Sample records for accurate position estimation

  1. Constrained optimization for position calibration of an NMR field camera.

    PubMed

    Chang, Paul; Nassirpour, Sahar; Eschelbach, Martin; Scheffler, Klaus; Henning, Anke

    2018-07-01

    Knowledge of the positions of field probes in an NMR field camera is necessary for monitoring the B 0 field. The typical method of estimating these positions is by switching the gradients with known strengths and calculating the positions using the phases of the FIDs. We investigated improving the accuracy of estimating the probe positions and analyzed the effect of inaccurate estimations on field monitoring. The field probe positions were estimated by 1) assuming ideal gradient fields, 2) using measured gradient fields (including nonlinearities), and 3) using measured gradient fields with relative position constraints. The fields measured with the NMR field camera were compared to fields acquired using a dual-echo gradient recalled echo B 0 mapping sequence. Comparisons were done for shim fields from second- to fourth-order shim terms. The position estimation was the most accurate when relative position constraints were used in conjunction with measured (nonlinear) gradient fields. The effect of more accurate position estimates was seen when compared to fields measured using a B 0 mapping sequence (up to 10%-15% more accurate for some shim fields). The models acquired from the field camera are sensitive to noise due to the low number of spatial sample points. Position estimation of field probes in an NMR camera can be improved using relative position constraints and nonlinear gradient fields. Magn Reson Med 80:380-390, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Bone orientation and position estimation errors using Cosserat point elements and least squares methods: Application to gait.

    PubMed

    Solav, Dana; Camomilla, Valentina; Cereatti, Andrea; Barré, Arnaud; Aminian, Kamiar; Wolf, Alon

    2017-09-06

    The aim of this study was to analyze the accuracy of bone pose estimation based on sub-clusters of three skin-markers characterized by triangular Cosserat point elements (TCPEs) and to evaluate the capability of four instantaneous physical parameters, which can be measured non-invasively in vivo, to identify the most accurate TCPEs. Moreover, TCPE pose estimations were compared with the estimations of two least squares minimization methods applied to the cluster of all markers, using rigid body (RBLS) and homogeneous deformation (HDLS) assumptions. Analysis was performed on previously collected in vivo treadmill gait data composed of simultaneous measurements of the gold-standard bone pose by bi-plane fluoroscopy tracking the subjects' knee prosthesis and a stereophotogrammetric system tracking skin-markers affected by soft tissue artifact. Femur orientation and position errors estimated from skin-marker clusters were computed for 18 subjects using clusters of up to 35 markers. Results based on gold-standard data revealed that instantaneous subsets of TCPEs exist which estimate the femur pose with reasonable accuracy (median root mean square error during stance/swing: 1.4/2.8deg for orientation, 1.5/4.2mm for position). A non-invasive and instantaneous criteria to select accurate TCPEs for pose estimation (4.8/7.3deg, 5.8/12.3mm), was compared with RBLS (4.3/6.6deg, 6.9/16.6mm) and HDLS (4.6/7.6deg, 6.7/12.5mm). Accounting for homogeneous deformation, using HDLS or selected TCPEs, yielded more accurate position estimations than RBLS method, which, conversely, yielded more accurate orientation estimations. Further investigation is required to devise effective criteria for cluster selection that could represent a significant improvement in bone pose estimation accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Lightweight, Miniature Inertial Measurement System

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  4. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  5. Position Estimation Method of Medical Implanted Devices Using Estimation of Propagation Velocity inside Human Body

    NASA Astrophysics Data System (ADS)

    Kawasaki, Makoto; Kohno, Ryuji

    Wireless communication devices in the field of medical implant, such as cardiac pacemakers and capsule endoscopes, have been studied and developed to improve healthcare systems. Especially it is very important to know the range and position of each device because it will contribute to an optimization of the transmission power. We adopt the time-based approach of position estimation using ultra wideband signals. However, the propagation velocity inside the human body differs in each tissue and each frequency. Furthermore, the human body is formed of various tissues with complex structures. For this reason, propagation velocity is different at a different point inside human body and the received signal so distorted through the channel inside human body. In this paper, we apply an adaptive template synthesis method in multipath channel for calculate the propagation time accurately based on the output of the correlator between the transmitter and the receiver. Furthermore, we propose a position estimation method using an estimation of the propagation velocity inside the human body. In addition, we show by computer simulation that the proposal method can perform accurate positioning with a size of medical implanted devices such as a medicine capsule.

  6. Fast auto-focus scheme based on optical defocus fitting model

    NASA Astrophysics Data System (ADS)

    Wang, Yeru; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting; Cen, Min

    2018-04-01

    An optical defocus fitting model-based (ODFM) auto-focus scheme is proposed. Considering the basic optical defocus principle, the optical defocus fitting model is derived to approximate the potential-focus position. By this accurate modelling, the proposed auto-focus scheme can make the stepping motor approach the focal plane more accurately and rapidly. Two fitting positions are first determined for an arbitrary initial stepping motor position. Three images (initial image and two fitting images) at these positions are then collected to estimate the potential-focus position based on the proposed ODFM method. Around the estimated potential-focus position, two reference images are recorded. The auto-focus procedure is then completed by processing these two reference images and the potential-focus image to confirm the in-focus position using a contrast based method. Experimental results prove that the proposed scheme can complete auto-focus within only 5 to 7 steps with good performance even under low-light condition.

  7. Improving CAR Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  8. Improving Car Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  9. Localization Based on Magnetic Markers for an All-Wheel Steering Vehicle

    PubMed Central

    Byun, Yeun Sub; Kim, Young Chol

    2016-01-01

    Real-time continuous localization is a key technology in the development of intelligent transportation systems. In these systems, it is very important to have accurate information about the position and heading angle of the vehicle at all times. The most widely implemented methods for positioning are the global positioning system (GPS), vision-based system, and magnetic marker system. Among these methods, the magnetic marker system is less vulnerable to indoor and outdoor environment conditions; moreover, it requires minimal maintenance expenses. In this paper, we present a position estimation scheme based on magnetic markers and odometry sensors for an all-wheel-steering vehicle. The heading angle of the vehicle is determined by using the position coordinates of the last two detected magnetic markers and odometer data. The instant position and heading angle of the vehicle are integrated with an extended Kalman filter to estimate the continuous position. GPS data with the real-time kinematics mode was obtained to evaluate the performance of the proposed position estimation system. The test results show that the performance of the proposed localization algorithm is accurate (mean error: 3 cm; max error: 9 cm) and reliable under unexpected missing markers or incorrect markers. PMID:27916827

  10. Information spreading by a combination of MEG source estimation and multivariate pattern classification.

    PubMed

    Sato, Masashi; Yamashita, Okito; Sato, Masa-Aki; Miyawaki, Yoichi

    2018-01-01

    To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of "information spreading" may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined.

  11. Information spreading by a combination of MEG source estimation and multivariate pattern classification

    PubMed Central

    Sato, Masashi; Yamashita, Okito; Sato, Masa-aki

    2018-01-01

    To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of “information spreading” may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined. PMID:29912968

  12. Design and Analysis of Map Relative Localization for Access to Hazardous Landing Sites on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Aaron, Seth; Cheng, Yang; Montgomery, James; Trawny, Nikolas; Tweddle, Brent; Vaughan, Geoffrey; Zheng, Jason

    2016-01-01

    Human and robotic planetary lander missions require accurate surface relative position knowledge to land near science targets or next to pre-deployed assets. In the absence of GPS, accurate position estimates can be obtained by automatically matching sensor data collected during descent to an on-board map. The Lander Vision System (LVS) that is being developed for Mars landing applications generates landmark matches in descent imagery and combines these with inertial data to estimate vehicle position, velocity and attitude. This paper describes recent LVS design work focused on making the map relative localization algorithms robust to challenging environmental conditions like bland terrain, appearance differences between the map and image and initial input state errors. Improved results are shown using data from a recent LVS field test campaign. This paper also fills a gap in analysis to date by assessing the performance of the LVS with data sets containing significant vertical motion including a complete data set from the Mars Science Laboratory mission, a Mars landing simulation, and field test data taken over multiple altitudes above the same scene. Accurate and robust performance is achieved for all data sets indicating that vertical motion does not play a significant role in position estimation performance.

  13. RFID-Based Vehicle Positioning and Its Applications in Connected Vehicles

    PubMed Central

    Wang, Jianqiang; Ni, Daiheng; Li, Keqiang

    2014-01-01

    This paper proposed an RFID-based vehicle positioning approach to facilitate connected vehicles applications. When a vehicle passes over an RFID tag, the vehicle position is given by the accurate position stored in the tag. At locations without RFID coverage, the vehicle position is estimated from the most recent tag location using a kinematics integration algorithm till updates from the next tag. The accuracy of RFID positioning is verified empirically in two independent ways with one using radar and the other a photoelectric switch. The former is designed to verify whether the dynamic position obtained from RFID tags matches the position measured by radar that is regarded as accurate. The latter aims to verify whether the position estimated from the kinematics integration matches the position obtained from RFID tags. Both means supports the accuracy of RFID-based positioning. As a supplement to GPS which suffers from issues such as inaccuracy and loss of signal, RFID positioning is promising in facilitating connected vehicles applications. Two conceptual applications are provided here with one in vehicle operational control and the other in Level IV intersection control. PMID:24599188

  14. RFID-based vehicle positioning and its applications in connected vehicles.

    PubMed

    Wang, Jianqiang; Ni, Daiheng; Li, Keqiang

    2014-03-04

    This paper proposed an RFID-based vehicle positioning approach to facilitate connected vehicles applications. When a vehicle passes over an RFID tag, the vehicle position is given by the accurate position stored in the tag. At locations without RFID coverage, the vehicle position is estimated from the most recent tag location using a kinematics integration algorithm till updates from the next tag. The accuracy of RFID positioning is verified empirically in two independent ways with one using radar and the other a photoelectric switch. The former is designed to verify whether the dynamic position obtained from RFID tags matches the position measured by radar that is regarded as accurate. The latter aims to verify whether the position estimated from the kinematics integration matches the position obtained from RFID tags. Both means supports the accuracy of RFID-based positioning. As a supplement to GPS which suffers from issues such as inaccuracy and loss of signal, RFID positioning is promising in facilitating connected vehicles applications. Two conceptual applications are provided here with one in vehicle operational control and the other in Level IV intersection control.

  15. A hybrid method for accurate star tracking using star sensor and gyros.

    PubMed

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  16. Estimating Accurate Relative Spacecraft Angular Position from DSN VLBI Phases Using X-Band Telemetry or DOR Tones

    NASA Technical Reports Server (NTRS)

    Bagri, Durgadas S.; Majid, Walid

    2009-01-01

    At present spacecraft angular position with Deep Space Network (DSN) is determined using group delay estimates from very long baseline interferometer (VLBI) phase measurements employing differential one way ranging (DOR) tones. As an alternative to this approach, we propose estimating position of a spacecraft to half a fringe cycle accuracy using time variations between measured and calculated phases as the Earth rotates using DSN VLBI baseline(s). Combining fringe location of the target with the phase allows high accuracy for spacecraft angular position estimate. This can be achieved using telemetry signals of at least 4-8 MSamples/sec data rate or DOR tones.

  17. Instantaneous power control of a high speed permanent magnet synchronous generator based on a sliding mode observer and a phase locked loop

    NASA Astrophysics Data System (ADS)

    Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin

    2018-06-01

    This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.

  18. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  19. Estimating the spatial position of marine mammals based on digital camera recordings

    PubMed Central

    Hoekendijk, Jeroen P A; de Vries, Jurre; van der Bolt, Krissy; Greinert, Jens; Brasseur, Sophie; Camphuysen, Kees C J; Aarts, Geert

    2015-01-01

    Estimating the spatial position of organisms is essential to quantify interactions between the organism and the characteristics of its surroundings, for example, predator–prey interactions, habitat selection, and social associations. Because marine mammals spend most of their time under water and may appear at the surface only briefly, determining their exact geographic location can be challenging. Here, we developed a photogrammetric method to accurately estimate the spatial position of marine mammals or birds at the sea surface. Digital recordings containing landscape features with known geographic coordinates can be used to estimate the distance and bearing of each sighting relative to the observation point. The method can correct for frame rotation, estimates pixel size based on the reference points, and can be applied to scenarios with and without a visible horizon. A set of R functions was written to process the images and obtain accurate geographic coordinates for each sighting. The method is applied to estimate the spatiotemporal fine-scale distribution of harbour porpoises in a tidal inlet. Video recordings of harbour porpoises were made from land, using a standard digital single-lens reflex (DSLR) camera, positioned at a height of 9.59 m above mean sea level. Porpoises were detected up to a distance of ∽3136 m (mean 596 m), with a mean location error of 12 m. The method presented here allows for multiple detections of different individuals within a single video frame and for tracking movements of individuals based on repeated sightings. In comparison with traditional methods, this method only requires a digital camera to provide accurate location estimates. It especially has great potential in regions with ample data on local (a)biotic conditions, to help resolve functional mechanisms underlying habitat selection and other behaviors in marine mammals in coastal areas. PMID:25691982

  20. Array processing for RFID tag localization exploiting multi-frequency signals

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin; Li, Xin; Amin, Moeness G.

    2009-05-01

    RFID is an increasingly valuable business and technology tool for electronically identifying, locating, and tracking products, assets, and personnel. As a result, precise positioning and tracking of RFID tags and readers have received considerable attention from both academic and industrial communities. Finding the position of RFID tags is considered an important task in various real-time locating systems (RTLS). As such, numerous RFID localization products have been developed for various applications. The majority of RFID positioning systems is based on the fusion of pieces of relevant information, such as the range and the direction-of-arrival (DOA). For example, trilateration can determine the tag position by using the range information of the tag estimated from three or more spatially separated reader antennas. Triangulation is another method to locate RFID tags that use the direction-of-arrival (DOA) information estimated at multiple spatially separated locations. The RFID tag positions can also be determined through hybrid techniques that combine the range and DOA information. The focus of this paper to study the design and performance of the localization of passive RFID tags using array processing techniques in a multipath environment, and exploiting multi-frequency CW signals. The latter are used to decorrelate the coherent multipath signals for effective DOA estimation and for the purpose of accurate range estimation. Accordingly, the spatial and frequency dimensionalities are fully utilized for robust and accurate positioning of RFID tags.

  1. Learning to select useful landmarks.

    PubMed

    Greiner, R; Isukapalli, R

    1996-01-01

    To navigate effectively, an autonomous agent must be able to quickly and accurately determine its current location. Given an initial estimate of its position (perhaps based on dead-reckoning) and an image taken of a known environment, our agent first attempts to locate a set of landmarks (real-world objects at known locations), then uses their angular separation to obtain an improved estimate of its current position. Unfortunately, some landmarks may not be visible, or worse, may be confused with other landmarks, resulting in both time wasted in searching for the undetected landmarks, and in further errors in the agent's estimate of its position. To address these problems, we propose a method that uses previous experiences to learn a selection function that, given the set of landmarks that might be visible, returns the subset that can be used to reliably provide an accurate registration of the agent's position. We use statistical techniques to prove that the learned selection function is, with high probability, effectively at a local optimum in the space of such functions. This paper also presents empirical evidence, using real-world data, that demonstrate the effectiveness of our approach.

  2. Performance of Creatinine and Cystatin C GFR Estimating Equations in an HIV-positive population on Antiretrovirals

    PubMed Central

    INKER, Lesley A; WYATT, Christina; CREAMER, Rebecca; HELLINGER, James; HOTTA, Matthew; LEPPO, Maia; LEVEY, Andrew S; OKPARAVERO, Aghogho; GRAHAM, Hiba; SAVAGE, Karen; SCHMID, Christopher H; TIGHIOUART, Hocine; WALLACH, Fran; KRISHNASAMI, Zipporah

    2013-01-01

    Objective To evaluate the performance of CKD-EPI creatinine, cystatin C and creatinine-cystatin C estimating equations in HIV-positive patients. Methods We evaluated the performance of the MDRD Study and CKD-EPI creatinine 2009, CKD-EPI cystatin C 2012 and CKD-EPI creatinine-cystatin C 2012 glomerular filtration rate (GFR) estimating equations compared to GFR measured using plasma clearance of iohexol in 200 HIV-positive patients on stable antiretroviral therapy. Creatinine and cystatin C assays were standardized to certified reference materials. Results Of the 200 participants, median (IQR) CD4 count was 536 (421) and 61% had an undetectable HIV-viral load. Mean (SD) measured GFR (mGFR) was 87 (26) ml/min/1.73m2. All CKD-EPI equations performed better than the MDRD Study equation. All three CKD-EPI equations had similar bias and precision. The cystatin C equation was not more accurate than the creatinine equation. The creatinine-cystatin C equation was significantly more accurate than the cystatin C equation and there was a trend toward greater accuracy than the creatinine equation. Accuracy was equal or better in most subgroups with the combined equation compared to either alone. Conclusions The CKD-EPI cystatin C equation does not appear to be more accurate than the CKD-EPI creatinine equation in patients who are HIV-positive, supporting the use of the CKD-EPI creatinine equation for routine clinical care for use in North American populations with HIV. The use of both filtration markers together as a confirmatory test for decreased estimated GFR based on creatinine in individuals who are HIV-positive requires further study. PMID:22842844

  3. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  4. Sensorless position estimator applied to nonlinear IPMC model

    NASA Astrophysics Data System (ADS)

    Bernat, Jakub; Kolota, Jakub

    2016-11-01

    This paper addresses the issue of estimating position for an ionic polymer metal composite (IPMC) known as electro active polymer (EAP). The key step is the construction of a sensorless mode considering only current feedback. This work takes into account nonlinearities caused by electrochemical effects in the material. Owing to the recent observer design technique, the authors obtained both Lyapunov function based estimation law as well as sliding mode observer. To accomplish the observer design, the IPMC model was identified through a series of experiments. The research comprises time domain measurements. The identification process was completed by means of geometric scaling of three test samples. In the proposed design, the estimated position accurately tracks the polymer position, which is illustrated by the experiments.

  5. Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Li, Zhengning; Zhou, Yuan

    2016-06-01

    Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.

  6. Improvement of Vehicle Positioning Using Car-to-Car Communications in Consideration of Communication Delay

    NASA Astrophysics Data System (ADS)

    Hontani, Hidekata; Higuchi, Yuya

    In this article, we propose a vehicle positioning method that can estimate positions of cars even in areas where the GPS is not available. For the estimation, each car measures the relative distance to a car running in front, communicates the measurements with other cars, and uses the received measurements for estimating its position. In order to estimate the position even if the measurements are received with time-delay, we employed the time-delay tolerant Kalman filtering. For sharing the measurements, it is assumed that a car-to-car communication system is used. Then, the measurements sent from farther cars are received with larger time-delay. It follows that the accuracy of the estimates of farther cars become worse. Hence, the proposed method manages only the states of nearby cars to reduce computing effort. The authors simulated the proposed filtering method and found that the proposed method estimates the positions of nearby cars as accurate as the distributed Kalman filtering.

  7. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    NASA Astrophysics Data System (ADS)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  8. A resampling strategy based on bootstrap to reduce the effect of large blunders in GPS absolute positioning

    NASA Astrophysics Data System (ADS)

    Angrisano, Antonio; Maratea, Antonio; Gaglione, Salvatore

    2018-01-01

    In the absence of obstacles, a GPS device is generally able to provide continuous and accurate estimates of position, while in urban scenarios buildings can generate multipath and echo-only phenomena that severely affect the continuity and the accuracy of the provided estimates. Receiver autonomous integrity monitoring (RAIM) techniques are able to reduce the negative consequences of large blunders in urban scenarios, but require both a good redundancy and a low contamination to be effective. In this paper a resampling strategy based on bootstrap is proposed as an alternative to RAIM, in order to estimate accurately position in case of low redundancy and multiple blunders: starting with the pseudorange measurement model, at each epoch the available measurements are bootstrapped—that is random sampled with replacement—and the generated a posteriori empirical distribution is exploited to derive the final position. Compared to standard bootstrap, in this paper the sampling probabilities are not uniform, but vary according to an indicator of the measurement quality. The proposed method has been compared with two different RAIM techniques on a data set collected in critical conditions, resulting in a clear improvement on all considered figures of merit.

  9. A Tactical Database for the Low Cost Combat Direction System

    DTIC Science & Technology

    1990-12-01

    another object. Track is a representation of some environmental phenomena converted into accurate estimates of geographical position with respect to...by the method CALCULATE RELATIVE POSITION. In order to obtain a better similarity of mehods , the methods OWNSHIP DISTANCE TO PIM, ESTIMATED TIME OF...this mechanism entails the risk that the user will lose all of the work that was done if conflicts are detected and the transaction cannot be committed

  10. Experimental Evaluation of UWB Indoor Positioning for Sport Postures

    PubMed Central

    Defraye, Jense; Steendam, Heidi; Gerlo, Joeri; De Clercq, Dirk; De Poorter, Eli

    2018-01-01

    Radio frequency (RF)-based indoor positioning systems (IPSs) use wireless technologies (including Wi-Fi, Zigbee, Bluetooth, and ultra-wide band (UWB)) to estimate the location of persons in areas where no Global Positioning System (GPS) reception is available, for example in indoor stadiums or sports halls. Of the above-mentioned forms of radio frequency (RF) technology, UWB is considered one of the most accurate approaches because it can provide positioning estimates with centimeter-level accuracy. However, it is not yet known whether UWB can also offer such accurate position estimates during strenuous dynamic activities in which moves are characterized by fast changes in direction and velocity. To answer this question, this paper investigates the capabilities of UWB indoor localization systems for tracking athletes during their complex (and most of the time unpredictable) movements. To this end, we analyze the impact of on-body tag placement locations and human movement patterns on localization accuracy and communication reliability. Moreover, two localization algorithms (particle filter and Kalman filter) with different optimizations (bias removal, non-line-of-sight (NLoS) detection, and path determination) are implemented. It is shown that although the optimal choice of optimization depends on the type of movement patterns, some of the improvements can reduce the localization error by up to 31%. Overall, depending on the selected optimization and on-body tag placement, our algorithms show good results in terms of positioning accuracy, with average errors in position estimates of 20 cm. This makes UWB a suitable approach for tracking dynamic athletic activities. PMID:29315267

  11. Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors

    PubMed Central

    Latt, Win Tun; Veluvolu, Kalyana Chakravarthy; Ang, Wei Tech

    2011-01-01

    Position sensing with inertial sensors such as accelerometers and gyroscopes usually requires other aided sensors or prior knowledge of motion characteristics to remove position drift resulting from integration of acceleration or velocity so as to obtain accurate position estimation. A method based on analytical integration has previously been developed to obtain accurate position estimate of periodic or quasi-periodic motion from inertial sensors using prior knowledge of the motion but without using aided sensors. In this paper, a new method is proposed which employs linear filtering stage coupled with adaptive filtering stage to remove drift and attenuation. The prior knowledge of the motion the proposed method requires is only approximate band of frequencies of the motion. Existing adaptive filtering methods based on Fourier series such as weighted-frequency Fourier linear combiner (WFLC), and band-limited multiple Fourier linear combiner (BMFLC) are modified to combine with the proposed method. To validate and compare the performance of the proposed method with the method based on analytical integration, simulation study is performed using periodic signals as well as real physiological tremor data, and real-time experiments are conducted using an ADXL-203 accelerometer. Results demonstrate that the performance of the proposed method outperforms the existing analytical integration method. PMID:22163935

  12. Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histologic analysis.

    PubMed

    Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A

    2011-08-01

    To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.

  13. Accurate Mars Express orbits to improve the determination of the mass and ephemeris of the Martian moons

    NASA Astrophysics Data System (ADS)

    Rosenblatt, P.; Lainey, V.; Le Maistre, S.; Marty, J. C.; Dehant, V.; Pätzold, M.; Van Hoolst, T.; Häusler, B.

    2008-05-01

    The determination of the ephemeris of the Martian moons has benefited from observations of their plane-of-sky positions derived from images taken by cameras onboard spacecraft orbiting Mars. Images obtained by the Super Resolution Camera (SRC) onboard Mars Express (MEX) have been used to derive moon positions relative to Mars on the basis of a fit of a complete dynamical model of their motion around Mars. Since, these positions are computed from the relative position of the spacecraft when the images are taken, those positions need to be known as accurately as possible. An accurate MEX orbit is obtained by fitting two years of tracking data of the Mars Express Radio Science (MaRS) experiment onboard MEX. The average accuracy of the orbits has been estimated to be around 20-25 m. From these orbits, we have re-derived the positions of Phobos and Deimos at the epoch of the SRC observations and compared them with the positions derived by using the MEX orbits provided by the ESOC navigation team. After fit of the orbital model of Phobos and Deimos, the gain in precision in the Phobos position is roughly 30 m, corresponding to the estimated gain of accuracy of the MEX orbits. A new solution of the GM of the Martian moons has also been obtained from the accurate MEX orbits, which is consistent with previous solutions and, for Phobos, is more precise than the solution from the Mars Global Surveyor (MGS) and Mars Odyssey (ODY) tracking data. It will be further improved with data from MEX-Phobos closer encounters (at a distance less than 300 km). This study also demonstrates the advantage of combining observations of the moon positions from a spacecraft and from the Earth to assess the real accuracy of the spacecraft orbit. In turn, the natural satellite ephemerides can be improved and participate to a better knowledge of the origin and evolution of the Martian moons.

  14. A new framework for analysing automated acoustic species-detection data: occupancy estimation and optimization of recordings post-processing

    USGS Publications Warehouse

    Chambert, Thierry A.; Waddle, J. Hardin; Miller, David A.W.; Walls, Susan; Nichols, James D.

    2018-01-01

    The development and use of automated species-detection technologies, such as acoustic recorders, for monitoring wildlife are rapidly expanding. Automated classification algorithms provide a cost- and time-effective means to process information-rich data, but often at the cost of additional detection errors. Appropriate methods are necessary to analyse such data while dealing with the different types of detection errors.We developed a hierarchical modelling framework for estimating species occupancy from automated species-detection data. We explore design and optimization of data post-processing procedures to account for detection errors and generate accurate estimates. Our proposed method accounts for both imperfect detection and false positive errors and utilizes information about both occurrence and abundance of detections to improve estimation.Using simulations, we show that our method provides much more accurate estimates than models ignoring the abundance of detections. The same findings are reached when we apply the methods to two real datasets on North American frogs surveyed with acoustic recorders.When false positives occur, estimator accuracy can be improved when a subset of detections produced by the classification algorithm is post-validated by a human observer. We use simulations to investigate the relationship between accuracy and effort spent on post-validation, and found that very accurate occupancy estimates can be obtained with as little as 1% of data being validated.Automated monitoring of wildlife provides opportunity and challenges. Our methods for analysing automated species-detection data help to meet key challenges unique to these data and will prove useful for many wildlife monitoring programs.

  15. A near-optimal low complexity sensor fusion technique for accurate indoor localization based on ultrasound time of arrival measurements from low-quality sensors

    NASA Astrophysics Data System (ADS)

    Mitilineos, Stelios A.; Argyreas, Nick D.; Thomopoulos, Stelios C. A.

    2009-05-01

    A fusion-based localization technique for location-based services in indoor environments is introduced herein, based on ultrasound time-of-arrival measurements from multiple off-the-shelf range estimating sensors which are used in a market-available localization system. In-situ field measurements results indicated that the respective off-the-shelf system was unable to estimate position in most of the cases, while the underlying sensors are of low-quality and yield highly inaccurate range and position estimates. An extensive analysis is performed and a model of the sensor-performance characteristics is established. A low-complexity but accurate sensor fusion and localization technique is then developed, which consists inof evaluating multiple sensor measurements and selecting the one that is considered most-accurate based on the underlying sensor model. Optimality, in the sense of a genie selecting the optimum sensor, is subsequently evaluated and compared to the proposed technique. The experimental results indicate that the proposed fusion method exhibits near-optimal performance and, albeit being theoretically suboptimal, it largely overcomes most flaws of the underlying single-sensor system resulting in a localization system of increased accuracy, robustness and availability.

  16. Detector Position Estimation for PET Scanners.

    PubMed

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  17. Accurate position estimation methods based on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.

  18. SU-F-P-19: Fetal Dose Estimate for a High-Dose Fluoroscopy Guided Intervention Using Modern Data Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moirano, J

    Purpose: An accurate dose estimate is necessary for effective patient management after a fetal exposure. In the case of a high-dose exposure, it is critical to use all resources available in order to make the most accurate assessment of the fetal dose. This work will demonstrate a methodology for accurate fetal dose estimation using tools that have recently become available in many clinics, and show examples of best practices for collecting data and performing the fetal dose calculation. Methods: A fetal dose estimate calculation was performed using modern data collection tools to determine parameters for the calculation. The reference pointmore » air kerma as displayed by the fluoroscopic system was checked for accuracy. A cumulative dose incidence map and DICOM header mining were used to determine the displayed reference point air kerma. Corrections for attenuation caused by the patient table and pad were measured and applied in order to determine the peak skin dose. The position and depth of the fetus was determined by ultrasound imaging and consultation with a radiologist. The data collected was used to determine a normalized uterus dose from Monte Carlo simulation data. Fetal dose values from this process were compared to other accepted calculation methods. Results: An accurate high-dose fetal dose estimate was made. Comparison to accepted legacy methods were were within 35% of estimated values. Conclusion: Modern data collection and reporting methods ease the process for estimation of fetal dose from interventional fluoroscopy exposures. Many aspects of the calculation can now be quantified rather than estimated, which should allow for a more accurate estimation of fetal dose.« less

  19. TLE uncertainty estimation using robust weighted differencing

    NASA Astrophysics Data System (ADS)

    Geul, Jacco; Mooij, Erwin; Noomen, Ron

    2017-05-01

    Accurate knowledge of satellite orbit errors is essential for many types of analyses. Unfortunately, for two-line elements (TLEs) this is not available. This paper presents a weighted differencing method using robust least-squares regression for estimating many important error characteristics. The method is applied to both classic and enhanced TLEs, compared to previous implementations, and validated using Global Positioning System (GPS) solutions for the GOCE satellite in Low-Earth Orbit (LEO), prior to its re-entry. The method is found to be more accurate than previous TLE differencing efforts in estimating initial uncertainty, as well as error growth. The method also proves more reliable and requires no data filtering (such as outlier removal). Sensitivity analysis shows a strong relationship between argument of latitude and covariance (standard deviations and correlations), which the method is able to approximate. Overall, the method proves accurate, computationally fast, and robust, and is applicable to any object in the satellite catalogue (SATCAT).

  20. Human leader and robot follower team: correcting leader's position from follower's heading

    NASA Astrophysics Data System (ADS)

    Borenstein, Johann; Thomas, David; Sights, Brandon; Ojeda, Lauro; Bankole, Peter; Fellars, Donald

    2010-04-01

    In multi-agent scenarios, there can be a disparity in the quality of position estimation amongst the various agents. Here, we consider the case of two agents - a leader and a follower - following the same path, in which the follower has a significantly better estimate of position and heading. This may be applicable to many situations, such as a robotic "mule" following a soldier. Another example is that of a convoy, in which only one vehicle (not necessarily the leading one) is instrumented with precision navigation instruments while all other vehicles use lower-precision instruments. We present an algorithm, called Follower-derived Heading Correction (FDHC), which substantially improves estimates of the leader's heading and, subsequently, position. Specifically, FHDC produces a very accurate estimate of heading errors caused by slow-changing errors (e.g., those caused by drift in gyros) of the leader's navigation system and corrects those errors.

  1. A Pseudorange Measurement Scheme Based on Snapshot for Base Station Positioning Receivers.

    PubMed

    Mo, Jun; Deng, Zhongliang; Jia, Buyun; Bian, Xinmei

    2017-12-01

    Digital multimedia broadcasting signal is promised to be a wireless positioning signal. This paper mainly studies a multimedia broadcasting technology, named China mobile multimedia broadcasting (CMMB), in the context of positioning. Theoretical and practical analysis on the CMMB signal suggests that the existing CMMB signal does not have the meter positioning capability. So, the CMMB system has been modified to achieve meter positioning capability by multiplexing the CMMB signal and pseudo codes in the same frequency band. The time difference of arrival (TDOA) estimation method is used in base station positioning receivers. Due to the influence of a complex fading channel and the limited bandwidth of receivers, the regular tracking method based on pseudo code ranging is difficult to provide continuous and accurate TDOA estimations. A pseudorange measurement scheme based on snapshot is proposed to solve the problem. This algorithm extracts the TDOA estimation from the stored signal fragments, and utilizes the Taylor expansion of the autocorrelation function to improve the TDOA estimation accuracy. Monte Carlo simulations and real data tests show that the proposed algorithm can significantly reduce the TDOA estimation error for base station positioning receivers, and then the modified CMMB system achieves meter positioning accuracy.

  2. Bone Pose Estimation in the Presence of Soft Tissue Artifact Using Triangular Cosserat Point Elements.

    PubMed

    Solav, Dana; Rubin, M B; Cereatti, Andrea; Camomilla, Valentina; Wolf, Alon

    2016-04-01

    Accurate estimation of the position and orientation (pose) of a bone from a cluster of skin markers is limited mostly by the relative motion between the bone and the markers, which is known as the soft tissue artifact (STA). This work presents a method, based on continuum mechanics, to describe the kinematics of a cluster affected by STA. The cluster is characterized by triangular cosserat point elements (TCPEs) defined by all combinations of three markers. The effects of the STA on the TCPEs are quantified using three parameters describing the strain in each TCPE and the relative rotation and translation between TCPEs. The method was evaluated using previously collected ex vivo kinematic data. Femur pose was estimated from 12 skin markers on the thigh, while its reference pose was measured using bone pins. Analysis revealed that instantaneous subsets of TCPEs exist which estimate bone position and orientation more accurately than the Procrustes Superimposition applied to the cluster of all markers. It has been shown that some of these parameters correlate well with femur pose errors, which suggests that they can be used to select, at each instant, subsets of TCPEs leading an improved estimation of the underlying bone pose.

  3. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    NASA Astrophysics Data System (ADS)

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.

  4. Number Line Estimation in Children with Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Sella, Francesco; Berteletti, Ilaria; Martina, Brazzolotto; Lucangeli, Daniela; Zorzi, Marco

    2013-01-01

    In the number to position task, several studies have shown that typically developing children shift from a biased (logarithmic) to an accurate (linear) mapping of symbolic digits onto a spatial position on a line. The initial pattern of overestimation of small numbers and the underestimation of larger numbers is compensated by means of age and…

  5. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones

    PubMed Central

    Deng, Zhi-An; Wang, Guofeng; Hu, Ying; Cui, Yang

    2016-01-01

    This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user’s body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA)-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability. PMID:27187391

  6. Physiological motion modeling for organ-mounted robots.

    PubMed

    Wood, Nathan A; Schwartzman, David; Zenati, Marco A; Riviere, Cameron N

    2017-12-01

    Organ-mounted robots passively compensate heartbeat and respiratory motion. In model-guided procedures, this motion can be a significant source of information that can be used to aid in localization or to add dynamic information to static preoperative maps. Models for estimating periodic motion are proposed for both position and orientation. These models are then tested on animal data and optimal orders are identified. Finally, methods for online identification are demonstrated. Models using exponential coordinates and Euler-angle parameterizations are as accurate as models using quaternion representations, yet require a quarter fewer parameters. Models which incorporate more than four cardiac or three respiration harmonics are no more accurate. Finally, online methods estimate model parameters as accurately as offline methods within three respiration cycles. These methods provide a complete framework for accurately modelling the periodic deformation of points anywhere on the surface of the heart in a closed chest. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Fast and accurate phylogeny reconstruction using filtered spaced-word matches

    PubMed Central

    Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-01-01

    Abstract Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation: The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Contact: chris.leimeister@stud.uni-goettingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073754

  8. Fast and accurate phylogeny reconstruction using filtered spaced-word matches.

    PubMed

    Leimeister, Chris-André; Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-04-01

    Word-based or 'alignment-free' algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. We propose Filtered Spaced Word Matches (FSWM) , a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don't-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don't-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don't-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/. chris.leimeister@stud.uni-goettingen.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  9. Algorithms development for the GEM-based detection system

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-09-01

    The measurement system based on GEM - Gas Electron Multiplier detector - is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an Xray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals and cluster charge values corresponding to the energy spectra.

  10. Heli/SITAN: A Terrain Referenced Navigation algorithm for helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollowell, J.

    1990-01-01

    Heli/SITAN is a Terrain Referenced Navigation (TRN) algorithm that utilizes radar altimeter ground clearance measurements in combination with a conventional navigation system and a stored digital terrain elevation map to accurately estimate a helicopter's position. Multiple Model Adaptive Estimation (MMAE) techniques are employed using a bank of single state Kalman filters to ensure that reliable position estimates are obtained even in the face of large initial position errors. A real-time implementation of the algorithm was tested aboard a US Army UH-1 helicopter equipped with a Singer-Kearfott Doppler Velocity Sensor (DVS) and a Litton LR-80 strapdown Attitude and Heading Reference Systemmore » (AHRS). The median radial error of the position fixes provided in real-time by this implementation was less than 50 m for a variety of mission profiles. 6 refs., 7 figs.« less

  11. Methods for calculating the electrode position Jacobian for impedance imaging.

    PubMed

    Boyle, A; Crabb, M G; Jehl, M; Lionheart, W R B; Adler, A

    2017-03-01

    Electrical impedance tomography (EIT) or electrical resistivity tomography (ERT) current and measure voltages at the boundary of a domain through electrodes. The movement or incorrect placement of electrodes may lead to modelling errors that result in significant reconstructed image artifacts. These errors may be accounted for by allowing for electrode position estimates in the model. Movement may be reconstructed through a first-order approximation, the electrode position Jacobian. A reconstruction that incorporates electrode position estimates and conductivity can significantly reduce image artifacts. Conversely, if electrode position is ignored it can be difficult to distinguish true conductivity changes from reconstruction artifacts which may increase the risk of a flawed interpretation. In this work, we aim to determine the fastest, most accurate approach for estimating the electrode position Jacobian. Four methods of calculating the electrode position Jacobian were evaluated on a homogeneous halfspace. Results show that Fréchet derivative and rank-one update methods are competitive in computational efficiency but achieve different solutions for certain values of contact impedance and mesh density.

  12. Neural mechanisms of limb position estimation in the primate brain.

    PubMed

    Shi, Ying; Buneo, Christopher A

    2011-01-01

    Understanding the neural mechanisms of limb position estimation is important both for comprehending the neural control of goal directed arm movements and for developing neuroprosthetic systems designed to replace lost limb function. Here we examined the role of area 5 of the posterior parietal cortex in estimating limb position based on visual and somatic (proprioceptive, efference copy) signals. Single unit recordings were obtained as monkeys reached to visual targets presented in a semi-immersive virtual reality environment. On half of the trials animals were required to maintain their limb position at these targets while receiving both visual and non-visual feedback of their arm position, while on the other trials visual feedback was withheld. When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons modulated their firing rates based on the presence/absence of visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level.

  13. CORRELATED AND ZONAL ERRORS OF GLOBAL ASTROMETRIC MISSIONS: A SPHERICAL HARMONIC SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  14. Correlated and Zonal Errors of Global Astrometric Missions: A Spherical Harmonic Solution

    NASA Astrophysics Data System (ADS)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.; Hennessy, G. S.; Berghea, C. T.; Dudik, R. P.; Schmitt, H. R.

    2012-07-01

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  15. Diagnosis of intrauterine growth restriction: comparison of ultrasound parameters.

    PubMed

    Ott, William J

    2002-04-01

    The objective of this study is an attempt to evaluate the best ultrasonic method of diagnosing intrauterine growth restriction (IUGR); a retrospective study of patients with singleton pregnancies who had been scanned at the author's institution within 2 weeks of their delivery was undertaken. Estimated fetal weight, abdominal circumference, head circumference/abdominal circumference ratio, abdominal circumference/femur length ratio, and umbilical artery S/D ratio were compared for accuracy in prediction IUGR in the neonate using both univariant and multivariant statistical analysis. Five hundred one (501) patients were analyzed. One hundred fourteen (114) neonates were classified as IUGR (22.8%). Doppler evaluation of the umbilical artery showed the best sensitivity while both abdominal circumference alone and estimated fetal weight showed similar specificity, positive and negative predictive value, and lowest false-positive and -negative results. Logistic regression analysis confirmed the univariant results and showed that, when used in combination, abdominal circumference and Doppler, or estimated fetal weight and Doppler resulted in the best predictive values. Either estimated fetal weight or abdominal circumference (alone) are accurate predictors of IUGR. Combined with Doppler studies of the umbilical artery either method will provide accurate evaluation of suspected IUGR.

  16. Requirements for Coregistration Accuracy in On-Scalp MEG.

    PubMed

    Zetter, Rasmus; Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri

    2018-06-22

    Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual's head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be [Formula: see text] and [Formula: see text], respectively.

  17. Self-position estimation using terrain shadows for precise planetary landing

    NASA Astrophysics Data System (ADS)

    Kuga, Tomoki; Kojima, Hirohisa

    2018-07-01

    In recent years, the investigation of moons and planets has attracted increasing attention in several countries. Furthermore, recently developed landing systems are now expected to reach more scientifically interesting areas close to hazardous terrain, requiring precise landing capabilities within a 100 m range of the target point. To achieve this, terrain-relative navigation (capable of estimating the position of a lander relative to the target point on the ground surface is actively being studied as an effective method for achieving highly accurate landings. This paper proposes a self-position estimation method using shadows on the terrain based on edge extraction from image processing algorithms. The effectiveness of the proposed method is validated through numerical simulations using images generated from a digital elevation model of simulated terrains.

  18. Can administrative health utilisation data provide an accurate diabetes prevalence estimate for a geographical region?

    PubMed

    Chan, Wing Cheuk; Papaconstantinou, Dean; Lee, Mildred; Telfer, Kendra; Jo, Emmanuel; Drury, Paul L; Tobias, Martin

    2018-05-01

    To validate the New Zealand Ministry of Health (MoH) Virtual Diabetes Register (VDR) using longitudinal laboratory results and to develop an improved algorithm for estimating diabetes prevalence at a population level. The assigned diabetes status of individuals based on the 2014 version of the MoH VDR is compared to the diabetes status based on the laboratory results stored in the Auckland regional laboratory result repository (TestSafe) using the New Zealand diabetes diagnostic criteria. The existing VDR algorithm is refined by reviewing the sensitivity and positive predictive value of the each of the VDR algorithm rules individually and as a combination. The diabetes prevalence estimate based on the original 2014 MoH VDR was 17% higher (n = 108,505) than the corresponding TestSafe prevalence estimate (n = 92,707). Compared to the diabetes prevalence based on TestSafe, the original VDR has a sensitivity of 89%, specificity of 96%, positive predictive value of 76% and negative predictive value of 98%. The modified VDR algorithm has improved the positive predictive value by 6.1% and the specificity by 1.4% with modest reductions in sensitivity of 2.2% and negative predictive value of 0.3%. At an aggregated level the overall diabetes prevalence estimated by the modified VDR is 5.7% higher than the corresponding estimate based on TestSafe. The Ministry of Health Virtual Diabetes Register algorithm has been refined to provide a more accurate diabetes prevalence estimate at a population level. The comparison highlights the potential value of a national population long term condition register constructed from both laboratory results and administrative data. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  20. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics.

    PubMed

    Czarski, T; Chernyshova, M; Malinowski, K; Pozniak, K T; Kasprowicz, G; Kolasinski, P; Krawczyk, R; Wojenski, A; Zabolotny, W

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  1. Relative Navigation for Formation Flying of Spacecraft

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Du, Ju-Young; Hughes, Declan; Junkins, John L.; Crassidis, John L.

    2001-01-01

    This paper presents a robust and efficient approach for relative navigation and attitude estimation of spacecraft flying in formation. This approach uses measurements from a new optical sensor that provides a line of sight vector from the master spacecraft to the secondary satellite. The overall system provides a novel, reliable, and autonomous relative navigation and attitude determination system, employing relatively simple electronic circuits with modest digital signal processing requirements and is fully independent of any external systems. Experimental calibration results are presented, which are used to achieve accurate line of sight measurements. State estimation for formation flying is achieved through an optimal observer design. Also, because the rotational and translational motions are coupled through the observation vectors, three approaches are suggested to separate both signals just for stability analysis. Simulation and experimental results indicate that the combined sensor/estimator approach provides accurate relative position and attitude estimates.

  2. 3D Indoor Positioning of UAVs with Spread Spectrum Ultrasound and Time-of-Flight Cameras

    PubMed Central

    Aguilera, Teodoro

    2017-01-01

    This work proposes the use of a hybrid acoustic and optical indoor positioning system for the accurate 3D positioning of Unmanned Aerial Vehicles (UAVs). The acoustic module of this system is based on a Time-Code Division Multiple Access (T-CDMA) scheme, where the sequential emission of five spread spectrum ultrasonic codes is performed to compute the horizontal vehicle position following a 2D multilateration procedure. The optical module is based on a Time-Of-Flight (TOF) camera that provides an initial estimation for the vehicle height. A recursive algorithm programmed on an external computer is then proposed to refine the estimated position. Experimental results show that the proposed system can increase the accuracy of a solely acoustic system by 70–80% in terms of positioning mean square error. PMID:29301211

  3. Automatic Detection of Seismocardiogram Sensor Misplacement for Robust Pre-Ejection Period Estimation in Unsupervised Settings.

    PubMed

    Ashouri, Hazar; Inan, Omer T

    2017-06-15

    Seismocardiography (SCG), the measurement of the local chest vibrations due to the movements of blood and the heart, is a non-invasive technique for assessing myocardial contractility via the pre-ejection period (PEP). Recently, SCG-based extraction of PEP has been shown to be an effective means of classifying decompensated from compensated heart failure patients, and thus can be potentially used for monitoring such patients at home. Accurate extraction of PEP from SCG signals hinges on lab-based population data (i.e., regression curves) linking particular time-domain features of the SCG signal to corresponding features from reference standard bulky instruments such as impedance cardiography (ICG). Such regression curves, in the case of SCG, have always been estimated based on the "ideal" positioning of the SCG sensor on the chest. However, in settings such as the home where users may position the SCG measurement hardware on the chest without supervision, it is likely that the sensor will not always be placed exactly on this "ideal" location on the sternum, but rather on other positions on the chest as well. In this study, we show for the first time that the regression curve for estimating PEP from SCG signals differs significantly as the position of the sensor changes. We further devise a method to automatically detect when the sensor is placed in any position other than the desired one in order to avoid inaccurate systolic time interval estimation. Our classification algorithm for this purpose resulted in 0.83 precision and 0.82 recall when classifying whether the sensor is placed in the desired position or not. The classifier was tested with heartbeats taken both at rest, and also during exercise recovery to ensure that waveform changes due to positioning could be accurately discriminated from those due to physiological effects.

  4. On the more accurate channel model and positioning based on time-of-arrival for visible light localization

    NASA Astrophysics Data System (ADS)

    Amini, Changeez; Taherpour, Abbas; Khattab, Tamer; Gazor, Saeed

    2017-01-01

    This paper presents an improved propagation channel model for the visible light in indoor environments. We employ this model to derive an enhanced positioning algorithm using on the relation between the time-of-arrivals (TOAs) and the distances for two cases either by assuming known or unknown transmitter and receiver vertical distances. We propose two estimators, namely the maximum likelihood estimator and an estimator by employing the method of moments. To have an evaluation basis for these methods, we calculate the Cramer-Rao lower bound (CRLB) for the performance of the estimations. We show that the proposed model and estimations result in a superior performance in positioning when the transmitter and receiver are perfectly synchronized in comparison to the existing state-of-the-art counterparts. Moreover, the corresponding CRLB of the proposed model represents almost about 20 dB reduction in the localization error bound in comparison with the previous model for some practical scenarios.

