed models of polypeptide chains that can be folded into accurate protein structures. Designed and created by Berkeley Lab Researcher, Promita Chakraborty, and Berkeley Lab Senior Scientist, Dr. Ron Zuckermann, Peppytides are accurate physical models of polypeptide chains that anyone can interact with and fold intro various protein structures - proving to be a great educational tool, resulting in a deeper understanding of these fascinating structures and how they function. Build your own Peppytide model and learn about how nature's machines fold into their intricate architectures!

  2. Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.

    2018-04-01

    The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.

  3. A unified framework for mesh refinement in random and physical space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Stinis, Panos

    In recent work we have shown how an accurate reduced model can be utilized to perform mesh renement in random space. That work relied on the explicit knowledge of an accurate reduced model which is used to monitor the transfer of activity from the large to the small scales of the solution. Since this is not always available, we present in the current work a framework which shares the merits and basic idea of the previous approach but does not require an explicit knowledge of a reduced model. Moreover, the current framework can be applied for renement in both randommore » and physical space. In this manuscript we focus on the application to random space mesh renement. We study examples of increasing difficulty (from ordinary to partial differential equations) which demonstrate the effciency and versatility of our approach. We also provide some results from the application of the new framework to physical space mesh refinement.« less

  4. Analytical approximation of the InGaZnO thin-film transistors surface potential

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi

    2016-10-01

    Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.

  5. Vertical structure and physical processes of the Madden-Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening

    DOE PAGES

    Klingaman, Nicholas P.; Woolnough, Steven J.; Jiang, Xianan; ...

    2015-04-10

    Here, many theories for the Madden-Julian oscillation (MJO) focus on diabatic processes, particularly the evolution of vertical heating and moistening. Poor MJO performance in weather and climate models is often blamed on biases in these processes and their interactions with the large-scale circulation. We introduce one of the three components of a model evaluation project, which aims to connect MJO fidelity in models to their representations of several physical processes, focusing on diabatic heating and moistening. This component consists of 20 day hindcasts, initialized daily during two MJO events in winter 2009–2010. The 13 models exhibit a range of skill:more » several have accurate forecasts to 20 days lead, while others perform similarly to statistical models (8–11 days). Models that maintain the observed MJO amplitude accurately predict propagation, but not vice versa. We find no link between hindcast fidelity and the precipitation-moisture relationship, in contrast to other recent studies. There is also no relationship between models' performance and the evolution of their diabatic heating profiles with rain rate. A more robust association emerges between models' fidelity and net moistening: the highest-skill models show a clear transition from low-level moistening for light rainfall to midlevel moistening at moderate rainfall and upper level moistening for heavy rainfall. The midlevel moistening, arising from both dynamics and physics, may be most important. Accurately representing many processes may be necessary but not sufficient for capturing the MJO, which suggests that models fail to predict the MJO for a broad range of reasons and limits the possibility of finding a panacea.« less

  6. Inter-model analysis of tsunami-induced coastal currents

    NASA Astrophysics Data System (ADS)

    Lynett, Patrick J.; Gately, Kara; Wilson, Rick; Montoya, Luis; Arcas, Diego; Aytore, Betul; Bai, Yefei; Bricker, Jeremy D.; Castro, Manuel J.; Cheung, Kwok Fai; David, C. Gabriel; Dogan, Gozde Guney; Escalante, Cipriano; González-Vida, José Manuel; Grilli, Stephan T.; Heitmann, Troy W.; Horrillo, Juan; Kânoğlu, Utku; Kian, Rozita; Kirby, James T.; Li, Wenwen; Macías, Jorge; Nicolsky, Dmitry J.; Ortega, Sergio; Pampell-Manis, Alyssa; Park, Yong Sung; Roeber, Volker; Sharghivand, Naeimeh; Shelby, Michael; Shi, Fengyan; Tehranirad, Babak; Tolkova, Elena; Thio, Hong Kie; Velioğlu, Deniz; Yalçıner, Ahmet Cevdet; Yamazaki, Yoshiki; Zaytsev, Andrey; Zhang, Y. J.

    2017-06-01

    To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program organized a benchmarking workshop to evaluate the numerical modeling of tsunami currents. Thirteen teams of international researchers, using a set of tsunami models currently utilized for hazard mitigation studies, presented results for a series of benchmarking problems; these results are summarized in this paper. Comparisons focus on physical situations where the currents are shear and separation driven, and are thus de-coupled from the incident tsunami waveform. In general, we find that models of increasing physical complexity provide better accuracy, and that low-order three-dimensional models are superior to high-order two-dimensional models. Inside separation zones and in areas strongly affected by eddies, the magnitude of both model-data errors and inter-model differences can be the same as the magnitude of the mean flow. Thus, we make arguments for the need of an ensemble modeling approach for areas affected by large-scale turbulent eddies, where deterministic simulation may be misleading. As a result of the analyses presented herein, we expect that tsunami modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts.

  7. Chemoviscosity modeling for thermosetting resins

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Hou, T. H.; Bai, J. M.

    1985-01-01

    A chemoviscosity model, which describes viscosity rise profiles accurately under various cure cycles, and correlates viscosity data to the changes of physical properties associated with structural transformations of the thermosetting resin system during cure, was established. Work completed on chemoviscosity modeling for thermosetting resins is reported.

  8. What can formal methods offer to digital flight control systems design

    NASA Technical Reports Server (NTRS)

    Good, Donald I.

    1990-01-01

    Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.

  9. Studies of HZE particle interactions and transport for space radiation protection purposes

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Schimmerling, Walter; Wong, Mervyn

    1987-01-01

    The main emphasis is on developing general methods for accurately predicting high-energy heavy ion (HZE) particle interactions and transport for use by researchers in mission planning studies, in evaluating astronaut self-shielding factors, and in spacecraft shield design and optimization studies. The two research tasks are: (1) to develop computationally fast and accurate solutions to the Boltzmann (transport) equation; and (2) to develop accurate HZE interaction models, from fundamental physical considerations, for use as inputs into these transport codes. Accurate solutions to the HZE transport problem have been formulated through a combination of analytical and numerical techniques. In addition, theoretical models for the input interaction parameters are under development: stopping powers, nuclear absorption cross sections, and fragmentation parameters.

  10. Fast neural network surrogates for very high dimensional physics-based models in computational oceanography.

    PubMed

    van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M

    2007-05-01

    We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.

  11. Constructing high-accuracy intermolecular potential energy surface with multi-dimension Morse/Long-Range model

    NASA Astrophysics Data System (ADS)

    Zhai, Yu; Li, Hui; Le Roy, Robert J.

    2018-04-01

    Spectroscopically accurate Potential Energy Surfaces (PESs) are fundamental for explaining and making predictions of the infrared and microwave spectra of van der Waals (vdW) complexes, and the model used for the potential energy function is critically important for providing accurate, robust and portable analytical PESs. The Morse/Long-Range (MLR) model has proved to be one of the most general, flexible and accurate one-dimensional (1D) model potentials, as it has physically meaningful parameters, is flexible, smooth and differentiable everywhere, to all orders and extrapolates sensibly at both long and short ranges. The Multi-Dimensional Morse/Long-Range (mdMLR) potential energy model described herein is based on that 1D MLR model, and has proved to be effective and accurate in the potentiology of various types of vdW complexes. In this paper, we review the current status of development of the mdMLR model and its application to vdW complexes. The future of the mdMLR model is also discussed. This review can serve as a tutorial for the construction of an mdMLR PES.

  12. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    NASA Astrophysics Data System (ADS)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  13. Predictive Analytical Model for Isolator Shock-Train Location in a Mach 2.2 Direct-Connect Supersonic Combustion Tunnel

    NASA Astrophysics Data System (ADS)

    Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel

    2016-11-01

    This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.

  14. Individual Differences in Boys' and Girls' Timing and Tempo of Puberty: Modeling Development with Nonlinear Growth Models

    ERIC Educational Resources Information Center

    Marceau, Kristine; Ram, Nilam; Houts, Renate M.; Grimm, Kevin J.; Susman, Elizabeth J.

    2011-01-01

    Pubertal development is a nonlinear process progressing from prepubescent beginnings through biological, physical, and psychological changes to full sexual maturity. To tether theoretical concepts of puberty with sophisticated longitudinal, analytical models capable of articulating pubertal development more accurately, we used nonlinear…

  15. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaras, Nicolas J.

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  16. Reaction Wheel Disturbance Model Extraction Software - RWDMES

    NASA Technical Reports Server (NTRS)

    Blaurock, Carl

    2009-01-01

    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral densities); converting PSDs to order analysis data; extracting harmonics; initializing and simultaneously tuning a harmonic model and a wheel structural model; initializing and tuning a broadband model; and verifying the harmonic/broadband/structural model against the measurement data. Functional operation is through a MATLAB GUI that loads test data, performs the various analyses, plots evaluation data for assessment and refinement of analysis parameters, and exports the data to documentation or downstream analysis code. The harmonic models are defined as specified functions of frequency, typically speed-squared. The reaction wheel structural model is realized as mass, damping, and stiffness matrices (typically from a finite element analysis package) with the addition of a gyroscopic forcing matrix. The broadband noise model is realized as a set of speed-dependent filters. The tuning of the combined model is performed using nonlinear least squares techniques. RWDMES is implemented as a MATLAB toolbox comprising the Fit Manager for performing the model extraction, Data Manager for managing input data and output models, the Gyro Manager for modifying wheel structural models, and the Harmonic Editor for evaluating and tuning harmonic models. This software was validated using data from Goodrich E wheels, and from GSFC Lunar Reconnaissance Orbiter (LRO) wheels. The validation testing proved that RWDMES has the capability to extract accurate disturbance models from flight reaction wheels with minimal user effort.

  17. Linearized Flux Evolution (LiFE): A technique for rapidly adapting fluxes from full-physics radiative transfer models

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Crisp, David

    2018-05-01

    Solar and thermal radiation are critical aspects of planetary climate, with gradients in radiative energy fluxes driving heating and cooling. Climate models require that radiative transfer tools be versatile, computationally efficient, and accurate. Here, we describe a technique that uses an accurate full-physics radiative transfer model to generate a set of atmospheric radiative quantities which can be used to linearly adapt radiative flux profiles to changes in the atmospheric and surface state-the Linearized Flux Evolution (LiFE) approach. These radiative quantities describe how each model layer in a plane-parallel atmosphere reflects and transmits light, as well as how the layer generates diffuse radiation by thermal emission and by scattering light from the direct solar beam. By computing derivatives of these layer radiative properties with respect to dynamic elements of the atmospheric state, we can then efficiently adapt the flux profiles computed by the full-physics model to new atmospheric states. We validate the LiFE approach, and then apply this approach to Mars, Earth, and Venus, demonstrating the information contained in the layer radiative properties and their derivatives, as well as how the LiFE approach can be used to determine the thermal structure of radiative and radiative-convective equilibrium states in one-dimensional atmospheric models.

  18. Computation of turbulent boundary layers on curved surfaces, 1 June 1975 - 31 January 1976

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Chambers, T. L.

    1976-01-01

    An accurate method was developed for predicting effects of streamline curvature and coordinate system rotation on turbulent boundary layers. A new two-equation model of turbulence was developed which serves as the basis of the study. In developing the new model, physical reasoning is combined with singular perturbation methods to develop a rational, physically-based set of equations which are, on the one hand, as accurate as mixing-length theory for equilibrium boundary layers and, on the other hand, suitable for computing effects of curvature and rotation. The equations are solved numerically for several boundary layer flows over plane and curved surfaces. For incompressible boundary layers, results of the computations are generally within 10% of corresponding experimental data. Somewhat larger discrepancies are noted for compressible applications.

  19. Nicholas Metropolis Award Talk for Outstanding Doctoral Thesis Work in Computational Physics: Computational biophysics and multiscale modeling of blood cells and blood flow in health and disease

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry

    2011-03-01

    Computational biophysics is a large and rapidly growing area of computational physics. In this talk, we will focus on a number of biophysical problems related to blood cells and blood flow in health and disease. Blood flow plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network. Using a multiscale cell model we are able to accurately capture red blood cell mechanics, rheology, and dynamics in agreement with a number of single cell experiments. Further, this validated model yields accurate predictions of the blood rheological properties, cell migration, cell-free layer, and hemodynamic resistance in microvessels. In addition, we investigate blood related changes in malaria, which include a considerable stiffening of red blood cells and their cytoadherence to endothelium. For these biophysical problems computational modeling is able to provide new physical insights and capabilities for quantitative predictions of blood flow in health and disease.

  20. An unexpected way forward: towards a more accurate and rigorous protein-protein binding affinity scoring function by eliminating terms from an already simple scoring function.

    PubMed

    Swanson, Jon; Audie, Joseph

    2018-01-01

    A fundamental and unsolved problem in biophysical chemistry is the development of a computationally simple, physically intuitive, and generally applicable method for accurately predicting and physically explaining protein-protein binding affinities from protein-protein interaction (PPI) complex coordinates. Here, we propose that the simplification of a previously described six-term PPI scoring function to a four term function results in a simple expression of all physically and statistically meaningful terms that can be used to accurately predict and explain binding affinities for a well-defined subset of PPIs that are characterized by (1) crystallographic coordinates, (2) rigid-body association, (3) normal interface size, and hydrophobicity and hydrophilicity, and (4) high quality experimental binding affinity measurements. We further propose that the four-term scoring function could be regarded as a core expression for future development into a more general PPI scoring function. Our work has clear implications for PPI modeling and structure-based drug design.

  1. A computer program for modeling non-spherical eclipsing binary star systems

    NASA Technical Reports Server (NTRS)

    Wood, D. B.

    1972-01-01

    The accurate analysis of eclipsing binary light curves is fundamental to obtaining information on the physical properties of stars. The model described accounts for the important geometric and photometric distortions such as rotational and tidal distortion, gravity brightening, and reflection effect. This permits a more accurate analysis of interacting eclipsing star systems. The model is designed to be useful to anyone with moderate computing resources. The programs, written in FORTRAN 4 for the IBM 360, consume about 80k bytes of core. The FORTRAN program listings are provided, and the computational aspects are described in some detail.

  2. Simplified biased random walk model for RecA-protein-mediated homology recognition offers rapid and accurate self-assembly of long linear arrays of binding sites

    NASA Astrophysics Data System (ADS)

    Kates-Harbeck, Julian; Tilloy, Antoine; Prentiss, Mara

    2013-07-01

    Inspired by RecA-protein-based homology recognition, we consider the pairing of two long linear arrays of binding sites. We propose a fully reversible, physically realizable biased random walk model for rapid and accurate self-assembly due to the spontaneous pairing of matching binding sites, where the statistics of the searched sample are included. In the model, there are two bound conformations, and the free energy for each conformation is a weakly nonlinear function of the number of contiguous matched bound sites.

  3. Coronal loop seismology using damping of standing kink oscillations by mode coupling. II. additional physical effects and Bayesian analysis

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Anfinogentov, S.; Nisticò, G.; Goddard, C. R.; Nakariakov, V. M.

    2017-04-01

    Context. The strong damping of kink oscillations of coronal loops can be explained by mode coupling. The damping envelope depends on the transverse density profile of the loop. Observational measurements of the damping envelope have been used to determine the transverse loop structure which is important for understanding other physical processes such as heating. Aims: The general damping envelope describing the mode coupling of kink waves consists of a Gaussian damping regime followed by an exponential damping regime. Recent observational detection of these damping regimes has been employed as a seismological tool. We extend the description of the damping behaviour to account for additional physical effects, namely a time-dependent period of oscillation, the presence of additional longitudinal harmonics, and the decayless regime of standing kink oscillations. Methods: We examine four examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We use forward modelling of the loop position and investigate the dependence on the model parameters using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Results: Our improvements to the physical model combined with the use of Bayesian inference and MCMC produce improved estimates of model parameters and their uncertainties. Calculation of the Bayes factor also allows us to compare the suitability of different physical models. We also use a new method based on spline interpolation of the zeroes of the oscillation to accurately describe the background trend of the oscillating loop. Conclusions: This powerful and robust method allows for accurate seismology of coronal loops, in particular the transverse density profile, and potentially reveals additional physical effects.

  4. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems.

    PubMed

    Bogatyrenko, Evgeniya; Pompey, Pascal; Hanebeck, Uwe D

    2011-05-01

    Tracking of beating heart motion in a robotic surgery system is required for complex cardiovascular interventions. A heart surface motion tracking method is developed, including a stochastic physics-based heart surface model and an efficient reconstruction algorithm. The algorithm uses the constraints provided by the model that exploits the physical characteristics of the heart. The main advantage of the model is that it is more realistic than most standard heart models. Additionally, no explicit matching between the measurements and the model is required. The application of meshless methods significantly reduces the complexity of physics-based tracking. Based on the stochastic physical model of the heart surface, this approach considers the motion of the intervention area and is robust to occlusions and reflections. The tracking algorithm is evaluated in simulations and experiments on an artificial heart. Providing higher accuracy than the standard model-based methods, it successfully copes with occlusions and provides high performance even when all measurements are not available. Combining the physical and stochastic description of the heart surface motion ensures physically correct and accurate prediction. Automatic initialization of the physics-based cardiac motion tracking enables system evaluation in a clinical environment.

  5. Low order physical models of vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2016-11-01

    In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.

  6. Methods for compressible multiphase flows and their applications

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  7. A Hybrid Physics-Based Data-Driven Approach for Point-Particle Force Modeling

    NASA Astrophysics Data System (ADS)

    Moore, Chandler; Akiki, Georges; Balachandar, S.

    2017-11-01

    This study improves upon the physics-based pairwise interaction extended point-particle (PIEP) model. The PIEP model leverages a physical framework to predict fluid mediated interactions between solid particles. While the PIEP model is a powerful tool, its pairwise assumption leads to increased error in flows with high particle volume fractions. To reduce this error, a regression algorithm is used to model the differences between the current PIEP model's predictions and the results of direct numerical simulations (DNS) for an array of monodisperse solid particles subjected to various flow conditions. The resulting statistical model and the physical PIEP model are superimposed to construct a hybrid, physics-based data-driven PIEP model. It must be noted that the performance of a pure data-driven approach without the model-form provided by the physical PIEP model is substantially inferior. The hybrid model's predictive capabilities are analyzed using more DNS. In every case tested, the hybrid PIEP model's prediction are more accurate than those of physical PIEP model. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1315138 and the U.S. DOE, NNSA, ASC Program, as a Cooperative Agreement under Contract No. DE-NA0002378.

  8. Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model

    NASA Astrophysics Data System (ADS)

    Mejer Hansen, Thomas

    2017-04-01

    Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.

  9. Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

    DTIC Science & Technology

    2015-03-01

    interest include metals, ceramics , minerals, and energetic materials . Accurate, efficient, stable, and thermodynamically consistent models for...Clayton JD. Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic . AIMS Materials Science. 2014;1...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL

  10. Prediction of porosity of food materials during drying: Current challenges and directions.

    PubMed

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  11. Communication: a density functional with accurate fractional-charge and fractional-spin behaviour for s-electrons.

    PubMed

    Johnson, Erin R; Contreras-García, Julia

    2011-08-28

    We develop a new density-functional approach combining physical insight from chemical structure with treatment of multi-reference character by real-space modeling of the exchange-correlation hole. We are able to recover, for the first time, correct fractional-charge and fractional-spin behaviour for atoms of groups 1 and 2. Based on Becke's non-dynamical correlation functional [A. D. Becke, J. Chem. Phys. 119, 2972 (2003)] and explicitly accounting for core-valence separation and pairing effects, this method is able to accurately describe dissociation and strong correlation in s-shell many-electron systems. © 2011 American Institute of Physics

  12. Mathematical and Numerical Techniques in Energy and Environmental Modeling

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Ewing, R. E.

    Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms

  13. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  14. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations.

    PubMed

    Kerl, Paul Y; Zhang, Wenxian; Moreno-Cruz, Juan B; Nenes, Athanasios; Realff, Matthew J; Russell, Armistead G; Sokol, Joel; Thomas, Valerie M

    2015-09-01

    Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004-2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies.

  15. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations

    PubMed Central

    Kerl, Paul Y.; Zhang, Wenxian; Moreno-Cruz, Juan B.; Nenes, Athanasios; Realff, Matthew J.; Russell, Armistead G.; Sokol, Joel; Thomas, Valerie M.

    2015-01-01

    Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004–2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies. PMID:26283358

  16. Numerical simulation of dune-flat bed transition and stage‐discharge relationship with hysteresis effect

    USGS Publications Warehouse

    Shimizu, Yasuyuki; Giri, Sanjay; Yamaguchi, Satomi; Nelson, Jonathan M.

    2009-01-01

    This work presents recent advances on morphodynamic modeling of bed forms under unsteady discharge. This paper includes further development of a morphodynamic model proposed earlier by Giri and Shimizu (2006a). This model reproduces the temporal development of river dunes and accurately replicates the physical properties associated with bed form evolution. Model results appear to provide accurate predictions of bed form geometry and form drag over bed forms for arbitrary steady flows. However, accurate predictions of temporal changes of form drag are key to the prediction of stage‐discharge relation during flood events. Herein, the model capability is extended to replicate the dune–flat bed transition, and in turn, the variation of form drag produced by the temporal growth or decay of bed forms under unsteady flow conditions. Some numerical experiments are performed to analyze hysteresis of the stage‐discharge relationship caused by the transition between dune and flat bed regimes during rising and falling stages of varying flows. The numerical model successfully simulates dune–flat bed transition and the associated hysteresis of the stage‐discharge relationship; this is in good agreement with physical observations but has been treated in the past only using empirical methods. A hypothetical relationship for a sediment parameter (the mean step length) is proposed to a first level of approximation that enables reproduction of the dune–flat bed transition. The proposed numerical model demonstrates its ability to address an important practical problem associated with bed form evolution and flow resistance in varying flows.

  17. Development of physical and mathematical models for the Porous Ceramic Tube Plant Nutrification System (PCTPNS)

    NASA Technical Reports Server (NTRS)

    Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.

    1992-01-01

    A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.

  18. Simulations of string vibrations with boundary conditions of third kind using the functional transformation method

    NASA Astrophysics Data System (ADS)

    Trautmann, L.; Petrausch, S.; Bauer, M.

    2005-09-01

    The functional transformation method (FTM) is an established mathematical method for accurate simulation of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. It is a frequency-domain method based on the decomposition into eigenvectors and eigenfrequencies of the underlying physical problem. In this article, the FTM is applied to real-time simulations of vibrating strings which are ideally fixed at one end while the fixing at the other end is modeled by a frequency-dependent input impedance. Thus, boundary conditions of third kind are applied to the model at the end fixed with the input impedance. It is shown that accurate and stable simulations are achieved with nearly the same computational cost as with strings ideally fixed at both ends.

  19. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less

  20. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions d) role of macropores on base flow during wetting and drying conditions. In addition to its use as a potential predictive and exploratory science tool, we present a test case for the application of model in water management by mapping of water table decline index for the whole watershed. Also discussed will be the efficient parallelization strategy of the model for high spatio-temporal resolution simulations.

  1. Implementing a modeling software for animated protein-complex interactions using a physics simulation library.

    PubMed

    Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko

    2014-12-01

    To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.

  2. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.; Wu, Chris K.; Lin, Y. H.

    1991-01-01

    A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.

  3. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  4. A complex permittivity model for field estimation of soil water contents using time domain reflectometry

    USDA-ARS?s Scientific Manuscript database

    Accurate electromagnetic sensing of soil water contents (') under field conditions is complicated by the dependence of permittivity on specific surface area, temperature, and apparent electrical conductivity, all which may vary across space or time. We present a physically-based mixing model to pred...

  5. Advanced Chemical Modeling for Turbulent Combustion Simulations

    DTIC Science & Technology

    2012-05-03

    premixed combustion. The chemistry work proposes a method for defining jet fuel surrogates, describes how different sub- mechanisms can be incorporated...Chemical Modeling For Turbulent Combustion Simulations Final Report submitted by: Heinz Pitsch (PI) Stanford University Mechanical Engineering Flow Physics...predict the combustion characteristics of fuel oxidation and pollutant emissions from engines . The relevant fuel chemistry must be accurately modeled

  6. A dental vision system for accurate 3D tooth modeling.

    PubMed

    Zhang, Li; Alemzadeh, K

    2006-01-01

    This paper describes an active vision system based reverse engineering approach to extract the three-dimensional (3D) geometric information from dental teeth and transfer this information into Computer-Aided Design/Computer-Aided Manufacture (CAD/CAM) systems to improve the accuracy of 3D teeth models and at the same time improve the quality of the construction units to help patient care. The vision system involves the development of a dental vision rig, edge detection, boundary tracing and fast & accurate 3D modeling from a sequence of sliced silhouettes of physical models. The rig is designed using engineering design methods such as a concept selection matrix and weighted objectives evaluation chart. Reconstruction results and accuracy evaluation are presented on digitizing different teeth models.

  7. Inverse and Predictive Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syracuse, Ellen Marie

    The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an evenmore » greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.« less

  8. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less

  9. Accounting for the influence of salt water in the physics required for processing underwater UXO EMI signals

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Barrowes, Benjamin E.; Shamatava, Irma; Sigman, John; O'Neill, Kevin A.

    2018-05-01

    Processing electromagnetic induction signals from subsurface targets, for purposes of discrimination, requires accurate physical models. To date, successful approaches for on-land cases have entailed advanced modeling of responses by the targets themselves, with quite adequate treatment of instruments as well. Responses from the environment were typically slight and/or were treated very simply. When objects are immersed in saline solutions, however, more sophisticated modeling of the diffusive EMI physics in the environment is required. One needs to account for the response of the environment itself as well as the environment's frequency and time-dependent effects on both primary and secondary fields, from sensors and targets, respectively. Here we explicate the requisite physics and identify its effects quantitatively via analytical, numerical, and experimental investigations. Results provide a path for addressing the quandaries posed by previous underwater measurements and indicate how the environmental physics may be included in more successful processing.

  10. Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models

    NASA Astrophysics Data System (ADS)

    Field, Scott E.; Galley, Chad R.; Hesthaven, Jan S.; Kaye, Jason; Tiglio, Manuel

    2014-07-01

    We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mcfit) online operations, where cfit denotes the fitting function operation count and, typically, m ≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in generating new waveforms with a surrogate. As waveform generation is one of the dominant costs in parameter estimation algorithms and parameter space exploration, surrogate models offer a new and practical way to dramatically accelerate such studies without impacting accuracy. Surrogates built in this paper, as well as others, are available from GWSurrogate, a publicly available python package.

  11. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.

    PubMed

    Tao, Jianmin; Mo, Yuxiang

    2016-08-12

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.

  12. Theoretical modeling of laser-induced plasmas using the ATOMIC code

    NASA Astrophysics Data System (ADS)

    Colgan, James; Johns, Heather; Kilcrease, David; Judge, Elizabeth; Barefield, James, II; Clegg, Samuel; Hartig, Kyle

    2014-10-01

    We report on efforts to model the emission spectra generated from laser-induced breakdown spectroscopy (LIBS). LIBS is a popular and powerful method of quickly and accurately characterizing unknown samples in a remote manner. In particular, LIBS is utilized by the ChemCam instrument on the Mars Science Laboratory. We model the LIBS plasma using the Los Alamos suite of atomic physics codes. Since LIBS plasmas generally have temperatures of somewhere between 3000 K and 12000 K, the emission spectra typically result from the neutral and singly ionized stages of the target atoms. We use the Los Alamos atomic structure and collision codes to generate sets of atomic data and use the plasma kinetics code ATOMIC to perform LTE or non-LTE calculations that generate level populations and an emission spectrum for the element of interest. In this presentation we compare the emission spectrum from ATOMIC with an Fe LIBS laboratory-generated plasma as well as spectra from the ChemCam instrument. We also discuss various physics aspects of the modeling of LIBS plasmas that are necessary for accurate characterization of the plasma, such as multi-element target composition effects, radiation transport effects, and accurate line shape treatments. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  13. Lanthanide/Actinide Opacities

    NASA Astrophysics Data System (ADS)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  14. A volumetric ablation model of EPDM considering complex physicochemical process in porous structure of char layer

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Xiao-Jing, Yu; Jian-Ming, Ma; Yi-Wen, Guan; Jiang, Li; Qiang, Li; Sa, Yang

    2017-06-01

    A volumetric ablation model for EPDM (ethylene- propylene-diene monomer) is established in this paper. This model considers the complex physicochemical process in the porous structure of a char layer. An ablation physics model based on a porous structure of a char layer and another model of heterogeneous volumetric ablation char layer physics are then built. In the model, porosity is used to describe the porous structure of a char layer. Gas diffusion and chemical reactions are introduced to the entire porous structure. Through detailed formation analysis, the causes of the compact or loose structure in the char layer and chemical vapor deposition (CVD) reaction between pyrolysis gas and char layer skeleton are introduced. The Arrhenius formula is adopted to determine the methods for calculating carbon deposition rate C which is the consumption rate caused by thermochemical reactions in the char layer, and porosity evolution. The critical porosity value is used as a criterion for char layer porous structure failure under gas flow and particle erosion. This critical porosity value is obtained by fitting experimental parameters and surface porosity of the char layer. Linear ablation and mass ablation rates are confirmed with the critical porosity value. Results of linear ablation and mass ablation rate calculations generally coincide with experimental results, suggesting that the ablation analysis proposed in this paper can accurately reflect practical situations and that the physics and mathematics models built are accurate and reasonable.

  15. Ion Yields in the Coupled Chemical and Physical Dynamics Model of Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Knochenmuss, Richard

    2015-08-01

    The Coupled Chemical and Physical Dynamics (CPCD) model of matrix assisted laser desorption ionization has been restricted to relative rather than absolute yield comparisons because the rate constant for one step in the model was not accurately known. Recent measurements are used to constrain this constant, leading to good agreement with experimental yield versus fluence data for 2,5-dihydroxybenzoic acid. Parameters for alpha-cyano-4-hydroxycinnamic acid are also estimated, including contributions from a possible triplet state. The results are compared with the polar fluid model, the CPCD is found to give better agreement with the data.

  16. Modelling baryonic effects on galaxy cluster mass profiles

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-06-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  17. Design and modelling of a 3D compliant leg for Bioloid

    NASA Astrophysics Data System (ADS)

    Couto, Mafalda; Santos, Cristina; Machado, José

    2012-09-01

    In the growing field of rehabilitation robotics, the modelling of a real robot is a complex and passionate challenge. On the crossing point of mechanics, physics and computer-science, the development of a complete 3D model involves the knowledge of the different physic properties, for an accurate simulation. In this paper, it is proposed the design of an efficient three-dimensional model of the quadruped Bioloid robot setting segmented pantographic legs, in order to actively retract the quadruped legs during locomotion and minimizing large forces due to shocks, such that the robot is able to safely and dynamically interact with the user or the environment.

  18. Measurement of Pressure Responses in a Physical Model of a Human Head with High Shape Fidelity Based on Ct/mri Data

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yusuke; Tachiya, Hiroshi; Anata, Kenji; Hojo, Akihiro

    This study discusses a head injury mechanism in case of a human head subjected to impact, from results of impact experiments by using a physical model of a human head with high-shape fidelity. The physical model was constructed by using rapid prototyping technology from the three-dimensional CAD data, which obtained from CT/MRI images of a subject's head. As results of the experiments, positive pressure responses occurred at the impacted site, whereas negative pressure responses occurred at opposite the impacted site. Moreover, the absolute maximum value of pressure occurring at the frontal region of the intracranial space of the head model resulted in same or higher than that at the occipital site in each case that the impact force was imposed on frontal or occipital region. This result has not been showed in other study using simple shape physical models. And, the result corresponds with clinical evidences that brain contusion mainly occurs at the frontal part in each impact direction. Thus, physical model with accurate skull shape is needed to clarify the mechanism of brain contusion.

  19. An improved kinetics approach to describe the physical stability of amorphous solid dispersions.

    PubMed

    Yang, Jiao; Grey, Kristin; Doney, John

    2010-01-15

    The recrystallization of amorphous solid dispersions may lead to a loss in the dissolution rate, and consequently reduce bioavailability. The purpose of this work is to understand factors governing the recrystallization of amorphous drug-polymer solid dispersions, and develop a kinetics model capable of accurately predicting their physical stability. Recrystallization kinetics was measured using differential scanning calorimetry for initially amorphous efavirenz-polyvinylpyrrolidone solid dispersions stored at controlled temperature and relative humidity. The experimental measurements were fitted by a new kinetic model to estimate the recrystallization rate constant and microscopic geometry of crystal growth. The new kinetics model was used to illustrate the governing factors of amorphous solid dispersions stability. Temperature was found to affect efavirenz recrystallization in an Arrhenius manner, while recrystallization rate constant was shown to increase linearly with relative humidity. Polymer content tremendously inhibited the recrystallization process by increasing the crystallization activation energy and decreasing the equilibrium crystallinity. The new kinetic model was validated by the good agreement between model fits and experiment measurements. A small increase in polyvinylpyrrolidone resulted in substantial stability enhancements of efavirenz amorphous solid dispersion. The new established kinetics model provided more accurate predictions than the Avrami equation.

  20. Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts

    USGS Publications Warehouse

    Huang, W.; Zheng, Lingyun; Zhan, X.

    2002-01-01

    Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.

  1. Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2016-01-01

    Variable-speed power turbines (VSPTs) operate at low Reynolds numbers and with a wide range of incidence angles. Transition, separation, and the relevant physics leading to them are important to VSPT flow. Higher fidelity tools such as large eddy simulation (LES) may be needed to resolve the flow features necessary for accurate predictive capability and design of such turbines. A survey conducted for this report explores the requirements for such computations. The survey is limited to the simulation of two-dimensional flow cases and endwalls are not included. It suggests that a grid resolution necessary for this type of simulation to accurately represent the physics may be of the order of Delta(x)+=45, Delta(x)+ =2 and Delta(z)+=17. Various subgrid-scale (SGS) models have been used and except for the Smagorinsky model, all seem to perform well and in some instances the simulations worked well without SGS modeling. A method of specifying the inlet conditions such as synthetic eddy modeling (SEM) is necessary to correctly represent the inlet conditions.

  2. Accurate Cell Division in Bacteria: How Does a Bacterium Know Where its Middle Is?

    NASA Astrophysics Data System (ADS)

    Howard, Martin; Rutenberg, Andrew

    2004-03-01

    I will discuss the physical principles lying behind the acquisition of accurate positional information in bacteria. A good application of these ideas is to the rod-shaped bacterium E. coli which divides precisely at its cellular midplane. This positioning is controlled by the Min system of proteins. These proteins coherently oscillate from end to end of the bacterium. I will present a reaction-diffusion model that describes the diffusion of the Min proteins, and their binding/unbinding from the cell membrane. The system possesses an instability that spontaneously generates the Min oscillations, which control accurate placement of the midcell division site. I will then discuss the role of fluctuations in protein dynamics, and investigate whether fluctuations set optimal protein concentration levels. Finally I will examine cell division in a different bacteria, B. subtilis. where different physical principles are used to regulate accurate cell division. See: Howard, Rutenberg, de Vet: Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87 278102 (2001). Howard, Rutenberg: Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102 (2003). Howard: A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335 655-663 (2004).

  3. Performance Modeling of Experimental Laser Lightcrafts

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)

    2001-01-01

    A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  4. Experimental Investigation of a 2D Supercritical Circulation-Control Airfoil Using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Yao, Chung-Sheng; Allan, Brian G.

    2006-01-01

    Recent efforts in extreme short takeoff and landing aircraft configurations have renewed the interest in circulation control wing design and optimization. The key to accurately designing and optimizing these configurations rests in the modeling of the complex physics of these flows. This paper will highlight the physics of the stagnation and separation regions on two typical circulation control airfoil sections.

  5. High-Accurate, Physics-Based Wake Simulation Techniques

    DTIC Science & Technology

    2015-01-27

    to accepting the use of computational fluid dynamics models to supplement some of the research. The scientists Lewellen and Lewellen [13] in 1996...resolved in today’s climate es- pecially concerning CFD and experimental. Multiple programs have been established such as the Aircraft Vortex Spacing ...step the entire matrix is solved at once creating inconsistencies when applied to the physics of a fluid mechanics problem where information changes

  6. Modelling, Visibility Testing and Projection of an Orthogonal Three Dimensional World in Support of a Single Camera Vision System

    DTIC Science & Technology

    1992-03-01

    construction were completed and data, "’dm blue prints and physical measurements, was entered concurrent with the coding of routines for data retrieval. While...desirable for that view to accurately reflect what a person (or camera) would see if they were to stand at the same point in the physical world. To... physical dimensions. A parallel projection does not perform this scaling and is therefore not suitable to our application. B. GENERAL PERSPECTIVE

  7. Physical principles for DNA tile self-assembly.

    PubMed

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  8. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong

    2017-11-01

    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  9. Implicit Space-Time Conservation Element and Solution Element Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda; Wang, Xiao-Yen

    1999-01-01

    Artificial numerical dissipation is in important issue in large Reynolds number computations. In such computations, the artificial dissipation inherent in traditional numerical schemes can overwhelm the physical dissipation and yield inaccurate results on meshes of practical size. In the present work, the space-time conservation element and solution element method is used to construct new and accurate implicit numerical schemes such that artificial numerical dissipation will not overwhelm physical dissipation. Specifically, these schemes have the property that numerical dissipation vanishes when the physical viscosity goes to zero. These new schemes therefore accurately model the physical dissipation even when it is extremely small. The new schemes presented are two highly accurate implicit solvers for a convection-diffusion equation. The two schemes become identical in the pure convection case, and in the pure diffusion case. The implicit schemes are applicable over the whole Reynolds number range, from purely diffusive equations to convection-dominated equations with very small viscosity. The stability and consistency of the schemes are analysed, and some numerical results are presented. It is shown that, in the inviscid case, the new schemes become explicit and their amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, their principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.

  10. Principal axes estimation using the vibration modes of physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2008-06-01

    This paper addresses the issue of accurate, effective, computationally efficient, fast, and fully automated 2-D object orientation and scaling factor estimation. The object orientation is calculated using object principal axes estimation. The approach relies on the object's frequency-based features. The frequency-based features used by the proposed technique are extracted by a 2-D physics-based deformable model that parameterizes the objects shape. The method was evaluated on synthetic and real images. The experimental results demonstrate the accuracy of the method, both in orientation and the scaling estimations.

  11. Collective gradient sensing and chemotaxis: modeling and recent developments

    NASA Astrophysics Data System (ADS)

    Camley, Brian A.

    2018-06-01

    Cells measure a vast variety of signals, from their environment’s stiffness to chemical concentrations and gradients; physical principles strongly limit how accurately they can do this. However, when many cells work together, they can cooperate to exceed the accuracy of any single cell. In this topical review, I will discuss the experimental evidence showing that cells collectively sense gradients of many signal types, and the models and physical principles involved. I also propose new routes by which experiments and theory can expand our understanding of these problems.

  12. Quasi-steady aerodynamic model of clap-and-fling flapping MAV and validation using free-flight data.

    PubMed

    Armanini, S F; Caetano, J V; Croon, G C H E de; Visser, C C de; Mulder, M

    2016-06-30

    Flapping-wing aerodynamic models that are accurate, computationally efficient and physically meaningful, are challenging to obtain. Such models are essential to design flapping-wing micro air vehicles and to develop advanced controllers enhancing the autonomy of such vehicles. In this work, a phenomenological model is developed for the time-resolved aerodynamic forces on clap-and-fling ornithopters. The model is based on quasi-steady theory and accounts for inertial, circulatory, added mass and viscous forces. It extends existing quasi-steady approaches by: including a fling circulation factor to account for unsteady wing-wing interaction, considering real platform-specific wing kinematics and different flight regimes. The model parameters are estimated from wind tunnel measurements conducted on a real test platform. Comparison to wind tunnel data shows that the model predicts the lift forces on the test platform accurately, and accounts for wing-wing interaction effectively. Additionally, validation tests with real free-flight data show that lift forces can be predicted with considerable accuracy in different flight regimes. The complete parameter-varying model represents a wide range of flight conditions, is computationally simple, physically meaningful and requires few measurements. It is therefore potentially useful for both control design and preliminary conceptual studies for developing new platforms.

  13. Measuring Global Physical Health in Children with Cerebral Palsy: Illustration of a Multidimensional Bi-factor Model and Computerized Adaptive Testing

    PubMed Central

    Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.; Hambleton, Ronald K.; Montpetit, Kathleen; Bilodeau, Nathalie; Gorton, George E.; Watson, Kyle; Tucker, Carole A

    2009-01-01

    Purpose The purpose of this study was to apply a bi-factor model for the determination of test dimensionality and a multidimensional CAT using computer simulations of real data for the assessment of a new global physical health measure for children with cerebral palsy (CP). Methods Parent respondents of 306 children with cerebral palsy were recruited from four pediatric rehabilitation hospitals and outpatient clinics. We compared confirmatory factor analysis results across four models: (1) one-factor unidimensional; (2) two-factor multidimensional (MIRT); (3) bi-factor MIRT with fixed slopes; and (4) bi-factor MIRT with varied slopes. We tested whether the general and content (fatigue and pain) person score estimates could discriminate across severity and types of CP, and whether score estimates from a simulated CAT were similar to estimates based on the total item bank, and whether they correlated as expected with external measures. Results Confirmatory factor analysis suggested separate pain and fatigue sub-factors; all 37 items were retained in the analyses. From the bi-factor MIRT model with fixed slopes, the full item bank scores discriminated across levels of severity and types of CP, and compared favorably to external instruments. CAT scores based on 10- and 15-item versions accurately captured the global physical health scores. Conclusions The bi-factor MIRT CAT application, especially the 10- and 15-item version, yielded accurate global physical health scores that discriminated across known severity groups and types of CP, and correlated as expected with concurrent measures. The CATs have potential for collecting complex data on the physical health of children with CP in an efficient manner. PMID:19221892

  14. Forecasting runout of rock and debris avalanches

    USGS Publications Warehouse

    Iverson, Richard M.; Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L.

    2006-01-01

    Physically based mathematical models and statistically based empirical equations each may provide useful means of forecasting runout of rock and debris avalanches. This paper compares the foundations, strengths, and limitations of a physically based model and a statistically based forecasting method, both of which were developed to predict runout across three-dimensional topography. The chief advantage of the physically based model results from its ties to physical conservation laws and well-tested axioms of soil and rock mechanics, such as the Coulomb friction rule and effective-stress principle. The output of this model provides detailed information about the dynamics of avalanche runout, at the expense of high demands for accurate input data, numerical computation, and experimental testing. In comparison, the statistical method requires relatively modest computation and no input data except identification of prospective avalanche source areas and a range of postulated avalanche volumes. Like the physically based model, the statistical method yields maps of predicted runout, but it provides no information on runout dynamics. Although the two methods differ significantly in their structure and objectives, insights gained from one method can aid refinement of the other.