  5. Moving target parameter estimation of SAR after two looks cancellation

    NASA Astrophysics Data System (ADS)

    Gan, Rongbing; Wang, Jianguo; Gao, Xiang

    2005-11-01

    Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.

  6. Two antenna, two pass interferometric synthetic aperture radar

    DOEpatents

    Martinez, Ana; Doerry, Armin W.; Bickel, Douglas L.

    2005-06-28

    A multi-antenna, multi-pass IFSAR mode utilizing data driven alignment of multiple independent passes can combine the scaling accuracy of a two-antenna, one-pass IFSAR mode with the height-noise performance of a one-antenna, two-pass IFSAR mode. A two-antenna, two-pass IFSAR mode can accurately estimate the larger antenna baseline from the data itself and reduce height-noise, allowing for more accurate information about target ground position locations and heights. The two-antenna, two-pass IFSAR mode can use coarser IFSAR data to estimate the larger antenna baseline. Multi-pass IFSAR can be extended to more than two (2) passes, thereby allowing true three-dimensional radar imaging from stand-off aircraft and satellite platforms.

  7. Family Context, Mexican-Origin Adolescent Mothers' Parenting Knowledge, and Children's Subsequent Developmental Outcomes

    PubMed Central

    Jahromi, Laudan B.; Guimond, Amy B.; Umaña-Taylor, Adriana J.; Updegraff, Kimberly A.; Toomey, Russell B.

    2014-01-01

    This study examined parenting knowledge among Mexican-origin adolescent mothers (N = 191; M age = 16.26 years), family contextual factors associated with adolescents' parenting knowledge, and toddlers' (M age = 2.01 years) subsequent developmental outcomes. Data came from home interviews and direct child assessments. Adolescents both under- and over-estimated children's developmental timing, and showed differences in their knowledge of specific developmental domains. Instrumental support from mother figures was positively linked to adolescents' knowledge accuracy, whereas emotional support was negatively related to adolescents' knowledge confidence. Furthermore, whereas mother figures' autonomy-granting was positively linked to knowledge confidence, psychological control was associated with less accurate adolescent parenting knowledge. Toddlers of adolescents with more accurate knowledge showed positive developmental functioning. Intervention implications are discussed. PMID:24004448

  8. Application of Linearized Kalman Filter-Smoother to Aircraft Trajectory Estimation.

    DTIC Science & Technology

    1988-06-01

    the report). The kinematic relationships between wind-axis Euler angles and angular rates are given below (Etkin, 1972: 150): q w OS r w s i n* * (4...I values, and those for RP-2 were chosen in order to explore less accurate range measurements combined with more accurate angular measurements. This...was of interest because of the uncertainty in position introduced by large angular measurement uncertainties at long ranges. Finally, radar models RR

  9. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many

  10. GPS receiver CODE bias estimation: A comparison of two methods

    NASA Astrophysics Data System (ADS)

    McCaffrey, Anthony M.; Jayachandran, P. T.; Themens, D. R.; Langley, R. B.

    2017-04-01

    The Global Positioning System (GPS) is a valuable tool in the measurement and monitoring of ionospheric total electron content (TEC). To obtain accurate GPS-derived TEC, satellite and receiver hardware biases, known as differential code biases (DCBs), must be estimated and removed. The Center for Orbit Determination in Europe (CODE) provides monthly averages of receiver DCBs for a significant number of stations in the International Global Navigation Satellite Systems Service (IGS) network. A comparison of the monthly receiver DCBs provided by CODE with DCBs estimated using the minimization of standard deviations (MSD) method on both daily and monthly time intervals, is presented. Calibrated TEC obtained using CODE-derived DCBs, is accurate to within 0.74 TEC units (TECU) in differenced slant TEC (sTEC), while calibrated sTEC using MSD-derived DCBs results in an accuracy of 1.48 TECU.

  11. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    PubMed Central

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907

  12. Position and Orientation Tracking in a Ubiquitous Monitoring System for Parkinson Disease Patients With Freezing of Gait Symptom

    PubMed Central

    Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias

    2013-01-01

    Background Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. Objective The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. Methods We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. Results We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. Conclusions The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position. PMID:25098265

  13. Position and orientation tracking in a ubiquitous monitoring system for Parkinson disease patients with freezing of gait symptom.

    PubMed

    Takač, Boris; Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias

    2013-07-15

    Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position.

  14. Foot placement relies on state estimation during visually guided walking.

    PubMed

    Maeda, Rodrigo S; O'Connor, Shawn M; Donelan, J Maxwell; Marigold, Daniel S

    2017-02-01

    As we walk, we must accurately place our feet to stabilize our motion and to navigate our environment. We must also achieve this accuracy despite imperfect sensory feedback and unexpected disturbances. In this study we tested whether the nervous system uses state estimation to beneficially combine sensory feedback with forward model predictions to compensate for these challenges. Specifically, subjects wore prism lenses during a visually guided walking task, and we used trial-by-trial variation in prism lenses to add uncertainty to visual feedback and induce a reweighting of this input. To expose altered weighting, we added a consistent prism shift that required subjects to adapt their estimate of the visuomotor mapping relationship between a perceived target location and the motor command necessary to step to that position. With added prism noise, subjects responded to the consistent prism shift with smaller initial foot placement error but took longer to adapt, compatible with our mathematical model of the walking task that leverages state estimation to compensate for noise. Much like when we perform voluntary and discrete movements with our arms, it appears our nervous systems uses state estimation during walking to accurately reach our foot to the ground. Accurate foot placement is essential for safe walking. We used computational models and human walking experiments to test how our nervous system achieves this accuracy. We find that our control of foot placement beneficially combines sensory feedback with internal forward model predictions to accurately estimate the body's state. Our results match recent computational neuroscience findings for reaching movements, suggesting that state estimation is a general mechanism of human motor control. Copyright © 2017 the American Physiological Society.

  15. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarski, T., E-mail: tomasz.czarski@ifpilm.pl; Chernyshova, M.; Malinowski, K.

    2016-11-15

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals,more » and cluster charge values corresponding to the energy spectra.« less

  16. Temporal Relatedness: Personality and Behavioral Correlates

    ERIC Educational Resources Information Center

    Getsinger, Stephen H.

    1975-01-01

    Two studies explored the relationship of temporal relatedness to self actualization, sex, and certain temporal behaviors. Subjects who obtained higher time-relatedness scores demonstrated greater self-actualization, evaluated the present time mode more positively, overestimated time intervals in an estimation task, and performed less accurately in…

  17. Inertial sensor-based smoother for gait analysis.

    PubMed

    Suh, Young Soo

    2014-12-17

    An off-line smoother algorithm is proposed to estimate foot motion using an inertial sensor unit (three-axis gyroscopes and accelerometers) attached to a shoe. The smoother gives more accurate foot motion estimation than filter-based algorithms by using all of the sensor data instead of using the current sensor data. The algorithm consists of two parts. In the first part, a Kalman filter is used to obtain initial foot motion estimation. In the second part, the error in the initial estimation is compensated using a smoother, where the problem is formulated in the quadratic optimization problem. An efficient solution of the quadratic optimization problem is given using the sparse structure. Through experiments, it is shown that the proposed algorithm can estimate foot motion more accurately than a filter-based algorithm with reasonable computation time. In particular, there is significant improvement in the foot motion estimation when the foot is moving off the floor: the z-axis position error squared sum (total time: 3.47 s) when the foot is in the air is 0.0807 m2 (Kalman filter) and 0.0020 m2 (the proposed smoother).

  18. Orientation estimation of anatomical structures in medical images for object recognition

    NASA Astrophysics Data System (ADS)

    Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian

    2011-03-01

    Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.

  19. Design and development of electrical impedance tomography system with 32 electrodes and microcontroller

    NASA Astrophysics Data System (ADS)

    Ansory, Achmad; Prajitno, Prawito; Wijaya, Sastra Kusuma

    2018-02-01

    Electrical Impedance Tomography (EIT) is an imaging method that is able to estimate electrical impedance distribution inside an object. This EIT system is developed by using 32 electrodes and microcontroller based module. From a pair of electrodes, sinusoidal current of 3 mA is injected and the voltage differences between other pairs of electrodes are measured. Voltage measurement data are then sent to MATLAB and EIDORS software; the data are used to reconstruct two dimensions image. The system can detect and determine the position of a phantom in the tank. The object's position is accurately reconstructed and determined with the average shifting of 0.69 cm but object's area cannot be accurately reconstructed. The object's image is more accurately reconstructed when the object is located near to electrodes, has a larger size, and when the current injected to the system has a frequency of 100 kHz or 200kHz.

  20. Rapid and accurate estimation of release conditions in the javelin throw.

    PubMed

    Hubbard, M; Alaways, L W

    1989-01-01

    We have developed a system to measure initial conditions in the javelin throw rapidly enough to be used by the thrower for feedback in performance improvement. The system consists of three subsystems whose main tasks are: (A) acquisition of automatically digitized high speed (200 Hz) video x, y position data for the first 0.1-0.2 s of the javelin flight after release (B) estimation of five javelin release conditions from the x, y position data and (C) graphical presentation to the thrower of these release conditions and a simulation of the subsequent flight together with optimal conditions and flight for the sam release velocity. The estimation scheme relies on a simulation model and is at least an order of magnitude more accurate than previously reported measurements of javelin release conditions. The system provides, for the first time ever in any throwing event, the ability to critique nearly instantly in a precise, quantitative manner the crucial factors in the throw which determine the range. This should be expected to much greater control and consistency of throwing variables by athletes who use system and could even lead to an evolution of new throwing techniques.

  1. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    PubMed Central

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-01-01

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513

  2. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    PubMed

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  3. Why We Should Not Be Indifferent to Specification Choices for Difference-in-Differences.

    PubMed

    Ryan, Andrew M; Burgess, James F; Dimick, Justin B

    2015-08-01

    To evaluate the effects of specification choices on the accuracy of estimates in difference-in-differences (DID) models. Process-of-care quality data from Hospital Compare between 2003 and 2009. We performed a Monte Carlo simulation experiment to estimate the effect of an imaginary policy on quality. The experiment was performed for three different scenarios in which the probability of treatment was (1) unrelated to pre-intervention performance; (2) positively correlated with pre-intervention levels of performance; and (3) positively correlated with pre-intervention trends in performance. We estimated alternative DID models that varied with respect to the choice of data intervals, the comparison group, and the method of obtaining inference. We assessed estimator bias as the mean absolute deviation between estimated program effects and their true value. We evaluated the accuracy of inferences through statistical power and rates of false rejection of the null hypothesis. Performance of alternative specifications varied dramatically when the probability of treatment was correlated with pre-intervention levels or trends. In these cases, propensity score matching resulted in much more accurate point estimates. The use of permutation tests resulted in lower false rejection rates for the highly biased estimators, but the use of clustered standard errors resulted in slightly lower false rejection rates for the matching estimators. When treatment and comparison groups differed on pre-intervention levels or trends, our results supported specifications for DID models that include matching for more accurate point estimates and models using clustered standard errors or permutation tests for better inference. Based on our findings, we propose a checklist for DID analysis. © Health Research and Educational Trust.

  4. Applicability of single-camera photogrammetry to determine body dimensions of pinnipeds: Galapagos sea lions as an example.

    PubMed

    Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz

    2014-01-01

    Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal's body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance.

  5. Applicability of Single-Camera Photogrammetry to Determine Body Dimensions of Pinnipeds: Galapagos Sea Lions as an Example

    PubMed Central

    Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz

    2014-01-01

    Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal’s body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance. PMID:24987983

  6. Ancestry estimation and control of population stratification for sequence-based association studies.

    PubMed

    Wang, Chaolong; Zhan, Xiaowei; Bragg-Gresham, Jennifer; Kang, Hyun Min; Stambolian, Dwight; Chew, Emily Y; Branham, Kari E; Heckenlively, John; Fulton, Robert; Wilson, Richard K; Mardis, Elaine R; Lin, Xihong; Swaroop, Anand; Zöllner, Sebastian; Abecasis, Gonçalo R

    2014-04-01

    Estimating individual ancestry is important in genetic association studies where population structure leads to false positive signals, although assigning ancestry remains challenging with targeted sequence data. We propose a new method for the accurate estimation of individual genetic ancestry, based on direct analysis of off-target sequence reads, and implement our method in the publicly available LASER software. We validate the method using simulated and empirical data and show that the method can accurately infer worldwide continental ancestry when used with sequencing data sets with whole-genome shotgun coverage as low as 0.001×. For estimates of fine-scale ancestry within Europe, the method performs well with coverage of 0.1×. On an even finer scale, the method improves discrimination between exome-sequenced study participants originating from different provinces within Finland. Finally, we show that our method can be used to improve case-control matching in genetic association studies and to reduce the risk of spurious findings due to population structure.

  7. A Role for MST Neurons in Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Perrone, J. A.

    1994-01-01

    A template model of human visual self-motion perception, which uses neurophysiologically realistic "heading detectors", is consistent with numerous human psychophysical results including the failure of humans to estimate their heading (direction of forward translation) accurately under certain visual conditions. We tested the model detectors with stimuli used by others in single-unit studies. The detectors showed emergent properties similar to those of MST neurons: (1) Sensitivity to non-preferred flow; Each detector is tuned to a specific combination of flow components and its response is systematically reduced by the addition of nonpreferred flow, and (2) Position invariance; The detectors maintain their apparent preference for particular flow components over large regions of their receptive fields. It has been argued that this latter property is incompatible with MST playing a role in heading perception. The model however demonstrates how neurons with the above response properties could still support accurate heading estimation within extrastriate cortical maps.

  8. Towards SI-traceable radio occultation excess phase processing with integrated uncertainty estimation for climate applications

    NASA Astrophysics Data System (ADS)

    Innerkofler, Josef; Pock, Christian; Kirchengast, Gottfried; Schwaerz, Marc; Jaeggi, Adrian; Schwarz, Jakob

    2016-04-01

    The GNSS Radio Occultation (RO) measurement technique is highly valuable for climate monitoring of the atmosphere as it provides accurate and precise measurements in the troposphere and stratosphere regions with global coverage, long-term stability, and virtually all-weather capability. The novel Reference Occultation Processing System (rOPS), currently under development at the WEGC at University of Graz aims to process raw RO measurements into essential climate variables, such as temperature, pressure, and tropospheric water vapor, in a way which is SI-traceable to the universal time standard and which includes rigorous uncertainty propagation. As part of this rOPS climate-quality processing system, accurate atmospheric excess phase profiles with new approaches integrating uncertainty propagation are derived from the raw occultation tracking data and orbit data. Regarding the latter, highly accurate orbit positions and velocities of the GNSS transmitter satellites and the RO receiver satellites in low Earth orbit (LEO) need to be determined, in order to enable high accuracy of the excess phase profiles. Using several representative test days of GPS orbit data from the CODE and IGS archives, which are available at accuracies of about 3 cm (position) / 0.03 mm/s (velocity), and employing Bernese 5.2 and Napeos 3.3.1 software packages for the LEO orbit determination of the CHAMP, GRACE, and MetOp RO satellites, we achieved robust SI-traced LEO orbit uncertainty estimates of about 5 cm (position) / 0.05 mm/s (velocity) for the daily orbits, including estimates of systematic uncertainty bounds and of propagated random uncertainties. For COSMIC RO satellites, we found decreased accuracy estimates near 10-15 cm (position) / 0.1-0.15 mm/s (velocity), since the characteristics of the small COSMIC satellite platforms and antennas provide somewhat less favorable orbit determination conditions. We present the setup of how we (I) used the Bernese and Napeos package in mutual cross-check for this purpose, (II) integrated satellite laser-ranging validation of the estimated systematic uncertainty bounds, (III) expanded the Bernese 5.2 software for propagating random uncertainties from the GPS orbit data and LEO navigation tracking data input to the LEO data output. Preliminary excess phase results including propagated uncertainty estimates will also be shown. Except for disturbed space weather conditions, we expect a robust performance at millimeter level for the derived excess phases, which after large-scale processing of the RO data of many years can provide a new SI-traced fundamental climate data record.

  9. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter.

    PubMed

    Alatise, Mary B; Hancke, Gerhard P

    2017-09-21

    Using a single sensor to determine the pose estimation of a device cannot give accurate results. This paper presents a fusion of an inertial sensor of six degrees of freedom (6-DoF) which comprises the 3-axis of an accelerometer and the 3-axis of a gyroscope, and a vision to determine a low-cost and accurate position for an autonomous mobile robot. For vision, a monocular vision-based object detection algorithm speeded-up robust feature (SURF) and random sample consensus (RANSAC) algorithms were integrated and used to recognize a sample object in several images taken. As against the conventional method that depend on point-tracking, RANSAC uses an iterative method to estimate the parameters of a mathematical model from a set of captured data which contains outliers. With SURF and RANSAC, improved accuracy is certain; this is because of their ability to find interest points (features) under different viewing conditions using a Hessain matrix. This approach is proposed because of its simple implementation, low cost, and improved accuracy. With an extended Kalman filter (EKF), data from inertial sensors and a camera were fused to estimate the position and orientation of the mobile robot. All these sensors were mounted on the mobile robot to obtain an accurate localization. An indoor experiment was carried out to validate and evaluate the performance. Experimental results show that the proposed method is fast in computation, reliable and robust, and can be considered for practical applications. The performance of the experiments was verified by the ground truth data and root mean square errors (RMSEs).

  10. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter

    PubMed Central

    Hancke, Gerhard P.

    2017-01-01

    Using a single sensor to determine the pose estimation of a device cannot give accurate results. This paper presents a fusion of an inertial sensor of six degrees of freedom (6-DoF) which comprises the 3-axis of an accelerometer and the 3-axis of a gyroscope, and a vision to determine a low-cost and accurate position for an autonomous mobile robot. For vision, a monocular vision-based object detection algorithm speeded-up robust feature (SURF) and random sample consensus (RANSAC) algorithms were integrated and used to recognize a sample object in several images taken. As against the conventional method that depend on point-tracking, RANSAC uses an iterative method to estimate the parameters of a mathematical model from a set of captured data which contains outliers. With SURF and RANSAC, improved accuracy is certain; this is because of their ability to find interest points (features) under different viewing conditions using a Hessain matrix. This approach is proposed because of its simple implementation, low cost, and improved accuracy. With an extended Kalman filter (EKF), data from inertial sensors and a camera were fused to estimate the position and orientation of the mobile robot. All these sensors were mounted on the mobile robot to obtain an accurate localization. An indoor experiment was carried out to validate and evaluate the performance. Experimental results show that the proposed method is fast in computation, reliable and robust, and can be considered for practical applications. The performance of the experiments was verified by the ground truth data and root mean square errors (RMSEs). PMID:28934102

  11. Precise Absolute Astrometry from the VLBA Imaging and Polarimetry Survey at 5 GHz

    NASA Technical Reports Server (NTRS)

    Petrov, L.; Taylor, G. B.

    2011-01-01

    We present accurate positions for 857 sources derived from the astrometric analysis of 16 eleven-hour experiments from the Very Long Baseline Array imaging and polarimetry survey at 5 GHz (VIPS). Among the observed sources, positions of 430 objects were not previously determined at milliarcsecond-level accuracy. For 95% of the sources the uncertainty of their positions ranges from 0.3 to 0.9 mas, with a median value of 0.5 mas. This estimate of accuracy is substantiated by the comparison of positions of 386 sources that were previously observed in astrometric programs simultaneously at 2.3/8.6 GHz. Surprisingly, the ionosphere contribution to group delay was adequately modeled with the use of the total electron content maps derived from GPS observations and only marginally affected estimates of source coordinates.

  12. Mixture models reveal multiple positional bias types in RNA-Seq data and lead to accurate transcript concentration estimates.

    PubMed

    Tuerk, Andreas; Wiktorin, Gregor; Güler, Serhat

    2017-05-01

    Accuracy of transcript quantification with RNA-Seq is negatively affected by positional fragment bias. This article introduces Mix2 (rd. "mixquare"), a transcript quantification method which uses a mixture of probability distributions to model and thereby neutralize the effects of positional fragment bias. The parameters of Mix2 are trained by Expectation Maximization resulting in simultaneous transcript abundance and bias estimates. We compare Mix2 to Cufflinks, RSEM, eXpress and PennSeq; state-of-the-art quantification methods implementing some form of bias correction. On four synthetic biases we show that the accuracy of Mix2 overall exceeds the accuracy of the other methods and that its bias estimates converge to the correct solution. We further evaluate Mix2 on real RNA-Seq data from the Microarray and Sequencing Quality Control (MAQC, SEQC) Consortia. On MAQC data, Mix2 achieves improved correlation to qPCR measurements with a relative increase in R2 between 4% and 50%. Mix2 also yields repeatable concentration estimates across technical replicates with a relative increase in R2 between 8% and 47% and reduced standard deviation across the full concentration range. We further observe more accurate detection of differential expression with a relative increase in true positives between 74% and 378% for 5% false positives. In addition, Mix2 reveals 5 dominant biases in MAQC data deviating from the common assumption of a uniform fragment distribution. On SEQC data, Mix2 yields higher consistency between measured and predicted concentration ratios. A relative error of 20% or less is obtained for 51% of transcripts by Mix2, 40% of transcripts by Cufflinks and RSEM and 30% by eXpress. Titration order consistency is correct for 47% of transcripts for Mix2, 41% for Cufflinks and RSEM and 34% for eXpress. We, further, observe improved repeatability across laboratory sites with a relative increase in R2 between 8% and 44% and reduced standard deviation.

  13. On the representation and estimation of spatial uncertainty. [for mobile robot

    NASA Technical Reports Server (NTRS)

    Smith, Randall C.; Cheeseman, Peter

    1987-01-01

    This paper describes a general method for estimating the nominal relationship and expected error (covariance) between coordinate frames representing the relative locations of objects. The frames may be known only indirectly through a series of spatial relationships, each with its associated error, arising from diverse causes, including positioning errors, measurement errors, or tolerances in part dimensions. This estimation method can be used to answer such questions as whether a camera attached to a robot is likely to have a particular reference object in its field of view. The calculated estimates agree well with those from an independent Monte Carlo simulation. The method makes it possible to decide in advance whether an uncertain relationship is known accurately enough for some task and, if not, how much of an improvement in locational knowledge a proposed sensor will provide. The method presented can be generalized to six degrees of freedom and provides a practical means of estimating the relationships (position and orientation) among objects, as well as estimating the uncertainty associated with the relationships.

  14. Using a motion capture system for spatial localization of EEG electrodes

    PubMed Central

    Reis, Pedro M. R.; Lochmann, Matthias

    2015-01-01

    Electroencephalography (EEG) is often used in source analysis studies, in which the locations of cortex regions responsible for a signal are determined. For this to be possible, accurate positions of the electrodes at the scalp surface must be determined, otherwise errors in the source estimation will occur. Today, several methods for acquiring these positions exist but they are often not satisfyingly accurate or take a long time to perform. Therefore, in this paper we describe a method capable of determining the positions accurately and fast. This method uses an infrared light motion capture system (IR-MOCAP) with 8 cameras arranged around a human participant. It acquires 3D coordinates of each electrode and automatically labels them. Each electrode has a small reflector on top of it thus allowing its detection by the cameras. We tested the accuracy of the presented method by acquiring the electrodes positions on a rigid sphere model and comparing these with measurements from computer tomography (CT). The average Euclidean distance between the sphere model CT measurements and the presented method was 1.23 mm with an average standard deviation of 0.51 mm. We also tested the method with a human participant. The measurement was quickly performed and all positions were captured. These results tell that, with this method, it is possible to acquire electrode positions with minimal error and little time effort for the study participants and investigators. PMID:25941468

  15. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  16. [Research Progress of Carrion-breeding Phorid Flies for Post-mortem Interval Estimation in Forensic Medicine].

    PubMed

    Li, L; Feng, D X; Wu, J

    2016-10-01

    It is a difficult problem of forensic medicine to accurately estimate the post-mortem interval. Entomological approach has been regarded as an effective way to estimate the post-mortem interval. The developmental biology of carrion-breeding flies has an important position at the post-mortem interval estimation. Phorid flies are tiny and occur as the main or even the only insect evidence in relatively enclosed environments. This paper reviews the research progress of carrion-breeding phorid flies for estimating post-mortem interval in forensic medicine which includes their roles, species identification and age determination of immatures. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  17. Accuracy of Estimating Solar Radiation Pressure for GEO Debris with Tumbling Effect

    NASA Astrophysics Data System (ADS)

    Chao, Chia-Chun George

    2009-03-01

    The accuracy of estimating solar radiation pressure for GEO debris is examined and demonstrated, via numerical simulations, by fitting a batch (months) of simulated position vectors. These simulated position vectors are generated from a "truth orbit" with added white noise using high-precision numerical integration tools. After the long-arc fit of the simulated observations (position vectors), one can accurately and reliably determine how close the estimated value of solar radiation pressure is to the truth. Results of this study show that the inherent accuracy in estimating the solar radiation pressure coefficient can be as good as 1% if a long-arc fit span up to 180 days is used and the satellite is not tumbling. The corresponding position prediction accuracy can be as good as, in maximum error, 1 km along in-track, 0.3 km along radial and 0.1 km along cross-track up to 30 days. Similar accuracies can be expected when the object is tumbling as long as the rate of attitude change is different from the orbit rate. Results of this study reveal an important phenomenon that the solar radiation pressure significantly affects the orbit motion when the spin rate is equal to the orbit rate.

  18. GNSS Radio Occultation Excess Phase Processing with Integrated Uncertainty Estimation for Thermodynamic Cal/Val of Passive Atmospheric Sounders and Climate Science

    NASA Astrophysics Data System (ADS)

    Innerkofler, J.; Pock, C.; Kirchengast, G.; Schwaerz, M.; Jaeggi, A.; Andres, Y.; Marquardt, C.; Hunt, D.; Schreiner, W. S.; Schwarz, J.

    2017-12-01

    Global Navigation Satellite System (GNSS) radio occultation (RO) is a highly valuable satellite remote sensing technique for atmospheric and climate sciences, including calibration and validation (cal/val) of passive sounding instruments such as radiometers. It is providing accurate and precise measurements in the troposphere and stratosphere regions with global coverage, long-term stability, and virtually all-weather capability since 2001. For fully exploiting the potential of RO data as a cal/val reference and climate data record, uncertainties attributed to the data need to be assessed. Here we focus on the atmospheric excess phase data, based on the raw occultation tracking and orbit data, and its integrated uncertainty estimation within the new Reference Occultation Processing System (rOPS) developed at the WEGC. These excess phases correspond to integrated refractivity, proportional to pressure/temperature and water vapor, and are therefore highly valuable reference data for thermodynamic cal/val of passive (radiometric) sounder data. In order to enable high accuracy of the excess phase profiles, accurate orbit positions and velocities as well as clock estimates of the GNSS transmitter satellites and RO receiver satellites are determined using the Bernese and Napeos orbit determination software packages. We find orbit uncertainty estimates of about 5 cm (position) / 0.05 mm/s (velocity) for daily orbits for the MetOp, GRACE, and CHAMP RO missions, and decreased uncertainty estimates near 20 cm (position) / 0.2 mm/s (velocity) for the COSMIC RO mission. The strict evaluation and quality control of the position, velocity, and clock accuracies of the daily LEO and GNSS orbits assure smallest achievable uncertainties in the excess phase data. We compared the excess phase profiles from WEGC against profiles from EUMETSAT and UCAR. Results show good agreement in line with the estimated uncertainties, with millimetric differences in the upper stratosphere and mesosphere and centimetric differences in the troposphere, where the excess phases amount to beyond 100 m. This underlines the potential for a new fundamental cal/val reference and climate data record based on atmospheric excess phases from RO, given their narrow uncertainty and independence from background data.

  19. "I know what you told me, but this is what I think:" perceived risk of Alzheimer disease among individuals who accurately recall their genetics-based risk estimate.

    PubMed

    Linnenbringer, Erin; Roberts, J Scott; Hiraki, Susan; Cupples, L Adrienne; Green, Robert C

    2010-04-01

    This study evaluates the Alzheimer disease risk perceptions of individuals who accurately recall their genetics-based Alzheimer disease risk assessment. Two hundred forty-six unaffected first-degree relatives of patients with Alzheimer disease were enrolled in a multisite randomized controlled trial examining the effects of communicating APOE genotype and lifetime Alzheimer disease risk information. Among the 158 participants who accurately recalled their Alzheimer disease risk assessment 6 weeks after risk disclosure, 75 (47.5%) believed their Alzheimer disease risk was more than 5% points different from the Alzheimer disease risk estimate they were given. Within this subgroup, 69.3% believed that their Alzheimer disease risk was higher than what they were told (discordant high), whereas 30.7% believed that their Alzheimer disease risk was lower (discordant low). Participants with a higher baseline risk perception were more likely to have a discordant-high risk perception (P < 0.05). Participants in the discordant-low group were more likely to be APOE epsilon4 positive (P < 0.05) and to score higher on an Alzheimer disease controllability scale (P < 0.05). Our results indicate that even among individuals who accurately recall their Alzheimer disease risk assessment, many people do not take communicated risk estimates at face value. Further exploration of this clinically relevant response to risk information is warranted.

  20. Low-Cost MEMS Sensors and Vision System for Motion and Position Estimation of a Scooter

    PubMed Central

    Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2013-01-01

    The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a “Vespa” scooter; which can be used as alternative to the “classical” approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter. PMID:23348036

  1. Low-Cost MEMS sensors and vision system for motion and position estimation of a scooter.

    PubMed

    Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2013-01-24

    The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a "Vespa" scooter; which can be used as alternative to the "classical" approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter.

  2. Positioning in Time and Space - Cost-Effective Exterior Orientation for Airborne Archaeological Photographs

    NASA Astrophysics Data System (ADS)

    Verhoeven, G.; Wieser, M.; Briese, C.; Doneus, M.

    2013-07-01

    Since manned, airborne aerial reconnaissance for archaeological purposes is often characterised by more-or-less random photographing of archaeological features on the Earth, the exact position and orientation of the camera during image acquisition becomes very important in an effective inventorying and interpretation workflow of these aerial photographs. Although the positioning is generally achieved by simultaneously logging the flight path or directly recording the camera's position with a GNSS receiver, this approach does not allow to record the necessary roll, pitch and yaw angles of the camera. The latter are essential elements for the complete exterior orientation of the camera, which allows - together with the inner orientation of the camera - to accurately define the portion of the Earth recorded in the photograph. This paper proposes a cost-effective, accurate and precise GNSS/IMU solution (image position: 2.5 m and orientation: 2°, both at 1σ) to record all essential exterior orientation parameters for the direct georeferencing of the images. After the introduction of the utilised hardware, this paper presents the developed software that allows recording and estimating these parameters. Furthermore, this direct georeferencing information can be embedded into the image's metadata. Subsequently, the first results of the estimation of the mounting calibration (i.e. the misalignment between the camera and GNSS/IMU coordinate frame) are provided. Furthermore, a comparison with a dedicated commercial photographic GNSS/IMU solution will prove the superiority of the introduced solution. Finally, an outlook on future tests and improvements finalises this article.

  3. Method for estimating rice plant height without ground surface detection using laser scanner measurement

    NASA Astrophysics Data System (ADS)

    Thi Phan, Anh Thu; Takahashi, Kazuyoshi; Rikimaru, Atsushi; Higuchi, Yasuhiro

    2016-10-01

    A method for estimating the height of rice plants, using three-dimensional laser range data from point clouds, is proposed and assessed. Rice plant height (H) is estimated using a reference position at the top of the rice plant, avoiding the need to determine the ground position. Field experiments were performed with a SICK LMS 200 laser scanner in 2013 and 2014 on a test field with five different planting geometries. Percentile analysis identified the closest percentile to the top of the rice plant (pt=1), with vertical distances at the first percentile unaffected by planting geometry. The plant bottom position was identified using three different percentile ranks (pb=95, pb =80, and pb =70). Relative vertical distances (rD) were computed from the difference between the top and bottom positions of the rice plant. These correlated well with measured H, with slopes greater than 1.0. A greater number of stems in 2014 led to steeper slopes. Estimated H was more accurate when plant bottom positions were closer to the ground surface, and the best results were obtained with pb=95 (r2>0.87 RMSE≈4 cm). Overall, H was typically 16.0 cm greater than rD with pb=95.

  4. Predictable weathering of puparial hydrocarbons of necrophagous flies for determining the postmortem interval: a field experiment using Chrysomya rufifacies.

    PubMed

    Zhu, Guang-Hui; Jia, Zheng-Jun; Yu, Xiao-Jun; Wu, Ku-Sheng; Chen, Lu-Shi; Lv, Jun-Yao; Eric Benbow, M

    2017-05-01

    Preadult development of necrophagous flies is commonly recognized as an accurate method for estimating the minimum postmortem interval (PMImin). However, once the PMImin exceeds the duration of preadult development, the method is less accurate. Recently, fly puparial hydrocarbons were found to significantly change with weathering time in the field, indicating their potential use for PMImin estimates. However, additional studies are required to demonstrate how the weathering varies among species. In this study, the puparia of Chrysomya rufifacies were placed in the field to experience natural weathering to characterize hydrocarbon composition change over time. We found that weathering of the puparial hydrocarbons was regular and highly predictable in the field. For most of the hydrocarbons, the abundance decreased significantly and could be modeled using a modified exponent function. In addition, the weathering rate was significantly correlated with the hydrocarbon classes. The weathering rate of 2-methyl alkanes was significantly lower than that of alkenes and internal methyl alkanes, and alkenes were higher than the other two classes. For mono-methyl alkanes, the rate was significantly and positively associated with carbon chain length and branch position. These results indicate that puparial hydrocarbon weathering is highly predictable and can be used for estimating long-term PMImin.

  5. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System

    PubMed Central

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98) and 0.57 mm (R2 = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  6. Real-time, autonomous precise satellite orbit determination using the global positioning system

    NASA Astrophysics Data System (ADS)

    Goldstein, David Ben

    2000-10-01

    The desire for autonomously generated, rapidly available, and highly accurate satellite ephemeris is growing with the proliferation of constellations of satellites and the cost and overhead of ground tracking resources. Autonomous Orbit Determination (OD) may be done on the ground in a post-processing mode or in real-time on board a satellite and may be accomplished days, hours or immediately after observations are processed. The Global Positioning System (GPS) is now widely used as an alternative to ground tracking resources to supply observation data for satellite positioning and navigation. GPS is accurate, inexpensive, provides continuous coverage, and is an excellent choice for autonomous systems. In an effort to estimate precise satellite ephemeris in real-time on board a satellite, the Goddard Space Flight Center (GSFC) created the GPS Enhanced OD Experiment (GEODE) flight navigation software. This dissertation offers alternative methods and improvements to GEODE to increase on board autonomy and real-time total position accuracy and precision without increasing computational burden. First, GEODE is modified to include a Gravity Acceleration Approximation Function (GAAF) to replace the traditional spherical harmonic representation of the gravity field. Next, an ionospheric correction method called Differenced Range Versus Integrated Doppler (DRVID) is applied to correct for ionospheric errors in the GPS measurements used in GEODE. Then, Dynamic Model Compensation (DMC) is added to estimate unmodeled and/or mismodeled forces in the dynamic model and to provide an alternative process noise variance-covariance formulation. Finally, a Genetic Algorithm (GA) is implemented in the form of Genetic Model Compensation (GMC) to optimize DMC forcing noise parameters. Application of GAAF, DRVID and DMC improved GEODE's position estimates by 28.3% when applied to GPS/MET data collected in the presence of Selective Availability (SA), 17.5% when SA is removed from the GPS/MET data and 10.8% on SA free TOPEX data. Position estimates with RSS errors below I meter are now achieved using SA free TOPEX data. DRVID causes an increase in computational burden while GAAF and DMC reduce computational burden. The net effect of applying GAAF, DRVID and DMC is an improvement in GEODE's accuracy/precision without an increase in computational burden.

  7. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    PubMed

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  9. Effects of Multipath and Oversampling on Navigation Using Orthogonal Frequency Division Multiplexed Signals of Opportunity

    DTIC Science & Technology

    2008-03-01

    for military use. The L2 carrier frequency operates at 1227.6 MHz and transmits only the precise code . Each satellite transmits a unique pseudo ...random noise (PRN) code by which it is identified. GPS receivers require a LOS to four satellite signals to accurately estimate a position in three...receiver frequency errors, noise addition, and multipath ef- fects. He also developed four methods for estimating the cross- correlation peak within a sampled

  10. Unsupervised Indoor Localization Based on Smartphone Sensors, iBeacon and Wi-Fi.

    PubMed

    Chen, Jing; Zhang, Yi; Xue, Wei

    2018-04-28

    In this paper, we propose UILoc, an unsupervised indoor localization scheme that uses a combination of smartphone sensors, iBeacons and Wi-Fi fingerprints for reliable and accurate indoor localization with zero labor cost. Firstly, compared with the fingerprint-based method, the UILoc system can build a fingerprint database automatically without any site survey and the database will be applied in the fingerprint localization algorithm. Secondly, since the initial position is vital to the system, UILoc will provide the basic location estimation through the pedestrian dead reckoning (PDR) method. To provide accurate initial localization, this paper proposes an initial localization module, a weighted fusion algorithm combined with a k-nearest neighbors (KNN) algorithm and a least squares algorithm. In UILoc, we have also designed a reliable model to reduce the landmark correction error. Experimental results show that the UILoc can provide accurate positioning, the average localization error is about 1.1 m in the steady state, and the maximum error is 2.77 m.

  11. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors

    PubMed Central

    Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672

  12. On-field mounting position estimation of a lidar sensor

    NASA Astrophysics Data System (ADS)

    Khan, Owes; Bergelt, René; Hardt, Wolfram

    2017-10-01

    In order to retrieve a highly accurate view of their environment, autonomous cars are often equipped with LiDAR sensors. These sensors deliver a three dimensional point cloud in their own co-ordinate frame, where the origin is the sensor itself. However, the common co-ordinate system required by HAD (Highly Autonomous Driving) software systems has its origin at the center of the vehicle's rear axle. Thus, a transformation of the acquired point clouds to car co-ordinates is necessary, and thereby the determination of the exact mounting position of the LiDAR system in car coordinates is required. Unfortunately, directly measuring this position is a time-consuming and error-prone task. Therefore, different approaches have been suggested for its estimation which mostly require an exhaustive test-setup and are again time-consuming to prepare. When preparing a high number of LiDAR mounted test vehicles for data acquisition, most approaches fall short due to time or money constraints. In this paper we propose an approach for mounting position estimation which features an easy execution and setup, thus making it feasible for on-field calibration.

  13. Information-Driven Active Audio-Visual Source Localization

    PubMed Central

    Schult, Niclas; Reineking, Thomas; Kluss, Thorsten; Zetzsche, Christoph

    2015-01-01

    We present a system for sensorimotor audio-visual source localization on a mobile robot. We utilize a particle filter for the combination of audio-visual information and for the temporal integration of consecutive measurements. Although the system only measures the current direction of the source, the position of the source can be estimated because the robot is able to move and can therefore obtain measurements from different directions. These actions by the robot successively reduce uncertainty about the source’s position. An information gain mechanism is used for selecting the most informative actions in order to minimize the number of actions required to achieve accurate and precise position estimates in azimuth and distance. We show that this mechanism is an efficient solution to the action selection problem for source localization, and that it is able to produce precise position estimates despite simplified unisensory preprocessing. Because of the robot’s mobility, this approach is suitable for use in complex and cluttered environments. We present qualitative and quantitative results of the system’s performance and discuss possible areas of application. PMID:26327619

  14. Precise orbit determination based on raw GPS measurements

    NASA Astrophysics Data System (ADS)

    Zehentner, Norbert; Mayer-Gürr, Torsten

    2016-03-01

    Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step.

  15. Improved ultrasound transducer positioning by fetal heart location estimation during Doppler based heart rate measurements.

    PubMed

    Hamelmann, Paul; Vullings, Rik; Schmitt, Lars; Kolen, Alexander F; Mischi, Massimo; van Laar, Judith O E H; Bergmans, Jan W M

    2017-09-21

    Doppler ultrasound (US) is the most commonly applied method to measure the fetal heart rate (fHR). When the fetal heart is not properly located within the ultrasonic beam, fHR measurements often fail. As a consequence, clinical staff need to reposition the US transducer on the maternal abdomen, which can be a time consuming and tedious task. In this article, a method is presented to aid clinicians with the positioning of the US transducer to produce robust fHR measurements. A maximum likelihood estimation (MLE) algorithm is developed, which provides information on fetal heart location using the power of the Doppler signals received in the individual elements of a standard US transducer for fHR recordings. The performance of the algorithm is evaluated with simulations and in vitro experiments performed on a beating-heart setup. Both the experiments and the simulations show that the heart location can be accurately determined with an error of less than 7 mm within the measurement volume of the employed US transducer. The results show that the developed algorithm can be used to provide accurate feedback on fetal heart location for improved positioning of the US transducer, which may lead to improved measurements of the fHR.

  16. A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.

    PubMed

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M

    2014-05-22

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.

  17. A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow

    PubMed Central

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Jr., Flávio Neves; Morales, Rigoberto E. M.

    2014-01-01

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe. PMID:24858961

  18. Comparison of techniques for correction of magnification of pelvic X-rays for hip surgery planning.

    PubMed

    The, Bertram; Kootstra, Johan W J; Hosman, Anton H; Verdonschot, Nico; Gerritsma, Carina L E; Diercks, Ron L

    2007-12-01

    The aim of this study was to develop an accurate method for correction of magnification of pelvic x-rays to enhance accuracy of hip surgery planning. All investigated methods aim at estimating the anteroposterior location of the hip joint in supine position to correctly position a reference object for correction of magnification. An existing method-which is currently being used in clinical practice in our clinics-is based on estimating the position of the hip joint by palpation of the greater trochanter. It is only moderately accurate and difficult to execute reliably in clinical practice. To develop a new method, 99 patients who already had a hip implant in situ were included; this enabled determining the true location of the hip joint deducted from the magnification of the prosthesis. Physical examination was used to obtain predictor variables possibly associated with the height of the hip joint. This included a simple dynamic hip joint examination to estimate the position of the center of rotation. Prediction equations were then constructed using regression analysis. The performance of these prediction equations was compared with the performance of the existing protocol. The mean absolute error in predicting the height of the hip joint center using the old method was 20 mm (range -79 mm to +46 mm). This was 11 mm for the new method (-32 mm to +39 mm). The prediction equation is: height (mm) = 34 + 1/2 abdominal circumference (cm). The newly developed prediction equation is a superior method for predicting the height of the hip joint center for correction of magnification of pelvic x-rays. We recommend its implementation in the departments of radiology and orthopedic surgery.

  19. Using beta binomials to estimate classification uncertainty for ensemble models.

    PubMed

    Clark, Robert D; Liang, Wenkel; Lee, Adam C; Lawless, Michael S; Fraczkiewicz, Robert; Waldman, Marvin

    2014-01-01

    Quantitative structure-activity (QSAR) models have enormous potential for reducing drug discovery and development costs as well as the need for animal testing. Great strides have been made in estimating their overall reliability, but to fully realize that potential, researchers and regulators need to know how confident they can be in individual predictions. Submodels in an ensemble model which have been trained on different subsets of a shared training pool represent multiple samples of the model space, and the degree of agreement among them contains information on the reliability of ensemble predictions. For artificial neural network ensembles (ANNEs) using two different methods for determining ensemble classification - one using vote tallies and the other averaging individual network outputs - we have found that the distribution of predictions across positive vote tallies can be reasonably well-modeled as a beta binomial distribution, as can the distribution of errors. Together, these two distributions can be used to estimate the probability that a given predictive classification will be in error. Large data sets comprised of logP, Ames mutagenicity, and CYP2D6 inhibition data are used to illustrate and validate the method. The distributions of predictions and errors for the training pool accurately predicted the distribution of predictions and errors for large external validation sets, even when the number of positive and negative examples in the training pool were not balanced. Moreover, the likelihood of a given compound being prospectively misclassified as a function of the degree of consensus between networks in the ensemble could in most cases be estimated accurately from the fitted beta binomial distributions for the training pool. Confidence in an individual predictive classification by an ensemble model can be accurately assessed by examining the distributions of predictions and errors as a function of the degree of agreement among the constituent submodels. Further, ensemble uncertainty estimation can often be improved by adjusting the voting or classification threshold based on the parameters of the error distribution. Finally, the profiles for models whose predictive uncertainty estimates are not reliable provide clues to that effect without the need for comparison to an external test set.

  20. Estimation and filtering techniques for high-accuracy GPS applications

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1989-01-01

    Techniques for determination of very precise orbits for satellites of the Global Positioning System (GPS) are currently being studied and demonstrated. These techniques can be used to make cm-accurate measurements of station locations relative to the geocenter, monitor earth orientation over timescales of hours, and provide tropospheric and clock delay calibrations during observations made with deep space radio antennas at sites where the GPS receivers have been collocated. For high-earth orbiters, meter-level knowledge of position will be available from GPS, while at low altitudes, sub-decimeter accuracy will be possible. Estimation of satellite orbits and other parameters such as ground station positions is carried out with a multi-satellite batch sequential pseudo-epoch state process noise filter. Both square-root information filtering (SRIF) and UD-factorized covariance filtering formulations are implemented in the software.

  1. Adaptive and Collaborative Exploitation of 3 Dimensional Environmental Acoustics in Distributed Undersea Networks

    DTIC Science & Technology

    2015-09-30

    experiment was conducted in Broad Sound of Massachusetts Bay using the AUV Unicorn, a 147dB omnidirectional Lubell source, and an open-ended steel pipe... steel pipe target (Figure C) was dropped at an approximate local coordinate position of (x,y)=(170,155). The location was estimated using ship...position when the target was dropped, but was only accurate within 10-15m. The orientation of the target was unknown. Figure C: Open-ended steel

  2. Localization Grid for Accurate Positioning Onboard a Carrier

    DTIC Science & Technology

    2017-06-30

    the fi r t I 00 reads. It is clear that the RSSI measurement varies significantly over the different reads. It hould also be noted that, fo r the...yield a complete characterization of RSSI with respect to di stance and tag direction. By fi tting equation ( l .5) to the experimental data for di...For each observation in tant t, we feed the ML estimates of the instantaneous reader position as a fi fi [ " T T ]T h " T measurement to the Kalman

  3. Muscle parameters estimation based on biplanar radiography.

    PubMed

    Dubois, G; Rouch, P; Bonneau, D; Gennisson, J L; Skalli, W

    2016-11-01

    The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography.

  4. Model-based sphere localization (MBSL) in x-ray projections

    NASA Astrophysics Data System (ADS)

    Sawall, Stefan; Maier, Joscha; Leinweber, Carsten; Funck, Carsten; Kuntz, Jan; Kachelrieß, Marc

    2017-08-01

    The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than 1% of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.

  5. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome

    NASA Astrophysics Data System (ADS)

    Teschendorff, Andrew E.; Enver, Tariq

    2017-06-01

    The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes.

  6. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome

    PubMed Central

    Teschendorff, Andrew E.; Enver, Tariq

    2017-01-01

    The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes. PMID:28569836

  7. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  8. Using genetic data to estimate diffusion rates in heterogeneous landscapes.

    PubMed

    Roques, L; Walker, E; Franck, P; Soubeyrand, S; Klein, E K

    2016-08-01

    Having a precise knowledge of the dispersal ability of a population in a heterogeneous environment is of critical importance in agroecology and conservation biology as it can provide management tools to limit the effects of pests or to increase the survival of endangered species. In this paper, we propose a mechanistic-statistical method to estimate space-dependent diffusion parameters of spatially-explicit models based on stochastic differential equations, using genetic data. Dividing the total population into subpopulations corresponding to different habitat patches with known allele frequencies, the expected proportions of individuals from each subpopulation at each position is computed by solving a system of reaction-diffusion equations. Modelling the capture and genotyping of the individuals with a statistical approach, we derive a numerically tractable formula for the likelihood function associated with the diffusion parameters. In a simulated environment made of three types of regions, each associated with a different diffusion coefficient, we successfully estimate the diffusion parameters with a maximum-likelihood approach. Although higher genetic differentiation among subpopulations leads to more accurate estimations, once a certain level of differentiation has been reached, the finite size of the genotyped population becomes the limiting factor for accurate estimation.

  9. Recent Experience with a Hybrid SCADA/PMU On-Line State Estimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizy, D Tom

    2009-01-01

    PMU devices are expected to grow in number from a few to several hundreds in the next five years. Some relays are already global positioning system-capable and could provide the same type of data as any PMU. This introduces a new paradigm of very fast accurate synchrophasor measurements from across the grid in real-time that augment and parallel existing slower SCADA measurements. Control center applications will benefit from this PMU data; for example, use of PMU data in state estimation is expected to improve accuracy and robustness, which in turn will result in more timely and accurate N-1 security analysis,more » resulting in an overall improvement of grid system reliability and security. This paper describes results from a recent implementation of this technology, the benefits and future work.« less

  10. Male greater sage-grouse detectability on leks

    Treesearch

    Aleshia L. Fremgen; Christopher P. Hansen; Mark A. Rumble; R. Scott Gamo; Joshua J. Millspaugh

    2016-01-01

    It is unlikely all male sage-grouse are detected during lek counts, which could complicate the use of lek counts as an index to population abundance. Understanding factors that influence detection probabilities will allow managers to more accurately estimate the number of males present on leks. We fitted 410 males with global positioning system and very high...

  11. Assessment Study of Using Online (CSRS) GPS-PPP Service for Mapping Applications in Egypt

    NASA Astrophysics Data System (ADS)

    Abd-Elazeem, Mohamed; Farah, Ashraf; Farrag, Farrag

    2011-09-01

    Many applications in navigation, land surveying, land title definitions and mapping have been made simpler and more precise due to accessibility of Global Positioning System (GPS) data, and thus the demand for using advanced GPS techniques in surveying applications has become essential. The differential technique was the only source of accurate positioning for many years, and remained in use despite of its cost. The precise point positioning (PPP) technique is a viable alternative to the differential positioning method in which a user with a single receiver can attain positioning accuracy at the centimeter or decimeter scale. In recent years, many organizations introduced online (GPS-PPP) processing services capable of determining accurate geocentric positions using GPS observations. These services provide the user with receiver coordinates in free and unlimited access formats via the internet. This paper investigates the accuracy of the Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP) (CSRS-PPP) service supervised by the Geodetic Survey Division (GSD), Canada. Single frequency static GPS observations have been collected at three points covering time spans of 60, 90 and 120 minutes. These three observed sites form baselines of 1.6, 7, and 10 km, respectively. In order to assess the CSRS-PPP accuracy, the discrepancies between the CSRS-PPP estimates and the regular differential GPS solutions were computed. The obtained results illustrate that the PPP produces a horizontal error at the scale of a few decimeters; this is accurate enough to serve many mapping applications in developing countries with a savings in both cost and experienced labor.

  12. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system.

    PubMed

    Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A

    2017-01-21

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer's Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients.

  13. A description of sleep behaviour in healthy late pregnancy, and the accuracy of self-reports.

    PubMed

    McIntyre, Jordan P R; Ingham, Cayley M; Hutchinson, B Lynne; Thompson, John M D; McCowan, Lesley M; Stone, Peter R; Veale, Andrew G; Cronin, Robin; Stewart, Alistair W; Ellyett, Kevin M; Mitchell, Edwin A

    2016-05-18

    The importance of maternal sleep and its contribution to maternal and fetal health during pregnancy is increasingly being recognised. However, the ability to accurately recall sleep practices during pregnancy has been questioned. The aim of this study is to test the accuracy of recall of normal sleep practices in late pregnancy. Thirty healthy women between 35 and 38 weeks of gestation underwent level III respiratory polysomnography (PSG) with infrared digital video recordings in their own homes. Data regarding sleep positions, number of times getting out of bed during the night and respiratory measures were collected. A sleep questionnaire was administered the morning after the recorded sleep. Continuous data were assessed using Spearman's Rho and Bland-Altman. Cohen's Kappa was used to assess recall in the categorical variables. Two-thirds of participants went to sleep on their left side. There was good agreement in sleep onset position between video and questionnaire data (Kappa 0.52), however the there was poor agreement on position on wakening (Kappa 0.24). The number of times getting out of bed during the night was accurately recalled (Kappa 0.65). Twenty five out of 30 participants snored as recorded by PSG. Questionnaire data was inaccurate for this measure. Bland-Altman plots demonstrated acceptable agreement between video and questionnaire data for estimated sleep duration, but not the time taken to fall asleep (sleep latency). One participant had mild obstructive sleep apnoea and another probable high upper airways resistance. Sleep onset position, sleep duration and the number of times getting out of bed during the night were accurately recalled, but sleep latency and sleep position on waking were not. This study identifies the sleep variables that can be accurately obtained by questionnaire and those that cannot.

  14. Terrestrial Laser Scanning for Coastal Geomorphologic Research in Western Greece

    NASA Astrophysics Data System (ADS)

    Hoffmeister, D.; Tilly, N.; Curdt, C.; Aasen, H.; Ntageretzis, K.; Hadler, H.; Willershäuser, T.; Vött, A.; Bareth, G.

    2012-07-01

    We used terrestrial laser scanning (TLS) for (i) accurate volume estimations of dislocated boulders moved by high-energy impacts and for (ii) monitoring of annual coastal changes. In this contribution, we present three selected sites in Western Greece that were surveyed during a time span of four years (2008-2011). The Riegl LMS-Z420i laser scanner was used in combination with a precise DGPS system (Topcon HiPer Pro). Each scan position and a further target were recorded for georeferencing and merging of the point clouds. For the annual detection of changes, reference points for the base station of the DGPS system were marked. Our studies show that TLS is capable to accurately estimate volumes of boulders, which were dislocated and deposited inland from the littoral zone. The mass of each boulder was calculated from this 3D-reconstructed volume and according density data. The masses turned out to be considerably smaller than common estimated masses based on tape-measurements and according density approximations. The accurate mass data was incorporated into wave transport equations, which estimate wave velocities of high-energy impacts. As expected, these show smaller wave velocities, due to the incorporated smaller mass. Furthermore, TLS is capable to monitor annual changes on coastal areas. The changes are detected by comparing high resolution digital elevation models from every year. On a beach site, larger areas of sea-weed and sandy sediments are eroded. In contrast, bigger gravel with 30-50 cm diameter was accumulated. At the other area with bigger boulders and a different coastal configuration only slightly differences were detectable. In low-lying coastal areas and along recent beaches, post-processing of point clouds turned out to be more difficult, due to noise effects by water and shadowing effects. However, our studies show that the application of TLS in different littoral settings is an appropriate and promising tool. The combination of both instruments worked well and the annual positioning procedure with own survey point is precose for this purpose.

  15. Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems.

    PubMed

    de Vries, W H K; Veeger, H E J; Cutti, A G; Baten, C; van der Helm, F C T

    2010-07-20

    Inertial Magnetic Measurement Systems (IMMS) are becoming increasingly popular by allowing for measurements outside the motion laboratory. The latest models enable long term, accurate measurement of segment motion in terms of joint angles, if initial segment orientations can accurately be determined. The standard procedure for definition of segmental orientation is based on the measurement of positions of bony landmarks (BLM). However, IMMS do not deliver position information, so an alternative method to establish IMMS based, anatomically understandable segment orientations is proposed. For five subjects, IMMS recordings were collected in a standard anatomical position for definition of static axes, and during a series of standardized motions for the estimation of kinematic axes of rotation. For all axes, the intra- and inter-individual dispersion was estimated. Subsequently, local coordinate systems (LCS) were constructed on the basis of the combination of IMMS axes with the lowest dispersion and compared with BLM based LCS. The repeatability of the method appeared to be high; for every segment at least two axes could be determined with a dispersion of at most 3.8 degrees. Comparison of IMMS based with BLM based LCS yielded compatible results for the thorax, but less compatible results for the humerus, forearm and hand, where differences in orientation rose to 17.2 degrees. Although different from the 'gold standard' BLM based LCS, IMMS based LCS can be constructed repeatable, enabling the estimation of segment orientations outside the laboratory. A procedure for the definition of local reference frames using IMMS is proposed. 2010 Elsevier Ltd. All rights reserved.

  16. Motion estimation by integrated low cost system (vision and MEMS) for positioning of a scooter "Vespa"

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Milan, N.; Pirotti, F.; Vettore, A.

    2011-12-01

    In the automotive sector, especially in these last decade, a growing number of investigations have taken into account electronic systems to check and correct the behavior of drivers, increasing road safety. The possibility to identify with high accuracy the vehicle position in a mapping reference frame for driving directions and best-route analysis is also another topic which attracts lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate time by time the position, orientation and velocity of the system. To this aim low cost GPS and MEMS (sensors can be used. In comparison to a four wheel vehicle, the dynamics of a two wheel vehicle (e.g. a scooter) feature a higher level of complexity. Indeed more degrees of freedom must be taken into account to describe the motion of the latter. For example a scooter can twist sideways, thus generating a roll angle. A slight pitch angle has to be considered as well, since wheel suspensions have a higher degree of motion with respect to four wheel vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a motorcycle ("Vespa" scooter), which can be used as alternative to the "classical" approach based on the integration of GPS and INS sensors. Position and orientation of the scooter are derived from MEMS data and images acquired by on-board digital camera. A Bayesian filter provides the means for integrating the data from MEMS-based orientation sensor and the GPS receiver.

  17. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners

    PubMed Central

    Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen

    2016-01-01

    Exterior orientation parameters’ (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang’E-1, compared to the existing space resection model. PMID:27077855

  18. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners.

    PubMed

    Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen

    2016-04-11

    Exterior orientation parameters' (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang'E-1, compared to the existing space resection model.

  19. Localizing on-scalp MEG sensors using an array of magnetic dipole coils.

    PubMed

    Pfeiffer, Christoph; Andersen, Lau M; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F; Oostenveld, Robert

    2018-01-01

    Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject's head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject's head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method.

  20. Localizing on-scalp MEG sensors using an array of magnetic dipole coils

    PubMed Central

    Andersen, Lau M.; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F.; Oostenveld, Robert

    2018-01-01

    Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject’s head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject’s head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method. PMID:29746486

  1. On estimation of secret message length in LSB steganography in spatial domain

    NASA Astrophysics Data System (ADS)

    Fridrich, Jessica; Goljan, Miroslav

    2004-06-01

    In this paper, we present a new method for estimating the secret message length of bit-streams embedded using the Least Significant Bit embedding (LSB) at random pixel positions. We introduce the concept of a weighted stego image and then formulate the problem of determining the unknown message length as a simple optimization problem. The methodology is further refined to obtain more stable and accurate results for a wide spectrum of natural images. One of the advantages of the new method is its modular structure and a clean mathematical derivation that enables elegant estimator accuracy analysis using statistical image models.

  2. Comprehensive evaluation of attitude and orbit estimation using real earth magnetic field data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    A single, augmented extended Kalman filter (EKF) which simultaneously and autonomously estimates spacecraft attitude and orbit was developed and tested with simulated and real magnetometer and rate data. Since the earth's magnetic field is a function of time and position, and since time is accurately known, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft's orbit, are a function of orbit and attitude errors. These differences can be used to estimate the orbit and attitude. The test results of the EKF with magnetometer and gyro data from three NASA satellites are presented and evaluated.

  3. Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors.

    PubMed

    Chi, Wen-Chun; Cheng, Ming-Yang

    2014-03-01

    Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Indoor Map Aided Wi-Fi Integrated Lbs on Smartphone Platforms

    NASA Astrophysics Data System (ADS)

    Yu, C.; El-Sheimy, N.

    2017-09-01

    In this research, an indoor map aided INS/Wi-Fi integrated location based services (LBS) applications is proposed and implemented on smartphone platforms. Indoor map information together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value from Wi-Fi are collected to obtain an accurate, continuous, and low-cost position solution. The main challenge of this research is to make effective use of various measurements that complement each other without increasing the computational burden of the system. The integrated system in this paper includes three modules: INS, Wi-Fi (if signal available) and indoor maps. A cascade structure Particle/Kalman filter framework is applied to combine the different modules. Firstly, INS position and Wi-Fi fingerprint position integrated through Kalman filter for estimating positioning information. Then, indoor map information is applied to correct the error of INS/Wi-Fi estimated position through particle filter. Indoor tests show that the proposed method can effectively reduce the accumulation positioning errors of stand-alone INS systems, and provide stable, continuous and reliable indoor location service.

  5. Self Consistent Bathymetric Mapping Using Sub-maps: Survey Results From the TAG Hydrothermal Structure

    NASA Astrophysics Data System (ADS)

    Roman, C. N.; Reves-Sohn, R.; Singh, H.; Humphris, S.

    2005-12-01

    The spatial resolution of microbathymetry maps created using robotic vehicles such as ROVs, AUVs and manned submersibles in the deep ocean is currently limited by the accuracy of the vehicle navigation data. Errors in the vehicle position estimate commonly exceed the ranging errors of the acoustic mapping sensor itself, which creates inconsistency in the map making process and produces artifacts that lower resolution and distort map integrity. We present a methodology for producing self-consistent maps and improving vehicle position estimation by exploiting accurate local navigation and utilizing terrain relative measurements. The complete map is broken down into individual "sub-maps'', which are generated using short term Doppler based navigation. The sub-maps are pairwise registered to constrain the vehicle position estimates by matching terrain that has been imaged multiple times. This procedure is implemented using a delayed state Kalman filter to incorporate the sub-map registrations as relative position measurements between previously visited vehicle locations. Archiving of previous positions in a filter state vector allows for continual adjustment of the sub-map locations. The terrain registration is accomplished using a two dimensional correlation and a six degree of freedom point cloud alignment method tailored to bathymetric data. This registration procedure is applicable to fully 3 dimensional complex underwater environments. The complete bathymetric map is then created from the union of all sub-maps that have been aligned in a consistent manner. The method is applied to an SM2000 multibeam survey of the TAG hydrothermal structure on the Mid-Atlantic Ridge at 26(°)N using the Jason II ROV. The survey included numerous crossing tracklines designed to test this algorithm, and the final gridded bathymetry data is sub-meter accurate. The high-resolution map has allowed for the identification of previously unrecognized fracture patterns associated with flow focusing at TAG, as well as imaging of fine-scale features such as individual sulfide talus blocks and ODP re-entry cones.

  6. Monaural Sound Localization Based on Structure-Induced Acoustic Resonance

    PubMed Central

    Kim, Keonwook; Kim, Youngwoong

    2015-01-01

    A physical structure such as a cylindrical pipe controls the propagated sound spectrum in a predictable way that can be used to localize the sound source. This paper designs a monaural sound localization system based on multiple pyramidal horns around a single microphone. The acoustic resonance within the horn provides a periodicity in the spectral domain known as the fundamental frequency which is inversely proportional to the radial horn length. Once the system accurately estimates the fundamental frequency, the horn length and corresponding angle can be derived by the relationship. The modified Cepstrum algorithm is employed to evaluate the fundamental frequency. In an anechoic chamber, localization experiments over azimuthal configuration show that up to 61% of the proper signal is recognized correctly with 30% misfire. With a speculated detection threshold, the system estimates direction 52% in positive-to-positive and 34% in negative-to-positive decision rate, on average. PMID:25668214

  7. Maximum likelihood estimation in calibrating a stereo camera setup.

    PubMed

    Muijtjens, A M; Roos, J M; Arts, T; Hasman, A

    1999-02-01

    Motion and deformation of the cardiac wall may be measured by following the positions of implanted radiopaque markers in three dimensions, using two x-ray cameras simultaneously. Regularly, calibration of the position measurement system is obtained by registration of the images of a calibration object, containing 10-20 radiopaque markers at known positions. Unfortunately, an accidental change of the position of a camera after calibration requires complete recalibration. Alternatively, redundant information in the measured image positions of stereo pairs can be used for calibration. Thus, a separate calibration procedure can be avoided. In the current study a model is developed that describes the geometry of the camera setup by five dimensionless parameters. Maximum Likelihood (ML) estimates of these parameters were obtained in an error analysis. It is shown that the ML estimates can be found by application of a nonlinear least squares procedure. Compared to the standard unweighted least squares procedure, the ML method resulted in more accurate estimates without noticeable bias. The accuracy of the ML method was investigated in relation to the object aperture. The reconstruction problem appeared well conditioned as long as the object aperture is larger than 0.1 rad. The angle between the two viewing directions appeared to be the parameter that was most likely to cause major inaccuracies in the reconstruction of the 3-D positions of the markers. Hence, attempts to improve the robustness of the method should primarily focus on reduction of the error in this parameter.

  8. A novel unscented predictive filter for relative position and attitude estimation of satellite formation

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Chen, Xiaoqian; Misra, Arun K.

    2015-07-01

    This paper presents a novel sigma-point unscented predictive filter (UPF) for relative position and attitude estimation of satellite formation taking into account the influence of J2. A coupled relative translational dynamics model is formulated to represent orbital motion of arbitrary feature points on the deputy spacecraft, and the relative attitude motion is formulated by considering a rotational dynamics for a satellite without gyros. Based on the proposed coupled dynamic model, the UPF is developed based on unscented transformation technique, extending the capability of a traditional predictive filter (PF). The algorithm flow of the UPF is described first. Then it is demonstrated that the estimation accuracy of the model error and system state for UPF is higher than that of the traditional PF. In addition, the unscented Kalman filter (UKF) is also employed in order to compare the performance of the proposed UPF with that of the UKF. Several different scenarios are simulated to validate the effectiveness of the coupled dynamics model and the performance of the proposed UPF. Through comparisons, the proposed UPF is shown to yield highly accurate estimation of relative position and attitude during satellite formation flying.

  9. Real-time Terrain Relative Navigation Test Results from a Relevant Environment for Mars Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Cheng, Yang; Montgomery, James; Trawny, Nikolas; Tweddle, Brent; Zheng, Jason

    2015-01-01

    Terrain Relative Navigation (TRN) is an on-board GN&C function that generates a position estimate of a spacecraft relative to a map of a planetary surface. When coupled with a divert, the position estimate enables access to more challenging landing sites through pin-point landing or large hazard avoidance. The Lander Vision System (LVS) is a smart sensor system that performs terrain relative navigation by matching descent camera imagery to a map of the landing site and then fusing this with inertial measurements to obtain high rate map relative position, velocity and attitude estimates. A prototype of the LVS was recently tested in a helicopter field test over Mars analog terrain at altitudes representative of Mars Entry Descent and Landing conditions. TRN ran in real-time on the LVS during the flights without human intervention or tuning. The system was able to compute estimates accurate to 40m (3 sigma) in 10 seconds on a flight like processing system. This paper describes the Mars operational test space definition, how the field test was designed to cover that operational envelope, the resulting TRN performance across the envelope and an assessment of test space coverage.

  10. Age estimation of the Deccan Traps from the North American apparent polar wander path

    NASA Technical Reports Server (NTRS)

    Stoddard, Paul R.; Jurdy, Donna M.

    1988-01-01

    It has recently been proposed that flood basalt events, such as the eruption of the Deccan Traps, have been responsible for mass extinctions. To test this hypothesis, accurate estimations of the ages and duration of these events are needed. In the case of the Deccan Traps, however, neither age nor duration of emplacement is well constrianed; measured ages range from 40 to more than 80 Myr, and estimates of duration range from less than 1 to 67 Myr. To make an independent age determination, paleomagnetic and sea-floor-spreading data are used, and the associated errors are estimated. The Deccan paleomagnetic pole is compared with the reference apparent polar wander path of North America by rotating the positions of the paleomagnetic pole for the Deccan Traps to the reference path for a range of assumed ages. Uncertainties in the apparent polar wander path, Deccan paleopole position, and errors resulting from the plate reconstruction are estimated. It is suggested that 83-70 Myr is the most likely time of extrusion of these volcanic rocks.

  11. Analysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary information.

    PubMed

    Mauro, Francisco; Monleon, Vicente J; Temesgen, Hailemariam; Ford, Kevin R

    2017-01-01

    Forest inventories require estimates and measures of uncertainty for subpopulations such as management units. These units often times hold a small sample size, so they should be regarded as small areas. When auxiliary information is available, different small area estimation methods have been proposed to obtain reliable estimates for small areas. Unit level empirical best linear unbiased predictors (EBLUP) based on plot or grid unit level models have been studied more thoroughly than area level EBLUPs, where the modelling occurs at the management unit scale. Area level EBLUPs do not require a precise plot positioning and allow the use of variable radius plots, thus reducing fieldwork costs. However, their performance has not been examined thoroughly. We compared unit level and area level EBLUPs, using LiDAR auxiliary information collected for inventorying 98,104 ha coastal coniferous forest. Unit level models were consistently more accurate than area level EBLUPs, and area level EBLUPs were consistently more accurate than field estimates except for large management units that held a large sample. For stand density, volume, basal area, quadratic mean diameter, mean height and Lorey's height, root mean squared errors (rmses) of estimates obtained using area level EBLUPs were, on average, 1.43, 2.83, 2.09, 1.40, 1.32 and 1.64 times larger than those based on unit level estimates, respectively. Similarly, direct field estimates had rmses that were, on average, 1.37, 1.45, 1.17, 1.17, 1.26, and 1.38 times larger than rmses of area level EBLUPs. Therefore, area level models can lead to substantial gains in accuracy compared to direct estimates, and unit level models lead to very important gains in accuracy compared to area level models, potentially justifying the additional costs of obtaining accurate field plot coordinates.

  12. Analysis of area level and unit level models for small area estimation in forest inventories assisted with LiDAR auxiliary information

    PubMed Central

    Monleon, Vicente J.; Temesgen, Hailemariam; Ford, Kevin R.

    2017-01-01

    Forest inventories require estimates and measures of uncertainty for subpopulations such as management units. These units often times hold a small sample size, so they should be regarded as small areas. When auxiliary information is available, different small area estimation methods have been proposed to obtain reliable estimates for small areas. Unit level empirical best linear unbiased predictors (EBLUP) based on plot or grid unit level models have been studied more thoroughly than area level EBLUPs, where the modelling occurs at the management unit scale. Area level EBLUPs do not require a precise plot positioning and allow the use of variable radius plots, thus reducing fieldwork costs. However, their performance has not been examined thoroughly. We compared unit level and area level EBLUPs, using LiDAR auxiliary information collected for inventorying 98,104 ha coastal coniferous forest. Unit level models were consistently more accurate than area level EBLUPs, and area level EBLUPs were consistently more accurate than field estimates except for large management units that held a large sample. For stand density, volume, basal area, quadratic mean diameter, mean height and Lorey’s height, root mean squared errors (rmses) of estimates obtained using area level EBLUPs were, on average, 1.43, 2.83, 2.09, 1.40, 1.32 and 1.64 times larger than those based on unit level estimates, respectively. Similarly, direct field estimates had rmses that were, on average, 1.37, 1.45, 1.17, 1.17, 1.26, and 1.38 times larger than rmses of area level EBLUPs. Therefore, area level models can lead to substantial gains in accuracy compared to direct estimates, and unit level models lead to very important gains in accuracy compared to area level models, potentially justifying the additional costs of obtaining accurate field plot coordinates. PMID:29216290

  13. An evaluation of talker localization based on direction of arrival estimation and statistical sound source identification

    NASA Astrophysics Data System (ADS)

    Nishiura, Takanobu; Nakamura, Satoshi

    2002-11-01

    It is very important to capture distant-talking speech for a hands-free speech interface with high quality. A microphone array is an ideal candidate for this purpose. However, this approach requires localizing the target talker. Conventional talker localization algorithms in multiple sound source environments not only have difficulty localizing the multiple sound sources accurately, but also have difficulty localizing the target talker among known multiple sound source positions. To cope with these problems, we propose a new talker localization algorithm consisting of two algorithms. One is DOA (direction of arrival) estimation algorithm for multiple sound source localization based on CSP (cross-power spectrum phase) coefficient addition method. The other is statistical sound source identification algorithm based on GMM (Gaussian mixture model) for localizing the target talker position among localized multiple sound sources. In this paper, we particularly focus on the talker localization performance based on the combination of these two algorithms with a microphone array. We conducted evaluation experiments in real noisy reverberant environments. As a result, we confirmed that multiple sound signals can be identified accurately between ''speech'' or ''non-speech'' by the proposed algorithm. [Work supported by ATR, and MEXT of Japan.

  14. A Fuzzy Technique for Performing Lateral-Axis Formation Flight Navigation Using Wingtip Vortices

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2003-01-01

    Close formation flight involving aerodynamic coupling through wingtip vortices shows significant promise to improve the efficiency of cooperative aircraft operations. Impediments to the application of this technology include internship communication required to establish precise relative positioning. This report proposes a method for estimating the lateral relative position between two aircraft in close formation flight through real-time estimates of the aerodynamic effects imparted by the leading airplane on the trailing airplane. A fuzzy algorithm is developed to map combinations of vortex-induced drag and roll effects to relative lateral spacing. The algorithm is refined using self-tuning techniques to provide lateral relative position estimates accurate to 14 in., well within the requirement to maintain significant levels of drag reduction. The fuzzy navigation algorithm is integrated with a leader-follower formation flight autopilot in a two-ship F/A-18 simulation with no intership communication modeled. It is shown that in the absence of measurements from the leading airplane the algorithm provides sufficient estimation of lateral formation spacing for the autopilot to maintain stable formation flight within the vortex. Formation autopilot trim commands are used to estimate vortex effects for the algorithm. The fuzzy algorithm is shown to operate satisfactorily with anticipated levels of input uncertainties.

  15. A Review of Pedestrian Indoor Positioning Systems for Mass Market Applications

    PubMed Central

    Barcelo, Marc; Vicario, Jose Lopez

    2017-01-01

    In the last decade, the interest in Indoor Location Based Services (ILBS) has increased stimulating the development of Indoor Positioning Systems (IPS). In particular, ILBS look for positioning systems that can be applied anywhere in the world for millions of users, that is, there is a need for developing IPS for mass market applications. Those systems must provide accurate position estimations with minimum infrastructure cost and easy scalability to different environments. This survey overviews the current state of the art of IPSs and classifies them in terms of the infrastructure and methodology employed. Finally, each group is reviewed analysing its advantages and disadvantages and its applicability to mass market applications. PMID:28829386

  16. Lessons from Srebrenica: the contributions and limitations of physical anthropology in identifying victims of war crimes.

    PubMed

    Komar, Debra

    2003-07-01

    In July 1995, the town of Srebrenica fell to Bosnian-Serb forces, leaving more than 7000 Muslim men missing and presumed dead. Anthropologists participating in the identification process were faced with a unique problem: the victims appeared identical. All were adult males of a single ethnic group. Decomposition as well as the absence of antemortem (AM) medical and dental records confounded identification. As of December 1999, only 63 men had been positively identified using DNA, personal effects, and identification papers. Are current anthropological methods of sex, age, and stature estimation and AM trauma assessment sufficiently accurate to differentiate the remaining victims and aid in their identification? Comparisons of relative-reported AM information and postmortem examination records for 59 of the 63 identified individuals indicated that while all individuals were sexed correctly, only 42.4% were accurately aged and 29.4% had a stature estimate that included their reported height.

  17. Accuracy of least-squares methods for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bochev, Pavel B.; Gunzburger, Max D.

    1993-01-01

    Recently there has been substantial interest in least-squares finite element methods for velocity-vorticity-pressure formulations of the incompressible Navier-Stokes equations. The main cause for this interest is the fact that algorithms for the resulting discrete equations can be devised which require the solution of only symmetric, positive definite systems of algebraic equations. On the other hand, it is well-documented that methods using the vorticity as a primary variable often yield very poor approximations. Thus, here we study the accuracy of these methods through a series of computational experiments, and also comment on theoretical error estimates. It is found, despite the failure of standard methods for deriving error estimates, that computational evidence suggests that these methods are, at the least, nearly optimally accurate. Thus, in addition to the desirable matrix properties yielded by least-squares methods, one also obtains accurate approximations.

  18. TSaT-MUSIC: a novel algorithm for rapid and accurate ultrasonic 3D localization

    NASA Astrophysics Data System (ADS)

    Mizutani, Kyohei; Ito, Toshio; Sugimoto, Masanori; Hashizume, Hiromichi

    2011-12-01

    We describe a fast and accurate indoor localization technique using the multiple signal classification (MUSIC) algorithm. The MUSIC algorithm is known as a high-resolution method for estimating directions of arrival (DOAs) or propagation delays. A critical problem in using the MUSIC algorithm for localization is its computational complexity. Therefore, we devised a novel algorithm called Time Space additional Temporal-MUSIC, which can rapidly and simultaneously identify DOAs and delays of mul-ticarrier ultrasonic waves from transmitters. Computer simulations have proved that the computation time of the proposed algorithm is almost constant in spite of increasing numbers of incoming waves and is faster than that of existing methods based on the MUSIC algorithm. The robustness of the proposed algorithm is discussed through simulations. Experiments in real environments showed that the standard deviation of position estimations in 3D space is less than 10 mm, which is satisfactory for indoor localization.

  19. Automated Point Cloud Correspondence Detection for Underwater Mapping Using AUVs

    NASA Technical Reports Server (NTRS)

    Hammond, Marcus; Clark, Ashley; Mahajan, Aditya; Sharma, Sumant; Rock, Stephen

    2015-01-01

    An algorithm for automating correspondence detection between point clouds composed of multibeam sonar data is presented. This allows accurate initialization for point cloud alignment techniques even in cases where accurate inertial navigation is not available, such as iceberg profiling or vehicles with low-grade inertial navigation systems. Techniques from computer vision literature are used to extract, label, and match keypoints between "pseudo-images" generated from these point clouds. Image matches are refined using RANSAC and information about the vehicle trajectory. The resulting correspondences can be used to initialize an iterative closest point (ICP) registration algorithm to estimate accumulated navigation error and aid in the creation of accurate, self-consistent maps. The results presented use multibeam sonar data obtained from multiple overlapping passes of an underwater canyon in Monterey Bay, California. Using strict matching criteria, the method detects 23 between-swath correspondence events in a set of 155 pseudo-images with zero false positives. Using less conservative matching criteria doubles the number of matches but introduces several false positive matches as well. Heuristics based on known vehicle trajectory information are used to eliminate these.

  20. Using Clinical Research Networks to Assess Severity of an Emerging Influenza Pandemic.

    PubMed

    Simonsen, Lone; Higgs, Elizabeth; Taylor, Robert J; Wentworth, Deborah; Cozzi-Lepri, Al; Pett, Sarah; Dwyer, Dominic E; Davey, Richard; Lynfield, Ruth; Losso, Marcelo; Morales, Kathleen; Glesby, Marshall J; Weckx, Jozef; Carey, Dianne; Lane, Cliff; Lundgren, Jens

    2018-05-08

    Early clinical severity assessments during the 2009 influenza A H1N1 pandemic (pH1N1) overestimated clinical severity due to selection bias and other factors. We retrospectively investigated how to use data from the International Network for Strategic Initiatives in Global HIV Trials, a global clinical influenza research network, to make more accurate case fatality ratio (CFR) estimates early in a future pandemic, an essential part of pandemic response. We estimated the CFR of medically attended influenza (CFRMA) as the product of probability of hospitalization given confirmed outpatient influenza and the probability of death given hospitalization with confirmed influenza for the pandemic (2009-2011) and post-pandemic (2012-2015) periods. We used literature survey results on health-seeking behavior to convert that estimate to CFR among all infected persons (CFRAR). During the pandemic period, 5.0% (3.1%-6.9%) of 561 pH1N1-positive outpatients were hospitalized. Of 282 pH1N1-positive inpatients, 8.5% (5.7%-12.6%) died. CFRMA for pH1N1 was 0.4% (0.2%-0.6%) in the pandemic period 2009-2011 but declined 5-fold in young adults during the post-pandemic period compared to the level of seasonal influenza in the post-pandemic period 2012-2015. CFR for influenza-negative patients did not change over time. We estimated the 2009 pandemic CFRAR to be 0.025%, 16-fold lower than CFRMA. Data from a clinical research network yielded accurate pandemic severity estimates, including increased severity among younger people. Going forward, clinical research networks with a global presence and standardized protocols would substantially aid rapid assessment of clinical severity. NCT01056354 and NCT010561.

  1. A system to geometrically rectify and map airborne scanner imagery and to estimate ground area. [by computer

    NASA Technical Reports Server (NTRS)

    Spencer, M. M.; Wolf, J. M.; Schall, M. A.

    1974-01-01

    A system of computer programs were developed which performs geometric rectification and line-by-line mapping of airborne multispectral scanner data to ground coordinates and estimates ground area. The system requires aircraft attitude and positional information furnished by ancillary aircraft equipment, as well as ground control points. The geometric correction and mapping procedure locates the scan lines, or the pixels on each line, in terms of map grid coordinates. The area estimation procedure gives ground area for each pixel or for a predesignated parcel specified in map grid coordinates. The results of exercising the system with simulated data showed the uncorrected video and corrected imagery and produced area estimates accurate to better than 99.7%.

  2. Strategy to minimize the impact of the South Atlantic Anomaly effect on the DORIS station position estimation

    NASA Astrophysics Data System (ADS)

    Capdeville, H.; Moreaux, G.; Lemoine, J. M.

    2017-12-01

    All the Ultra Stable Oscillators (USO) of DORIS satellites are more or less sensitive to the South Atlantic Anomaly (SAA) effect. For Jason-1 and SPOT-5 satellites, a corrective model has been developed and used for the realization of the ITRF2014. However, Jason-2 is also impacted, not at the same level as Jason-1 but strong enough to worsen the multi-satellite solution provided for ITRF2014 for the SAA stations. The last DORIS satellites are also impacted by the SAA effect, in particular Jason-3. Thanks to the extremely precise time-tagging of the T2L2 experiment on-board Jason-2, A. Belli and the GEOAZUR team managed to draw up a model that accurately represents the variations of Jason-2 USO's frequency. This model will be evaluated by analyzing its impact on the position estimation of the SAA stations. While awaiting a DORIS data corrective model for the others satellites Jason-3 and Sentinel-3A, we propose here different strategies to minimize the SAA effect on the orbit and also and in particular on the station position estimation. We will compare the DORIS positions of the SAA stations with the GNSS positions collocated.

  3. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2005-01-01

    The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. An improvement in the accuracy of radial global velocities would have a very positive impact on a large number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. A set of GPS error sources relevant to this project are those related to the combination of the positions and velocities of a set of globally distributed stations as determined &om the analysis of GPS data, including possible methods of combining and defining terrestrial reference frames. This is were our research activities during this reporting period have concentrated. During this reporting period, we have researched two topics: (1) The effect of errors on the GPS satellite antenna models (or lack thereof) on global GPS vertical position and velocity estimates; (2) The effect of reference W e definition and practice on estimates of the geocenter variations.

  4. An effective and robust method for tracking multiple fish in video image based on fish head detection.

    PubMed

    Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu

    2016-06-23

    Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.

  5. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  6. An Innovative Procedure for Calibration of Strapdown Electro-Optical Sensors Onboard Unmanned Air Vehicles

    PubMed Central

    Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-01-01

    This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms). PMID:22315559

  7. Digital detection and processing of laser beacon signals for aircraft collision hazard warning

    NASA Technical Reports Server (NTRS)

    Sweet, L. M.; Miles, R. B.; Russell, G. F.; Tomeh, M. G.; Webb, S. G.; Wong, E. Y.

    1981-01-01

    A low-cost collision hazard warning system suitable for implementation in both general and commercial aviation is presented. Laser beacon systems are used as sources of accurate relative position information that are not dependent on communication between aircraft or with the ground. The beacon system consists of a rotating low-power laser beacon, detector arrays with special optics for wide angle acceptance and filtering of solar background light, microprocessors for proximity and relative trajectory computation, and pilot displays of potential hazards. The laser beacon system provides direct measurements of relative aircraft positions; using optimal nonlinear estimation theory, the measurements resulting from the current beacon sweep are combined with previous data to provide the best estimate of aircraft proximity, heading, minimium passing distance, and time to closest approach.

  8. High-resolution food webs based on nitrogen isotopic composition of amino acids

    PubMed Central

    Chikaraishi, Yoshito; Steffan, Shawn A; Ogawa, Nanako O; Ishikawa, Naoto F; Sasaki, Yoko; Tsuchiya, Masashi; Ohkouchi, Naohiko

    2014-01-01

    Food webs are known to have myriad trophic links between resource and consumer species. While herbivores have well-understood trophic tendencies, the difficulties associated with characterizing the trophic positions of higher-order consumers have remained a major problem in food web ecology. To better understand trophic linkages in food webs, analysis of the stable nitrogen isotopic composition of amino acids has been introduced as a potential means of providing accurate trophic position estimates. In the present study, we employ this method to estimate the trophic positions of 200 free-roaming organisms, representing 39 species in coastal marine (a stony shore) and 38 species in terrestrial (a fruit farm) environments. Based on the trophic positions from the isotopic composition of amino acids, we are able to resolve the trophic structure of these complex food webs. Our approach reveals a high degree of trophic omnivory (i.e., noninteger trophic positions) among carnivorous species such as marine fish and terrestrial hornets.This information not only clarifies the trophic tendencies of species within their respective communities, but also suggests that trophic omnivory may be common in these webs. PMID:25360278

  9. Semi-automatic 2D-to-3D conversion of human-centered videos enhanced by age and gender estimation

    NASA Astrophysics Data System (ADS)

    Fard, Mani B.; Bayazit, Ulug

    2014-01-01

    In this work, we propose a feasible 3D video generation method to enable high quality visual perception using a monocular uncalibrated camera. Anthropometric distances between face standard landmarks are approximated based on the person's age and gender. These measurements are used in a 2-stage approach to facilitate the construction of binocular stereo images. Specifically, one view of the background is registered in initial stage of video shooting. It is followed by an automatically guided displacement of the camera toward its secondary position. At the secondary position the real-time capturing is started and the foreground (viewed person) region is extracted for each frame. After an accurate parallax estimation the extracted foreground is placed in front of the background image that was captured at the initial position. So the constructed full view of the initial position combined with the view of the secondary (current) position, form the complete binocular pairs during real-time video shooting. The subjective evaluation results present a competent depth perception quality through the proposed system.

  10. Automatic multi-camera calibration for deployable positioning systems

    NASA Astrophysics Data System (ADS)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  11. Kinematic Localization for Global Navigation Satellite Systems: A Kalman Filtering Approach

    NASA Astrophysics Data System (ADS)

    Tabatabaee, Mohammad Hadi

    Use of the Global Positioning System (GNSS) has expanded significantly in the past decade, especially with advances in embedded systems and the emergence of smartphones and the Internet of Things (IoT). The growing demand has stimulated research on development of GNSS techniques and programming tools. The focus of much of the research efforts have been on high-level algorithms and augmentations. This dissertation focuses on the low-level methods at the heart of GNSS systems and proposes a new methods for GNSS positioning problems based on concepts of distance geometry and the use of Kalman filters. The methods presented in this dissertation provide algebraic solutions to problems that have predominantly been solved using iterative methods. The proposed methods are highly efficient, provide accurate estimates, and exhibit a degree of robustness in the presence of unfavorable satellite geometry. The algorithm operates in two stages; an estimation of the receiver clock bias and removal of the bias from the pseudorange observables, followed by the localization of the GNSS receiver. The use of a Kalman filter in between the two stages allows for an improvement of the clock bias estimate with a noticeable impact on the position estimates. The receiver localization step has also been formulated in a linear manner allowing for the direct application of a Kalman filter without any need for linearization. The methodology has also been extended to double differential observables for high accuracy pseudorange and carrier phase position estimates.

  12. Sensitivity of Crop Gross Primary Production Simulations to In-situ and Reanalysis Meteorological Data

    NASA Astrophysics Data System (ADS)

    Jin, C.; Xiao, X.; Wagle, P.

    2014-12-01

    Accurate estimation of crop Gross Primary Production (GPP) is important for food securityand terrestrial carbon cycle. Numerous publications have reported the potential of the satellite-based Production Efficiency Models (PEMs) to estimate GPP driven by in-situ climate data. Simulations of the PEMs often require surface reanalysis climate data as inputs, for example, the North America Regional Reanalysis datasets (NARR). These reanalysis datasets showed certain biases from the in-situ climate datasets. Thus, sensitivity analysis of the PEMs to the climate inputs is needed before their application at the regional scale. This study used the satellite-based Vegetation Photosynthesis Model (VPM), which is driven by solar radiation (R), air temperature (T), and the satellite-based vegetation indices, to quantify the causes and degree of uncertainties in crop GPP estimates due to different meteorological inputs at the 8-day interval (in-situ AmeriFlux data and NARR surface reanalysis data). The NARR radiation (RNARR) explained over 95% of the variability in in-situ RAF and TAF measured from AmeriFlux. The bais of TNARR was relatively small. However, RNARR had a systematical positive bias of ~3.5 MJ m-2day-1 from RAF. A simple adjustment based on the spatial statistic between RNARR and RAF produced relatively accurate radiation data for all crop site-years by reducing RMSE from 4 to 1.7 MJ m-2day-1. The VPM-based GPP estimates with three climate datasets (i.e., in-situ, and NARR before and after adjustment, GPPVPM,AF, GPPVPM,NARR, and GPPVPM,adjNARR) showed good agreements with the seasonal dynamics of crop GPP derived from the flux towers (GPPAF). The GPPVPM,AF differed from GPPAF by 2% for maize, and -8% to -12% for soybean on the 8-day interval. The positive bias of RNARR resulted in an overestimation of GPPVPM,NARR at both maize and soybean systems. However, GPPVPM,adjNARR significantly reduced the uncertainties of the maize GPP from 25% to 2%. The results from this study revealed that the errors of the NARR surface reanalysis data introduced significant uncertainties of the PEMs-based GPP estimates. Therefore, it is important to develop more accurate radiation datasets at the regional and global scales to estimate gross and net primary production of terrestrial ecosystems at the regional and global scales.

  13. Measuring Diameters Of Large Vessels

    NASA Technical Reports Server (NTRS)

    Currie, James R.; Kissel, Ralph R.; Oliver, Charles E.; Smith, Earnest C.; Redmon, John W., Sr.; Wallace, Charles C.; Swanson, Charles P.

    1990-01-01

    Computerized apparatus produces accurate results quickly. Apparatus measures diameter of tank or other large cylindrical vessel, without prior knowledge of exact location of cylindrical axis. Produces plot of inner circumference, estimate of true center of vessel, data on radius, diameter of best-fit circle, and negative and positive deviations of radius from circle at closely spaced points on circumference. Eliminates need for time-consuming and error-prone manual measurements.

  14. Genetic correlations among and between wool, growth and reproduction traits in Merino sheep.

    PubMed

    Safari, E; Fogarty, N M; Gilmour, A R; Atkins, K D; Mortimer, S I; Swan, A A; Brien, F D; Greeff, J C; van der Werf, J H J

    2007-04-01

    Data from seven research resource flocks across Australia were combined to provide accurate estimates of genetic correlations among production traits in Merino sheep. The flocks represented contemporary Australian Merino fine, medium and broad wool strains over the past 30 years. Over 110,000 records were available for analysis for each of the major wool traits, and 50,000 records for reproduction and growth traits with over 2700 sires and 25,000 dams. Individual models developed from the single trait analyses were extended to the various combinations of two-trait models to obtain genetic correlations among six wool traits [clean fleece weight (CFW), greasy fleece weight, fibre diameter (FD), yield, coefficient of variation of fibre diameter and standard deviation of fibre diameter], four growth traits [birth weight, weaning weight, yearling weight (YWT), and hogget weight] and four reproduction traits [fertility, litter size, lambs born per ewe joined, lambs weaned per ewe joined (LW/EJ)]. This study has provided for the first time a comprehensive matrix of genetic correlations among these 14 wool, growth and reproduction traits. The large size of the data set has also provided estimates with very low standard errors. A moderate positive genetic correlation was observed between CFW and FD (0.29 +/- 0.02). YWT was positively correlated with CFW (0.23 +/- 0.04), FD (0.17 +/- 0.04) and LWEJ (0.58 +/- 0.06), while LW/EJ was negatively correlated with CFW (-0.26 +/- 0.05) and positively correlated with FD (0.06 +/- 0.04) and LS (0.68 +/- 0.04). These genetic correlations, together with the estimates of heritability and other parameters provide the basis for more accurate prediction of outcomes in complex sheep-breeding programmes designed to improve several traits.

  15. Subspace methods for identification of human ankle joint stiffness.

    PubMed

    Zhao, Y; Westwick, D T; Kearney, R E

    2011-11-01

    Joint stiffness, the dynamic relationship between the angular position of a joint and the torque acting about it, describes the dynamic, mechanical behavior of a joint during posture and movement. Joint stiffness arises from both intrinsic and reflex mechanisms, but the torques due to these mechanisms cannot be measured separately experimentally, since they appear and change together. Therefore, the direct estimation of the intrinsic and reflex stiffnesses is difficult. In this paper, we present a new, two-step procedure to estimate the intrinsic and reflex components of ankle stiffness. In the first step, a discrete-time, subspace-based method is used to estimate a state-space model for overall stiffness from the measured overall torque and then predict the intrinsic and reflex torques. In the second step, continuous-time models for the intrinsic and reflex stiffnesses are estimated from the predicted intrinsic and reflex torques. Simulations and experimental results demonstrate that the algorithm estimates the intrinsic and reflex stiffnesses accurately. The new subspace-based algorithm has three advantages over previous algorithms: 1) It does not require iteration, and therefore, will always converge to an optimal solution; 2) it provides better estimates for data with high noise or short sample lengths; and 3) it provides much more accurate results for data acquired under the closed-loop conditions, that prevail when subjects interact with compliant loads.