  15. A Stratified Acoustic Model Accounting for Phase Shifts for Underwater Acoustic Networks

    PubMed Central

    Wang, Ping; Zhang, Lin; Li, Victor O. K.

    2013-01-01

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated. PMID:23669708

  16. Statistically Modeling I-V Characteristics of CNT-FET with LASSO

    NASA Astrophysics Data System (ADS)

    Ma, Dongsheng; Ye, Zuochang; Wang, Yan

    2017-08-01

    With the advent of internet of things (IOT), the need for studying new material and devices for various applications is increasing. Traditionally we build compact models for transistors on the basis of physics. But physical models are expensive and need a very long time to adjust for non-ideal effects. As the vision for the application of many novel devices is not certain or the manufacture process is not mature, deriving generalized accurate physical models for such devices is very strenuous, whereas statistical modeling is becoming a potential method because of its data oriented property and fast implementation. In this paper, one classical statistical regression method, LASSO, is used to model the I-V characteristics of CNT-FET and a pseudo-PMOS inverter simulation based on the trained model is implemented in Cadence. The normalized relative mean square prediction error of the trained model versus experiment sample data and the simulation results show that the model is acceptable for digital circuit static simulation. And such modeling methodology can extend to general devices.

  17. A stratified acoustic model accounting for phase shifts for underwater acoustic networks.

    PubMed

    Wang, Ping; Zhang, Lin; Li, Victor O K

    2013-05-13

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated.

  18. Astronomical Ice: The Effects of Treating Ice as a Porous Media on the Dynamics and Evolution of Extraterrestrial Ice-Ocean Environments

    NASA Astrophysics Data System (ADS)

    Buffo, J.; Schmidt, B. E.

    2015-12-01

    With the prevalence of water and ice rich environments in the solar system, and likely the universe, becoming more apparent, understanding the evolutionary dynamics and physical processes of such locales is of great importance. Piqued interest arises from the understanding that the persistence of all known life depends on the presence of liquid water. As in situ investigation is currently infeasible, accurate numerical modeling is the best technique to demystify these environments. We will discuss an evolving model of ice-ocean interaction aimed at realistically describing the behavior of the ice-ocean interface by treating basal ice as a porous media, and its possible implications on the formation of astrobiological niches. Treating ice as a porous media drastically affects the thermodynamic properties it exhibits. Thus inclusion of this phenomenon is critical in accurately representing the dynamics and evolution of all ice-ocean environments. This model utilizes equations that describe the dynamics of sea ice when it is treated as a porous media (Hunke et. al. 2011), coupled with a basal melt and accretion model (Holland and Jenkins 1999). Combined, these two models produce the most accurate description of the processes occurring at the base of terrestrial sea ice and ice shelves, capable of resolving variations within the ice due to environmental pressures. While these models were designed for application to terrestrial environments, the physics occurring at any ice-water interface is identical, and these models can be used to represent the evolution of a variety of icy astronomical bodies. As terrestrial ice shelves provide a close analog to planetary ice-ocean environments, we truth test the models validity against observations of ice shelves. We apply this model to the ice-ocean interface of the icy Galilean moon Europa. We include profiles of temperature, salinity, solid fraction, and Darcy velocity, as well as temporally and spatially varying melt and accretion rates. A porous medium is an ideal place for the coalescence of nutrients and the formation of energy gradients, key controllers of biological activity. Understanding the physics that influence ice-ocean exchange is thus essential in assessing the habitability of Europa and its contemporaries.

  19. Global Water Cycle Agreement in the Climate Models Assessed in the IPCC AR4

    NASA Technical Reports Server (NTRS)

    Waliser, D.; Seo, K. -W.; Schubert, S.; Njoku, E.

    2007-01-01

    This study examines the fidelity of the global water cycle in the climate model simulations assessed in the IPCC Fourth Assessment Report. The results demonstrate good model agreement in quantities that have had a robust global observational basis and that are physically unambiguous. The worst agreement occurs for quantities that have both poor observational constraints and whose model representations can be physically ambiguous. In addition, components involving water vapor (frozen water) typically exhibit the best (worst) agreement, and fluxes typically exhibit better agreement than reservoirs. These results are discussed in relation to the importance of obtaining accurate model representation of the water cycle and its role in climate change. Recommendations are also given for facilitating the needed model improvements.

  20. Monitoring Marine Weather Systems Using Quikscat and TRMM Data

    NASA Technical Reports Server (NTRS)

    Liu, W.; Tang, W.; Datta, A.; Hsu, C.

    1999-01-01

    We do not understand nor are able to predict marine storms, particularly tropical cyclones, sufficiently well because ground-based measurements are sparse and operational numerical weather prediction models do not have sufficient spatial resolution nor accurate parameterization of the physics.

  1. Comparing the Hydrologic and Watershed Processes between a Full Scale Stochastic Model Versus a Scaled Physical Model of Bell Canyon

    NASA Astrophysics Data System (ADS)

    Hernandez, K. F.; Shah-Fairbank, S.

    2016-12-01

    The San Dimas Experimental Forest has been designated as a research area by the United States Forest Service for use as a hydrologic testing facility since 1933 to investigate watershed hydrology of the 27 square mile land. Incorporation of a computer model provides validity to the testing of the physical model. This study focuses on San Dimas Experimental Forest's Bell Canyon, one of the triad of watersheds contained within the Big Dalton watershed of the San Dimas Experimental Forest. A scaled physical model was constructed of Bell Canyon to highlight watershed characteristics and each's effect on runoff. The physical model offers a comprehensive visualization of a natural watershed and can vary the characteristics of rainfall intensity, slope, and roughness through interchangeable parts and adjustments to the system. The scaled physical model is validated and calibrated through a HEC-HMS model to assure similitude of the system. Preliminary results of the physical model suggest that a 50-year storm event can be represented by a peak discharge of 2.2 X 10-3 cfs. When comparing the results to HEC-HMS, this equates to a flow relationship of approximately 1:160,000, which can be used to model other return periods. The completion of the Bell Canyon physical model can be used for educational instruction in the classroom, outreach in the community, and further research using the model as an accurate representation of the watershed present in the San Dimas Experimental Forest.

  2. Perception, Action, and Cognition of Football Referees in Extreme Temperatures: Impact on Decision Performance.

    PubMed

    Gaoua, Nadia; de Oliveira, Rita F; Hunter, Steve

    2017-01-01

    Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee's responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees' decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies.

  3. Perception, Action, and Cognition of Football Referees in Extreme Temperatures: Impact on Decision Performance

    PubMed Central

    Gaoua, Nadia; de Oliveira, Rita F.; Hunter, Steve

    2017-01-01

    Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee’s responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees’ decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies. PMID:28912742

  4. An easy-to-parameterise physics-informed battery model and its application towards lithium-ion battery cell design, diagnosis, and degradation

    NASA Astrophysics Data System (ADS)

    Merla, Yu; Wu, Billy; Yufit, Vladimir; Martinez-Botas, Ricardo F.; Offer, Gregory J.

    2018-04-01

    Accurate diagnosis of lithium ion battery state-of-health (SOH) is of significant value for many applications, to improve performance, extend life and increase safety. However, in-situ or in-operando diagnosis of SOH often requires robust models. There are many models available however these often require expensive-to-measure ex-situ parameters and/or contain unmeasurable parameters that were fitted/assumed. In this work, we have developed a new empirically parameterised physics-informed equivalent circuit model. Its modular construction and low-cost parametrisation requirements allow end users to parameterise cells quickly and easily. The model is accurate to 19.6 mV for dynamic loads without any global fitting/optimisation, only that of the individual elements. The consequences of various degradation mechanisms are simulated, and the impact of a degraded cell on pack performance is explored, validated by comparison with experiment. Results show that an aged cell in a parallel pack does not have a noticeable effect on the available capacity of other cells in the pack. The model shows that cells perform better when electrodes are more porous towards the separator and have a uniform particle size distribution, validated by comparison with published data. The model is provided with this publication for readers to use.

  5. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  6. Transforming community access to space science models

    NASA Astrophysics Data System (ADS)

    MacNeice, Peter; Hesse, Michael; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti

    2012-04-01

    Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.

  7. Transforming Community Access to Space Science Models

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Heese, Michael; Kunetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti

    2012-01-01

    Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.

  8. Three-dimensional fuel pin model validation by prediction of hydrogen distribution in cladding and comparison with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, A.; Avramova, Maria; Ivanov, Kostadin

    To correctly describe and predict this hydrogen distribution there is a need for multi-physics coupling to provide accurate three-dimensional azimuthal, radial, and axial temperature distributions in the cladding. Coupled high-fidelity reactor-physics codes with a sub-channel code as well as with a computational fluid dynamics (CFD) tool have been used to calculate detailed temperature distributions. These high-fidelity coupled neutronics/thermal-hydraulics code systems are coupled further with the fuel-performance BISON code with a kernel (module) for hydrogen. Both hydrogen migration and precipitation/dissolution are included in the model. Results from this multi-physics analysis is validated utilizing calculations of hydrogen distribution using models informed bymore » data from hydrogen experiments and PIE data.« less

  9. Performance Modeling of an Experimental Laser Propelled Lightcraft

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.

    2000-01-01

    A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  10. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  11. Impact of detector simulation in particle physics collider experiments

    NASA Astrophysics Data System (ADS)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  12. Interfacial mixing in high energy-density matter with a multiphysics kinetic model

    NASA Astrophysics Data System (ADS)

    Haack, Jeff; Hauck, Cory; Murillo, Michael

    2017-10-01

    We have extended a recently-developed multispecies, multitemperature BGK model to include multiphysics capability that allows modeling of a wider range of plasma conditions. In particular, we have extended the model to describe one spatial dimension, and included a multispecies atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the new model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, similar to a recent molecular dynamics study, but for larger length and time scales and for much higher temperatures. From our numerical results we are able to explore a variety of phenomena, including hydrogen jetting, kinetic effects (non-Maxwellian and anisotropic distributions), plasma physics (size, persistence and role of electric fields) and transport (relative sizes of Fickean diffision, electrodiffusion and barodiffusion). As compared with the recent molecular dynamics work the kinetic model greatly extends the accessible physical domains we are able to model.

  13. Development and Application of Numerical Models for Reactive Flows

    DTIC Science & Technology

    1990-08-15

    Shear Layers: Ill. Effect of Convective Mach number Raafat H. Guirguis Abstract Model This paper addresses some of the fundamental We have made the...OTIC FILE COPY / 0 00 DTIC N~l 9 ELECTE D CbBA9-OI Development and Application of Numerical Models for Reactive Flows Berkeley Research Associates...Laboratory for Computa- tional Physics (LCP), hav focused on developing mathematical and computational models which accurately and efficiently describe the

  14. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    PubMed

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Decoupling the Role of Inertia and Gravity on Particle Dispersion

    NASA Technical Reports Server (NTRS)

    Rogers, Chris; Squires, Kyle

    1996-01-01

    Turbulent gas flows laden with small, dense particles are encountered in a wide number of important applications in both industrial settings and aerodynamics applications. Particle interactions with the underlying turbulent flow are exceedingly complex and, consequently, difficult to accurately model. The difficulty arises primarily due to the fact that response of a particle to the local environment is dictated by turbulence properties in the reference frame moving with the particle (particle-Lagrangian). The particle-Lagrangian reference frame is in turn dependent upon the particle relaxation time (time constant) as well as gravitational drift. The combination of inertial and gravitational effects in this frame complicates our ability to accurately predict particle-laden flows since measurements in the particle-Lagrangian reference frame are difficult to obtain. Therefore, in this work we will examine separately the effects of inertia and gravitational drift on particle dispersion through a combination of physical and numerical experiments. In this study, particle-Lagrangian measurements will be obtained in physical experiments using stereo image velocimetry. Gravitational drift will be varied in the variable-g environments of the NASA DC-9 and in the zero-g environment at the drop tower at NASA-Lewis. Direct numerical simulations will be used to corroborate the measurements from the variable-g experiments. We expect that this work will generate new insight into the underlying physics of particle dispersion and will, in turn, lead to more accurate models of particle transport in turbulent flows.

  16. Fechner's law: where does the log transform come from?

    PubMed

    Laming, Donald

    2010-01-01

    This paper looks at Fechner's law in the light of 150 years of subsequent study. In combination with the normal, equal variance, signal-detection model, Fechner's law provides a numerically accurate account of discriminations between two separate stimuli, essentially because the logarithmic transform delivers a model for Weber's law. But it cannot be taken to be a measure of internal sensation because an equally accurate account is provided by a chi(2) model in which stimuli are scaled by their physical magnitude. The logarithmic transform of Fechner's law arises because, for the number of degrees of freedom typically required in the chi(2) model, the logarithm of a chi(2) variable is, to a good approximation, normal. This argument is set within a general theory of sensory discrimination.

  17. Structural Stability Monitoring of a Physical Model Test on an Underground Cavern Group during Deep Excavations Using FBG Sensors.

    PubMed

    Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian

    2015-08-31

    Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction.

  18. Structural Stability Monitoring of a Physical Model Test on an Underground Cavern Group during Deep Excavations Using FBG Sensors

    PubMed Central

    Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian

    2015-01-01

    Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction. PMID:26404287

  19. FY17 Status Report on the Micromechanical Finite Element Modeling of Creep Fracture of Grade 91 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, M. C.; Truster, T. J.; Cochran, K. B.

    Advanced reactors designed to operate at higher temperatures than current light water reactors require structural materials with high creep strength and creep-fatigue resistance to achieve long design lives. Grade 91 is a ferritic/martensitic steel designed for long creep life at elevated temperatures. It has been selected as a candidate material for sodium fast reactor intermediate heat exchangers and other advanced reactor structural components. This report focuses on the creep deformation and rupture life of Grade 91 steel. The time required to complete an experiment limits the availability of long-life creep data for Grade 91 and other structural materials. Design methodsmore » often extrapolate the available shorter-term experimental data to longer design lives. However, extrapolation methods tacitly assume the underlying material mechanisms causing creep for long-life/low-stress conditions are the same as the mechanisms controlling creep in the short-life/high-stress experiments. A change in mechanism for long-term creep could cause design methods based on extrapolation to be non-conservative. The goal for physically-based microstructural models is to accurately predict material response in experimentally-inaccessible regions of design space. An accurate physically-based model for creep represents all the material mechanisms that contribute to creep deformation and damage and predicts the relative influence of each mechanism, which changes with loading conditions. Ideally, the individual mechanism models adhere to the material physics and not an empirical calibration to experimental data and so the model remains predictive for a wider range of loading conditions. This report describes such a physically-based microstructural model for Grade 91 at 600° C. The model explicitly represents competing dislocation and diffusional mechanisms in both the grain bulk and grain boundaries. The model accurately recovers the available experimental creep curves at higher stresses and the limited experimental data at lower stresses, predominately primary creep rates. The current model considers only one temperature. However, because the model parameters are, for the most part, directly related to the physics of fundamental material processes, the temperature dependence of the properties are known. Therefore, temperature dependence can be included in the model with limited additional effort. The model predicts a mechanism shift for 600° C at approximately 100 MPa from a dislocation- dominated regime at higher stress to a diffusion-dominated regime at lower stress. This mechanism shift impacts the creep life, notch-sensitivity, and, likely, creep ductility of Grade 91. In particular, the model predicts existing extrapolation methods for creep life may be non-conservative when attempting to extrapolate data for higher stress creep tests to low stress, long-life conditions. Furthermore, the model predicts a transition from notchstrengthening behavior at high stress to notch-weakening behavior at lower stresses. Both behaviors may affect the conservatism of existing design methods.« less

  20. Correlation of experimentally measured atomic scale properties of EUV photoresist to modeling performance: an exploration

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir; Chandonait, Jonathan; Melvin, Lawrence S.; Marokkey, Sajan; Yan, Qiliang; Grzeskowiak, Steven; Painter, Benjamin; Denbeaux, Gregory

    2017-03-01

    Extreme ultraviolet (EUV) lithography at 13.5 nm stands at the crossroads of next generation patterning technology for high volume manufacturing of integrated circuits. Photo resist models that form the part of overall pattern transform model for lithography play a vital role in supporting this effort. The physics and chemistry of these resists must be understood to enable the construction of accurate models for EUV Optical Proximity Correction (OPC). In this study, we explore the possibility of improving EUV photo-resist models by directly correlating the parameters obtained from experimentally measured atomic scale physical properties; namely, the effect of interaction of EUV photons with photo acid generators in standard chemically amplified EUV photoresist, and associated electron energy loss events. Atomic scale physical properties will be inferred from the measurements carried out in Electron Resist Interaction Chamber (ERIC). This study will use measured physical parameters to establish a relationship with lithographically important properties, such as line edge roughness and CD variation. The data gathered from these measurements is used to construct OPC models of the resist.

  1. Leaf optical system modeled as a stochastic process. [solar radiation interaction with terrestrial vegetation

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Garratt, M. W.

    1977-01-01

    A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.

  2. Consistent Large-Eddy Simulation of a Temporal Mixing Layer Laden with Evaporating Drops. Part 2; A Posteriori Modelling

    NASA Technical Reports Server (NTRS)

    Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette

    2005-01-01

    Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.

  3. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    NASA Technical Reports Server (NTRS)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  4. Protein structure modeling for CASP10 by multiple layers of global optimization.

    PubMed

    Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2014-02-01

    In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.

  5. Radiolytic and thermolytic bubble gas hydrogen composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodham, W.

    This report describes the development of a mathematical model for the estimation of the hydrogen composition of gas bubbles trapped in radioactive waste. The model described herein uses a material balance approach to accurately incorporate the rates of hydrogen generation by a number of physical phenomena and scale the aforementioned rates in a manner that allows calculation of the final hydrogen composition.

  6. Estimating Surface Soil Moisture in Simulated AVIRIS Spectra

    NASA Technical Reports Server (NTRS)

    Whiting, Michael L.; Li, Lin; Ustin, Susan L.

    2004-01-01

    Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential on the spectra general shape and albedo (Stoner and Baumgardner, 1981). Without moisture, the intrinsic or matrix reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be isolated by comparing similar soils in a study of the effects that small differences in moisture content have on reflectance. However, without prior knowledge of the soil physical and chemical constituents within every pixel, it is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils. Accurate soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for precision farming prescription, and managing irrigation and salinity. Better models of soil moisture and reflectance will also improve the selection of soil endmembers for spectral mixture analysis.

  7. Wave Resource Characterization Using an Unstructured Grid Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei-Cheng; Yang, Zhaoqing; Wang, Taiping

    This paper presents a modeling study conducted on the central Oregon coast for wave resource characterization using the unstructured-grid SWAN model coupled with a nested-grid WWIII model. The flexibility of models of various spatial resolutions and the effects of open- boundary conditions simulated by a nested-grid WWIII model with different physics packages were evaluated. The model results demonstrate the advantage of the unstructured-grid modeling approach for flexible model resolution and good model skills in simulating the six wave resource parameters recommended by the International Electrotechnical Commission in comparison to the observed data in Year 2009 at National Data Buoy Centermore » Buoy 46050. Notably, spectral analysis indicates that the ST4 physics package improves upon the model skill of the ST2 physics package for predicting wave power density for large waves, which is important for wave resource assessment, device load calculation, and risk management. In addition, bivariate distributions show the simulated sea state of maximum occurrence with the ST4 physics package matched the observed data better than that with the ST2 physics package. This study demonstrated that the unstructured-grid wave modeling approach, driven by the nested-grid regional WWIII outputs with the ST4 physics package, can efficiently provide accurate wave hindcasts to support wave resource characterization. Our study also suggests that wind effects need to be considered if the dimension of the model domain is greater than approximately 100 km, or O (10^2 km).« less

  8. SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.

    PubMed

    Fahim, Muhammad; Lee, Sungyoung; Yoon, Yongik

    2014-01-01

    Current generation smartphone can be seen as one of the most ubiquitous device for physical activity recognition. In this paper we proposed a physical activity recognizer to provide u-healthcare services in a cost effective manner by utilizing cloud computing infrastructure. Our model is comprised on embedded triaxial accelerometer of the smartphone to sense the body movements and a cloud server to store and process the sensory data for numerous kind of services. We compute the time and frequency domain features over the raw signals and evaluate different machine learning algorithms to identify an accurate activity recognition model for four kinds of physical activities (i.e., walking, running, cycling and hopping). During our experiments we found Support Vector Machine (SVM) algorithm outperforms for the aforementioned physical activities as compared to its counterparts. Furthermore, we also explain how smartphone application and cloud server communicate with each other.

  9. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.

  10. How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.

    PubMed

    Lecca, Paola

    2018-01-01

    We implement a Monte Carlo heuristic algorithm to model drug release from a solid dosage form. We show that with Monte Carlo simulations it is possible to identify and explain the causes of the unsatisfactory predictive power of current drug release models. It is well known that the power-law, the exponential models, as well as those derived from or inspired by them accurately reproduce only the first 60% of the release curve of a drug from a dosage form. In this study, by using Monte Carlo simulation approaches, we show that these models fit quite accurately almost the entire release profile when the release kinetics is not governed by the coexistence of different physico-chemical mechanisms. We show that the accuracy of the traditional models are comparable with those of Monte Carlo heuristics when these heuristics approximate and oversimply the phenomenology of drug release. This observation suggests to develop and use novel Monte Carlo simulation heuristics able to describe the complexity of the release kinetics, and consequently to generate data more similar to those observed in real experiments. Implementing Monte Carlo simulation heuristics of the drug release phenomenology may be much straightforward and efficient than hypothesizing and implementing from scratch complex mathematical models of the physical processes involved in drug release. Identifying and understanding through simulation heuristics what processes of this phenomenology reproduce the observed data and then formalize them in mathematics may allow avoiding time-consuming, trial-error based regression procedures. Three bullet points, highlighting the customization of the procedure. •An efficient heuristics based on Monte Carlo methods for simulating drug release from solid dosage form encodes is presented. It specifies the model of the physical process in a simple but accurate way in the formula of the Monte Carlo Micro Step (MCS) time interval.•Given the experimentally observed curve of drug release, we point out how Monte Carlo heuristics can be integrated in an evolutionary algorithmic approach to infer the mode of MCS best fitting the observed data, and thus the observed release kinetics.•The software implementing the method is written in R language, the free most used language in the bioinformaticians community.

  11. Physical Controls on Oxygen Distribution and Denitrification Potential in the North West Arabian Sea

    NASA Astrophysics Data System (ADS)

    Queste, Bastien Y.; Vic, Clément; Heywood, Karen J.; Piontkovski, Sergey A.

    2018-05-01

    At suboxic oxygen concentrations, key biogeochemical cycles change and denitrification becomes the dominant remineralization pathway. Earth system models predict oxygen loss across most ocean basins in the next century; oxygen minimum zones near suboxia may become suboxic and therefore denitrifying. Using an ocean glider survey and historical data, we show oxygen loss in the Gulf of Oman (from 6-12 to <2 μmol kg-1) not represented in climatologies. Because of the nonlinearity between denitrification and oxygen concentration, resolutions of current Earth system models are too coarse to accurately estimate denitrification. We develop a novel physical proxy for oxygen from the glider data and use a high-resolution physical model to show eddy stirring of oxygen across the Gulf of Oman. We use the model to investigate spatial and seasonal differences in the ratio of oxic and suboxic water across the Gulf of Oman and waters exported to the wider Arabian Sea.

  12. Enabling large-scale viscoelastic calculations via neural network acceleration

    NASA Astrophysics Data System (ADS)

    Robinson DeVries, P.; Thompson, T. B.; Meade, B. J.

    2017-12-01

    One of the most significant challenges involved in efforts to understand the effects of repeated earthquake cycle activity are the computational costs of large-scale viscoelastic earthquake cycle models. Deep artificial neural networks (ANNs) can be used to discover new, compact, and accurate computational representations of viscoelastic physics. Once found, these efficient ANN representations may replace computationally intensive viscoelastic codes and accelerate large-scale viscoelastic calculations by more than 50,000%. This magnitude of acceleration enables the modeling of geometrically complex faults over thousands of earthquake cycles across wider ranges of model parameters and at larger spatial and temporal scales than have been previously possible. Perhaps most interestingly from a scientific perspective, ANN representations of viscoelastic physics may lead to basic advances in the understanding of the underlying model phenomenology. We demonstrate the potential of artificial neural networks to illuminate fundamental physical insights with specific examples.

  13. Effects of including electrojet turbulence in LFM-RCM simulations of geospace storms

    NASA Astrophysics Data System (ADS)

    Oppenheim, M. M.; Wiltberger, M. J.; Merkin, V. G.; Zhang, B.; Toffoletto, F.; Wang, W.; Lyon, J.; Liu, J.; Dimant, Y. S.

    2016-12-01

    Global geospace system simulations need to incorporate nonlinear and small-scale physical processes in order to accurately model storms and other intense events. During times of strong magnetospheric disturbances, large-amplitude electric fields penetrate from the Earth's magnetosphere to the E-region ionosphere where they drive Farley-Buneman instabilities (FBI) that create small-scale plasma density turbulence. This induces nonlinear currents and leads to anomalous electron heating. Current global Magnetosphere-Ionosphere-Thermosphere (MIT) models disregard these effects by assuming simple laminar ionospheric currents. This paper discusses the effects of incorporating accurate turbulent conductivities into MIT models. Recently, we showed in Liu et al. (2016) that during storm-time, turbulence increases the electron temperatures and conductivities more than precipitation. In this talk, we present the effect of adding these effects to the combined Lyon-Fedder-Mobarry (LFM) global MHD magnetosphere simulator and the Rice Convection Model (RCM). The LFM combines a magnetohydrodynamic (MHD) simulation of the magnetosphere with a 2D electrostatic solution of the ionosphere. The RCM uses drift physics to accurately model the inner magnetosphere, including a storm enhanced ring current. The LFM and coupled LFM-RCM simulations have previously shown unrealistically high cross-polar-cap potentials during strong solar wind driving conditions. We have recently implemented an LFM module that modifies the ionospheric conductivity to account for FBI driven anomalous electron heating and non-linear cross-field current enhancements as a function of the predicted ionospheric electric field. We have also improved the LFM-RCM code by making it capable of handling dipole tilts and asymmetric ionospheric solutions. We have tested this new LFM version by simulating the March 17, 2013 geomagnetic storm. These simulations showed a significant reduction in the cross-polar-cap potential during the strongest driving conditions, significant increases in the ionospheric conductivity in the auroral oval, and better agreement with DMSP observations of sub-auroral polarization streams. We conclude that accurate MIT simulations of geospace storms require the inclusion of turbulent conductivities.

  14. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    DOE PAGES

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimesmore » to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.« less

  15. EIT forward problem parallel simulation environment with anisotropic tissue and realistic electrode models.

    PubMed

    De Marco, Tommaso; Ries, Florian; Guermandi, Marco; Guerrieri, Roberto

    2012-05-01

    Electrical impedance tomography (EIT) is an imaging technology based on impedance measurements. To retrieve meaningful insights from these measurements, EIT relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of current flows therein. The nonhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeoff between physical accuracy and technical feasibility, which at present severely limits the capabilities of EIT. This work presents a complete algorithmic flow for an accurate EIT modeling environment featuring high anatomical fidelity with a spatial resolution equal to that provided by an MRI and a novel realistic complete electrode model implementation. At the same time, we demonstrate that current graphics processing unit (GPU)-based platforms provide enough computational power that a domain discretized with five million voxels can be numerically modeled in about 30 s.

  16. Human adaptations for the visual assessment of strength and fighting ability from the body and face

    PubMed Central

    Sell, Aaron; Cosmides, Leda; Tooby, John; Sznycer, Daniel; von Rueden, Christopher; Gurven, Michael

    2008-01-01

    Selection in species with aggressive social interactions favours the evolution of cognitive mechanisms for assessing physical formidability (fighting ability or resource-holding potential). The ability to accurately assess formidability in conspecifics has been documented in a number of non-human species, but has not been demonstrated in humans. Here, we report tests supporting the hypothesis that the human cognitive architecture includes mechanisms that assess fighting ability—mechanisms that focus on correlates of upper-body strength. Across diverse samples of targets that included US college students, Bolivian horticulturalists and Andean pastoralists, subjects in the US were able to accurately estimate the physical strength of male targets from photos of their bodies and faces. Hierarchical linear modelling shows that subjects were extracting cues of strength that were largely independent of height, weight and age, and that corresponded most strongly to objective measures of upper-body strength—even when the face was all that was available for inspection. Estimates of women's strength were less accurate, but still significant. These studies are the first empirical demonstration that, for humans, judgements of strength and judgements of fighting ability not only track each other, but accurately track actual upper-body strength. PMID:18945661

  17. Coarse-grained, foldable, physical model of the polypeptide chain.

    PubMed

    Chakraborty, Promita; Zuckermann, Ronald N

    2013-08-13

    Although nonflexible, scaled molecular models like Pauling-Corey's and its descendants have made significant contributions in structural biology research and pedagogy, recent technical advances in 3D printing and electronics make it possible to go one step further in designing physical models of biomacromolecules: to make them conformationally dynamic. We report here the design, construction, and validation of a flexible, scaled, physical model of the polypeptide chain, which accurately reproduces the bond rotational degrees of freedom in the peptide backbone. The coarse-grained backbone model consists of repeating amide and α-carbon units, connected by mechanical bonds (corresponding to ϕ and ψ) that include realistic barriers to rotation that closely approximate those found at the molecular scale. Longer-range hydrogen-bonding interactions are also incorporated, allowing the chain to readily fold into stable secondary structures. The model is easily constructed with readily obtainable parts and promises to be a tremendous educational aid to the intuitive understanding of chain folding as the basis for macromolecular structure. Furthermore, this physical model can serve as the basis for linking tangible biomacromolecular models directly to the vast array of existing computational tools to provide an enhanced and interactive human-computer interface.

  18. Insights on multivariate updates of physical and biogeochemical ocean variables using an Ensemble Kalman Filter and an idealized model of upwelling

    NASA Astrophysics Data System (ADS)

    Yu, Liuqian; Fennel, Katja; Bertino, Laurent; Gharamti, Mohamad El; Thompson, Keith R.

    2018-06-01

    Effective data assimilation methods for incorporating observations into marine biogeochemical models are required to improve hindcasts, nowcasts and forecasts of the ocean's biogeochemical state. Recent assimilation efforts have shown that updating model physics alone can degrade biogeochemical fields while only updating biogeochemical variables may not improve a model's predictive skill when the physical fields are inaccurate. Here we systematically investigate whether multivariate updates of physical and biogeochemical model states are superior to only updating either physical or biogeochemical variables. We conducted a series of twin experiments in an idealized ocean channel that experiences wind-driven upwelling. The forecast model was forced with biased wind stress and perturbed biogeochemical model parameters compared to the model run representing the "truth". Taking advantage of the multivariate nature of the deterministic Ensemble Kalman Filter (DEnKF), we assimilated different combinations of synthetic physical (sea surface height, sea surface temperature and temperature profiles) and biogeochemical (surface chlorophyll and nitrate profiles) observations. We show that when biogeochemical and physical properties are highly correlated (e.g., thermocline and nutricline), multivariate updates of both are essential for improving model skill and can be accomplished by assimilating either physical (e.g., temperature profiles) or biogeochemical (e.g., nutrient profiles) observations. In our idealized domain, the improvement is largely due to a better representation of nutrient upwelling, which results in a more accurate nutrient input into the euphotic zone. In contrast, assimilating surface chlorophyll improves the model state only slightly, because surface chlorophyll contains little information about the vertical density structure. We also show that a degradation of the correlation between observed subsurface temperature and nutrient fields, which has been an issue in several previous assimilation studies, can be reduced by multivariate updates of physical and biogeochemical fields.

  19. Supersymmetry and Kaon physics

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kei

    2017-01-01

    Kaon physics has played an essential role in testing the Standard Model and in searching for new physics with measurements of CP violation and rare decays. Current progress of lattice calculations enables us to predict kaon observables accurately, especially for the direct CP violation, ε‧/ε, and there is a discrepancy from the experimental data at the 2.9 σ level. On the experimental side, the rare kaon decays and are ongoing to be measured at the SM accuracy by KOTO at J-PARC and NA62 at CERN. These kaon observables are good probes for new physics. We study supersymmetric effects; the chargino and gluino contributions to Z penguin, in kaon observables.

  20. Fast Physically Accurate Rendering of Multimodal Signatures of Distributed Fracture in Heterogeneous Materials.

    PubMed

    Visell, Yon

    2015-04-01

    This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.

  1. Production of accurate skeletal models of domestic animals using three-dimensional scanning and printing technology.

    PubMed

    Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling

    2018-01-01

    Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the fifth rib, and the sixth cervical (C6) vertebra were used to produce digital models. These were then used to produce 1:1 scale physical models with the FDM printer. The anatomical features of the digital models and three-dimensional (3D) printed models were then compared with those of the original skeletal specimens. The results of this study demonstrated that both digital and physical scale models of animal skeletal components could be rapidly produced using 3D printing technology. In terms of accuracy between models and original specimens, the standard deviations of the femur and the fifth rib measurements were 0.0351 and 0.0572, respectively. All of the features except the nutrient foramina on the original bone specimens could be identified in the digital and 3D printed models. Moreover, the 3D printed models could serve as a viable alternative to original bone specimens when used in anatomy education, as determined from student surveys. This study demonstrated an important example of reproducing bone models to be used in anatomy education and veterinary clinical training. Anat Sci Educ 11: 73-80. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  2. Risk and the physics of clinical prediction.

    PubMed

    McEvoy, John W; Diamond, George A; Detrano, Robert C; Kaul, Sanjay; Blaha, Michael J; Blumenthal, Roger S; Jones, Steven R

    2014-04-15

    The current paradigm of primary prevention in cardiology uses traditional risk factors to estimate future cardiovascular risk. These risk estimates are based on prediction models derived from prospective cohort studies and are incorporated into guideline-based initiation algorithms for commonly used preventive pharmacologic treatments, such as aspirin and statins. However, risk estimates are more accurate for populations of similar patients than they are for any individual patient. It may be hazardous to presume that the point estimate of risk derived from a population model represents the most accurate estimate for a given patient. In this review, we exploit principles derived from physics as a metaphor for the distinction between predictions regarding populations versus patients. We identify the following: (1) predictions of risk are accurate at the level of populations but do not translate directly to patients, (2) perfect accuracy of individual risk estimation is unobtainable even with the addition of multiple novel risk factors, and (3) direct measurement of subclinical disease (screening) affords far greater certainty regarding the personalized treatment of patients, whereas risk estimates often remain uncertain for patients. In conclusion, shifting our focus from prediction of events to detection of disease could improve personalized decision-making and outcomes. We also discuss innovative future strategies for risk estimation and treatment allocation in preventive cardiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Investigating the Effect of Damage Progression Model Choice on Prognostics Performance

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Narasimhan, Sriram; Saha, Sankalita; Saha, Bhaskar; Goebel, Kai

    2011-01-01

    The success of model-based approaches to systems health management depends largely on the quality of the underlying models. In model-based prognostics, it is especially the quality of the damage progression models, i.e., the models describing how damage evolves as the system operates, that determines the accuracy and precision of remaining useful life predictions. Several common forms of these models are generally assumed in the literature, but are often not supported by physical evidence or physics-based analysis. In this paper, using a centrifugal pump as a case study, we develop different damage progression models. In simulation, we investigate how model changes influence prognostics performance. Results demonstrate that, in some cases, simple damage progression models are sufficient. But, in general, the results show a clear need for damage progression models that are accurate over long time horizons under varied loading conditions.

  4. An ocean scatter propagation model for aeronautical satellite communication applications

    NASA Technical Reports Server (NTRS)

    Moreland, K. W.

    1990-01-01

    In this paper an ocean scattering propagation model, developed for aircraft-to-satellite (aeronautical) applications, is described. The purpose of the propagation model is to characterize the behavior of sea reflected multipath as a function of physical propagation path parameters. An accurate validation against the theoretical far field solution for a perfectly conducting sinusoidal surface is provided. Simulation results for typical L band aeronautical applications with low complexity antennas are presented.

  5. Accurate protein structure modeling using sparse NMR data and homologous structure information.

    PubMed

    Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David

    2012-06-19

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.

  6. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  7. Numerical modeling of the SNS H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan

    Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved inmore » order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report here on comparisons of simulated plasma parameters and code performance using more accurate physical models, such as two-temperature extended MHD models, for both a related benchmark system describing a inductively coupled plasma reactor, and for the SNS ion source. We also present results from scaling studies for mesh generation and solvers in the USim simulation code.« less

  8. Lattice Boltzmann simulations of immiscible displacement process with large viscosity ratios

    NASA Astrophysics Data System (ADS)

    Rao, Parthib; Schaefer, Laura

    2017-11-01

    Immiscible displacement is a key physical mechanism involved in enhanced oil recovery and carbon sequestration processes. This multiphase flow phenomenon involves a complex interplay of viscous, capillary, inertial and wettability effects. The lattice Boltzmann (LB) method is an accurate and efficient technique for modeling and simulating multiphase/multicomponent flows especially in complex flow configurations and media. In this presentation we present numerical simulation results of displacement process in thin long channels. The results are based on a new psuedo-potential multicomponent LB model with multiple relaxation time collision (MRT) model and explicit forcing scheme. We demonstrate that the proposed model is capable of accurately simulating the displacement process involving fluids with a wider range of viscosity ratios (>100) and which also leads to viscosity-independent interfacial tension and reduction of some important numerical artifacts.

  9. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    DOE PAGES

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-20

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C 6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C 8 and C 10 between small molecules. We findmore » that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C 8 and 7% for C 10. As a result, inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.« less

  10. Development of Physics-Based Hurricane Wave Response Functions: Application to Selected Sites on the U.S. Gulf Coast

    NASA Astrophysics Data System (ADS)

    McLaughlin, P. W.; Kaihatu, J. M.; Irish, J. L.; Taylor, N. R.; Slinn, D.

    2013-12-01

    Recent hurricane activity in the Gulf of Mexico has led to a need for accurate, computationally efficient prediction of hurricane damage so that communities can better assess risk of local socio-economic disruption. This study focuses on developing robust, physics based non-dimensional equations that accurately predict maximum significant wave height at different locations near a given hurricane track. These equations (denoted as Wave Response Functions, or WRFs) were developed from presumed physical dependencies between wave heights and hurricane characteristics and fit with data from numerical models of waves and surge under hurricane conditions. After curve fitting, constraints which correct for fully developed sea state were used to limit the wind wave growth. When applied to the region near Gulfport, MS, back prediction of maximum significant wave height yielded root mean square errors between 0.22-0.42 (m) at open coast stations and 0.07-0.30 (m) at bay stations when compared to the numerical model data. The WRF method was also applied to Corpus Christi, TX and Panama City, FL with similar results. Back prediction errors will be included in uncertainty evaluations connected to risk calculations using joint probability methods. These methods require thousands of simulations to quantify extreme value statistics, thus requiring the use of reduced methods such as the WRF to represent the relevant physical processes.

  11. Analysis of linear measurements on 3D surface models using CBCT data segmentation obtained by automatic standard pre-set thresholds in two segmentation software programs: an in vitro study.

    PubMed

    Poleti, Marcelo Lupion; Fernandes, Thais Maria Freire; Pagin, Otávio; Moretti, Marcela Rodrigues; Rubira-Bullen, Izabel Regina Fischer

    2016-01-01

    The aim of this in vitro study was to evaluate the reliability and accuracy of linear measurements on three-dimensional (3D) surface models obtained by standard pre-set thresholds in two segmentation software programs. Ten mandibles with 17 silica markers were scanned for 0.3-mm voxels in the i-CAT Classic (Imaging Sciences International, Hatfield, PA, USA). Twenty linear measurements were carried out by two observers two times on the 3D surface models: the Dolphin Imaging 11.5 (Dolphin Imaging & Management Solutions, Chatsworth, CA, USA), using two filters(Translucent and Solid-1), and in the InVesalius 3.0.0 (Centre for Information Technology Renato Archer, Campinas, SP, Brazil). The physical measurements were made by another observer two times using a digital caliper on the dry mandibles. Excellent intra- and inter-observer reliability for the markers, physical measurements, and 3D surface models were found (intra-class correlation coefficient (ICC) and Pearson's r ≥ 0.91). The linear measurements on 3D surface models by Dolphin and InVesalius software programs were accurate (Dolphin Solid-1 > InVesalius > Dolphin Translucent). The highest absolute and percentage errors were obtained for the variable R1-R1 (1.37 mm) and MF-AC (2.53 %) in the Dolphin Translucent and InVesalius software, respectively. Linear measurements on 3D surface models obtained by standard pre-set thresholds in the Dolphin and InVesalius software programs are reliable and accurate compared with physical measurements. Studies that evaluate the reliability and accuracy of the 3D models are necessary to ensure error predictability and to establish diagnosis, treatment plan, and prognosis in a more realistic way.

  12. Phonon scattering in nanoscale systems: lowest order expansion of the current and power expressions

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2006-04-01

    We use the non-equilibrium Green's function method to describe the effects of phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations are developed that both provide (i) computationally simple formulas for large systems and (ii) simple analytical models. In addition, the simple models can be used to fit experimental data and provide physical parameters.

  13. Theory of mind selectively predicts preschoolers’ knowledge-based selective word learning

    PubMed Central

    Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane

    2015-01-01

    Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory of mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children’s preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children’s developing social cognition and early learning. PMID:26211504

  14. Theory of mind selectively predicts preschoolers' knowledge-based selective word learning.

    PubMed

    Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane

    2015-11-01

    Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory-of-mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children's preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children's developing social cognition and early learning. © 2015 The British Psychological Society.

  15. Minimizing Segregation During the Controlled Directional Solidification of Dendritic Alloys Publication: Metallurgical and Materials Transactions

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fedoseyev, A. I.; Kim, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Gravity-driven thermosolutal convection that arises during controlled directional solidification (DS) of dendritic alloys promotes detrimental macro-segregation (e.g. freckles and steepling) in products such as turbine blades. Considerable time and effort has been spent to experimentally and theoretically investigate this phenomena; although our knowledge has advanced to the point where convection can be modeled and accurately compared to experimental results, little has been done to minimize its onset and deleterious effects. The experimental work demonstrates that segregation can be. minimized and microstructural uniformity promoted when a slow axial rotation is applied to the sample crucible during controlled directional solidification processing. Numerical modeling utilizing continuation and bifurcation methods have been employed to develop accurate physical and mathematical models with the intent of identifying and optimizing processing parameters.