  16. Technical note: tree truthing: how accurate are substrate estimates in primate field studies?

    PubMed

    Bezanson, Michelle; Watts, Sean M; Jobin, Matthew J

    2012-04-01

    Field studies of primate positional behavior typically rely on ground-level estimates of substrate size, angle, and canopy location. These estimates potentially influence the identification of positional modes by the observer recording behaviors. In this study we aim to test ground-level estimates against direct measurements of support angles, diameters, and canopy heights in trees at La Suerte Biological Research Station in Costa Rica. After reviewing methods that have been used by past researchers, we provide data collected within trees that are compared to estimates obtained from the ground. We climbed five trees and measured 20 supports. Four observers collected measurements of each support from different locations on the ground. Diameter estimates varied from the direct tree measures by 0-28 cm (Mean: 5.44 ± 4.55). Substrate angles varied by 1-55° (Mean: 14.76 ± 14.02). Height in the tree was best estimated using a clinometer as estimates with a two-meter reference placed by the tree varied by 3-11 meters (Mean: 5.31 ± 2.44). We determined that the best support size estimates were those generated relative to the size of the focal animal and divided into broader categories. Support angles were best estimated in 5° increments and then checked using a Haglöf clinometer in combination with a laser pointer. We conclude that three major factors should be addressed when estimating support features: observer error (e.g., experience and distance from the target), support deformity, and how support size and angle influence the positional mode selected by a primate individual. individual. Copyright © 2012 Wiley Periodicals, Inc.

  17. ASTRAL, DRAGON and SEDAN scores predict stroke outcome more accurately than physicians.

    PubMed

    Ntaios, G; Gioulekas, F; Papavasileiou, V; Strbian, D; Michel, P

    2016-11-01

    ASTRAL, SEDAN and DRAGON scores are three well-validated scores for stroke outcome prediction. Whether these scores predict stroke outcome more accurately compared with physicians interested in stroke was investigated. Physicians interested in stroke were invited to an online anonymous survey to provide outcome estimates in randomly allocated structured scenarios of recent real-life stroke patients. Their estimates were compared to scores' predictions in the same scenarios. An estimate was considered accurate if it was within 95% confidence intervals of actual outcome. In all, 244 participants from 32 different countries responded assessing 720 real scenarios and 2636 outcomes. The majority of physicians' estimates were inaccurate (1422/2636, 53.9%). 400 (56.8%) of physicians' estimates about the percentage probability of 3-month modified Rankin score (mRS) > 2 were accurate compared with 609 (86.5%) of ASTRAL score estimates (P < 0.0001). 394 (61.2%) of physicians' estimates about the percentage probability of post-thrombolysis symptomatic intracranial haemorrhage were accurate compared with 583 (90.5%) of SEDAN score estimates (P < 0.0001). 160 (24.8%) of physicians' estimates about post-thrombolysis 3-month percentage probability of mRS 0-2 were accurate compared with 240 (37.3%) DRAGON score estimates (P < 0.0001). 260 (40.4%) of physicians' estimates about the percentage probability of post-thrombolysis mRS 5-6 were accurate compared with 518 (80.4%) DRAGON score estimates (P < 0.0001). ASTRAL, DRAGON and SEDAN scores predict outcome of acute ischaemic stroke patients with higher accuracy compared to physicians interested in stroke. © 2016 EAN.

  18. Atmospheric densities derived from CHAMP/STAR accelerometer observations

    NASA Astrophysics Data System (ADS)

    Bruinsma, S.; Tamagnan, D.; Biancale, R.

    2004-03-01

    The satellite CHAMP carries the accelerometer STAR in its payload and thanks to the GPS and SLR tracking systems accurate orbit positions can be computed. Total atmospheric density values can be retrieved from the STAR measurements, with an absolute uncertainty of 10-15%, under the condition that an accurate radiative force model, satellite macro-model, and STAR instrumental calibration parameters are applied, and that the upper-atmosphere winds are less than 150 m/ s. The STAR calibration parameters (i.e. a bias and a scale factor) of the tangential acceleration were accurately determined using an iterative method, which required the estimation of the gravity field coefficients in several iterations, the first result of which was the EIGEN-1S (Geophys. Res. Lett. 29 (14) (2002) 10.1029) gravity field solution. The procedure to derive atmospheric density values is as follows: (1) a reduced-dynamic CHAMP orbit is computed, the positions of which are used as pseudo-observations, for reference purposes; (2) a dynamic CHAMP orbit is fitted to the pseudo-observations using calibrated STAR measurements, which are saved in a data file containing all necessary information to derive density values; (3) the data file is used to compute density values at each orbit integration step, for which accurate terrestrial coordinates are available. This procedure was applied to 415 days of data over a total period of 21 months, yielding 1.2 million useful observations. The model predictions of DTM-2000 (EGS XXV General Assembly, Nice, France), DTM-94 (J. Geod. 72 (1998) 161) and MSIS-86 (J. Geophys. Res. 92 (1987) 4649) were evaluated by analysing the density ratios (i.e. "observed" to "computed" ratio) globally, and as functions of solar activity, geographical position and season. The global mean of the density ratios showed that the models underestimate density by 10-20%, with an rms of 16-20%. The binning as a function of local time revealed that the diurnal and semi-diurnal components are too strong in the DTM models, while all three models model the latitudinal gradient inaccurately. Using DTM-2000 as a priori, certain model coefficients were re-estimated using the STAR-derived densities, yielding the DTM-STAR test model. The mean and rms of the global density ratios of this preliminary model are 1.00 and 15%, respectively, while the tidal and latitudinal modelling errors become small. This test model is only representative of high solar activity conditions, while the seasonal effect is probably not estimated accurately due to correlation with the solar activity effect. At least one more year of data is required to separate the seasonal effect from the solar activity effect, and data taken under low solar activity conditions must also be assimilated to construct a model representative under all circumstances.

  19. A LEO Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes.

  20. Prognostic Utility of the 21-Gene Assay in Hormone Receptor–Positive Operable Breast Cancer Compared With Classical Clinicopathologic Features

    PubMed Central

    Goldstein, Lori J.; Gray, Robert; Badve, Sunil; Childs, Barrett H.; Yoshizawa, Carl; Rowley, Steve; Shak, Steven; Baehner, Frederick L.; Ravdin, Peter M.; Davidson, Nancy E.; Sledge, George W.; Perez, Edith A.; Shulman, Lawrence N.; Martino, Silvana; Sparano, Joseph A.

    2008-01-01

    Purpose Adjuvant! is a standardized validated decision aid that projects outcomes in operable breast cancer based on classical clinicopathologic features and therapy. Genomic classifiers offer the potential to more accurately identify individuals who benefit from chemotherapy than clinicopathologic features. Patients and Methods A sample of 465 patients with hormone receptor (HR) –positive breast cancer with zero to three positive axillary nodes who did (n = 99) or did not have recurrence after chemohormonal therapy had tumor tissue evaluated using a 21-gene assay. Histologic grade and HR expression were evaluated locally and in a central laboratory. Results Recurrence Score (RS) was a highly significant predictor of recurrence, including node-negative and node-positive disease (P < .001 for both) and when adjusted for other clinical variables. RS also predicted recurrence more accurately than clinical variables when integrated by an algorithm modeled after Adjuvant! that was adjusted to 5-year outcomes. The 5-year recurrence rate was only 5% or less for the estimated 46% of patients who have a low RS (< 18). Conclusion The 21-gene assay was a more accurate predictor of relapse than standard clinical features for individual patients with HR-positive operable breast cancer treated with chemohormonal therapy and provides information that is complementary to features typically used in anatomic staging, such as tumor size and lymph node involvement. The 21-gene assay may be used to select low-risk patients for abbreviated chemotherapy regimens similar to those used in our study or high-risk patients for more aggressive regimens or clinical trials evaluating novel treatments. PMID:18678838

  1. Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features.

    PubMed

    Goldstein, Lori J; Gray, Robert; Badve, Sunil; Childs, Barrett H; Yoshizawa, Carl; Rowley, Steve; Shak, Steven; Baehner, Frederick L; Ravdin, Peter M; Davidson, Nancy E; Sledge, George W; Perez, Edith A; Shulman, Lawrence N; Martino, Silvana; Sparano, Joseph A

    2008-09-01

    Adjuvant! is a standardized validated decision aid that projects outcomes in operable breast cancer based on classical clinicopathologic features and therapy. Genomic classifiers offer the potential to more accurately identify individuals who benefit from chemotherapy than clinicopathologic features. A sample of 465 patients with hormone receptor (HR) -positive breast cancer with zero to three positive axillary nodes who did (n = 99) or did not have recurrence after chemohormonal therapy had tumor tissue evaluated using a 21-gene assay. Histologic grade and HR expression were evaluated locally and in a central laboratory. Recurrence Score (RS) was a highly significant predictor of recurrence, including node-negative and node-positive disease (P < .001 for both) and when adjusted for other clinical variables. RS also predicted recurrence more accurately than clinical variables when integrated by an algorithm modeled after Adjuvant! that was adjusted to 5-year outcomes. The 5-year recurrence rate was only 5% or less for the estimated 46% of patients who have a low RS (< 18). The 21-gene assay was a more accurate predictor of relapse than standard clinical features for individual patients with HR-positive operable breast cancer treated with chemohormonal therapy and provides information that is complementary to features typically used in anatomic staging, such as tumor size and lymph node involvement. The 21-gene assay may be used to select low-risk patients for abbreviated chemotherapy regimens similar to those used in our study or high-risk patients for more aggressive regimens or clinical trials evaluating novel treatments.

  2. Starspots and Activity of the Flare Star GJ 1243

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.; Dmitrienko, E. S.

    2018-04-01

    The photometric variability of the uniqueMdwarf flare star GJ 1243 (KIC 9726699) is investigated using the most complete set of observationalmaterial obtained with the Kepler Space Telescope. The analysis is based on 49 487 individual brightness measurements obtained during an interval of 1460 days (nearly four years). The periodicity of the brightness variations with the period P phot = 0.59261 ± 0.00060d is confirmed. The temperature inhomogeneities on the stellar surface reconstructed from the light curve are used to drive maps of these surface-temperature inhomogeneities (of the filling factor f). The resulting maps are used to determine the positions of active regions. Analysis of the surface-temperature maps for GJ 1243 led to the conclusion that the positions of spots on the stellar surface displayed appreciable evolution during the analyzed time interval. The maximum value for the lower limit on the differentialrotation parameter ΔΩ is 0.0022 rad/day. This more accurate estimate of ΔΩ is lower than the values presented earlier by Davenport et al. [1] (0.0058 and 0.0036 rad/day), due to the more accurate account of variations in the positions of the most active longitude in the current study. However, the differentialrotation estimate obtained in [1] using a method based on fitting the evolution of spots using twodimensional Gaussian functions essentially coincides with the new estimate presented here. The fractional area of the total spotted surface S of the star during the observing interval considered varied from 7 to 2%. The amplitude of the brightness variability of the star slowly decreased, varying in the range 1.6-0.5%. Overall, the position of GJ 1243 in spottedness-age, spottedness-rotation period, and spottedness-Rossby number diagrams agrees very well with the general character of the dependences displayed in earlier studies of M dwarfs.

  3. The accuracy of assessment of walking distance in the elective spinal outpatients setting.

    PubMed

    Okoro, Tosan; Qureshi, Assad; Sell, Beulah; Sell, Philip

    2010-02-01

    Self reported walking distance is a clinically relevant measure of function. The aim of this study was to define patient accuracy and understand factors that might influence perceived walking distance in an elective spinal outpatients setting. A prospective cohort study. 103 patients were asked to perform one test of distance estimation and 2 tests of functional distance perception using pre-measured landmarks. Standard spine specific outcomes included the patient reported claudication distance, Oswestry disability index (ODI), Low Back Outcome Score (LBOS), visual analogue score (VAS) for leg and back, and other measures. There are over-estimators and under-estimators. Overall, the accuracy to within 9.14 metres (m) (10 yards) was poor at only 5% for distance estimation and 40% for the two tests of functional distance perception. Distance: Actual distance 111 m; mean response 245 m (95% CI 176.3-314.7), Functional test 1 actual distance 29.2 m; mean response 71.7 m (95% CI 53.6-88.9) Functional test 2 actual distance 19.6 m; mean response 47.4 m (95% CI 35.02-59.95). Surprisingly patients over 60 years of age (n = 43) are twice as accurate with each test performed compared to those under 60 (n = 60) (average 70% overestimation compared to 140%; p = 0.06). Patients in social class I (n = 18) were more accurate than those in classes II-V (n = 85): There was a positive correlation between poor accuracy and increasing MZD (Pearson's correlation coefficient 0.250; p = 0.012). ODI, LBOS and other parameters measured showed no correlation. Subjective distance perception and estimation is poor in this population. Patients over 60 and those with a professional background are more accurate but still poor.

  4. A User Guide for Smoothing Air Traffic Radar Data

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E.; Paielli, Russell A.

    2014-01-01

    Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.

  5. Leadership development in a professional medical society using 360-degree survey feedback to assess emotional intelligence.

    PubMed

    Gregory, Paul J; Robbins, Benjamin; Schwaitzberg, Steven D; Harmon, Larry

    2017-09-01

    The current research evaluated the potential utility of a 360-degree survey feedback program for measuring leadership quality in potential committee leaders of a professional medical association (PMA). Emotional intelligence as measured by the extent to which self-other agreement existed in the 360-degree survey ratings was explored as a key predictor of leadership quality in the potential leaders. A non-experimental correlational survey design was implemented to assess the variation in leadership quality scores across the sample of potential leaders. A total of 63 of 86 (76%) of those invited to participate did so. All potential leaders received feedback from PMA Leadership, PMA Colleagues, and PMA Staff and were asked to complete self-ratings regarding their behavior. Analyses of variance revealed a consistent pattern of results as Under-Estimators and Accurate Estimators-Favorable were rated significantly higher than Over-Estimators in several leadership behaviors. Emotional intelligence as conceptualized in this study was positively related to overall performance ratings of potential leaders. The ever-increasing roles and potential responsibilities for PMAs suggest that these organizations should consider multisource performance reviews as these potential future PMA executives rise through their organizations to assume leadership positions with profound potential impact on healthcare. The current findings support the notion that potential leaders who demonstrated a humble pattern or an accurate pattern of self-rating scored significantly higher in their leadership, teamwork, and interpersonal/communication skills than those with an aggrandizing self-rating.

  6. Multiple-hit parameter estimation in monolithic detectors.

    PubMed

    Hunter, William C J; Barrett, Harrison H; Lewellen, Tom K; Miyaoka, Robert S

    2013-02-01

    We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%-12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied.

  7. Modeling the utility of binaural cues for underwater sound localization.

    PubMed

    Schneider, Jennifer N; Lloyd, David R; Banks, Patchouly N; Mercado, Eduardo

    2014-06-01

    The binaural cues used by terrestrial animals for sound localization in azimuth may not always suffice for accurate sound localization underwater. The purpose of this research was to examine the theoretical limits of interaural timing and level differences available underwater using computational and physical models. A paired-hydrophone system was used to record sounds transmitted underwater and recordings were analyzed using neural networks calibrated to reflect the auditory capabilities of terrestrial mammals. Estimates of source direction based on temporal differences were most accurate for frequencies between 0.5 and 1.75 kHz, with greater resolution toward the midline (2°), and lower resolution toward the periphery (9°). Level cues also changed systematically with source azimuth, even at lower frequencies than expected from theoretical calculations, suggesting that binaural mechanical coupling (e.g., through bone conduction) might, in principle, facilitate underwater sound localization. Overall, the relatively limited ability of the model to estimate source position using temporal and level difference cues underwater suggests that animals such as whales may use additional cues to accurately localize conspecifics and predators at long distances. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Extrinsic Calibration of Camera Networks Based on Pedestrians

    PubMed Central

    Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; Van Haerenborgh, Dirk; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried

    2016-01-01

    In this paper, we propose a novel extrinsic calibration method for camera networks by analyzing tracks of pedestrians. First of all, we extract the center lines of walking persons by detecting their heads and feet in the camera images. We propose an easy and accurate method to estimate the 3D positions of the head and feet w.r.t. a local camera coordinate system from these center lines. We also propose a RANSAC-based orthogonal Procrustes approach to compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion. Finally, we refine the extrinsic calibration matrices using a method that minimizes the reprojection error. While existing state-of-the-art calibration methods explore epipolar geometry and use image positions directly, the proposed method first computes 3D positions per camera and then fuses the data. This results in simpler computations and a more flexible and accurate calibration method. Another advantage of our method is that it can also handle the case of persons walking along straight lines, which cannot be handled by most of the existing state-of-the-art calibration methods since all head and feet positions are co-planar. This situation often happens in real life. PMID:27171080

  9. Estimating snow water equivalent from GPS vertical site-position observations in the western United States

    PubMed Central

    Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S

    2013-01-01

    [1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442

  10. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less

  11. Fitting statistical distributions to sea duck count data: implications for survey design and abundance estimation

    USGS Publications Warehouse

    Zipkin, Elise F.; Leirness, Jeffery B.; Kinlan, Brian P.; O'Connell, Allan F.; Silverman, Emily D.

    2014-01-01

    Determining appropriate statistical distributions for modeling animal count data is important for accurate estimation of abundance, distribution, and trends. In the case of sea ducks along the U.S. Atlantic coast, managers want to estimate local and regional abundance to detect and track population declines, to define areas of high and low use, and to predict the impact of future habitat change on populations. In this paper, we used a modified marked point process to model survey data that recorded flock sizes of Common eiders, Long-tailed ducks, and Black, Surf, and White-winged scoters. The data come from an experimental aerial survey, conducted by the United States Fish & Wildlife Service (USFWS) Division of Migratory Bird Management, during which east-west transects were flown along the Atlantic Coast from Maine to Florida during the winters of 2009–2011. To model the number of flocks per transect (the points), we compared the fit of four statistical distributions (zero-inflated Poisson, zero-inflated geometric, zero-inflated negative binomial and negative binomial) to data on the number of species-specific sea duck flocks that were recorded for each transect flown. To model the flock sizes (the marks), we compared the fit of flock size data for each species to seven statistical distributions: positive Poisson, positive negative binomial, positive geometric, logarithmic, discretized lognormal, zeta and Yule–Simon. Akaike’s Information Criterion and Vuong’s closeness tests indicated that the negative binomial and discretized lognormal were the best distributions for all species for the points and marks, respectively. These findings have important implications for estimating sea duck abundances as the discretized lognormal is a more skewed distribution than the Poisson and negative binomial, which are frequently used to model avian counts; the lognormal is also less heavy-tailed than the power law distributions (e.g., zeta and Yule–Simon), which are becoming increasingly popular for group size modeling. Choosing appropriate statistical distributions for modeling flock size data is fundamental to accurately estimating population summaries, determining required survey effort, and assessing and propagating uncertainty through decision-making processes.

  12. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system

    PubMed Central

    Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A

    2017-01-01

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26-cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients. PMID:28033119

  13. StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images.

    PubMed

    De Backer, A; van den Bos, K H W; Van den Broek, W; Sijbers, J; Van Aert, S

    2016-12-01

    An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greig, A., E-mail: amelia.greig@anu.edu.au; Charles, C.; Boswell, R. W.

    2016-01-15

    Rovibrational spectroscopy band fitting of the nitrogen (N{sub 2}) second positive system is a technique used to estimate the neutral gas temperature of N{sub 2} discharges, or atomic discharges with trace amounts of a N{sub 2} added. For mixtures involving argon and N{sub 2}, resonant energy transfer between argon metastable atoms (Ar*) and N{sub 2} molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N{sub 2} mixtures, for N{sub 2} percentages from 1% to 100%. Neutral gas temperature estimates are highermore » than expected for mixtures involving greater than 5% N{sub 2} addition, but are reasonable for argon with less than 5% N{sub 2} addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N{sub 2} addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge.« less

  15. Multi-Source Sensor Fusion for Small Unmanned Aircraft Systems Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Cook, Brandon; Cohen, Kelly

    2017-01-01

    As the applications for using small Unmanned Aircraft Systems (sUAS) beyond visual line of sight (BVLOS) continue to grow in the coming years, it is imperative that intelligent sensor fusion techniques be explored. In BVLOS scenarios the vehicle position must accurately be tracked over time to ensure no two vehicles collide with one another, no vehicle crashes into surrounding structures, and to identify off-nominal scenarios. Therefore, in this study an intelligent systems approach is used to estimate the position of sUAS given a variety of sensor platforms, including, GPS, radar, and on-board detection hardware. Common research challenges include, asynchronous sensor rates and sensor reliability. In an effort to realize these challenges, techniques such as a Maximum a Posteriori estimation and a Fuzzy Logic based sensor confidence determination are used.

  16. Identifying profiles of actual and perceived motor competence among adolescents: associations with motivation, physical activity, and sports participation.

    PubMed

    De Meester, An; Maes, Jolien; Stodden, David; Cardon, Greet; Goodway, Jacqueline; Lenoir, Matthieu; Haerens, Leen

    2016-11-01

    The present study identified adolescents' motor competence (MC)-based profiles (e.g., high actual and low perceived MC), and accordingly investigated differences in motivation for physical education (PE), physical activity (PA) levels, and sports participation between profiles by using regression analyses. Actual MC was measured with the Körperkoordinationstest für Kinder. Adolescents (n = 215; 66.0% boys; mean age = 13.64 ± .58 years) completed validated questionnaires to assess perceived MC, motivation for PE, PA-levels, and sports participation. Actual and perceived MC were only moderately correlated and cluster analyses identified four groups. Two groups of overestimators (low - overestimation, average - overestimation) were identified (51%), who particularly displayed better motivation for PE when compared to their peers who accurately estimated themselves (low - accurate, average - accurate). Moreover, adolescents with low actual MC, but high perceived MC were significantly more active than adolescents with low actual MC who accurately estimated themselves. Results pointed in the same direction for organised sports participation. Underestimators were not found in the current sample, which is positive as underestimation might negatively influence adolescents' motivation to achieve and persist in PA and sports. In conclusion, results emphasise that developing perceived MC, especially among adolescents with low levels of actual MC, seems crucial to stimulate motivation for PE, and engagement in PA and sports.

  17. A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  18. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    PubMed

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  19. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning.

    PubMed

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-05-25

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles.

  20. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning

    PubMed Central

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-01-01

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles. PMID:27231917

  1. Computed tomographic imaging of stapes implants.

    PubMed

    Warren, Frank M; Riggs, Sterling; Wiggins, Richard H

    2008-08-01

    Computed tomographic (CT) imaging of stapes prostheses is inaccurate. Clinical situations arise in which it would be helpful to determine the depth of penetration of a stapes prosthesis into the vestibule. The accuracy of CT imaging for this purpose has not been defined. This study was aimed to determine the accuracy of CT imaging to predict the depth of intrusion of stapes prostheses into the vestibule. The measurement of stapes prostheses by CT scan was compared with physical measurements in 8 cadaveric temporal bones. The depth of intrusion into the vestibule of the piston was underestimated in specimens with the fluoroplastic piston by a mean of 0.5 mm when compared with the measurements obtained in the temporal bones. The depth of penetration of the stainless steel implant was overestimated by 0.5 mm when compared with that in the temporal bone. The type of implant must be taken into consideration when estimating the depth of penetration into the vestibule using CT scanning because the imaging characteristics of the implanted materials differ. The position of fluoroplastic pistons cannot be accurately measured in the vestibule. Metallic implants are well visualized, and measurements exceeding 2.2 mm increase the suspicion of otolithic impingement. Special reconstructions along the length of the piston may be more accurate in estimating the position of stapes implants.

  2. Does exposure to simulated patient cases improve accuracy of clinicians' predictive value estimates of diagnostic test results? A within-subjects experiment at St Michael's Hospital, Toronto, Canada.

    PubMed

    Armstrong, Bonnie; Spaniol, Julia; Persaud, Nav

    2018-02-13

    Clinicians often overestimate the probability of a disease given a positive test result (positive predictive value; PPV) and the probability of no disease given a negative test result (negative predictive value; NPV). The purpose of this study was to investigate whether experiencing simulated patient cases (ie, an 'experience format') would promote more accurate PPV and NPV estimates compared with a numerical format. Participants were presented with information about three diagnostic tests for the same fictitious disease and were asked to estimate the PPV and NPV of each test. Tests varied with respect to sensitivity and specificity. Information about each test was presented once in the numerical format and once in the experience format. The study used a 2 (format: numerical vs experience) × 3 (diagnostic test: gold standard vs low sensitivity vs low specificity) within-subjects design. The study was completed online, via Qualtrics (Provo, Utah, USA). 50 physicians (12 clinicians and 38 residents) from the Department of Family and Community Medicine at St Michael's Hospital in Toronto, Canada, completed the study. All participants had completed at least 1 year of residency. Estimation accuracy was quantified by the mean absolute error (MAE; absolute difference between estimate and true predictive value). PPV estimation errors were larger in the numerical format (MAE=32.6%, 95% CI 26.8% to 38.4%) compared with the experience format (MAE=15.9%, 95% CI 11.8% to 20.0%, d =0.697, P<0.001). Likewise, NPV estimation errors were larger in the numerical format (MAE=24.4%, 95% CI 14.5% to 34.3%) than in the experience format (MAE=11.0%, 95% CI 6.5% to 15.5%, d =0.303, P=0.015). Exposure to simulated patient cases promotes accurate estimation of predictive values in clinicians. This finding carries implications for diagnostic training and practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Hip dysplasia in labrador retrievers: the effects of age at scoring.

    PubMed

    Wood, J L N; Lakhani, K H

    2003-01-11

    Selective breeding policies for preventing or controlling hip dysplasia require accurate estimates of parameters in offspring/parental relationships and estimates of heritability. Recent literature includes some major studies of pedigree breeds of dog, using data derived from the hip dysplasia screening scheme set up by the British Veterinary Association. These publications have not taken into account the age of the animals when they were screened. This study analyses the data from 29,213 labrador retrievers whose ages were known when they screened. The mean hip score of the dogs was positively and significantly correlated with their age. If this relationship with age is ignored, various offspring/parental relationships and the estimates of heritability are likely to be distorted.

  4. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion

    PubMed Central

    Wood, Nathan A.; del Agua, Diego Moral; Zenati, Marco A.; Riviere, Cameron N.

    2012-01-01

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described. PMID:23066511

  5. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion.

    PubMed

    Wood, Nathan A; Del Agua, Diego Moral; Zenati, Marco A; Riviere, Cameron N

    2011-12-05

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described.

  6. A minimalist approach to bias estimation for passive sensor measurements with targets of opportunity

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov

    2013-09-01

    In order to carry out data fusion, registration error correction is crucial in multisensor systems. This requires estimation of the sensor measurement biases. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. This paper provides a solution for bias estimation for the minimum number of passive sensors (two), when only targets of opportunity are available. The sensor measurements are assumed time-coincident (synchronous) and perfectly associated. Since these sensors provide only line of sight (LOS) measurements, the formation of a single composite Cartesian measurement obtained from fusing the LOS measurements from different sensors is needed to avoid the need for nonlinear filtering. We evaluate the Cramer-Rao Lower Bound (CRLB) on the covariance of the bias estimate, i.e., the quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.

  7. A Maximum NEC Criterion for Compton Collimation to Accurately Identify True Coincidences in PET

    PubMed Central

    Chinn, Garry; Levin, Craig S.

    2013-01-01

    In this work, we propose a new method to increase the accuracy of identifying true coincidence events for positron emission tomography (PET). This approach requires 3-D detectors with the ability to position each photon interaction in multi-interaction photon events. When multiple interactions occur in the detector, the incident direction of the photon can be estimated using the Compton scatter kinematics (Compton Collimation). If the difference between the estimated incident direction of the photon relative to a second, coincident photon lies within a certain angular range around colinearity, the line of response between the two photons is identified as a true coincidence and used for image reconstruction. We present an algorithm for choosing the incident photon direction window threshold that maximizes the noise equivalent counts of the PET system. For simulated data, the direction window removed 56%–67% of random coincidences while retaining > 94% of true coincidences from image reconstruction as well as accurately extracted 70% of true coincidences from multiple coincidences. PMID:21317079

  8. Localization of premature ventricular contractions from the papillary muscles using the standard 12-lead electrocardiogram: a feasibility study using a novel cardiac isochrone positioning system.

    PubMed

    van Dam, Peter M; Boyle, Noel G; Laks, Michael M; Tung, Roderick

    2016-12-01

    The precise localization of the site of origin of a premature ventricular contraction (PVC) prior to ablation can facilitate the planning and execution of the electrophysiological procedure. In clinical practice, the targeted ablation site is estimated from the standard 12-lead ECG. The accuracy of this qualitative estimation has limitations, particularly in the localization of PVCs originating from the papillary muscles. Clinical available electrocardiographic imaging (ECGi) techniques that incorporate patient-specific anatomy may improve the localization of these PVCs, but require body surface maps with greater specificity for the epicardium. The purpose of this report is to demonstrate that a novel cardiac isochrone positioning system (CIPS) program can accurately detect the specific location of the PVC on the papillary muscle using only a 12-lead ECG. Cardiac isochrone positioning system uses three components: (i) endocardial and epicardial cardiac anatomy and torso geometry derived from MRI, (ii) the patient-specific electrode positions derived from an MRI model registered 3D image, and (iii) the 12-lead ECG. CIPS localizes the PVC origin by matching the anatomical isochrone vector with the ECG vector. The predicted PVC origin was compared with the site of successful ablation or stimulation. Three patients who underwent electrophysiological mapping and ablation of PVCs originating from the papillary muscles were studied. CIPS localized the PVC origin for all three patients to the correct papillary muscle and specifically to the base, mid, or apical region. A simplified form of ECGi utilizing only 12 standard electrocardiographic leads may facilitate accurate localization of the origin of papillary muscle PVCs. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  9. Development of Methods for Cross-Sectional HIV Incidence Estimation in a Large, Community Randomized Trial

    PubMed Central

    Donnell, Deborah; Komárek, Arnošt; Omelka, Marek; Mullis, Caroline E.; Szekeres, Greg; Piwowar-Manning, Estelle; Fiamma, Agnes; Gray, Ronald H.; Lutalo, Tom; Morrison, Charles S.; Salata, Robert A.; Chipato, Tsungai; Celum, Connie; Kahle, Erin M.; Taha, Taha E.; Kumwenda, Newton I.; Karim, Quarraisha Abdool; Naranbhai, Vivek; Lingappa, Jairam R.; Sweat, Michael D.; Coates, Thomas; Eshleman, Susan H.

    2013-01-01

    Background Accurate methods of HIV incidence determination are critically needed to monitor the epidemic and determine the population level impact of prevention trials. One such trial, Project Accept, a Phase III, community-randomized trial, evaluated the impact of enhanced, community-based voluntary counseling and testing on population-level HIV incidence. The primary endpoint of the trial was based on a single, cross-sectional, post-intervention HIV incidence assessment. Methods and Findings Test performance of HIV incidence determination was evaluated for 403 multi-assay algorithms [MAAs] that included the BED capture immunoassay [BED-CEIA] alone, an avidity assay alone, and combinations of these assays at different cutoff values with and without CD4 and viral load testing on samples from seven African cohorts (5,325 samples from 3,436 individuals with known duration of HIV infection [1 month to >10 years]). The mean window period (average time individuals appear positive for a given algorithm) and performance in estimating an incidence estimate (in terms of bias and variance) of these MAAs were evaluated in three simulated epidemic scenarios (stable, emerging and waning). The power of different test methods to detect a 35% reduction in incidence in the matched communities of Project Accept was also assessed. A MAA was identified that included BED-CEIA, the avidity assay, CD4 cell count, and viral load that had a window period of 259 days, accurately estimated HIV incidence in all three epidemic settings and provided sufficient power to detect an intervention effect in Project Accept. Conclusions In a Southern African setting, HIV incidence estimates and intervention effects can be accurately estimated from cross-sectional surveys using a MAA. The improved accuracy in cross-sectional incidence testing that a MAA provides is a powerful tool for HIV surveillance and program evaluation. PMID:24236054

  10. Kinematic Measurement of Knee Prosthesis from Single-Plane Projection Images

    NASA Astrophysics Data System (ADS)

    Hirokawa, Shunji; Ariyoshi, Shogo; Takahashi, Kenji; Maruyama, Koichi

    In this paper, the measurement of 3D motion from 2D perspective projections of knee prosthesis is described. The technique reported by Banks and Hodge was further developed in this study. The estimation was performed in two steps. The first-step estimation was performed on the assumption of orthogonal projection. Then, the second-step estimation was subsequently carried out based upon the perspective projection to accomplish more accurate estimation. The simulation results have demonstrated that the technique archived sufficient accuracies of position/orientation estimation for prosthetic kinematics. Then we applied our algorithm to the CCD images, thereby examining the influences of various artifacts, possibly incorporated through an imaging process, on the estimation accuracies. We found that accuracies in the experiment were influenced mainly by the geometric discrepancies between the prosthesis component and computer generated model and by the spacial inconsistencies between the coordinate axes of the positioner and that of the computer model. However, we verified that our algorithm could achieve proper and consistent estimation even for the CCD images.

  11. Statistical processing of large image sequences.

    PubMed

    Khellah, F; Fieguth, P; Murray, M J; Allen, M

    2005-01-01

    The dynamic estimation of large-scale stochastic image sequences, as frequently encountered in remote sensing, is important in a variety of scientific applications. However, the size of such images makes conventional dynamic estimation methods, for example, the Kalman and related filters, impractical. In this paper, we present an approach that emulates the Kalman filter, but with considerably reduced computational and storage requirements. Our approach is illustrated in the context of a 512 x 512 image sequence of ocean surface temperature. The static estimation step, the primary contribution here, uses a mixture of stationary models to accurately mimic the effect of a nonstationary prior, simplifying both computational complexity and modeling. Our approach provides an efficient, stable, positive-definite model which is consistent with the given correlation structure. Thus, the methods of this paper may find application in modeling and single-frame estimation.

  12. A Role for MST Neurons in Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, Leland Scott; Perrone, J. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    A template model of human visual self-motion perception (Perrone, JOSA, 1992; Perrone & Stone, Vis. Res., in press), which uses neurophysiologically realistic "heading detectors", is consistent with numerous human psychophysical results (Warren & Hannon, Nature, 1988; Stone & Perrone, Neuro. Abstr., 1991) including the failure of humans to estimate their heading (direction of forward translation) accurately under certain visual conditions (Royden et al., Nature, 1992). We tested the model detectors with stimuli used by others in- single-unit studies. The detectors showed emergent properties similar to those of MST neurons: 1) Sensitivity to non-preferred flow. Each detector is tuned to a specific combination of flow components and its response is systematically reduced by the addition of nonpreferred flow (Orban et al., PNAS, 1992), and 2) Position invariance. The detectors maintain their apparent preference for particular flow components over large regions of their receptive fields (e.g. Duffy & Wurtz, J. Neurophys., 1991; Graziano et al., J. Neurosci., 1994). It has been argued that this latter property is incompatible with MST playing a role in heading perception. The model however demonstrates how neurons with the above response properties could still support accurate heading estimation within extrastriate cortical maps.

  13. Reasoning about geography.

    PubMed

    Friedman, A; Brown, N R

    2000-06-01

    To understand the nature and etiology of biases in geographical judgments, the authors asked people to estimate latitudes (Experiments 1 and 2) and longitudes (Experiments 3 and 4) of cities throughout the Old and New Worlds. They also examined how people's biased geographical judgments change after they receive accurate information ("seeds") about actual locations. Location profiles constructed from the pre- and postseeding location estimates conveyed detailed information about the representations underlying geography knowledge, including the subjective positioning and subregionalization of regions within continents; differential seeding effects revealed between-region dependencies. The findings implicate an important role for conceptual knowledge and plausible-reasoning processes in tasks that use subjective geographical information.

  14. Geodetic positioning of the Aerospace Electronics Research Lab (ERL) Osborne Time Transfer Receiver (TTR) using the GPS NAVSTAR Block I satellites

    NASA Technical Reports Server (NTRS)

    Liu, Anthony S.

    1990-01-01

    Aerospace has routinely processed the Osborne Time Transfer Receiver (TTR) data for the purpose of monitoring the performance of ground and GPS atomic clocks in near real-time with on-line residual displays and characterizing clock stability with Allan Variance calculations. Recently, Aerospace added the ability to estimate the TTR's location by differentially correcting the TTR's location in the WGS84 reference system. This new feature is exercised on a set of TTR clock phase data and Sub-meter accurate station location estimates of the TTR at the Aerospace Electronic Research Lab (ERL) are obtained.

  15. Interpreting ambiguous 'trace' results in Schistosoma mansoni CCA Tests: Estimating sensitivity and specificity of ambiguous results with no gold standard.

    PubMed

    Clements, Michelle N; Donnelly, Christl A; Fenwick, Alan; Kabatereine, Narcis B; Knowles, Sarah C L; Meité, Aboulaye; N'Goran, Eliézer K; Nalule, Yolisa; Nogaro, Sarah; Phillips, Anna E; Tukahebwa, Edridah Muheki; Fleming, Fiona M

    2017-12-01

    The development of new diagnostics is an important tool in the fight against disease. Latent Class Analysis (LCA) is used to estimate the sensitivity and specificity of tests in the absence of a gold standard. The main field diagnostic for Schistosoma mansoni infection, Kato-Katz (KK), is not very sensitive at low infection intensities. A point-of-care circulating cathodic antigen (CCA) test has been shown to be more sensitive than KK. However, CCA can return an ambiguous 'trace' result between 'positive' and 'negative', and much debate has focused on interpretation of traces results. We show how LCA can be extended to include ambiguous trace results and analyse S. mansoni studies from both Côte d'Ivoire (CdI) and Uganda. We compare the diagnostic performance of KK and CCA and the observed results by each test to the estimated infection prevalence in the population. Prevalence by KK was higher in CdI (13.4%) than in Uganda (6.1%), but prevalence by CCA was similar between countries, both when trace was assumed to be negative (CCAtn: 11.7% in CdI and 9.7% in Uganda) and positive (CCAtp: 20.1% in CdI and 22.5% in Uganda). The estimated sensitivity of CCA was more consistent between countries than the estimated sensitivity of KK, and estimated infection prevalence did not significantly differ between CdI (20.5%) and Uganda (19.1%). The prevalence by CCA with trace as positive did not differ significantly from estimates of infection prevalence in either country, whereas both KK and CCA with trace as negative significantly underestimated infection prevalence in both countries. Incorporation of ambiguous results into an LCA enables the effect of different treatment thresholds to be directly assessed and is applicable in many fields. Our results showed that CCA with trace as positive most accurately estimated infection prevalence.

  16. Multiple-Hit Parameter Estimation in Monolithic Detectors

    PubMed Central

    Barrett, Harrison H.; Lewellen, Tom K.; Miyaoka, Robert S.

    2014-01-01

    We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%–12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied. PMID:23193231

  17. Testing the Relationships between Diversification, Species Richness, and Trait Evolution.

    PubMed

    Kozak, Kenneth H; Wiens, John J

    2016-11-01

    Understanding which traits drive species diversification is essential for macroevolutionary studies and to understand patterns of species richness among clades. An important tool for testing if traits influence diversification is to estimate rates of net diversification for each clade, and then test for a relationship between traits and diversification rates among clades. However, this general approach has become very controversial. Numerous papers have now stated that it is inappropriate to analyze net diversification rates in groups in which clade richness is not positively correlated with clade age. Similarly, some have stated that variation in net diversification rates does not explain variation in species richness patterns among clades across the Tree of Life. Some authors have also suggested that strong correlations between richness and diversification rates are a statistical artifact and effectively inevitable. If this latter point is true, then correlations between richness and diversification rates would be uninformative (or even misleading) for identifying how much variation in species richness among clades is explained by variation in net diversification rates. Here, we use simulations (based on empirical data for plethodontid salamanders) to address three main questions. First, how is variation in net diversification rates among clades related to the relationship between clade age and species richness? Second, how accurate are these net diversification rate estimators, and does the age-richness relationship have any relevance to their accuracy? Third, is a relationship between species richness and diversification rates an inevitable, statistical artifact? Our simulations show that strong, positive age-richness relationships arise when diversification rates are invariant among clades, whereas realistic variation in diversification rates among clades frequently disrupts this relationship. Thus, a significant age-richness relationship should not be a requirement for utilizing net diversification rates in macroevolutionary studies. Moreover, we find no difference in the accuracy of net diversification rate estimators between conditions in which there are strong, positive relationships between clade age and richness and conditions in which these strong relationships are absent. We find that net diversification rate estimators are reasonably accurate under many conditions (true and estimated rates are strongly corrrelated, and typically differ by ∼10-20%), but become more accurate when clades are older and less accurate when using incorrect assumptions about extinction. We also find that significant relationships between richness and diversification rates fail to arise under many conditions, especially when there are faster rates in younger clades. Therefore, a significant relationship between richness and diversification rates is not inevitable. Given this latter result, we suggest that relationships between richness and diversification should be tested for when attempting to explain the causes of richness patterns, to avoid potential misinterpretations (e.g., high diversification rates associated with low-richness clades). Similarly, our results also provide some support for previous studies suggesting that variation in diversification rates might explain much of the variation in species richness among major clades, based on strong relationships between clade richness and diversification rates. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Vision-Based Georeferencing of GPR in Urban Areas

    PubMed Central

    Barzaghi, Riccardo; Cazzaniga, Noemi Emanuela; Pagliari, Diana; Pinto, Livio

    2016-01-01

    Ground Penetrating Radar (GPR) surveying is widely used to gather accurate knowledge about the geometry and position of underground utilities. The sensor arrays need to be coupled to an accurate positioning system, like a geodetic-grade Global Navigation Satellite System (GNSS) device. However, in urban areas this approach is not always feasible because GNSS accuracy can be substantially degraded due to the presence of buildings, trees, tunnels, etc. In this work, a photogrammetric (vision-based) method for GPR georeferencing is presented. The method can be summarized in three main steps: tie point extraction from the images acquired during the survey, computation of approximate camera extrinsic parameters and finally a refinement of the parameter estimation using a rigorous implementation of the collinearity equations. A test under operational conditions is described, where accuracy of a few centimeters has been achieved. The results demonstrate that the solution was robust enough for recovering vehicle trajectories even in critical situations, such as poorly textured framed surfaces, short baselines, and low intersection angles. PMID:26805842

  19. A high-accuracy two-position alignment inertial navigation system for lunar rovers aided by a star sensor with a calibration and positioning function

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2016-12-01

    An integrated inertial/celestial navigation system (INS/CNS) has wide applicability in lunar rovers as it provides accurate and autonomous navigational information. Initialization is particularly vital for a INS. This paper proposes a two-position initialization method based on a standard Kalman filter. The difference between the computed star vector and the measured star vector is measured. With the aid of a star sensor and the two positions, the attitudinal and positional errors can be greatly reduced, and the biases of three gyros and accelerometers can also be estimated. The semi-physical simulation results show that the positional and attitudinal errors converge within 0.07″ and 0.1 m, respectively, when the given initial positional error is 1 km and the attitudinal error is 10°. These good results show that the proposed method can accomplish alignment, positioning and calibration functions simultaneously. Thus the proposed two-position initialization method has the potential for application in lunar rover navigation.

  20. Estimate of higher order ionospheric errors in GNSS positioning

    NASA Astrophysics Data System (ADS)

    Hoque, M. Mainul; Jakowski, N.

    2008-10-01

    Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.

  1. Metabolic Power Method: Underestimation of Energy Expenditure in Field-Sport Movements Using a Global Positioning System Tracking System.

    PubMed

    Brown, Darcy M; Dwyer, Dan B; Robertson, Samuel J; Gastin, Paul B

    2016-11-01

    The purpose of this study was to assess the validity of a global positioning system (GPS) tracking system to estimate energy expenditure (EE) during exercise and field-sport locomotor movements. Twenty-seven participants each completed a 90-min exercise session on an outdoor synthetic futsal pitch. During the exercise session, they wore a 5-Hz GPS unit interpolated to 15 Hz and a portable gas analyzer that acted as the criterion measure of EE. The exercise session was composed of alternating 5-minute exercise bouts of randomized walking, jogging, running, or a field-sport circuit (×3) followed by 10 min of recovery. One-way analysis of variance showed significant (P < .01) and very large underestimations between GPS metabolic power- derived EE and oxygen-consumption (VO 2 ) -derived EE for all field-sport circuits (% difference ≈ -44%). No differences in EE were observed for the jog (7.8%) and run (4.8%), whereas very large overestimations were found for the walk (43.0%). The GPS metabolic power EE over the entire 90-min session was significantly lower (P < .01) than the VO 2 EE, resulting in a moderate underestimation overall (-19%). The results of this study suggest that a GPS tracking system using the metabolic power model of EE does not accurately estimate EE in field-sport movements or over an exercise session consisting of mixed locomotor activities interspersed with recovery periods; however, is it able to provide a reasonably accurate estimation of EE during continuous jogging and running.

  2. A comparison of techniques for assessing farmland bumblebee populations.

    PubMed

    Wood, T J; Holland, J M; Goulson, D

    2015-04-01

    Agri-environment schemes have been implemented across the European Union in order to reverse declines in farmland biodiversity. To assess the impact of these schemes for bumblebees, accurate measures of their populations are required. Here, we compared bumblebee population estimates on 16 farms using three commonly used techniques: standardised line transects, coloured pan traps and molecular estimates of nest abundance. There was no significant correlation between the estimates obtained by the three techniques, suggesting that each technique captured a different aspect of local bumblebee population size and distribution in the landscape. Bumblebee abundance as observed on the transects was positively influenced by the number of flowers present on the transect. The number of bumblebees caught in pan traps was positively influenced by the density of flowers surrounding the trapping location and negatively influenced by wider landscape heterogeneity. Molecular estimates of the number of nests of Bombus terrestris and B. hortorum were positively associated with the proportion of the landscape covered in oilseed rape and field beans. Both direct survey techniques are strongly affected by floral abundance immediately around the survey site, potentially leading to misleading results if attempting to infer overall abundance in an area or on a farm. In contrast, whilst the molecular method suffers from an inability to detect sister pairs at low sample sizes, it appears to be unaffected by the abundance of forage and thus is the preferred survey technique.

  3. Unconstrained and Noninvasive Measurement of Swimming Behavior of Small Fish Based on Ventilatory Signals

    NASA Astrophysics Data System (ADS)

    Kitayama, Shigehisa; Soh, Zu; Hirano, Akira; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    Ventilatory signal is a kind of bioelectric signals reflecting the ventilatory conditions of fish, and has received recent attention as an indicator for assessment of water quality, since breathing is adjusted by the respiratory center according to changes in the underwater environment surrounding the fish. The signals are thus beginning to be used in bioassay systems for water examination. Other than ventilatory conditions, swimming behavior also contains important information for water examination. The conventional bioassay systems, however, only measure either ventilatory signals or swimming behavior. This paper proposes a new unconstrained and noninvasive measurement method that is capable of conducting ventilatory signal measurement and behavioral analysis of fish at the same time. The proposed method estimates the position and the velocity of a fish in free-swimming conditions using power spectrum distribution of measured ventilatory signals from multiple electrodes. This allowed the system to avoid using a camera system which requires light sources. In order to validate estimation accuracy, the position and the velocity estimated by the proposed method were compared to those obtained from video analysis. The results confirmed that the estimated error of the fish positions was within the size of fish, and the correlation coefficient between the velocities was 0.906. The proposed method thus not only can measure the ventilatory signals, but also performs behavioral analysis as accurate as using a video camera.

  4. Improved treatment of global positioning system force parameters in precise orbit determination applications

    NASA Technical Reports Server (NTRS)

    Vigue, Y.; Lichten, S. M.; Muellerschoen, R. J.; Blewitt, G.; Heflin, M. B.

    1993-01-01

    Data collected from a worldwide 1992 experiment were processed at JPL to determine precise orbits for the satellites of the Global Positioning System (GPS). A filtering technique was tested to improve modeling of solar-radiation pressure force parameters for GPS satellites. The new approach improves orbit quality for eclipsing satellites by a factor of two, with typical results in the 25- to 50-cm range. The resultant GPS-based estimates for geocentric coordinates of the tracking sites, which include the three DSN sites, are accurate to 2 to 8 cm, roughly equivalent to 3 to 10 nrad of angular measure.

  5. Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton

    PubMed Central

    Long, Yi; Du, Zhi-jiang; Wang, Wei-dong; Dong, Wei

    2016-01-01

    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353

  6. Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton.

    PubMed

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Dong, Wei

    2016-01-01

    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems.

  7. X-Ray Detection and Processing Models for Spacecraft Navigation and Timing

    NASA Technical Reports Server (NTRS)

    Sheikh, Suneel; Hanson, John

    2013-01-01

    The current primary method of deepspace navigation is the NASA Deep Space Network (DSN). High-performance navigation is achieved using Delta Differential One-Way Range techniques that utilize simultaneous observations from multiple DSN sites, and incorporate observations of quasars near the line-of-sight to a spacecraft in order to improve the range and angle measurement accuracies. Over the past four decades, x-ray astronomers have identified a number of xray pulsars with pulsed emissions having stabilities comparable to atomic clocks. The x-ray pulsar-based navigation and time determination (XNAV) system uses phase measurements from these sources to establish autonomously the position of the detector, and thus the spacecraft, relative to a known reference frame, much as the Global Positioning System (GPS) uses phase measurements from radio signals from several satellites to establish the position of the user relative to an Earth-centered fixed frame of reference. While a GPS receiver uses an antenna to detect the radio signals, XNAV uses a detector array to capture the individual xray photons from the x-ray pulsars. The navigation solution relies on detailed xray source models, signal processing, navigation and timing algorithms, and analytical tools that form the basis of an autonomous XNAV system. Through previous XNAV development efforts, some techniques have been established to utilize a pulsar pulse time-of-arrival (TOA) measurement to correct a position estimate. One well-studied approach, based upon Kalman filter methods, optimally adjusts a dynamic orbit propagation solution based upon the offset in measured and predicted pulse TOA. In this delta position estimator scheme, previously estimated values of spacecraft position and velocity are utilized from an onboard orbit propagator. Using these estimated values, the detected arrival times at the spacecraft of pulses from a pulsar are compared to the predicted arrival times defined by the pulsar s pulse timing model. A discrepancy provides an estimate of the spacecraft position offset, since an error in position will relate to the measured time offset of a pulse along the line of sight to the pulsar. XNAV researchers have been developing additional enhanced approaches to process the photon TOAs to arrive at an estimate of spacecraft position, including those using maximum-likelihood estimation, digital phase locked loops, and "single photon processing" schemes that utilize all available time data associated with each photon. Using pulsars from separate, non-coplanar locations provides range and range-rate measurements in each pulsar s direction. Combining these different pulsar measurements solves for offsets in position and velocity in three dimensions, and provides accurate overall navigation for deep space vehicles.

  8. Intensity-Based Registration for Lung Motion Estimation

    NASA Astrophysics Data System (ADS)

    Cao, Kunlin; Ding, Kai; Amelon, Ryan E.; Du, Kaifang; Reinhardt, Joseph M.; Raghavan, Madhavan L.; Christensen, Gary E.

    Image registration plays an important role within pulmonary image analysis. The task of registration is to find the spatial mapping that brings two images into alignment. Registration algorithms designed for matching 4D lung scans or two 3D scans acquired at different inflation levels can catch the temporal changes in position and shape of the region of interest. Accurate registration is critical to post-analysis of lung mechanics and motion estimation. In this chapter, we discuss lung-specific adaptations of intensity-based registration methods for 3D/4D lung images and review approaches for assessing registration accuracy. Then we introduce methods for estimating tissue motion and studying lung mechanics. Finally, we discuss methods for assessing and quantifying specific volume change, specific ventilation, strain/ stretch information and lobar sliding.

  9. Horizon Based Orientation Estimation for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Bouyssounouse, X.; Nefian, A. V.; Deans, M.; Thomas, A.; Edwards, L.; Fong, T.

    2016-01-01

    Planetary rovers navigate in extreme environments for which a Global Positioning System (GPS) is unavailable, maps are restricted to relatively low resolution provided by orbital imagery, and compass information is often lacking due to weak or not existent magnetic fields. However, an accurate rover localization is particularly important to achieve the mission success by reaching the science targets, avoiding negative obstacles visible only in orbital maps, and maintaining good communication connections with ground. This paper describes a horizon solution for precise rover orientation estimation. The detected horizon in imagery provided by the on board navigation cameras is matched with the horizon rendered over the existing terrain model. The set of rotation parameters (roll, pitch yaw) that minimize the cost function between the two horizon curves corresponds to the rover estimated pose.

  10. Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States.

    PubMed

    Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael

    2012-12-01

    A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.

  11. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    PubMed Central

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  12. Specificity control for read alignments using an artificial reference genome-guided false discovery rate.

    PubMed

    Giese, Sven H; Zickmann, Franziska; Renard, Bernhard Y

    2014-01-01

    Accurate estimation, comparison and evaluation of read mapping error rates is a crucial step in the processing of next-generation sequencing data, as further analysis steps and interpretation assume the correctness of the mapping results. Current approaches are either focused on sensitivity estimation and thereby disregard specificity or are based on read simulations. Although continuously improving, read simulations are still prone to introduce a bias into the mapping error quantitation and cannot capture all characteristics of an individual dataset. We introduce ARDEN (artificial reference driven estimation of false positives in next-generation sequencing data), a novel benchmark method that estimates error rates of read mappers based on real experimental reads, using an additionally generated artificial reference genome. It allows a dataset-specific computation of error rates and the construction of a receiver operating characteristic curve. Thereby, it can be used for optimization of parameters for read mappers, selection of read mappers for a specific problem or for filtering alignments based on quality estimation. The use of ARDEN is demonstrated in a general read mapper comparison, a parameter optimization for one read mapper and an application example in single-nucleotide polymorphism discovery with a significant reduction in the number of false positive identifications. The ARDEN source code is freely available at http://sourceforge.net/projects/arden/.

  13. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-05-23

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  14. Assessing the Impact of Vertical Land Motion on Twentieth Century Global Mean Sea Level Estimates

    NASA Technical Reports Server (NTRS)

    Hamlington, B. D.; Thompson, P.; Hammond, W. C.; Blewitt, G.; Ray, R. D.

    2016-01-01

    Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling nonuniform in both space and time, but tide gauges are also affected by vertical land motion (VLM) that creates a relative sea level change not representative of ocean variability. To allow for comparisons to the satellite altimetry estimated global mean sea level (GMSL), typically the tide gauges are corrected using glacial isostatic adjustment (GIA) models. This approach, however, does not correct other sources of VLM that remain in the tide gauge record. Here we compare Global Positioning System (GPS) VLM estimates at the tide gauge locations to VLM estimates from GIA models, and assess the influence of non-GIA-related VLM on GMSL estimates. We find that the tide gauges, on average, are experiencing positive VLM (i.e., uplift) after removing the known effect of GIA, resulting in an increase of 0.2460.08 mm yr21 in GMSL trend estimates from 1900 to present when using GPS-based corrections. While this result is likely dependent on the subset of tide gauges used and the actual corrections used, it does suggest that non-GIA VLM plays a significant role in twentieth century estimates of GMSL. Given the relatively short GPS records used to obtain these VLM estimates, we also estimate the uncertainty in the GMSL trend that results from limited knowledge of non-GIA-related VLM.

  15. Estimation of species extinction: what are the consequences when total species number is unknown?

    PubMed

    Chen, Youhua

    2014-12-01

    The species-area relationship (SAR) is known to overestimate species extinction but the underlying mechanisms remain unclear to a great extent. Here, I show that when total species number in an area is unknown, the SAR model exaggerates the estimation of species extinction. It is proposed that to accurately estimate species extinction caused by habitat destruction, one of the principal prerequisites is to accurately total the species numbers presented in the whole study area. One can better evaluate and compare alternative theoretical SAR models on the accurate estimation of species loss only when the exact total species number for the whole area is clear. This presents an opportunity for ecologists to simulate more research on accurately estimating Whittaker's gamma diversity for the purpose of better predicting species loss.

  16. Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing

    PubMed Central

    Yan, Leyang; Zhang, Hui; Ye, Peiqing

    2017-01-01

    Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method. PMID:28383505

  17. A Design of Irregular Grid Map for Large-Scale Wi-Fi LAN Fingerprint Positioning Systems

    PubMed Central

    Kim, Jae-Hoon; Min, Kyoung Sik; Yeo, Woon-Young

    2014-01-01

    The rapid growth of mobile communication and the proliferation of smartphones have drawn significant attention to location-based services (LBSs). One of the most important factors in the vitalization of LBSs is the accurate position estimation of a mobile device. The Wi-Fi positioning system (WPS) is a new positioning method that measures received signal strength indication (RSSI) data from all Wi-Fi access points (APs) and stores them in a large database as a form of radio fingerprint map. Because of the millions of APs in urban areas, radio fingerprints are seriously contaminated and confused. Moreover, the algorithmic advances for positioning face computational limitation. Therefore, we present a novel irregular grid structure and data analytics for efficient fingerprint map management. The usefulness of the proposed methodology is presented using the actual radio fingerprint measurements taken throughout Seoul, Korea. PMID:25302315

  18. A design of irregular grid map for large-scale Wi-Fi LAN fingerprint positioning systems.

    PubMed

    Kim, Jae-Hoon; Min, Kyoung Sik; Yeo, Woon-Young

    2014-01-01

    The rapid growth of mobile communication and the proliferation of smartphones have drawn significant attention to location-based services (LBSs). One of the most important factors in the vitalization of LBSs is the accurate position estimation of a mobile device. The Wi-Fi positioning system (WPS) is a new positioning method that measures received signal strength indication (RSSI) data from all Wi-Fi access points (APs) and stores them in a large database as a form of radio fingerprint map. Because of the millions of APs in urban areas, radio fingerprints are seriously contaminated and confused. Moreover, the algorithmic advances for positioning face computational limitation. Therefore, we present a novel irregular grid structure and data analytics for efficient fingerprint map management. The usefulness of the proposed methodology is presented using the actual radio fingerprint measurements taken throughout Seoul, Korea.

  19. Variation in center of mass estimates for extant sauropsids and its importance for reconstructing inertial properties of extinct archosaurs.

    PubMed

    Allen, Vivian; Paxton, Heather; Hutchinson, John R

    2009-09-01

    Inertial properties of animal bodies and segments are critical input parameters for biomechanical analysis of standing and moving, and thus are important for paleobiological inquiries into the broader behaviors, ecology and evolution of extinct taxa such as dinosaurs. But how accurately can these be estimated? Computational modeling was used to estimate the inertial properties including mass, density, and center of mass (COM) for extant crocodiles (adult and juvenile Crocodylus johnstoni) and birds (Gallus gallus; junglefowl and broiler chickens), to identify the chief sources of variation and methodological errors, and their significance. High-resolution computed tomography scans were segmented into 3D objects and imported into inertial property estimation software that allowed for the examination of variable body segment densities (e.g., air spaces such as lungs, and deformable body outlines). Considerable biological variation of inertial properties was found within groups due to ontogenetic changes as well as evolutionary changes between chicken groups. COM positions shift in variable directions during ontogeny in different groups. Our method was repeatable and the resolution was sufficient for accurate estimations of mass and density in particular. However, we also found considerable potential methodological errors for COM related to (1) assumed body segment orientation, (2) what frames of reference are used to normalize COM for size-independent comparisons among animals, and (3) assumptions about tail shape. Methods and assumptions are suggested to minimize these errors in the future and thereby improve estimation of inertial properties for extant and extinct animals. In the best cases, 10%-15% errors in these estimates are unavoidable, but particularly for extinct taxa errors closer to 50% should be expected, and therefore, cautiously investigated. Nonetheless in the best cases these methods allow rigorous estimation of inertial properties. (c) 2009 Wiley-Liss, Inc.

  20. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-10-01

    Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.

  1. Estimated SLR station position and network frame sensitivity to time-varying gravity

    NASA Astrophysics Data System (ADS)

    Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas S.; Melachroinos, Stavros; Beckley, Brian D.; Beall, Jennifer Wiser; Bordyugov, Oleg

    2014-06-01

    This paper evaluates the sensitivity of ITRF2008-based satellite laser ranging (SLR) station positions estimated weekly using LAGEOS-1/2 data from 1993 to 2012 to non-tidal time-varying gravity (TVG). Two primary methods for modeling TVG from degree-2 are employed. The operational approach applies an annual GRACE-derived field, and IERS recommended linear rates for five coefficients. The experimental approach uses low-order/degree coefficients estimated weekly from SLR and DORIS processing of up to 11 satellites (tvg4x4). This study shows that the LAGEOS-1/2 orbits and the weekly station solutions are sensitive to more detailed modeling of TVG than prescribed in the current IERS standards. Over 1993-2012 tvg4x4 improves SLR residuals by 18 % and shows 10 % RMS improvement in station stability. Tests suggest that the improved stability of the tvg4x4 POD solution frame may help clarify geophysical signals present in the estimated station position time series. The signals include linear and seasonal station motion, and motion of the TRF origin, particularly in Z. The effect on both POD and the station solutions becomes increasingly evident starting in 2006. Over 2008-2012, the tvg4x4 series improves SLR residuals by 29 %. Use of the GRGS RL02 series shows similar improvement in POD. Using tvg4x4, secular changes in the TRF origin Z component double over the last decade and although not conclusive, it is consistent with increased geocenter rate expected due to continental ice melt. The test results indicate that accurate modeling of TVG is necessary for improvement of station position estimation using SLR data.

  2. Self-Expression on Social Media: Do Tweets Present Accurate and Positive Portraits of Impulsivity, Self-Esteem, and Attachment Style?

    PubMed

    Orehek, Edward; Human, Lauren J

    2017-01-01

    Self-expression values are at an all-time high, and people are increasingly relying upon social media platforms to express themselves positively and accurately. We examined whether self-expression on the social media platform Twitter elicits positive and accurate social perceptions. Eleven perceivers rated 128 individuals (targets; total dyadic impressions = 1,408) on their impulsivity, self-esteem, and attachment style, based solely on the information provided in targets' 10 most recent tweets. Targets were on average perceived normatively and with distinctive self-other agreement, indicating both positive and accurate social perceptions. There were also individual differences in how positively and accurately targets were perceived, which exploratory analyses indicated may be partially driven by differential word usage, such as the use of positive emotion words and self- versus other-focus. This study demonstrates that self-expression on social media can elicit both positive and accurate perceptions and begins to shed light on how to curate such perceptions.

  3. Development of Army Job Knowledge Tests for Three Air Force Specialties

    DTIC Science & Technology

    1989-05-01

    the SMEs who assisted in development of the AGE JKT had been in supervisory-type positions for some years, they were not always familiar with current ...NOTATION , 17. COSATI CODES IS. SUBJECT TERMS (Continue on revene if necesuary and identify by block number) FIELD GROUP SUB- GROV - job knowledge test...provided an opportunity to obtain an accurate estimate of the amount of time required to complete the test. Following completion of the incumbent review

  4. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking.

    PubMed

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.

  5. A framework for organ dose estimation in x-ray angiography and interventional radiology based on dose-related data in DICOM structured reports

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Bujila, Robert; Fransson, Annette; Andreo, Pedro; Poludniowski, Gavin

    2016-04-01

    Although interventional x-ray angiography (XA) procedures involve relatively high radiation doses that can lead to deterministic tissue reactions in addition to stochastic effects, convenient and accurate estimation of absorbed organ doses has traditionally been out of reach. This has mainly been due to the absence of practical means to access dose-related data that describe the physical context of the numerous exposures during an XA procedure. The present work provides a comprehensive and general framework for the determination of absorbed organ dose, based on non-proprietary access to dose-related data by utilizing widely available DICOM radiation dose structured reports. The framework comprises a straightforward calculation workflow to determine the incident kerma and reconstruction of the geometrical relation between the projected x-ray beam and the patient’s anatomy. The latter is difficult in practice, as the position of the patient on the table top is unknown. A novel patient-specific approach for reconstruction of the patient position on the table is presented. The proposed approach was evaluated for 150 patients by comparing the estimated position of the primary irradiated organs (the target organs) with their position in clinical DICOM images. The approach is shown to locate the target organ position with a mean (max) deviation of 1.3 (4.3), 1.8 (3.6) and 1.4 (2.9) cm for neurovascular, adult and paediatric cardiovascular procedures, respectively. To illustrate the utility of the framework for systematic and automated organ dose estimation in routine clinical practice, a prototype implementation of the framework with Monte Carlo simulations is included.

  6. TETRA-COM: a comprehensive SPSS program for estimating the tetrachoric correlation.

    PubMed

    Lorenzo-Seva, Urbano; Ferrando, Pere J

    2012-12-01

    We provide an SPSS program that implements descriptive and inferential procedures for estimating tetrachoric correlations. These procedures have two main purposes: (1) bivariate estimation in contingency tables and (2) constructing a correlation matrix to be used as input for factor analysis (in particular, the SPSS FACTOR procedure). In both cases, the program computes accurate point estimates, as well as standard errors and confidence intervals that are correct for any population value. For purpose (1), the program computes the contingency table together with five other measures of association. For purpose (2), the program checks the positive definiteness of the matrix, and if it is found not to be Gramian, performs a nonlinear smoothing procedure at the user's request. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.

  7. Robust Huber-based iterated divided difference filtering with application to cooperative localization of autonomous underwater vehicles.

    PubMed

    Gao, Wei; Liu, Yalong; Xu, Bo

    2014-12-19

    A new algorithm called Huber-based iterated divided difference filtering (HIDDF) is derived and applied to cooperative localization of autonomous underwater vehicles (AUVs) supported by a single surface leader. The position states are estimated using acoustic range measurements relative to the leader, in which some disadvantages such as weak observability, large initial error and contaminated measurements with outliers are inherent. By integrating both merits of iterated divided difference filtering (IDDF) and Huber's M-estimation methodology, the new filtering method could not only achieve more accurate estimation and faster convergence contrast to standard divided difference filtering (DDF) in conditions of weak observability and large initial error, but also exhibit robustness with respect to outlier measurements, for which the standard IDDF would exhibit severe degradation in estimation accuracy. The correctness as well as validity of the algorithm is demonstrated through experiment results.

  8. Automatic C-arm pose estimation via 2D/3D hybrid registration of a radiographic fiducial

    NASA Astrophysics Data System (ADS)

    Moult, E.; Burdette, E. C.; Song, D. Y.; Abolmaesumi, P.; Fichtinger, G.; Fallavollita, P.

    2011-03-01

    Motivation: In prostate brachytherapy, real-time dosimetry would be ideal to allow for rapid evaluation of the implant quality intra-operatively. However, such a mechanism requires an imaging system that is both real-time and which provides, via multiple C-arm fluoroscopy images, clear information describing the three-dimensional position of the seeds deposited within the prostate. Thus, accurate tracking of the C-arm poses proves to be of critical importance to the process. Methodology: We compute the pose of the C-arm relative to a stationary radiographic fiducial of known geometry by employing a hybrid registration framework. Firstly, by means of an ellipse segmentation algorithm and a 2D/3D feature based registration, we exploit known FTRAC geometry to recover an initial estimate of the C-arm pose. Using this estimate, we then initialize the intensity-based registration which serves to recover a refined and accurate estimation of the C-arm pose. Results: Ground-truth pose was established for each C-arm image through a published and clinically tested segmentation-based method. Using 169 clinical C-arm images and a +/-10° and +/-10 mm random perturbation of the ground-truth pose, the average rotation and translation errors were 0.68° (std = 0.06°) and 0.64 mm (std = 0.24 mm). Conclusion: Fully automated C-arm pose estimation using a 2D/3D hybrid registration scheme was found to be clinically robust based on human patient data.

  9. Quantifying Standing Dead Tree Volume and Structural Loss with Voxelized Terrestrial Lidar Data

    NASA Astrophysics Data System (ADS)

    Popescu, S. C.; Putman, E.

    2017-12-01

    Standing dead trees (SDTs) are an important forest component and impact a variety of ecosystem processes, yet the carbon pool dynamics of SDTs are poorly constrained in terrestrial carbon cycling models. The ability to model wood decay and carbon cycling in relation to detectable changes in tree structure and volume over time would greatly improve such models. The overall objective of this study was to provide automated aboveground volume estimates of SDTs and automated procedures to detect, quantify, and characterize structural losses over time with terrestrial lidar data. The specific objectives of this study were: 1) develop an automated SDT volume estimation algorithm providing accurate volume estimates for trees scanned in dense forests; 2) develop an automated change detection methodology to accurately detect and quantify SDT structural loss between subsequent terrestrial lidar observations; and 3) characterize the structural loss rates of pine and oak SDTs in southeastern Texas. A voxel-based volume estimation algorithm, "TreeVolX", was developed and incorporates several methods designed to robustly process point clouds of varying quality levels. The algorithm operates on horizontal voxel slices by segmenting the slice into distinct branch or stem sections then applying an adaptive contour interpolation and interior filling process to create solid reconstructed tree models (RTMs). TreeVolX estimated large and small branch volume with an RMSE of 7.3% and 13.8%, respectively. A voxel-based change detection methodology was developed to accurately detect and quantify structural losses and incorporated several methods to mitigate the challenges presented by shifting tree and branch positions as SDT decay progresses. The volume and structural loss of 29 SDTs, composed of Pinus taeda and Quercus stellata, were successfully estimated using multitemporal terrestrial lidar observations over elapsed times ranging from 71 - 753 days. Pine and oak structural loss rates were characterized by estimating the amount of volumetric loss occurring in 20 equal-interval height bins of each SDT. Results showed that large pine snags exhibited more rapid structural loss in comparison to medium-sized oak snags in this study.

  10. Validation of one-mile walk equations for the estimation of aerobic fitness in British military personnel under the age of 40 years.

    PubMed

    Lunt, Heather; Roiz De Sa, Daniel; Roiz De Sa, Julia; Allsopp, Adrian

    2013-07-01

    To provide an accurate estimate of peak oxygen uptake (VO2 peak) for British Royal Navy Personnel aged between 18 and 39, comparing a gold standard treadmill based maximal exercise test with a submaximal one-mile walk test. Two hundred military personnel consented to perform a treadmill-based VO2 peak test and two one-mile walk tests round an athletics track. The estimated VO2 peak values from three different one-mile walk equations were compared to directly measured VO2 peak values from the treadmill-based test. One hundred participants formed a validation group from which a new equation was derived and the other 100 participants formed the cross-validation group. Existing equations underestimated the VO2 peak values of the fittest personnel and overestimated the VO2 peak of the least aerobically fit by between 2% and 18%. The new equation derived from the validation group has less bias, the highest correlation with the measured values (r = 0.83), and classified the most people correctly according to the Royal Navy's Fitness Test standards, producing the fewest false positives and false negatives combined (9%). The new equation will provide a more accurate estimate of VO2 peak for a British military population aged 18 to 39. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  11. Lower limb estimation from sparse landmarks using an articulated shape model.

    PubMed

    Zhang, Ju; Fernandez, Justin; Hislop-Jambrich, Jacqui; Besier, Thor F

    2016-12-08

    Rapid generation of lower limb musculoskeletal models is essential for clinically applicable patient-specific gait modeling. Estimation of muscle and joint contact forces requires accurate representation of bone geometry and pose, as well as their muscle attachment sites, which define muscle moment arms. Motion-capture is a routine part of gait assessment but contains relatively sparse geometric information. Standard methods for creating customized models from motion-capture data scale a reference model without considering natural shape variations. We present an articulated statistical shape model of the left lower limb with embedded anatomical landmarks and muscle attachment regions. This model is used in an automatic workflow, implemented in an easy-to-use software application, that robustly and accurately estimates realistic lower limb bone geometry, pose, and muscle attachment regions from seven commonly used motion-capture landmarks. Estimated bone models were validated on noise-free marker positions to have a lower (p=0.001) surface-to-surface root-mean-squared error of 4.28mm, compared to 5.22mm using standard isotropic scaling. Errors at a variety of anatomical landmarks were also lower (8.6mm versus 10.8mm, p=0.001). We improve upon standard lower limb model scaling methods with shape model-constrained realistic bone geometries, regional muscle attachment sites, and higher accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images.

    PubMed

    Harati, Vida; Khayati, Rasoul; Farzan, Abdolreza

    2011-07-01

    Uncontrollable and unlimited cell growth leads to tumor genesis in the brain. If brain tumors are not diagnosed early and cured properly, they could cause permanent brain damage or even death to patients. As in all methods of treatments, any information about tumor position and size is important for successful treatment; hence, finding an accurate and a fully automated method to give information to physicians is necessary. A fully automatic and accurate method for tumor region detection and segmentation in brain magnetic resonance (MR) images is suggested. The presented approach is an improved fuzzy connectedness (FC) algorithm based on a scale in which the seed point is selected automatically. This algorithm is independent of the tumor type in terms of its pixels intensity. Tumor segmentation evaluation results based on similarity criteria (similarity index (SI), overlap fraction (OF), and extra fraction (EF) are 92.89%, 91.75%, and 3.95%, respectively) indicate a higher performance of the proposed approach compared to the conventional methods, especially in MR images, in tumor regions with low contrast. Thus, the suggested method is useful for increasing the ability of automatic estimation of tumor size and position in brain tissues, which provides more accurate investigation of the required surgery, chemotherapy, and radiotherapy procedures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Estimation of whole body fat from appendicular soft tissue from peripheral quantitative computed tomography in adolescent girls

    PubMed Central

    Lee, Vinson R.; Blew, Rob M.; Farr, Josh N.; Tomas, Rita; Lohman, Timothy G.; Going, Scott B.

    2013-01-01

    Objective Assess the utility of peripheral quantitative computed tomography (pQCT) for estimating whole body fat in adolescent girls. Research Methods and Procedures Our sample included 458 girls (aged 10.7 ± 1.1y, mean BMI = 18.5 ± 3.3 kg/m2) who had DXA scans for whole body percent fat (DXA %Fat). Soft tissue analysis of pQCT scans provided thigh and calf subcutaneous percent fat and thigh and calf muscle density (muscle fat content surrogates). Anthropometric variables included weight, height and BMI. Indices of maturity included age and maturity offset. The total sample was split into validation (VS; n = 304) and cross-validation (CS; n = 154) samples. Linear regression was used to develop prediction equations for estimating DXA %Fat from anthropometric variables and pQCT-derived soft tissue components in VS and the best prediction equation was applied to CS. Results Thigh and calf SFA %Fat were positively correlated with DXA %Fat (r = 0.84 to 0.85; p <0.001) and thigh and calf muscle densities were inversely related to DXA %Fat (r = −0.30 to −0.44; p < 0.001). The best equation for estimating %Fat included thigh and calf SFA %Fat and thigh and calf muscle density (adj. R2 = 0.90; SEE = 2.7%). Bland-Altman analysis in CS showed accurate estimates of percent fat (adj. R2 = 0.89; SEE = 2.7%) with no bias. Discussion Peripheral QCT derived indices of adiposity can be used to accurately estimate whole body percent fat in adolescent girls. PMID:25147482

  14. Eyeball Position in Facial Approximation: Accuracy of Methods for Predicting Globe Positioning in Lateral View.

    PubMed

    Zednikova Mala, Pavla; Veleminska, Jana

    2018-01-01

    This study measured the accuracy of traditional and validated newly proposed methods for globe positioning in lateral view. Eighty lateral head cephalograms of adult subjects from Central Europe were taken, and the actual and predicted dimensions were compared. The anteroposterior eyeball position was estimated as the most accurate method based on the proportion of the orbital height (SEE = 1.9 mm) and was followed by the "tangent to the iris method" showing SEE = 2.4 mm. The traditional "tangent to the cornea method" underestimated the eyeball projection by SEE = 5.8 mm. Concerning the superoinferior eyeball position, the results showed a deviation from a central to a more superior position by 0.3 mm, on average, and the traditional method of central positioning of the globe could not be rejected as inaccurate (SEE = 0.3 mm). Based on regression analyzes or proportionality of the orbital height, the SEE = 2.1 mm. © 2017 American Academy of Forensic Sciences.

  15. Learning Multiple Band-Pass Filters for Sleep Stage Estimation: Towards Care Support for Aged Persons

    NASA Astrophysics Data System (ADS)

    Takadama, Keiki; Hirose, Kazuyuki; Matsushima, Hiroyasu; Hattori, Kiyohiko; Nakajima, Nobuo

    This paper proposes the sleep stage estimation method that can provide an accurate estimation for each person without connecting any devices to human's body. In particular, our method learns the appropriate multiple band-pass filters to extract the specific wave pattern of heartbeat, which is required to estimate the sleep stage. For an accurate estimation, this paper employs Learning Classifier System (LCS) as the data-mining techniques and extends it to estimate the sleep stage. Extensive experiments on five subjects in mixed health confirm the following implications: (1) the proposed method can provide more accurate sleep stage estimation than the conventional method, and (2) the sleep stage estimation calculated by the proposed method is robust regardless of the physical condition of the subject.

  16. Feasibility of anomaly detection and characterization using trans-admittance mammography with 60 × 60 electrode array

    NASA Astrophysics Data System (ADS)

    Zhao, Mingkang; Wi, Hun; Lee, Eun Jung; Woo, Eung Je; In Oh, Tong

    2014-10-01

    Electrical impedance imaging has the potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. The tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. Additionally, the anomaly characterization is required to distinguish a malignant tumor from a benign tumor. In order to overcome the limitation of breast cancer detection using impedance measurement probes, we developed the high density trans-admittance mammography (TAM) system with 60 × 60 electrode array and produced trans-admittance maps obtained at several frequency pairs. We applied the anomaly detection algorithm to the high density TAM system for estimating the volume and position of breast tumor. We tested four different sizes of anomaly with three different conductivity contrasts at four different depths. From multifrequency trans-admittance maps, we can readily observe the transversal position and estimate its volume and depth. Specially, the depth estimated values were obtained accurately, which were independent to the size and conductivity contrast when applying the new formula using Laplacian of trans-admittance map. The volume estimation was dependent on the conductivity contrast between anomaly and background in the breast phantom. We characterized two testing anomalies using frequency difference trans-admittance data to eliminate the dependency of anomaly position and size. We confirmed the anomaly detection and characterization algorithm with the high density TAM system on bovine breast tissue. Both results showed the feasibility of detecting the size and position of anomaly and tissue characterization for screening the breast cancer.

  17. Robust Correlation Analyses: False Positive and Power Validation Using a New Open Source Matlab Toolbox

    PubMed Central

    Pernet, Cyril R.; Wilcox, Rand; Rousselet, Guillaume A.

    2012-01-01

    Pearson’s correlation measures the strength of the association between two variables. The technique is, however, restricted to linear associations and is overly sensitive to outliers. Indeed, a single outlier can result in a highly inaccurate summary of the data. Yet, it remains the most commonly used measure of association in psychology research. Here we describe a free Matlab(R) based toolbox (http://sourceforge.net/projects/robustcorrtool/) that computes robust measures of association between two or more random variables: the percentage-bend correlation and skipped-correlations. After illustrating how to use the toolbox, we show that robust methods, where outliers are down weighted or removed and accounted for in significance testing, provide better estimates of the true association with accurate false positive control and without loss of power. The different correlation methods were tested with normal data and normal data contaminated with marginal or bivariate outliers. We report estimates of effect size, false positive rate and power, and advise on which technique to use depending on the data at hand. PMID:23335907

  18. Robust correlation analyses: false positive and power validation using a new open source matlab toolbox.

    PubMed

    Pernet, Cyril R; Wilcox, Rand; Rousselet, Guillaume A

    2012-01-01

    Pearson's correlation measures the strength of the association between two variables. The technique is, however, restricted to linear associations and is overly sensitive to outliers. Indeed, a single outlier can result in a highly inaccurate summary of the data. Yet, it remains the most commonly used measure of association in psychology research. Here we describe a free Matlab((R)) based toolbox (http://sourceforge.net/projects/robustcorrtool/) that computes robust measures of association between two or more random variables: the percentage-bend correlation and skipped-correlations. After illustrating how to use the toolbox, we show that robust methods, where outliers are down weighted or removed and accounted for in significance testing, provide better estimates of the true association with accurate false positive control and without loss of power. The different correlation methods were tested with normal data and normal data contaminated with marginal or bivariate outliers. We report estimates of effect size, false positive rate and power, and advise on which technique to use depending on the data at hand.

  19. A robust and accurate center-frequency estimation (RACE) algorithm for improving motion estimation performance of SinMod on tagged cardiac MR images without known tagging parameters.

    PubMed

    Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei

    2014-11-01

    A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Probability based remaining capacity estimation using data-driven and neural network model

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2016-05-01

    Since large numbers of lithium-ion batteries are composed in pack and the batteries are complex electrochemical devices, their monitoring and safety concerns are key issues for the applications of battery technology. An accurate estimation of battery remaining capacity is crucial for optimization of the vehicle control, preventing battery from over-charging and over-discharging and ensuring the safety during its service life. The remaining capacity estimation of a battery includes the estimation of state-of-charge (SOC) and state-of-energy (SOE). In this work, a probability based adaptive estimator is presented to obtain accurate and reliable estimation results for both SOC and SOE. For the SOC estimation, an n ordered RC equivalent circuit model is employed by combining an electrochemical model to obtain more accurate voltage prediction results. For the SOE estimation, a sliding window neural network model is proposed to investigate the relationship between the terminal voltage and the model inputs. To verify the accuracy and robustness of the proposed model and estimation algorithm, experiments under different dynamic operation current profiles are performed on the commercial 1665130-type lithium-ion batteries. The results illustrate that accurate and robust estimation can be obtained by the proposed method.

  1. Operational Challenges In TDRS Post-Maneuver Orbit Determination

    NASA Technical Reports Server (NTRS)

    Laing, Jason; Myers, Jessica; Ward, Douglas; Lamb, Rivers

    2015-01-01

    The GSFC Flight Dynamics Facility (FDF) is responsible for daily and post maneuver orbit determination for the Tracking and Data Relay Satellite System (TDRSS). The most stringent requirement for this orbit determination is 75 meters total position accuracy (3-sigma) predicted over one day for Terra's onboard navigation system. To maintain an accurate solution onboard Terra, a solution is generated and provided by the FDF Four hours after a TDRS maneuver. A number of factors present challenges to this support, such as maneuver prediction uncertainty and potentially unreliable tracking from User satellities. Reliable support is provided by comparing an extended Kalman Filter (estimated using ODTK) against a Batch Least Squares system (estimated using GTDS).

  2. Eliminating the influence of source spectrum of white light scanning interferometry through time-delay estimation algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yunfei; Cai, Hongzhi; Zhong, Liyun; Qiu, Xiang; Tian, Jindong; Lu, Xiaoxu

    2017-05-01

    In white light scanning interferometry (WLSI), the accuracy of profile measurement achieved with the conventional zero optical path difference (ZOPD) position locating method is closely related with the shape of interference signal envelope (ISE), which is mainly decided by the spectral distribution of illumination source. For a broadband light with Gaussian spectral distribution, the corresponding shape of ISE reveals a symmetric distribution, so the accurate ZOPD position can be achieved easily. However, if the spectral distribution of source is irregular, the shape of ISE will become asymmetric or complex multi-peak distribution, WLSI cannot work well through using ZOPD position locating method. Aiming at this problem, we propose time-delay estimation (TDE) based WLSI method, in which the surface profile information is achieved by using the relative displacement of interference signal between different pixels instead of the conventional ZOPD position locating method. Due to all spectral information of interference signal (envelope and phase) are utilized, in addition to revealing the advantage of high accuracy, the proposed method can achieve profile measurement with high accuracy in the case that the shape of ISE is irregular while ZOPD position locating method cannot work. That is to say, the proposed method can effectively eliminate the influence of source spectrum.

  3. Position Information Encoded by Population Activity in Hierarchical Visual Areas

    PubMed Central

    Majima, Kei; Horikawa, Tomoyasu

    2017-01-01

    Abstract Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted (decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1–V4, lateral occipital complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas showed larger estimated RFs than those in lower visual areas. Then, the ball’s position in a separate session was predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension. Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later processing for recognition and behavior. PMID:28451634

  4. Accurately estimating PSF with straight lines detected by Hough transform

    NASA Astrophysics Data System (ADS)

    Wang, Ruichen; Xu, Liangpeng; Fan, Chunxiao; Li, Yong

    2018-04-01

    This paper presents an approach to estimating point spread function (PSF) from low resolution (LR) images. Existing techniques usually rely on accurate detection of ending points of the profile normal to edges. In practice however, it is often a great challenge to accurately localize profiles of edges from a LR image, which hence leads to a poor PSF estimation of the lens taking the LR image. For precisely estimating the PSF, this paper proposes firstly estimating a 1-D PSF kernel with straight lines, and then robustly obtaining the 2-D PSF from the 1-D kernel by least squares techniques and random sample consensus. Canny operator is applied to the LR image for obtaining edges and then Hough transform is utilized to extract straight lines of all orientations. Estimating 1-D PSF kernel with straight lines effectively alleviates the influence of the inaccurate edge detection on PSF estimation. The proposed method is investigated on both natural and synthetic images for estimating PSF. Experimental results show that the proposed method outperforms the state-ofthe- art and does not rely on accurate edge detection.

  5. A stopping criterion for the iterative solution of partial differential equations

    NASA Astrophysics Data System (ADS)

    Rao, Kaustubh; Malan, Paul; Perot, J. Blair

    2018-01-01

    A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.

  6. Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images.

    PubMed

    Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin

    2009-01-01

    Recently, marginal space learning (MSL) was proposed as a generic approach for automatic detection of 3D anatomical structures in many medical imaging modalities [1]. To accurately localize a 3D object, we need to estimate nine pose parameters (three for position, three for orientation, and three for anisotropic scaling). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed. In this paper, we apply MSL to 2D object detection and perform a thorough comparison between MSL and the alternative full space learning (FSL) approach. Experiments on left ventricle detection in 2D MRI images show MSL outperforms FSL in both speed and accuracy. In addition, we propose two novel techniques, constrained MSL and nonrigid MSL, to further improve the efficiency and accuracy. In many real applications, a strong correlation may exist among pose parameters in the same marginal spaces. For example, a large object may have large scaling values along all directions. Constrained MSL exploits this correlation for further speed-up. The original MSL only estimates the rigid transformation of an object in the image, therefore cannot accurately localize a nonrigid object under a large deformation. The proposed nonrigid MSL directly estimates the nonrigid deformation parameters to improve the localization accuracy. The comparison experiments on liver detection in 226 abdominal CT volumes demonstrate the effectiveness of the proposed methods. Our system takes less than a second to accurately detect the liver in a volume.

  7. Localization of Ferromagnetic Target with Three Magnetic Sensors in the Movement Considering Angular Rotation

    PubMed Central

    Gao, Xiang; Yan, Shenggang; Li, Bin

    2017-01-01

    Magnetic detection techniques have been widely used in many fields, such as virtual reality, surgical robotics systems, and so on. A large number of methods have been developed to obtain the position of a ferromagnetic target. However, the angular rotation of the target relative to the sensor is rarely studied. In this paper, a new method for localization of moving object to determine both the position and rotation angle with three magnetic sensors is proposed. Trajectory localization estimation of three magnetic sensors, which are collinear and noncollinear, were obtained by the simulations, and experimental results demonstrated that the position and rotation angle of ferromagnetic target having roll, pitch or yaw in its movement could be calculated accurately and effectively with three noncollinear vector sensors. PMID:28892006

  8. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing

    PubMed Central

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies should primarily focus on a simplification of the sensor setup, as well as a fusion with global navigation satellite systems (i.e., the estimation of the absolute joint and CoM positions). PMID:29163196

  9. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing.

    PubMed

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies should primarily focus on a simplification of the sensor setup, as well as a fusion with global navigation satellite systems (i.e., the estimation of the absolute joint and CoM positions).

  10. GPS Water Vapor Tomography Based on Accurate Estimations of the GPS Tropospheric Parameters

    NASA Astrophysics Data System (ADS)

    Champollion, C.; Masson, F.; Bock, O.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; van Baelen, J.; Brenot, H.

    2003-12-01

    The Global Positioning System (GPS) is now a common technique for the retrieval of zenithal integrated water vapor (IWV). Further applications in meteorology need also slant integrated water vapor (SIWV) which allow to precisely define the high variability of tropospheric water vapor at different temporal and spatial scales. Only precise estimations of IWV and horizontal gradients allow the estimation of accurate SIWV. We present studies developed to improve the estimation of tropospheric water vapor from GPS data. Results are obtained from several field experiments (MAP, ESCOMPTE, OHM-CV, IHOP, .). First IWV are estimated using different GPS processing strategies and results are compared to radiosondes. The role of the reference frame and the a priori constraints on the coordinates of the fiducial and local stations is generally underestimated. It seems to be of first order in the estimation of the IWV. Second we validate the estimated horizontal gradients comparing zenith delay gradients and single site gradients. IWV, gradients and post-fit residuals are used to construct slant integrated water delays. Validation of the SIWV is under progress comparing GPS SIWV, Lidar measurements and high resolution meteorological models (Meso-NH). A careful analysis of the post-fit residuals is needed to separate tropospheric signal from multipaths. The slant tropospheric delays are used to study the 3D heterogeneity of the troposphere. We develop a tomographic software to model the three-dimensional distribution of the tropospheric water vapor from GPS data. The software is applied to the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers operated in southern France. Three inversions have been successfully compared to three successive radiosonde launches. Good resolution is obtained up to heights of 3000 m.

  11. Dynamics of Weeds in the Soil Seed Bank: A Hidden Markov Model to Estimate Life History Traits from Standing Plant Time Series.

    PubMed

    Borgy, Benjamin; Reboud, Xavier; Peyrard, Nathalie; Sabbadin, Régis; Gaba, Sabrina

    2015-01-01

    Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies.

  12. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  13. Dynamics of Weeds in the Soil Seed Bank: A Hidden Markov Model to Estimate Life History Traits from Standing Plant Time Series

    PubMed Central

    Borgy, Benjamin; Reboud, Xavier; Peyrard, Nathalie; Sabbadin, Régis; Gaba, Sabrina

    2015-01-01

    Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies. PMID:26427023

  14. A pilot study on objective quantification and anatomical modelling of in vivo head and neck positions commonly applied in training and competition of sport horses.

    PubMed

    Elgersma, A E; Wijnberg, I D; Sleutjens, J; van der Kolk, J H; van Weeren, P R; Back, W

    2010-11-01

    Head and neck positions (HNP) in sport horses are under debate in the equine community, as they could interfere with equine welfare. HNPs have not been quantified objectively and no information is available on their head and neck loading. To quantify in vivo HNPs in sport horses and develop o a model to estimate loading on the cervical vertebrae in these positions. Videos were taken of 7 Warmbloods at walk on a straight line in 5 positions, representing all HNPs during Warmblood training and competition. Markers were glued at 5 anatomical landmarks. Two-dimensional angles and distances were determined from video frames for the 5 HNPs and statistically compared (P < 0.05). A new simulation model was developed to estimate nuchal ligament cervical loading at these HNPs. The mean angles were significantly different between the 5 HNPs for the line between C1 and T6 with the horizontal and for the line connecting the facial crest (CF) and C1 with the vertical, while the vertical distance from CF to the lateral styloid process of the radius (PS) was significantly different between all 5 positions (P < 0.05). The estimated nuchal ligament loading appeared to be largest at the origin of C2 for all HNPs, except for the 'hyperextended' HNP5; the 'hyperflexed' HNP4 showed the largest loading values on the nuchal ligament origins at all locations. HNPs can be accurately quantified in the sagittal plane from angles and distances based on standard anatomical landmarks and home-video captured images. Nuchal ligament loading showed the largest estimated values at its origin on C2 in hyperflexion (HNP4). Modelling opens further perspectives to eventually estimate loading for individual horses and thus ergonomically optimise their HNP, which may improve the welfare of the sport horse during training and competition. © 2010 EVJ Ltd.

  15. The Extended-Image Tracking Technique Based on the Maximum Likelihood Estimation

    NASA Technical Reports Server (NTRS)

    Tsou, Haiping; Yan, Tsun-Yee

    2000-01-01

    This paper describes an extended-image tracking technique based on the maximum likelihood estimation. The target image is assume to have a known profile covering more than one element of a focal plane detector array. It is assumed that the relative position between the imager and the target is changing with time and the received target image has each of its pixels disturbed by an independent additive white Gaussian noise. When a rotation-invariant movement between imager and target is considered, the maximum likelihood based image tracking technique described in this paper is a closed-loop structure capable of providing iterative update of the movement estimate by calculating the loop feedback signals from a weighted correlation between the currently received target image and the previously estimated reference image in the transform domain. The movement estimate is then used to direct the imager to closely follow the moving target. This image tracking technique has many potential applications, including free-space optical communications and astronomy where accurate and stabilized optical pointing is essential.

  16. Entropy-based adaptive attitude estimation

    NASA Astrophysics Data System (ADS)

    Kiani, Maryam; Barzegar, Aylin; Pourtakdoust, Seid H.

    2018-03-01

    Gaussian approximation filters have increasingly been developed to enhance the accuracy of attitude estimation in space missions. The effective employment of these algorithms demands accurate knowledge of system dynamics and measurement models, as well as their noise characteristics, which are usually unavailable or unreliable. An innovation-based adaptive filtering approach has been adopted as a solution to this problem; however, it exhibits two major challenges, namely appropriate window size selection and guaranteed assurance of positive definiteness for the estimated noise covariance matrices. The current work presents two novel techniques based on relative entropy and confidence level concepts in order to address the abovementioned drawbacks. The proposed adaptation techniques are applied to two nonlinear state estimation algorithms of the extended Kalman filter and cubature Kalman filter for attitude estimation of a low earth orbit satellite equipped with three-axis magnetometers and Sun sensors. The effectiveness of the proposed adaptation scheme is demonstrated by means of comprehensive sensitivity analysis on the system and environmental parameters by using extensive independent Monte Carlo simulations.

  17. Effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Tralli, David M.; Dixon, Timothy H.; Stephens, Scott A.

    1988-01-01

    Surface Meteorological (SM) and Water Vapor Radiometer (WVR) measurements are used to provide an independent means of calibrating the GPS signal for the wet tropospheric path delay in a study of geodetic baseline measurements in the Gulf of California using GPS in which high tropospheric water vapor content yielded wet path delays in excess of 20 cm at zenith. Residual wet delays at zenith are estimated as constants and as first-order exponentially correlated stochastic processes. Calibration with WVR data is found to yield the best repeatabilities, with improved results possible if combined carrier phase and pseudorange data are used. Although SM measurements can introduce significant errors in baseline solutions if used with a simple atmospheric model and estimation of residual zenith delays as constants, SM calibration and stochastic estimation for residual zenith wet delays may be adequate for precise estimation of GPS baselines. For dry locations, WVRs may not be required to accurately model tropospheric effects on GPS baselines.

  18. Estimation of Symptom Severity Scores for Patients with Schizophrenia Using ERP Source Activations during a Facial Affect Discrimination Task.