  16. Comparisons between stellar models and reliability of the theoretical models

    NASA Astrophysics Data System (ADS)

    Lebreton, Yveline; Montalbán, Josefina

    2010-07-01

    The high quality of the asteroseismic data provided by space missions such as CoRoT (Michel et al. in The CoRoT Mission, ESA Spec. Publ. vol. 1306, p. 39, 2006) or expected from new operating missions such as Kepler (Christensen-Dalsgaard et al. in Commun. Asteroseismol. 150:350, 2007) requires the capacity of stellar evolution codes to provide accurate models whose numerical precision is better than the expected observational errors (i.e. below 0.1 μHz on the frequencies in the case of CoRoT). We present a review of some thorough comparisons of stellar models produced by different evolution codes, involved in the CoRoT/ESTA activities (Monteiro in Evolution and Seismic Tools for Stellar Astrophysics, 2009). We examine the numerical aspects of the computations as well as the effects of different implementations of the same physics on the global quantities, physical structure and oscillations properties of the stellar models. We also discuss a few aspects of the input physics.

  17. Visual Cues, Verbal Cues and Child Development

    ERIC Educational Resources Information Center

    Valentini, Nadia

    2004-01-01

    In this article, the author discusses two strategies--visual cues (modeling) and verbal cues (short, accurate phrases) which are related to teaching motor skills in maximizing learning in physical education classes. Both visual and verbal cues are strong influences in facilitating and promoting day-to-day learning. Both strategies reinforce…

  18. Analysis of North Atlantic Tropical Cyclone Intensify Change Using Data Mining

    ERIC Educational Resources Information Center

    Tang, Jiang

    2010-01-01

    Tropical cyclones (TC), especially when their intensity reaches hurricane scale, can become a costly natural hazard. Accurate prediction of tropical cyclone intensity is very difficult because of inadequate observations on TC structures, poor understanding of physical processes, coarse model resolution and inaccurate initial conditions, etc. This…

  19. Accurate physical laws can permit new standard units: The two laws F→=ma→ and the proportionality of weight to mass

    NASA Astrophysics Data System (ADS)

    Saslow, Wayne M.

    2014-04-01

    Three common approaches to F→=ma→ are: (1) as an exactly true definition of force F→ in terms of measured inertial mass m and measured acceleration a→; (2) as an exactly true axiom relating measured values of a→, F→ and m; and (3) as an imperfect but accurately true physical law relating measured a→ to measured F→, with m an experimentally determined, matter-dependent constant, in the spirit of the resistance R in Ohm's law. In the third case, the natural units are those of a→ and F→, where a→ is normally specified using distance and time as standard units, and F→ from a spring scale as a standard unit; thus mass units are derived from force, distance, and time units such as newtons, meters, and seconds. The present work develops the third approach when one includes a second physical law (again, imperfect but accurate)—that balance-scale weight W is proportional to m—and the fact that balance-scale measurements of relative weight are more accurate than those of absolute force. When distance and time also are more accurately measurable than absolute force, this second physical law permits a shift to standards of mass, distance, and time units, such as kilograms, meters, and seconds, with the unit of force—the newton—a derived unit. However, were force and distance more accurately measurable than time (e.g., time measured with an hourglass), this second physical law would permit a shift to standards of force, mass, and distance units such as newtons, kilograms, and meters, with the unit of time—the second—a derived unit. Therefore, the choice of the most accurate standard units depends both on what is most accurately measurable and on the accuracy of physical law.

  20. Reaction rates for mesoscopic reaction-diffusion kinetics

    DOE PAGES

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-23

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less

  1. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  2. Quantitative dissection of hydrogen bond-mediated proton transfer in the ketosteroid isomerase active site

    PubMed Central

    Sigala, Paul A.; Fafarman, Aaron T.; Schwans, Jason P.; Fried, Stephen D.; Fenn, Timothy D.; Caaveiro, Jose M. M.; Pybus, Brandon; Ringe, Dagmar; Petsko, Gregory A.; Boxer, Steven G.; Herschlag, Daniel

    2013-01-01

    Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol–Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations. PMID:23798390

  3. Physical models have gender-specific effects on student understanding of protein structure-function relationships.

    PubMed

    Forbes-Lorman, Robin M; Harris, Michelle A; Chang, Wesley S; Dent, Erik W; Nordheim, Erik V; Franzen, Margaret A

    2016-07-08

    Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure-function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3-dimensional mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2-dimensional representations. We used a controlled, backward design approach to investigate how hand-held physical molecular model use affected students' ability to logically predict structure-function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self-reported higher learning gains in their understanding of context-specific protein function. Gender differences in spatial visualization may explain the gender-specific benefits of physical model use observed. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 44(4):326-335, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  4. α Centauri A as a potential stellar model calibrator: establishing the nature of its core

    NASA Astrophysics Data System (ADS)

    Nsamba, B.; Monteiro, M. J. P. F. G.; Campante, T. L.; Cunha, M. S.; Sousa, S. G.

    2018-05-01

    Understanding the physical process responsible for the transport of energy in the core of α Centauri A is of the utmost importance if this star is to be used in the calibration of stellar model physics. Adoption of different parallax measurements available in the literature results in differences in the interferometric radius constraints used in stellar modelling. Further, this is at the origin of the different dynamical mass measurements reported for this star. With the goal of reproducing the revised dynamical mass derived by Pourbaix & Boffin, we modelled the star using two stellar grids varying in the adopted nuclear reaction rates. Asteroseismic and spectroscopic observables were complemented with different interferometric radius constraints during the optimisation procedure. Our findings show that best-fit models reproducing the revised dynamical mass favour the existence of a convective core (≳ 70% of best-fit models), a result that is robust against changes to the model physics. If this mass is accurate, then α Centauri A may be used to calibrate stellar model parameters in the presence of a convective core.

  5. The dynamic radiation environment assimilation model (DREAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Geoffrey D; Koller, Josef; Tokar, Robert L

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate resultsmore » than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.« less

  6. Segmentation-less Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Tisato, N.; Ikeda, K.; Goldfarb, E. J.; Spikes, K. T.

    2017-12-01

    In the last decade, Digital Rock Physics (DRP) has become an avenue to investigate physical and mechanical properties of geomaterials. DRP offers the advantage of simulating laboratory experiments on numerical samples that are obtained from analytical methods. Potentially, DRP could allow sparing part of the time and resources that are allocated to perform complicated laboratory tests. Like classic laboratory tests, the goal of DRP is to estimate accurately physical properties of rocks like hydraulic permeability or elastic moduli. Nevertheless, the physical properties of samples imaged using micro-computed tomography (μCT) are estimated through segmentation of the μCT dataset. Segmentation proves to be a challenging and arbitrary procedure that typically leads to inaccurate estimates of physical properties. Here we present a novel technique to extract physical properties from a μCT dataset without the use of segmentation. We show examples in which we use segmentation-less method to simulate elastic wave propagation and pressure wave diffusion to estimate elastic properties and permeability, respectively. The proposed method takes advantage of effective medium theories and uses the density and the porosity that are measured in the laboratory to constrain the results. We discuss the results and highlight that segmentation-less DRP is more accurate than segmentation based DRP approaches and theoretical modeling for the studied rock. In conclusion, the segmentation-less approach here presented seems to be a promising method to improve accuracy and to ease the overall workflow of DRP.

  7. COMPUTATIONAL CHALLENGES IN BUILDING MULTI-SCALE AND MULTI-PHYSICS MODELS OF CARDIAC ELECTRO-MECHANICS

    PubMed Central

    Plank, G; Prassl, AJ; Augustin, C

    2014-01-01

    Despite the evident multiphysics nature of the heart – it is an electrically controlled mechanical pump – most modeling studies considered electrophysiology and mechanics in isolation. In no small part, this is due to the formidable modeling challenges involved in building strongly coupled anatomically accurate and biophyically detailed multi-scale multi-physics models of cardiac electro-mechanics. Among the main challenges are the selection of model components and their adjustments to achieve integration into a consistent organ-scale model, dealing with technical difficulties such as the exchange of data between electro-physiological and mechanical model, particularly when using different spatio-temporal grids for discretization, and, finally, the implementation of advanced numerical techniques to deal with the substantial computational. In this study we report on progress made in developing a novel modeling framework suited to tackle these challenges. PMID:24043050

  8. Comparison of CdZnTe neutron detector models using MCNP6 and Geant4

    NASA Astrophysics Data System (ADS)

    Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David

    2018-01-01

    The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.

  9. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.

    2015-12-01

    We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.

  10. Molecular Model of a Quantum Dot Beyond the Constant Interaction Approximation

    NASA Astrophysics Data System (ADS)

    Temirov, Ruslan; Green, Matthew F. B.; Friedrich, Niklas; Leinen, Philipp; Esat, Taner; Chmielniak, Pawel; Sarwar, Sidra; Rawson, Jeff; Kögerler, Paul; Wagner, Christian; Rohlfing, Michael; Tautz, F. Stefan

    2018-05-01

    We present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip. The results are in excellent agreement with first-principles simulations.

  11. Secondary electron generation, emission and transport: Effects on spacecraft charging and NASCAP models

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mandell, Myron; Roche, James C.; Purvis, Carolyn

    1987-01-01

    Secondary electrons control a spacecraft's response to a plasma environment. To accurately simulate spacecraft charging, the NASA Charging Analyzer Program (NASCAP) has mathematical models of the generation, emission and transport of secondary electrons. The importance of each of the processes and the physical basis for each of the NASCAP models are discussed. Calculations are presented which show that the NASCAP formulations are in good agreement with both laboratory and space experiments.

  12. A model for estimating passive integrated transponder (PIT) tag antenna efficiencies for interval-specific emigration rates

    USGS Publications Warehouse

    Horton, G.E.; Dubreuil, T.L.; Letcher, B.H.

    2007-01-01

    Our goal was to understand movement and its interaction with survival for populations of stream salmonids at long-term study sites in the northeastern United States by employing passive integrated transponder (PIT) tags and associated technology. Although our PIT tag antenna arrays spanned the stream channel (at most flows) and were continuously operated, we are aware that aspects of fish behavior, environmental characteristics, and electronic limitations influenced our ability to detect 100% of the emigration from our stream site. Therefore, we required antenna efficiency estimates to adjust observed emigration rates. We obtained such estimates by testing a full-scale physical model of our PIT tag antenna array in a laboratory setting. From the physical model, we developed a statistical model that we used to predict efficiency in the field. The factors most important for predicting efficiency were external radio frequency signal and tag type. For most sampling intervals, there was concordance between the predicted and observed efficiencies, which allowed us to estimate the true emigration rate for our field populations of tagged salmonids. One caveat is that the model's utility may depend on its ability to characterize external radio frequency signals accurately. Another important consideration is the trade-off between the volume of data necessary to model efficiency accurately and the difficulty of storing and manipulating large amounts of data.

  13. Coupling Schemes for Multiphysics Reactor Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijay Mahadeven; Jean Ragusa

    2007-11-01

    This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of amore » BWR core.« less

  14. Coincidental match of numerical simulation and physics

    NASA Astrophysics Data System (ADS)

    Pierre, B.; Gudmundsson, J. S.

    2010-08-01

    Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.

  15. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    NASA Astrophysics Data System (ADS)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  16. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    NASA Astrophysics Data System (ADS)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation, deformation of a cantilever bracket, and Boycott effects). The applicability of the method is not limited to flow in porous media, but can also be employed to describe many other physical systems governed by a similar set of equations, including e.g. multi-component materials.

  17. Prediction of performance on the RCMP physical ability requirement evaluation.

    PubMed

    Stanish, H I; Wood, T M; Campagna, P

    1999-08-01

    The Royal Canadian Mounted Police use the Physical Ability Requirement Evaluation (PARE) for screening applicants. The purposes of this investigation were to identify those field tests of physical fitness that were associated with PARE performance and determine which most accurately classified successful and unsuccessful PARE performers. The participants were 27 female and 21 male volunteers. Testing included measures of aerobic power, anaerobic power, agility, muscular strength, muscular endurance, and body composition. Multiple regression analysis revealed a three-variable model for males (70-lb bench press, standing long jump, and agility) explaining 79% of the variability in PARE time, whereas a one-variable model (agility) explained 43% of the variability for females. Analysis of the classification accuracy of the males' data was prohibited because 91% of the males passed the PARE. Classification accuracy of the females' data, using logistic regression, produced a two-variable model (agility, 1.5-mile endurance run) with 93% overall classification accuracy.

  18. Measurement and Modeling of Electromagnetic Scattering by Particles and Particle Groups. Chapter 3

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2015-01-01

    Small particles forming clouds of interstellar and circumstellar dust, regolith surfaces of many solar system bodies, and cometary atmospheres have a strong and often controlling effect on many ambient physical and chemical processes. Similarly, aerosol and cloud particles exert a strong influence on the regional and global climates of the Earth, other planets of the solar system, and exoplanets. Therefore, detailed and accurate knowledge of physical and chemical characteristics of such particles has the utmost scientific importance.

  19. Molecular simulation of the thermophysical properties and phase behaviour of impure CO2 relevant to CCS.

    PubMed

    Cresswell, Alexander J; Wheatley, Richard J; Wilkinson, Richard D; Graham, Richard S

    2016-10-20

    Impurities from the CCS chain can greatly influence the physical properties of CO 2 . This has important design, safety and cost implications for the compression, transport and storage of CO 2 . There is an urgent need to understand and predict the properties of impure CO 2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO 2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO 2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO 2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO 2 binary mixtures with N 2 , O 2 , Ar and H 2 . A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO 2 and relevant impurities, taking N 2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately predict a much broader set of ab initio force-field calculations at comparatively low numerical cost. Although our method is not yet ready to be implemented in a molecular simulation, we outline the necessary steps here. Such simulations have the potential to deliver first-principles simulation of the thermodynamic properties of impure CO 2 , without fitting to experimental data.

  20. Assessing the Electromagnetic Fields Generated by a Radiofrequency MRI Body Coil at 64 MHz: Defeaturing vs. Accuracy

    PubMed Central

    Lucano, Elena; Liberti, Micaela; Mendoza, Gonzalo G.; Lloyd, Tom; Iacono, Maria Ida; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M.

    2016-01-01

    Goal This study aims at a systematic assessment of five computational models of a birdcage coil for magnetic resonance imaging (MRI) with respect to accuracy and computational cost. Methods The models were implemented using the same geometrical model and numerical algorithm, but different driving methods (i.e., coil “defeaturing”). The defeatured models were labeled as: specific (S2), generic (G32, G16), and hybrid (H16, H16fr-forced). The accuracy of the models was evaluated using the “Symmetric Mean Absolute Percentage Error” (“SMAPE”), by comparison with measurements in terms of frequency response, as well as electric (||E⃗||) and magnetic (||B⃗||) field magnitude. Results All the models computed the ||B⃗|| within 35 % of the measurements, only the S2, G32, and H16 were able to accurately model the ||E⃗|| inside the phantom with a maximum SMAPE of 16 %. Outside the phantom, only the S2 showed a SMAPE lower than 11 %. Conclusions Results showed that assessing the accuracy of ||B⃗|| based only on comparison along the central longitudinal line of the coil can be misleading. Generic or hybrid coils – when properly modeling the currents along the rings/rungs – were sufficient to accurately reproduce the fields inside a phantom while a specific model was needed to accurately model ||E⃗|| in the space between coil and phantom. Significance Computational modeling of birdcage body coils is extensively used in the evaluation of RF-induced heating during MRI. Experimental validation of numerical models is needed to determine if a model is an accurate representation of a physical coil. PMID:26685220

  1. The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2001-01-01

    A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 U(sub j).

  2. Improvements in continuum modeling for biomolecular systems

    NASA Astrophysics Data System (ADS)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  3. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  4. Determination of the free lunar libration modes from ephemeris DE430

    NASA Astrophysics Data System (ADS)

    Yang, Yong-Zhang; Li, Jin-Ling; Ping, Jin-Song; Hanada, Hideo

    2017-12-01

    The Moon’s physical librations have been extensively studied, and elaborate researches have been developed for the purpose of deriving accurate modes of free librations. Our motivation comes from the Planetary and Lunar Ephemeris DE430 by JPL/NASA, which was created in April 2013, and is reported to be the most accurate lunar ephemeris today using the data from Gravity Recovery and Interior Laboratory (GRAIL). Therefore, the residuals after fitting the model have reduced owing to improvement in the libration models, and the free librations embedded in the Euler angles have also improved. We use Fourier analysis to extract the approximate frequencies from DE430 and then a quadratic interpolation method is used to determine higher accuracy frequencies. With the frequencies, the linear least-squares fitting method is employed to fit the lunar physical librations to DE430. From this analysis we identified the three modes of free physical librations, and estimated the amplitudes as {1.471}\\prime\\prime in longitude, {0.025}\\prime\\prime in latitude and {8.19}\\prime\\prime× {3.31}\\prime\\prime for the wobble, with the respective periods of 1056.16, 8806.9 and 27262.99 d. Since the free librations damp with time, they require recent excitation or a continuous stimulating mechanism in order to sustain.

  5. The Fringe-Imaging Skin Friction Technique PC Application User's Manual

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory G.

    1999-01-01

    A personal computer application (CXWIN4G) has been written which greatly simplifies the task of extracting skin friction measurements from interferograms of oil flows on the surface of wind tunnel models. Images are first calibrated, using a novel approach to one-camera photogrammetry, to obtain accurate spatial information on surfaces with curvature. As part of the image calibration process, an auxiliary file containing the wind tunnel model geometry is used in conjunction with a two-dimensional direct linear transformation to relate the image plane to the physical (model) coordinates. The application then applies a nonlinear regression model to accurately determine the fringe spacing from interferometric intensity records as required by the Fringe Imaging Skin Friction (FISF) technique. The skin friction is found through application of a simple expression that makes use of lubrication theory to relate fringe spacing to skin friction.

  6. Physics-based subsurface visualization of human tissue.

    PubMed

    Sharp, Richard; Adams, Jacob; Machiraju, Raghu; Lee, Robert; Crane, Robert

    2007-01-01

    In this paper, we present a framework for simulating light transport in three-dimensional tissue with inhomogeneous scattering properties. Our approach employs a computational model to simulate light scattering in tissue through the finite element solution of the diffusion equation. Although our model handles both visible and nonvisible wavelengths, we especially focus on the interaction of near infrared (NIR) light with tissue. Since most human tissue is permeable to NIR light, tools to noninvasively image tumors, blood vasculature, and monitor blood oxygenation levels are being constructed. We apply this model to a numerical phantom to visually reproduce the images generated by these real-world tools. Therefore, in addition to enabling inverse design of detector instruments, our computational tools produce physically-accurate visualizations of subsurface structures.

  7. Observation learning versus physical practice leads to different consolidation outcomes in a movement timing task.

    PubMed

    Trempe, Maxime; Sabourin, Maxime; Rohbanfard, Hassan; Proteau, Luc

    2011-03-01

    Motor learning is a process that extends beyond training sessions. Specifically, physical practice triggers a series of physiological changes in the CNS that are regrouped under the term "consolidation" (Stickgold and Walker 2007). These changes can result in between-session improvement or performance stabilization (Walker 2005). In a series of three experiments, we tested whether consolidation also occurs following observation. In Experiment 1, participants observed an expert model perform a sequence of arm movements. Although we found evidence of observation learning, no significant difference was revealed between participants asked to reproduce the observed sequence either 5 min or 24 h later (no between-session improvement). In Experiment 2, two groups of participants observed an expert model perform two distinct movement sequences (A and B) either 10 min or 8 h apart; participants then physically performed both sequences after a 24-h break. Participants in the 8-h group performed Sequence B less accurately compared to participants in the 5-min group, suggesting that the memory representation of the first sequence had been stabilized and that it interfered with the learning of the second sequence. Finally, in Experiment 3, the initial observation phase was replaced by a physical practice phase. In contrast with the results of Experiment 2, participants in the 8-h group performed Sequence B significantly more accurately compared to participants in the 5-min group. Together, our results suggest that the memory representation of a skill learned through observation undergoes consolidation. However, consolidation of an observed motor skill leads to distinct behavioural outcomes in comparison with physical practice.

  8. Development of a Three-Dimensional Spectral Element Model for NWP: Idealized Simulations on the Sphere

    NASA Astrophysics Data System (ADS)

    Viner, K.; Reinecke, P. A.; Gabersek, S.; Flagg, D. D.; Doyle, J. D.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F.

    2016-12-01

    NEPTUNE: the Navy Environmental Prediction sysTem Using the NUMA*corE, is a 3D spectral element atmospheric model composed of a full suite of physics parameterizations and pre- and post-processing infrastructure with plans for data assimilation and coupling components to a variety of Earth-system models. This talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation, as demonstrated through idealized test cases. In addition, details of the physics-dynamics coupling methodology will be discussed. NEPTUNE results for test cases from the 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) will be shown and discussed. *NUMA: Nonhydrostatic Unified Model of the Atmosphere; Kelly and Giraldo 2012, JCP

  9. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel composition (palm vs. soy) and fuel blends (neat vs. B20). The model effectively reproduced the trends observed in the experiments.

  10. What might we learn from climate forecasts?

    PubMed Central

    Smith, Leonard A.

    2002-01-01

    Most climate models are large dynamical systems involving a million (or more) variables on big computers. Given that they are nonlinear and not perfect, what can we expect to learn from them about the earth's climate? How can we determine which aspects of their output might be useful and which are noise? And how should we distribute resources between making them “better,” estimating variables of true social and economic interest, and quantifying how good they are at the moment? Just as “chaos” prevents accurate weather forecasts, so model error precludes accurate forecasts of the distributions that define climate, yielding uncertainty of the second kind. Can we estimate the uncertainty in our uncertainty estimates? These questions are discussed. Ultimately, all uncertainty is quantified within a given modeling paradigm; our forecasts need never reflect the uncertainty in a physical system. PMID:11875200

  11. Measurement of Muon Neutrino Quasielastic Scattering on Carbon

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Martin, P. S.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nienaber, P.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2008-01-01

    The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasielastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of νμ CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, MAeff=1.23±0.20GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon, and a Pauli-suppression parameter, κ=1.019±0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.

  12. Methods to estimate irrigated reference crop evapotranspiration - a review.

    PubMed

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  13. Eigenvalues of Rectangular Waveguide Using FEM With Hybrid Elements

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Hall, John M.

    2002-01-01

    A finite element analysis using hybrid triangular-rectangular elements is developed to estimate eigenvalues of a rectangular waveguide. Use of rectangular vector-edge finite elements in the vicinity of the PEC boundary and triangular elements in the interior region more accurately models the physical nature of the electromagnetic field, and consequently quicken the convergence.

  14. Progress in fast, accurate multi-scale climate simulations

    DOE PAGES

    Collins, W. D.; Johansen, H.; Evans, K. J.; ...

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enablingmore » improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  15. A unified dislocation density-dependent physical-based constitutive model for cold metal forming

    NASA Astrophysics Data System (ADS)

    Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.

    2017-10-01

    Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.

  16. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-03-21

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE PAGES

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  18. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerby, Leslie M.; Mashnik, Stepan G.

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  19. Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.

    2017-12-01

    One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.

  20. Development of Predictive Models of Injury for the Lower Extremity, Lumbar, and Thoracic Spine after Discharge from Physical Rehabilitation

    DTIC Science & Technology

    2016-10-01

    prediction models will vary by age and sex . Hypothesis 3: A multi-factorial prediction model that accurately predicts risk of new and recurring injuries...members for injury risk after they have been cleared to return to duty from an injury is of great importance. The purpose of this project is to determine ...It turns out that many patients are not formally discharged from rehabilitation. Many of them “ self -discharge” and just stop coming back, either

  1. Modeling of metal thin film growth: Linking angstrom-scale molecular dynamics results to micron-scale film topographies

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Rodgers, S.; Jensen, K. F.

    2000-07-01

    A general method for modeling ionized physical vapor deposition is presented. As an example, the method is applied to growth of an aluminum film in the presence of an ionized argon flux. Molecular dynamics techniques are used to examine the surface adsorption, reflection, and sputter reactions taking place during ionized physical vapor deposition. We predict their relative probabilities and discuss their dependence on energy and incident angle. Subsequently, we combine the information obtained from molecular dynamics with a line of sight transport model in a two-dimensional feature, incorporating all effects of reemission and resputtering. This provides a complete growth rate model that allows inclusion of energy- and angular-dependent reaction rates. Finally, a level-set approach is used to describe the morphology of the growing film. We thus arrive at a computationally highly efficient and accurate scheme to model the growth of thin films. We demonstrate the capabilities of the model predicting the major differences on Al film topographies between conventional and ionized sputter deposition techniques studying thin film growth under ionized physical vapor deposition conditions with different Ar fluxes.

  2. Prediction equation for estimating total daily energy requirements of special operations personnel.

    PubMed

    Barringer, N D; Pasiakos, S M; McClung, H L; Crombie, A P; Margolis, L M

    2018-01-01

    Special Operations Forces (SOF) engage in a variety of military tasks with many producing high energy expenditures, leading to undesired energy deficits and loss of body mass. Therefore, the ability to accurately estimate daily energy requirements would be useful for accurate logistical planning. Generate a predictive equation estimating energy requirements of SOF. Retrospective analysis of data collected from SOF personnel engaged in 12 different SOF training scenarios. Energy expenditure and total body water were determined using the doubly-labeled water technique. Physical activity level was determined as daily energy expenditure divided by resting metabolic rate. Physical activity level was broken into quartiles (0 = mission prep, 1 = common warrior tasks, 2 = battle drills, 3 = specialized intense activity) to generate a physical activity factor (PAF). Regression analysis was used to construct two predictive equations (Model A; body mass and PAF, Model B; fat-free mass and PAF) estimating daily energy expenditures. Average measured energy expenditure during SOF training was 4468 (range: 3700 to 6300) Kcal·d- 1 . Regression analysis revealed that physical activity level ( r  = 0.91; P  < 0.05) and body mass ( r  = 0.28; P  < 0.05; Model A), or fat-free mass (FFM; r  = 0.32; P  < 0.05; Model B) were the factors that most highly predicted energy expenditures. Predictive equations coupling PAF with body mass (Model A) and FFM (Model B), were correlated ( r  = 0.74 and r  = 0.76, respectively) and did not differ [mean ± SEM: Model A; 4463 ± 65 Kcal·d - 1 , Model B; 4462 ± 61 Kcal·d - 1 ] from DLW measured energy expenditures. By quantifying and grouping SOF training exercises into activity factors, SOF energy requirements can be predicted with reasonable accuracy and these equations used by dietetic/logistical personnel to plan appropriate feeding regimens to meet SOF nutritional requirements across their mission profile.

  3. Space Environment (Natural and Induced)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; George, Kerry A.; Cucinotta, Francis A.

    2007-01-01

    Considerable effort and improvement have been made in the study of ionizing radiation exposure occurring in various regions of space. Satellites and spacecrafts equipped with innovative instruments are continually refining particle data and providing more accurate information on the ionizing radiation environment. The major problem in accurate spectral definition of ionizing radiation appears to be the detailed energy spectra, especially at high energies, which is important parameter for accurate radiation risk assessment. Magnitude of risks posed by exposure to radiation in future space missions is subject to the accuracies of predictive forecast of event size of SPE, GCR environment, geomagnetic fields, and atmospheric radiation environment. Although heavy ion fragmentations and interactions are adequately resolved through laboratory study and model development, improvements in fragmentation cross sections for the light nuclei produced from HZE nuclei and their laboratory validation are still required to achieve the principal goal of planetary GCR simulation at a critical exposure site. More accurate prediction procedure for ionizing radiation environment can be made with a better understanding of the solar and space physics, fulfillment of required measurements for nuclear/atomic processes, and their validation and verification with spaceflights and heavy ion accelerators experiments. It is certainly true that the continued advancements in solar and space physics combining with physical measurements will strengthen the confidence of future manned exploration of solar system. Advancements in radiobiology will surely give the meaningful radiation hazard assessments for short and long term effects, by which appropriate and effective mitigation measures can be placed to ensure that humans safely live and work in the space, anywhere, anytime.

  4. A charge-based model of Junction Barrier Schottky rectifiers

    NASA Astrophysics Data System (ADS)

    Latorre-Rey, Alvaro D.; Mudholkar, Mihir; Quddus, Mohammed T.; Salih, Ali

    2018-06-01

    A new charge-based model of the electric field distribution for Junction Barrier Schottky (JBS) diodes is presented, based on the description of the charge-sharing effect between the vertical Schottky junction and the lateral pn-junctions that constitute the active cell of the device. In our model, the inherently 2-D problem is transformed into a simple but accurate 1-D problem which has a closed analytical solution that captures the reshaping and reduction of the electric field profile responsible for the improved electrical performance of these devices, while preserving physically meaningful expressions that depend on relevant device parameters. The validation of the model is performed by comparing calculated electric field profiles with drift-diffusion simulations of a JBS device showing good agreement. Even though other fully 2-D models already available provide higher accuracy, they lack physical insight making the proposed model an useful tool for device design.

  5. Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics.

    PubMed

    Doçaj, Andris; Wall, Michael L; Mukherjee, Rick; Hazzard, Kaden R A

    2016-04-01

    We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multichannel interaction, whose properties we elucidate. Because this arises from complex short-range collisional physics, it requires no dipolar interactions and thus occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We show that the effective model parameters can be determined in lattice modulation experiments, which, consequently, measure molecular collision dynamics with a vastly sharper energy resolution than experiments in a free-space ultracold gas.

  6. Terminator field-aligned current system: A new finding from model-assimilated data set (MADS)

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Gardner, L. C.; Eccles, J. V.; Rice, D.

    2013-12-01

    Physics-based data assimilation models have been recognized by the space science community as the most accurate approach to specify and forecast the space weather of the solar-terrestrial environment. The model-assimilated data sets (MADS) produced by these models constitute an internally consistent time series of global three-dimensional fields whose accuracy can be estimated. Because of its internal consistency of physics and completeness of descriptions on the status of global systems, the MADS has also been a powerful tool to identify the systematic errors in measurements, reveal the missing physics in physical models, and discover the important dynamical physical processes that are inadequately observed or missed by measurements due to observational limitations. In the past years, we developed a data assimilation model for the high-latitude ionospheric plasma dynamics and electrodynamics. With a set of physical models, an ensemble Kalman filter, and the ingestion of data from multiple observations, the data assimilation model can produce a self-consistent time-series of the complete descriptions of the global high-latitude ionosphere, which includes the convection electric field, horizontal and field-aligned currents, conductivity, as well as 3-D plasma densities and temperatures, In this presentation, we will show a new field-aligned current system discovered from the analysis of the MADS produced by our data assimilation model. This new current system appears and develops near the ionospheric terminator. The dynamical features of this current system will be described and its connection to the active role of the ionosphere in the M-I coupling will be discussed.

  7. An equation of state for high pressure-temperature liquids (RTpress) with application to MgSiO3 melt

    NASA Astrophysics Data System (ADS)

    Wolf, Aaron S.; Bower, Dan J.

    2018-05-01

    The thermophysical properties of molten silicates at extreme conditions are crucial for understanding the early evolution of Earth and other massive rocky planets, which is marked by giant impacts capable of producing deep magma oceans. Cooling and crystallization of molten mantles are sensitive to the densities and adiabatic profiles of high-pressure molten silicates, demanding accurate Equation of State (EOS) models to predict the early evolution of planetary interiors. Unfortunately, EOS modeling for liquids at high P-T conditions is difficult due to constantly evolving liquid structure. The Rosenfeld-Tarazona (RT) model provides a physically sensible and accurate description of liquids but is limited to constant volume heating paths (Rosenfeld and Tarazona, 1998). We develop a high P-T EOS for liquids, called RTpress, which uses a generalized Rosenfeld-Tarazona model as a thermal perturbation to isothermal and adiabatic reference compression curves. This approach provides a thermodynamically consistent EOS which remains accurate over a large P-T range and depends on a limited number of physically meaningful parameters that can be determined empirically from either simulated or experimental datasets. As a first application, we model MgSiO3 melt representing a simplified rocky mantle chemistry. The model parameters are fitted to the MD simulations of both Spera et al. (2011) and de Koker and Stixrude (2009), recovering pressures, volumes, and internal energies to within 0.6 GPa, 0.1 Å3 , and 6 meV per atom on average (for the higher resolution data set), as well as accurately predicting liquid densities and temperatures from shock-wave experiments on MgSiO3 glass. The fitted EOS is used to determine adiabatic thermal profiles, revealing the approximate thermal structure of a fully molten magma ocean like that of the early Earth. These adiabats, which are in strong agreement for both fitted models, are shown to be sufficiently steep to produce either a center-outwards or bottom-up style of crystallization, depending on the curvature of the mantle melting curve (liquidus), with a high-curvature model yielding crystallization at depths of roughly 80 GPa (Stixrude et al., 2009) whereas a nearly-flat experimentally determined liquidus implies bottom-up crystallization (Andrault et al., 2011).

  8. Assessment of physical activity of the human body considering the thermodynamic system.

    PubMed

    Hochstein, Stefan; Rauschenberger, Philipp; Weigand, Bernhard; Siebert, Tobias; Schmitt, Syn; Schlicht, Wolfgang; Převorovská, Světlana; Maršík, František

    2016-01-01

    Correctly dosed physical activity is the basis of a vital and healthy life, but the measurement of physical activity is certainly rather empirical resulting in limited individual and custom activity recommendations. Certainly, very accurate three-dimensional models of the cardiovascular system exist, however, requiring the numeric solution of the Navier-Stokes equations of the flow in blood vessels. These models are suitable for the research of cardiac diseases, but computationally very expensive. Direct measurements are expensive and often not applicable outside laboratories. This paper offers a new approach to assess physical activity using thermodynamical systems and its leading quantity of entropy production which is a compromise between computation time and precise prediction of pressure, volume, and flow variables in blood vessels. Based on a simplified (one-dimensional) model of the cardiovascular system of the human body, we develop and evaluate a setup calculating entropy production of the heart to determine the intensity of human physical activity in a more precise way than previous parameters, e.g. frequently used energy considerations. The knowledge resulting from the precise real-time physical activity provides the basis for an intelligent human-technology interaction allowing to steadily adjust the degree of physical activity according to the actual individual performance level and thus to improve training and activity recommendations.

  9. Physical Examination of Knee Ligament Injuries.

    PubMed

    Bronstein, Robert D; Schaffer, Joseph C

    2017-04-01

    The knee is one of the most commonly injured joints in the body. A thorough history and physical examination of the knee facilitates accurate diagnosis of ligament injury. Several examination techniques for the knee ligaments that were developed before advanced imaging remain as accurate or more accurate than these newer imaging modalities. Proper use of these examination techniques requires an understanding of the anatomy and pathophysiology of knee ligament injuries. Advanced imaging can be used to augment a history and examination when necessary, but should not replace a thorough history and physical examination.

  10. Reduced-order surrogate models for Green's functions in black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Galley, Chad; Wardell, Barry

    2016-03-01

    The fundamental nature of linear wave propagation in curved spacetime is encoded in the retarded Green's function (or propagator). Green's functions are useful tools because almost any field quantity of interest can be computed via convolution integrals with a source. In addition, perturbation theories involving nonlinear wave propagation can be expressed in terms of multiple convolutions of the Green's function. Recently, numerical solutions for propagators in black hole spacetimes have been found that are globally valid and accurate for computing physical quantities. However, the data generated is too large for practical use because the propagator depends on two spacetime points that must be sampled finely to yield accurate convolutions. I describe how to build a reduced-order model that can be evaluated as a substitute, or surrogate, for solutions of the curved spacetime Green's function equation. The resulting surrogate accurately and quickly models the original and out-of-sample data. I discuss applications of the surrogate, including self-consistent evolutions and waveforms of extreme mass ratio binaries. Green's function surrogate models provide a new and practical way to handle many old problems involving wave propagation and motion in curved spacetimes.

  11. A Thermo-Poromechanics Finite Element Model for Predicting Arterial Tissue Fusion

    NASA Astrophysics Data System (ADS)

    Fankell, Douglas P.

    This work provides modeling efforts and supplemental experimental work performed towards the ultimate goal of modeling heat transfer, mass transfer, and deformation occurring in biological tissue, in particular during arterial fusion and cutting. Developing accurate models of these processes accomplishes two goals. First, accurate models would enable engineers to design devices to be safer and less expensive. Second, the mechanisms behind tissue fusion and cutting are widely unknown; models with the ability to accurately predict physical phenomena occurring in the tissue will allow for insight into the underlying mechanisms of the processes. This work presents three aims and the efforts in achieving them, leading to an accurate model of tissue fusion and more broadly the thermo-poromechanics (TPM) occurring within biological tissue. Chapters 1 and 2 provide the motivation for developing accurate TPM models of biological tissue and an overview of previous modeling efforts. In Chapter 3, a coupled thermo-structural finite element (FE) model with the ability to predict arterial cutting is offered. From the work presented in Chapter 3, it became obvious a more detailed model was needed. Chapter 4 meets this need by presenting small strain TPM theory and its implementation in an FE code. The model is then used to simulate thermal tissue fusion. These simulations show the model's promise in predicting the water content and temperature of arterial wall tissue during the fusion process, but it is limited by its small deformation assumptions. Chapters 5-7 attempt to address this limitation by developing and implementing a large deformation TPM FE model. Chapters 5, 6, and 7 present a thermodynamically consistent, large deformation TPM FE model and its ability to simulate tissue fusion. Ultimately, this work provides several methods of simulating arterial tissue fusion and the thermo-poromechanics of biological tissue. It is the first work, to the author's knowledge, to simulate the fully coupled TPM of biological tissue and the first to present a fully coupled large deformation TPM FE model. In doing so, a stepping stone for more advanced modeling of biological tissue has been laid.

  12. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome

    DTIC Science & Technology

    2017-01-10

    benchmarks of conformational sampling methods and their all-atom force fields plus solvent descriptions to accurately model structural transitions on a...atom simulations of proteins is the replacement of explicit water interactions with a continuum description of treating implicitly the bulk physical... structure was reported by Amarasinghe and coworkers (Leung et al., 2015) of the Ebola nucleoprotein NP in complex with a 28-residue peptide extracted

  13. Computational Cosmology

    NASA Astrophysics Data System (ADS)

    Abel, Tom

    2013-01-01

    Gravitational instability of small density fluctuations, possibly created during an early inflationary period, is the key process leading to the formation of all structure in the Universe. New numerical algorithms have recently enabled much progress in understanding the relevant physical processes dominating the first billion years of structure formation. Computational cosmologists are attempting to simulate on their supercomputers how galaxies come about. In recent years first attempts trying to follow the formation and eventual death of every single star in these model galaxies has become to be within reach. The models now include gravity for both dark matter and baryonic matter, hydrodynamics, follow the radiation from massive stars and its impact in shaping the surrounding material, gas chemistry and all the key radiative atomic and molecular physics determining the thermal state of the model gas. In a small number of cases even the rold of magnetic fields on galactic scales is being studied. At the same time we are learning more about the limitations of certain numerical techniques and developing new schemes to more accurately follow the interplay of these many different physical processes. This talk is in two parts. First we consider a birds eye view of the relevant physical processes relevant for structure formation and potential approaches in solving the relevant equations efficiently and accurately on modern supercomputers. Secondly, we focus in on one of those processes. Namely the intricate and fascinating dynamics of the likely collsionless fluid dynamics of dark matter. A novel way of following the intricate evolution of such collisionless fluids in phase space is allowing us to construct new numerical methods to help understand the nature of dark matter halos as well as problems in astrophysical and terrestial plasmas.

  14. Modeling of dynamic effects of a low power laser beam

    NASA Technical Reports Server (NTRS)

    Lawrence, George N.; Scholl, Marija S.; Khatib, AL

    1988-01-01

    Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.

  15. Cognitive, sensory and physical factors enabling driving safety in older adults.

    PubMed

    Anstey, Kaarin J; Wood, Joanne; Lord, Stephen; Walker, Janine G

    2005-01-01

    We reviewed literature on cognitive, sensory, motor and physical factors associated with safe driving and crash risk in older adults with the goal of developing a model of factors enabling safe driving behaviour. Thirteen empirical studies reporting associations between cognitive, sensory, motor and physical factors and either self-reported crashes, state crash records or on-road driving measures were identified. Measures of attention, reaction time, memory, executive function, mental status, visual function, and physical function variables were associated with driving outcome measures. Self-monitoring was also identified as a factor that may moderate observed effects by influencing driving behavior. We propose that three enabling factors (cognition, sensory function and physical function/medical conditions) predict driving ability, but that accurate self-monitoring of these enabling factors is required for safe driving behaviour.

  16. Accurate modelling of unsteady flows in collapsible tubes.

    PubMed

    Marchandise, Emilie; Flaud, Patrice

    2010-01-01

    The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.

  17. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koller, Josep; Reeves, Geoffrey D; Friedel, Reiner H W

    2008-01-01

    Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10{sup 5} calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models overmore » more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand physical processes and their effect. Without sufficiently accurate L* values, the interpretation of reanalysis results becomes difficult and uncertain. However, with a method that can calculate accurate L* values orders of magnitude faster, analyzing whole solar cycles worth of data suddenly becomes feasible.« less

  18. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.

    PubMed

    Demirci, Nagehan; Tönük, Ergin

    2014-01-01

    During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.

  19. Dosimetry applications in GATE Monte Carlo toolkit.

    PubMed

    Papadimitroulas, Panagiotis

    2017-09-01

    Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Research on the Dynamic Hysteresis Loop Model of the Residence Times Difference (RTD)-Fluxgate

    PubMed Central

    Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia

    2013-01-01

    Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230

  1. Constitutive Modeling and Testing of Polymer Matrix Composites Incorporating Physical Aging at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Veazie, David R.

    1998-01-01

    Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.

  2. Computer-based personality judgments are more accurate than those made by humans

    PubMed Central

    Youyou, Wu; Kosinski, Michal; Stillwell, David

    2015-01-01

    Judging others’ personalities is an essential skill in successful social living, as personality is a key driver behind people’s interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants’ Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy. PMID:25583507

  3. Large eddy simulation modeling of particle-laden flows in complex terrain

    NASA Astrophysics Data System (ADS)

    Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.

    2017-12-01

    The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.

  4. Computer-based personality judgments are more accurate than those made by humans.

    PubMed

    Youyou, Wu; Kosinski, Michal; Stillwell, David

    2015-01-27

    Judging others' personalities is an essential skill in successful social living, as personality is a key driver behind people's interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants' Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy.

  5. Derivation of an Explicit Form of the Percolation-Based Effective-Medium Approximation for Thermal Conductivity of Partially Saturated Soils

    NASA Astrophysics Data System (ADS)

    Sadeghi, Morteza; Ghanbarian, Behzad; Horton, Robert

    2018-02-01

    Thermal conductivity is an essential component in multiphysics models and coupled simulation of heat transfer, fluid flow, and solute transport in porous media. In the literature, various empirical, semiempirical, and physical models were developed for thermal conductivity and its estimation in partially saturated soils. Recently, Ghanbarian and Daigle (GD) proposed a theoretical model, using the percolation-based effective-medium approximation, whose parameters are physically meaningful. The original GD model implicitly formulates thermal conductivity λ as a function of volumetric water content θ. For the sake of computational efficiency in numerical calculations, in this study, we derive an explicit λ(θ) form of the GD model. We also demonstrate that some well-known empirical models, e.g., Chung-Horton, widely applied in the HYDRUS model, as well as mixing models are special cases of the GD model under specific circumstances. Comparison with experiments indicates that the GD model can accurately estimate soil thermal conductivity.