    PubMed

    Kim, Do-Won; Lee, Seung-Hwan; Shim, Miseon; Im, Chang-Hwan

    2017-01-01

    Precise diagnosis of psychiatric diseases and a comprehensive assessment of a patient's symptom severity are important in order to establish a successful treatment strategy for each patient. Although great efforts have been devoted to searching for diagnostic biomarkers of schizophrenia over the past several decades, no study has yet investigated how accurately these biomarkers are able to estimate an individual patient's symptom severity. In this study, we applied electrophysiological biomarkers obtained from electroencephalography (EEG) analyses to an estimation of symptom severity scores of patients with schizophrenia. EEG signals were recorded from 23 patients while they performed a facial affect discrimination task. Based on the source current density analysis results, we extracted voxels that showed a strong correlation between source activity and symptom scores. We then built a prediction model to estimate the symptom severity scores of each patient using the source activations of the selected voxels. The symptom scores of the Positive and Negative Syndrome Scale (PANSS) were estimated using the linear prediction model. The results of leave-one-out cross validation (LOOCV) showed that the mean errors of the estimated symptom scores were 3.34 ± 2.40 and 3.90 ± 3.01 for the Positive and Negative PANSS scores, respectively. The current pilot study is the first attempt to estimate symptom severity scores in schizophrenia using quantitative EEG features. It is expected that the present method can be extended to other cognitive paradigms or other psychological illnesses.

  19. Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.

    PubMed

    Subramanian, Swetha; Mast, T Douglas

    2015-10-07

    Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.

  20. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers.

    PubMed

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-12-09

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.

  1. Detailed 3D representations for object recognition and modeling.

    PubMed

    Zia, M Zeeshan; Stark, Michael; Schiele, Bernt; Schindler, Konrad

    2013-11-01

    Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.

  2. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers

    PubMed Central

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-01-01

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time. PMID:27941705

  3. Photometry unlocks 3D information from 2D localization microscopy data.

    PubMed

    Franke, Christian; Sauer, Markus; van de Linde, Sebastian

    2017-01-01

    We developed a straightforward photometric method, temporal, radial-aperture-based intensity estimation (TRABI), that allows users to extract 3D information from existing 2D localization microscopy data. TRABI uses the accurate determination of photon numbers in different regions of the emission pattern of single emitters to generate a z-dependent photometric parameter. This method can determine fluorophore positions up to 600 nm from the focal plane and can be combined with biplane detection to further improve axial localization.

  4. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles

    PubMed Central

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-01-01

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183

  5. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    PubMed

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-08-19

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.

  6. Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations

    PubMed Central

    Kim, Dong Hyun; Lee, Sang Wook; Park, Hyung-Soon

    2016-01-01

    Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices. PMID:27240364

  7. Particle Filtering for Obstacle Tracking in UAS Sense and Avoid Applications

    PubMed Central

    Moccia, Antonio

    2014-01-01

    Obstacle detection and tracking is a key function for UAS sense and avoid applications. In fact, obstacles in the flight path must be detected and tracked in an accurate and timely manner in order to execute a collision avoidance maneuver in case of collision threat. The most important parameter for the assessment of a collision risk is the Distance at Closest Point of Approach, that is, the predicted minimum distance between own aircraft and intruder for assigned current position and speed. Since assessed methodologies can cause some loss of accuracy due to nonlinearities, advanced filtering methodologies, such as particle filters, can provide more accurate estimates of the target state in case of nonlinear problems, thus improving system performance in terms of collision risk estimation. The paper focuses on algorithm development and performance evaluation for an obstacle tracking system based on a particle filter. The particle filter algorithm was tested in off-line simulations based on data gathered during flight tests. In particular, radar-based tracking was considered in order to evaluate the impact of particle filtering in a single sensor framework. The analysis shows some accuracy improvements in the estimation of Distance at Closest Point of Approach, thus reducing the delay in collision detection. PMID:25105154

  8. Accurate Visual Heading Estimation at High Rotation Rate Without Oculomotor or Static-Depth Cues

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    It has been claimed that either oculomotor or static depth cues provide the signals about self-rotation necessary approx.-1 deg/s. We tested this hypothesis by simulating self-motion along a curved path with the eyes fixed in the head (plus or minus 16 deg/s of rotation). Curvilinear motion offers two advantages: 1) heading remains constant in retinotopic coordinates, and 2) there is no visual-oculomotor conflict (both actual and simulated eye position remain stationary). We simulated 400 ms of rotation combined with 16 m/s of translation at fixed angles with respect to gaze towards two vertical planes of random dots initially 12 and 24 m away, with a field of view of 45 degrees. Four subjects were asked to fixate a central cross and to respond whether they were translating to the left or right of straight-ahead gaze. From the psychometric curves, heading bias (mean) and precision (semi-interquartile) were derived. The mean bias over 2-5 runs was 3.0, 4.0, -2.0, -0.4 deg for the first author and three naive subjects, respectively (positive indicating towards the rotation direction). The mean precision was 2.0, 1.9, 3.1, 1.6 deg. respectively. The ability of observers to make relatively accurate and precise heading judgments, despite the large rotational flow component, refutes the view that extra-flow-field information is necessary for human visual heading estimation at high rotation rates. Our results support models that process combined translational/rotational flow to estimate heading, but should not be construed to suggest that other cues do not play an important role when they are available to the observer.

  9. A novel control architecture for physiological tremor compensation in teleoperated systems.

    PubMed

    Ghorbanian, A; Zareinejad, M; Rezaei, S M; Sheikhzadeh, H; Baghestan, K

    2013-09-01

    Telesurgery delivers surgical care to a 'remote' patient by means of robotic manipulators. When accurate positioning of the surgeon's tool is required, as in microsurgery, physiological tremor causes unwanted imprecision during a surgical operation. Accurate estimation/compensation of physiological tremor in teleoperation systems has been shown to improve performance during telesurgery. A new control architecture is proposed for estimation and compensation of physiological tremor in the presence of communication time delays. This control architecture guarantees stability with satisfactory transparency. In addition, the proposed method can be used for applications that require modifications in transmitted signals through communication channels. Stability of the bilateral tremor-compensated teleoperation is preserved by extending the bilateral teleoperation to the equivalent trilateral Dual-master/Single-slave teleoperation. The bandlimited multiple Fourier linear combiner (BMFLC) algorithm is employed for real-time estimation of the operator's physiological tremor. Two kinds of stability analysis are employed. In the model-base controller, Llewellyn's Criterion is used to analyze the teleoperation absolute stability. In the second method, a nonmodel-based controller is proposed and the stability of the time-delayed teleoperated system is proved by employing a Lyapunov function. Experimental results are presented to validate the effectiveness of the new control architecture. The tremorous motion is measured by accelerometer to be compensated in real time. In addition, a Needle-Insertion setup is proposed as a slave robot for the application of brachytherapy, in which the needle penetrates in the desired position. The slave performs the desired task in two classes of environments (free motion of the slave and in the soft tissue). Experiments show that the proposed control architecture effectively compensates the user's tremorous motion and the slave follows only the master's voluntary motion in a stable manner. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Stereo-vision-based cooperative-vehicle positioning using OCC and neural networks

    NASA Astrophysics Data System (ADS)

    Ifthekhar, Md. Shareef; Saha, Nirzhar; Jang, Yeong Min

    2015-10-01

    Vehicle positioning has been subjected to extensive research regarding driving safety measures and assistance as well as autonomous navigation. The most common positioning technique used in automotive positioning is the global positioning system (GPS). However, GPS is not reliably accurate because of signal blockage caused by high-rise buildings. In addition, GPS is error prone when a vehicle is inside a tunnel. Moreover, GPS and other radio-frequency-based approaches cannot provide orientation information or the position of neighboring vehicles. In this study, we propose a cooperative-vehicle positioning (CVP) technique by using the newly developed optical camera communications (OCC). The OCC technique utilizes image sensors and cameras to receive and decode light-modulated information from light-emitting diodes (LEDs). A vehicle equipped with an OCC transceiver can receive positioning and other information such as speed, lane change, driver's condition, etc., through optical wireless links of neighboring vehicles. Thus, the target vehicle position that is too far away to establish an OCC link can be determined by a computer-vision-based technique combined with the cooperation of neighboring vehicles. In addition, we have devised a back-propagation (BP) neural-network learning method for positioning and range estimation for CVP. The proposed neural-network-based technique can estimate target vehicle position from only two image points of target vehicles using stereo vision. For this, we use rear LEDs on target vehicles as image points. We show from simulation results that our neural-network-based method achieves better accuracy than that of the computer-vision method.

  11. Nonlinear stability of traffic models and the use of Lyapunov vectors for estimating the traffic state

    NASA Astrophysics Data System (ADS)

    Palatella, Luigi; Trevisan, Anna; Rambaldi, Sandro

    2013-08-01

    Valuable information for estimating the traffic flow is obtained with current GPS technology by monitoring position and velocity of vehicles. In this paper, we present a proof of concept study that shows how the traffic state can be estimated using only partial and noisy data by assimilating them in a dynamical model. Our approach is based on a data assimilation algorithm, developed by the authors for chaotic geophysical models, designed to be equivalent but computationally much less demanding than the traditional extended Kalman filter. Here we show that the algorithm is even more efficient if the system is not chaotic and demonstrate by numerical experiments that an accurate reconstruction of the complete traffic state can be obtained at a very low computational cost by monitoring only a small percentage of vehicles.

  12. Ego-motion based on EM for bionic navigation

    NASA Astrophysics Data System (ADS)

    Yue, Xiaofeng; Wang, L. J.; Liu, J. G.

    2015-12-01

    Researches have proved that flying insects such as bees can achieve efficient and robust flight control, and biologists have explored some biomimetic principles regarding how they control flight. Based on those basic studies and principles acquired from the flying insects, this paper proposes a different solution of recovering ego-motion for low level navigation. Firstly, a new type of entropy flow is provided to calculate the motion parameters. Secondly, EKF, which has been used for navigation for some years to correct accumulated error, and estimation-Maximization, which is always used to estimate parameters, are put together to determine the ego-motion estimation of aerial vehicles. Numerical simulation on MATLAB has proved that this navigation system provides more accurate position and smaller mean absolute error than pure optical flow navigation. This paper has done pioneering work in bionic mechanism to space navigation.

  13. New optical package and algorithms for accurate estimation and interactive recording of the cloud cover information over land and sea

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey; Gulev, Sergey

    2014-05-01

    Cloud fraction is a critical parameter for the accurate estimation of short-wave and long-wave radiation - one of the most important surface fluxes over sea and land. Massive estimates of the total cloud cover as well as cloud amount for different layers of clouds are available from visual observations, satellite measurements and reanalyses. However, these data are subject of different uncertainties and need continuous validation against highly accurate in-situ measurements. Sky imaging with high resolution fish eye camera provides an excellent opportunity for collecting cloud cover data supplemented with additional characteristics hardly available from routine visual observations (e.g. structure of cloud cover under broken cloud conditions, parameters of distribution of cloud dimensions). We present operational automatic observational package which is based on fish eye camera taking sky images with high resolution (up to 1Hz) in time and a spatial resolution of 968x648px. This spatial resolution has been justified as an optimal by several sensitivity experiments. For the use of the package at research vessel when the horizontal positioning becomes critical, a special extension of the hardware and software to the package has been developed. These modules provide the explicit detection of the optimal moment for shooting. For the post processing of sky images we developed a software realizing the algorithm of the filtering of sunburn effect in case of small and moderate could cover and broken cloud conditions. The same algorithm accurately quantifies the cloud fraction by analyzing color mixture for each point and introducing the so-called "grayness rate index" for every pixel. The accuracy of the algorithm has been tested using the data collected during several campaigns in 2005-2011 in the North Atlantic Ocean. The collection of images included more than 3000 images for different cloud conditions supplied with observations of standard parameters. The system is fully autonomous and has a block for digital data collection at the hard disk. The system has been tested for a wide range of open ocean cloud conditions and we will demonstrate some pilot results of data processing and physical interpretation of fractional cloud cover estimation.

  14. Accurate reconstruction of viral quasispecies spectra through improved estimation of strain richness

    PubMed Central

    2015-01-01

    Background Estimating the number of different species (richness) in a mixed microbial population has been a main focus in metagenomic research. Existing methods of species richness estimation ride on the assumption that the reads in each assembled contig correspond to only one of the microbial genomes in the population. This assumption and the underlying probabilistic formulations of existing methods are not useful for quasispecies populations where the strains are highly genetically related. The lack of knowledge on the number of different strains in a quasispecies population is observed to hinder the precision of existing Viral Quasispecies Spectrum Reconstruction (QSR) methods due to the uncontrolled reconstruction of a large number of in silico false positives. In this work, we formulated a novel probabilistic method for strain richness estimation specifically targeting viral quasispecies. By using this approach we improved our recently proposed spectrum reconstruction pipeline ViQuaS to achieve higher levels of precision in reconstructed quasispecies spectra without compromising the recall rates. We also discuss how one other existing popular QSR method named ShoRAH can be improved using this new approach. Results On benchmark data sets, our estimation method provided accurate richness estimates (< 0.2 median estimation error) and improved the precision of ViQuaS by 2%-13% and F-score by 1%-9% without compromising the recall rates. We also demonstrate that our estimation method can be used to improve the precision and F-score of ShoRAH by 0%-7% and 0%-5% respectively. Conclusions The proposed probabilistic estimation method can be used to estimate the richness of viral populations with a quasispecies behavior and to improve the accuracy of the quasispecies spectra reconstructed by the existing methods ViQuaS and ShoRAH in the presence of a moderate level of technical sequencing errors. Availability http://sourceforge.net/projects/viquas/ PMID:26678073

  15. Accuracy of height estimation and tidal volume setting using anthropometric formulas in an ICU Caucasian population.

    PubMed

    L'her, Erwan; Martin-Babau, Jérôme; Lellouche, François

    2016-12-01

    Knowledge of patients' height is essential for daily practice in the intensive care unit. However, actual height measurements are unavailable on a daily routine in the ICU and measured height in the supine position and/or visual estimates may lack consistency. Clinicians do need simple and rapid methods to estimate the patients' height, especially in short height and/or obese patients. The objectives of the study were to evaluate several anthropometric formulas for height estimation on healthy volunteers and to test whether several of these estimates will help tidal volume setting in ICU patients. This was a prospective, observational study in a medical intensive care unit of a university hospital. During the first phase of the study, eight limb measurements were performed on 60 healthy volunteers and 18 height estimation formulas were tested. During the second phase, four height estimates were performed on 60 consecutive ICU patients under mechanical ventilation. In the 60 healthy volunteers, actual height was well correlated with the gold standard, measured height in the erect position. Correlation was low between actual and calculated height, using the hand's length and width, the index, or the foot equations. The Chumlea method and its simplified version, performed in the supine position, provided adequate estimates. In the 60 ICU patients, calculated height using the simplified Chumlea method was well correlated with measured height (r = 0.78; ∂ < 1 %). Ulna and tibia estimates also provided valuable estimates. All these height estimates allowed calculating IBW or PBW that were significantly different from the patients' actual weight on admission. In most cases, tidal volume set according to these estimates was lower than what would have been set using the actual weight. When actual height is unavailable in ICU patients undergoing mechanical ventilation, alternative anthropometric methods to obtain patient's height based on lower leg and on forearm measurements could be useful to facilitate the application of protective mechanical ventilation in a Caucasian ICU population. The simplified Chumlea method is easy to achieve in a bed-ridden patient and provides accurate height estimates, with a low bias.

  16. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Farmann, Alexander; Waag, Wladislaw; Marongiu, Andrea; Sauer, Dirk Uwe

    2015-05-01

    This work provides an overview of available methods and algorithms for on-board capacity estimation of lithium-ion batteries. An accurate state estimation for battery management systems in electric vehicles and hybrid electric vehicles is becoming more essential due to the increasing attention paid to safety and lifetime issues. Different approaches for the estimation of State-of-Charge, State-of-Health and State-of-Function are discussed and analyzed by many authors and researchers in the past. On-board estimation of capacity in large lithium-ion battery packs is definitely one of the most crucial challenges of battery monitoring in the aforementioned vehicles. This is mostly due to high dynamic operation and conditions far from those used in laboratory environments as well as the large variation in aging behavior of each cell in the battery pack. Accurate capacity estimation allows an accurate driving range prediction and accurate calculation of a battery's maximum energy storage capability in a vehicle. At the same time it acts as an indicator for battery State-of-Health and Remaining Useful Lifetime estimation.

  17. SU-F-I-37: How Fat Distribution and Table Height Affect Estimates of Patient Size in CT Scanning: A Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silosky, M; Marsh, R

    Purpose: Localizer projection radiographs acquired prior to CT scans are used to estimate patient size, affecting the function of Automatic Tube Current Modulation (ATCM) and hence CTDIvol and SSDE. Due to geometric effects, the projected patient size varies with scanner table height and with the orientation of the localizer (AP versus PA). This study sought to determine if patient size estimates made from localizer scans is affected by variations in fat distribution, specifically when the widest part of the patient is not at the geometric center of the patient. Methods: Lipid gel bolus material was wrapped around an anthropomorphic phantommore » to simulate two different body mass distributions. The first represented a patient with fairly rigid fat and had a generally oval shape. The second was bell-shaped, representing corpulent patients more susceptible to gravity’s lustful tug. Each phantom configuration was imaged using an AP localizer and then a PA localizer. This was repeated at various scanner table heights. The width of the phantom was measured from the localizer and diagnostic images using in-house software. Results: 1) The projected phantom width varied up to 39% as table height changed.2) At some table heights, the width of the phantom, designed to represent larger patients, exceeded the localizer field of view, resulting in an underestimation of the phantom width.3) The oval-shaped phantom approached a normalized phantom width of 1 at a table height several centimeters lower (AP localizer) or higher (PA localizer) than did the bell-shaped phantom. Conclusion: Accurate estimation of patient size from localizer scans is dependent on patient positioning with respect to scanner isocenter and is limited in large patients. Further, patient size is more accurately measured on projection images if the widest part of the patient, rather than the geometric center of the patient, is positioned at scanner isocenter.« less

  18. A Semi-Automated Machine Learning Algorithm for Tree Cover Delineation from 1-m Naip Imagery Using a High Performance Computing Architecture

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.

    2014-12-01

    Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.

  19. Application of thin plate splines for accurate regional ionosphere modeling with multi-GNSS data

    NASA Astrophysics Data System (ADS)

    Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej

    2016-04-01

    GNSS-derived regional ionosphere models are widely used in both precise positioning, ionosphere and space weather studies. However, their accuracy is often not sufficient to support precise positioning, RTK in particular. In this paper, we presented new approach that uses solely carrier phase multi-GNSS observables and thin plate splines (TPS) for accurate ionospheric TEC modeling. TPS is a closed solution of a variational problem minimizing both the sum of squared second derivatives of a smoothing function and the deviation between data points and this function. This approach is used in UWM-rt1 regional ionosphere model developed at UWM in Olsztyn. The model allows for providing ionospheric TEC maps with high spatial and temporal resolutions - 0.2x0.2 degrees and 2.5 minutes, respectively. For TEC estimation, EPN and EUPOS reference station data is used. The maps are available with delay of 15-60 minutes. In this paper we compare the performance of UWM-rt1 model with IGS global and CODE regional ionosphere maps during ionospheric storm that took place on March 17th, 2015. During this storm, the TEC level over Europe doubled comparing to earlier quiet days. The performance of the UWM-rt1 model was validated by (a) comparison to reference double-differenced ionospheric corrections over selected baselines, and (b) analysis of post-fit residuals to calibrated carrier phase geometry-free observational arcs at selected test stations. The results show a very good performance of UWM-rt1 model. The obtained post-fit residuals in case of UWM maps are lower by one order of magnitude comparing to IGS maps. The accuracy of UWM-rt1 -derived TEC maps is estimated at 0.5 TECU. This may be directly translated to the user positioning domain.

  20. Bayesian State-Space Modelling of Conventional Acoustic Tracking Provides Accurate Descriptors of Home Range Behavior in a Small-Bodied Coastal Fish Species

    PubMed Central

    Alós, Josep; Palmer, Miquel; Balle, Salvador; Arlinghaus, Robert

    2016-01-01

    State-space models (SSM) are increasingly applied in studies involving biotelemetry-generated positional data because they are able to estimate movement parameters from positions that are unobserved or have been observed with non-negligible observational error. Popular telemetry systems in marine coastal fish consist of arrays of omnidirectional acoustic receivers, which generate a multivariate time-series of detection events across the tracking period. Here we report a novel Bayesian fitting of a SSM application that couples mechanistic movement properties within a home range (a specific case of random walk weighted by an Ornstein-Uhlenbeck process) with a model of observational error typical for data obtained from acoustic receiver arrays. We explored the performance and accuracy of the approach through simulation modelling and extensive sensitivity analyses of the effects of various configurations of movement properties and time-steps among positions. Model results show an accurate and unbiased estimation of the movement parameters, and in most cases the simulated movement parameters were properly retrieved. Only in extreme situations (when fast swimming speeds are combined with pooling the number of detections over long time-steps) the model produced some bias that needs to be accounted for in field applications. Our method was subsequently applied to real acoustic tracking data collected from a small marine coastal fish species, the pearly razorfish, Xyrichtys novacula. The Bayesian SSM we present here constitutes an alternative for those used to the Bayesian way of reasoning. Our Bayesian SSM can be easily adapted and generalized to any species, thereby allowing studies in freely roaming animals on the ecological and evolutionary consequences of home ranges and territory establishment, both in fishes and in other taxa. PMID:27119718

  1. [Predictive value and sensibility of hospital discharge system (PMSI) compared to cancer registries for thyroïd cancer (1999-2000)].

    PubMed

    Carré, N; Uhry, Z; Velten, M; Trétarre, B; Schvartz, C; Molinié, F; Maarouf, N; Langlois, C; Grosclaude, P; Colonna, M

    2006-09-01

    Cancer registries have a complete recording of new cancer cases occurring among residents of a specific geographic area. In France, they cover only 13% of the population. For thyroid cancer, where incidence rate is highly variable according to the district conversely to mortality, national incidence estimates are not accurate. A nationwide database, such as hospital discharge system, could improve this estimate but its positive predictive value and sensibility should be evaluated. The positive predictive value and the sensitivity for thyroid cancer case ascertainment (ICD-10) of the national hospital discharge system in 1999 and 2000 were estimated using the cancer registries database of 10 French districts as gold standard. The linkage of the two databases required transmission of nominative information from the health facilities of the study. From the registries database, a logistic regression analysis was carried out to identify factors related to being missed by the hospital discharge system. Among the 973 standardized discharge charts selected from the hospital discharge system, 866 were considered as true positive cases, and 107 as false positive. Forty five of the latter group were prevalent cases. The predictive positive value was 89% (95% confidence interval (CI): 87-91%) and did not differ according to the district (p=0,80). According to the cancer registries, 322 thyroid cancer cases diagnosed in 1999 or 2000 were missed by the hospital discharge system. Thus, the sensitivity of this latter system was 73% (70-76%) and varied significantly from 62% to 85% across districts (p<0.001) and according to the type of health facility (p<0.01). Predictive positive value of the French hospital discharge system for ascertainment of thyroid cancer cases is high and stable across districts. Sensitivity is lower and varies significantly according to the type of health facility and across districts, which limits the interest of this database for a national estimate of thyroid cancer incidence rate.

  2. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-01

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  3. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-01

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  4. Loose fusion based on SLAM and IMU for indoor environment

    NASA Astrophysics Data System (ADS)

    Zhu, Haijiang; Wang, Zhicheng; Zhou, Jinglin; Wang, Xuejing

    2018-04-01

    The simultaneous localization and mapping (SLAM) method based on the RGB-D sensor is widely researched in recent years. However, the accuracy of the RGB-D SLAM relies heavily on correspondence feature points, and the position would be lost in case of scenes with sparse textures. Therefore, plenty of fusion methods using the RGB-D information and inertial measurement unit (IMU) data have investigated to improve the accuracy of SLAM system. However, these fusion methods usually do not take into account the size of matched feature points. The pose estimation calculated by RGB-D information may not be accurate while the number of correct matches is too few. Thus, considering the impact of matches in SLAM system and the problem of missing position in scenes with few textures, a loose fusion method combining RGB-D with IMU is proposed in this paper. In the proposed method, we design a loose fusion strategy based on the RGB-D camera information and IMU data, which is to utilize the IMU data for position estimation when the corresponding point matches are quite few. While there are a lot of matches, the RGB-D information is still used to estimate position. The final pose would be optimized by General Graph Optimization (g2o) framework to reduce error. The experimental results show that the proposed method is better than the RGB-D camera's method. And this method can continue working stably for indoor environment with sparse textures in the SLAM system.

  5. Monitoring and Prediction of Precipitable Water Vapor using GPS data in Turkey

    NASA Astrophysics Data System (ADS)

    Ansari, Kutubuddin; Althuwaynee, Omar F.; Corumluoglu, Ozsen

    2016-12-01

    Although Global Positioning System (GPS) primarily provide accurate estimates of position, velocity and time of the receiver, as the signals pass through the atmoshphere carrying its signatures, thus offers opportunities for atmoshpheric applications. Precipitable water vapor (PWV) is a vital component of the atmosphere and significantly influences atmospheric processes like rainfall and atmospheric temperature. The developing networks of continuously operating GPS can be used to efficiently estimate PWV. The Turkish Permanent GPS Network (TPGN) is employed to monitor PWV information in Turkey. This work primarily aims to derive long-term data of PWV by using atmospheric path delays observed through continuously operating TPGN from November 2014 to October 2015. A least square mathematical approach was then applied to establish the relation of the observed PWV to rainfall and temperature. The modeled PWV was correlated with PWV estimated from GPS data, with an average correlation of 67.10 %-88.60 %. The estimated root mean square error (RMSE) varied from 2.840 to 6.380, with an average of 4.697. Finally, data of TPGN, rainfall, and temperature were obtained for less than 2 months (November 2015 to December 2015) and assessed to validate the mathematical model. This study provides a basis for determining PWV by using rainfall and temperature data.

  6. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    NASA Technical Reports Server (NTRS)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  7. Estimating Local Chlamydia Incidence and Prevalence Using Surveillance Data

    PubMed Central

    White, Peter J.

    2017-01-01

    Background: Understanding patterns of chlamydia prevalence is important for addressing inequalities and planning cost-effective control programs. Population-based surveys are costly; the best data for England come from the Natsal national surveys, which are only available once per decade, and are nationally representative but not powered to compare prevalence in different localities. Prevalence estimates at finer spatial and temporal scales are required. Methods: We present a method for estimating local prevalence by modeling the infection, testing, and treatment processes. Prior probability distributions for parameters describing natural history and treatment-seeking behavior are informed by the literature or calibrated using national prevalence estimates. By combining them with surveillance data on numbers of chlamydia tests and diagnoses, we obtain estimates of local screening rates, incidence, and prevalence. We illustrate the method by application to data from England. Results: Our estimates of national prevalence by age group agree with the Natsal-3 survey. They could be improved by additional information on the number of diagnosed cases that were asymptomatic. There is substantial local-level variation in prevalence, with more infection in deprived areas. Incidence in each sex is strongly correlated with prevalence in the other. Importantly, we find that positivity (the proportion of tests which were positive) does not provide a reliable proxy for prevalence. Conclusion: This approach provides local chlamydia prevalence estimates from surveillance data, which could inform analyses to identify and understand local prevalence patterns and assess local programs. Estimates could be more accurate if surveillance systems recorded additional information, including on symptoms. See video abstract at, http://links.lww.com/EDE/B211. PMID:28306613

  8. Human Papillomavirus-associated oropharyngeal cancer: an observational study of diagnosis, prevalence and prognosis in a UK population

    PubMed Central

    2013-01-01

    Background The incidence of Human Papillomavirus (HPV) associated oropharyngeal cancer (OPC) is increasing. HPV-associated OPC appear to have better prognosis than HPV-negative OPC. The aim of this study was to robustly determine the prevalence of HPV-positive OPC in an unselected UK population and correlate HPV positivity with clinical outcome. Methods HPV testing by GP5+/6+ PCR, In Situ Hybridisation (ISH) and p16 immunohistochemistry (IHC) was performed on 138 OPCs diagnosed in South Wales (UK) between 2001–06. Kaplan-Meier analysis was used to correlate HPV status with clinical outcome. Results Using a composite definition of HPV positivity (HPV DNA and p16 overexpression), HPV was detected in 46/83 (55%) samples where DNA quality was assured. Five year overall survival was 75.4% (95% CI: 65.2 to 85.5) in HPV-positives vs 25.3% (95% CI: 14.2 to 36.4) in HPV negatives, corresponding to a 78% reduction in death rate (HR 0.22, p < 0.001). HPV-positives had less locoregional recurrence but second HPV-positive Head and Neck primaries occurred. Poor quality DNA in fixed pathological specimens reduced both HPV prevalence estimates and the prognostic utility of DNA-based HPV testing methods. As a single marker, p16 was least affected by sample quality and correlated well with prognosis, although was not sufficient on its own for accurate HPV prevalence reporting. Conclusions This study highlights the significant burden of OPC associated with HPV infection. HPV positive cases are clinically distinct from other OPC, and are associated with significantly better clinical outcomes. A composite definition of HPV positivity should be used for accurate prevalence reporting and up-front DNA quality assessment is recommended for any DNA-based HPV detection strategy. PMID:23634887

  9. Can Value-Added Measures of Teacher Performance Be Trusted?

    ERIC Educational Resources Information Center

    Guarino, Cassandra M.; Reckase, Mark D.; Wooldridge, Jeffrey M.

    2015-01-01

    We investigate whether commonly used value-added estimation strategies produce accurate estimates of teacher effects under a variety of scenarios. We estimate teacher effects in simulated student achievement data sets that mimic plausible types of student grouping and teacher assignment scenarios. We find that no one method accurately captures…

  10. Reliability of internal oblique elbow radiographs for measuring displacement of medial epicondyle humerus fractures: a cadaveric study.

    PubMed

    Gottschalk, Hilton P; Bastrom, Tracey P; Edmonds, Eric W

    2013-01-01

    Standard elbow radiographs (AP and lateral views) are not accurate enough to measure true displacement of medial epicondyle fractures of the humerus. The amount of perceived displacement has been used to determine treatment options. This study assesses the utility of internal oblique radiographs for measurement of true displacement in these fractures. A medial epicondyle fracture was created in a cadaveric specimen. Displacement of the fragment (mm) was set at 5, 10, and 15 in line with the vector of the flexor pronator mass. The fragment was sutured temporarily in place. Radiographs were obtained at 0 (AP), 15, 30, 45, 60, 75, and 90 degrees (lateral) of internal rotation, with the elbow in set positions of flexion. This was done with and without radio-opaque markers placed on the fragment and fracture bed. The 45 and 60 degrees internal oblique radiographs were then presented to 5 separate reviewers (of different levels of training) to evaluate intraobserver and interobserver agreement. Change in elbow position did not affect the perceived displacement (P=0.82) with excellent intraobserver reliability (intraclass correlation coefficient range, 0.979 to 0.988) and interobserver agreement of 0.953. The intraclass correlation coefficient for intraobserver reliability on 45 degrees internal oblique films for all groups ranged from 0.985 to 0.998, with interobserver agreement of 0.953. For predicting displacement, the observers were 60% accurate in predicting the true displacement on the 45 degrees internal oblique films and only 35% accurate using the 60 degrees internal oblique view. Standardizing to a 45 degrees internal oblique radiograph of the elbow (regardless of elbow flexion) can augment the treating surgeon's ability to determine true displacement. At this degree of rotation, the measured number can be multiplied by 1.4 to better estimate displacement. The addition of a 45 degrees internal oblique radiograph in medial humeral epicondyle fractures has good intraobserver and interobserver reliability to more accurately estimate the true displacement of these fractures. Diagnostic study, Level II (Development of diagnostic study with universally applied reference "gold" standard).

  11. Interpreting ambiguous ‘trace’ results in Schistosoma mansoni CCA Tests: Estimating sensitivity and specificity of ambiguous results with no gold standard

    PubMed Central

    Donnelly, Christl A.; Fenwick, Alan; Kabatereine, Narcis B.; Knowles, Sarah C. L.; Meité, Aboulaye; N'Goran, Eliézer K.; Nalule, Yolisa; Nogaro, Sarah; Phillips, Anna E.; Tukahebwa, Edridah Muheki; Fleming, Fiona M.

    2017-01-01

    Background The development of new diagnostics is an important tool in the fight against disease. Latent Class Analysis (LCA) is used to estimate the sensitivity and specificity of tests in the absence of a gold standard. The main field diagnostic for Schistosoma mansoni infection, Kato-Katz (KK), is not very sensitive at low infection intensities. A point-of-care circulating cathodic antigen (CCA) test has been shown to be more sensitive than KK. However, CCA can return an ambiguous ‘trace’ result between ‘positive’ and ‘negative’, and much debate has focused on interpretation of traces results. Methodology/Principle findings We show how LCA can be extended to include ambiguous trace results and analyse S. mansoni studies from both Côte d’Ivoire (CdI) and Uganda. We compare the diagnostic performance of KK and CCA and the observed results by each test to the estimated infection prevalence in the population. Prevalence by KK was higher in CdI (13.4%) than in Uganda (6.1%), but prevalence by CCA was similar between countries, both when trace was assumed to be negative (CCAtn: 11.7% in CdI and 9.7% in Uganda) and positive (CCAtp: 20.1% in CdI and 22.5% in Uganda). The estimated sensitivity of CCA was more consistent between countries than the estimated sensitivity of KK, and estimated infection prevalence did not significantly differ between CdI (20.5%) and Uganda (19.1%). The prevalence by CCA with trace as positive did not differ significantly from estimates of infection prevalence in either country, whereas both KK and CCA with trace as negative significantly underestimated infection prevalence in both countries. Conclusions Incorporation of ambiguous results into an LCA enables the effect of different treatment thresholds to be directly assessed and is applicable in many fields. Our results showed that CCA with trace as positive most accurately estimated infection prevalence. PMID:29220354

  12. MiniAERCam Ranging

    NASA Technical Reports Server (NTRS)

    Talley, Tom

    2003-01-01

    Johnson Space Center (JSC) is designing a small, remotely controlled vehicle that will carry two color and one black and white video cameras in space. The device will launch and retrieve from the Space Vehicle and be used for remote viewing. Off the shelf cellular technology is being used as the basis for communication system design. Existing plans include using multiple antennas to make simultaneous estimates of the azimuth of the MiniAERCam from several sites on the Space Station and use triangulation to find the location of the device. Adding range detection capability to each of the nodes on the Space Vehicle would allow an estimate of the location of the MiniAERCam to be made at each Communication And Telemetry Box (CATBox) independent of all the other communication nodes. This project will investigate the techniques used by the Global Positioning System (GPS) to achieve accurate positioning information and adapt those strategies that are appropriate to the design of the CATBox range determination system.

  13. Differential barometric-based positioning technique for indoor elevation measurement in IoT medical applications.

    PubMed

    Wang, Hua; Wen, Yingyou; Zhao, Dazhe

    2017-07-20

    Medical applications have begun to benefit from Internet of Things (IoT) technology through the introduction of wearable devices. Several medical applications require accurate patient location as various changes affect pressure parameters inside the body. This study aims to develop a system to measure indoor altitude for IoT medical applications. We propose a differential barometric-based positioning system to estimate the altitude between a reference sensor and a localizing sensor connected to the human body. The differential barometric altimetry model is introduced to estimate indoor elevations and eliminate environmental artifacts. In addition, a Gaussian filter processing is adopted to remove noise from the elevation measurements. The proposed system is then investigated through extensive experiments, using various evaluation criteria. The results indicate that the proposed system yielded good accuracy with reduced implementation complexity and fewer costs. The proposed system is resilient compared to other indoor localization approaches, even when numerous environmental artifacts in indoor environments are present.

  14. Single-camera visual odometry to track a surgical X-ray C-arm base.

    PubMed

    Esfandiari, Hooman; Lichti, Derek; Anglin, Carolyn

    2017-12-01

    This study provides a framework for a single-camera odometry system for localizing a surgical C-arm base. An application-specific monocular visual odometry system (a downward-looking consumer-grade camera rigidly attached to the C-arm base) is proposed in this research. The cumulative dead-reckoning estimation of the base is extracted based on frame-to-frame homography estimation. Optical-flow results are utilized to feed the odometry. Online positional and orientation parameters are then reported. Positional accuracy of better than 2% (of the total traveled distance) for most of the cases and 4% for all the cases studied and angular accuracy of better than 2% (of absolute cumulative changes in orientation) were achieved with this method. This study provides a robust and accurate tracking framework that not only can be integrated with the current C-arm joint-tracking system (i.e. TC-arm) but also is capable of being employed for similar applications in other fields (e.g. robotics).

  15. Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, observed by global positioning system, electronic distance meter, creepmeters, and borehole strainmeters

    USGS Publications Warehouse

    Langbein, J.; Murray, J.R.; Snyder, H.A.

    2006-01-01

    Global Positioning System (GPS), electronic distance meter, creepmeter, and strainmeter measurements spanning the M 6.0 Parkfield, California, earthquake are examined. Using these data from 100 sec through 9 months following the main-shock, the Omori's law, with rate inversely related to time, l/t p and p ranging between 0.7 and 1.3, characterizes the time-dependent deformation during the post-seismic period; these results are consistent with creep models for elastic solids. With an accurate function of postseismic response, the coseismic displacements can be estimated from the high-rate, 1-min sampling GPS; and the coseismic displacements are approximately 75% of those estimated from the daily solutions. Consequently, fault-slip models using daily solutions overestimate coseismic slip. In addition, at 2 months and at 8 months following the mainshock, postseismic displacements are modeled as slip on the San Andreas fault with a lower bound on the moment exceeding that of the coseismic moment.

  16. Assessment of xylem phenology: a first attempt to verify its accuracy and precision.

    PubMed

    Lupi, C; Rossi, S; Vieira, J; Morin, H; Deslauriers, A

    2014-01-01

    This manuscript aims to evaluate the precision and accuracy of current methodology for estimating xylem phenology and tracheid production in trees. Through a simple approach, sampling at two positions on the stem of co-dominant black spruce trees in two sites of the boreal forest of Quebec, we were able to quantify variability among sites, between trees and within a tree for different variables. We demonstrated that current methodology is accurate for the estimation of the onset of xylogenesis, while the accuracy for the evaluation of the ending of xylogenesis may be improved by sampling at multiple positions on the stem. The pattern of variability in different phenological variables and cell production allowed us to advance a novel hypothesis on the shift in the importance of various drivers of xylogenesis, from factors mainly varying at the level of site (e.g., climate) at the beginning of the growing season to factors varying at the level of individual trees (e.g., possibly genetic variability) at the end of the growing season.

  17. A Cross-Sectional Survey of Interventional Radiologists and Vascular Surgeons Regarding the Cost and Reimbursement of Common Devices and Procedures

    PubMed Central

    Wang, Angela; Dybul, Stephanie L.; Patel, Parag J.; Tutton, Sean M.; Lee, Cheong J.; White, Sarah B.

    2016-01-01

    Purpose To evaluate knowledge of interventional radiologists (IRs) and vascular surgeons (VSs) on the cost of common devices and procedures and to determine factors associated with differences in understanding. Materials and Methods An online survey was administered to US faculty IRs and VSs. Demographic information and physicians’ opinions on hospital costs were elicited. Respondents were asked to estimate the average price of 15 commonly used devices and to estimate the work relative value units (wRVUs) and average Medicare reimbursements for 10 procedures. Answer estimates were deemed correct if values were ± 25% of the actual costs. Multivariate logistical regression was used to calculate odds ratios and 95% confidence intervals. Results Of the 4,926 participants contacted, 1,090 (22.1%) completed the questionnaire. Overall, 19.8%, 22.8%, and 31.9% were accurate in price estimations of devices, Medicare reimbursement, and wRVUs for procedures. Physicians who thought themselves adequately educated about wRVUs were more accurate in predicting procedural costs in wRVUs than physicians who responded otherwise (odds ratio = 1.40, 95% confidence interval, 1.29–1.52; P < .0001). Estimation accuracies for procedures showed a positive trend in more experienced physicians (≥ 16 y), private practice physicians, and physicians who practice in rural areas. Conclusions This study suggests that IRs and VSs have limited knowledge regarding device costs. Given the current health care environment, more attention should be placed on cost education and awareness so that physicians can provide the most cost-effective care. PMID:26706189

  18. Optimization-Based Sensor Fusion of GNSS and IMU Using a Moving Horizon Approach

    PubMed Central

    Girrbach, Fabian; Hol, Jeroen D.; Bellusci, Giovanni; Diehl, Moritz

    2017-01-01

    The rise of autonomous systems operating close to humans imposes new challenges in terms of robustness and precision on the estimation and control algorithms. Approaches based on nonlinear optimization, such as moving horizon estimation, have been shown to improve the accuracy of the estimated solution compared to traditional filter techniques. This paper introduces an optimization-based framework for multi-sensor fusion following a moving horizon scheme. The framework is applied to the often occurring estimation problem of motion tracking by fusing measurements of a global navigation satellite system receiver and an inertial measurement unit. The resulting algorithm is used to estimate position, velocity, and orientation of a maneuvering airplane and is evaluated against an accurate reference trajectory. A detailed study of the influence of the horizon length on the quality of the solution is presented and evaluated against filter-like and batch solutions of the problem. The versatile configuration possibilities of the framework are finally used to analyze the estimated solutions at different evaluation times exposing a nearly linear behavior of the sensor fusion problem. PMID:28534857

  19. Optimization-Based Sensor Fusion of GNSS and IMU Using a Moving Horizon Approach.

    PubMed

    Girrbach, Fabian; Hol, Jeroen D; Bellusci, Giovanni; Diehl, Moritz

    2017-05-19

    The rise of autonomous systems operating close to humans imposes new challenges in terms of robustness and precision on the estimation and control algorithms. Approaches based on nonlinear optimization, such as moving horizon estimation, have been shown to improve the accuracy of the estimated solution compared to traditional filter techniques. This paper introduces an optimization-based framework for multi-sensor fusion following a moving horizon scheme. The framework is applied to the often occurring estimation problem of motion tracking by fusing measurements of a global navigation satellite system receiver and an inertial measurement unit. The resulting algorithm is used to estimate position, velocity, and orientation of a maneuvering airplane and is evaluated against an accurate reference trajectory. A detailed study of the influence of the horizon length on the quality of the solution is presented and evaluated against filter-like and batch solutions of the problem. The versatile configuration possibilities of the framework are finally used to analyze the estimated solutions at different evaluation times exposing a nearly linear behavior of the sensor fusion problem.

  20. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series

    PubMed Central

    2011-01-01

    Background Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Results Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. Conclusions The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html. PMID:21851598

  1. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series.

    PubMed

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Ni, Shengyu; Xu, Augix Guohua; Tang, Lin; Vingron, Martin; Somel, Mehmet; Khaitovich, Philipp

    2011-08-18

    Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.

  2. Automated framework for estimation of lung tumor locations in kV-CBCT images for tumor-based patient positioning in stereotactic lung body radiotherapy

    NASA Astrophysics Data System (ADS)

    Yoshidome, Satoshi; Arimura, Hidetaka; Terashima, Koutarou; Hirakawa, Masakazu; Hirose, Taka-aki; Fukunaga, Junichi; Nakamura, Yasuhiko

    2017-03-01

    Recently, image-guided radiotherapy (IGRT) systems using kilovolt cone-beam computed tomography (kV-CBCT) images have become more common for highly accurate patient positioning in stereotactic lung body radiotherapy (SLBRT). However, current IGRT procedures are based on bone structures and subjective correction. Therefore, the aim of this study was to evaluate the proposed framework for automated estimation of lung tumor locations in kV-CBCT images for tumor-based patient positioning in SLBRT. Twenty clinical cases are considered, involving solid, pure ground-glass opacity (GGO), mixed GGO, solitary, and non-solitary tumor types. The proposed framework consists of four steps: (1) determination of a search region for tumor location detection in a kV-CBCT image; (2) extraction of a tumor template from a planning CT image; (3) preprocessing for tumor region enhancement (edge and tumor enhancement using a Sobel filter and a blob structure enhancement (BSE) filter, respectively); and (4) tumor location estimation based on a template-matching technique. The location errors in the original, edge-, and tumor-enhanced images were found to be 1.2 ± 0.7 mm, 4.2 ± 8.0 mm, and 2.7 ± 4.6 mm, respectively. The location errors in the original images of solid, pure GGO, mixed GGO, solitary, and non-solitary types of tumors were 1.2 ± 0.7 mm, 1.3 ± 0.9 mm, 0.4 ± 0.6 mm, 1.1 ± 0.8 mm and 1.0 ± 0.7 mm, respectively. These results suggest that the proposed framework is robust as regards automatic estimation of several types of tumor locations in kV-CBCT images for tumor-based patient positioning in SLBRT.

  3. How accurately does the Brief Job Stress Questionnaire identify workers with or without potential psychological distress?

    PubMed

    Tsutsumi, Akizumi; Inoue, Akiomi; Eguchi, Hisashi

    2017-07-27

    The manual for the Japanese Stress Check Program recommends use of the Brief Job Stress Questionnaire (BJSQ) from among the program's instruments and proposes criteria for defining "high-stress" workers. This study aimed to examine how accurately the BJSQ identifies workers with or without potential psychological distress. We used an online survey to administer the BJSQ with a psychological distress scale (K6) to randomly selected workers (n=1,650). We conducted receiver operating characteristics curve analyses to estimate the screening performance of the cutoff points that the Stress Check Program manual recommends for the BJSQ. Prevalence of workers with potential psychological distress defined as K6 score ≥13 was 13%. Prevalence of "high-risk" workers defined using criteria recommended by the program manual was 16.7% for the original version of the BJSQ. The estimated values were as follows: sensitivity, 60.5%; specificity, 88.9%; Youden index, 0.504; positive predictive value, 47.3%; negative predictive value, 93.8%; positive likelihood ratio, 6.0; and negative likelihood ratio, 0.4. Analyses based on the simplified BJSQ indicated lower sensitivity compared with the original version, although we expected roughly the same screening performance for the best scenario using the original version. Our analyses in which psychological distress measured by K6 was set as the target condition indicate less than half of the identified "high-stress" workers warrant consideration for secondary screening for psychological distress.

  4. Accuracy of visual assessments of proliferation indices in gastroenteropancreatic neuroendocrine tumours.

    PubMed

    Young, Helen T M; Carr, Norman J; Green, Bryan; Tilley, Charles; Bhargava, Vidhi; Pearce, Neil

    2013-08-01

    To compare the accuracy of eyeball estimates of the Ki-67 proliferation index (PI) with formal counting of 2000 cells as recommend by the Royal College of Pathologists. Sections from gastroenteropancreatic neuroendocrine tumours were immunostained for Ki-67. PI was calculated using three methods: (1) a manual tally count of 2000 cells from the area of highest nuclear labelling using a microscope eyepiece graticule; (2) eyeball estimates made by four pathologists within the same area of highest nuclear labelling; and (3) image analysis of microscope photographs taken from this area using the ImageJ 'cell counter' tool. ImageJ analysis was considered the gold standard for comparison. Levels of agreement between methods were evaluated using Bland-Altman plots. Agreement between the manual tally and ImageJ assessments was very high at low PIs. Agreement between eyeball assessments and ImageJ analysis varied between pathologists. Where data for low PIs alone were analysed, there was a moderate level of agreement between pathologists' estimates and the gold standard, but when all data were included, agreement was poor. Manual tally counts of 2000 cells exhibited similar levels of accuracy to the gold standard, especially at low PIs. Eyeball estimates were significantly less accurate than the gold standard. This suggests that tumour grades may be misclassified by eyeballing and that formal tally counting of positive cells produces more reliable results. Further studies are needed to identify accurate clinically appropriate ways of calculating.

  5. Development of a piezo-actuated micro-teleoperation system for cell manipulation.

    PubMed

    Zareinejad, M; Rezaei, S M; Abdullah, A; Shiry Ghidary, S

    2009-03-01

    Intracytoplasmic sperm injection (ICSI) requires long training and has low success rates, primarily due to poor control over the injection force. Making force feedback available to the operator will improve the success rate of the injection task. A macro-micro-teleoperation system bridges the gap between the task performed at the micro-level and the macroscopic movements of the operator. The teleoperation slave manipulator should accurately position a needle to precisely penetrate a cell membrane. Piezoelectric actuators are widely used in micromanipulation applications; however, hysteresis non-linearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as slave manipulator of a teleoperation system. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in a feedforward scheme to cancel out this non-linearity. To deal with the influence of parametric uncertainties, unmodelled dynamics and PI identification error, a perturbation term is added to the slave model and applies a sliding mode-based impedance control with perturbation estimation. The stability of entire system is guaranteed by Llewellyn's absolute stability criterion. The performance of the proposed controller was investigated through experiments for cell membrane penetration. The experimental results verified the accurate position tracking in free motion and simultaneous position and force tracking in contact with a low stiffness environment.

  6. Experimental evaluation of fingerprint verification system based on double random phase encoding

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroyuki; Yamaguchi, Masahiro; Yachida, Masuyoshi; Ohyama, Nagaaki; Tashima, Hideaki; Obi, Takashi

    2006-03-01

    We proposed a smart card holder authentication system that combines fingerprint verification with PIN verification by applying a double random phase encoding scheme. In this system, the probability of accurate verification of an authorized individual reduces when the fingerprint is shifted significantly. In this paper, a review of the proposed system is presented and preprocessing for improving the false rejection rate is proposed. In the proposed method, the position difference between two fingerprint images is estimated by using an optimized template for core detection. When the estimated difference exceeds the permissible level, the user inputs the fingerprint again. The effectiveness of the proposed method is confirmed by a computational experiment; its results show that the false rejection rate is improved.

  7. Synchronization for Optical PPM with Inter-Symbol Guard Times

    NASA Astrophysics Data System (ADS)

    Rogalin, R.; Srinivasan, M.

    2017-05-01

    Deep space optical communications promises orders of magnitude growth in communication capacity, supporting high data rate applications such as video streaming and high-bandwidth science instruments. Pulse position modulation is the modulation format of choice for deep space applications, and by inserting inter-symbol guard times between the symbols, the signal carries the timing information needed by the demodulator. Accurately extracting this timing information is crucial to demodulating and decoding this signal. In this article, we propose a number of timing and frequency estimation schemes for this modulation format, and in particular highlight a low complexity maximum likelihood timing estimator that significantly outperforms the prior art in this domain. This method does not require an explicit synchronization sequence, freeing up channel resources for data transmission.

  8. Importance Sampling of Word Patterns in DNA and Protein Sequences

    PubMed Central

    Chan, Hock Peng; Chen, Louis H.Y.

    2010-01-01

    Abstract Monte Carlo methods can provide accurate p-value estimates of word counting test statistics and are easy to implement. They are especially attractive when an asymptotic theory is absent or when either the search sequence or the word pattern is too short for the application of asymptotic formulae. Naive direct Monte Carlo is undesirable for the estimation of small probabilities because the associated rare events of interest are seldom generated. We propose instead efficient importance sampling algorithms that use controlled insertion of the desired word patterns on randomly generated sequences. The implementation is illustrated on word patterns of biological interest: palindromes and inverted repeats, patterns arising from position-specific weight matrices (PSWMs), and co-occurrences of pairs of motifs. PMID:21128856

  9. A model of the general ocean circulation determined from a joint solution for the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Tapley, B. D.; Shum, C. K.; Yuan, D. N.

    1989-01-01

    If the geoid and the satellite position are known accurately, satellite altimetry can be used to determine the geostrophic velocity of the surface ocean currents. The purpose of this investigation is to simultaneously estimate the sea surface topography, zeta, the model for the gravity field, and the satellite orbit. Satellite tracking data from fourteen satellites were used; along with Seasat and Geosat altimeter data as well as surface gravity data for the solution. The estimated model of zeta compares well at long wavelengths with the hydrographic model of zeta. Covariance studies show that the geoid is separable from zeta up to degree 9, at which point geoid error becomes comparable to the signal of zeta.

  10. Soil clay content controls the turnover of slow soil carbon across Chinese cropland

    NASA Astrophysics Data System (ADS)

    Feng, W.; Jiang, J.; Li, J.

    2017-12-01

    Improving the prediction of changes in global soil organic carbon (SOC) lies in accurate estimate of C inputs to soils and SOC turnover time. Since C inputs to soils in cropland can be estimated due to well documented data of crop yields, SOC turnover rate becomes critical for accurate prediction of changes in SOC. The laboratory incubation is widely used but cannot well represent the turnover of slow soil C that accounts for the majority of total SOC, while the long-term observation of temporal changes in SOC stock offers an opportunity to estimate the turnover of slow soil C. Using time series data of SOC stock of twenty long-term agricultural trials that have initiated since 1990 in China, we estimated SOC turnover rates based on changes in soil C pool size and aimed to identify the dominant controls on SOC turnover rate across Chinese cropland. We used the two-pool first-order kinetic soil C model and the inverse modeling with Markov chain the Monte Carlo algorithm, and estimated humification coefficient (h) of C inputs to soils, turnover rates of fast and slow soil C pools, and the transfer coefficient between these two soil C pools. The preliminary results show that the turnover rate of slow soil C is positively correlated with climate (i.e. mean annual temperature and precipitation) but negatively correlated with the clay content, demonstrating that the clay content is important in regulating SOC turnover rates. The ratio of humification coefficient to C turnover rate (h/k) that indicates soil C sequestration efficiency, is negatively correlated with climate and positively correlated with the clay content. In addition, the quantity of C inputs is correlated with h/k and the turnover rate of slow soil C, suggesting that the quantity of C inputs plays an important role in mediating C sequestration efficiency. Further results will inform us the main controls on SOC turnover in Chinese cropland. Keywords: SOC; turnover; long-term trial; temporal change; clay content; inverse modeling

  11. A learning–based approach to artificial sensory feedback leads to optimal integration

    PubMed Central

    Dadarlat, Maria C.; O’Doherty, Joseph E.; Sabes, Philip N.

    2014-01-01

    Proprioception—the sense of the body’s position in space—plays an important role in natural movement planning and execution and will likewise be necessary for successful motor prostheses and Brain–Machine Interfaces (BMIs). Here, we demonstrated that monkeys could learn to use an initially unfamiliar multi–channel intracortical microstimulation (ICMS) signal, which provided continuous information about hand position relative to an unseen target, to complete accurate reaches. Furthermore, monkeys combined this artificial signal with vision to form an optimal, minimum–variance estimate of relative hand position. These results demonstrate that a learning–based approach can be used to provide a rich artificial sensory feedback signal, suggesting a new strategy for restoring proprioception to patients using BMIs as well as a powerful new tool for studying the adaptive mechanisms of sensory integration. PMID:25420067

  12. Cross-Sectional HIV Incidence Estimation in HIV Prevention Research

    PubMed Central

    Brookmeyer, Ron; Laeyendecker, Oliver; Donnell, Deborah; Eshleman, Susan H.

    2013-01-01

    Accurate methods for estimating HIV incidence from cross-sectional samples would have great utility in prevention research. This report describes recent improvements in cross-sectional methods that significantly improve their accuracy. These improvements are based on the use of multiple biomarkers to identify recent HIV infections. These multi-assay algorithms (MAAs) use assays in a hierarchical approach for testing that minimizes the effort and cost of incidence estimation. These MAAs do not require mathematical adjustments for accurate estimation of the incidence rates in study populations in the year prior to sample collection. MAAs provide a practical, accurate, and cost-effective approach for cross-sectional HIV incidence estimation that can be used for HIV prevention research and global epidemic monitoring. PMID:23764641

  13. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  14. Can Value-Added Measures of Teacher Performance Be Trusted? Working Paper #18

    ERIC Educational Resources Information Center

    Guarino, Cassandra M.; Reckase, Mark D.; Woolridge, Jeffrey M.

    2012-01-01

    We investigate whether commonly used value-added estimation strategies can produce accurate estimates of teacher effects. We estimate teacher effects in simulated student achievement data sets that mimic plausible types of student grouping and teacher assignment scenarios. No one method accurately captures true teacher effects in all scenarios,…

  15. Measuring precise sea level from a buoy using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H., Jr.; Wolf, Susan Kornreich

    1990-01-01

    The feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was examined. An experiment was conducted on the Scripps pier at La Jolla, California from December 13-15, 1989. A GPS-equipped buoy was deployed about 100 m off the pier. Two fixed reference GPS receivers, located on the pier and about 80 km away on Monument Peak, were used to estimate the relative position of the floater. Kinematic GPS processing software, developed at the National Geodetic Survey, and the Jet Propulsion Laboratory's GPS Infrared Processing System software were used to determine the floater position relative to land-fixing receivers. Calculations were made of sea level and ocean wave spectra from GPS measurements. It is found that the GPS sea level for the short 100 m baseline agrees with the PPT sea level at the 1 cm level and has an rms variation of 5 mm over a period of 4 hours.

  16. Predicting the evolution of complex networks via similarity dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  17. A Robust Sound Source Localization Approach for Microphone Array with Model Errors

    NASA Astrophysics Data System (ADS)

    Xiao, Hua; Shao, Huai-Zong; Peng, Qi-Cong

    In this paper, a robust sound source localization approach is proposed. The approach retains good performance even when model errors exist. Compared with previous work in this field, the contributions of this paper are as follows. First, an improved broad-band and near-field array model is proposed. It takes array gain, phase perturbations into account and is based on the actual positions of the elements. It can be used in arbitrary planar geometry arrays. Second, a subspace model errors estimation algorithm and a Weighted 2-Dimension Multiple Signal Classification (W2D-MUSIC) algorithm are proposed. The subspace model errors estimation algorithm estimates unknown parameters of the array model, i. e., gain, phase perturbations, and positions of the elements, with high accuracy. The performance of this algorithm is improved with the increasing of SNR or number of snapshots. The W2D-MUSIC algorithm based on the improved array model is implemented to locate sound sources. These two algorithms compose the robust sound source approach. The more accurate steering vectors can be provided for further processing such as adaptive beamforming algorithm. Numerical examples confirm effectiveness of this proposed approach.

  18. A practical model for pressure probe system response estimation (with review of existing models)

    NASA Astrophysics Data System (ADS)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  19. Enhancing the use of Argos satellite data for home range and long distance migration studies of marine animals.

    PubMed

    Hoenner, Xavier; Whiting, Scott D; Hindell, Mark A; McMahon, Clive R

    2012-01-01

    Accurately quantifying animals' spatial utilisation is critical for conservation, but has long remained an elusive goal due to technological impediments. The Argos telemetry system has been extensively used to remotely track marine animals, however location estimates are characterised by substantial spatial error. State-space models (SSM) constitute a robust statistical approach to refine Argos tracking data by accounting for observation errors and stochasticity in animal movement. Despite their wide use in ecology, few studies have thoroughly quantified the error associated with SSM predicted locations and no research has assessed their validity for describing animal movement behaviour. We compared home ranges and migratory pathways of seven hawksbill sea turtles (Eretmochelys imbricata) estimated from (a) highly accurate Fastloc GPS data and (b) locations computed using common Argos data analytical approaches. Argos 68(th) percentile error was <1 km for LC 1, 2, and 3 while markedly less accurate (>4 km) for LC ≤ 0. Argos error structure was highly longitudinally skewed and was, for all LC, adequately modelled by a Student's t distribution. Both habitat use and migration routes were best recreated using SSM locations post-processed by re-adding good Argos positions (LC 1, 2 and 3) and filtering terrestrial points (mean distance to migratory tracks ± SD = 2.2 ± 2.4 km; mean home range overlap and error ratio = 92.2% and 285.6 respectively). This parsimonious and objective statistical procedure however still markedly overestimated true home range sizes, especially for animals exhibiting restricted movements. Post-processing SSM locations nonetheless constitutes the best analytical technique for remotely sensed Argos tracking data and we therefore recommend using this approach to rework historical Argos datasets for better estimation of animal spatial utilisation for research and evidence-based conservation purposes.

  20. Respiratory rate extraction from pulse oximeter and electrocardiographic recordings.

    PubMed

    Lee, Jinseok; Florian, John P; Chon, Ki H

    2011-11-01

    We present an algorithm of respiratory rate extraction using particle filter (PF), which is applicable to both photoplethysmogram (PPG) and electrocardiogram (ECG) signals. For the respiratory rate estimation, 1 min data are analyzed with combination of a PF method and an autoregressive model where among the resultant coefficients, the corresponding pole angle with the highest magnitude is searched since this reflects the closest approximation of the true breathing rate. The PPG data were collected from 15 subjects with the metronome breathing rate ranging from 24 to 36 breaths per minute in the supine and upright positions. The ECG data were collected from 11 subjects with spontaneous breathing ranging from 36 to 60 breaths per minute during treadmill exercises. Our method was able to accurately extract respiratory rates for both metronome and spontaneous breathing even during strenuous exercises. More importantly, despite slow increases in breathing rates concomitant with greater exercise vigor with time, our method was able to accurately track these progressive increases in respiratory rates. We quantified the accuracy of our method by using the mean, standard deviation and interquartile range of the error rates which all reflected high accuracy in estimating the true breathing rates. We are not aware of any other algorithms that are able to provide accurate respiratory rates directly from either ECG signals or PPG signals with spontaneous breathing during strenuous exercises. Our method is near real-time realizable because the computational time on 1 min data segment takes only 10 ms on a 2.66 GHz Intel Core2 microprocessor; the data are subsequently shifted every 10 s to obtain near-continuous breathing rates. This is an attractive feature since most other techniques require offline data analyses to estimate breathing rates.

  1. Vision based object pose estimation for mobile robots

    NASA Technical Reports Server (NTRS)

    Wu, Annie; Bidlack, Clint; Katkere, Arun; Feague, Roy; Weymouth, Terry

    1994-01-01

    Mobile robot navigation using visual sensors requires that a robot be able to detect landmarks and obtain pose information from a camera image. This paper presents a vision system for finding man-made markers of known size and calculating the pose of these markers. The algorithm detects and identifies the markers using a weighted pattern matching template. Geometric constraints are then used to calculate the position of the markers relative to the robot. The selection of geometric constraints comes from the typical pose of most man-made signs, such as the sign standing vertical and the dimensions of known size. This system has been tested successfully on a wide range of real images. Marker detection is reliable, even in cluttered environments, and under certain marker orientations, estimation of the orientation has proven accurate to within 2 degrees, and distance estimation to within 0.3 meters.

  2. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  3. Positioning challenges in reconfigurable semi-autonomous robotic NDE inspection

    NASA Astrophysics Data System (ADS)

    Pierce, S. Gareth; Dobie, Gordon; Summan, Rahul; Mackenzie, Liam; Hensman, James; Worden, Keith; Hayward, Gordon

    2010-03-01

    This paper describes work conducted into mobile, wireless, semi-autonomous NDE inspection robots developed at The University of Strathclyde as part of the UK Research Centre for Non Destructive Evaluation (RCNDE). The inspection vehicles can incorporate a number of different NDE payloads including ultrasonic, eddy current, visual and magnetic based payloads, and have been developed to try and improve NDE inspection techniques in challenging inspection areas (for example oil, gas, and nuclear structures). A significant research challenge remains in the accurate positioning and guidance of such vehicles for real inspection tasks. Employing both relative and absolute position measurements, we discuss a number of approaches to position estimation including Kalman and particle filtering. Using probabilistic approaches enables a common mathematical framework to be employed for both positioning and data fusion from different NDE sensors. In this fashion the uncertainties in both position and defect identification and classification can be dealt with using a consistent approach. A number of practical constraints and considerations to different precision positioning techniques are discussed, along with NDE applications and the potential for improved inspection capabilities by utilising the inherent reconfigurable capabilities of the inspection vehicles.

  4. Influence of the volume and density functions within geometric models for estimating trunk inertial parameters.

    PubMed

    Wicke, Jason; Dumas, Genevieve A

    2010-02-01

    The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).

  5. Short arc orbit determination for altimeter calibration and validation on TOPEX/POSEIDON

    NASA Technical Reports Server (NTRS)

    Williams, B. G.; Christensen, E. J.; Yuan, D. N.; Mccoll, K. C.; Sunseri, R. F.

    1993-01-01

    TOPEX/POSEIDON (T/P) is a joint mission of United States' National Aeronautics and Space Administration (NASA) and French Centre National d'Etudes Spatiales (CNES) design launched August 10, 1992. It carries two radar altimeters which alternately share a common antenna. There are two project designated verification sites, a NASA site off the coast at Pt. Conception, CA and a CNES site near Lampedusa Island in the Mediterranean Sea. Altimeter calibration and validation for T/P is performed over these highly instrumented sites by comparing the spacecraft's altimeter radar range to computed range based on in situ measurements which include the estimated orbit position. This paper presents selected results of orbit determination over each of these sites to support altimeter verification. A short arc orbit determination technique is used to estimate a locally accurate position determination of T/P from less than one revolution of satellite laser ranging (SLR) data. This technique is relatively insensitive to gravitational and non-gravitational force modeling errors and is demonstrated by covariance analysis and by comparison to orbits determined from longer arcs of data and other tracking data types, such as Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and Global Positioning System Demonstration Receiver (GPSDR) data.

  6. A long-term target detection approach in infrared image sequence

    NASA Astrophysics Data System (ADS)

    Li, Hang; Zhang, Qi; Wang, Xin; Hu, Chao

    2016-10-01

    An automatic target detection method used in long term infrared (IR) image sequence from a moving platform is proposed. Firstly, based on POME(the principle of maximum entropy), target candidates are iteratively segmented. Then the real target is captured via two different selection approaches. At the beginning of image sequence, the genuine target with litter texture is discriminated from other candidates by using contrast-based confidence measure. On the other hand, when the target becomes larger, we apply online EM method to estimate and update the distributions of target's size and position based on the prior detection results, and then recognize the genuine one which satisfies both the constraints of size and position. Experimental results demonstrate that the presented method is accurate, robust and efficient.

  7. Machine vision guided sensor positioning system for leaf temperature assessment

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Ling, P. P.; Janes, H. W. (Principal Investigator)

    2001-01-01

    A sensor positioning system was developed for monitoring plants' well-being using a non-contact sensor. Image processing algorithms were developed to identify a target region on a plant leaf. A novel algorithm to recover view depth was developed by using a camera equipped with a computer-controlled zoom lens. The methodology has improved depth recovery resolution over a conventional monocular imaging technique. An algorithm was also developed to find a maximum enclosed circle on a leaf surface so the conical field-of-view of an infrared temperature sensor could be filled by the target without peripheral noise. The center of the enclosed circle and the estimated depth were used to define the sensor 3-D location for accurate plant temperature measurement.

  8. The Southern Double Stars of Carl Rümker I: History, Identification, Accuracy

    NASA Astrophysics Data System (ADS)

    Letchford, Roderick; White, Graeme; Ernest, Allan

    2017-04-01

    The second catalog of southern double stars was published by Carl Rümker 1832. We describe this catalog, obtain modern nomenclature and data and estimate the accuracy of his positions for the primary components. We have shown the equinox and epoch to be B1827.0. Of the 28 pairs, 27 could be identified. RMK 23 is RMK 22 and RMK 24 could not be identified. Five pairs observed by Rümker are credited to co-worker Dunlop (DUN) in the WDS. There are two typographical errors. We tentatively identify RMK 28 with COO 261. We have shown the positional data in the 1832 catalog to be accurate and we present a modern/revised version of Rümker’s catalog.

  9. Systematic search for wide periodic windows and bounds for the set of regular parameters for the quadratic map.

    PubMed

    Galias, Zbigniew

    2017-05-01

    An efficient method to find positions of periodic windows for the quadratic map f(x)=ax(1-x) and a heuristic algorithm to locate the majority of wide periodic windows are proposed. Accurate rigorous bounds of positions of all periodic windows with periods below 37 and the majority of wide periodic windows with longer periods are found. Based on these results, we prove that the measure of the set of regular parameters in the interval [3,4] is above 0.613960137. The properties of periodic windows are studied numerically. The results of the analysis are used to estimate that the true value of the measure of the set of regular parameters is close to 0.6139603.

  10. Newly developed double neural network concept for reliable fast plasma position control

    NASA Astrophysics Data System (ADS)

    Jeon, Young-Mu; Na, Yong-Su; Kim, Myung-Rak; Hwang, Y. S.

    2001-01-01

    Neural network is considered as a parameter estimation tool in plasma controls for next generation tokamak such as ITER. The neural network has been reported to be so accurate and fast for plasma equilibrium identification that it may be applied to the control of complex tokamak plasmas. For this application, the reliability of the conventional neural network needs to be improved. In this study, a new idea of double neural network is developed to achieve this. The new idea has been applied to simple plasma position identification of KSTAR tokamak for feasibility test. Characteristics of the concept show higher reliability and fault tolerance even in severe faulty conditions, which may make neural network applicable to plasma control reliably and widely in future tokamaks.

  11. A Comparison of Two Measures of HIV Diversity in Multi-Assay Algorithms for HIV Incidence Estimation

    PubMed Central

    Cousins, Matthew M.; Konikoff, Jacob; Sabin, Devin; Khaki, Leila; Longosz, Andrew F.; Laeyendecker, Oliver; Celum, Connie; Buchbinder, Susan P.; Seage, George R.; Kirk, Gregory D.; Moore, Richard D.; Mehta, Shruti H.; Margolick, Joseph B.; Brown, Joelle; Mayer, Kenneth H.; Kobin, Beryl A.; Wheeler, Darrell; Justman, Jessica E.; Hodder, Sally L.; Quinn, Thomas C.; Brookmeyer, Ron; Eshleman, Susan H.

    2014-01-01

    Background Multi-assay algorithms (MAAs) can be used to estimate HIV incidence in cross-sectional surveys. We compared the performance of two MAAs that use HIV diversity as one of four biomarkers for analysis of HIV incidence. Methods Both MAAs included two serologic assays (LAg-Avidity assay and BioRad-Avidity assay), HIV viral load, and an HIV diversity assay. HIV diversity was quantified using either a high resolution melting (HRM) diversity assay that does not require HIV sequencing (HRM score for a 239 base pair env region) or sequence ambiguity (the percentage of ambiguous bases in a 1,302 base pair pol region). Samples were classified as MAA positive (likely from individuals with recent HIV infection) if they met the criteria for all of the assays in the MAA. The following performance characteristics were assessed: (1) the proportion of samples classified as MAA positive as a function of duration of infection, (2) the mean window period, (3) the shadow (the time period before sample collection that is being assessed by the MAA), and (4) the accuracy of cross-sectional incidence estimates for three cohort studies. Results The proportion of samples classified as MAA positive as a function of duration of infection was nearly identical for the two MAAs. The mean window period was 141 days for the HRM-based MAA and 131 days for the sequence ambiguity-based MAA. The shadows for both MAAs were <1 year. Both MAAs provided cross-sectional HIV incidence estimates that were very similar to longitudinal incidence estimates based on HIV seroconversion. Conclusions MAAs that include the LAg-Avidity assay, the BioRad-Avidity assay, HIV viral load, and HIV diversity can provide accurate HIV incidence estimates. Sequence ambiguity measures obtained using a commercially-available HIV genotyping system can be used as an alternative to HRM scores in MAAs for cross-sectional HIV incidence estimation. PMID:24968135

  12. LEAP: Looking beyond pixels with continuous-space EstimAtion of Point sources

    NASA Astrophysics Data System (ADS)

    Pan, Hanjie; Simeoni, Matthieu; Hurley, Paul; Blu, Thierry; Vetterli, Martin

    2017-12-01

    Context. Two main classes of imaging algorithms have emerged in radio interferometry: the CLEAN algorithm and its multiple variants, and compressed-sensing inspired methods. They are both discrete in nature, and estimate source locations and intensities on a regular grid. For the traditional CLEAN-based imaging pipeline, the resolution power of the tool is limited by the width of the synthesized beam, which is inversely proportional to the largest baseline. The finite rate of innovation (FRI) framework is a robust method to find the locations of point-sources in a continuum without grid imposition. The continuous formulation makes the FRI recovery performance only dependent on the number of measurements and the number of sources in the sky. FRI can theoretically find sources below the perceived tool resolution. To date, FRI had never been tested in the extreme conditions inherent to radio astronomy: weak signal / high noise, huge data sets, large numbers of sources. Aims: The aims were (i) to adapt FRI to radio astronomy, (ii) verify it can recover sources in radio astronomy conditions with more accurate positioning than CLEAN, and possibly resolve some sources that would otherwise be missed, (iii) show that sources can be found using less data than would otherwise be required to find them, and (iv) show that FRI does not lead to an augmented rate of false positives. Methods: We implemented a continuous domain sparse reconstruction algorithm in Python. The angular resolution performance of the new algorithm was assessed under simulation, and with visibility measurements from the LOFAR telescope. Existing catalogs were used to confirm the existence of sources. Results: We adapted the FRI framework to radio interferometry, and showed that it is possible to determine accurate off-grid point-source locations and their corresponding intensities. In addition, FRI-based sparse reconstruction required less integration time and smaller baselines to reach a comparable reconstruction quality compared to a conventional method. The achieved angular resolution is higher than the perceived instrument resolution, and very close sources can be reliably distinguished. The proposed approach has cubic complexity in the total number (typically around a few thousand) of uniform Fourier data of the sky image estimated from the reconstruction. It is also demonstrated that the method is robust to the presence of extended-sources, and that false-positives can be addressed by choosing an adequate model order to match the noise level.

  13. Dropping sand bags from helicopters: A low cost and environmentally benign approach to determine subsurface velocity and attenuation structure of active volcanic systems

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Chardot, L.; Sherburn, S.; Cole-Baker, J.; Scott, B. J.; Fournier, N.; Neuberg, J. N.

    2012-04-01

    Obtaining estimates of the seismic velocity and attenuation structure of volcanic systems is considered valuable from a monitoring perspective but can be extremely costly and time consuming due to the potential environmental impacts, safety issues and the permitting process. Here, we present an easy, low cost and environmentally benign alternative whereby the shallow velocity and attenuation structure can be obtained via high impact sandbag drops from helicopter. We conducted such a sandbag drop experiment at White Island volcano on 23 September 2011, during the final stage of a 6 month deployment of 14 broadband seismometers. Three drops were attempted, two at either end of a 5 station linear array within the crater floor, and the third within the volcano's shallow active acid crater lake. The bags were dropped from ~400 m height and contained ~700 kg of fine beach sand held within nylon sacks having a volume capacity of ~2.0 m3. The impact velocity was estimated at ~70 m/s yielding a kinetic energy of about 106 to 107 Nm. The source position was established by GPS on the resulting impact crater and was accurate to within ~5 m. The lake drop position was estimated from video footage relative to known ground features and was accurate to ~30 m. Impact timing was achieved by drop placement close to, but not on, the nearby seismometer recording systems. For the crater floor drops the timing was constrained to within ~0.05 s based on distance from the closest stations. The low kinetic energy and strong attenuation of the crater floor meant that strong first-P arrival times were limited to an area within ~1 km of the impact position. We obtained a rough velocity estimate of about 1.0-1.5 km/s for the unconsolidated crater floor and a velocity of ~1.5-2.0 km/s for rays traversing mostly through the consolidated rocks comprising the crater walls. Attenuation was found to be generally very strong (Q < 10) for both consolidated and unconsolidated parts of the volcano. Results show that low-cost sand bag drops can be viably used to determine shallow near surface velocity and attenuation structure in volcanic environments where use of other active source methods may be problematic due to environmental, permitting or cost issues.

  14. Estimation of laceration length by emergency department personnel.

    PubMed

    Bourne, Christina L; Jenkins, M Adams; Brewer, Kori L

    2014-11-01

    Documentation and billing for laceration repair involves a description of wound length. We designed this study to test the hypothesis that emergency department (ED) personnel can accurately estimate wound lengths without the aid of a measuring device. This was a single-center prospective observational study performed in an academic ED. Seven wounds of varying lengths were simulated by creating lacerations on purchased pigs' ears and feet. We asked healthcare providers, defined as nurses and physicians working in the ED, to estimate the length of each wound by visual inspection. Length estimates were given in centimeters (cm) and inches. Estimated lengths were considered correct if the estimate was within 0.5 cm or 0.2 inches of the actual length. We calculated the differences between estimated and actual laceration lengths for each laceration and compared the accuracy of physicians to nurses using an unpaired t-test. Thirty-two physicians (nine faculty and 23 residents) and 16 nurses participated. All subjects tended to overestimate in cm and inches. Physicians were able to estimate laceration length within 0.5 cm 36% of the time and within 0.2 inches 29% of the time. Physicians were more accurate at estimating wound lengths than nurses in both cm and inches. Both physicians and nurses were more accurate at estimating shorter lengths (<5.0 cm) than longer (>5.0 cm). ED personnel are often unable to accurately estimate wound length in either cm or inches and tend to overestimate laceration lengths when based solely on visual inspection.

  15. Estimating bark thicknesses of common Appalachian hardwoods

    Treesearch

    R. Edward Thomas; Neal D. Bennett

    2014-01-01

    Knowing the thickness of bark along the stem of a tree is critical to accurately estimate residue and, more importantly, estimate the volume of solid wood available. Determining the volume or weight of bark for a log is important because bark and wood mass are typically separated while processing logs, and accurate determination of volume is problematic. Bark thickness...

  16. Use of the Magnetic Field for Improving Gyroscopes’ Biases Estimation

    PubMed Central

    Munoz Diaz, Estefania; de Ponte Müller, Fabian; García Domínguez, Juan Jesús

    2017-01-01

    An accurate orientation is crucial to a satisfactory position in pedestrian navigation. The orientation estimation, however, is greatly affected by errors like the biases of gyroscopes. In order to minimize the error in the orientation, the biases of gyroscopes must be estimated and subtracted. In the state of the art it has been proposed, but not proved, that the estimation of the biases can be accomplished using magnetic field measurements. The objective of this work is to evaluate the effectiveness of using magnetic field measurements to estimate the biases of medium-cost micro-electromechanical sensors (MEMS) gyroscopes. We carry out the evaluation with experiments that cover both, quasi-error-free turn rate and magnetic measurements and medium-cost MEMS turn rate and magnetic measurements. The impact of different homogeneous magnetic field distributions and magnetically perturbed environments is analyzed. Additionally, the effect of the successful biases subtraction on the orientation and the estimated trajectory is detailed. Our results show that the use of magnetic field measurements is beneficial to the correct biases estimation. Further, we show that different magnetic field distributions affect differently the biases estimation process. Moreover, the biases are likewise correctly estimated under perturbed magnetic fields. However, for indoor and urban scenarios the biases estimation process is very slow. PMID:28398232

  17. Impact of HPV Status on the Prognostic Potential of the AJCC Staging System for Larynx Cancer.

    PubMed

    Davidson, Stacey M; Ko, Huasing C; Harari, Paul M; Wieland, Aaron M; Chen, Shuai; Baschnagel, Andrew M; Kimple, Randall J; Witek, And Matthew E

    2018-04-01

    Objective We evaluated the ability of the American Joint Committee on Cancer (AJCC) seventh edition staging system to prognosticate the overall survival of patients with human papillomavirus (HPV)-positive laryngeal squamous cell carcinoma. Study Design Retrospective analysis. Setting National Cancer Database. Subjects and Methods Patients diagnosed with laryngeal squamous cell carcinoma who were treated with curative intent were identified in the National Cancer Database. Multivariate analysis was utilized to determine factors correlated with overall survival in the HPV-negative and HPV-positive cohorts. Unadjusted and propensity score-weighted Kaplan-Meier estimation was used to determine overall survival of HPV-negative and HPV-positive patients across AJCC stage groupings. Results We identified 3238 patients with laryngeal squamous cell carcinoma, of which 2812 were HPV negative and 426 were HPV positive. Overall survival adjusted for age, sex, and comorbidity status confirmed significant differences among all consecutive stage groupings (I vs II, P < .001; II vs III, P < .05; III vs IVA, P < .001; IVA vs IVB, P < .05) in the HPV-negative cohort, whereas only stages IVAs and IVB ( P < .01) exhibited a significant difference in overall survival for HPV-positive patients. Conclusion The current AJCC staging system does not accurately distinguish risk of mortality for patients with HPV-positive disease. These data support the consideration of HPV status in estimating prognosis as well as clinical trial design and clinical decision making for patients with laryngeal squamous cell carcinoma.

  18. GFR Estimation: From Physiology to Public Health

    PubMed Central

    Levey, Andrew S.; Inker, Lesley A.; Coresh, Josef

    2014-01-01

    Estimating glomerular filtration rate (GFR) is essential for clinical practice, research, and public health. Appropriate interpretation of estimated GFR (eGFR) requires understanding the principles of physiology, laboratory medicine, epidemiology and biostatistics used in the development and validation of GFR estimating equations. Equations developed in diverse populations are less biased at higher GFR than equations developed in CKD populations and are more appropriate for general use. Equations that include multiple endogenous filtration markers are more precise than equations including a single filtration marker. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations are the most accurate GFR estimating equations that have been evaluated in large, diverse populations and are applicable for general clinical use. The 2009 CKD-EPI creatinine equation is more accurate in estimating GFR and prognosis than the 2006 Modification of Diet in Renal Disease (MDRD) Study equation and provides lower estimates of prevalence of decreased eGFR. It is useful as a “first” test for decreased eGFR and should replace the MDRD Study equation for routine reporting of serum creatinine–based eGFR by clinical laboratories. The 2012 CKD-EPI cystatin C equation is as accurate as the 2009 CKD-EPI creatinine equation in estimating eGFR, does not require specification of race, and may be more accurate in patients with decreased muscle mass. The 2012 CKD-EPI creatinine–cystatin C equation is more accurate than the 2009 CKD-EPI creatinine and 2012 CKD-EPI cystatin C equations and is useful as a confirmatory test for decreased eGFR as determined by an equation based on serum creatinine. Further improvement in GFR estimating equations will require development in more broadly representative populations, including diverse racial and ethnic groups, use of multiple filtration markers, and evaluation using statistical techniques to compare eGFR to “true GFR”. PMID:24485147

  19. Estimation of Time-Varying, Intrinsic and Reflex Dynamic Joint Stiffness during Movement. Application to the Ankle Joint

    PubMed Central

    Guarín, Diego L.; Kearney, Robert E.

    2017-01-01

    Dynamic joint stiffness determines the relation between joint position and torque, and plays a vital role in the control of posture and movement. Dynamic joint stiffness can be quantified during quasi-stationary conditions using disturbance experiments, where small position perturbations are applied to the joint and the torque response is recorded. Dynamic joint stiffness is composed of intrinsic and reflex mechanisms that act and change together, so that nonlinear, mathematical models and specialized system identification techniques are necessary to estimate their relative contributions to overall joint stiffness. Quasi-stationary experiments have demonstrated that dynamic joint stiffness is heavily modulated by joint position and voluntary torque. Consequently, during movement, when joint position and torque change rapidly, dynamic joint stiffness will be Time-Varying (TV). This paper introduces a new method to quantify the TV intrinsic and reflex components of dynamic joint stiffness during movement. The algorithm combines ensemble and deterministic approaches for estimation of TV systems; and uses a TV, parallel-cascade, nonlinear system identification technique to separate overall dynamic joint stiffness into intrinsic and reflex components from position and torque records. Simulation studies of a stiffness model, whose parameters varied with time as is expected during walking, demonstrated that the new algorithm accurately tracked the changes in dynamic joint stiffness using as little as 40 gait cycles. The method was also used to estimate the intrinsic and reflex dynamic ankle stiffness from an experiment with a healthy subject during which ankle movements were imposed while the subject maintained a constant muscle contraction. The method identified TV stiffness model parameters that predicted the measured torque very well, accounting for more than 95% of its variance. Moreover, both intrinsic and reflex dynamic stiffness were heavily modulated through the movement in a manner that could not be predicted from quasi-stationary experiments. The new method provides the tool needed to explore the role of dynamic stiffness in the control of movement. PMID:28649196

  20. Regression approaches in the test-negative study design for assessment of influenza vaccine effectiveness.

    PubMed

    Bond, H S; Sullivan, S G; Cowling, B J

    2016-06-01

    Influenza vaccination is the most practical means available for preventing influenza virus infection and is widely used in many countries. Because vaccine components and circulating strains frequently change, it is important to continually monitor vaccine effectiveness (VE). The test-negative design is frequently used to estimate VE. In this design, patients meeting the same clinical case definition are recruited and tested for influenza; those who test positive are the cases and those who test negative form the comparison group. When determining VE in these studies, the typical approach has been to use logistic regression, adjusting for potential confounders. Because vaccine coverage and influenza incidence change throughout the season, time is included among these confounders. While most studies use unconditional logistic regression, adjusting for time, an alternative approach is to use conditional logistic regression, matching on time. Here, we used simulation data to examine the potential for both regression approaches to permit accurate and robust estimates of VE. In situations where vaccine coverage changed during the influenza season, the conditional model and unconditional models adjusting for categorical week and using a spline function for week provided more accurate estimates. We illustrated the two approaches on data from a test-negative study of influenza VE against hospitalization in children in Hong Kong which resulted in the conditional logistic regression model providing the best fit to the data.

  1. New applications for helicopter based high impact weight drops

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Neuberg, J.; Jousset, P. G.; Chardot, L.; Fournier, N.; Scott, B.; Sherburn, S.

    2012-12-01

    A high impact weight drop method has been successfully completed at White Island volcano, New Zealand, yielding new estimates for the shallow seismic velocity and attenuation. Such estimates are useful for many practical applications including refinement of earthquake locations and understanding variations of sub-surface structural relationships. Beyond these important sub-surface parameters, the method has the potential for understanding the dynamics of surface and near surface source processes including hazardous eruptive impulses through volcanic lakes, pyroclastic flows, lahars and rockfalls. We conducted the initial mass drop experiment at White Island volcano on 23 September 2011, during the final stage of a 6 month deployment of 14 broadband seismometers. Three drops were carried out, two at either end of a 6 station linear array within the crater floor, and the third within the volcano's shallow active acid crater lake. Bags were dropped from ~400 m height and contained ~700 kg of fine beach sand held within tarpaulin sacks having a volume capacity of ~2.0 m3. The impact velocity was estimated at ~70 m/s yielding a kinetic energy of about 106 to 107 Nm. The source position was established by GPS on the resulting impact crater and was accurate to within ~10 m. The lake drop position was estimated from video footage relative to known ground features and was accurate to ~30 m. Impact timing was achieved by drop placement close to, but not on, the nearby seismometer recording systems. For the crater floor drops the timing was constrained to within ~0.05 s based on distance from the closest stations. The kinetic energy allowed strong first-P arrivals to penetrate beyond ~1 km of the impact position. We obtained a rough velocity estimate of about 1.0-1.5 km/s for the unconsolidated crater floor and a velocity of ~1.5-2.0 km/s for P-waves traversing mostly through the consolidated rocks comprising the crater walls. Attenuation was found to be generally very strong (Q< 10) for both consolidated and unconsolidated parts of the volcano. We will first show how the basic experiment is set up and implemented. We then show some basic synthetic examples using a 3D finite difference method which are compared to the active source seismograms. Next, we outline a possible approach to use, real data and synthetics to learn about surface and near surface seismic source processes. Finally, we compare the lake drops to two small eruptions occurring through the White Island crater lake on 27 July and 5 August, 2012.

  2. The Analytical Limits of Modeling Short Diffusion Timescales

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. W.; Kent, A. J.

    2016-12-01

    Chemical and isotopic zoning in minerals is widely used to constrain the timescales of magmatic processes such as magma mixing and crystal residence, etc. via diffusion modeling. Forward modeling of diffusion relies on fitting diffusion profiles to measured compositional gradients. However, an individual measurement is essentially an average composition for a segment of the gradient defined by the spatial resolution of the analysis. Thus there is the potential for the analytical spatial resolution to limit the timescales that can be determined for an element of given diffusivity, particularly where the scale of the gradient approaches that of the measurement. Here we use a probabilistic modeling approach to investigate the effect of analytical spatial resolution on estimated timescales from diffusion modeling. Our method investigates how accurately the age of a synthetic diffusion profile can be obtained by modeling an "unknown" profile derived from discrete sampling of the synthetic compositional gradient at a given spatial resolution. We also include the effects of analytical uncertainty and the position of measurements relative to the diffusion gradient. We apply this method to the spatial resolutions of common microanalytical techniques (LA-ICP-MS, SIMS, EMP, NanoSIMS). Our results confirm that for a given diffusivity, higher spatial resolution gives access to shorter timescales, and that each analytical spacing has a minimum timescale, below which it overestimates the timescale. For example, for Ba diffusion in plagioclase at 750 °C timescales are accurate (within 20%) above 10, 100, 2,600, and 71,000 years at 0.3, 1, 5, and 25 mm spatial resolution, respectively. For Sr diffusion in plagioclase at 750 °C, timescales are accurate above 0.02, 0.2, 4, and 120 years at the same spatial resolutions. Our results highlight the importance of selecting appropriate analytical techniques to estimate accurate diffusion-based timescales.

  3. An automated method of tuning an attitude estimator

    NASA Technical Reports Server (NTRS)

    Mason, Paul A. C.; Mook, D. Joseph

    1995-01-01

    Attitude determination is a major element of the operation and maintenance of a spacecraft. There are several existing methods of determining the attitude of a spacecraft. One of the most commonly used methods utilizes the Kalman filter to estimate the attitude of the spacecraft. Given an accurate model of a system and adequate observations, a Kalman filter can produce accurate estimates of the attitude. If the system model, filter parameters, or observations are inaccurate, the attitude estimates may be degraded. Therefore, it is advantageous to develop a method of automatically tuning the Kalman filter to produce the accurate estimates. In this paper, a three-axis attitude determination Kalman filter, which uses only magnetometer measurements, is developed and tested using real data. The appropriate filter parameters are found via the Process Noise Covariance Estimator (PNCE). The PNCE provides an optimal criterion for determining the best filter parameters.

  4. Accurate motion parameter estimation for colonoscopy tracking using a regression method

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2010-03-01

    Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.

  5. Damage severity estimation from the global stiffness decrease

    NASA Astrophysics Data System (ADS)

    Nitescu, C.; Gillich, G. R.; Abdel Wahab, M.; Manescu, T.; Korka, Z. I.

    2017-05-01

    In actual damage detection methods, localization and severity estimation can be treated separately. The severity is commonly estimated using fracture mechanics approach, with the main disadvantage of involving empirically deduced relations. In this paper, a damage severity estimator based on the global stiffness reduction is proposed. This feature is computed from the deflections of the intact and damaged beam, respectively. The damage is always located where the bending moment achieves maxima. If the damage is positioned elsewhere on the beam, its effect becomes lower, because the stress is produced by a diminished bending moment. It is shown that the global stiffness reduction produced by a crack is the same for all beams with a similar cross-section, regardless of the boundary conditions. One mathematical relation indicating the severity and another indicating the effect of removing damage from the beam. Measurements on damaged beams with different boundary conditions and cross-sections are carried out, and the location and severity are found using the proposed relations. These comparisons prove that the proposed approach can be used to accurately compute the severity estimator.

  6. Estimation of excitation forces for wave energy converters control using pressure measurements

    NASA Astrophysics Data System (ADS)

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  7. Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net.

    PubMed

    Wu, Hongbo; Bailey, Chris; Rasoulinejad, Parham; Li, Shuo

    2018-05-18

    Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time-consuming and unreliable) which is currently the gold standard for AIS assessment. Attempts have been made to improve the reliability of automated Cobb angle estimation. However, it is very challenging to achieve accurate and robust estimation of Cobb angles due to the need for correctly identifying all the required vertebrae in both Anterior-posterior (AP) and Lateral (LAT) view x-rays. The challenge is especially evident in LAT x-ray where occlusion of vertebrae by the ribcage occurs. We therefore propose a novel Multi-View Correlation Network (MVC-Net) architecture that can provide a fully automated end-to-end framework for spinal curvature estimation in multi-view (both AP and LAT) x-rays. The proposed MVC-Net uses our newly designed multi-view convolution layers to incorporate joint features of multi-view x-rays, which allows the network to mitigate the occlusion problem by utilizing the structural dependencies of the two views. The MVC-Net consists of three closely-linked components: (1) a series of X-modules for joint representation of spinal structure (2) a Spinal Landmark Estimator network for robust spinal landmark estimation, and (3) a Cobb Angle Estimator network for accurate Cobb Angles estimation. By utilizing an iterative multi-task training algorithm to train the Spinal Landmark Estimator and Cobb Angle Estimator in tandem, the MVC-Net leverages the multi-task relationship between landmark and angle estimation to reliably detect all the required vertebrae for accurate Cobb angles estimation. Experimental results on 526 x-ray images from 154 patients show an impressive 4.04° Circular Mean Absolute Error (CMAE) in AP Cobb angle and 4.07° CMAE in LAT Cobb angle estimation, which demonstrates the MVC-Net's capability of robust and accurate estimation of Cobb angles in multi-view x-rays. Our method therefore provides clinicians with a framework for efficient, accurate, and reliable estimation of spinal curvature for comprehensive AIS assessment. Copyright © 2018. Published by Elsevier B.V.

  8. Real Time Intraoperative Monitoring of Blood Loss with a Novel Tablet Application.

    PubMed

    Sharareh, Behnam; Woolwine, Spencer; Satish, Siddarth; Abraham, Peter; Schwarzkopf, Ran

    2015-01-01

    Real-time monitoring of blood loss is critical in fluid management. Visual estimation remains the standard of care in estimating blood loss, yet is demonstrably inaccurate. Photometric analysis, which is the referenced "gold-standard" for measuring blood loss, is both time-consuming and costly. The purpose of this study was to evaluate the efficacy of a novel tablet-monitoring device for measurement of Hb loss during orthopaedic procedures. This is a prospective study of 50 patients in a consecutive series of joint arthroplasty cases. The novel System with Feature Extraction Technology was used to measure the amount of Hb contained within surgical sponges intra-operatively. The system's measures were then compared with those obtained via gravimetric method and photometric analysis. Accuracy was evaluated using linear regression and Bland-Altman analysis. Our results showed a significant positive correlation between Triton tablet system and photometric analysis with respect to intra-operative hemoglobin and blood loss at 0.92 and 0.91, respectively. This novel system can accurately determine Hb loss contained within surgical sponges. We believe that this user-friendly software can be used for measurement of total intraoperative blood loss and thus aid in a more accurate fluid management protocols during orthopaedic surgical procedures.