  6. Scalable Methods for Uncertainty Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Khuwaileh, Bassam

    High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).

  7. Toward experimental validation of a model for human sensorimotor learning and control in teleoperation

    NASA Astrophysics Data System (ADS)

    Roth, Eatai; Howell, Darrin; Beckwith, Cydney; Burden, Samuel A.

    2017-05-01

    Humans, interacting with cyber-physical systems (CPS), formulate beliefs about the system's dynamics. It is natural to expect that human operators, tasked with teleoperation, use these beliefs to control the remote robot. For tracking tasks in the resulting human-cyber-physical system (HCPS), theory suggests that human operators can achieve exponential tracking (in stable systems) without state estimation provided they possess an accurate model of the system's dynamics. This internalized inverse model, however, renders a portion of the system state unobservable to the human operator—the zero dynamics. Prior work shows humans can track through observable linear dynamics, thus we focus on nonlinear dynamics rendered unobservable through tracking control. We propose experiments to assess the human operator's ability to learn and invert such models, and distinguish this behavior from that achieved by pure feedback control.

  8. Verification of Functional Fault Models and the Use of Resource Efficient Verification Tools

    NASA Technical Reports Server (NTRS)

    Bis, Rachael; Maul, William A.

    2015-01-01

    Functional fault models (FFMs) are a directed graph representation of the failure effect propagation paths within a system's physical architecture and are used to support development and real-time diagnostics of complex systems. Verification of these models is required to confirm that the FFMs are correctly built and accurately represent the underlying physical system. However, a manual, comprehensive verification process applied to the FFMs was found to be error prone due to the intensive and customized process necessary to verify each individual component model and to require a burdensome level of resources. To address this problem, automated verification tools have been developed and utilized to mitigate these key pitfalls. This paper discusses the verification of the FFMs and presents the tools that were developed to make the verification process more efficient and effective.

  9. a Physical Parameterization of Snow Albedo for Use in Climate Models.

    NASA Astrophysics Data System (ADS)

    Marshall, Susan Elaine

    The albedo of a natural snowcover is highly variable ranging from 90 percent for clean, new snow to 30 percent for old, dirty snow. This range in albedo represents a difference in surface energy absorption of 10 to 70 percent of incident solar radiation. Most general circulation models (GCMs) fail to calculate the surface snow albedo accurately, yet the results of these models are sensitive to the assumed value of the snow albedo. This study replaces the current simple empirical parameterizations of snow albedo with a physically-based parameterization which is accurate (within +/- 3% of theoretical estimates) yet efficient to compute. The parameterization is designed as a FORTRAN subroutine (called SNOALB) which can be easily implemented into model code. The subroutine requires less then 0.02 seconds of computer time (CRAY X-MP) per call and adds only one new parameter to the model calculations, the snow grain size. The snow grain size can be calculated according to one of the two methods offered in this thesis. All other input variables to the subroutine are available from a climate model. The subroutine calculates a visible, near-infrared and solar (0.2-5 μm) snow albedo and offers a choice of two wavelengths (0.7 and 0.9 mu m) at which the solar spectrum is separated into the visible and near-infrared components. The parameterization is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, version 1 (CCM1), and the results of a five -year, seasonal cycle, fixed hydrology experiment are compared to the current model snow albedo parameterization. The results show the SNOALB albedos to be comparable to the old CCM1 snow albedos for current climate conditions, with generally higher visible and lower near-infrared snow albedos using the new subroutine. However, this parameterization offers a greater predictability for climate change experiments outside the range of current snow conditions because it is physically-based and not tuned to current empirical results.

  10. The effects of layers in dry snow on its passive microwave emissions using dense media radiative transfer theory based on the quasicrystalline approximation (QCA/DMRT)

    USGS Publications Warehouse

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    A model for the microwave emissions of multilayer dry snowpacks, based on dense media radiative transfer (DMRT) theory with the quasicrystalline approximation (QCA), provides more accurate results when compared to emissions determined by a homogeneous snowpack and other scattering models. The DMRT model accounts for adhesive aggregate effects, which leads to dense media Mie scattering by using a sticky particle model. With the multilayer model, we examined both the frequency and polarization dependence of brightness temperatures (Tb's) from representative snowpacks and compared them to results from a single-layer model and found that the multilayer model predicts higher polarization differences, twice as much, and weaker frequency dependence. We also studied the temporal evolution of Tb from multilayer snowpacks. The difference between Tb's at 18.7 and 36.5 GHz can be S K lower than the single-layer model prediction in this paper. By using the snowpack observations from the Cold Land Processes Field Experiment as input for both multi- and single-layer models, it shows that the multilayer Tb's are in better agreement with the data than the single-layer model. With one set of physical parameters, the multilayer QCA/DMRT model matched all four channels of Tb observations simultaneously, whereas the single-layer model could only reproduce vertically polarized Tb's. Also, the polarization difference and frequency dependence were accurately matched by the multilayer model using the same set of physical parameters. Hence, algorithms for the retrieval of snowpack depth or water equivalent should be based on multilayer scattering models to achieve greater accuracy. ?? 2008 IEEE.

  11. Physics-based enzyme design: predicting binding affinity and catalytic activity.

    PubMed

    Sirin, Sarah; Pearlman, David A; Sherman, Woody

    2014-12-01

    Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications. © 2014 Wiley Periodicals, Inc.

  12. Bayesian Framework Approach for Prognostic Studies in Electrolytic Capacitor under Thermal Overstress Conditions

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies for safety critical avionics equipment to power drivers for electro-mechanical actuator. Past experiences show that capacitors tend to degrade and fail faster when subjected to high electrical or thermal stress conditions during operations. This makes them good candidates for prognostics and health management. Model-based prognostics captures system knowledge in the form of physics-based models of components in order to obtain accurate predictions of end of life based on their current state of heal th and their anticipated future use and operational conditions. The focus of this paper is on deriving first principles degradation models for thermal stress conditions and implementing Bayesian framework for making remaining useful life predictions. Data collected from simultaneous experiments are used to validate the models. Our overall goal is to derive accurate models of capacitor degradation, and use them to remaining useful life in DC-DC converters.

  13. A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals

    NASA Astrophysics Data System (ADS)

    Basko, Mikhail M.; Tsygvintsev, Ilia P.

    2017-05-01

    The hybrid model of laser energy deposition is a combination of the geometrical-optics ray-tracing method with the one-dimensional (1D) solution of the Helmholtz wave equation in regions where the geometrical optics becomes inapplicable. We propose an improved version of this model, where a new physically consistent criterion for transition to the 1D wave optics is derived, and a special rescaling procedure of the wave-optics deposition profile is introduced. The model is intended for applications in large-scale two- and three-dimensional hydrodynamic codes. Comparison with exact 1D solutions demonstrates that it can fairly accurately reproduce the absorption fraction in both the s- and p-polarizations on arbitrarily steep density gradients, provided that a sufficiently accurate algorithm for gradient evaluation is used. The accuracy of the model becomes questionable for long laser pulses simulated on too fine grids, where the hydrodynamic self-focusing instability strongly manifests itself.

  14. Inventory count strategies.

    PubMed

    Springer, W H

    1996-02-01

    An important principle of accounting is that asset inventory needs to be correctly valued to ensure that the financial statements of the institution are accurate. Errors is recording the value of ending inventory in one fiscal year result in errors to published financial statements for that year as well as the subsequent fiscal year. Therefore, it is important that accurate physical counts be periodically taken. It is equally important that any system being used to generate inventory valuation, reordering or management reports be based on consistently accurate on-hand balances. At the foundation of conducting an accurate physical count of an inventory is a comprehensive understanding of the process coupled with a written plan. This article presents a guideline of the physical count processes involved in a traditional double-count approach.

  15. Calibrating Physical Parameters in House Models Using Aggregate AC Power Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yannan; Stevens, Andrew J.; Lian, Jianming

    For residential houses, the air conditioning (AC) units are one of the major resources that can provide significant flexibility in energy use for the purpose of demand response. To quantify the flexibility, the characteristics of all the houses need to be accurately estimated, so that certain house models can be used to predict the dynamics of the house temperatures in order to adjust the setpoints accordingly to provide demand response while maintaining the same comfort levels. In this paper, we propose an approach using the Reverse Monte Carlo modeling method and aggregate house models to calibrate the distribution parameters ofmore » the house models for a population of residential houses. Given the aggregate AC power demand for the population, the approach can successfully estimate the distribution parameters for the sensitive physical parameters based on our previous uncertainty quantification study, such as the mean of the floor areas of the houses.« less

  16. Study on seepage characteristics of inclined wall dam after heavy drought

    NASA Astrophysics Data System (ADS)

    Wei, YE; Fuheng, MA

    2018-05-01

    For seepage of the dam slope with cracks after drought, there are two methods to study including the physical model test and numerical calculation. However, the physical model test can not visualize the seepage field in the dam body intuitively, and the mathematical model is not accurate because of the precision of the parameter. So in this paper, combined physical model with mathematical model, the surface crack development on the dam slope and the changes of pore water pressure were studied through the physical model test, and then numerical calculation was carried out to analyze the internal seepage of the dam body. The results showed that cracks were more likely to develop at middle of the upstream dam slope and dam heel, and cracks for different degrees appeared at different parts of the dam slope after drought. The development of cracks provided a preferential permeable channel which caused that the area near the crack was easily to become saturated. The saturated zone kept expanding leading the infiltration line to be close to the transition layer and the infiltration line was no longer a smooth curve. There were seepage damages and landslide hazards existing with such seepage characteristics, which would threaten the safety of the dam.

  17. Adaptive optimal input design and parametric estimation of nonlinear dynamical systems: application to neuronal modeling.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2018-05-11

    Many physical models of biological processes including neural systems are characterized by parametric nonlinear dynamical relations between driving inputs, internal states, and measured outputs of the process. Fitting such models using experimental data (data assimilation) is a challenging task since the physical process often operates in a noisy, possibly non-stationary environment; moreover, conducting multiple experiments under controlled and repeatable conditions can be impractical, time consuming or costly. The accuracy of model identification, therefore, is dictated principally by the quality and dynamic richness of collected data over single or few experimental sessions. Accordingly, it is highly desirable to design efficient experiments that, by exciting the physical process with smart inputs, yields fast convergence and increased accuracy of the model. We herein introduce an adaptive framework in which optimal input design is integrated with Square root Cubature Kalman Filters (OID-SCKF) to develop an online estimation procedure that first, converges significantly quicker, thereby permitting model fitting over shorter time windows, and second, enhances model accuracy when only few process outputs are accessible. The methodology is demonstrated on common nonlinear models and on a four-area neural mass model with noisy and limited measurements. Estimation quality (speed and accuracy) is benchmarked against high-performance SCKF-based methods that commonly employ dynamically rich informed inputs for accurate model identification. For all the tested models, simulated single-trial and ensemble averages showed that OID-SCKF exhibited (i) faster convergence of parameter estimates and (ii) lower dependence on inter-trial noise variability with gains up to around 1000 msec in speed and 81% increase in variability for the neural mass models. In terms of accuracy, OID-SCKF estimation was superior, and exhibited considerably less variability across experiments, in identifying model parameters of (a) systems with challenging model inversion dynamics and (b) systems with fewer measurable outputs that directly relate to the underlying processes. Fast and accurate identification therefore carries particular promise for modeling of transient (short-lived) neuronal network dynamics using a spatially under-sampled set of noisy measurements, as is commonly encountered in neural engineering applications. © 2018 IOP Publishing Ltd.

  18. Reverse engineering physical models employing a sensor integration between 3D stereo detection and contact digitization

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Lin, Grier C. I.

    1997-12-01

    A vision-drive automatic digitization process for free-form surface reconstruction has been developed, with a coordinate measurement machine (CMM) equipped with a touch-triggered probe and a CCD camera, in reverse engineering physical models. The process integrates 3D stereo detection, data filtering, Delaunay triangulation, adaptive surface digitization into a single process of surface reconstruction. By using this innovative approach, surface reconstruction can be implemented automatically and accurately. Least-squares B- spline surface models with the controlled accuracy of digitization can be generated for further application in product design and manufacturing processes. One industrial application indicates that this approach is feasible, and the processing time required in reverse engineering process can be significantly reduced up to more than 85%.

  19. Initialization of a fractional order identification algorithm applied for Lithium-ion battery modeling in time domain

    NASA Astrophysics Data System (ADS)

    Nasser Eddine, Achraf; Huard, Benoît; Gabano, Jean-Denis; Poinot, Thierry

    2018-06-01

    This paper deals with the initialization of a non linear identification algorithm used to accurately estimate the physical parameters of Lithium-ion battery. A Randles electric equivalent circuit is used to describe the internal impedance of the battery. The diffusion phenomenon related to this modeling is presented using a fractional order method. The battery model is thus reformulated into a transfer function which can be identified through Levenberg-Marquardt algorithm to ensure the algorithm's convergence to the physical parameters. An initialization method is proposed in this paper by taking into account previously acquired information about the static and dynamic system behavior. The method is validated using noisy voltage response, while precision of the final identification results is evaluated using Monte-Carlo method.

  20. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    DOE PAGES

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; ...

    2017-10-17

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less

  1. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less

  2. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2018-01-01

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details of electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF&RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.

  3. Status and future prospects of using numerical methods to study complex flows at High Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Maccormack, R. W.

    1978-01-01

    The calculation of flow fields past aircraft configuration at flight Reynolds numbers is considered. Progress in devising accurate and efficient numerical methods, in understanding and modeling the physics of turbulence, and in developing reliable and powerful computer hardware is discussed. Emphasis is placed on efficient solutions to the Navier-Stokes equations.

  4. Feasibility of Close-Range Photogrammetric Models for Geographic Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Luke; /Rice U.

    2011-06-22

    The objective of this project was to determine the feasibility of using close-range architectural photogrammetry as an alternative three dimensional modeling technique in order to place the digital models in a geographic information system (GIS) at SLAC. With the available equipment and Australis photogrammetry software, the creation of full and accurate models of an example building, Building 281 on SLAC campus, was attempted. After conducting several equipment tests to determine the precision achievable, a complete photogrammetric survey was attempted. The dimensions of the resulting models were then compared against the true dimensions of the building. A complete building model wasmore » not evidenced to be obtainable using the current equipment and software. This failure was likely attributable to the limits of the software rather than the precision of the physical equipment. However, partial models of the building were shown to be accurate and determined to still be usable in a GIS. With further development of the photogrammetric software and survey procedure, the desired generation of a complete three dimensional model is likely still feasible.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimesmore » to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.« less

  6. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  7. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  8. Analytical fitting model for rough-surface BRDF.

    PubMed

    Renhorn, Ingmar G E; Boreman, Glenn D

    2008-08-18

    A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.

  9. Variable Generation Power Forecasting as a Big Data Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen; Kosovic, Branko

    To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less

  10. Optimal Design of Experiments by Combining Coarse and Fine Measurements

    NASA Astrophysics Data System (ADS)

    Lee, Alpha A.; Brenner, Michael P.; Colwell, Lucy J.

    2017-11-01

    In many contexts, it is extremely costly to perform enough high-quality experimental measurements to accurately parametrize a predictive quantitative model. However, it is often much easier to carry out large numbers of experiments that indicate whether each sample is above or below a given threshold. Can many such categorical or "coarse" measurements be combined with a much smaller number of high-resolution or "fine" measurements to yield accurate models? Here, we demonstrate an intuitive strategy, inspired by statistical physics, wherein the coarse measurements are used to identify the salient features of the data, while the fine measurements determine the relative importance of these features. A linear model is inferred from the fine measurements, augmented by a quadratic term that captures the correlation structure of the coarse data. We illustrate our strategy by considering the problems of predicting the antimalarial potency and aqueous solubility of small organic molecules from their 2D molecular structure.

  11. Variable Generation Power Forecasting as a Big Data Problem

    DOE PAGES

    Haupt, Sue Ellen; Kosovic, Branko

    2016-10-10

    To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less

  12. Direct reconstruction of dark energy.

    PubMed

    Clarkson, Chris; Zunckel, Caroline

    2010-05-28

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data.

  13. A preliminary Monte Carlo study for the treatment head of a carbon-ion radiotherapy facility using TOPAS

    NASA Astrophysics Data System (ADS)

    Liu, Hongdong; Zhang, Lian; Chen, Zhi; Liu, Xinguo; Dai, Zhongying; Li, Qiang; Xu, Xie George

    2017-09-01

    In medical physics it is desirable to have a Monte Carlo code that is less complex, reliable yet flexible for dose verification, optimization, and component design. TOPAS is a newly developed Monte Carlo simulation tool which combines extensive radiation physics libraries available in Geant4 code, easyto-use geometry and support for visualization. Although TOPAS has been widely tested and verified in simulations of proton therapy, there has been no reported application for carbon ion therapy. To evaluate the feasibility and accuracy of TOPAS simulations for carbon ion therapy, a licensed TOPAS code (version 3_0_p1) was used to carry out a dosimetric study of therapeutic carbon ions. Results of depth dose profile based on different physics models have been obtained and compared with the measurements. It is found that the G4QMD model is at least as accurate as the TOPAS default BIC physics model for carbon ions, but when the energy is increased to relatively high levels such as 400 MeV/u, the G4QMD model shows preferable performance. Also, simulations of special components used in the treatment head at the Institute of Modern Physics facility was conducted to investigate the Spread-Out dose distribution in water. The physical dose in water of SOBP was found to be consistent with the aim of the 6 cm ridge filter.

  14. Endoscopic skull base training using 3D printed models with pre-existing pathology.

    PubMed

    Narayanan, Vairavan; Narayanan, Prepageran; Rajagopalan, Raman; Karuppiah, Ravindran; Rahman, Zainal Ariff Abdul; Wormald, Peter-John; Van Hasselt, Charles Andrew; Waran, Vicknes

    2015-03-01

    Endoscopic base of skull surgery has been growing in acceptance in the recent past due to improvements in visualisation and micro instrumentation as well as the surgical maturing of early endoscopic skull base practitioners. Unfortunately, these demanding procedures have a steep learning curve. A physical simulation that is able to reproduce the complex anatomy of the anterior skull base provides very useful means of learning the necessary skills in a safe and effective environment. This paper aims to assess the ease of learning endoscopic skull base exposure and drilling techniques using an anatomically accurate physical model with a pre-existing pathology (i.e., basilar invagination) created from actual patient data. Five models of a patient with platy-basia and basilar invagination were created from the original MRI and CT imaging data of a patient. The models were used as part of a training workshop for ENT surgeons with varying degrees of experience in endoscopic base of skull surgery, from trainees to experienced consultants. The surgeons were given a list of key steps to achieve in exposing and drilling the skull base using the simulation model. They were then asked to list the level of difficulty of learning these steps using the model. The participants found the models suitable for learning registration, navigation and skull base drilling techniques. All participants also found the deep structures to be accurately represented spatially as confirmed by the navigation system. These models allow structured simulation to be conducted in a workshop environment where surgeons and trainees can practice to perform complex procedures in a controlled fashion under the supervision of experts.

  15. A Comparison of Energy Expenditure Estimation of Several Physical Activity Monitors

    PubMed Central

    Dannecker, Kathryn L.; Sazonova, Nadezhda A.; Melanson, Edward L.; Sazonov, Edward S.; Browning, Raymond C.

    2013-01-01

    Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multi-sensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. PURPOSE To determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. METHODS Nineteen healthy young adults (10 male, 9 female), completed a four-hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as Actical, Actigraph, IDEEA, DirectLife and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. RESULTS Estimated EE using the shoe-based device was not significantly different than measured EE (476(20) vs. 478(18) kcal) (Mean (SE)), respectively, and had a root mean square error (RMSE) of (29.6 kcal (6.2%)). The IDEEA and DirectLlife estimates of EE were not significantly different than the measured EE but the Actigraph and Fitbit devices significantly underestimated EE. Root mean square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, Actigraph and Fitbit respectively. CONCLUSIONS The shoe based physical activity monitor provides a valid estimate of EE while the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity. PMID:23669877

  16. Contributions of the ARM Program to Radiative Transfer Modeling for Climate and Weather Applications

    NASA Technical Reports Server (NTRS)

    Mlawer, Eli J.; Iacono, Michael J.; Pincus, Robert; Barker, Howard W.; Oreopoulos, Lazaros; Mitchell, David L.

    2016-01-01

    Accurate climate and weather simulations must account for all relevant physical processes and their complex interactions. Each of these atmospheric, ocean, and land processes must be considered on an appropriate spatial and temporal scale, which leads these simulations to require a substantial computational burden. One especially critical physical process is the flow of solar and thermal radiant energy through the atmosphere, which controls planetary heating and cooling and drives the large-scale dynamics that moves energy from the tropics toward the poles. Radiation calculations are therefore essential for climate and weather simulations, but are themselves quite complex even without considering the effects of variable and inhomogeneous clouds. Clear-sky radiative transfer calculations have to account for thousands of absorption lines due to water vapor, carbon dioxide, and other gases, which are irregularly distributed across the spectrum and have shapes dependent on pressure and temperature. The line-by-line (LBL) codes that treat these details have a far greater computational cost than can be afforded by global models. Therefore, the crucial requirement for accurate radiation calculations in climate and weather prediction models must be satisfied by fast solar and thermal radiation parameterizations with a high level of accuracy that has been demonstrated through extensive comparisons with LBL codes. See attachment for continuation.

  17. Validation of Afterbody Aeroheating Predictions for Planetary Probes: Status and Future Work

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; Brown, James L.; Sinha, Krishnendu; Candler, Graham V.; Milos, Frank S.; Prabhu, DInesh K.

    2005-01-01

    A review of the relevant flight conditions and physical models for planetary probe afterbody aeroheating calculations is given. Readily available sources of afterbody flight data and published attempts to computationally simulate those flights are summarized. A current status of the application of turbulence models to afterbody flows is presented. Finally, recommendations for additional analysis and testing that would reduce our uncertainties in our ability to accurately predict base heating levels are given.

  18. Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auf der Maur, M., E-mail: auf.der.maur@ing.uniroma2.it; Di Carlo, A.; Galler, B.

    Based on numerical simulation and comparison with measured current characteristics, we show that the current in InGaN/GaN single-quantum-well light-emitting diodes at low forward bias can be accurately described by a standard trap-assisted tunneling model. The qualitative and quantitative differences in the current characteristics of devices with different emission wavelengths are demonstrated to be correlated in a physically consistent way with the tunneling model parameters.

  19. Sensitivities of the hydrologic cycle to model physics, grid resolution, and ocean type in the aquaplanet Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Benedict, James J.; Medeiros, Brian; Clement, Amy C.; Pendergrass, Angeline G.

    2017-06-01

    Precipitation distributions and extremes play a fundamental role in shaping Earth's climate and yet are poorly represented in many global climate models. Here, a suite of idealized Community Atmosphere Model (CAM) aquaplanet simulations is examined to assess the aquaplanet's ability to reproduce hydroclimate statistics of real-Earth configurations and to investigate sensitivities of precipitation distributions and extremes to model physics, horizontal grid resolution, and ocean type. Little difference in precipitation statistics is found between aquaplanets using time-constant sea-surface temperatures and those implementing a slab ocean model with a 50 m mixed-layer depth. In contrast, CAM version 5.3 (CAM5.3) produces more time mean, zonally averaged precipitation than CAM version 4 (CAM4), while CAM4 generates significantly larger precipitation variance and frequencies of extremely intense precipitation events. The largest model configuration-based precipitation sensitivities relate to choice of horizontal grid resolution in the selected range 1-2°. Refining grid resolution has significant physics-dependent effects on tropical precipitation: for CAM4, time mean zonal mean precipitation increases along the Equator and the intertropical convergence zone (ITCZ) narrows, while for CAM5.3 precipitation decreases along the Equator and the twin branches of the ITCZ shift poleward. Increased grid resolution also reduces light precipitation frequencies and enhances extreme precipitation for both CAM4 and CAM5.3 resulting in better alignment with observational estimates. A discussion of the potential implications these hydrologic cycle sensitivities have on the interpretation of precipitation statistics in future climate projections is also presented.Plain Language SummaryPrecipitation plays a fundamental role in shaping Earth's climate. Global climate models predict the average precipitation reasonably well but often struggle to accurately represent how often it precipitates and at what intensity. Model precipitation errors are closely tied to imperfect representations of physical processes too small to be resolved on the model grid. The problem is compounded by the complexity of contemporary climate models and the many model configuration options available. In this study, we use an aquaplanet, a simplified global climate model entirely devoid of land masses, to explore the response of precipitation to several aspects of model configuration in a present-day climate state. Our results suggest that critical precipitation patterns, including extreme precipitation events that have large socio-economic impacts, are strongly sensitive to horizontal grid resolution and the representation of unresolved physical processes. Identification and understanding of such model configuration-related precipitation responses in the present-day climate will provide a more accurate estimate of model uncertainty necessary for an improved interpretation of precipitation changes in global warming projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170006496','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170006496"><span>Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aguilo, Miguel A.; Warner, James E.</p> <p>2017-01-01</p> <p>This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/892515','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/892515"><span>PYTHIA 6.4 Physics and Manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sjostrand, Torbjorn; /Lund U., Dept. Theor. Phys.; Mrenna, Stephen</p> <p>2006-03-01</p> <p>The Pythia program can be used to generate high-energy-physics ''events'', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. Thismore » physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26409493','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26409493"><span>Assessment of validity with polytrauma Veteran populations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bush, Shane S; Bass, Carmela</p> <p>2015-01-01</p> <p>Veterans with polytrauma have suffered injuries to multiple body parts and organs systems, including the brain. The injuries can generate a triad of physical, neurologic/cognitive, and emotional symptoms. Accurate diagnosis is essential for the treatment of these conditions and for fair allocation of benefits. To accurately diagnose polytrauma disorders and their related problems, clinicians take into account the validity of reported history and symptoms, as well as clinical presentations. The purpose of this article is to describe the assessment of validity with polytrauma Veteran populations. Review of scholarly and other relevant literature and clinical experience are utilized. A multimethod approach to validity assessment that includes objective, standardized measures increases the confidence that can be placed in the accuracy of self-reported symptoms and physical, cognitive, and emotional test results. Due to the multivariate nature of polytrauma and the multiple disciplines that play a role in diagnosis and treatment, an ideal model of validity assessment with polytrauma Veteran populations utilizes neurocognitive, neurological, neuropsychiatric, and behavioral measures of validity. An overview of these validity assessment approaches as applied to polytrauma Veteran populations is presented. Veterans, the VA, and society are best served when accurate diagnoses are made.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5695782','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5695782"><span>Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.</p> <p>2017-01-01</p> <p>Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29155839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29155839"><span>Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L</p> <p>2017-01-01</p> <p>Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6595967-problems-radiation-transfer-astrophysics-escape-probability-treatment-line-overlap-model-masers-around-vx-sgr','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6595967-problems-radiation-transfer-astrophysics-escape-probability-treatment-line-overlap-model-masers-around-vx-sgr"><span>Problems in radiation transfer in astrophysics: An escape probability treatment of line overlap and a model of masers around VX Sgr</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lockett, P.B.</p> <p>1989-01-01</p> <p>The escape probability formalism is used in this dissertation to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involves creating a detailed model of the masers around the supergiant star, VX Sgr. The author has developed an escape probability procedure that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines.more » This method was used to test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. He has also developed a detailed model of the OH 1612 and water masers around VX Sgr. He found that the masers can be adequately explained using reasonable estimates for the physical parameters. He also was able to provide a tighter constraint on the highly uncertain mass loss rate from the star. He had less success modeling the SiO masers. His explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6742060-problems-radiative-transfer-astrophysics-escape-probability-treatment-line-overlap-model-masers-around-vx-sgr','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6742060-problems-radiative-transfer-astrophysics-escape-probability-treatment-line-overlap-model-masers-around-vx-sgr"><span>Problems in radiative transfer in astrophysics: An escape probability treatment of line overlap and a model of the masers around VX Sgr</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lockett, P.B.</p> <p>1989-01-01</p> <p>The escape probability formalism is used to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involved creating a detailed model of the masers around the supergiant star, VX Sgr. An escape probability procedure was developed that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines. This method was used tomore » test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. A detailed model of the OH 1612 and water masers around VX Sgr were also developed. The masers can be adequately explained using reasonable estimates for the physical parameters. It is possible to provide a tighter constraint on the highly uncertain mass loss rate from the star. Modeling the SiO masers was less successful. Their explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JCoPh.319...28A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JCoPh.319...28A"><span>Revisiting low-fidelity two-fluid models for gas-solids transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus</p> <p>2016-08-01</p> <p>Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1259532-physically-based-strength-model-tantalum-incorporating-effects-temperature-strain-rate-pressure','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1259532-physically-based-strength-model-tantalum-incorporating-effects-temperature-strain-rate-pressure"><span>Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...</p> <p>2016-06-14</p> <p>In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4547197','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4547197"><span>Physically-based in silico light sheet microscopy for visualizing fluorescent brain models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>Background We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. Results We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. AMS subject classification Modelling and simulation PMID:26329404</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7h5117K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7h5117K"><span>Parameter extraction using global particle swarm optimization approach and the influence of polymer processing temperature on the solar cell parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, S.; Singh, A.; Dhar, A.</p> <p>2017-08-01</p> <p>The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25277024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25277024"><span>Manually locating physical and virtual reality objects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G</p> <p>2014-09-01</p> <p>In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17354831','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17354831"><span>Physics-based elastic image registration using splines and including landmark localization uncertainties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wörz, Stefan; Rohr, Karl</p> <p>2006-01-01</p> <p>We introduce an elastic registration approach which is based on a physical deformation model and uses Gaussian elastic body splines (GEBS). We formulate an extended energy functional related to the Navier equation under Gaussian forces which also includes landmark localization uncertainties. These uncertainties are characterized by weight matrices representing anisotropic errors. Since the approach is based on a physical deformation model, cross-effects in elastic deformations can be taken into account. Moreover, we have a free parameter to control the locality of the transformation for improved registration of local geometric image differences. We demonstrate the applicability of our scheme based on 3D CT images from the Truth Cube experiment, 2D MR images of the brain, as well as 2D gel electrophoresis images. It turns out that the new scheme achieves more accurate results compared to previous approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..115..207J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..115..207J"><span>Evaluation of a numerical model's ability to predict bed load transport observed in braided river experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Javernick, Luke; Redolfi, Marco; Bertoldi, Walter</p> <p>2018-05-01</p> <p>New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42..613L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42..613L"><span>The effect of complex black carbon microphysics on the determination of the optical properties of brown carbon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Dantong; Taylor, Jonathan W.; Young, Dominque E.; Flynn, Michael J.; Coe, Hugh; Allan, James D.</p> <p>2015-01-01</p> <p>of the impacts of brown carbon (BrC) requires accurate determination of its physical properties, but a model must be invoked to derive these from instrument data. Ambient measurements were made in London at a site influenced by traffic and solid fuel (principally wood) burning, apportioned by single particle soot photometer data and optical properties measured using multiwavelength photoacoustic spectroscopy. Two models were applied: a commonly used Mie model treating the particles as single-coated spheres and a Rayleigh-Debye-Gans approximation treating them as aggregates of smaller-coated monomers. The derived solid fuel BrC parameters at 405 nm were found to be highly sensitive to the model treatment, with a mass absorption cross section ranging from 0.47 to 1.81 m2/g and imaginary refractive index from 0.013 to 0.062. This demonstrates that a detailed knowledge of particle morphology must be obtained and invoked to accurately parameterize BrC properties based on aerosol phase measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JAP....98e3709M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JAP....98e3709M"><span>Fermi-level effects in semiconductor processing: A modeling scheme for atomistic kinetic Monte Carlo simulators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin-Bragado, I.; Castrillo, P.; Jaraiz, M.; Pinacho, R.; Rubio, J. E.; Barbolla, J.; Moroz, V.</p> <p>2005-09-01</p> <p>Atomistic process simulation is expected to play an important role for the development of next generations of integrated circuits. This work describes an approach for modeling electric charge effects in a three-dimensional atomistic kinetic Monte Carlo process simulator. The proposed model has been applied to the diffusion of electrically active boron and arsenic atoms in silicon. Several key aspects of the underlying physical mechanisms are discussed: (i) the use of the local Debye length to smooth out the atomistic point-charge distribution, (ii) algorithms to correctly update the charge state in a physically accurate and computationally efficient way, and (iii) an efficient implementation of the drift of charged particles in an electric field. High-concentration effects such as band-gap narrowing and degenerate statistics are also taken into account. The efficiency, accuracy, and relevance of the model are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53..199C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53..199C"><span>Investigation of representing hysteresis in macroscopic models of two-phase flow in porous media using intermediate scale experimental data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Gonzalez-Nicolas, Ana; Illangasekare, Tissa</p> <p>2017-01-01</p> <p>Incorporating hysteresis into models is important to accurately capture the two phase flow behavior when porous media systems undergo cycles of drainage and imbibition such as in the cases of injection and post-injection redistribution of CO2 during geological CO2 storage (GCS). In the traditional model of two-phase flow, existing constitutive models that parameterize the hysteresis associated with these processes are generally based on the empirical relationships. This manuscript presents development and testing of mathematical hysteretic capillary pressure—saturation—relative permeability models with the objective of more accurately representing the redistribution of the fluids after injection. The constitutive models are developed by relating macroscopic variables to basic physics of two-phase capillary displacements at pore-scale and void space distribution properties. The modeling approach with the developed constitutive models with and without hysteresis as input is tested against some intermediate-scale flow cell experiments to test the ability of the models to represent movement and capillary trapping of immiscible fluids under macroscopically homogeneous and heterogeneous conditions. The hysteretic two-phase flow model predicted the overall plume migration and distribution during and post injection reasonably well and represented the postinjection behavior of the plume more accurately than the nonhysteretic models. Based on the results in this study, neglecting hysteresis in the constitutive models of the traditional two-phase flow theory can seriously overpredict or underpredict the injected fluid distribution during post-injection under both homogeneous and heterogeneous conditions, depending on the selected value of the residual saturation in the nonhysteretic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3930933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3930933"><span>Application of a Laplace transform pair model for high-energy x-ray spectral reconstruction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Archer, B R; Almond, P R; Wagner, L K</p> <p>1985-01-01</p> <p>A Laplace transform pair model, previously shown to accurately reconstruct x-ray spectra at diagnostic energies, has been applied to megavoltage energy beams. The inverse Laplace transforms of 2-, 6-, and 25-MV attenuation curves were evaluated to determine the energy spectra of these beams. The 2-MV data indicate that the model can reliably reconstruct spectra in the low megavoltage range. Experimental limitations in acquiring the 6-MV transmission data demonstrate the sensitivity of the model to systematic experimental error. The 25-MV data result in a physically realistic approximation of the present spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARK41001O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARK41001O"><span>Random close packing in protein cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohern, Corey</p> <p></p> <p>Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ~ 0 . 75 , a value that is similar to close packing equal-sized spheres. A limitation of these analyses was the use of `extended atom' models, rather than the more physically accurate `explicit hydrogen' model. The validity of using the explicit hydrogen model is proved by its ability to predict the side chain dihedral angle distributions observed in proteins. We employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high resolution protein structures. We find that these protein cores have ϕ ~ 0 . 55 , which is comparable to random close-packing of non-spherical particles. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations and design of new functional proteins. We gratefully acknowledge the support of the Raymond and Beverly Sackler Institute for Biological, Physical, and Engineering Sciences, National Library of Medicine training grant T15LM00705628 (J.C.G.), and National Science Foundation DMR-1307712 (L.R.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5016774','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5016774"><span>Short‐term time step convergence in a climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rasch, Philip J.; Taylor, Mark A.; Jablonowski, Christiane</p> <p>2015-01-01</p> <p>Abstract This paper evaluates the numerical convergence of very short (1 h) simulations carried out with a spectral‐element (SE) configuration of the Community Atmosphere Model version 5 (CAM5). While the horizontal grid spacing is fixed at approximately 110 km, the process‐coupling time step is varied between 1800 and 1 s to reveal the convergence rate with respect to the temporal resolution. Special attention is paid to the behavior of the parameterized subgrid‐scale physics. First, a dynamical core test with reduced dynamics time steps is presented. The results demonstrate that the experimental setup is able to correctly assess the convergence rate of the discrete solutions to the adiabatic equations of atmospheric motion. Second, results from full‐physics CAM5 simulations with reduced physics and dynamics time steps are discussed. It is shown that the convergence rate is 0.4—considerably slower than the expected rate of 1.0. Sensitivity experiments indicate that, among the various subgrid‐scale physical parameterizations, the stratiform cloud schemes are associated with the largest time‐stepping errors, and are the primary cause of slow time step convergence. While the details of our findings are model specific, the general test procedure is applicable to any atmospheric general circulation model. The need for more accurate numerical treatments of physical parameterizations, especially the representation of stratiform clouds, is likely common in many models. The suggested test technique can help quantify the time‐stepping errors and identify the related model sensitivities. PMID:27660669</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810005056','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810005056"><span>Physics of the atmosphere: Response of the water vapor channel of the Meteosat satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roulleau, M.; Poc, M. M.; Scott, N.; Chedin, A.</p> <p>1980-01-01</p> <p>An accurate model of the atmospheric transmission function is used to obtain the relationship between the cloudless radiances measured by the 6-7 microns Meteosat radiometer (water vapor channel) and the numerical parameters associated to each point of an image. This relationship is compared to the temporary calibration curve published by the European Space Agency.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873977','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873977"><span>Use of single scatter electron monte carlo transport for medical radiation sciences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Svatos, Michelle M.</p> <p>2001-01-01</p> <p>The single scatter Monte Carlo code CREEP models precise microscopic interactions of electrons with matter to enhance physical understanding of radiation sciences. It is designed to simulate electrons in any medium, including materials important for biological studies. It simulates each interaction individually by sampling from a library which contains accurate information over a broad range of energies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920014109','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920014109"><span>Development of a new flux splitting scheme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liou, Meng-Sing; Steffen, Christopher J., Jr.</p> <p>1991-01-01</p> <p>The use of a new splitting scheme, the advection upstream splitting method, for model aerodynamic problems where Van Leer and Roe schemes had failed previously is discussed. The present scheme is based on splitting in which the convective and pressure terms are separated and treated differently depending on the underlying physical conditions. The present method is found to be both simple and accurate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910056170&hterms=sing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910056170&hterms=sing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsing"><span>Development of a new flux splitting scheme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liou, Meng-Sing; Steffen, Christopher J., Jr.</p> <p>1991-01-01</p> <p>The successful use of a novel splitting scheme, the advection upstream splitting method, for model aerodynamic problems where Van Leer and Roe schemes had failed previously is discussed. The present scheme is based on splitting in which the convective and pressure terms are separated and treated differently depending on the underlying physical conditions. The present method is found to be both simple and accurate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=330170','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=330170"><span>Calibration of Noah soil hydraulic property parameters using surface soil moisture from SMOS and basin-wide in situ observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Soil hydraulic properties can be retrieved from physical sampling of soil, via surveys, but this is time consuming and only as accurate as the scale of the sample. Remote sensing provides an opportunity to get pertinent soil properties at large scales, which is very useful for large scale modeling....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24727491','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24727491"><span>Modeling the utility of binaural cues for underwater sound localization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schneider, Jennifer N; Lloyd, David R; Banks, Patchouly N; Mercado, Eduardo</p> <p>2014-06-01</p> <p>The binaural cues used by terrestrial animals for sound localization in azimuth may not always suffice for accurate sound localization underwater. The purpose of this research was to examine the theoretical limits of interaural timing and level differences available underwater using computational and physical models. A paired-hydrophone system was used to record sounds transmitted underwater and recordings were analyzed using neural networks calibrated to reflect the auditory capabilities of terrestrial mammals. Estimates of source direction based on temporal differences were most accurate for frequencies between 0.5 and 1.75 kHz, with greater resolution toward the midline (2°), and lower resolution toward the periphery (9°). Level cues also changed systematically with source azimuth, even at lower frequencies than expected from theoretical calculations, suggesting that binaural mechanical coupling (e.g., through bone conduction) might, in principle, facilitate underwater sound localization. Overall, the relatively limited ability of the model to estimate source position using temporal and level difference cues underwater suggests that animals such as whales may use additional cues to accurately localize conspecifics and predators at long distances. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CMT...tmp...53A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CMT...tmp...53A"><span>Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational formulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abali, B. Emek</p> <p>2018-04-01</p> <p>For micro-architectured materials with a substructure, called metamaterials, we can realize a direct numerical simulation in the microscale by using classical mechanics. This method is accurate, however, computationally costly. Instead, a solution of the same problem in the macroscale is possible by means of the generalized mechanics. In this case, no detailed modeling of the substructure is necessary; however, new parameters emerge. A physical interpretation of these metamaterial parameters is challenging leading to a lack of experimental strategies for their determination. In this work, we exploit the variational formulation based on action principles and obtain a direct relation between a parameter used in the kinetic energy and a metamaterial parameter in the case of a viscoelastic model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1252403-machine-learning-based-multi-physical-model-blending-enhancing-renewable-energy-forecast-improvement-via-situation-dependent-error-correction','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1252403-machine-learning-based-multi-physical-model-blending-enhancing-renewable-energy-forecast-improvement-via-situation-dependent-error-correction"><span>Machine Learning Based Multi-Physical-Model Blending for Enhancing Renewable Energy Forecast -- Improvement via Situation Dependent Error Correction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lu, Siyuan; Hwang, Youngdeok; Khabibrakhmanov, Ildar</p> <p></p> <p>With increasing penetration of solar and wind energy to the total energy supply mix, the pressing need for accurate energy forecasting has become well-recognized. Here we report the development of a machine-learning based model blending approach for statistically combining multiple meteorological models for improving the accuracy of solar/wind power forecast. Importantly, we demonstrate that in addition to parameters to be predicted (such as solar irradiance and power), including additional atmospheric state parameters which collectively define weather situations as machine learning input provides further enhanced accuracy for the blended result. Functional analysis of variance shows that the error of individual modelmore » has substantial dependence on the weather situation. The machine-learning approach effectively reduces such situation dependent error thus produces more accurate results compared to conventional multi-model ensemble approaches based on simplistic equally or unequally weighted model averaging. Validation over an extended period of time results show over 30% improvement in solar irradiance/power forecast accuracy compared to forecasts based on the best individual model.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110020835','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110020835"><span>Radiation-Spray Coupling for Realistic Flow Configurations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>El-Asrag, Hossam; Iannetti, Anthony C.</p> <p>2011-01-01</p> <p>Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25354303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25354303"><span>Leatherbacks swimming in silico: modeling and verifying their momentum and heat balance using computational fluid dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dudley, Peter N; Bonazza, Riccardo; Jones, T Todd; Wyneken, Jeanette; Porter, Warren P</p> <p>2014-01-01</p> <p>As global temperatures increase throughout the coming decades, species ranges will shift. New combinations of abiotic conditions will make predicting these range shifts difficult. Biophysical mechanistic niche modeling places bounds on an animal's niche through analyzing the animal's physical interactions with the environment. Biophysical mechanistic niche modeling is flexible enough to accommodate these new combinations of abiotic conditions. However, this approach is difficult to implement for aquatic species because of complex interactions among thrust, metabolic rate and heat transfer. We use contemporary computational fluid dynamic techniques to overcome these difficulties. We model the complex 3D motion of a swimming neonate and juvenile leatherback sea turtle to find power and heat transfer rates during the stroke. We combine the results from these simulations and a numerical model to accurately predict the core temperature of a swimming leatherback. These results are the first steps in developing a highly accurate mechanistic niche model, which can assists paleontologist in understanding biogeographic shifts as well as aid contemporary species managers about potential range shifts over the coming decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160005125&hterms=database&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddatabase','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160005125&hterms=database&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddatabase"><span>A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.</p> <p>2015-01-01</p> <p>An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27393413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27393413"><span>Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A</p> <p>2016-09-06</p> <p>Analytical and numerical methods have been used to extract essential engineering parameters such as elastic modulus, Poisson׳s ratio, permeability and diffusion coefficient from experimental data in various types of biological tissues. The major limitation associated with analytical techniques is that they are often only applicable to problems with simplified assumptions. Numerical multi-physics methods, on the other hand, enable minimizing the simplified assumptions but require substantial computational expertise, which is not always available. In this paper, we propose a novel approach that combines inverse and forward artificial neural networks (ANNs) which enables fast and accurate estimation of the diffusion coefficient of cartilage without any need for computational modeling. In this approach, an inverse ANN is trained using our multi-zone biphasic-solute finite-bath computational model of diffusion in cartilage to estimate the diffusion coefficient of the various zones of cartilage given the concentration-time curves. Robust estimation of the diffusion coefficients, however, requires introducing certain levels of stochastic variations during the training process. Determining the required level of stochastic variation is performed by coupling the inverse ANN with a forward ANN that receives the diffusion coefficient as input and returns the concentration-time curve as output. Combined together, forward-inverse ANNs enable computationally inexperienced users to obtain accurate and fast estimation of the diffusion coefficients of cartilage zones. The diffusion coefficients estimated using the proposed approach are compared with those determined using direct scanning of the parameter space as the optimization approach. It has been shown that both approaches yield comparable results. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830033222&hterms=mixed+methods&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmixed%2Bmethods','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830033222&hterms=mixed+methods&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmixed%2Bmethods"><span>An explicit mixed numerical method for mesoscale model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hsu, H.-M.</p> <p>1981-01-01</p> <p>A mixed numerical method has been developed for mesoscale models. The technique consists of a forward difference scheme for time tendency terms, an upstream scheme for advective terms, and a central scheme for the other terms in a physical system. It is shown that the mixed method is conditionally stable and highly accurate for approximating the system of either shallow-water equations in one dimension or primitive equations in three dimensions. Since the technique is explicit and two time level, it conserves computer and programming resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010085343&hterms=lesson+plans&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlesson%2Bplans','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010085343&hterms=lesson+plans&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlesson%2Bplans"><span>Improving Global Modeling and Data Analysis Using Remotely-Sensed Rainfall Data: Lessons From TRMM and Plans for GPM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hou, Arthur Y.; Einaudi, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>I will discuss the need for accurate rainfall observations to improve our ability to model the earth's climate and improve short-range weather forecasts. I will give an overview of the recent progress in using of rainfall data provided by TRMM and other microwave instruments in data assimilation to improve global analyses and diagnose state-dependent systematic errors in physical parameterizations. I will outline the current and future research strategies in preparation for the Global Precipitation Mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28687805','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28687805"><span>Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter</p> <p>2017-07-07</p> <p>The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1454460-interfacial-mechanism-cloud-droplet-formation-organic-aerosols','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1454460-interfacial-mechanism-cloud-droplet-formation-organic-aerosols"><span>An interfacial mechanism for cloud droplet formation on organic aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ruehl, C. R.; Davies, J. F.; Wilson, K. R.</p> <p>2016-03-25</p> <p>Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depressionmore » by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1454460','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1454460"><span>An interfacial mechanism for cloud droplet formation on organic aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ruehl, C. R.; Davies, J. F.; Wilson, K. R.</p> <p></p> <p>Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depressionmore » by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27013731','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27013731"><span>An interfacial mechanism for cloud droplet formation on organic aerosols.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruehl, Christopher R; Davies, James F; Wilson, Kevin R</p> <p>2016-03-25</p> <p>Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. Copyright © 2016, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..555..407G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..555..407G"><span>Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gottschalk, Ian P.; Hermans, Thomas; Knight, Rosemary; Caers, Jef; Cameron, David A.; Regnery, Julia; McCray, John E.</p> <p>2017-12-01</p> <p>Geophysical data have proven to be very useful for lithological characterization. However, quantitatively integrating the information gained from acquiring geophysical data generally requires colocated lithological and geophysical data for constructing a rock-physics relationship. In this contribution, the issue of integrating noncolocated geophysical and lithological data is addressed, and the results are applied to simulate groundwater flow in a heterogeneous aquifer in the Prairie Waters Project North Campus aquifer recharge site, Colorado. Two methods of constructing a rock-physics transform between electrical resistivity tomography (ERT) data and lithology measurements are assessed. In the first approach, a maximum likelihood estimation (MLE) is used to fit a bimodal lognormal distribution to horizontal crosssections of the ERT resistivity histogram. In the second approach, a spatial bootstrap is applied to approximate the rock-physics relationship. The rock-physics transforms provide soft data for multiple point statistics (MPS) simulations. Subsurface models are used to run groundwater flow and tracer test simulations. Each model's uncalibrated, predicted breakthrough time is evaluated based on its agreement with measured subsurface travel time values from infiltration basins to selected groundwater recovery wells. We find that incorporating geophysical information into uncalibrated flow models reduces the difference with observed values, as compared to flow models without geophysical information incorporated. The integration of geophysical data also narrows the variance of predicted tracer breakthrough times substantially. Accuracy is highest and variance is lowest in breakthrough predictions generated by the MLE-based rock-physics transform. Calibrating the ensemble of geophysically constrained models would help produce a suite of realistic flow models for predictive purposes at the site. We find that the success of breakthrough predictions is highly sensitive to the definition of the rock-physics transform; it is therefore important to model this transfer function accurately.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/948564','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/948564"><span>From model conception to verification and validation, a global approach to multiphase Navier-Stoke models with an emphasis on volcanic explosive phenomenology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dartevelle, Sebastian</p> <p>2007-10-01</p> <p>Large-scale volcanic eruptions are hazardous events that cannot be described by detailed and accurate in situ measurement: hence, little to no real-time data exists to rigorously validate current computer models of these events. In addition, such phenomenology involves highly complex, nonlinear, and unsteady physical behaviors upon many spatial and time scales. As a result, volcanic explosive phenomenology is poorly understood in terms of its physics, and inadequately constrained in terms of initial, boundary, and inflow conditions. Nevertheless, code verification and validation become even more critical because more and more volcanologists use numerical data for assessment and mitigation of volcanic hazards.more » In this report, we evaluate the process of model and code development in the context of geophysical multiphase flows. We describe: (1) the conception of a theoretical, multiphase, Navier-Stokes model, (2) its implementation into a numerical code, (3) the verification of the code, and (4) the validation of such a model within the context of turbulent and underexpanded jet physics. Within the validation framework, we suggest focusing on the key physics that control the volcanic clouds—namely, momentum-driven supersonic jet and buoyancy-driven turbulent plume. For instance, we propose to compare numerical results against a set of simple and well-constrained analog experiments, which uniquely and unambiguously represent each of the key-phenomenology. Key« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AIPC..706..187B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AIPC..706..187B"><span>The Material Point Method and Simulation of Wave Propagation in Heterogeneous Media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bardenhagen, S. G.; Greening, D. R.; Roessig, K. M.</p> <p>2004-07-01</p> <p>The mechanical response of polycrystalline materials, particularly under shock loading, is of significant interest in a variety of munitions and industrial applications. Homogeneous continuum models have been developed to describe material response, including Equation of State, strength, and reactive burn models. These models provide good estimates of bulk material response. However, there is little connection to underlying physics and, consequently, they cannot be applied far from their calibrated regime with confidence. Both explosives and metals have important structure at the (energetic or single crystal) grain scale. The anisotropic properties of the individual grains and the presence of interfaces result in the localization of energy during deformation. In explosives energy localization can lead to initiation under weak shock loading, and in metals to material ejecta under strong shock loading. To develop accurate, quantitative and predictive models it is imperative to develop a sound physical understanding of the grain-scale material response. Numerical simulations are performed to gain insight into grain-scale material response. The Generalized Interpolation Material Point Method family of numerical algorithms, selected for their robust treatment of large deformation problems and convenient framework for implementing material interface models, are reviewed. A three-dimensional simulation of wave propagation through a granular material indicates the scale and complexity of a representative grain-scale computation. Verification and validation calculations on model bimaterial systems indicate the minimum numerical algorithm complexity required for accurate simulation of wave propagation across material interfaces and demonstrate the importance of interfacial decohesion. Preliminary results are presented which predict energy localization at the grain boundary in a metallic bicrystal.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ29011X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ29011X"><span>A new algebraic turbulence model for accurate description of airfoil flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Meng-Juan; She, Zhen-Su</p> <p>2017-11-01</p> <p>We report a new algebraic turbulence model (SED-SL) based on the SED theory, a symmetry-based approach to quantifying wall turbulence. The model specifies a multi-layer profile of a stress length (SL) function in both the streamwise and wall-normal directions, which thus define the eddy viscosity in the RANS equation (e.g. a zero-equation model). After a successful simulation of flat plate flow (APS meeting, 2016), we report here further applications of the model to the flow around airfoil, with significant improvement of the prediction accuracy of the lift (CL) and drag (CD) coefficients compared to other popular models (e.g. BL, SA, etc.). Two airfoils, namely RAE2822 airfoil and NACA0012 airfoil, are computed for over 50 cases. The results are compared to experimental data from AGARD report, which shows deviations of CL bounded within 2%, and CD within 2 counts (10-4) for RAE2822 and 6 counts for NACA0012 respectively (under a systematic adjustment of the flow conditions). In all these calculations, only one parameter (proportional to the Karmen constant) shows slight variation with Mach number. The most remarkable outcome is, for the first time, the accurate prediction of the drag coefficient. The other interesting outcome is the physical interpretation of the multi-layer parameters: they specify the corresponding multi-layer structure of turbulent boundary layer; when used together with simulation data, the SED-SL enables one to extract physical information from empirical data, and to understand the variation of the turbulent boundary layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970001366','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970001366"><span>The Implementation and Evaluation of the Emergency Response Dose Assessment System (ERDAS) at Cape Canaveral Air Station/Kennedy Space Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Evans, Randolph J.; Tremback, Craig J.; Lyons, Walter A.</p> <p>1996-01-01</p> <p>The Emergency Response Dose Assessment System (ERDAS) is a system which combines the mesoscale meteorological prediction model RAMS with the diffusion models REEDM and HYPACT. Operators use a graphical user interface to run the models for emergency response and toxic hazard planning at CCAS/KCS. The Applied Meteorology Unit has been evaluating the ERDAS meteorological and diffusion models and obtained the following results: (1) RAMS adequately predicts the occurrence of the daily sea breeze during non-cloudy conditions for several cases. (2) RAMS shows a tendency to predict the sea breeze to occur slightly earlier and to move it further inland than observed. The sea breeze predictions could most likely be improved by better parameterizing the soil moisture and/or sea surface temperatures. (3) The HYPACT/REEDM/RAMS models accurately predict launch plume locations when RAMS winds are accurate and when the correct plume layer is modeled. (4) HYPACT does not adequately handle plume buoyancy for heated plumes since all plumes are presently treated as passive tracers. Enhancements should be incorporated into the ERDAS as it moves toward being a fully operational system and as computer workstations continue to increase in power and decrease in cost. These enhancements include the following: activate RAMS moisture physics; use finer RAMS grid resolution; add RAMS input parameters (e.g. soil moisture, radar, and/or satellite data); automate data quality control; implement four-dimensional data assimilation; modify HYPACT plume rise and deposition physics; and add cumulative dosage calculations in HYPACT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1968M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1968M"><span>Study on the physical and non-physical drag coefficients for spherical satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Man, Haijun; Li, Huijun; Tang, Geshi</p> <p></p> <p>In this study, the physical and non-physical drag coefficients (C_D) for spherical satellites in ANDERR are retrieved from the number density of atomic oxygen and the orbit decay data, respectively. We concern on what changes should be taken to the retrieved physical C_D and non-physical C_D as the accuracy of the atmospheric density model is improved. Firstly, Lomb-Scargle periodograms to these C_D series as well as the environmental parameters indicate that: (1) there are obvious 5-, 7-, and 9-day periodic variations in the daily Ap indices and the solar wind speed at 1 AU as well as the model density, which has been reported as a result from the interaction between the corotating solar wind and the magnetosphere; (2) The same short periods also exist in the retrieved C_D except for the significance level for each C_D series; (3) the physical and non-physical C_D have behaved almost homogeneously with model densities along the satellite trajectory. Secondly, corrections to each type of C_D are defined as the differences between the values derived from the density model of NRLMSISE-00 and that of JB2008. It has shown that: (1) the bigger the density corrections are, the bigger the corrections to C_D of both types have. In addition, corrections to the physical C_D distribute within an extension of 0.05, which is about an order lower than the extension that the non-physical C_D distribute (0.5). (2) Corrections to the non-physical C_D behaved reciprocally to the density corrections, while a similar relationship is also existing between corrections to the physical C_D and that of the model density. (3) As the orbital altitude are lower than 200 km, corrections to the C_D and the model density are both decreased asymptotically to zero. Results in this study highlight that the physical C_D for spherical satellites should play an important role in technique renovations for accurate density corrections with the orbital decay data or in searching for a way to decouple the product of density and C_D wrapped in the orbital decay data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..96f3310H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..96f3310H"><span>Interfacial mixing in high-energy-density matter with a multiphysics kinetic model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haack, Jeffrey R.; Hauck, Cory D.; Murillo, Michael S.</p> <p>2017-12-01</p> <p>We have extended a recently developed multispecies, multitemperature Bhatnagar-Gross-Krook model [Haack et al., J. Stat. Phys. 168, 822 (2017), 10.1007/s10955-017-1824-9], to include multiphysics capabilities that enable modeling of a wider range of physical conditions. In terms of geometry, we have extended from the spatially homogeneous setting to one spatial dimension. In terms of the physics, we have included an atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, but for larger length and time scales and for much higher temperatures than can be simulated using molecular dynamics. Relative to molecular dynamics, the kinetic model greatly extends the temperature regime and the spatiotemporal scales over which we are able to model. In our numerical results we observe hydrogen from the ablator material jetting into the fuel during the early stages of the implosion and compare the relative size of various diffusion components (Fickean diffusion, electrodiffusion, and barodiffusion) that drive this process. We also examine kinetic effects, such as anisotropic distributions and velocity separation, in order to determine when this problem can be described with a hydrodynamic model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27118885','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27118885"><span>Towards a physics-based multiscale modelling of the electro-mechanical coupling in electro-active polymers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cohen, Noy; Menzel, Andreas; deBotton, Gal</p> <p>2016-02-01</p> <p>Owing to the increasing number of industrial applications of electro-active polymers (EAPs), there is a growing need for electromechanical models which accurately capture their behaviour. To this end, we compare the predicted behaviour of EAPs undergoing homogeneous deformations according to three electromechanical models. The first model is a phenomenological continuum-based model composed of the mechanical Gent model and a linear relationship between the electric field and the polarization. The electrical and the mechanical responses according to the second model are based on the physical structure of the polymer chain network. The third model incorporates a neo-Hookean mechanical response and a physically motivated microstructurally based long-chains model for the electrical behaviour. In the microstructural-motivated models, the integration from the microscopic to the macroscopic levels is accomplished by the micro-sphere technique. Four types of homogeneous boundary conditions are considered and the behaviours determined according to the three models are compared. For the microstructurally motivated models, these analyses are performed and compared with the widely used phenomenological model for the first time. Some of the aspects revealed in this investigation, such as the dependence of the intensity of the polarization field on the deformation, highlight the need for an in-depth investigation of the relationships between the structure and the behaviours of the EAPs at the microscopic level and their overall macroscopic response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A52G..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A52G..03C"><span>Advanced Machine Learning Emulators of Radiative Transfer Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.</p> <p>2017-12-01</p> <p>Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H13M..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H13M..07S"><span>Towards Improved High-Resolution Land Surface Hydrologic Reanalysis Using a Physically-Based Hydrologic Model and Data Assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Y.; Davis, K. J.; Zhang, F.; Duffy, C.; Yu, X.</p> <p>2014-12-01</p> <p>A coupled physically based land surface hydrologic model, Flux-PIHM, has been developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM has been implemented and manually calibrated at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Model predictions of discharge, point soil moisture, point water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. When calibrated only using discharge, and soil moisture and water table depth at one point, Flux-PIHM is able to resolve the observed 101 m scale soil moisture pattern at the Shale Hills watershed when an appropriate map of soil hydraulic properties is provided. A Flux-PIHM data assimilation system has been developed by incorporating EnKF for model parameter and state estimation. Both synthetic and real data assimilation experiments have been performed at the Shale Hills watershed. Synthetic experiment results show that the data assimilation system is able to simultaneously provide accurate estimates of multiple parameters. In the real data experiment, the EnKF estimated parameters and manually calibrated parameters yield similar model performances, but the EnKF method significantly decreases the time and labor required for calibration. The data requirements for accurate Flux-PIHM parameter estimation via data assimilation using synthetic observations have been tested. Results show that by assimilating only in situ outlet discharge, soil water content at one point, and the land surface temperature averaged over the whole watershed, the data assimilation system can provide an accurate representation of watershed hydrology. Observations of these key variables are available with national and even global spatial coverage (e.g., MODIS surface temperature, SMAP soil moisture, and the USGS gauging stations). National atmospheric reanalysis products, soil databases and land cover databases (e.g., NLDAS-2, SSURGO, NLCD) can provide high resolution forcing and input data. Therefore the Flux-PIHM data assimilation system could be readily expanded to other watersheds to provide regional scale land surface and hydrologic reanalysis with high spatial temporal resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25527935','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25527935"><span>Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong</p> <p>2014-12-21</p> <p>The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMPSo.112..563R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMPSo.112..563R"><span>A physical multifield model predicts the development of volume and structure in the human brain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rooij, Rijk de; Kuhl, Ellen</p> <p>2018-03-01</p> <p>The prenatal development of the human brain is characterized by a rapid increase in brain volume and a development of a highly folded cortex. At the cellular level, these events are enabled by symmetric and asymmetric cell division in the ventricular regions of the brain followed by an outwards cell migration towards the peripheral regions. The role of mechanics during brain development has been suggested and acknowledged in past decades, but remains insufficiently understood. Here we propose a mechanistic model that couples cell division, cell migration, and brain volume growth to accurately model the developing brain between weeks 10 and 29 of gestation. Our model accurately predicts a 160-fold volume increase from 1.5 cm3 at week 10 to 235 cm3 at week 29 of gestation. In agreement with human brain development, the cortex begins to form around week 22 and accounts for about 30% of the total brain volume at week 29. Our results show that cell division and coupling between cell density and volume growth are essential to accurately model brain volume development, whereas cell migration and diffusion contribute mainly to the development of the cortex. We demonstrate that complex folding patterns, including sinusoidal folds and creases, emerge naturally as the cortex develops, even for low stiffness contrasts between the cortex and subcortex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4497528','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4497528"><span>A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wilson, Lydia J; Newhauser, Wayne D</p> <p>2015-01-01</p> <p>State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 minutes. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models. PMID:26040833</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26040833','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26040833"><span>A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jagetic, Lydia J; Newhauser, Wayne D</p> <p>2015-06-21</p> <p>State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023370','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023370"><span>Bridging Empirical and Physical Approaches for Landslide Monitoring and Early Warning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kirschbaum, Dalia; Peters-Lidard, Christa; Adler, Robert; Kumar, Sujay; Harrison, Ken</p> <p>2011-01-01</p> <p>Rainfall-triggered landslides typically occur and are evaluated at local scales, using slope-stability models to calculate coincident changes in driving and resisting forces at the hillslope level in order to anticipate slope failures. Over larger areas, detailed high resolution landslide modeling is often infeasible due to difficulties in quantifying the complex interaction between rainfall infiltration and surface materials as well as the dearth of available in situ soil and rainfall estimates and accurate landslide validation data. This presentation will discuss how satellite precipitation and surface information can be applied within a landslide hazard assessment framework to improve landslide monitoring and early warning by considering two disparate approaches to landslide hazard assessment: an empirical landslide forecasting algorithm and a physical slope-stability model. The goal of this research is to advance near real-time landslide hazard assessment and early warning at larger spatial scales. This is done by employing high resolution surface and precipitation information within a probabilistic framework to provide more physically-based grounding to empirical landslide triggering thresholds. The empirical landslide forecasting tool, running in near real-time at http://trmm.nasa.gov, considers potential landslide activity at the global scale and relies on Tropical Rainfall Measuring Mission (TRMM) precipitation data and surface products to provide a near real-time picture of where landslides may be triggered. The physical approach considers how rainfall infiltration on a hillslope affects the in situ hydro-mechanical processes that may lead to slope failure. Evaluation of these empirical and physical approaches are performed within the Land Information System (LIS), a high performance land surface model processing and data assimilation system developed within the Hydrological Sciences Branch at NASA's Goddard Space Flight Center. LIS provides the capabilities to quantify uncertainty from model inputs and calculate probabilistic estimates for slope failures. Results indicate that remote sensing data can provide many of the spatiotemporal requirements for accurate landslide monitoring and early warning; however, higher resolution precipitation inputs will help to better identify small-scale precipitation forcings that contribute to significant landslide triggering. Future missions, such as the Global Precipitation Measurement (GPM) mission will provide more frequent and extensive estimates of precipitation at the global scale, which will serve as key inputs to significantly advance the accuracy of landslide hazard assessment, particularly over larger spatial scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28865387','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28865387"><span>Exploring the relationship between stride, stature and hand size for forensic assessment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guest, Richard; Miguel-Hurtado, Oscar; Stevenage, Sarah; Black, Sue</p> <p>2017-11-01</p> <p>Forensic evidence often relies on a combination of accurately recorded measurements, estimated measurements from landmark data such as a subject's stature given a known measurement within an image, and inferred data. In this study a novel dataset is used to explore linkages between hand measurements, stature, leg length and stride. These three measurements replicate the type of evidence found in surveillance videos with stride being extracted from an automated gait analysis system. Through correlations and regression modelling, it is possible to generate accurate predictions of stature from hand size, leg length and stride length (and vice versa), and to predict leg and stride length from hand size with, or without, stature as an intermediary variable. The study also shows improved accuracy when a subject's sex is known a-priori. Our method and models indicate the possibility of calculating or checking relationships between a suspect's physical measurements, particularly when only one component is captured as an accurately recorded measurement. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26966098','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26966098"><span>A novel method for pair-matching using three-dimensional digital models of bone: mesh-to-mesh value comparison.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karell, Mara A; Langstaff, Helen K; Halazonetis, Demetrios J; Minghetti, Caterina; Frelat, Mélanie; Kranioti, Elena F</p> <p>2016-09-01</p> <p>The commingling of human remains often hinders forensic/physical anthropologists during the identification process, as there are limited methods to accurately sort these remains. This study investigates a new method for pair-matching, a common individualization technique, which uses digital three-dimensional models of bone: mesh-to-mesh value comparison (MVC). The MVC method digitally compares the entire three-dimensional geometry of two bones at once to produce a single value to indicate their similarity. Two different versions of this method, one manual and the other automated, were created and then tested for how well they accurately pair-matched humeri. Each version was assessed using sensitivity and specificity. The manual mesh-to-mesh value comparison method was 100 % sensitive and 100 % specific. The automated mesh-to-mesh value comparison method was 95 % sensitive and 60 % specific. Our results indicate that the mesh-to-mesh value comparison method overall is a powerful new tool for accurately pair-matching commingled skeletal elements, although the automated version still needs improvement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9836E..1XR','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9836E..1XR"><span>Dynamic inverse models in human-cyber-physical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, Ryan M.; Scobee, Dexter R. R.; Burden, Samuel A.; Sastry, S. Shankar</p> <p>2016-05-01</p> <p>Human interaction with the physical world is increasingly mediated by automation. This interaction is characterized by dynamic coupling between robotic (i.e. cyber) and neuromechanical (i.e. human) decision-making agents. Guaranteeing performance of such human-cyber-physical systems will require predictive mathematical models of this dynamic coupling. Toward this end, we propose a rapprochement between robotics and neuromechanics premised on the existence of internal forward and inverse models in the human agent. We hypothesize that, in tele-robotic applications of interest, a human operator learns to invert automation dynamics, directly translating from desired task to required control input. By formulating the model inversion problem in the context of a tracking task for a nonlinear control system in control-a_ne form, we derive criteria for exponential tracking and show that the resulting dynamic inverse model generally renders a portion of the physical system state (i.e., the internal dynamics) unobservable from the human operator's perspective. Under stability conditions, we show that the human can achieve exponential tracking without formulating an estimate of the system's state so long as they possess an accurate model of the system's dynamics. These theoretical results are illustrated using a planar quadrotor example. We then demonstrate that the automation can intervene to improve performance of the tracking task by solving an optimal control problem. Performance is guaranteed to improve under the assumption that the human learns and inverts the dynamic model of the altered system. We conclude with a discussion of practical limitations that may hinder exact dynamic model inversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1949w0010D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1949w0010D"><span>Model-assisted probability of detection of flaws in aluminum blocks using polynomial chaos expansions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Du, Xiaosong; Leifsson, Leifur; Grandin, Robert; Meeker, William; Roberts, Ronald; Song, Jiming</p> <p>2018-04-01</p> <p>Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination with model-assisted POD (MAPOD) methods. With the development of advanced physics-based methods, such as ultrasonic NDT testing, the empirical information, needed for POD methods, can be reduced. However, performing accurate numerical simulations can be prohibitively time-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the random input variables through the physics-based simulation model to obtain the joint probability distribution of the output. The POD curves are then generated based on those results. Here, the stochastic surrogates are constructed using non-intrusive polynomial chaos (NIPC) expansions. In particular, the NIPC methods used are the quadrature, ordinary least-squares (OLS), and least-angle regression sparse (LARS) techniques. The proposed approach is demonstrated on the ultrasonic testing simulation of a flat bottom hole flaw in an aluminum block. The results show that the stochastic surrogates have at least two orders of magnitude faster convergence on the statistics than direct Monte Carlo sampling (MCS). Moreover, the evaluation of the stochastic surrogate models is over three orders of magnitude faster than the underlying simulation model for this case, which is the UTSim2 model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24732552','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24732552"><span>Design and Validation of 3D Printed Complex Bone Models with Internal Anatomic Fidelity for Surgical Training and Rehearsal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Unger, Bertram J; Kraut, Jay; Rhodes, Charlotte; Hochman, Jordan</p> <p>2014-01-01</p> <p>Physical models of complex bony structures can be used for surgical skills training. Current models focus on surface rendering but suffer from a lack of internal accuracy due to limitations in the manufacturing process. We describe a technique for generating internally accurate rapid-prototyped anatomical models with solid and hollow structures from clinical and microCT data using a 3D printer. In a face validation experiment, otolaryngology residents drilled a cadaveric bone and its corresponding printed model. The printed bone models were deemed highly realistic representations across all measured parameters and the educational value of the models was strongly appreciated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22156170','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22156170"><span>Physical examination of the athlete's elbow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsu, Stephanie H; Moen, Todd C; Levine, William N; Ahmad, Christopher S</p> <p>2012-03-01</p> <p>Elbow injury is encountered less frequently than are other joint conditions. The bony architecture, muscle, ligament, and nerve anatomy are complex, and the forces leading to injury in the athlete's elbow are unique. Appreciating the pathomechanics leading to injury and a detailed knowledge of elbow anatomy are the foundation for conducting a directed history and physical examination that achieves an accurate diagnosis. Recent advances in physical examination have improved our ability to accurately diagnose and treat athletic elbow disorders. This article reviews general and focused physical examination maneuvers of the elbow in a systematic anatomic fashion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23B2047T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23B2047T"><span>A Data-Driven Approach to Develop Physically Sound Predictors: Application to Depth-Averaged Velocities and Drag Coefficients on Vegetated Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinoco, R. O.; Goldstein, E. B.; Coco, G.</p> <p>2016-12-01</p> <p>We use a machine learning approach to seek accurate, physically sound predictors, to estimate two relevant flow parameters for open-channel vegetated flows: mean velocities and drag coefficients. A genetic programming algorithm is used to find a robust relationship between properties of the vegetation and flow parameters. We use data published from several laboratory experiments covering a broad range of conditions to obtain: a) in the case of mean flow, an equation that matches the accuracy of other predictors from recent literature while showing a less complex structure, and b) for drag coefficients, a predictor that relies on both single element and array parameters. We investigate different criteria for dataset size and data selection to evaluate their impact on the resulting predictor, as well as simple strategies to obtain only dimensionally consistent equations, and avoid the need for dimensional coefficients. The results show that a proper methodology can deliver physically sound models representative of the processes involved, such that genetic programming and machine learning techniques can be used as powerful tools to study complicated phenomena and develop not only purely empirical, but "hybrid" models, coupling results from machine learning methodologies into physics-based models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395831','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395831"><span>Validation of Material Models For Automotive Carbon Fiber Composite Structures Via Physical And Crash Testing (VMM Composites Project)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Coppola, Anthony; Faruque, Omar; Truskin, James F</p> <p></p> <p>As automotive fuel economy requirements increase, the push for reducing overall vehicle weight will likely include the consideration of materials that have not previously been part of mainstream vehicle design and manufacturing, including carbon fiber composites. Vehicle manufacturers currently rely on computer-aided engineering (CAE) methods as part of the design and development process, so going forward, the ability to accurately and predictably model carbon fiber composites will be necessary. If composites are to be used for structural components, this need applies to both, crash and quasi-static modeling. This final report covers the results of a five-year, $6.89M, 50% cost-shared researchmore » project between Department of Energy (DOE) and the US Advanced Materials Partnership (USAMP) under Cooperative Agreement DE-EE-0005661 known as “Validation of Material Models for Automotive Carbon Fiber Composite Structures Via Physical and Crash Testing (VMM).” The objective of the VMM Composites Project was to validate and assess the ability of physics-based material models to predict crash performance of automotive primary load-carrying carbon fiber composite structures. Simulation material models that were evaluated included micro-mechanics based meso-scale models developed by the University of Michigan (UM) and micro-plane models by Northwestern University (NWU) under previous collaborations with the DOE and Automotive Composites Consortium/USAMP, as well as five commercial crash codes: LS-DYNA, RADIOSS, VPS/PAM-CRASH, Abaqus, and GENOA-MCQ. CAE predictions obtained from seven organizations were compared with experimental results from quasi-static testing and dynamic crash testing of a thermoset carbon fiber composite front-bumper and crush-can (FBCC) system gathered under multiple loading conditions. This FBCC design was developed to demonstrate progressive crush, virtual simulation, tooling, fabrication, assembly, non-destructive evaluation and crash testing advances in order to assess the correlation of the predicted results to the physical tests. The FBCC was developed to meet a goal of 30-35% mass reduction while aiming for equivalent energy absorption as a steel component for which baseline experimental results were obtained from testing in the same crash modes. The project also evaluated crash performance of thermoplastic composite structures fabricated from commercial prepreg materials and low cost carbon fiber sourced from Oak Ridge National Laboratory. The VMM Project determined that no set of predictions from a CAE supplier were found to be universally accurate among all the six crash modes evaluated. In general, crash modes that were most dependent on the properties of the prepreg were more accurate than those that were dependent on the behavior of the joints. The project found that current CAE modeling methods or best practices for carbon fiber composites have not achieved standardization, and accuracy of CAE is highly reliant on the experience of its users. Coupon tests alone are not sufficient to develop an accurate material model, but it is necessary to bridge the gap between the coupon data and performance of the actual structure with a series of subcomponent level tests. Much of the unreliability of the predictions can be attributed to shortcomings in our ability to mathematically link the effects of manufacturing and material variability into the material models. This is a subject of ongoing research in the industry. The final report is organized by key technical tasks to describe how the validation project developed, modeled and compared crash data obtained on the composite FBCC to the multiple sets of CAE predictions. Highlights of the report include a discussion of the quantitative comparison between predictions and experimental data, as well as an in-depth discussion of remaining technological gaps that exist in the industry, which are intended to spur innovations and improvements in CAE technology.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3791672','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3791672"><span>A Quasiphysics Intelligent Model for a Long Range Fast Tool Servo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Qiang; Zhou, Xiaoqin; Lin, Jieqiong; Xu, Pengzi; Zhu, Zhiwei</p> <p>2013-01-01</p> <p>Accurately modeling the dynamic behaviors of fast tool servo (FTS) is one of the key issues in the ultraprecision positioning of the cutting tool. Herein, a quasiphysics intelligent model (QPIM) integrating a linear physics model (LPM) and a radial basis function (RBF) based neural model (NM) is developed to accurately describe the dynamic behaviors of a voice coil motor (VCM) actuated long range fast tool servo (LFTS). To identify the parameters of the LPM, a novel Opposition-based Self-adaptive Replacement Differential Evolution (OSaRDE) algorithm is proposed which has been proved to have a faster convergence mechanism without compromising with the quality of solution and outperform than similar evolution algorithms taken for consideration. The modeling errors of the LPM and the QPIM are investigated by experiments. The modeling error of the LPM presents an obvious trend component which is about ±1.15% of the full span range verifying the efficiency of the proposed OSaRDE algorithm for system identification. As for the QPIM, the trend component in the residual error of LPM can be well suppressed, and the error of the QPIM maintains noise level. All the results verify the efficiency and superiority of the proposed modeling and identification approaches. PMID:24163627</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29651046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29651046"><span>Understanding physical (in-) activity, overweight, and obesity in childhood: Effects of congruence between physical self-concept and motor competence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Utesch, T; Dreiskämper, D; Naul, R; Geukes, K</p> <p>2018-04-12</p> <p>Both the physical self-concept and actual motor competence are important for healthy future physical activity levels and consequently decrease overweight and obesity in childhood. However, children scoring high on motor competence do not necessarily report high levels of physical self-concept and vice versa, resulting in respective (in-) accuracy also referred to as (non-) veridicality. This study examines whether children's accuracy of physical self-concept is a meaningful predictive factor for their future physical activity. Motor competence, physical self-concept and physical activity were assessed in 3 rd grade and one year later in 4 th grade. Children's weight status was categorized based on WHO recommendations. Polynomial regression with Response surface analyses were conducted with a quasi-DIF approach examining moderating weight status effects. Analyses revealed that children with higher motor competence levels and higher self-perceptions show greater physical activity. Importantly, children who perceive their motor competence more accurately (compared to less) show more future physical activity. This effect is strong for underweight and overweight/obese children, but weak for normal weight children. This study indicates that an accurate self-perception of motor competence fosters future physical activity beyond single main effects, respectively. Hence, the promotion of actual motor competence should be linked with the respective development of accurate self-knowledge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED535870.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED535870.pdf"><span>When the Stakes Are High, Can We Rely on Value-Added? Exploring the Use of Value-Added Models to Inform Teacher Workforce Decisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Goldhaber, Dan</p> <p>2010-01-01</p> <p>The formula is simple: Highly effective teachers equal student academic success. Yet, the physics of American education is anything but. Thus, the question facing education reformers is how can teacher effectiveness be accurately measured in order to improve the teacher workforce? Given the demand for objective, quantitative measures of teacher…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=pharmaceutical+AND+science&pg=3&id=EJ1094470','ERIC'); return false;" href="https://eric.ed.gov/?q=pharmaceutical+AND+science&pg=3&id=EJ1094470"><span>Molecular Dynamics Characterization of the Conformational Landscape of Small Peptides: A Series of Hands-On Collaborative Practical Sessions for Undergraduate Students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rodrigues, João P. G. L. M.; Melquiond, Adrien S. J.; Bonvin, Alexandre M. J. J.</p> <p>2016-01-01</p> <p>Molecular modelling and simulations are nowadays an integral part of research in areas ranging from physics to chemistry to structural biology, as well as pharmaceutical drug design. This popularity is due to the development of high-performance hardware and of accurate and efficient molecular mechanics algorithms by the scientific community. These…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......133R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......133R"><span>Improvements to Fidelity, Generation and Implementation of Physics-Based Lithium-Ion Reduced-Order Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodriguez Marco, Albert</p> <p></p> <p>Battery management systems (BMS) require computationally simple but highly accurate models of the battery cells they are monitoring and controlling. Historically, empirical equivalent-circuit models have been used, but increasingly researchers are focusing their attention on physics-based models due to their greater predictive capabilities. These models are of high intrinsic computational complexity and so must undergo some kind of order-reduction process to make their use by a BMS feasible: we favor methods based on a transfer-function approach of battery cell dynamics. In prior works, transfer functions have been found from full-order PDE models via two simplifying assumptions: (1) a linearization assumption--which is a fundamental necessity in order to make transfer functions--and (2) an assumption made out of expedience that decouples the electrolyte-potential and electrolyte-concentration PDEs in order to render an approach to solve for the transfer functions from the PDEs. This dissertation improves the fidelity of physics-based models by eliminating the need for the second assumption and, by linearizing nonlinear dynamics around different constant currents. Electrochemical transfer functions are infinite-order and cannot be expressed as a ratio of polynomials in the Laplace variable s. Thus, for practical use, these systems need to be approximated using reduced-order models that capture the most significant dynamics. This dissertation improves the generation of physics-based reduced-order models by introducing different realization algorithms, which produce a low-order model from the infinite-order electrochemical transfer functions. Physics-based reduced-order models are linear and describe cell dynamics if operated near the setpoint at which they have been generated. Hence, multiple physics-based reduced-order models need to be generated at different setpoints (i.e., state-of-charge, temperature and C-rate) in order to extend the cell operating range. This dissertation improves the implementation of physics-based reduced-order models by introducing different blending approaches that combine the pre-computed models generated (offline) at different setpoints in order to produce good electrochemical estimates (online) along the cell state-of-charge, temperature and C-rate range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......115S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......115S"><span>Spectrodirectional Investigation of a Geometric-Optical Canopy Reflectance Model by Laboratory Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanford, Adam Christopher</p> <p></p> <p>Canopy reflectance models (CRMs) can accurately estimate vegetation canopy biophysical-structural information such as Leaf Area Index (LAI) inexpensively using satellite imagery. The strict physical basis which geometric-optical CRMs employ to mathematically link canopy bidirectional reflectance and structure allows for the tangible replication of a CRM's geometric abstraction of a canopy in the laboratory, enabling robust CRM validation studies. To this end, the ULGS-2 goniometer was used to obtain multiangle, hyperspectral (Spectrodirectional) measurements of a specially-designed tangible physical model forest, developed based upon the Geometric-Optical Mutual Shadowing (GOMS) CRM, at three different canopy cover densities. GOMS forward-modelled reflectance values had high levels of agreement with ULGS-2 measurements, with obtained reflectance RMSE values ranging from 0.03% to 0.1%. Canopy structure modelled via GOMS Multiple-Forward-Mode (MFM) inversion had varying levels of success. The methods developed in this thesis can potentially be extended to more complex CRMs through the implementation of 3D printing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26919565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26919565"><span>Mechanical behaviour׳s evolution of a PLA-b-PEG-b-PLA triblock copolymer during hydrolytic degradation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Breche, Q; Chagnon, G; Machado, G; Girard, E; Nottelet, B; Garric, X; Favier, D</p> <p>2016-07-01</p> <p>PLA-b-PEG-b-PLA is a biodegradable triblock copolymer that presents both the mechanical properties of PLA and the hydrophilicity of PEG. In this paper, physical and mechanical properties of PLA-b-PEG-b-PLA are studied during in vitro degradation. The degradation process leads to a mass loss, a decrease of number average molecular weight and an increase of dispersity index. Mechanical experiments are made in a specific experimental set-up designed to create an environment close to in vivo conditions. The viscoelastic behaviour of the material is studied during the degradation. Finally, the mechanical behaviour is modelled with a linear viscoelastic model. A degradation variable is defined and included in the model to describe the hydrolytic degradation. This variable is linked to physical parameters of the macromolecular polymer network. The model allows us to describe weak deformations but become less accurate for larger deformations. The abilities and limits of the model are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..GECGT1045J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..GECGT1045J"><span>RF Models for Plasma-Surface Interactions in VSim</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jenkins, Thomas G.; Smithe, D. N.; Pankin, A. Y.; Roark, C. M.; Zhou, C. D.; Stoltz, P. H.; Kruger, S. E.</p> <p>2014-10-01</p> <p>An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath physics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath, can thus be simulated in complex geometries. Generalizations of the model to include sputtering, secondary electron emission, and effects from multiple ion species and background magnetic fields are summarized; related numerical results are also presented. In addition, improved tools for plasma chemistry and IEDF/EEDF visualization and modeling are discussed, as well as our initial efforts toward the development of hybrid fluid/kinetic transition capabilities within VSim. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling industrial plasma processes. Supported by US DoE SBIR-I/II Award DE-SC0009501.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7705E..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7705E..04L"><span>Novel high-fidelity realistic explosion damage simulation for urban environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya</p> <p>2010-04-01</p> <p>Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25240450','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25240450"><span>Handheld ultrasound versus physical examination in patients referred for transthoracic echocardiography for a suspected cardiac condition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mehta, Manish; Jacobson, Timothy; Peters, Dawn; Le, Elizabeth; Chadderdon, Scott; Allen, Allison J; Caughey, Aaron B; Kaul, Sanjiv</p> <p>2014-10-01</p> <p>The purpose of this study was to test the hypothesis that handheld ultrasound (HHU) provides a more accurate diagnosis than physical examination in patients with suspected cardiovascular abnormalities and that its use thus reduces additional testing and overall costs. Despite the limitations of physical examination and the demonstrated superiority of HHU for detecting cardiac abnormalities, it is not routinely used for the bedside diagnosis of cardiac conditions. Patients referred for a standard echocardiogram for common indications (cardiac function, murmur, stroke, arrhythmias, and miscellaneous) underwent physical examination and HHU by different cardiologists, who filled out a form that also included suggestions for additional testing, if necessary, based on their findings. Of 250 patients, 142 had an abnormal finding on standard echocardiogram. Of these, HHU correctly identified 117 patients (82%), and physical examination correctly identified 67 (47%, p < 0.0001). HHU was superior to physical examination (p < 0.0001) for both normal and abnormal cardiac function. It was also superior to physical examination in correctly identifying the presence of substantial valve disease (71% vs. 31%, p = 0.0003) and in identifying miscellaneous findings (47% vs. 3%, p < 0.0001). Of 108 patients without any abnormalities on standard echocardiography, further testing was suggested for 89 (82%) undergoing physical examination versus only 60 (56%) undergoing HHU (p < 0.0001). Cost modeling showed that HHU had an average cost of $644.43 versus an average cost of $707.44 for physical examination. This yielded a savings of $63.01 per patient when HHU was used versus physical examination. When used by cardiologists, HHU provides a more accurate diagnosis than physical examination for the majority of common cardiovascular abnormalities. The finding of no significant abnormality on HHU is also likely to result in less downstream testing and thus potentially reduce the overall cost for patients being evaluated for a cardiovascular diagnosis. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940017270','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940017270"><span>Modeling of outgassing and matrix decomposition in carbon-phenolic composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcmanus, Hugh L.</p> <p>1993-01-01</p> <p>A new release rate equation to model the phase change of water to steam in composite materials was derived from the theory of molecular diffusion and equilibrium moisture concentration. The new model is dependent on internal pressure, the microstructure of the voids and channels in the composite materials, and the diffusion properties of the matrix material. Hence, it is more fundamental and accurate than the empirical Arrhenius rate equation currently in use. The model was mathematically formalized and integrated into the thermostructural analysis code CHAR. Parametric studies on variation of several parameters have been done. Comparisons to Arrhenius and straight-line models show that the new model produces physically realistic results under all conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100003447','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100003447"><span>Computational Analyses of Pressurization in Cryogenic Tanks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chun P.; Field, Robert E.; Ryan, Harry</p> <p>2010-01-01</p> <p>A comprehensive numerical framework utilizing multi-element unstructured CFD and rigorous real fluid property routines has been developed to carry out analyses of propellant tank and delivery systems at NASA SSC. Traditionally CFD modeling of pressurization and mixing in cryogenic tanks has been difficult primarily because the fluids in the tank co-exist in different sub-critical and supercritical states with largely varying properties that have to be accurately accounted for in order to predict the correct mixing and phase change between the ullage and the propellant. For example, during tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. In our modeling framework, we incorporated two different approaches to real fluids modeling: (a) the first approach is based on the HBMS model developed by Hirschfelder, Beuler, McGee and Sutton and (b) the second approach is based on a cubic equation of state developed by Soave, Redlich and Kwong (SRK). Both approaches cover fluid properties and property variation spanning sub-critical gas and liquid states as well as the supercritical states. Both models were rigorously tested and properties for common fluids such as oxygen, nitrogen, hydrogen etc were compared against NIST data in both the sub-critical as well as supercritical regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....4276V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....4276V"><span>A benchmark for subduction zone modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Keken, P.; King, S.; Peacock, S.</p> <p>2003-04-01</p> <p>Our understanding of subduction zones hinges critically on the ability to discern its thermal structure and dynamics. Computational modeling has become an essential complementary approach to observational and experimental studies. The accurate modeling of subduction zones is challenging due to the unique geometry, complicated rheological description and influence of fluid and melt formation. The complicated physics causes problems for the accurate numerical solution of the governing equations. As a consequence it is essential for the subduction zone community to be able to evaluate the ability and limitations of various modeling approaches. The participants of a workshop on the modeling of subduction zones, held at the University of Michigan at Ann Arbor, MI, USA in 2002, formulated a number of case studies to be developed into a benchmark similar to previous mantle convection benchmarks (Blankenbach et al., 1989; Busse et al., 1991; Van Keken et al., 1997). Our initial benchmark focuses on the dynamics of the mantle wedge and investigates three different rheologies: constant viscosity, diffusion creep, and dislocation creep. In addition we investigate the ability of codes to accurate model dynamic pressure and advection dominated flows. Proceedings of the workshop and the formulation of the benchmark are available at www.geo.lsa.umich.edu/~keken/subduction02.html We strongly encourage interested research groups to participate in this benchmark. At Nice 2003 we will provide an update and first set of benchmark results. Interested researchers are encouraged to contact one of the authors for further details.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28028968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28028968"><span>The Use of 3D Printing Technology in the Ilizarov Method Treatment: Pilot Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burzyńska, Karolina; Morasiewicz, Piotr; Filipiak, Jarosław</p> <p>2016-01-01</p> <p>Significant developments in additive manufacturing technology have occurred in recent years. 3D printing techniques can also be helpful in the Ilizarov method treatment. The aim of this study was to evaluate the usefulness of 3D printing technology in the Ilizarov method treatment. Physical models of bones used to plan the spatial design of Ilizarov external fixator were manufactured by FDM (Fused Deposition Modeling) spatial printing technology. Bone models were made of poly(L-lactide) (PLA). Printed 3D models of both lower leg bones allow doctors to prepare in advance for the Ilizarov method treatment: detailed consideration of the spatial configuration of the external fixation, experimental assembly of the Ilizarov external fixator onto the physical models of bones prior to surgery, planning individual osteotomy level and Kirschner wires introduction sites. Printed 3D bone models allow for accurate preparation of the Ilizarov apparatus spatially matched to the size of the bones and prospective bone distortion. Employment of the printed 3D models of bone will enable a more precise design of the apparatus, which is especially useful in multiplanar distortion and in the treatment of axis distortion and limb length discrepancy in young children. In the course of planning the use of physical models manufactured with additive technology, attention should be paid to certain technical aspects of model printing that have an impact on the accuracy of mapping of the geometry and physical properties of the model. 3D printing technique is very useful in 3D planning of the Ilizarov method treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009387','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009387"><span>Basic research on design analysis methods for rotorcraft vibrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hanagud, S.</p> <p>1991-01-01</p> <p>The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..324B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..324B"><span>Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buffo, J. J.; Schmidt, B. E.; Huber, C.</p> <p>2018-01-01</p> <p>Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3982481','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3982481"><span>Numerical Modeling of the Photothermal Processing for Bubble Forming around Nanowire in a Liquid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chaari, Anis; Giraud-Moreau, Laurence</p> <p>2014-01-01</p> <p>An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced. PMID:24795538</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1812e0005B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1812e0005B"><span>Efficient modeling of laser-plasma accelerator staging experiments using INF&RNO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.</p> <p>2017-03-01</p> <p>The computational framework INF&RNO (INtegrated Fluid & paRticle simulatioN cOde) allows for fast and accurate modeling, in 2D cylindrical geometry, of several aspects of laser-plasma accelerator physics. In this paper, we present some of the new features of the code, including the quasistatic Particle-In-Cell (PIC)/fluid modality, and describe using different computational grids and time steps for the laser envelope and the plasma wake. These and other features allow for a speedup of several orders of magnitude compared to standard full 3D PIC simulations while still retaining physical fidelity. INF&RNO is used to support the experimental activity at the BELLA Center, and we will present an example of the application of the code to the laser-plasma accelerator staging experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720026495&hterms=acoustic+foam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dacoustic%2Bfoam','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720026495&hterms=acoustic+foam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dacoustic%2Bfoam"><span>Sound propagation and absorption in foam - A distributed parameter model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Manson, L.; Lieberman, S.</p> <p>1971-01-01</p> <p>Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1185403','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1185403"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.</p> <p></p> <p>Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010038049','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010038049"><span>Reply to "Comment on the Paper ''On the Determination of Electron Polytrope Indices Within Coronal Mass Ejections in the Solar Wind'"'. Appendix 5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gosling, J. T.; Riley, P.; Skoug, R. M.</p> <p>2001-01-01</p> <p>We strongly disagree with the essence of the Osherovich (hereafter Osherovich) comment on one of our papers. The following paragraphs provide the basis of our disagreement and elaborate on why we believe that none of the concluding statements in his Comment are true. Our most important point is that one can apply the model developed by Osherovich and colleagues to real data obtained at a single point in space to determine the polytropic index within magnetic clouds if and only if the highly idealized assumptions of that model conform to physical reality. There is good reason to believe that those assumptions do not provide an accurate physical description of real magnetic clouds in the spherically expanding solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EEEV...17..103L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EEEV...17..103L"><span>Mode-based equivalent multi-degree-of-freedom system for one-dimensional viscoelastic response analysis of layered soil deposit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Chong; Yuan, Juyun; Yu, Haitao; Yuan, Yong</p> <p>2018-01-01</p> <p>Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for one-dimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom (MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom (DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28788985','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28788985"><span>Vector fields in a tight laser focus: comparison of models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael</p> <p>2017-06-26</p> <p>We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUSM.H23D..17K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUSM.H23D..17K"><span>Strategies for Large Scale Implementation of a Multiscale, Multiprocess Integrated Hydrologic Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, M.; Duffy, C.</p> <p>2006-05-01</p> <p>Distributed models simulate hydrologic state variables in space and time while taking into account the heterogeneities in terrain, surface, subsurface properties and meteorological forcings. Computational cost and complexity associated with these model increases with its tendency to accurately simulate the large number of interacting physical processes at fine spatio-temporal resolution in a large basin. A hydrologic model run on a coarse spatial discretization of the watershed with limited number of physical processes needs lesser computational load. But this negatively affects the accuracy of model results and restricts physical realization of the problem. So it is imperative to have an integrated modeling strategy (a) which can be universally applied at various scales in order to study the tradeoffs between computational complexity (determined by spatio- temporal resolution), accuracy and predictive uncertainty in relation to various approximations of physical processes (b) which can be applied at adaptively different spatial scales in the same domain by taking into account the local heterogeneity of topography and hydrogeologic variables c) which is flexible enough to incorporate different number and approximation of process equations depending on model purpose and computational constraint. An efficient implementation of this strategy becomes all the more important for Great Salt Lake river basin which is relatively large (~89000 sq. km) and complex in terms of hydrologic and geomorphic conditions. Also the types and the time scales of hydrologic processes which are dominant in different parts of basin are different. Part of snow melt runoff generated in the Uinta Mountains infiltrates and contributes as base flow to the Great Salt Lake over a time scale of decades to centuries. The adaptive strategy helps capture the steep topographic and climatic gradient along the Wasatch front. Here we present the aforesaid modeling strategy along with an associated hydrologic modeling framework which facilitates a seamless, computationally efficient and accurate integration of the process model with the data model. The flexibility of this framework leads to implementation of multiscale, multiresolution, adaptive refinement/de-refinement and nested modeling simulations with least computational burden. However, performing these simulations and related calibration of these models over a large basin at higher spatio- temporal resolutions is computationally intensive and requires use of increasing computing power. With the advent of parallel processing architectures, high computing performance can be achieved by parallelization of existing serial integrated-hydrologic-model code. This translates to running the same model simulation on a network of large number of processors thereby reducing the time needed to obtain solution. The paper also discusses the implementation of the integrated model on parallel processors. Also will be discussed the mapping of the problem on multi-processor environment, method to incorporate coupling between hydrologic processes using interprocessor communication models, model data structure and parallel numerical algorithms to obtain high performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1431494','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1431494"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wosnik, Martin; Bachant, Pete; Neary, Vincent Sinclair</p> <p></p> <p>CACTUS, developed by Sandia National Laboratories, is an open-source code for the design and analysis of wind and hydrokinetic turbines. While it has undergone extensive validation for both vertical axis and horizontal axis wind turbines, and it has been demonstrated to accurately predict the performance of horizontal (axial-flow) hydrokinetic turbines, its ability to predict the performance of crossflow hydrokinetic turbines has yet to be tested. The present study addresses this problem by comparing the predicted performance curves derived from CACTUS simulations of the U.S. Department of Energy’s 1:6 scale reference model crossflow turbine to those derived by experimental measurements inmore » a tow tank using the same model turbine at the University of New Hampshire. It shows that CACTUS cannot accurately predict the performance of this crossflow turbine, raising concerns on its application to crossflow hydrokinetic turbines generally. The lack of quality data on NACA 0021 foil aerodynamic (hydrodynamic) characteristics over the wide range of angles of attack (AoA) and Reynolds numbers is identified as the main cause for poor model prediction. A comparison of several different NACA 0021 foil data sources, derived using both physical and numerical modeling experiments, indicates significant discrepancies at the high AoA experienced by foils on crossflow turbines. Users of CACTUS for crossflow hydrokinetic turbines are, therefore, advised to limit its application to higher tip speed ratios (lower AoA), and to carefully verify the reliability and accuracy of their foil data. Accurate empirical data on the aerodynamic characteristics of the foil is the greatest limitation to predicting performance for crossflow turbines with semi-empirical models like CACTUS. Future improvements of CACTUS for crossflow turbine performance prediction will require the development of accurate foil aerodynamic characteristic data sets within the appropriate ranges of Reynolds numbers and AoA.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1044958-accelerated-testing-metal-foil-tape-joints-effect-photovoltaic-module-reliability','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1044958-accelerated-testing-metal-foil-tape-joints-effect-photovoltaic-module-reliability"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Puskar, Joseph David; Quintana, Michael A.; Sorensen, Neil Robert</p> <p></p> <p>A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape jointmore » degradation, a possible failure mode, can be incorporated into the model.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970024969','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970024969"><span>Parameter Estimation for Viscoplastic Material Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.</p> <p>1997-01-01</p> <p>A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HydJ...25.2151B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HydJ...25.2151B"><span>High-resolution vertical profiles of groundwater electrical conductivity (EC) and chloride from direct-push EC logs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bourke, Sarah A.; Hermann, Kristian J.; Hendry, M. Jim</p> <p>2017-11-01</p> <p>Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl-) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl- from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl- concentrations than a power-law relationship (Archie's Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl- concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl- = 1,978 ECa - 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl- as porosity data become available and the site-specific ECw-Cl- relationship is determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPS...348..281L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPS...348..281L"><span>On state-of-charge determination for lithium-ion batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhe; Huang, Jun; Liaw, Bor Yann; Zhang, Jianbo</p> <p>2017-04-01</p> <p>Accurate estimation of state-of-charge (SOC) of a battery through its life remains challenging in battery research. Although improved precisions continue to be reported at times, almost all are based on regression methods empirically, while the accuracy is often not properly addressed. Here, a comprehensive review is set to address such issues, from fundamental principles that are supposed to define SOC to methodologies to estimate SOC for practical use. It covers topics from calibration, regression (including modeling methods) to validation in terms of precision and accuracy. At the end, we intend to answer the following questions: 1) can SOC estimation be self-adaptive without bias? 2) Why Ah-counting is a necessity in almost all battery-model-assisted regression methods? 3) How to establish a consistent framework of coupling in multi-physics battery models? 4) To assess the accuracy in SOC estimation, statistical methods should be employed to analyze factors that contribute to the uncertainty. We hope, through this proper discussion of the principles, accurate SOC estimation can be widely achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17201676','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17201676"><span>Calculation of protein-ligand binding affinities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gilson, Michael K; Zhou, Huan-Xiang</p> <p>2007-01-01</p> <p>Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28323951','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28323951"><span>Assessing Energy Requirements in Women With Polycystic Ovary Syndrome: A Comparison Against Doubly Labeled Water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Broskey, Nicholas T; Klempel, Monica C; Gilmore, L Anne; Sutton, Elizabeth F; Altazan, Abby D; Burton, Jeffrey H; Ravussin, Eric; Redman, Leanne M</p> <p>2017-06-01</p> <p>Weight loss is prescribed to offset the deleterious consequences of polycystic ovary syndrome (PCOS), but a successful intervention requires an accurate assessment of energy requirements. Describe energy requirements in women with PCOS and evaluate common prediction equations compared with doubly labeled water (DLW). Cross-sectional study. Academic research center. Twenty-eight weight-stable women with PCOS completed a 14-day DLW study along with measures of body composition and resting metabolic rate and assessment of physical activity by accelerometry. Total daily energy expenditure (TDEE) determined by DLW. TDEE was 2661 ± 373 kcal/d. TDEE estimated from four commonly used equations was within 4% to 6% of the TDEE measured by DLW. Hyperinsulinemia (fasting insulin and homeostatic model assessment of insulin resistance) was associated with TDEE estimates from all prediction equations (both r = 0.45; P = 0.02) but was not a significant covariate in a model that predicts TDEE. Similarly, hyperandrogenemia (total testosterone, free androgen index, and dehydroepiandrosterone sulfate) was not associated with TDEE. In weight-stable women with PCOS, the following equation derived from DLW can be used to determine energy requirements: TDEE (kcal/d) = 438 - [1.6 * Fat Mass (kg)] + [35.1 * Fat-Free Mass (kg)] + [16.2 * Age (y)]; R2 = 0.41; P = 0.005. Established equations using weight, height, and age performed well for predicting energy requirements in weight-stable women with PCOS, but more precise estimates require an accurate assessment of physical activity. Our equation derived from DLW data, which incorporates habitual physical activity, can also be used in women with PCOS; however, additional studies are needed for model validation. Copyright © 2017 Endocrine Society</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1949w0004M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1949w0004M"><span>Structural damage detection using deep learning of ultrasonic guided waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.</p> <p>2018-04-01</p> <p>Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1031021-efficient-isoparametric-integration-over-arbitrary-space-filling-voronoi-polyhedra-electronic-structure-calculations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1031021-efficient-isoparametric-integration-over-arbitrary-space-filling-voronoi-polyhedra-electronic-structure-calculations"><span>Efficient isoparametric integration over arbitrary space-filling Voronoi polyhedra for electronic structure calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alam, Aftab; Khan, S. N.; Wilson, Brian G.</p> <p>2011-07-06</p> <p>A numerically efficient, accurate, and easily implemented integration scheme over convex Voronoi polyhedra (VP) is presented for use in ab initio electronic-structure calculations. We combine a weighted Voronoi tessellation with isoparametric integration via Gauss-Legendre quadratures to provide rapidly convergent VP integrals for a variety of integrands, including those with a Coulomb singularity. We showcase the capability of our approach by first applying it to an analytic charge-density model achieving machine-precision accuracy with expected convergence properties in milliseconds. For contrast, we compare our results to those using shape-functions and show our approach is greater than 10 5 times faster and 10more » 7 times more accurate. Furthermore, a weighted Voronoi tessellation also allows for a physics-based partitioning of space that guarantees convex, space-filling VP while reflecting accurate atomic size and site charges, as we show within KKR methods applied to Fe-Pd alloys.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H42C..02G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H42C..02G"><span>Dynamic Emulation Modelling (DEMo) of large physically-based environmental models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galelli, S.; Castelletti, A.</p> <p>2012-12-01</p> <p>In environmental modelling large, spatially-distributed, physically-based models are widely adopted to describe the dynamics of physical, social and economic processes. Such an accurate process characterization comes, however, to a price: the computational requirements of these models are considerably high and prevent their use in any problem requiring hundreds or thousands of model runs to be satisfactory solved. Typical examples include optimal planning and management, data assimilation, inverse modelling and sensitivity analysis. An effective approach to overcome this limitation is to perform a top-down reduction of the physically-based model by identifying a simplified, computationally efficient emulator, constructed from and then used in place of the original model in highly resource-demanding tasks. The underlying idea is that not all the process details in the original model are equally important and relevant to the dynamics of the outputs of interest for the type of problem considered. Emulation modelling has been successfully applied in many environmental applications, however most of the literature considers non-dynamic emulators (e.g. metamodels, response surfaces and surrogate models), where the original dynamical model is reduced to a static map between input and the output of interest. In this study we focus on Dynamic Emulation Modelling (DEMo), a methodological approach that preserves the dynamic nature of the original physically-based model, with consequent advantages in a wide variety of problem areas. In particular, we propose a new data-driven DEMo approach that combines the many advantages of data-driven modelling in representing complex, non-linear relationships, but preserves the state-space representation typical of process-based models, which is both particularly effective in some applications (e.g. optimal management and data assimilation) and facilitates the ex-post physical interpretation of the emulator structure, thus enhancing the credibility of the model to stakeholders and decision-makers. Numerical results from the application of the approach to the reduction of 3D coupled hydrodynamic-ecological models in several real world case studies, including Marina Reservoir (Singapore) and Googong Reservoir (Australia), are illustrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28784922','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28784922"><span>Consumer-Based Physical Activity Monitor as a Practical Way to Measure Walking Intensity During Inpatient Stroke Rehabilitation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Klassen, Tara D; Semrau, Jennifer A; Dukelow, Sean P; Bayley, Mark T; Hill, Michael D; Eng, Janice J</p> <p>2017-09-01</p> <p>Identifying practical ways to accurately measure exercise intensity and dose in clinical environments is essential to advancing stroke rehabilitation. This is especially relevant in monitoring walking activity during inpatient rehabilitation where recovery is greatest. This study evaluated the accuracy of a readily available consumer-based physical activity monitor during daily inpatient stroke rehabilitation physical therapy sessions. Twenty-one individuals admitted to inpatient rehabilitation were monitored for a total of 471 one-hour physical therapy sessions which consisted of walking and nonwalking therapeutic activities. Participants wore a consumer-based physical activity monitor (Fitbit One) and the gold standard for assessing step count (StepWatch Activity Monitor) during physical therapy sessions. Linear mixed modeling was used to assess the relationship of the step count of the Fitbit to the StepWatch Activity Monitor. Device accuracy is reported as the percent error of the Fitbit compared with the StepWatch Activity Monitor. A strong relationship (slope=0.99; 95% confidence interval, 0.97-1.01) was found between the number of steps captured by the Fitbit One and the StepWatch Activity Monitor. The Fitbit One had a mean error of 10.9% (5.3) for participants with walking velocities <0.4 m/s, 6.8% (3.0) for walking velocities between 0.4 and 0.8 m/s, and 4.4% (2.8) for walking velocities >0.8 m/s. This study provides preliminary evidence that the Fitbit One, when positioned on the nonparetic ankle, can accurately measure walking steps early after stroke during inpatient rehabilitation physical therapy sessions. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01915368. © 2017 American Heart Association, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Sci...360..191P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Sci...360..191P"><span>Measurement of the fine-structure constant as a test of the Standard Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parker, Richard H.; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger</p> <p>2018-04-01</p> <p>Measurements of the fine-structure constant α require methods from across subfields and are thus powerful tests of the consistency of theory and experiment in physics. Using the recoil frequency of cesium-133 atoms in a matter-wave interferometer, we recorded the most accurate measurement of the fine-structure constant to date: α = 1/137.035999046(27) at 2.0 × 10‑10 accuracy. Using multiphoton interactions (Bragg diffraction and Bloch oscillations), we demonstrate the largest phase (12 million radians) of any Ramsey-Bordé interferometer and control systematic effects at a level of 0.12 part per billion. Comparison with Penning trap measurements of the electron gyromagnetic anomaly ge ‑ 2 via the Standard Model of particle physics is now limited by the uncertainty in ge ‑ 2; a 2.5σ tension rejects dark photons as the reason for the unexplained part of the muon’s magnetic moment at a 99% confidence level. Implications for dark-sector candidates and electron substructure may be a sign of physics beyond the Standard Model that warrants further investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.111l2903G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.111l2903G"><span>Physically based DC lifetime model for lead zirconate titanate films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garten, Lauren M.; Hagiwara, Manabu; Ko, Song Won; Trolier-McKinstry, Susan</p> <p>2017-09-01</p> <p>Accurate lifetime predictions for Pb(Zr0.52Ti0.48)O3 thin films are critical for a number of applications, but current reliability models are not consistent with the resistance degradation mechanisms in lead zirconate titanate. In this work, the reliability and lifetime of chemical solution deposited (CSD) and sputtered Pb(Zr0.52Ti0.48)O3 thin films are characterized using highly accelerated lifetime testing (HALT) and leakage current-voltage (I-V) measurements. Temperature dependent HALT results and impedance spectroscopy show activation energies of approximately 1.2 eV for the CSD films and 0.6 eV for the sputtered films. The voltage dependent HALT results are consistent with previous reports, but do not clearly indicate what causes device failure. To understand more about the underlying physical mechanisms leading to degradation, the I-V data are fit to known conduction mechanisms, with Schottky emission having the best-fit and realistic extracted material parameters. Using the Schottky emission equation as a base, a unique model is developed to predict the lifetime under highly accelerated testing conditions based on the physical mechanisms of degradation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.211.1524H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.211.1524H"><span>Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—applied to GPR crosshole traveltime inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, T. M.; Cordua, K. S.</p> <p>2017-12-01</p> <p>Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22572342-revisiting-low-fidelity-two-fluid-models-gassolids-transport','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22572342-revisiting-low-fidelity-two-fluid-models-gassolids-transport"><span>Revisiting low-fidelity two-fluid models for gas–solids transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus</p> <p></p> <p>Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The modelmore » equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMEP51D..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMEP51D..01C"><span>Physical modeling in geomorphology: are boundary conditions necessary?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cantelli, A.</p> <p>2012-12-01</p> <p>Referring to the physical experimental design in geomorphology, boundary conditions are key elements that determine the quality of the results and therefore the study development. For years engineers have modeled structures, such as dams and bridges, with high precision and excellent results. Until the last decade, a great part of the physical experimental work in geomorphology has been developed with an engineer-like approach, requiring an accurate scaling analysis to determine inflow parameters and initial geometrical conditions. However, during the last decade, the way we have been approaching physical experiments has significantly changed. In particular, boundary conditions and initial conditions are considered unknown factors that need to be discovered during the experiment. This new philosophy leads to a more demanding data acquisition process but relaxes the obligation to a priori know the appropriate input and initial conditions and provides the flexibility to discover those data. Here I am going to present some practical examples of this experimental approach in deepwater geomorphology; some questions about scaling of turbidity currents and a new large experimental facility built at the Universidade Federal do Rio Grande do Sul, Brasil.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21106168-nimrod-resistive-magnetohydrodynamic-simulations-spheromak-physics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21106168-nimrod-resistive-magnetohydrodynamic-simulations-spheromak-physics"><span>NIMROD resistive magnetohydrodynamic simulations of spheromak physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hooper, E. B.; Cohen, B. I.; McLean, H. S.</p> <p></p> <p>The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magnetohydrodynamic simulations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the sustained spheromak physics experiment [R. D. Wood et al., Nucl. Fusion 45, 1582 (2005)]. The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena andmore » the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results addresses variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/941397','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/941397"><span>NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hooper, E B; Cohen, B I; McLean, H S</p> <p></p> <p>The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth ofmore » symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1472484','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1472484"><span>Stable time filtering of strongly unstable spatially extended systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Grote, Marcus J.; Majda, Andrew J.</p> <p>2006-01-01</p> <p>Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant–Friedrichs–Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection–diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system. PMID:16682626</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16682626','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16682626"><span>Stable time filtering of strongly unstable spatially extended systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grote, Marcus J; Majda, Andrew J</p> <p>2006-05-16</p> <p>Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant-Friedrichs-Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection-diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..96b2514S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..96b2514S"><span>Broadband, high-resolution investigation of advanced absorption line shapes at high temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.</p> <p>2017-08-01</p> <p>Spectroscopic studies of planetary atmospheres and high-temperature processes (e.g., combustion) require absorption line-shape models that are accurate over extended temperature ranges. To date, advanced line shapes, like the speed-dependent Voigt and Rautian profiles, have not been tested above room temperature with broadband spectrometers. We investigate pure water vapor spectra from 296 to 1305 K acquired with a dual-frequency comb spectrometer spanning from 6800 to 7200 c m-1 at a point spacing of 0.0033 c m-1 and absolute frequency accuracy of <3.3 ×10-6c m-1 . Using a multispectral fitting analysis, we show that only the speed-dependent Voigt accurately models this temperature range with a single power-law temperature-scaling exponent for the broadening coefficients. Only the data from the analysis using this profile fall within theoretical predictions, suggesting that this mechanism captures the dominant narrowing physics for these high-temperature conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA21A2355T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA21A2355T"><span>Spectra of Full 3-D PIC Simulations of Finite Meteor Trails</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarnecki, L. K.; Oppenheim, M. M.</p> <p>2016-12-01</p> <p>Radars detect plasma trails created by the billions of small meteors that impact the Earth's atmosphere daily, returning data used to infer characteristics of the meteoroid population and upper atmosphere. Researchers use models to investigate the dynamic evolution of the trails. Previously, all models assumed a trail of infinite length, due to the constraints of simulation techniques. We present the first simulations of 3D meteor trails of finite length. This change more accurately captures the physics of the trails. We characterize the turbulence that develops as the trail evolves and study the effects of varying the external electric field, altitude, and initial density. The simulations show that turbulence develops in all cases, and that trails travel with the neutral wind rather than electric field. Our results will allow us to draw more detailed and accurate information from non-specular radar observations of meteors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24663687','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24663687"><span>Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel</p> <p>2014-01-01</p> <p>Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8907E..27X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8907E..27X"><span>IR characteristic simulation of city scenes based on radiosity model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiong, Xixian; Zhou, Fugen; Bai, Xiangzhi; Yu, Xiyu</p> <p>2013-09-01</p> <p>Reliable modeling for thermal infrared (IR) signatures of real-world city scenes is required for signature management of civil and military platforms. Traditional modeling methods generally assume that scene objects are individual entities during the physical processes occurring in infrared range. However, in reality, the physical scene involves convective and conductive interactions between objects as well as the radiations interactions between objects. A method based on radiosity model describes these complex effects. It has been developed to enable an accurate simulation for the radiance distribution of the city scenes. Firstly, the physical processes affecting the IR characteristic of city scenes were described. Secondly, heat balance equations were formed on the basis of combining the atmospheric conditions, shadow maps and the geometry of scene. Finally, finite difference method was used to calculate the kinetic temperature of object surface. A radiosity model was introduced to describe the scattering effect of radiation between surface elements in the scene. By the synthesis of objects radiance distribution in infrared range, we could obtain the IR characteristic of scene. Real infrared images and model predictions were shown and compared. The results demonstrate that this method can realistically simulate the IR characteristic of city scenes. It effectively displays the infrared shadow effects and the radiation interactions between objects in city scenes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPS...367..202L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPS...367..202L"><span>A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello</p> <p>2017-11-01</p> <p>State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp..873B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp..873B"><span>Accuracy of inference on the physics of binary evolution from gravitational-wave observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya</p> <p>2018-04-01</p> <p>The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.477.4685B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.477.4685B"><span>Accuracy of inference on the physics of binary evolution from gravitational-wave observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya</p> <p>2018-07-01</p> <p>The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43I1771A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43I1771A"><span>Physically based model for extracting dual permeability parameters using non-Newtonian fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.</p> <p>2017-12-01</p> <p>Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23669877','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23669877"><span>A comparison of energy expenditure estimation of several physical activity monitors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dannecker, Kathryn L; Sazonova, Nadezhda A; Melanson, Edward L; Sazonov, Edward S; Browning, Raymond C</p> <p>2013-11-01</p> <p>Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multisensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. This study aimed to determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. Nineteen healthy young adults (10 men, 9 women) completed a 4-h stay in a room calorimeter. Participants wore a footwear-based physical activity monitor as well as Actical, ActiGraph, IDEEA, DirectLife, and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Estimated EE using the shoe-based device was not significantly different than measured EE (mean ± SE; 476 ± 20 vs 478 ± 18 kcal, respectively) and had a root-mean-square error of 29.6 kcal (6.2%). The IDEEA and the DirectLlife estimates of EE were not significantly different than the measured EE, but the ActiGraph and the Fitbit devices significantly underestimated EE. Root-mean-square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, ActiGraph, and Fitbit, respectively. The shoe-based physical activity monitor provides a valid estimate of EE, whereas the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H52E..02K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H52E..02K"><span>Making it Easy to Construct Accurate Hydrological Models that Exploit High Performance Computers (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kees, C. E.; Farthing, M. W.; Terrel, A.; Certik, O.; Seljebotn, D.</p> <p>2013-12-01</p> <p>This presentation will focus on two barriers to progress in the hydrological modeling community, and research and development conducted to lessen or eliminate them. The first is a barrier to sharing hydrological models among specialized scientists that is caused by intertwining the implementation of numerical methods with the implementation of abstract numerical modeling information. In the Proteus toolkit for computational methods and simulation, we have decoupled these two important parts of computational model through separate "physics" and "numerics" interfaces. More recently we have begun developing the Strong Form Language for easy and direct representation of the mathematical model formulation in a domain specific language embedded in Python. The second major barrier is sharing ANY scientific software tools that have complex library or module dependencies, as most parallel, multi-physics hydrological models must have. In this setting, users and developer are dependent on an entire distribution, possibly depending on multiple compilers and special instructions depending on the environment of the target machine. To solve these problem we have developed, hashdist, a stateless package management tool and a resulting portable, open source scientific software distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A53A0203R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A53A0203R"><span>Estimation of ice activation parameters within a particle tracking Lagrangian cloud model using the ensemble Kalman filter to match ISCDAC golden case observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reisner, J. M.; Dubey, M. K.</p> <p>2010-12-01</p> <p>To both quantify and reduce uncertainty in ice activation parameterizations for stratus clouds occurring in the temperature range between -5 to -10 C ensemble simulations of an ISDAC golden case have been conducted. To formulate the ensemble, three parameters found within an ice activation model have been sampled using a Latin hypercube technique over a parameter range that induces large variability in both number and mass of ice. The ice activation model is contained within a Lagrangian cloud model that simulates particle number as a function of radius for cloud ice, snow, graupel, cloud, and rain particles. A unique aspect of this model is that it produces very low levels of numerical diffusion that enable the model to accurately resolve the sharp cloud edges associated with the ISDAC stratus deck. Another important aspect of the model is that near the cloud edges the number of particles can be significantly increased to reduce sampling errors and accurately resolve physical processes such as collision-coalescence that occur in this region. Thus, given these relatively low numerical errors, as compared to traditional bin models, the sensitivity of a stratus deck to changes in parameters found within the activation model can be examined without fear of numerical contamination. Likewise, once the ensemble has been completed, ISDAC observations can be incorporated into a Kalman filter to optimally estimate the ice activation parameters and reduce overall model uncertainty. Hence, this work will highlight the ability of an ensemble Kalman filter system coupled to a highly accurate numerical model to estimate important parameters found within microphysical parameterizations containing high uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20046650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20046650"><span>Physical activity into the meal glucose-insulin model of type 1 diabetes: in silico studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Man, Chiara Dalla; Breton, Marc D; Cobelli, Claudio</p> <p>2009-01-01</p> <p>A simulation model of a glucose-insulin system accounting for physical activity is needed to reliably simulate normal life conditions, thus accelerating the development of an artificial pancreas. In fact, exercise causes a transient increase of insulin action and may lead to hypoglycemia. However, physical activity is difficult to model. In the past, it was described indirectly as a rise in insulin. Recently, a new parsimonious model of exercise effect on glucose homeostasis has been proposed that links the change in insulin action and glucose effectiveness to heart rate (HR). The aim of this study was to plug this exercise model into our recently proposed large-scale simulation model of glucose metabolism in type 1 diabetes to better describe normal life conditions. The exercise model describes changes in glucose-insulin dynamics in two phases: a rapid on-and-off change in insulin-independent glucose clearance and a rapid-on/slow-off change in insulin sensitivity. Three candidate models of glucose effectiveness and insulin sensitivity as a function of HR have been considered, both during exercise and recovery after exercise. By incorporating these three models into the type 1 diabetes model, we simulated different levels (from mild to moderate) and duration of exercise (15 and 30 minutes), both in steady-state (e.g., during euglycemic-hyperinsulinemic clamp) and in nonsteady state (e.g., after a meal) conditions. One candidate exercise model was selected as the most reliable. A type 1 diabetes model also describing physical activity is proposed. The model represents a step forward to accurately describe glucose homeostasis in normal life conditions; however, further studies are needed to validate it against data. © Diabetes Technology Society</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGE....12..435A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGE....12..435A"><span>Finite difference elastic wave modeling with an irregular free surface using ADER scheme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Almuhaidib, Abdulaziz M.; Nafi Toksöz, M.</p> <p>2015-06-01</p> <p>In numerical modeling of seismic wave propagation in the earth, we encounter two important issues: the free surface and the topography of the surface (i.e. irregularities). In this study, we develop a 2D finite difference solver for the elastic wave equation that combines a 4th- order ADER scheme (Arbitrary high-order accuracy using DERivatives), which is widely used in aeroacoustics, with the characteristic variable method at the free surface boundary. The idea is to treat the free surface boundary explicitly by using ghost values of the solution for points beyond the free surface to impose the physical boundary condition. The method is based on the velocity-stress formulation. The ultimate goal is to develop a numerical solver for the elastic wave equation that is stable, accurate and computationally efficient. The solver treats smooth arbitrary-shaped boundaries as simple plane boundaries. The computational cost added by treating the topography is negligible compared to flat free surface because only a small number of grid points near the boundary need to be computed. In the presence of topography, using 10 grid points per shortest shear-wavelength, the solver yields accurate results. Benchmark numerical tests using several complex models that are solved by our method and other independent accurate methods show an excellent agreement, confirming the validity of the method for modeling elastic waves with an irregular free surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1335378-co2amp-software-program-modeling-dynamics-ultrashort-pulses-optical-systems-co2-amplifiers','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1335378-co2amp-software-program-modeling-dynamics-ultrashort-pulses-optical-systems-co2-amplifiers"><span>co2amp: A software program for modeling the dynamics of ultrashort pulses in optical systems with CO 2 amplifiers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Polyanskiy, Mikhail N.</p> <p>2015-01-01</p> <p>We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008576','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008576"><span>Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barghouty, A. F.</p> <p>2014-01-01</p> <p>Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860058455&hterms=history+Earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhistory%2BEarth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860058455&hterms=history+Earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhistory%2BEarth"><span>A history of presatellite investigations of the earth's radiation budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hunt, G. E.; Kandel, R.; Mecherikunnel, A. T.</p> <p>1986-01-01</p> <p>The history of radiation budget studies from the early twentieth century to the advent of the space age is reviewed. By the beginning of the 1960's, accurate radiative models had been developed capable of estimating the global and zonally averaged components of the radiation budget, though great uncertainty in the derived parameters existed due to inaccuracy of the data describing the physical parameters used in the model, associated with clouds, the solar radiation, and the gaseous atmospheric absorbers. Over the century, the planetary albedo estimates had reduced from 89 to 30 percent.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1328856-fluid-moments-nonlinear-landau-collision-operator','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1328856-fluid-moments-nonlinear-landau-collision-operator"><span>Fluid moments of the nonlinear Landau collision operator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hirvijoki, E.; Lingam, M.; Pfefferle, D.; ...</p> <p>2016-08-09</p> <p>An important problem in plasma physics is the lack of an accurate and complete description of Coulomb collisions in associated fluid models. To shed light on the problem, this Letter introduces an integral identity involving the multivariate Hermite tensor polynomials and presents a method for computing exact expressions for the fluid moments of the nonlinear Landau collision operator. In conclusion, the proposed methodology provides a systematic and rigorous means of extending the validity of fluid models that have an underlying inverse-square force particle dynamics to arbitrary collisionality and flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010764','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010764"><span>Cabin Environment Physics Risk Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mattenberger, Christopher J.; Mathias, Donovan Leigh</p> <p>2014-01-01</p> <p>This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGE....14..666Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGE....14..666Y"><span>Research on the equivalence between digital core and rock physics models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Xingyao; Zheng, Ying; Zong, Zhaoyun</p> <p>2017-06-01</p> <p>In this paper, we calculate the elastic modulus of 3D digital cores using the finite element method, systematically study the equivalence between the digital core model and various rock physics models, and carefully analyze the conditions of the equivalence relationships. The influences of the pore aspect ratio and consolidation coefficient on the equivalence relationships are also further refined. Theoretical analysis indicates that the finite element simulation based on the digital core is equivalent to the boundary theory and Gassmann model. For pure sandstones, effective medium theory models (SCA and DEM) and the digital core models are equivalent in cases when the pore aspect ratio is within a certain range, and dry frame models (Nur and Pride model) and the digital core model are equivalent in cases when the consolidation coefficient is a specific value. According to the equivalence relationships, the comparison of the elastic modulus results of the effective medium theory and digital rock physics is an effective approach for predicting the pore aspect ratio. Furthermore, the traditional digital core models with two components (pores and matrix) are extended to multiple minerals to more precisely characterize the features and mineral compositions of rocks in underground reservoirs. This paper studies the effects of shale content on the elastic modulus in shaly sandstones. When structural shale is present in the sandstone, the elastic modulus of the digital cores are in a reasonable agreement with the DEM model. However, when dispersed shale is present in the sandstone, the Hill model cannot describe the changes in the stiffness of the pore space precisely. Digital rock physics describes the rock features such as pore aspect ratio, consolidation coefficient and rock stiffness. Therefore, digital core technology can, to some extent, replace the theoretical rock physics models because the results are more accurate than those of the theoretical models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......176W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......176W"><span>Development of a One-Equation Eddy Viscosity Turbulence Model for Application to Complex Turbulent Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wray, Timothy J.</p> <p></p> <p>Computational fluid dynamics (CFD) is routinely used in performance prediction and design of aircraft, turbomachinery, automobiles, and in many other industrial applications. Despite its wide range of use, deficiencies in its prediction accuracy still exist. One critical weakness is the accurate simulation of complex turbulent flows using the Reynolds-Averaged Navier-Stokes equations in conjunction with a turbulence model. The goal of this research has been to develop an eddy viscosity type turbulence model to increase the accuracy of flow simulations for mildly separated flows, flows with rotation and curvature effects, and flows with surface roughness. It is accomplished by developing a new zonal one-equation turbulence model which relies heavily on the flow physics; it is now known in the literature as the Wray-Agarwal one-equation turbulence model. The effectiveness of the new model is demonstrated by comparing its results with those obtained by the industry standard one-equation Spalart-Allmaras model and two-equation Shear-Stress-Transport k - o model and experimental data. Results for subsonic, transonic, and supersonic flows in and about complex geometries are presented. It is demonstrated that the Wray-Agarwal model can provide the industry and CFD researchers an accurate, efficient, and reliable turbulence model for the computation of a large class of complex turbulent flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9790E..0BR','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9790E..0BR"><span>Ultrasound breast imaging using frequency domain reverse time migration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.</p> <p>2016-04-01</p> <p>Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150023011','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150023011"><span>Utilizing Direct Numerical Simulations of Transition and Turbulence in Design Optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rai, Man M.</p> <p>2015-01-01</p> <p>Design optimization methods that use the Reynolds-averaged Navier-Stokes equations with the associated turbulence and transition models, or other model-based forms of the governing equations, may result in aerodynamic designs with actual performance levels that are noticeably different from the expected values because of the complexity of modeling turbulence/transition accurately in certain flows. Flow phenomena such as wake-blade interaction and trailing edge vortex shedding in turbines and compressors (examples of such flows) may require a computational approach that is free of transition/turbulence models, such as direct numerical simulations (DNS), for the underlying physics to be computed accurately. Here we explore the possibility of utilizing DNS data in designing a turbine blade section. The ultimate objective is to substantially reduce differences between predicted performance metrics and those obtained in reality. The redesign of a typical low-pressure turbine blade section with the goal of reducing total pressure loss in the row is provided as an example. The basic ideas presented here are of course just as applicable elsewhere in aerodynamic shape optimization as long as the computational costs are not excessive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvD..84d3526N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvD..84d3526N"><span>Baryon acoustic oscillations in 2D. II. Redshift-space halo clustering in N-body simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishimichi, Takahiro; Taruya, Atsushi</p> <p>2011-08-01</p> <p>We measure the halo power spectrum in redshift space from cosmological N-body simulations, and test the analytical models of redshift distortions particularly focusing on the scales of baryon acoustic oscillations. Remarkably, the measured halo power spectrum in redshift space exhibits a large-scale enhancement in amplitude relative to the real-space clustering, and the effect becomes significant for the massive or highly biased halo samples. These findings cannot be simply explained by the so-called streaming model frequently used in the literature. By contrast, a physically motivated perturbation theory model developed in the previous paper reproduces the halo power spectrum very well, and the model combining a simple linear scale-dependent bias can accurately characterize the clustering anisotropies of halos in two dimensions, i.e., line-of-sight and its perpendicular directions. The results highlight the significance of nonlinear coupling between density and velocity fields associated with two competing effects of redshift distortions, i.e., Kaiser and Finger-of-God effects, and a proper account of this effect would be important in accurately characterizing the baryon acoustic oscillations in two dimensions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......251H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......251H"><span>Understanding the evolution and propagation of coronal mass ejections and associated plasma sheaths in interplanetary space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hess, Phillip</p> <p></p> <p>A Coronal Mass Ejection (CME) is an eruption of magnetized plasma from the Coronaof the Sun. Understanding the physical process of CMEs is a fundamental challenge in solarphysics, and is also of increasing importance for our technological society. CMEs are knownthe main driver of space weather that has adverse effects on satellites, power grids, com-munication and navigation systems and astronauts. Understanding and predicting CMEs is still in the early stage of research. In this dissertation, improved observational methods and advanced theoretical analysis are used to study CMEs. Unlike many studies in the past that treat CMEs as a single object, this study divides aCME into two separate components: the ejecta from the corona and the sheath region thatis the ambient plasma compressed by the shock/wave running ahead of the ejecta; bothstructures are geo-effective but evolve differently. Stereoscopic observations from multiplespacecraft, including STEREO and SOHO, are combined to provide a three-dimensionalgeometric reconstruction of the structures studied. True distances and velocities of CMEs are accurately determined, free of projection effects, and with continuous tracking from the low corona to 1 AU.To understand the kinematic evolution of CMEs, an advanced drag-based model (DBM) is proposed, with several improvements to the original DBM model. The new model varies the drag parameter with distance; the variation is constrained by thenecessary conservation of physical parameters. Second, the deviation of CME-nose from the Sun-Earth-line is taken into account. Third, the geometric correction of the shape of the ejecta front is considered, based on the assumption that the true front is a flattened croissant-shaped flux rope front. These improvements of the DBM model provide a framework for using measurement data to make accurate prediction of the arrival times of CME ejecta and sheaths. Using a set of seven events to test the model, it is found that the evolution of the ejecta front can be accurately predicted, with a slightly poorer performance on the sheath front. To improve the sheath prediction, the standoff-distance between the ejecta and the sheath front is used to model the evolution. The predicted arrivals of both the sheath and ejecta fronts at Earth are determined to within an average 3.5 hours and 1.5 hours of observed arrivals,respectively. These prediction errors show a significant improvement over predictions made by other researches. The results of this dissertation study demonstrate that accurate space weather prediction is possible, and also reveals what observations are needed in the future for realistic operational space weather prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA625947','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA625947"><span>Combustion Dynamics of Biocidal Metal-Based Energetic Components in Turbulent Reactive Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-11-01</p> <p>imperative for successful design of respective metalized energetic systems. This predictive ability must rely on accurate models describing...powders was reported to vary from 900 to 1200 K, depending on milling conditions (Zhang et al. 2010a). Another reactive material designed to...the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 845 II; Baltimore, MD), pp. 972-975. Fuchs</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720018634','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720018634"><span>Chesapeake Bay study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Love, W. J.</p> <p>1972-01-01</p> <p>The objectives and scope of the Chesapeake Bay study are discussed. The physical, chemical, biological, political, and social phenomena of concern to the Chesapeake Bay area are included in the study. The construction of a model of the bay which will provide a means of accurately studying the interaction of the ecological factors is described. The application of the study by management organizations for development, enhancement, conservation, preservation, and restoration of the resources is examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1322284','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1322284"><span>Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Siefert, Christopher; Bochev, Pavel Blagoveston; Kramer, Richard Michael Jack</p> <p></p> <p>Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these modelsmore » can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1063992','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1063992"><span>Sharp Interface Tracking in Rotating Microflows of Solvent Extraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Glimm, James; Almeida, Valmor de; Jiao, Xiangmin</p> <p>2013-01-08</p> <p>The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013mss..confEMF14S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013mss..confEMF14S"><span>QED Tests and Search for New Physics in Molecular Hydrogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salumbides, E. J.; Niu, M. L.; Dickenson, G. D.; Eikema, K. S. E.; Komasa, J.; Pachucki, K.; Ubachs, W.</p> <p>2013-06-01</p> <p>The hydrogen molecule has been the benchmark system for quantum chemistry, and may provide a test ground for new physics. We present our high-resolution spectroscopic studies on the X ^1Σ^+_g electronic ground state rotational series and fundamenal vibrational tones in molecular hydrogen. In combination with recent accurate ab initio calculations, we demonstrate systematic tests of quantum electrodynamical (QED) effects in molecules. Moreover, the precise comparison between theory and experiment can provide stringent constraints on possible new interactions that extend beyond the Standard Model. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov and W. Ubachs, Phys. Rev. Lett. 107, 043005 (2011).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029976','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029976"><span>MT+, integrating magnetotellurics to determine earth structure, physical state, and processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bedrosian, P.A.</p> <p>2007-01-01</p> <p>As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26360198','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26360198"><span>Predicting physiological capacity of human load carriage - a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Drain, Jace; Billing, Daniel; Neesham-Smith, Daniel; Aisbett, Brad</p> <p>2016-01-01</p> <p>This review article aims to evaluate a proposed maximum acceptable work duration model for load carriage tasks. It is contended that this concept has particular relevance to physically demanding occupations such as military and firefighting. Personnel in these occupations are often required to perform very physically demanding tasks, over varying time periods, often involving load carriage. Previous research has investigated concepts related to physiological workload limits in occupational settings (e.g. industrial). Evidence suggests however, that existing (unloaded) workload guidelines are not appropriate for load carriage tasks. The utility of this model warrants further work to enable prediction of load carriage durations across a range of functional workloads for physically demanding occupations. If the maximum duration for which personnel can physiologically sustain a load carriage task could be accurately predicted, commanders and supervisors could better plan for and manage tasks to ensure operational imperatives were met whilst minimising health risks for their workers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1909b0014B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1909b0014B"><span>Mathematical modeling of the infrastructure of attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beznosyuk, Sergey A.; Maslova, Olga A.; Zhukovsky, Mark S.; Valeryeva, Ekaterina V.; Terentyeva, Yulia V.</p> <p>2017-12-01</p> <p>The task of modeling the multiscale infrastructure of quantum attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials is considered. Computer design and calculation of supra-atomic femtosecond sensors of nonequilibrium physical media in materials based on layered graphene-transition metal nanosystems are carried out by vdW-DF and B3LYP methods. It is shown that the molybdenum substrate provides fixation of graphene nanosheets by Van der Waals forces at a considerable distance (5.3 Å) from the metal surface. This minimizes the effect of the electronic and nuclear subsystem of the substrate metal on the sensory properties of "pure" graphene. The conclusion is substantiated that graphene-molybdenum nanosensors are able to accurately orient and position one molecule of carbon monoxide. It is shown that graphene selectively adsorbs CO and fixes the oxygen atom of the molecule at the position of the center of the graphene ring C6.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15282606','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15282606"><span>Neurons compute internal models of the physical laws of motion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Angelaki, Dora E; Shaikh, Aasef G; Green, Andrea M; Dickman, J David</p> <p>2004-07-29</p> <p>A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5078983','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5078983"><span>Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kate, Rohit J.; Swartz, Ann M.; Welch, Whitney A.; Strath, Scott J.</p> <p>2016-01-01</p> <p>Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities. PMID:26862679</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EOSTr..95....6K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EOSTr..95....6K"><span>Spiro K. Antiochos Receives 2013 John Adam Fleming Medal: Citation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klimchuk, James A.</p> <p>2014-01-01</p> <p>The John Adam Fleming Medal is awarded for "original research and technical leadership in geomagnetism, atmospheric electricity, aeronomy, space physics, and related sciences." Originality and technical leadership are exactly the characteristics that distinguish the research of Spiro K. Antiochos. Spiro possesses a truly unique combination of physical insight, creativity, and mastery of the concepts and mathematical and numerical tools of space physics. These talents have allowed him to develop completely original theories for major observational problems and to test and refine those theories using sophisticated numerical simulation codes that he himself helped to develop. Spiro's physical insight is especially impressive. He has an uncanny ability to identify the fundamental aspects of complex problems and to see physical connections where others do not. This can sometimes involve ideas that may initially seem counterintuitive to those with less creativity. Many of Spiro's revolutionary advances have opened up whole new areas of study and shaped the course of space physics. Examples include the breakout model for coronal mass ejections (CMEs), the S-web model for the slow solar wind, and the thermal nonequilibrium model for solar prominences. The breakout model is of special significance to AGU as it strives to promote science for the betterment of humanity. CMEs are enormous explosions on the Sun that can have major "space weather" impacts here on Earth. They affect technologies ranging from communication and navigation systems to electrical power grids. Breakout is the leading theory for why CMEs occur and may one day be the foundation for more accurate space weather forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29953620','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29953620"><span>Approaches to 3D printing teeth from X-ray microtomography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cresswell-Boyes, A J; Barber, A H; Mills, D; Tatla, A; Davis, G R</p> <p>2018-06-28</p> <p>Artificial teeth have several advantages in preclinical training. The aim of this study is to three-dimensionally (3D) print accurate artificial teeth using scans from X-ray microtomography (XMT). Extracted and artificial teeth were imaged at 90 kV and 40 kV, respectively, to create detailed high contrast scans. The dataset was visualised to produce internal and external meshes subsequently exported to 3D modelling software for modification before finally sending to a slicing program for printing. After appropriate parameter setting, the printer deposited material in specific locations layer by layer, to create a 3D physical model. Scans were manipulated to ensure a clean model was imported into the slicing software, where layer height replicated the high spatial resolution that was observed in the XMT scans. The model was then printed in two different materials (polylactic acid and thermoplastic elastomer). A multimaterial print was created to show the different physical characteristics between enamel and dentine. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPBO7011F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPBO7011F"><span>Constraining heat-transport models by comparison to experimental data in a NIF hohlraum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farmer, W. A.; Jones, O. S.; Barrios Garcia, M. A.; Koning, J. M.; Kerbel, G. D.; Strozzi, D. J.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Moore, A. S.; Landen, O. L.</p> <p>2017-10-01</p> <p>The accurate simulation of hohlraum plasma conditions is important for predicting the partition of energy and the symmetry of the x-ray field within a hohlraum. Electron heat transport within the hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, we report simulation results using the radiation-hydrodynamic code, HYDRA, utilizing various physics packages (e.g., nonlocal Schurtz model, MHD, flux limiters) and compare to data from hohlraum plasma experiments which contain a Mn-Co tracer dot. In these experiments, the dot is placed in various positions in the hohlraum in order to assess the spatial variation of plasma conditions. Simulated data is compared to a variety of experimental diagnostics. Conclusions are given concerning how the experimental data does and does not constrain the physics models examined. This work was supported by the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040112018','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040112018"><span>Single Droplet Combustion of Decane in Microgravity: Experiments and Numerical Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dietrich, D. L.; Struk, P. M.; Ikegam, M.; Xu, G.</p> <p>2004-01-01</p> <p>This paper presents experimental data on single droplet combustion of decane in microgravity and compares the results to a numerical model. The primary independent experiment variables are the ambient pressure and oxygen mole fraction, pressure, droplet size (over a relatively small range) and ignition energy. The droplet history (D(sup 2) history) is non-linear with the burning rate constant increasing throughout the test. The average burning rate constant, consistent with classical theory, increased with increasing ambient oxygen mole fraction and was nearly independent of pressure, initial droplet size and ignition energy. The flame typically increased in size initially, and then decreased in size, in response to the shrinking droplet. The flame standoff increased linearly for the majority of the droplet lifetime. The flame surrounding the droplet extinguished at a finite droplet size at lower ambient pressures and an oxygen mole fraction of 0.15. The extinction droplet size increased with decreasing pressure. The model is transient and assumes spherical symmetry, constant thermo-physical properties (specific heat, thermal conductivity and species Lewis number) and single step chemistry. The model includes gas-phase radiative loss and a spherically symmetric, transient liquid phase. The model accurately predicts the droplet and flame histories of the experiments. Good agreement requires that the ignition in the experiment be reasonably approximated in the model and that the model accurately predict the pre-ignition vaporization of the droplet. The model does not accurately predict the dependence of extinction droplet diameter on pressure, a result of the simplified chemistry in the model. The transient flame behavior suggests the potential importance of fuel vapor accumulation. The model results, however, show that the fractional mass consumption rate of fuel in the flame relative to fuel vaporized is close to 1.0 for all but the lowest ambient oxygen mole fractions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........73R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........73R"><span>Enhanced propagation modeling of directional aviation noise: A hybrid parabolic equation-fast field program method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosenbaum, Joyce E.</p> <p>2011-12-01</p> <p>Commercial air traffic is anticipated to increase rapidly in the coming years. The impact of aviation noise on communities surrounding airports is, therefore, a growing concern. Accurate prediction of noise can help to mitigate the impact on communities and foster smoother integration of aerospace engineering advances. The problem of accurate sound level prediction requires careful inclusion of all mechanisms that affect propagation, in addition to correct source characterization. Terrain, ground type, meteorological effects, and source directivity can have a substantial influence on the noise level. Because they are difficult to model, these effects are often included only by rough approximation. This dissertation presents a model designed for sound propagation over uneven terrain, with mixed ground type and realistic meteorological conditions. The model is a hybrid of two numerical techniques: the parabolic equation (PE) and fast field program (FFP) methods, which allow for physics-based inclusion of propagation effects and ensure the low frequency content, a factor in community impact, is predicted accurately. Extension of the hybrid model to a pseudo-three-dimensional representation allows it to produce aviation noise contour maps in the standard form. In order for the model to correctly characterize aviation noise sources, a method of representing arbitrary source directivity patterns was developed for the unique form of the parabolic equation starting field. With this advancement, the model can represent broadband, directional moving sound sources, traveling along user-specified paths. This work was prepared for possible use in the research version of the sound propagation module in the Federal Aviation Administration's new standard predictive tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNG32A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNG32A..01S"><span>How to Make Our Models More Physically-based</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savenije, H. H. G.</p> <p>2016-12-01</p> <p>Models that are generally called "physically-based" unfortunately only have a partial view of the physical processes at play in hydrology. Although the coupled partial differential equations in these models reflect the water balance equations and the flow descriptors at laboratory scale, they miss essential characteristics of what determines the functioning of catchments. The most important active agent in catchments is the ecosystem (and sometimes people). What these agents do is manipulate the substrate in a way that it supports the essential functions of survival and productivity: infiltration of water, retention of moisture, mobilization and retention of nutrients, and drainage. Ecosystems do this in the most efficient way, in agreement with the landscape, and in response to climatic drivers. In brief, our hydrological system is alive and has a strong capacity to adjust to prevailing and changing circumstances. Although most physically based models take Newtonian theory at heart, as best they can, what they generally miss is Darwinian thinking on how an ecosystem evolves and adjusts its environment to maintain crucial hydrological functions. If this active agent is not reflected in our models, then they miss essential physics. Through a Darwinian approach, we can determine the root zone storage capacity of ecosystems, as a crucial component of hydrological models, determining the partitioning of fluxes and the conservation of moisture to bridge periods of drought. Another crucial element of physical systems is the evolution of drainage patterns, both on and below the surface. On the surface, such patterns facilitate infiltration or surface drainage with minimal erosion; in the unsaturated zone, patterns facilitate efficient replenishment of moisture deficits and preferential drainage when there is excess moisture; in the groundwater, patterns facilitate the efficient and gradual drainage of groundwater, resulting in linear reservoir recession. Models that do not incorporate these patterns are not physical. The parameters in the equations may be adjusted to compensate for the lake of patterns, but this involves scale-dependent calibration. In contrast to what is widely believed, relatively simple conceptual models can accommodate these physical processes accurately and very efficiently.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1126739-application-data-assimilation-method-via-ensemble-kalman-filter-reactive-urea-hydrolysis-transport-modeling','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1126739-application-data-assimilation-method-via-ensemble-kalman-filter-reactive-urea-hydrolysis-transport-modeling"><span>Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Juxiu Tong; Bill X. Hu; Hai Huang</p> <p>2014-03-01</p> <p>With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations,more » we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EEEV...15..697G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EEEV...15..697G"><span>Stiffness degradation-based damage model for RC members and structures using fiber-beam elements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Zongming; Zhang, Yaoting; Lu, Jiezhi; Fan, Jian</p> <p>2016-12-01</p> <p>To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating story damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDG21005H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDG21005H"><span>Applications of Analytical Self-Similar Solutions of Reynolds-Averaged Models for Instability-Induced Turbulent Mixing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartland, Tucker; Schilling, Oleg</p> <p>2017-11-01</p> <p>Analytical self-similar solutions to several families of single- and two-scale, eddy viscosity and Reynolds stress turbulence models are presented for Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instability-induced turbulent mixing. The use of algebraic relationships between model coefficients and physical observables (e.g., experimental growth rates) following from the self-similar solutions to calibrate a member of a given family of turbulence models is shown. It is demonstrated numerically that the algebraic relations accurately predict the value and variation of physical outputs of a Reynolds-averaged simulation in flow regimes that are consistent with the simplifying assumptions used to derive the solutions. The use of experimental and numerical simulation data on Reynolds stress anisotropy ratios to calibrate a Reynolds stress model is briefly illustrated. The implications of the analytical solutions for future Reynolds-averaged modeling of hydrodynamic instability-induced mixing are briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SpWea..13..406C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SpWea..13..406C"><span>SEPEM: A tool for statistical modeling the solar energetic particle environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crosby, Norma; Heynderickx, Daniel; Jiggens, Piers; Aran, Angels; Sanahuja, Blai; Truscott, Pete; Lei, Fan; Jacobs, Carla; Poedts, Stefaan; Gabriel, Stephen; Sandberg, Ingmar; Glover, Alexi; Hilgers, Alain</p> <p>2015-07-01</p> <p>Solar energetic particle (SEP) events are a serious radiation hazard for spacecraft as well as a severe health risk to humans traveling in space. Indeed, accurate modeling of the SEP environment constitutes a priority requirement for astrophysics and solar system missions and for human exploration in space. The European Space Agency's Solar Energetic Particle Environment Modelling (SEPEM) application server is a World Wide Web interface to a complete set of cross-calibrated data ranging from 1973 to 2013 as well as new SEP engineering models and tools. Both statistical and physical modeling techniques have been included, in order to cover the environment not only at 1 AU but also in the inner heliosphere ranging from 0.2 AU to 1.6 AU using a newly developed physics-based shock-and-particle model to simulate particle flux profiles of gradual SEP events. With SEPEM, SEP peak flux and integrated fluence statistics can be studied, as well as durations of high SEP flux periods. Furthermore, effects tools are also included to allow calculation of single event upset rate and radiation doses for a variety of engineering scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5408980','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5408980"><span>3D Printing of Biomolecular Models for Research and Pedagogy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel</p> <p>2017-01-01</p> <p>The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology. PMID:28362403</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29289656','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29289656"><span>Accurate Prognostic Awareness Facilitates, Whereas Better Quality of Life and More Anxiety Symptoms Hinder End-of-Life Care Discussions: A Longitudinal Survey Study in Terminally Ill Cancer Patients' Last Six Months of Life.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Siew Tzuh; Chen, Chen Hsiu; Wen, Fur-Hsing; Chen, Jen-Shi; Chang, Wen-Cheng; Hsieh, Chia-Hsun; Chou, Wen-Chi; Hou, Ming-Mo</p> <p>2018-04-01</p> <p>Terminally ill cancer patients do not engage in end-of-life (EOL) care discussions or do so only when death is imminent, despite guidelines for EOL care discussions early in their disease trajectory. Most studies on patient-reported EOL care discussions are cross sectional without exploring the evolution of EOL care discussions as death approaches. Cross-sectional studies cannot determine the direction of association between EOL care discussions and patients' prognostic awareness, psychological well-being, and quality of life (QOL). We examined the evolution and associations of accurate prognostic awareness, functional dependence, physical and psychological symptom distress, and QOL with patient-physician EOL care discussions among 256 terminally ill cancer patients in their last six months by hierarchical generalized linear modeling with logistic regression and by arranging time-varying modifiable variables and EOL care discussions in a distinct time sequence. The prevalence of physician-patient EOL care discussions increased as death approached (9.2%, 11.8%, and 18.3% for 91-180, 31-90, and 1-30 days before death, respectively) but only reached significance in the last month. Accurate prognostic awareness facilitated subsequent physician-patient EOL care discussions, whereas better patient-reported QOL and more anxiety symptoms hindered such discussions. The likelihood of EOL care discussions was not associated with levels of physical symptom distress, functional dependence, or depressive symptoms. Physician-patient EOL care discussions for terminally ill Taiwanese cancer patients remain uncommon even when death approaches. Physicians should facilitate EOL care discussions by cultivating patients' accurate prognostic awareness early in their cancer trajectory when they are physically and psychologically competent, with better QOL, thus promoting informed and value-based EOL care decision making. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT.......133P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT.......133P"><span>Mathematical models and photogrammetric exploitation of image sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puatanachokchai, Chokchai</p> <p></p> <p>Mathematical models of image sensing are generally categorized into physical/geometrical sensor models and replacement sensor models. While the former is determined from image sensing geometry, the latter is based on knowledge of the physical/geometric sensor models and on using such models for its implementation. The main thrust of this research is in replacement sensor models which have three important characteristics: (1) Highly accurate ground-to-image functions; (2) Rigorous error propagation that is essentially of the same accuracy as the physical model; and, (3) Adjustability, or the ability to upgrade the replacement sensor model parameters when additional control information becomes available after the replacement sensor model has replaced the physical model. In this research, such replacement sensor models are considered as True Replacement Models or TRMs. TRMs provide a significant advantage of universality, particularly for image exploitation functions. There have been several writings about replacement sensor models, and except for the so called RSM (Replacement Sensor Model as a product described in the Manual of Photogrammetry), almost all of them pay very little or no attention to errors and their propagation. This is because, it is suspected, the few physical sensor parameters are usually replaced by many more parameters, thus presenting a potential error estimation difficulty. The third characteristic, adjustability, is perhaps the most demanding. It provides an equivalent flexibility to that of triangulation using the physical model. Primary contributions of this thesis include not only "the eigen-approach", a novel means of replacing the original sensor parameter covariance matrices at the time of estimating the TRM, but also the implementation of the hybrid approach that combines the eigen-approach with the added parameters approach used in the RSM. Using either the eigen-approach or the hybrid approach, rigorous error propagation can be performed during image exploitation. Further, adjustability can be performed when additional control information becomes available after the TRM has been implemented. The TRM is shown to apply to imagery from sensors having different geometries, including an aerial frame camera, a spaceborne linear array sensor, an airborne pushbroom sensor, and an airborne whiskbroom sensor. TRM results show essentially negligible differences as compared to those from rigorous physical sensor models, both for geopositioning from single and overlapping images. Simulated as well as real image data are used to address all three characteristics of the TRM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/295617-benchmarking-atomic-physics-models-magnetically-confined-fusion-plasma-physics-experiments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/295617-benchmarking-atomic-physics-models-magnetically-confined-fusion-plasma-physics-experiments"><span>Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>May, M.J.; Finkenthal, M.; Soukhanovskii, V.</p> <p></p> <p>In present magnetically confined fusion devices, high and intermediate {ital Z} impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high {ital Z} plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introducedmore » through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3{endash}1600 {Angstrom}), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.) {copyright} {ital 1999 American Institute of Physics.}« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPCM...30h4005S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPCM...30h4005S"><span>Investigation of resistance switching in SiO x RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen</p> <p>2018-02-01</p> <p>We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22907270','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22907270"><span>Bio-inspired adaptive feedback error learning architecture for motor control.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo</p> <p>2012-10-01</p> <p>This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050156661','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050156661"><span>Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.</p> <p>2003-01-01</p> <p>Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used in the profile retrieval process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMetR..31..874L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMetR..31..874L"><span>Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Caiyan; Zhang, Zhongfeng; Pu, Zhaoxia; Wang, Fengyun</p> <p>2017-10-01</p> <p>A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoJI.205..389H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoJI.205..389H"><span>Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.</p> <p>2016-04-01</p> <p>Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and reservoir units. More importantly, the results from this study indicate that integrated seismic and hydromechanical modelling can help constrain time-lapse uncertainty and hence reduce risk due to fluid extraction and injection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1121930','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1121930"><span>Heterogeneous scalable framework for multiphase flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morris, Karla Vanessa</p> <p>2013-09-01</p> <p>Two categories of challenges confront the developer of computational spray models: those related to the computation and those related to the physics. Regarding the computation, the trend towards heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes written for the current supercomputing platforms. Regarding the physics, accurate methods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have so far eluded modelers. Significant challenges also lie at the intersection between these two categories. To be competitive, any physics model must be expressible in a parallel algorithm that performs well on evolving computermore » platforms. This work created an application based on a software architecture where the physics and software concerns are separated in a way that adds flexibility to both. The develop spray-tracking package includes an application programming interface (API) that abstracts away the platform-dependent parallelization concerns, enabling the scientific programmer to write serial code that the API resolves into parallel processes and threads of execution. The project also developed the infrastructure required to provide similar APIs to other application. The API allow object-oriented Fortran applications direct interaction with Trilinos to support memory management of distributed objects in central processing units (CPU) and graphic processing units (GPU) nodes for applications using C++.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NRL....13....8P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NRL....13....8P"><span>A Collective Study on Modeling and Simulation of Resistive Random Access Memory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panda, Debashis; Sahu, Paritosh Piyush; Tseng, Tseung Yuen</p> <p>2018-01-01</p> <p>In this work, we provide a comprehensive discussion on the various models proposed for the design and description of resistive random access memory (RRAM), being a nascent technology is heavily reliant on accurate models to develop efficient working designs and standardize its implementation across devices. This review provides detailed information regarding the various physical methodologies considered for developing models for RRAM devices. It covers all the important models reported till now and elucidates their features and limitations. Various additional effects and anomalies arising from memristive system have been addressed, and the solutions provided by the models to these problems have been shown as well. All the fundamental concepts of RRAM model development such as device operation, switching dynamics, and current-voltage relationships are covered in detail in this work. Popular models proposed by Chua, HP Labs, Yakopcic, TEAM, Stanford/ASU, Ielmini, Berco-Tseng, and many others have been compared and analyzed extensively on various parameters. The working and implementations of the window functions like Joglekar, Biolek, Prodromakis, etc. has been presented and compared as well. New well-defined modeling concepts have been discussed which increase the applicability and accuracy of the models. The use of these concepts brings forth several improvements in the existing models, which have been enumerated in this work. Following the template presented, highly accurate models would be developed which will vastly help future model developers and the modeling community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050131827','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050131827"><span>Propagation of Cosmic Rays: Nuclear Physics in Cosmic-ray Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moskalenko, Igor V.; Strong, Andrew W.; Mashnik, Stepan G.</p> <p>2004-01-01</p> <p>The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and alpha-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse gamma-rays and dimsses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near fume. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH32B..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH32B..01B"><span>NSF's Perspective on Space Weather Research for Building Forecasting Capabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.</p> <p>2017-12-01</p> <p>Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://onlinelibrary.wiley.com/doi/10.1111/gto.12037/full','USGSPUBS'); return false;" href="http://onlinelibrary.wiley.com/doi/10.1111/gto.12037/full"><span>Debris flows: behavior and hazard assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Iverson, Richard M.</p> <p>2014-01-01</p> <p>Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARK46011C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARK46011C"><span>The power laws of nanoscale forces in ambient conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiesa, Matteo; Santos, Sergio; Lai, Chia-Yun</p> <p></p> <p>Power laws are ubiquitous in the physical sciences and indispensable to qualitatively and quantitatively describe physical phenomena. A nanoscale force law that accurately describes the phenomena observed in ambient conditions at several nm or fractions of a nm above a surface however is still lacking. Here we report a power law derived from experimental data and describing the interaction between an atomic force microscope AFM tip modelled as a sphere and a surface in ambient conditions. By employing a graphite surface as a model system the resulting effective power is found to be a function of the tip radius and the distance. The data suggest a nano to mesoscale transition in the power law that results in relative agreement with the distance-dependencies predicted by the Hamaker and Lifshitz theories for van der Waals forces for the larger tip radii only</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18579964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18579964"><span>A new physical model with multilayer architecture for facial expression animation using dynamic adaptive mesh.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yu; Prakash, Edmond C; Sung, Eric</p> <p>2004-01-01</p> <p>This paper presents a new physically-based 3D facial model based on anatomical knowledge which provides high fidelity for facial expression animation while optimizing the computation. Our facial model has a multilayer biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators, and underlying skull structure. In contrast to existing mass-spring-damper (MSD) facial models, our dynamic skin model uses the nonlinear springs to directly simulate the nonlinear visco-elastic behavior of soft tissue and a new kind of edge repulsion spring is developed to prevent collapse of the skin model. Different types of muscle models have been developed to simulate distribution of the muscle force applied on the skin due to muscle contraction. The presence of the skull advantageously constrain the skin movements, resulting in more accurate facial deformation and also guides the interactive placement of facial muscles. The governing dynamics are computed using a local semi-implicit ODE solver. In the dynamic simulation, an adaptive refinement automatically adapts the local resolution at which potential inaccuracies are detected depending on local deformation. The method, in effect, ensures the required speedup by concentrating computational time only where needed while ensuring realistic behavior within a predefined error threshold. This mechanism allows more pleasing animation results to be produced at a reduced computational cost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptLT.103..219W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptLT.103..219W"><span>Multi-PSF fusion in image restoration of range-gated systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Canjin; Sun, Tao; Wang, Tingfeng; Miao, Xikui; Wang, Rui</p> <p>2018-07-01</p> <p>For the task of image restoration, an accurate estimation of degrading PSF/kernel is the premise of recovering a visually superior image. The imaging process of range-gated imaging system in atmosphere associates with lots of factors, such as back scattering, background radiation, diffraction limit and the vibration of the platform. On one hand, due to the difficulty of constructing models for all factors, the kernels from physical-model based methods are not strictly accurate and practical. On the other hand, there are few strong edges in images, which brings significant errors to most of image-feature-based methods. Since different methods focus on different formation factors of the kernel, their results often complement each other. Therefore, we propose an approach which combines physical model with image features. With an fusion strategy using GCRF (Gaussian Conditional Random Fields) framework, we get a final kernel which is closer to the actual one. Aiming at the problem that ground-truth image is difficult to obtain, we then propose a semi data-driven fusion method in which different data sets are used to train fusion parameters. Finally, a semi blind restoration strategy based on EM (Expectation Maximization) and RL (Richardson-Lucy) algorithm is proposed. Our methods not only models how the lasers transfer in the atmosphere and imaging in the ICCD (Intensified CCD) plane, but also quantifies other unknown degraded factors using image-based methods, revealing how multiple kernel elements interact with each other. The experimental results demonstrate that our method achieves better performance than state-of-the-art restoration approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28232243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28232243"><span>Rapid prediction of particulate, humus and resistant fractions of soil organic carbon in reforested lands using infrared spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Madhavan, Dinesh B; Baldock, Jeff A; Read, Zoe J; Murphy, Simon C; Cunningham, Shaun C; Perring, Michael P; Herrmann, Tim; Lewis, Tom; Cavagnaro, Timothy R; England, Jacqueline R; Paul, Keryn I; Weston, Christopher J; Baker, Thomas G</p> <p>2017-05-15</p> <p>Reforestation of agricultural lands with mixed-species environmental plantings can effectively sequester C. While accurate and efficient methods for predicting soil organic C content and composition have recently been developed for soils under agricultural land uses, such methods under forested land uses are currently lacking. This study aimed to develop a method using infrared spectroscopy for accurately predicting total organic C (TOC) and its fractions (particulate, POC; humus, HOC; and resistant, ROC organic C) in soils under environmental plantings. Soils were collected from 117 paired agricultural-reforestation sites across Australia. TOC fractions were determined in a subset of 38 reforested soils using physical fractionation by automated wet-sieving and 13 C nuclear magnetic resonance (NMR) spectroscopy. Mid- and near-infrared spectra (MNIRS, 6000-450 cm -1 ) were acquired from finely-ground soils from environmental plantings and agricultural land. Satisfactory prediction models based on MNIRS and partial least squares regression (PLSR) were developed for TOC and its fractions. Leave-one-out cross-validations of MNIRS-PLSR models indicated accurate predictions (R 2  > 0.90, negligible bias, ratio of performance to deviation > 3) and fraction-specific functional group contributions to beta coefficients in the models. TOC and its fractions were predicted using the cross-validated models and soil spectra for 3109 reforested and agricultural soils. The reliability of predictions determined using k-nearest neighbour score distance indicated that >80% of predictions were within the satisfactory inlier limit. The study demonstrated the utility of infrared spectroscopy (MNIRS-PLSR) to rapidly and economically determine TOC and its fractions and thereby accurately describe the effects of land use change such as reforestation on agricultural soils. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V43F0584T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V43F0584T"><span>Thermal infrared data of active lava surfaces using a newly-developed camera system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, J. O.; Ramsey, M. S.</p> <p>2017-12-01</p> <p>Our ability to acquire accurate data during lava flow emplacement greatly improves models designed to predict their dynamics and down-flow hazard potential. For example, better constraint on the physical property of emissivity as a lava cools improves the accuracy of the derived temperature, a critical parameter for flow models that estimate at-vent eruption rate, flow length, and distribution. Thermal infrared (TIR) data are increasingly used as a tool to determine eruption styles and cooling regimes by measuring temperatures at high temporal resolutions. Factors that control the accurate measurement of surface temperatures include both material properties (e.g., emissivity and surface texture) as well as external factors (e.g., camera geometry and the intervening atmosphere). We present a newly-developed, field-portable miniature multispectral thermal infrared camera (MMT-Cam) to measure both temperature and emissivity of basaltic lava surfaces at up to 7 Hz. The MMT-Cam acquires emitted radiance in six wavelength channels in addition to the broadband temperature. The instrument was laboratory calibrated for systematic errors and fully field tested at the Overlook Crater lava lake (Kilauea, HI) in January 2017. The data show that the major emissivity absorption feature (around 8.5 to 9.0 µm) transitions to higher wavelengths and the depth of the feature decreases as a lava surface cools, forming a progressively thicker crust. This transition occurs over a temperature range of 758 to 518 K. Constraining the relationship between this spectral change and temperature derived from this data will provide more accurate temperatures and therefore, more accurate modeling results. This is the first time that emissivity and its link to temperature has been measured in situ on active lava surfaces, which will improve input parameters of flow propagation models and possibly improve flow forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24859181','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24859181"><span>2014 consensus statement from the first Economics of Physical Inactivity Consensus (EPIC) conference (Vancouver).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Davis, Jennifer C; Verhagen, Evert; Bryan, Stirling; Liu-Ambrose, Teresa; Borland, Jeff; Buchner, David; Hendriks, Marike R C; Weiler, Richard; Morrow, James R; van Mechelen, Willem; Blair, Steven N; Pratt, Mike; Windt, Johann; al-Tunaiji, Hashel; Macri, Erin; Khan, Karim M</p> <p>2014-06-01</p> <p>This article describes major topics discussed from the 'Economics of Physical Inactivity Consensus Workshop' (EPIC), held in Vancouver, Canada, in April 2011. Specifically, we (1) detail existing evidence on effective physical inactivity prevention strategies; (2) introduce economic evaluation and its role in health policy decisions; (3) discuss key challenges in establishing and building health economic evaluation evidence (including accurate and reliable costs and clinical outcome measurement) and (4) provide insight into interpretation of economic evaluations in this critically important field. We found that most methodological challenges are related to (1) accurately and objectively valuing outcomes; (2) determining meaningful clinically important differences in objective measures of physical inactivity; (3) estimating investment and disinvestment costs and (4) addressing barriers to implementation. We propose that guidelines specific for economic evaluations of physical inactivity intervention studies are developed to ensure that related costs and effects are robustly, consistently and accurately measured. This will also facilitate comparisons among future economic evidence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.941a2106K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.941a2106K"><span>Cloud-based design of high average power traveling wave linacs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.</p> <p>2017-12-01</p> <p>The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DMP.K1131M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DMP.K1131M"><span>Development and application of accurate analytical models for single active electron potentials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas</p> <p>2015-05-01</p> <p>The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22275771-highly-accurate-spectral-retardance-characterization-liquid-crystal-retarder-including-fabry-perot-interference-effects','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22275771-highly-accurate-spectral-retardance-characterization-liquid-crystal-retarder-including-fabry-perot-interference-effects"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vargas, Asticio; Center for Optics and Photonics, Universidad de Concepción, Casilla 4016, Concepción; Mar Sánchez-López, María del</p> <p></p> <p>Multiple-beam Fabry-Perot (FP) interferences occur in liquid crystal retarders (LCR) devoid of an antireflective coating. In this work, a highly accurate method to obtain the spectral retardance of such devices is presented. On the basis of a simple model of the LCR that includes FP effects and by using a voltage transfer function, we show how the FP features in the transmission spectrum can be used to accurately retrieve the ordinary and extraordinary spectral phase delays, and the voltage dependence of the latter. As a consequence, the modulation characteristics of the device are fully determined with high accuracy by meansmore » of a few off-state physical parameters which are wavelength-dependent, and a single voltage transfer function that is valid within the spectral range of characterization.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23155762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23155762"><span>MicroRNAfold: pre-microRNA secondary structure prediction based on modified NCM model with thermodynamics-based scoring strategy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Dianwei; Zhang, Jun; Tang, Guiliang</p> <p>2012-01-01</p> <p>An accurate prediction of the pre-microRNA secondary structure is important in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs (NCM), to predict RNA secondary structure, we propose and implement a Modified NCM (MNCM) model with a physics-based scoring strategy to tackle the problem of pre-microRNA folding. Our microRNAfold is implemented using a global optimal algorithm based on the bottom-up local optimal solutions. Our experimental results show that microRNAfold outperforms the current leading prediction tools in terms of True Negative rate, False Negative rate, Specificity, and Matthews coefficient ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030031354&hterms=exciton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dexciton','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030031354&hterms=exciton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dexciton"><span>Production of Pions in pA-collisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moskalenko, I. V.; Mashnik, S. G.</p> <p>2003-01-01</p> <p>Accurate knowledge of pion production cross section in PA-collisions is of interest for astrophysics, CR physics, and space radiation studies. Meanwhile, pion production in pA-reactions is often accounted for by simple scaling of that for pp-collisions, which is not enough for many real applications. We evaluate the quality of existing parameterizations using the data and simulations with the Los Alamos version of the Quark-Gluon String Model code LAQGSM and the improved Cascade-Exciton Model code CEM2k. The LAQGSM and CEM2k models have been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020018160','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020018160"><span>Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)</p> <p>2002-01-01</p> <p>The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel Baldwin in the preparation of their publication "Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements". The remainder of this report is drawn from these publications and presentations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......131F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......131F"><span>Modeling of Passive Acoustic Liners from High Fidelity Numerical Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferrari, Marcello do Areal Souto</p> <p></p> <p>Noise reduction in aviation has been an important focus of study in the last few decades. One common solution is setting up acoustic liners in the internal walls of the engines. However, measurements in the laboratory with liners are expensive and time consuming. The present work proposes a nonlinear physics-based time domain model to predict the acoustic behavior of a given liner in a defined flow condition. The parameters of the model are defined by analysis of accurate numerical solutions of the flow obtained from a high-fidelity numerical code. The length of the cavity is taken into account by using an analytical procedure to account for internal reflections in the interior of the cavity. Vortices and jets originated from internal flow separations are confirmed to be important mechanisms of sound absorption, which defines the overall efficiency of the liner. Numerical simulations at different frequency, geometry and sound pressure level are studied in detail to define the model parameters. Comparisons with high-fidelity numerical simulations show that the proposed model is accurate, robust, and can be used to define a boundary condition simulating a liner in a high-fidelity code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1185436-modeling-interfacial-glass-water-reactions-recent-advances-current-limitations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1185436-modeling-interfacial-glass-water-reactions-recent-advances-current-limitations"><span>Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; ...</p> <p>2014-07-12</p> <p>Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed tomore » improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26263251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26263251"><span>Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C</p> <p>2015-05-21</p> <p>In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10489701','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10489701"><span>A curved piezo-structure model: implications on active structural acoustic control.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Henry, J K; Clark, R L</p> <p>1999-09-01</p> <p>Current research in Active Structural Acoustic Control (ASAC) relies heavily upon accurately capturing the application physics associated with the structure being controlled. The application of ASAC to aircraft interior noise requires a greater understanding of the dynamics of the curved panels which compose the skin of an aircraft fuselage. This paper presents a model of a simply supported curved panel with attached piezoelectric transducers. The model is validated by comparison to previous work. Further, experimental results for a simply supported curved panel test structure are presented in support of the model. The curvature is shown to affect substantially the dynamics of the panel, the integration of transducers, and the bandwidth required for structural acoustic control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhB...44h3001B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhB...44h3001B"><span>The fully relativistic implementation of the convergent close-coupling method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bostock, Christopher James</p> <p>2011-04-01</p> <p>The calculation of accurate excitation and ionization cross sections for electron collisions with atoms and ions plays a fundamental role in atomic and molecular physics, laser physics, x-ray spectroscopy, plasma physics and chemistry. Within the veil of plasma physics lie important research areas affiliated with the lighting industry, nuclear fusion and astrophysics. For high energy projectiles or targets with a large atomic number it is presently understood that a scattering formalism based on the Dirac equation is required to incorporate relativistic effects. This tutorial outlines the development of the relativistic convergent close-coupling (RCCC) method and highlights the following three main accomplishments. (i) The inclusion of the Breit interaction, a relativistic correction to the Coulomb potential, in the RCCC method. This led to calculations that resolved a discrepancy between theory and experiment for the polarization of x-rays emitted by highly charged hydrogen-like ions excited by electron impact (Bostock et al 2009 Phys. Rev. A 80 052708). (ii) The extension of the RCCC method to accommodate two-electron and quasi-two-electron targets. The method was applied to electron scattering from mercury. Accurate plasma physics modelling of mercury-based fluorescent lamps requires detailed information on a large number of electron impact excitation cross sections involving transitions between various states (Bostock et al 2010 Phys. Rev. A 82 022713). (iii) The third accomplishment outlined in this tutorial is the restructuring of the RCCC computer code to utilize a hybrid OpenMP-MPI parallelization scheme which now enables the RCCC code to run on the latest high performance supercomputer architectures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ApJ...691.1400M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ApJ...691.1400M"><span>Absolute Properties of the Low-Mass Eclipsing Binary CM Draconis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Torres, Guillermo; Gallardo, José; Guinan, Edward F.; Charbonneau, David; Wolf, Marek; Latham, David W.; Anglada-Escudé, Guillem; Bradstreet, David H.; Everett, Mark E.; O'Donovan, Francis T.; Mandushev, Georgi; Mathieu, Robert D.</p> <p>2009-02-01</p> <p>Spectroscopic and eclipsing binary systems offer the best means for determining accurate physical properties of stars, including their masses and radii. The data available for low-mass stars have yielded firm evidence that stellar structure models predict smaller radii and higher effective temperatures than observed, but the number of systems with detailed analyses is still small. In this paper, we present a complete reanalysis of one of such eclipsing systems, CM Dra, composed of two dM4.5 stars. New and existing light curves as well as a radial velocity curve are modeled to measure the physical properties of both components. The masses and radii determined for the components of CM Dra are M 1 = 0.2310 ± 0.0009 M sun, M 2 = 0.2141 ± 0.0010M sun, R 1 = 0.2534 ± 0.0019 R sun, and R 2 = 0.2396 ± 0.0015 R sun. With relative uncertainties well below the 1% level, these values constitute the most accurate properties to date for fully convective stars. This makes CM Dra a valuable benchmark for testing theoretical models. In comparing our measurements with theory, we confirm the discrepancies previously reported for other low-mass eclipsing binaries. These discrepancies seem likely to be due to the effects of magnetic activity. We find that the orbit of this system is slightly eccentric, and we have made use of eclipse timings spanning three decades to infer the apsidal motion and other related properties.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSM13B1610L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSM13B1610L"><span>Can Steady Magnetospheric Convection Events Inject Plasma into the Ring Current?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemon, C.; Chen, M. W.; Guild, T. B.</p> <p>2009-12-01</p> <p>Steady Magnetospheric Convection (SMC) events are characterized by several-hour periods of enhanced convection that are devoid of substorm signatures. There has long been a debate about whether substorms are necessary to inject plasma into the ring current, or whether enhanced convection is sufficient. If ring current injections occur during SMC intervals, this would suggest that substorms are unnecessary. We use a combination of simulations and data observations to examine this topic. Our simulation model computes the energy-dependent plasma drift in a self-consistent electric and magnetic field, which allows us to accurately model the transport of plasma from the plasma sheet (where the plasma pressure is much larger than the magnetic pressure) into the inner magnetosphere (where plasma pressure is much less than the magnetic pressure). In regions where the two pressures are comparable (i.e. the inner plasma sheet), feedback between the plasma and magnetic field is critical for accurately modeling the physical evolution of the system. Our previous work has suggested that entropy losses in the plasma sheet (such as caused by substorms) may be necessary to inject a ring current. However, it is not yet clear whether other small-scale processes (e.g. bursty bulk flows) can provide sufficient entropy loss in the plasma sheet to allow for the penetration of plasma into the ring current. We combine our simulation results with data observations in order to better understand the physical processes required to inject a ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.305a2054H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.305a2054H"><span>Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, K.; Zhu, W. D.</p> <p>2011-07-01</p> <p>A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT.......246W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT.......246W"><span>A physically-based continuum damage mechanics model for numerical prediction of damage growth in laminated composite plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Kevin Vaughan</p> <p></p> <p>Rapid growth in use of composite materials in structural applications drives the need for a more detailed understanding of damage tolerant and damage resistant design. Current analytical techniques provide sufficient understanding and predictive capabilities for application in preliminary design, but current numerical models applicable to composites are few and far between and their development into well tested, rigorous material models is currently one of the most challenging fields in composite materials. The present work focuses on the development, implementation, and verification of a plane-stress continuum damage mechanics based model for composite materials. A physical treatment of damage growth based on the extensive body of experimental literature on the subject is combined with the mathematical rigour of a continuum damage mechanics description to form the foundation of the model. The model has been implemented in the LS-DYNA3D commercial finite element hydrocode and the results of the application of the model are shown to be physically meaningful and accurate. Furthermore it is demonstrated that the material characterization parameters can be extracted from the results of standard test methodologies for which a large body of published data already exists for many materials. Two case studies are undertaken to verify the model by comparison with measured experimental data. The first series of analyses demonstrate the ability of the model to predict the extent and growth of damage in T800/3900-2 carbon fibre reinforced polymer (CFRP) plates subjected to normal impacts over a range of impact energy levels. The predicted force-time and force-displacement response of the panels compare well with experimental measurements. The damage growth and stiffness reduction properties of the T800/3900-2 CFRP are derived using published data from a variety of sources without the need for parametric studies. To further demonstrate the physical nature of the model, a IM6/937 CFRP with a more brittle matrix system than 3900-2 is also analysed. Results of analyses performed under the same impact conditions do not compare as well quantitatively with measurements but the results are still promising and qualitative differences between the T800/3900-2 and IM6/937 are accurately captured. Finally, to further demonstrate the capability of the model, the response of a notched CFRP plate under quasi-static tensile loading is simulated and compared to experimental measurements. Of particular significance is the fact that the experimental test modelled in this case is uniquely suited to the characterization of the strain softening phenomenon observed in FRP laminates. Results of this virtual experiment compare very favourably with the measured damage growth and force-displacement curves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21993168','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21993168"><span>Surrogate screening models for the low physical activity criterion of frailty.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eckel, Sandrah P; Bandeen-Roche, Karen; Chaves, Paulo H M; Fried, Linda P; Louis, Thomas A</p> <p>2011-06-01</p> <p>Low physical activity, one of five criteria in a validated clinical phenotype of frailty, is assessed by a standardized, semiquantitative questionnaire on up to 20 leisure time activities. Because of the time demanded to collect the interview data, it has been challenging to translate to studies other than the Cardiovascular Health Study (CHS), for which it was developed. Considering subsets of activities, we identified and evaluated streamlined surrogate assessment methods and compared them to one implemented in the Women's Health and Aging Study (WHAS). Using data on men and women ages 65 and older from the CHS, we applied logistic regression models to rank activities by "relative influence" in predicting low physical activity.We considered subsets of the most influential activities as inputs to potential surrogate models (logistic regressions). We evaluated predictive accuracy and predictive validity using the area under receiver operating characteristic curves and assessed criterion validity using proportional hazards models relating frailty status (defined using the surrogate) to mortality. Walking for exercise and moderately strenuous household chores were highly influential for both genders. Women required fewer activities than men for accurate classification. The WHAS model (8 CHS activities) was an effective surrogate, but a surrogate using 6 activities (walking, chores, gardening, general exercise, mowing and golfing) was also highly predictive. We recommend a 6 activity questionnaire to assess physical activity for men and women. If efficiency is essential and the study involves only women, fewer activities can be included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA514313','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA514313"><span>Tail Separation and Density Effects on the Underwater Trajectory of the JDAM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-12-01</p> <p>countermeasure technologies that fulfills this criteria—the use of the Joint Direct Attack Munition (JDAM) to clear a minefield. It updates the general...physics-based, six degrees of freedom model, STRIKE35, to predict the three-dimensional, free-fall trajectory and orientation of a MK-84 bomb...simulating the JDAM) through a water column. It accurately predicts the final detonation position relative to an underwater mine in the very shallow</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870002507','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870002507"><span>Distribution system simulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bahrami, K. A.; Kirkham, H.; Rahman, S.</p> <p>1986-01-01</p> <p>In a series of tests performed under the Department of Energy auspices, power line carrier propagation was observed to be anomalous under certain circumstances. To investigate the cause, a distribution system simulator was constructed. The simulator was a physical simulator that accurately represented the distribution system from below power frequency to above 50 kHz. Effects such as phase-to-phase coupling and skin effect were modeled. Construction details of the simulator, and experimental results from its use are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvP...8d4016W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvP...8d4016W"><span>Laser-Induced Translative Hydrodynamic Mass Snapshots: Noninvasive Characterization and Predictive Modeling via Mapping at Nanoscale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, X. W.; Kuchmizhak, A. A.; Li, X.; Juodkazis, S.; Vitrik, O. B.; Kulchin, Yu. N.; Zhakhovsky, V. V.; Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I.; Rudenko, A. A.; Inogamov, N. A.</p> <p>2017-10-01</p> <p>Subwavelength structures (meta-atoms) with artificially engineered permittivity and permeability have shown promising applications for guiding and controlling the flow of electromagnetic energy on the nanoscale. Ultrafast laser nanoprinting emerges as a promising single-step, green and flexible technology in fabricating large-area arrays of meta-atoms through the translative or ablative modification of noble-metal thin films. Ultrafast laser energy deposition in noble-metal films produces irreversible, intricate nanoscale translative mass redistributions after resolidification of the transient thermally assisted hydrodynamic melt perturbations. Such mass redistribution results in the formation of a radially symmetric frozen surface with modified hidden nanofeatures, which strongly affect the optical response harnessed in plasmonic sensing and nonlinear optical applications. Here, we demonstrate that side-view electron microscopy and ion-beam cross sections together with low-energy electron x-ray dispersion microscopy provide exact information about such three-dimensional patterns, enabling an accurate acquisition of their cross-sectional mass distributions. Such nanoscale solidified structures are theoretically modeled, considering the underlying physical processes associated with laser-induced energy absorption, electron-ion energy exchange, acoustic relaxation, and hydrodynamic flows. A theoretical approach, separating slow and fast physical processes and combining hybrid analytical two-temperature calculations, scalable molecular-dynamics simulations, and a semianalytical thin-shell model is synergistically applied. These advanced characterization approaches are required for a detailed modeling of near-field electromagnetic response and pave the way to a fully automated noninvasive in-line control of a high-throughput and large-scale laser fabrication. This theoretical modeling provides an accurate prediction of scales and topographies of the laser-fabricated meta-atoms and metasurfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......338M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......338M"><span>Modeling The Distribution Of Dark Matter And Its Connection To Galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mao, Yao-Yuan</p> <p>2016-06-01</p> <p>Despite the mysterious nature of dark matter and dark energy, the Lambda-Cold Dark Matter (LCDM) model provides a reasonably accurate description of the evolution of the cosmos and the distribution of galaxies. Today, we are set to tackle more specific and quantitative questions about the galaxy formation physics, the nature of dark matter, and the connection between the dark and the visible components. The answers to these questions are however elusive, because dark matter is not directly observable, and various unknowns lie between what we can observe and what we can calculate. Hence, mathematical models that bridge the observable and the calculable are essential for the study of modern cosmology. The aim of my thesis work is to improve existing models and also to construct new models for various aspects of the dark matter distribution, as dark matter structures the cosmic web and forms the nests of visible galaxies. Utilizing a series of cosmological dark matter simulations which span a wide dynamical range and a statistical sample of zoom-in simulations which focus on individual dark matter halos, we develop models for the spatial and velocity distribution of dark matter particles, the abundance of dark substructures, and the empirical connection between dark matter and galaxies. As more precise observational results become available, more accurate models are then required to test the consistency between these results and the LCDM predictions. For all the models we investigate, we find that the formation history of dark matter halos always plays a crucial role. Neglecting the halo formation history would result in systematic biases when we interpret various observational results, including dark matter direct detection experiments, the detection of dark substructures with strong-lensed systems, the large-scale spatial clustering of galaxies, and the abundance of dwarf galaxies. Rectifying this, our work will enable us to fully utilize the complementary power of diverse observational datasets to test the LCDM model and to seek new physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JCoPh.22710148E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JCoPh.22710148E"><span>Large calculation of the flow over a hypersonic vehicle using a GPU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elsen, Erich; LeGresley, Patrick; Darve, Eric</p> <p>2008-12-01</p> <p>Graphics processing units are capable of impressive computing performance up to 518 Gflops peak performance. Various groups have been using these processors for general purpose computing; most efforts have focussed on demonstrating relatively basic calculations, e.g. numerical linear algebra, or physical simulations for visualization purposes with limited accuracy. This paper describes the simulation of a hypersonic vehicle configuration with detailed geometry and accurate boundary conditions using the compressible Euler equations. To the authors' knowledge, this is the most sophisticated calculation of this kind in terms of complexity of the geometry, the physical model, the numerical methods employed, and the accuracy of the solution. The Navier-Stokes Stanford University Solver (NSSUS) was used for this purpose. NSSUS is a multi-block structured code with a provably stable and accurate numerical discretization which uses a vertex-based finite-difference method. A multi-grid scheme is used to accelerate the solution of the system. Based on a comparison of the Intel Core 2 Duo and NVIDIA 8800GTX, speed-ups of over 40× were demonstrated for simple test geometries and 20× for complex geometries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......160L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......160L"><span>Early prediction of student goals and affect in narrative-centered learning environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Sunyoung</p> <p></p> <p>Recent years have seen a growing recognition of the role of goal and affect recognition in intelligent tutoring systems. Goal recognition is the task of inferring users' goals from a sequence of observations of their actions. Because of the uncertainty inherent in every facet of human computer interaction, goal recognition is challenging, particularly in contexts in which users can perform many actions in any order, as is the case with intelligent tutoring systems. Affect recognition is the task of identifying the emotional state of a user from a variety of physical cues, which are produced in response to affective changes in the individual. Accurately recognizing student goals and affect states could contribute to more effective and motivating interactions in intelligent tutoring systems. By exploiting knowledge of student goals and affect states, intelligent tutoring systems can dynamically modify their behavior to better support individual students. To create effective interactions in intelligent tutoring systems, goal and affect recognition models should satisfy two key requirements. First, because incorrectly predicted goals and affect states could significantly diminish the effectiveness of interactive systems, goal and affect recognition models should provide accurate predictions of user goals and affect states. When observations of users' activities become available, recognizers should make accurate early" predictions. Second, goal and affect recognition models should be highly efficient so they can operate in real time. To address key issues, we present an inductive approach to recognizing student goals and affect states in intelligent tutoring systems by learning goals and affect recognition models. Our work focuses on goal and affect recognition in an important new class of intelligent tutoring systems, narrative-centered learning environments. We report the results of empirical studies of induced recognition models from observations of students' interactions in narrative-centered learning environments. Experimental results suggest that induced models can make accurate early predictions of student goals and affect states, and they are sufficiently efficient to meet the real-time performance requirements of interactive learning environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28060509','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28060509"><span>Establishment of a Physical Model for Solute Diffusion in Hydrogel: Understanding the Diffusion of Proteins in Poly(sulfobetaine methacrylate) Hydrogel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Yuhang; Li, Junjie; Zhang, Ying; Dong, Dianyu; Zhang, Ershuai; Ji, Feng; Qin, Zhihui; Yang, Jun; Yao, Fanglian</p> <p>2017-02-02</p> <p>Prediction of the diffusion coefficient of solute, especially bioactive molecules, in hydrogel is significant in the biomedical field. Considering the randomness of solute movement in a hydrogel network, a physical diffusion RMP-1 model based on obstruction theory was established in this study. The physical properties of the solute and the polymer chain and their interactions were introduced into this model. Furthermore, models RMP-2 and RMP-3 were established to understand and predict the diffusion behaviors of proteins in hydrogel. In addition, zwitterionic poly(sulfobetaine methacrylate) (PSBMA) hydrogels with wide range and fine adjustable mesh sizes were prepared and used as efficient experimental platforms for model validation. The Flory characteristic ratios, Flory-Huggins parameter, mesh size, and polymer chain radii of PSBMA hydrogels were determined. The diffusion coefficients of the proteins (bovine serum albumin, immunoglobulin G, and lysozyme) in PSBMA hydrogels were studied by the fluorescence recovery after photobleaching technique. The measured diffusion coefficients were compared with the predictions of obstruction models, and it was found that our model presented an excellent predictive ability. Furthermore, the assessment of our model revealed that protein diffusion in PSBMA hydrogel would be affected by the physical properties of the protein and the PSBMA network. It was also confirmed that the diffusion behaviors of protein in zwitterionic hydrogels can be adjusted by changing the cross-linking density of the hydrogel and the ionic strength of the swelling medium. Our model is expected to possess accurate predictive ability for the diffusion coefficient of solute in hydrogel, which will be widely used in the biomedical field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28276991','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28276991"><span>Evaluation of common elbow pathologies: a focus on physical examination.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laratta, Joseph; Caldwell, Jon-Michael; Lombardi, Joseph; Levine, William; Ahmad, Christopher</p> <p>2017-05-01</p> <p>Elbow tendinopathy accounts for the majority of elbow pathology in patients presenting to upper extremity and sports medicine surgeons. With increased participation in overhead sports in an aging population, the incidence of elbow injuries has risen. A comprehensive knowledge of elbow anatomy and biomechanical function of the elbow complex is prerequisite in the assessment of patients with elbow injuries; however, a thorough understanding of alternative and confounding pathologies is essential for accurate diagnosis. Because tendinopathy, tendonitis, and tendon tears have an anatomic basis for their pathology, a targeted history and meticulous physical examination often yields an accurate clinical diagnosis. The importance of physical examination and provocative examination maneuvers must be stressed in a technologically advanced era where clinical diagnosis is too commonly attained solely by advanced imaging modalities. A revived dedication to the physical examination may enhance our ability to correctly diagnose various pathologies about the elbow. Early and accurate clinical diagnosis is the first step in the proper initiation of treatment modalities and improvement in overall patient outcome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CompM..61..277S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CompM..61..277S"><span>Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta</p> <p>2018-03-01</p> <p>Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MS%26E...88a2024S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MS%26E...88a2024S"><span>Application of multiphase modelling for vortex occurrence in vertical pump intake - a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samsudin, M. L.; Munisamy, K. M.; Thangaraju, S. K.</p> <p>2015-09-01</p> <p>Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation. The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21778523','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21778523"><span>Fast flexible modeling of RNA structure using internal coordinates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Flores, Samuel Coulbourn; Sherman, Michael A; Bruns, Christopher M; Eastman, Peter; Altman, Russ Biagio</p> <p>2011-01-01</p> <p>Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs. Coarse-grained modeling methods have yielded good results on large molecules but can suffer from difficulties in creating more detailed full atomic realizations. There is therefore a need for molecular modeling algorithms that remain chemically accurate and economical for large molecules, do not rely on fragment libraries, and can incorporate experimental information. RNABuilder works in the internal coordinate space of dihedral angles and thus has time requirements proportional to the number of moving parts rather than the number of atoms. It provides accurate physics-based response to applied forces, but also allows user-specified forces for incorporating experimental information. A particular strength of RNABuilder is that all Leontis-Westhof basepairs can be specified as primitives by the user to be satisfied during model construction. We apply RNABuilder to predict the structure of an RNA molecule with 160 bases from its secondary structure, as well as experimental information. Our model matches the known structure to 10.2 Angstroms RMSD and has low computational expense.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..247a2005R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..247a2005R"><span>A Novel Approach to Develop the Lower Order Model of Multi-Input Multi-Output System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rajalakshmy, P.; Dharmalingam, S.; Jayakumar, J.</p> <p>2017-10-01</p> <p>A mathematical model is a virtual entity that uses mathematical language to describe the behavior of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines like physics, biology, and electrical engineering as well as in the social sciences like economics, sociology and political science. Physicists, Engineers, Computer scientists, and Economists use mathematical models most extensively. With the advent of high performance processors and advanced mathematical computations, it is possible to develop high performing simulators for complicated Multi Input Multi Ouptut (MIMO) systems like Quadruple tank systems, Aircrafts, Boilers etc. This paper presents the development of the mathematical model of a 500 MW utility boiler which is a highly complex system. A synergistic combination of operational experience, system identification and lower order modeling philosophy has been effectively used to develop a simplified but accurate model of a circulation system of a utility boiler which is a MIMO system. The results obtained are found to be in good agreement with the physics of the process and with the results obtained through design procedure. The model obtained can be directly used for control system studies and to realize hardware simulators for boiler testing and operator training.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19066224','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19066224"><span>Quantifying errors in trace species transport modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prather, Michael J; Zhu, Xin; Strahan, Susan E; Steenrod, Stephen D; Rodriguez, Jose M</p> <p>2008-12-16</p> <p>One expectation when computationally solving an Earth system model is that a correct answer exists, that with adequate physical approximations and numerical methods our solutions will converge to that single answer. With such hubris, we performed a controlled numerical test of the atmospheric transport of CO(2) using 2 models known for accurate transport of trace species. Resulting differences were unexpectedly large, indicating that in some cases, scientific conclusions may err because of lack of knowledge of the numerical errors in tracer transport models. By doubling the resolution, thereby reducing numerical error, both models show some convergence to the same answer. Now, under realistic conditions, we identify a practical approach for finding the correct answer and thus quantifying the advection error.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1358310','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1358310"><span>Building Protection Against External Ionizing Fallout Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dillon, Michael B.; Homann, Steven G.</p> <p></p> <p>A nuclear explosion has the potential to injure or kill tens to hundreds of thousands of people through exposure to fallout (external gamma) radiation. Existing buildings can protect their occupants (reducing external radiation exposures) by placing material and distance between fallout particles and indoor individuals. This protection is not well captured in current fallout risk assessment models and so the US Department of Defense is implementing the Regional Shelter Analysis methodology to improve the ability of the Hazard Prediction and Assessment Capability (HPAC) model to account for building protection. This report supports the HPAC improvement effort by identifying a setmore » of building attributes (next page) that, when collectively specified, are sufficient to calculate reasonably accurate, i.e., within a factor of 2, fallout shelter quality estimates for many individual buildings. The set of building attributes were determined by first identifying the key physics controlling building protection from fallout radiation and then assessing which building attributes are relevant to the identified physics. This approach was evaluated by developing a screening model (PFscreen) based on the identified physics and comparing the screening model results against the set of existing independent experimental, theoretical, and modeled building protection estimates. In the interests of transparency, we have developed a benchmark dataset containing (a) most of the relevant primary experimental data published by prior generations of fallout protection scientists as well as (b) the screening model results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3744848','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3744848"><span>Diagnostic accuracy of clinical examination features for identifying large rotator cuff tears in primary health care</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cadogan, Angela; McNair, Peter; Laslett, Mark; Hing, Wayne; Taylor, Stephen</p> <p>2013-01-01</p> <p>Objectives: Rotator cuff tears are a common and disabling complaint. The early diagnosis of medium and large size rotator cuff tears can enhance the prognosis of the patient. The aim of this study was to identify clinical features with the strongest ability to accurately predict the presence of a medium, large or multitendon (MLM) rotator cuff tear in a primary care cohort. Methods: Participants were consecutively recruited from primary health care practices (n = 203). All participants underwent a standardized history and physical examination, followed by a standardized X-ray series and diagnostic ultrasound scan. Clinical features associated with the presence of a MLM rotator cuff tear were identified (P<0.200), a logistic multiple regression model was derived for identifying a MLM rotator cuff tear and thereafter diagnostic accuracy was calculated. Results: A MLM rotator cuff tear was identified in 24 participants (11.8%). Constant pain and a painful arc in abduction were the strongest predictors of a MLM tear (adjusted odds ratio 3.04 and 13.97 respectively). Combinations of ten history and physical examination variables demonstrated highest levels of sensitivity when five or fewer were positive [100%, 95% confidence interval (CI): 0.86–1.00; negative likelihood ratio: 0.00, 95% CI: 0.00–0.28], and highest specificity when eight or more were positive (0.91, 95% CI: 0.86–0.95; positive likelihood ratio 4.66, 95% CI: 2.34–8.74). Discussion: Combinations of patient history and physical examination findings were able to accurately detect the presence of a MLM rotator cuff tear. These findings may aid the primary care clinician in more efficient and accurate identification of rotator cuff tears that may require further investigation or orthopedic consultation. PMID:24421626</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ECSS..171..111C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ECSS..171..111C"><span>Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Critchell, Kay; Lambrechts, Jonathan</p> <p>2016-03-01</p> <p>Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal environments around the world causing damage to fauna, flora and habitats. Plastics also have the potential to accumulate in the food web, as well as causing economic losses to tourism and sea-going industries. If we are to manage this increasing threat, we must first understand where debris is accumulating and why these locations are different to others that do not accumulate large amounts of marine debris. This paper demonstrates an advection-diffusion model that includes beaching, settling, resuspension/re-floating, degradation and topographic effects on the wind in nearshore waters to quantify the relative importance of these physical processes governing plastic debris accumulation. The aim of this paper is to prioritise research that will improve modelling outputs in the future. We have found that the physical characteristic of the source location has by far the largest effect on the fate of the debris. The diffusivity, used to parameterise the sub-grid scale movements, and the relationship between debris resuspension/re-floating from beaches and the wind shadow created by high islands also has a dramatic impact on the modelling results. The rate of degradation of macroplastics into microplastics also have a large influence in the result of the modelling. The other processes presented (settling, wind drift velocity) also help determine the fate of debris, but to a lesser degree. These findings may help prioritise research on physical processes that affect plastic accumulation, leading to more accurate modelling, and subsequently management in the future.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27004162','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27004162"><span>Evidence base and future research directions in the management of low back pain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abbott, Allan</p> <p>2016-03-18</p> <p>Low back pain (LBP) is a prevalent and costly condition. Awareness of valid and reliable patient history taking, physical examination and clinical testing is important for diagnostic accuracy. Stratified care which targets treatment to patient subgroups based on key characteristics is reliant upon accurate diagnostics. Models of stratified care that can potentially improve treatment effects include prognostic risk profiling for persistent LBP, likely response to specific treatment based on clinical prediction models or suspected underlying causal mechanisms. The focus of this editorial is to highlight current research status and future directions for LBP diagnostics and stratified care.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17906366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17906366"><span>A knowledge-based potential with an accurate description of local interactions improves discrimination between native and near-native protein conformations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferrada, Evandro; Vergara, Ismael A; Melo, Francisco</p> <p>2007-01-01</p> <p>The correct discrimination between native and near-native protein conformations is essential for achieving accurate computer-based protein structure prediction. However, this has proven to be a difficult task, since currently available physical energy functions, empirical potentials and statistical scoring functions are still limited in achieving this goal consistently. In this work, we assess and compare the ability of different full atom knowledge-based potentials to discriminate between native protein structures and near-native protein conformations generated by comparative modeling. Using a benchmark of 152 near-native protein models and their corresponding native structures that encompass several different folds, we demonstrate that the incorporation of close non-bonded pairwise atom terms improves the discriminating power of the empirical potentials. Since the direct and unbiased derivation of close non-bonded terms from current experimental data is not possible, we obtained and used those terms from the corresponding pseudo-energy functions of a non-local knowledge-based potential. It is shown that this methodology significantly improves the discrimination between native and near-native protein conformations, suggesting that a proper description of close non-bonded terms is important to achieve a more complete and accurate description of native protein conformations. Some external knowledge-based energy functions that are widely used in model assessment performed poorly, indicating that the benchmark of models and the specific discrimination task tested in this work constitutes a difficult challenge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193784','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193784"><span>Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.</p> <p>2012-01-01</p> <p>Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect physical lake characteristics and watershed conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100019161','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100019161"><span>A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greenwood, Eric, II; Schmitz, Fredric H.</p> <p>2010-01-01</p> <p>A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/970302-risk-assessment-physical-cyber-attacks-critical-infrastructures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/970302-risk-assessment-physical-cyber-attacks-critical-infrastructures"><span>Risk assessment for physical and cyber attacks on critical infrastructures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Smith, Bryan J.; Sholander, Peter E.; Phelan, James M.</p> <p>2005-08-01</p> <p>Assessing the risk of malevolent attacks against large-scale critical infrastructures requires modifications to existing methodologies. Existing risk assessment methodologies consider physical security and cyber security separately. As such, they do not accurately model attacks that involve defeating both physical protection and cyber protection elements (e.g., hackers turning off alarm systems prior to forced entry). This paper presents a risk assessment methodology that accounts for both physical and cyber security. It also preserves the traditional security paradigm of detect, delay and respond, while accounting for the possibility that a facility may be able to recover from or mitigate the results ofmore » a successful attack before serious consequences occur. The methodology provides a means for ranking those assets most at risk from malevolent attacks. Because the methodology is automated the analyst can also play 'what if with mitigation measures to gain a better understanding of how to best expend resources towards securing the facilities. It is simple enough to be applied to large infrastructure facilities without developing highly complicated models. Finally, it is applicable to facilities with extensive security as well as those that are less well-protected.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4971256','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4971256"><span>A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen</p> <p>2016-01-01</p> <p>A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting’s theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond. PMID:27493580</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29650669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29650669"><span>Measurement of the fine-structure constant as a test of the Standard Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parker, Richard H; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger</p> <p>2018-04-13</p> <p>Measurements of the fine-structure constant α require methods from across subfields and are thus powerful tests of the consistency of theory and experiment in physics. Using the recoil frequency of cesium-133 atoms in a matter-wave interferometer, we recorded the most accurate measurement of the fine-structure constant to date: α = 1/137.035999046(27) at 2.0 × 10 -10 accuracy. Using multiphoton interactions (Bragg diffraction and Bloch oscillations), we demonstrate the largest phase (12 million radians) of any Ramsey-Bordé interferometer and control systematic effects at a level of 0.12 part per billion. Comparison with Penning trap measurements of the electron gyromagnetic anomaly g e - 2 via the Standard Model of particle physics is now limited by the uncertainty in g e - 2; a 2.5σ tension rejects dark photons as the reason for the unexplained part of the muon's magnetic moment at a 99% confidence level. Implications for dark-sector candidates and electron substructure may be a sign of physics beyond the Standard Model that warrants further investigation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1265290-analysis-anderson-acceleration-simplified-neutronics-thermal-hydraulics-system','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1265290-analysis-anderson-acceleration-simplified-neutronics-thermal-hydraulics-system"><span>Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Toth, Alex; Kelley, C. T.; Slattery, Stuart R</p> <p></p> <p>ABSTRACT A standard method for solving coupled multiphysics problems in light water reactors is Picard iteration, which sequentially alternates between solving single physics applications. This solution approach is appealing due to simplicity of implementation and the ability to leverage existing software packages to accurately solve single physics applications. However, there are several drawbacks in the convergence behavior of this method; namely slow convergence and the necessity of heuristically chosen damping factors to achieve convergence in many cases. Anderson acceleration is a method that has been seen to be more robust and fast converging than Picard iteration for many problems, withoutmore » significantly higher cost per iteration or complexity of implementation, though its effectiveness in the context of multiphysics coupling is not well explored. In this work, we develop a one-dimensional model simulating the coupling between the neutron distribution and fuel and coolant properties in a single fuel pin. We show that this model generally captures the convergence issues noted in Picard iterations which couple high-fidelity physics codes. We then use this model to gauge potential improvements with regard to rate of convergence and robustness from utilizing Anderson acceleration as an alternative to Picard iteration.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26560564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26560564"><span>Study of the measurement for the diffusion coefficient by digital holographic interferometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Shi; He, Maogang; Zhang, Ying; Peng, Sanguo; He, Xinxin</p> <p>2015-11-01</p> <p>In the measurement of the diffusion coefficient by digital holographic interferometry, the conformity between the experiment and the ideal physical model is lacking analysis. Two data processing methods are put forward to overcome this problem. By these methods, it is found that there is obvious asymmetry in the experiment and the asymmetry is becoming smaller with time. Besides, the initial time for diffusion cannot be treated as a constant throughout the whole experiment. This means that there is a difference between the experiment and the physical model. With these methods, the diffusion coefficient of KCl in water at 0.33  mol/L and 25°C is measured. When the asymmetry is ignored, the result is 1.839×10(-9)  m2/s, which is in good agreement with the data in the literature. Because the asymmetry is becoming smaller with time, the experimental data in the latter time period conforms to the ideal physical model. With this idea, a more accurate diffusion coefficient is 2.003×10(-9)  m2/s, which is about 10% larger than the data in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27493580','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27493580"><span>A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Ray T; Jjunju, Fred P M; Young, Iain S; Taylor, Stephen; Maher, Simon</p> <p>2016-07-01</p> <p>A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29901835','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29901835"><span>Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA Project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Incerti, S; Kyriakou, I; Bernal, M A; Bordage, M C; Francis, Z; Guatelli, S; Ivanchenko, V; Karamitros, M; Lampe, N; Lee, S B; Meylan, S; Min, C H; Shin, W G; Nieminen, P; Sakata, D; Tang, N; Villagrasa, C; Tran, H; Brown, J M C</p> <p>2018-06-14</p> <p>This Special Report presents a description of Geant4-DNA user applications dedicated to the simulation of track structures (TS) in liquid water and associated physical quantities (e.g. range, stopping power, mean free path…). These example applications are included in the Geant4 Monte Carlo toolkit and are available in open access. Each application is described and comparisons to recent international recommendations are shown (e.g. ICRU, MIRD), when available. The influence of physics models available in Geant4-DNA for the simulation of electron interactions in liquid water is discussed. Thanks to these applications, the authors show that the most recent sets of physics models available in Geant4-DNA (the so-called "option4″ and "option 6″ sets) enable more accurate simulation of stopping powers, dose point kernels and W-values in liquid water, than the default set of models ("option 2″) initially provided in Geant4-DNA. They also serve as reference applications for Geant4-DNA users interested in TS simulations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860016941','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860016941"><span>Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.</p> <p>1986-01-01</p> <p>The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JOptA...6..875B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JOptA...6..875B"><span>Comparison of bio-physical marine products from SeaWiFS, MODIS and a bio-optical model with in situ measurements from Northern European waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blondeau-Patissier, D.; Tilstone, G. H.; Martinez-Vicente, V.; Moore, G. F.</p> <p>2004-09-01</p> <p>In this paper, we compare bio-physical marine products from SeaWiFS, MODIS and a novel bio-optical absorption model with in situ measurements of chlorophyll-a (Chla) concentrations, total suspended material (TSM) concentrations, normalized water-leaving radiances (nLw) and absorption coefficients of coloured dissolved organic matter (aCDOM), total particulate (atotal) and phytoplankton (aphy) for 26 satellite match-ups in three Northern European seas. Cruises were undertaken in 2002 and 2003 in phytoplankton dominated open ocean waters of the Celtic Sea and optically complex waters of the Western English Channel (WEC) and North Sea. For all environments, Chla concentrations varied from 0.4 to 7.8 mg m-3, TSM from 0.2 to 6.0 mg l-1 and aCDOM at 440 nm from 0.02 to 0.30 m-1. SeaWiFS OC4v4, with the Remote Sensing Data Analysis Service (RSDAS) atmospheric correction for turbid waters, showed the most accurate retrieval of in situ Chla (RMS = 0.24; n = 26), followed by MODIS chlor_a_3 (RMS = 0.40; n = 26). This suggested that improving the atmospheric correction over optically complex waters results in more accurate Chla concentrations compared to those obtained using more complicated Chla algorithms. We found that the SeaWiFS OC4v4 and the MODIS chlor_a_2 switching band ratio algorithms, which mainly use longer wavebands than 443 nm, were less affected by CDOM. They were both more accurate than chlor_MODIS in the higher CDOM waters of the North Sea. Compared to MODIS the absorption model was better at retrieving atotal (RMS = 0.39; n = 78) and aCDOM (RMS = 0.79; n = 12) in all study areas and TSM in the WEC (RMS = 0.04; n = 10) but it underestimated Chla concentrations (RMS = 0.45; n = 26). The results are discussed in terms of atmospheric correction, sensor characteristics and the functioning and performance of Chla algorithms. This paper was presented at the Institute of Physics Meeting on Underwater Optics held during Photonex 03 at Warwick, UK, in October 2003. Four companion papers from this conference were published in Journal of Optics A: Pure and Applied Optics, volume 6, issue 7 (July 2004), on pages 684, 690, 698 and 703.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21131868','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21131868"><span>Accurate prediction of energy expenditure using a shoe-based activity monitor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sazonova, Nadezhda; Browning, Raymond C; Sazonov, Edward</p> <p>2011-07-01</p> <p>The aim of this study was to develop and validate a method for predicting energy expenditure (EE) using a footwear-based system with integrated accelerometer and pressure sensors. We developed a footwear-based device with an embedded accelerometer and insole pressure sensors for the prediction of EE. The data from the device can be used to perform accurate recognition of major postures and activities and to estimate EE using the acceleration, pressure, and posture/activity classification information in a branched algorithm without the need for individual calibration. We measured EE via indirect calorimetry as 16 adults (body mass index=19-39 kg·m) performed various low- to moderate-intensity activities and compared measured versus predicted EE using several models based on the acceleration and pressure signals. Inclusion of pressure data resulted in better accuracy of EE prediction during static postures such as sitting and standing. The activity-based branched model that included predictors from accelerometer and pressure sensors (BACC-PS) achieved the lowest error (e.g., root mean squared error (RMSE)=0.69 METs) compared with the accelerometer-only-based branched model BACC (RMSE=0.77 METs) and nonbranched model (RMSE=0.94-0.99 METs). Comparison of EE prediction models using data from both legs versus models using data from a single leg indicates that only one shoe needs to be equipped with sensors. These results suggest that foot acceleration combined with insole pressure measurement, when used in an activity-specific branched model, can accurately estimate the EE associated with common daily postures and activities. The accuracy and unobtrusiveness of a footwear-based device may make it an effective physical activity monitoring tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23A1986E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23A1986E"><span>A Cause and A Solution for the Underprediction of Extreme Wave Events in the Northeast Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellenson, A. N.; Ozkan-Haller, H. T.; Thomson, J.; Brown, A. C.; Haller, M. C.</p> <p>2016-12-01</p> <p>Along the coastlines of Washington and Oregon, at least one 10 m wave height event occurs every year, and the strongest storms produce wave heights of 14-15 m. Extremely high wave heights can cause severe damage to coastal infrastructure and pose hazards to stakeholders along the coast. A system which can accurately predict such sea states is important for quantifying risk and aiding in preparation for extreme wave events. This study explores how to optimize forecast model performance for extreme wave events by utilizing different physics packages or wind input in four model configurations. The different wind input products consist of a reanalyzed Global Forecasting System (GFS) wind input and a Climate Forecast System Reanalysis (CFSR) from the National Center of Environmental Prediction (NCEP). The physics packages are the Tolman-Chalikov (1996) ST2 physics package and the Ardhuin et al (2009) ST4 physics package associated with version 4.18 of WaveWatch III. A hindcast was previously performed to assess the wave character along the Pacific Northwest Coastline for wave energy applications. Inspection of hindcast model results showed that the operational model, which consisted of ST2 physics and GFS wind, underpredicted events where wave height exceeded six meters.The under-prediction is most severe for cases with the combined conditions of a distant cyclone and a strong coastal jet. Three such cases were re-analyzed with the four model configurations. Model output is compared with observations at NDBC buoy 46050, offshore of Newport, OR. The model configuration consisting of ST4 physics package and CFSR wind input performs best as compared with the original model, reducing significant wave height underprediction from 1.25 m to approximately 0.67 m and mean wave direction error from 30 degrees to 17 degrees for wave heights greater than 6 m. Spectral analysis shows that the ST4-CFSR model configuration best resolves southerly wave energy, and all model configurations tend to overestimate northerly wave energy. This directional distinction is important when attempting to identify which atmospheric feature has induced the extreme wave energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..MARW39003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..MARW39003S"><span>Higher Order Thermal Lattice Boltzmann Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sorathiya, Shahajhan; Ansumali, Santosh</p> <p>2013-03-01</p> <p>Lattice Boltzmann method (LBM) modelling of thermal flows, compressible and micro flows requires an accurate velocity space discretization. The sub optimality of Gauss-Hermite quadrature in this regard is well known. Most of the thermal LBM in the past have suffered from instability due to lack of proper H-theorem and accuracy. Motivated from these issues, the present work develops along the two works and and imposes an eighth higher order moment to get correct thermal physics. We show that this can be done by adding just 6 more velocities to D3Q27 model and obtain a ``multi-speed on lattice thermal LBM'' with 33 velocities in 3D and calO (u4) and calO (T4) accurate fieq with a consistent H-theorem and inherent numerical stability. Simulations for Rayleigh-Bernard as well as velocity and temperature slip in micro flows matches with analytical results. Lid driven cavity set up for grid convergence is studied. Finally, a novel data structure is developed for HPC. The authors express their gratitude for computational resources and financial support provide by Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17354907','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17354907"><span>Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis</p> <p>2006-01-01</p> <p>This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1255163-improved-methods-determination-drying-conditions-fraction-insoluble-solids-fis-biomass-pretreatment-slurry','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1255163-improved-methods-determination-drying-conditions-fraction-insoluble-solids-fis-biomass-pretreatment-slurry"><span>Improved methods for the determination of drying conditions and fraction insoluble solids (FIS) in biomass pretreatment slurry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sluiter, Amie; Sluiter, Justin; Wolfrum, Ed; ...</p> <p>2016-05-20</p> <p>Accurate and precise chemical characterization of biomass feedstocks and process intermediates is a requirement for successful technical and economic evaluation of biofuel conversion technologies. The uncertainty in primary measurements of the fraction insoluble solid (FIS) content of dilute acid pretreated corn stover slurry is the major contributor to uncertainty in yield calculations for enzymatic hydrolysis of cellulose to glucose. This uncertainty is propagated through process models and impacts modeled fuel costs. The challenge in measuring FIS is obtaining an accurate measurement of insoluble matter in the pretreated materials, while appropriately accounting for all biomass derived components. Three methods were testedmore » to improve this measurement. One used physical separation of liquid and solid phases, and two utilized direct determination of dry matter content in two fractions. We offer a comparison of drying methods. Lastly, our results show utilizing a microwave dryer to directly determine dry matter content is the optimal method for determining FIS, based on the low time requirements and the method optimization done using model slurries.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1337294','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1337294"><span>Improving Lidar Turbulence Estimates for Wind Energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.</p> <p>2016-10-06</p> <p>Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352378-comprehensive-model-single-particle-pulverized-coal-combustion-extended-oxy-coal-conditions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352378-comprehensive-model-single-particle-pulverized-coal-combustion-extended-oxy-coal-conditions"><span>Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Holland, Troy; Fletcher, Thomas H.</p> <p>2017-02-22</p> <p>Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>