  9. Investigation of a novel image segmentation method dedicated to forest fire applications

    NASA Astrophysics Data System (ADS)

    Rudz, S.; Chetehouna, K.; Hafiane, A.; Laurent, H.; Séro-Guillaume, O.

    2013-07-01

    To face fire it is crucial to understand its behaviour in order to maximize fighting means. To achieve this task, the development of a metrological tool is necessary for estimating both geometrical and physical parameters involved in forest fire modelling. A key parameter is to estimate fire positions accurately. In this paper an image processing tool especially dedicated to an accurate extraction of fire from an image is presented. In this work, the clustering on several colour spaces is investigated and it appears that the blue chrominance Cb from the YCbCr colour space is the most appropriate. As a consequence, a new segmentation algorithm dedicated to forest fire applications has been built using first an optimized k-means clustering in the Cb-channel and then some properties of fire pixels in the RGB colour space. Next, the performance of the proposed method is evaluated using three supervised evaluation criteria and then compared to other existing segmentation algorithms in the literature. Finally a conclusion is drawn, assessing the good behaviour of the developed algorithm. This paper is dedicated to the memory of Dr Olivier Séro-Guillaume (1950-2013), CNRS Research Director.

  10. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE PAGES

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; ...

    2016-05-03

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  11. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  12. Radiographic evaluation of BFX acetabular component position in dogs.

    PubMed

    Renwick, Alasdair; Gemmill, Toby; Pink, Jonathan; Brodbelt, David; McKee, Malcolm

    2011-07-01

    To assess the reliability of radiographic measurement of angle of lateral opening (ALO) and angle of version of BFX acetabular cups. In vitro radiographic study. BFX cups (24, 28, and 32 mm). Total hip replacement constructs (cups, 17 mm femoral head and a #7 CFX stem) were mounted on an inclinometer. Ventrodorsal radiographs were obtained with ALO varying between 21° and 70° and inclination set at 0°, 10°, 20°, and 30°. Radiographs were randomized using a random sequence generator. Three observers blinded to the radiograph order assessed ALO using 3 methods: (1) an ellipse method based on trigonometry; (2) using a measurement from the center of the femoral head to the truncated surface of the cup; (3) by visual estimation using a reference chart. Version was measured by assessing the ventral edge of the truncated surface. ALO methods 2 and 3 were accurate and precise to within 10° and were significantly more accurate and precise than method 1 (P < .001). All methods were significantly less accurate with increasing inclination. Version measurement was accurate and precise to within 7° with 0-20° of inclination, but significantly less accurate with 30° of inclination. Methods 2 and 3, but not method 1, were sufficiently accurate and precise to be clinically useful. Version measurement was clinically useful when inclination was ≤ 20°. © Copyright 2011 by The American College of Veterinary Surgeons.

  13. Does the Friel Anaerobic Threshold Test Accurately Detect Heart Rate Deflection in Trained Cyclists?

    PubMed

    Yuen, Willie K; Schreiner, Shad R; Hoover, Donald L; Loudon, Janice K; Billinger, Sandra A

    The Friel Anaerobic Threshold Test (FATT) has been used to determine anaerobic threshold (AT). The FATT suggests AT occurs near the heart rate deflection point (HRDP) at a rating of perceived exertion (RPE) of 17. The primary purpose of this study was to determine 1) whether the HRDP could be determined using the FATT, 2) examine differences between HRVT and HR that coincided Borg's rating of perceived exertion (RPE) of 17, and 3) if riding position (hoods or aero) would influence performance. Fourteen male cyclists (30.4 ± 7.41years of age; 151.8 ± 60.4 cycled miles/week) participated in the study. Each subject performed the FATT on two occasions within one week. The findings of this study suggest that the FATT can determine HRDP in trained cyclists while riding in the hoods position but not the aero position. No significant difference was found between the hoods and aero position for HRVT as measured by the metabolic cart. Our data suggest that HR at an RPE of 15 more accurately reflects the HRVT than the RPE of 17. A low, non-significant correlation was found for both the hoods and aero (0.41 and 0.44, respectively; p > 0.20) for the HR at RPE of 17. The findings of this study suggest that the FATT can determine HRDP in trained cyclists. However, HRDP was identified in the cyclists preferred riding position. When performing the FATT, HRVT at an RPE of 15 should be used to estimate VT over the suggested RPE of 17.

  14. Beyond seismic interferometry: imaging the earth's interior with virtual sources and receivers inside the earth

    NASA Astrophysics Data System (ADS)

    Wapenaar, C. P. A.; Van der Neut, J.; Thorbecke, J.; Broggini, F.; Slob, E. C.; Snieder, R.

    2015-12-01

    Imagine one could place seismic sources and receivers at any desired position inside the earth. Since the receivers would record the full wave field (direct waves, up- and downward reflections, multiples, etc.), this would give a wealth of information about the local structures, material properties and processes in the earth's interior. Although in reality one cannot place sources and receivers anywhere inside the earth, it appears to be possible to create virtual sources and receivers at any desired position, which accurately mimics the desired situation. The underlying method involves some major steps beyond standard seismic interferometry. With seismic interferometry, virtual sources can be created at the positions of physical receivers, assuming these receivers are illuminated isotropically. Our proposed method does not need physical receivers at the positions of the virtual sources; moreover, it does not require isotropic illumination. To create virtual sources and receivers anywhere inside the earth, it suffices to record the reflection response with physical sources and receivers at the earth's surface. We do not need detailed information about the medium parameters; it suffices to have an estimate of the direct waves between the virtual-source positions and the acquisition surface. With these prerequisites, our method can create virtual sources and receivers, anywhere inside the earth, which record the full wave field. The up- and downward reflections, multiples, etc. in the virtual responses are extracted directly from the reflection response at the surface. The retrieved virtual responses form an ideal starting point for accurate seismic imaging, characterization and monitoring.

  15. The photoload sampling technique: estimating surface fuel loadings from downward-looking photographs of synthetic fuelbeds

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...

  16. A positional misalignment correction method for Fourier ptychographic microscopy based on simulated annealing

    NASA Astrophysics Data System (ADS)

    Sun, Jiasong; Zhang, Yuzhen; Chen, Qian; Zuo, Chao

    2017-02-01

    Fourier ptychographic microscopy (FPM) is a newly developed super-resolution technique, which employs angularly varying illuminations and a phase retrieval algorithm to surpass the diffraction limit of a low numerical aperture (NA) objective lens. In current FPM imaging platforms, accurate knowledge of LED matrix's position is critical to achieve good recovery quality. Furthermore, considering such a wide field-of-view (FOV) in FPM, different regions in the FOV have different sensitivity of LED positional misalignment. In this work, we introduce an iterative method to correct position errors based on the simulated annealing (SA) algorithm. To improve the efficiency of this correcting process, large number of iterations for several images with low illumination NAs are firstly implemented to estimate the initial values of the global positional misalignment model through non-linear regression. Simulation and experimental results are presented to evaluate the performance of the proposed method and it is demonstrated that this method can both improve the quality of the recovered object image and relax the LED elements' position accuracy requirement while aligning the FPM imaging platforms.

  17. a Redundant Gnss-Ins Low-Cost Uav Navigation Solution for Professional Applications

    NASA Astrophysics Data System (ADS)

    Navarro, J.; Parés, M. E.; Colomina, I.; Bianchi, G.; Pluchino, S.; Baddour, R.; Consoli, A.; Ayadi, J.; Gameiro, A.; Sekkas, O.; Tsetsos, V.; Gatsos, T.; Navoni, R.

    2015-08-01

    This paper presents the current results for the FP7 GINSEC project. Its goal is to build a pre-commercial prototype of a low-cost, accurate and reliable system for the professional UAV market. Low-cost, in this context, stands for the use of sensors in the most affordable segment of the market, especially MEMS IMUs and GNSS receivers. Reliability applies to the ability of the autopilot to cope with situations where unfavourable GNSS reception conditions or strong electromagnetic fields make the computation of the position and / or attitude of the UAV difficult. Professional and accurate mean that, at least using post-processing techniques as PPP, it will be possible to reach cm-level precisions that open the door to a range of applications demanding high levels of quality in positioning, as precision agriculture or mapping. To achieve such goal, a rigorous sensor error modelling approach, the use of redundant IMUs and a dual-GNSS receiver setup, together with close-coupling techniques and an extended Kalman filter with self-analysis capabilities have been used. Although the project is not yet complete, the results obtained up to now prove the feasibility of the aforementioned goal, especially in those aspects related to position determination. Research work is still undergoing to estimate the heading using a dual-GNNS receiver setup; preliminary results prove the validity of this approach for relatively long baselines, although positive results are expected when these are shorter than 1 m - which is a necessary requisite for small-sized UAVs.

  18. Effect of removing the common mode errors on linear regression analysis of noise amplitudes in position time series of a regional GPS network & a case study of GPS stations in Southern California

    NASA Astrophysics Data System (ADS)

    Jiang, Weiping; Ma, Jun; Li, Zhao; Zhou, Xiaohui; Zhou, Boye

    2018-05-01

    The analysis of the correlations between the noise in different components of GPS stations has positive significance to those trying to obtain more accurate uncertainty of velocity with respect to station motion. Previous research into noise in GPS position time series focused mainly on single component evaluation, which affects the acquisition of precise station positions, the velocity field, and its uncertainty. In this study, before and after removing the common-mode error (CME), we performed one-dimensional linear regression analysis of the noise amplitude vectors in different components of 126 GPS stations with a combination of white noise, flicker noise, and random walking noise in Southern California. The results show that, on the one hand, there are above-moderate degrees of correlation between the white noise amplitude vectors in all components of the stations before and after removal of the CME, while the correlations between flicker noise amplitude vectors in horizontal and vertical components are enhanced from un-correlated to moderately correlated by removing the CME. On the other hand, the significance tests show that, all of the obtained linear regression equations, which represent a unique function of the noise amplitude in any two components, are of practical value after removing the CME. According to the noise amplitude estimates in two components and the linear regression equations, more accurate noise amplitudes can be acquired in the two components.

  19. Happy but overconfident: positive affect leads to inaccurate metacomprehension.

    PubMed

    Prinz, Anja; Bergmann, Viktoria; Wittwer, Jörg

    2018-05-14

    When learning from text, it is important that learners not only comprehend the information provided but also accurately monitor and judge their comprehension, which is known as metacomprehension accuracy. To investigate the role of a learner's affective state for text comprehension and metacomprehension accuracy, we conducted an experiment with N = 103 university students in whom we induced positive, negative, or neutral affect. Positive affect resulted in poorer text comprehension than neutral affect. Positive affect also led to overconfident predictions, whereas negative and neutral affect were both associated with quite accurate predictions. Independent of affect, postdictions were rather underconfident. The results suggest that positive affect bears processing disadvantages for achieving deep comprehension and adequate prediction accuracy. Given that postdictions were more accurate, practice tests might represent an effective instructional method to help learners in a positive affective state to accurately judge their text comprehension.

  20. Development of a validated algorithm for the diagnosis of paediatric asthma in electronic medical records

    PubMed Central

    Cave, Andrew J; Davey, Christina; Ahmadi, Elaheh; Drummond, Neil; Fuentes, Sonia; Kazemi-Bajestani, Seyyed Mohammad Reza; Sharpe, Heather; Taylor, Matt

    2016-01-01

    An accurate estimation of the prevalence of paediatric asthma in Alberta and elsewhere is hampered by uncertainty regarding disease definition and diagnosis. Electronic medical records (EMRs) provide a rich source of clinical data from primary-care practices that can be used in better understanding the occurrence of the disease. The Canadian Primary Care Sentinel Surveillance Network (CPCSSN) database includes cleaned data extracted from the EMRs of primary-care practitioners. The purpose of the study was to develop and validate a case definition of asthma in children 1–17 who consult family physicians, in order to provide primary-care estimates of childhood asthma in Alberta as accurately as possible. The validation involved the comparison of the application of a theoretical algorithm (to identify patients with asthma) to a physician review of records included in the CPCSSN database (to confirm an accurate diagnosis). The comparison yielded 87.4% sensitivity, 98.6% specificity and a positive and negative predictive value of 91.2% and 97.9%, respectively, in the age group 1–17 years. The algorithm was also run for ages 3–17 and 6–17 years, and was found to have comparable statistical values. Overall, the case definition and algorithm yielded strong sensitivity and specificity metrics and was found valid for use in research in CPCSSN primary-care practices. The use of the validated asthma algorithm may improve insight into the prevalence, diagnosis, and management of paediatric asthma in Alberta and Canada. PMID:27882997

  1. Development of a validated algorithm for the diagnosis of paediatric asthma in electronic medical records.

    PubMed

    Cave, Andrew J; Davey, Christina; Ahmadi, Elaheh; Drummond, Neil; Fuentes, Sonia; Kazemi-Bajestani, Seyyed Mohammad Reza; Sharpe, Heather; Taylor, Matt

    2016-11-24

    An accurate estimation of the prevalence of paediatric asthma in Alberta and elsewhere is hampered by uncertainty regarding disease definition and diagnosis. Electronic medical records (EMRs) provide a rich source of clinical data from primary-care practices that can be used in better understanding the occurrence of the disease. The Canadian Primary Care Sentinel Surveillance Network (CPCSSN) database includes cleaned data extracted from the EMRs of primary-care practitioners. The purpose of the study was to develop and validate a case definition of asthma in children 1-17 who consult family physicians, in order to provide primary-care estimates of childhood asthma in Alberta as accurately as possible. The validation involved the comparison of the application of a theoretical algorithm (to identify patients with asthma) to a physician review of records included in the CPCSSN database (to confirm an accurate diagnosis). The comparison yielded 87.4% sensitivity, 98.6% specificity and a positive and negative predictive value of 91.2% and 97.9%, respectively, in the age group 1-17 years. The algorithm was also run for ages 3-17 and 6-17 years, and was found to have comparable statistical values. Overall, the case definition and algorithm yielded strong sensitivity and specificity metrics and was found valid for use in research in CPCSSN primary-care practices. The use of the validated asthma algorithm may improve insight into the prevalence, diagnosis, and management of paediatric asthma in Alberta and Canada.

  2. Neural network evaluation of reflectometry density profiles for control purposes

    NASA Astrophysics Data System (ADS)

    Santos, J.; Nunes, F.; Manso, M.; Nunes, I.

    1999-01-01

    Broadband reflectometry is a diagnostic that is able to measure the density profile with high spatial and temporal resolutions, therefore it can be used to improve the performance of advanced tokamak operation modes and to supplement or correct the magnetics for plasma position control. To perform these tasks real-time processing is needed. Here we present a method that uses a neural network to make a fast evaluation of radial positions for selected density layers. Typical ASDEX Upgrade density profiles were used to generate the simulated network training and test sets. It is shown that the method has the potential to meet the tight timing requirements of control applications with the required accuracy. The network is also able to provide an accurate estimation of the position of density layers below the first density layer which is probed by an O-mode reflectometer, provided that it is trained with a realistic density profile model.

  3. Realization of a CORDIC-Based Plug-In Accelerometer Module for PSG System in Head Position Monitoring for OSAS Patients

    PubMed Central

    Chou, Wen-Cheng; Shiao, Tsu-Hui; Shiao, Guang-Ming; Luo, Chin-Shan

    2017-01-01

    Overnight polysomnography (PSG) is currently the standard diagnostic procedure for obstructive sleep apnea (OSA). It has been known that monitoring of head position in sleep is crucial not only for the diagnosis (positional sleep apnea) but also for the management of OSA (positional therapy). However, there are no sensor systems available clinically to hook up with PSG for accurate head position monitoring. In this paper, an accelerometer-based sensing system for accurate head position monitoring is developed and realized. The core CORDIC- (COordinate Rotation DIgital Computer-) based tilting sensing algorithm is realized in the system to quickly and accurately convert accelerometer raw data into the desired head position tilting angles. The system can hook up with PSG devices for diagnosis to have head position information integrated with other PSG-monitored signals. It has been applied in an IRB test in Taipei Veterans General Hospital and has been proved that it can meet the medical needs of accurate head position monitoring for PSG diagnosis. PMID:29065608

  4. Performance study of a PET scanner based on monolithic scintillators for different DoI-dependent methods

    NASA Astrophysics Data System (ADS)

    Preziosi, E.; Sánchez, S.; González, A. J.; Pani, R.; Borrazzo, C.; Bettiol, M.; Rodriguez-Alvarez, M. J.; González-Montoro, A.; Moliner, L.; Benlloch, J. M.

    2016-12-01

    One of the technical objectives of the MindView project is developing a brain-dedicated PET insert based on monolithic scintillation crystals. It will be inserted in MRI systems with the purpose to obtain simultaneous PET and MRI brain images. High sensitivity, high image quality performance and accurate detection of the Depth-of-Interaction (DoI) of the 511keV photons are required. We have developed a DoI estimation method, dedicated to monolithic scintillators, allowing continuous DoI estimation and a DoI-dependent algorithm for the estimation of the photon planar impact position, able to improve the single module imaging capabilities. In this work, through experimental measurements, the proposed methods have been used for the estimation of the impact positions within the monolithic crystal block. We have evaluated the PET system performance following the NEMA NU 4-2008 protocol by reconstructing the images using the STIR 3D platform. The results obtained with two different methods, providing discrete and continuous DoI information, are compared with those obtained from an algorithm without DoI capabilities and with the ideal response of the detector. The proposed DoI-dependent imaging methods show clear improvements in the spatial resolution (FWHM) of reconstructed images, allowing to obtain values from 2mm (at the center FoV) to 3mm (at the FoV edges).

  5. Comparison of visual survey and seining methods for estimating abundance of an endangered, benthic stream fish

    USGS Publications Warehouse

    Jordan, F.; Jelks, H.L.; Bortone, S.A.; Dorazio, R.M.

    2008-01-01

    We compared visual survey and seining methods for estimating abundance of endangered Okaloosa darters, Etheostoma okaloosae, in 12 replicate stream reaches during August 2001. For each 20-m stream reach, two divers systematically located and marked the position of darters and then a second crew of three to five people came through with a small-mesh seine and exhaustively sampled the same area. Visual surveys required little extra time to complete. Visual counts (24.2 ?? 12.0; mean ?? one SD) considerably exceeded seine captures (7.4 ?? 4.8), and counts from the two methods were uncorrelated. Visual surveys, but not seines, detected the presence of Okaloosa darters at one site with low population densities. In 2003, we performed a depletion removal study in 10 replicate stream reaches to assess the accuracy of the visual survey method. Visual surveys detected 59% of Okaloosa darters present, and visual counts and removal estimates were positively correlated. Taken together, our comparisons indicate that visual surveys more accurately and precisely estimate abundance of Okaloosa darters than seining and more reliably detect presence at low population densities. We recommend evaluation of visual survey methods when designing programs to monitor abundance of benthic fishes in clear streams, especially for threatened and endangered species that may be sensitive to handling and habitat disturbance. ?? 2007 Springer Science+Business Media, Inc.

  6. Reconstruction-Based Digital Dental Occlusion of the Partially Edentulous Dentition.

    PubMed

    Zhang, Jian; Xia, James J; Li, Jianfu; Zhou, Xiaobo

    2017-01-01

    Partially edentulous dentition presents a challenging problem for the surgical planning of digital dental occlusion in the field of craniomaxillofacial surgery because of the incorrect maxillomandibular distance caused by missing teeth. We propose an innovative approach called Dental Reconstruction with Symmetrical Teeth (DRST) to achieve accurate dental occlusion for the partially edentulous cases. In this DRST approach, the rigid transformation between two symmetrical teeth existing on the left and right dental model is estimated through probabilistic point registration by matching the two shapes. With the estimated transformation, the partially edentulous space can be virtually filled with the teeth in its symmetrical position. Dental alignment is performed by digital dental occlusion reestablishment algorithm with the reconstructed complete dental model. Satisfactory reconstruction and occlusion results are demonstrated with the synthetic and real partially edentulous models.

  7. A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    2001-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.

  8. Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons

    PubMed Central

    Cemgil, Ali Taylan

    2017-01-01

    We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking. PMID:29109375

  9. Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons.

    PubMed

    Daniş, F Serhan; Cemgil, Ali Taylan

    2017-10-29

    We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking.

  10. Location estimation in wireless sensor networks using spring-relaxation technique.

    PubMed

    Zhang, Qing; Foh, Chuan Heng; Seet, Boon-Chong; Fong, A C M

    2010-01-01

    Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.

  11. Validation of Inertial and Optical Navigation Techniques for Space Applications with UAVS

    NASA Astrophysics Data System (ADS)

    Montaño, J.; Wis, M.; Pulido, J. A.; Latorre, A.; Molina, P.; Fernández, E.; Angelats, E.; Colomina, I.

    2015-09-01

    PERIGEO is an R&D project, funded by the INNPRONTA 2011-2014 programme from Spanish CDTI, which aims to investigate the use of UAV technologies and processes for the validation of space oriented technologies. For this purpose, among different space missions and technologies, a set of activities for absolute and relative navigation are being carried out to deal with the attitude and position estimation problem from a temporal image sequence from a camera on the visible spectrum and/or Light Detection and Ranging (LIDAR) sensor. The process is covered entirely: from sensor measurements and data acquisition (images, LiDAR ranges and angles), data pre-processing (calibration and co-registration of camera and LIDAR data), features and landmarks extraction from the images and image/LiDAR-based state estimation. In addition to image processing area, classical navigation system based on inertial sensors is also included in the research. The reason of combining both approaches is to enable the possibility to keep navigation capability in environments or missions where the radio beacon or reference signal as the GNSS satellite is not available (as for example an atmospheric flight in Titan). The rationale behind the combination of those systems is that they complement each other. The INS is capable of providing accurate position, velocity and full attitude estimations at high data rates. However, they need an absolute reference observation to compensate the time accumulative errors caused by inertial sensor inaccuracies. On the other hand, imaging observables can provide absolute and relative positioning and attitude estimations. However they need that the sensor head is pointing toward ground (something that may not be possible if the carrying platform is maneuvering) to provide accurate estimations and they are not capable of provide some hundreds of Hz that can deliver an INS. This mutual complementarity has been observed in PERIGEO and because of this they are combined into one system. The inertial navigation system implemented in PERIGEO is based on a classical loosely coupled INS/GNSS approach that is very similar to the implementation of the INS/Imaging navigation system that is mentioned above. The activities envisaged in PERIGEO cover the algorithms development and validation and technology testing on UAVs under representative conditions. Past activities have covered the design and development of the algorithms and systems. This paper presents the most recent activities and results on the area of image processing for robust estimation within PERIGEO, which are related with the hardware platforms definition (including sensors) and its integration in UAVs. Results for the tests performed during the flight campaigns in representative outdoor environments will be also presented (at the time of the full paper submission the tests will be performed), as well as analyzed, together with a roadmap definition for future developments.

  12. Research on the Rapid and Accurate Positioning and Orientation Approach for Land Missile-Launching Vehicle

    PubMed Central

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-01-01

    Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249

  13. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    PubMed

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-10-20

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.

  14. Estimating 3D tilt from local image cues in natural scenes

    PubMed Central

    Burge, Johannes; McCann, Brian C.; Geisler, Wilson S.

    2016-01-01

    Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then analyzed the relationship between ground-truth tilt and image cue values. Our analysis is free of assumptions about the joint probability distributions and yields the Bayes optimal estimates of tilt, given the cue values. Rich results emerge: (a) typical tilt estimates are only moderately accurate and strongly influenced by the cardinal bias in the prior probability distribution; (b) when cue values are similar, or when slant is greater than 40°, estimates are substantially more accurate; (c) when luminance and texture cues agree, they often veto the disparity cue, and when they disagree, they have little effect; and (d) simplifying assumptions common in the cue combination literature is often justified for estimating tilt in natural scenes. The fact that tilt estimates are typically not very accurate is consistent with subjective impressions from viewing small patches of natural scene. The fact that estimates are substantially more accurate for a subset of image locations is also consistent with subjective impressions and with the hypothesis that perceived surface orientation, at more global scales, is achieved by interpolation or extrapolation from estimates at key locations. PMID:27738702

  15. Performance of a Limiting-Antigen Avidity Enzyme Immunoassay for Cross-Sectional Estimation of HIV Incidence in the United States

    PubMed Central

    Konikoff, Jacob; Brookmeyer, Ron; Longosz, Andrew F.; Cousins, Matthew M.; Celum, Connie; Buchbinder, Susan P.; Seage, George R.; Kirk, Gregory D.; Moore, Richard D.; Mehta, Shruti H.; Margolick, Joseph B.; Brown, Joelle; Mayer, Kenneth H.; Koblin, Beryl A.; Justman, Jessica E.; Hodder, Sally L.; Quinn, Thomas C.; Eshleman, Susan H.; Laeyendecker, Oliver

    2013-01-01

    Background A limiting antigen avidity enzyme immunoassay (HIV-1 LAg-Avidity assay) was recently developed for cross-sectional HIV incidence estimation. We evaluated the performance of the LAg-Avidity assay alone and in multi-assay algorithms (MAAs) that included other biomarkers. Methods and Findings Performance of testing algorithms was evaluated using 2,282 samples from individuals in the United States collected 1 month to >8 years after HIV seroconversion. The capacity of selected testing algorithms to accurately estimate incidence was evaluated in three longitudinal cohorts. When used in a single-assay format, the LAg-Avidity assay classified some individuals infected >5 years as assay positive and failed to provide reliable incidence estimates in cohorts that included individuals with long-term infections. We evaluated >500,000 testing algorithms, that included the LAg-Avidity assay alone and MAAs with other biomarkers (BED capture immunoassay [BED-CEIA], BioRad-Avidity assay, HIV viral load, CD4 cell count), varying the assays and assay cutoffs. We identified an optimized 2-assay MAA that included the LAg-Avidity and BioRad-Avidity assays, and an optimized 4-assay MAA that included those assays, as well as HIV viral load and CD4 cell count. The two optimized MAAs classified all 845 samples from individuals infected >5 years as MAA negative and estimated incidence within a year of sample collection. These two MAAs produced incidence estimates that were consistent with those from longitudinal follow-up of cohorts. A comparison of the laboratory assay costs of the MAAs was also performed, and we found that the costs associated with the optimal two assay MAA were substantially less than with the four assay MAA. Conclusions The LAg-Avidity assay did not perform well in a single-assay format, regardless of the assay cutoff. MAAs that include the LAg-Avidity and BioRad-Avidity assays, with or without viral load and CD4 cell count, provide accurate incidence estimates. PMID:24386116

  16. Marine Bacteria Cause False-Positive Results in the Colilert-18 Rapid Identification Test for Escherichia coli in Florida Waters

    PubMed Central

    Pisciotta, John M.; Rath, Damon F.; Stanek, Paul A.; Flanery, D. Michael; Harwood, Valerie J.

    2002-01-01

    The Colilert-18 system for enumeration of total coliforms and Escherichia coli is approved by the U.S. Environmental Protection Agency for use in drinking water analysis and is also used by various agencies and research studies for enumeration of indicator organisms in fresh and saline waters. During monitoring of Pinellas County, Fla., marine waters, estimates of E. coli numbers (by Colilert-18) frequently exceeded fecal coliform counts (by membrane filtration) by 1 to 3 orders of magnitude. Samples from freshwater sites did not display similar discrepancies. Fecal coliforms, including E. coli, could be cultured from 100% of yellow fluorescent wells (denoting E. coli-positive results) inoculated with freshwater samples but could be cultured from only 17.1% of the “positive” wells inoculated with marine samples. Ortho-nitrophenyl-β-d-galactopyranoside (ONPG)-positive or 4-methylumbelliferyl-β-d-glucuronide (MUG)-positive noncoliform bacteria were readily cultured from Colilert-18 test wells inoculated with marine samples. Filtered cell-free seawater did not cause false positives. Coculture preparations of as few as 5 CFU of Vibrio cholerae (ONPG positive) and Providencia sp. (MUG positive) ml−1 inoculated into Colilert-18 caused false-positive E. coli results. Salinity conditions influenced coculture results, as the concentration of coculture inoculum required to cause false positives in most wells increased from about 5 CFU ml−1 in seawater diluted 1:10 with freshwater to ≈5,000 CFU ml−1 in seawater diluted 1:20 with freshwater. Estimated E. coli numbers in various marine water samples processed at the 1:10 dilution ranged from 10 to 7,270 CFU·100 ml−1, while E. coli numbers in the same samples processed at the 1:20 dilution did not exceed 40 CFU·100 ml−1. The lower estimates of E. coli numbers corresponded well with fecal coliform counts by membrane filtration. This study indicates that assessment of E. coli in subtropical marine waters by Colilert-18 is not accurate when the recommended 1:10 sample dilution is used. The results suggest that greater dilution may diminish the false-positive problem, but further study of this possibility is recommended. PMID:11823188

  17. The effect of elastic modulus on ablation catheter contact area.

    PubMed

    Camp, Jon J; Linte, Cristian A; Rettmann, Maryam E; Sun, Deyu; Packer, Douglas L; Robb, Richard A; Holmes, David R

    2015-02-21

    Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel [1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

  18. N-Methyl Inversion and Accurate Equilibrium Structures in Alkaloids: Pseudopelletierine.

    PubMed

    Vallejo-López, Montserrat; Écija, Patricia; Vogt, Natalja; Demaison, Jean; Lesarri, Alberto; Basterretxea, Francisco J; Cocinero, Emilio J

    2017-11-21

    A rotational spectroscopy investigation has resolved the conformational equilibrium and structural properties of the alkaloid pseudopelletierine. Two different conformers, which originate from inversion of the N-methyl group from an axial to an equatorial position, have been unambiguously identified in the gas phase, and nine independent isotopologues have been recorded by Fourier-transform microwave spectroscopy in a jet expansion. Both conformers share a chair-chair configuration of the two bridged six-membered rings. The conformational equilibrium is displaced towards the axial form, with a relative population in the supersonic jet of N axial /N equatorial ≈2/1. An accurate equilibrium structure has been determined by using the semiexperimental mixed-estimation method and alternatively computed by quantum-chemical methods up to the coupled-cluster level of theory. A comparison with the N-methyl inversion equilibria in related tropanes is also presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sampling designs matching species biology produce accurate and affordable abundance indices

    PubMed Central

    Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which raised capture probabilities. The grid design was least biased (−10.5%), but imprecise (CV 21.2%), and used most effort (16,100 trap-nights). The targeted configuration was more biased (−17.3%), but most precise (CV 12.3%), with least effort (7,000 trap-nights). Targeted sampling generated encounter rates four times higher, and capture and recapture probabilities 11% and 60% higher than grid sampling, in a sampling frame 88% smaller. Bears had unequal probability of capture with both sampling designs, partly because some bears never had traps available to sample them. Hence, grid and targeted sampling generated abundance indices, not estimates. Overall, targeted sampling provided the most accurate and affordable design to index abundance. Targeted sampling may offer an alternative method to index the abundance of other species inhabiting expansive and inaccessible landscapes elsewhere, provided their attraction to resource concentrations. PMID:24392290

  20. Shear wave arrival time estimates correlate with local speckle pattern.

    PubMed

    Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan

    2015-12-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared with the variation with axial position/ local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture.

  1. Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern

    PubMed Central

    McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan

    2016-01-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared to the variation with axial position/local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture. PMID:26670847

  2. Passive RFID Rotation Dimension Reduction via Aggregation

    NASA Astrophysics Data System (ADS)

    Matthews, Eric

    Radio Frequency IDentification (RFID) has applications in object identification, position, and orientation tracking. RFID technology can be applied in hospitals for patient and equipment tracking, stores and warehouses for product tracking, robots for self-localisation, tracking hazardous materials, or locating any other desired object. Efficient and accurate algorithms that perform localisation are required to extract meaningful data beyond simple identification. A Received Signal Strength Indicator (RSSI) is the strength of a received radio frequency signal used to localise passive and active RFID tags. Many factors affect RSSI such as reflections, tag rotation in 3D space, and obstacles blocking line-of-sight. LANDMARC is a statistical method for estimating tag location based on a target tag's similarity to surrounding reference tags. LANDMARC does not take into account the rotation of the target tag. By either aggregating multiple reference tag positions at various rotations, or by determining a rotation value for a newly read tag, we can perform an expected value calculation based on a comparison to the k-most similar training samples via an algorithm called K-Nearest Neighbours (KNN) more accurately. By choosing the average as the aggregation function, we improve the relative accuracy of single-rotation LANDMARC localisation by 10%, and any-rotation localisation by 20%.

  3. Multilocus lod scores in large pedigrees: combination of exact and approximate calculations.

    PubMed

    Tong, Liping; Thompson, Elizabeth

    2008-01-01

    To detect the positions of disease loci, lod scores are calculated at multiple chromosomal positions given trait and marker data on members of pedigrees. Exact lod score calculations are often impossible when the size of the pedigree and the number of markers are both large. In this case, a Markov Chain Monte Carlo (MCMC) approach provides an approximation. However, to provide accurate results, mixing performance is always a key issue in these MCMC methods. In this paper, we propose two methods to improve MCMC sampling and hence obtain more accurate lod score estimates in shorter computation time. The first improvement generalizes the block-Gibbs meiosis (M) sampler to multiple meiosis (MM) sampler in which multiple meioses are updated jointly, across all loci. The second one divides the computations on a large pedigree into several parts by conditioning on the haplotypes of some 'key' individuals. We perform exact calculations for the descendant parts where more data are often available, and combine this information with sampling of the hidden variables in the ancestral parts. Our approaches are expected to be most useful for data on a large pedigree with a lot of missing data. (c) 2007 S. Karger AG, Basel

  4. Multilocus Lod Scores in Large Pedigrees: Combination of Exact and Approximate Calculations

    PubMed Central

    Tong, Liping; Thompson, Elizabeth

    2007-01-01

    To detect the positions of disease loci, lod scores are calculated at multiple chromosomal positions given trait and marker data on members of pedigrees. Exact lod score calculations are often impossible when the size of the pedigree and the number of markers are both large. In this case, a Markov Chain Monte Carlo (MCMC) approach provides an approximation. However, to provide accurate results, mixing performance is always a key issue in these MCMC methods. In this paper, we propose two methods to improve MCMC sampling and hence obtain more accurate lod score estimates in shorter computation time. The first improvement generalizes the block-Gibbs meiosis (M) sampler to multiple meiosis (MM) sampler in which multiple meioses are updated jointly, across all loci. The second one divides the computations on a large pedigree into several parts by conditioning on the haplotypes of some ‘key’ individuals. We perform exact calculations for the descendant parts where more data are often available, and combine this information with sampling of the hidden variables in the ancestral parts. Our approaches are expected to be most useful for data on a large pedigree with a lot of missing data. PMID:17934317

  5. Analytical prediction of sub-surface thermal history in translucent tissue phantoms during plasmonic photo-thermotherapy (PPTT).

    PubMed

    Dhar, Purbarun; Paul, Anup; Narasimhan, Arunn; Das, Sarit K

    2016-12-01

    Knowledge of thermal history and/or distribution in biological tissues during laser based hyperthermia is essential to achieve necrosis of tumour/carcinoma cells. A semi-analytical model to predict sub-surface thermal distribution in translucent, soft, tissue mimics has been proposed. The model can accurately predict the spatio-temporal temperature variations along depth and the anomalous thermal behaviour in such media, viz. occurrence of sub-surface temperature peaks. Based on optical and thermal properties, the augmented temperature and shift of the peak positions in case of gold nanostructure mediated tissue phantom hyperthermia can be predicted. Employing inverse approach, the absorption coefficient of nano-graphene infused tissue mimics is determined from the peak temperature and found to provide appreciably accurate predictions along depth. Furthermore, a simplistic, dimensionally consistent correlation to theoretically determine the position of the peak in such media is proposed and found to be consistent with experiments and computations. The model shows promise in predicting thermal distribution induced by lasers in tissues and deduction of therapeutic hyperthermia parameters, thereby assisting clinical procedures by providing a priori estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Line-Constrained Camera Location Estimation in Multi-Image Stereomatching.

    PubMed

    Donné, Simon; Goossens, Bart; Philips, Wilfried

    2017-08-23

    Stereomatching is an effective way of acquiring dense depth information from a scene when active measurements are not possible. So-called lightfield methods take a snapshot from many camera locations along a defined trajectory (usually uniformly linear or on a regular grid-we will assume a linear trajectory) and use this information to compute accurate depth estimates. However, they require the locations for each of the snapshots to be known: the disparity of an object between images is related to both the distance of the camera to the object and the distance between the camera positions for both images. Existing solutions use sparse feature matching for camera location estimation. In this paper, we propose a novel method that uses dense correspondences to do the same, leveraging an existing depth estimation framework to also yield the camera locations along the line. We illustrate the effectiveness of the proposed technique for camera location estimation both visually for the rectification of epipolar plane images and quantitatively with its effect on the resulting depth estimation. Our proposed approach yields a valid alternative for sparse techniques, while still being executed in a reasonable time on a graphics card due to its highly parallelizable nature.

  7. DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY

    USDA-ARS?s Scientific Manuscript database

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  8. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  9. Using Smartphone Sensors for Improving Energy Expenditure Estimation

    PubMed Central

    Zhu, Jindan; Das, Aveek K.; Zeng, Yunze; Mohapatra, Prasant; Han, Jay J.

    2015-01-01

    Energy expenditure (EE) estimation is an important factor in tracking personal activity and preventing chronic diseases, such as obesity and diabetes. Accurate and real-time EE estimation utilizing small wearable sensors is a difficult task, primarily because the most existing schemes work offline or use heuristics. In this paper, we focus on accurate EE estimation for tracking ambulatory activities (walking, standing, climbing upstairs, or downstairs) of a typical smartphone user. We used built-in smartphone sensors (accelerometer and barometer sensor), sampled at low frequency, to accurately estimate EE. Using a barometer sensor, in addition to an accelerometer sensor, greatly increases the accuracy of EE estimation. Using bagged regression trees, a machine learning technique, we developed a generic regression model for EE estimation that yields upto 96% correlation with actual EE. We compare our results against the state-of-the-art calorimetry equations and consumer electronics devices (Fitbit and Nike+ FuelBand). The newly developed EE estimation algorithm demonstrated superior accuracy compared with currently available methods. The results were calibrated against COSMED K4b2 calorimeter readings. PMID:27170901

  10. Using Smartphone Sensors for Improving Energy Expenditure Estimation.

    PubMed

    Pande, Amit; Zhu, Jindan; Das, Aveek K; Zeng, Yunze; Mohapatra, Prasant; Han, Jay J

    2015-01-01

    Energy expenditure (EE) estimation is an important factor in tracking personal activity and preventing chronic diseases, such as obesity and diabetes. Accurate and real-time EE estimation utilizing small wearable sensors is a difficult task, primarily because the most existing schemes work offline or use heuristics. In this paper, we focus on accurate EE estimation for tracking ambulatory activities (walking, standing, climbing upstairs, or downstairs) of a typical smartphone user. We used built-in smartphone sensors (accelerometer and barometer sensor), sampled at low frequency, to accurately estimate EE. Using a barometer sensor, in addition to an accelerometer sensor, greatly increases the accuracy of EE estimation. Using bagged regression trees, a machine learning technique, we developed a generic regression model for EE estimation that yields upto 96% correlation with actual EE. We compare our results against the state-of-the-art calorimetry equations and consumer electronics devices (Fitbit and Nike+ FuelBand). The newly developed EE estimation algorithm demonstrated superior accuracy compared with currently available methods. The results were calibrated against COSMED K4b2 calorimeter readings.

  11. TU-CD-207-09: Analysis of the 3-D Shape of Patients’ Breast for Breast Imaging and Surgery Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agasthya, G; Sechopoulos, I

    2015-06-15

    Purpose: Develop a method to accurately capture the 3-D shape of patients’ external breast surface before and during breast compression for mammography/tomosynthesis. Methods: During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3-D breast surface imaging during breast compression and imaging for the cranio-caudal (CC) view on a digital mammography/breast tomosynthesis system. Digital projectors and cameras mounted on tripods were used to acquire 3-D surface images of the breast, in three conditions: (a) positioned on the support paddle before compression, (b) during compression by the compression paddle and (c) the anterior-posterior view with the breast in its natural,more » unsupported position. The breast was compressed to standard full compression with the compression paddle and a tomosynthesis image was acquired simultaneously with the 3-D surface. The 3-D surface curvature and deformation with respect to the uncompressed surface was analyzed using contours. The 3-D surfaces were voxelized to capture breast shape in a format that can be manipulated for further analysis. Results: A protocol was developed to accurately capture the 3-D shape of patients’ breast before and during compression for mammography. Using a pair of 3-D scanners, the 50 patient breasts were scanned in three conditions, resulting in accurate representations of the breast surfaces. The surfaces were post processed, analyzed using contours and voxelized, with 1 mm{sup 3} voxels, converting the breast shape into a format that can be easily modified as required. Conclusion: Accurate characterization of the breast curvature and shape for the generation of 3-D models is possible. These models can be used for various applications such as improving breast dosimetry, accurate scatter estimation, conducting virtual clinical trials and validating compression algorithms. Ioannis Sechopoulos is consultant for Fuji Medical Systems USA.« less

  12. Position Error Covariance Matrix Validation and Correction

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe, Jr.

    2016-01-01

    In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.

  13. Nonintrusive iris image acquisition system based on a pan-tilt-zoom camera and light stripe projection

    NASA Astrophysics Data System (ADS)

    Yoon, Soweon; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie

    2009-03-01

    Although iris recognition is one of the most accurate biometric technologies, it has not yet been widely used in practical applications. This is mainly due to user inconvenience during the image acquisition phase. Specifically, users try to adjust their eye position within small capture volume at a close distance from the system. To overcome these problems, we propose a novel iris image acquisition system that provides users with unconstrained environments: a large operating range, enabling movement from standing posture, and capturing good-quality iris images in an acceptable time. The proposed system has the following three contributions compared with previous works: (1) the capture volume is significantly increased by using a pan-tilt-zoom (PTZ) camera guided by a light stripe projection, (2) the iris location in the large capture volume is found fast due to 1-D vertical face searching from the user's horizontal position obtained by the light stripe projection, and (3) zooming and focusing on the user's irises at a distance are accurate and fast using the estimated 3-D position of a face by the light stripe projection and the PTZ camera. Experimental results show that the proposed system can capture good-quality iris images in 2.479 s on average at a distance of 1.5 to 3 m, while allowing a limited amount of movement by the user.

  14. Accurate Structural Correlations from Maximum Likelihood Superpositions

    PubMed Central

    Theobald, Douglas L; Wuttke, Deborah S

    2008-01-01

    The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR) models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA) of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method (“PCA plots”) for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology. PMID:18282091

  15. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2004-01-01

    The few millimeter per year level accuracy of radial global velocity estimates with the Global Positioning System (GPS) is at least an order of magnitude poorer than the accuracy of horizontal global motions. An improvement in the accuracy of radial global velocities would have a very positive impact on a number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. GPS error sources relevant to this project can be classified in two broad categories: (1) those related to the analysis of the GPS phase observable, and (2) those related to the combination of the positions and velocities of a set of globally distributed stations as determined from the analysis of GPS data important aspect in the first category include the effect on vertical rate estimates due to standard analysis choices, such as orbit modeling, network geometry, ambiguity resolution, as well as errors in models (or simply the lack of models) for clocks, multipath, phase-center variations, atmosphere, and solid-Earth tides. The second category includes the possible methods of combining and defining terrestrial reference flames for determining vertical velocities in a global scale. The latter has been the subject of our research activities during this reporting period.

  16. A practical method of estimating stature of bedridden female nursing home patients.

    PubMed

    Muncie, H L; Sobal, J; Hoopes, J M; Tenney, J H; Warren, J W

    1987-04-01

    Accurate measurement of stature is important for the determination of several nutritional indices as well as body surface area (BSA) for the normalization of creatinine clearances. Direct standing measurement of stature of bedridden elderly nursing home patients is impossible, and stature as recorded in the chart may not be valid. An accurate stature obtained by summing five segmental measurements was compared to the stature recorded in the patient's chart and calculated estimates of stature from measurement of a long bone (humerus, tibia, knee height). Estimation of stature from measurement of knee height was highly correlated (r = 0.93) to the segmental measurement of stature while estimates from other long-bone measurements were less highly correlated (r = 0.71 to 0.81). Recorded chart stature was poorly correlated (r = 0.37). Measurement of knee height provides a simple, quick, and accurate means of estimating stature for bedridden females in nursing homes.

  17. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors

    PubMed Central

    Dagamseh, Ahmad; Wiegerink, Remco; Lammerink, Theo; Krijnen, Gijs

    2013-01-01

    In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we take advantage of both biomimetic artificial hair-based flow sensors arranged as LSS and beamforming techniques to demonstrate dipole-source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of dipole sources accurately with estimation error of less than 0.14 times the array length. This opens up possibilities for flow-based, near-field environment mapping that can be beneficial to, for example, biologists and robot guidance applications. PMID:23594816

  18. A Message Passing Approach to Side Chain Positioning with Applications in Protein Docking Refinement *

    PubMed Central

    Moghadasi, Mohammad; Kozakov, Dima; Mamonov, Artem B.; Vakili, Pirooz; Vajda, Sandor; Paschalidis, Ioannis Ch.

    2013-01-01

    We introduce a message-passing algorithm to solve the Side Chain Positioning (SCP) problem. SCP is a crucial component of protein docking refinement, which is a key step of an important class of problems in computational structural biology called protein docking. We model SCP as a combinatorial optimization problem and formulate it as a Maximum Weighted Independent Set (MWIS) problem. We then employ a modified and convergent belief-propagation algorithm to solve a relaxation of MWIS and develop randomized estimation heuristics that use the relaxed solution to obtain an effective MWIS feasible solution. Using a benchmark set of protein complexes we demonstrate that our approach leads to more accurate docking predictions compared to a baseline algorithm that does not solve the SCP. PMID:23515575

  19. Observing tectonic plate motions and deformations from satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  20. Radial magnetic resonance imaging (MRI) using a rotating radiofrequency (RF) coil at 9.4 T.

    PubMed

    Li, Mingyan; Weber, Ewald; Jin, Jin; Hugger, Thimo; Tesiram, Yasvir; Ullmann, Peter; Stark, Simon; Fuentes, Miguel; Junge, Sven; Liu, Feng; Crozier, Stuart

    2018-02-01

    The rotating radiofrequency coil (RRFC) has been developed recently as an alternative approach to multi-channel phased-array coils. The single-element RRFC avoids inter-channel coupling and allows a larger coil element with better B 1 field penetration when compared with an array counterpart. However, dedicated image reconstruction algorithms require accurate estimation of temporally varying coil sensitivities to remove artefacts caused by coil rotation. Various methods have been developed to estimate unknown sensitivity profiles from a few experimentally measured sensitivity maps, but these methods become problematic when the RRFC is used as a transceiver coil. In this work, a novel and practical radial encoding method is introduced for the RRFC to facilitate image reconstruction without the measurement or estimation of rotation-dependent sensitivity profiles. Theoretical analyses suggest that the rotation-dependent sensitivities of the RRFC can be used to create a uniform profile with careful choice of sampling positions and imaging parameters. To test this new imaging method, dedicated electronics were designed and built to control the RRFC speed and hence positions in synchrony with imaging parameters. High-quality phantom and animal images acquired on a 9.4 T pre-clinical scanner demonstrate the feasibility and potential of this new RRFC method. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Passive acoustic localization of the Atlantic bottlenose dolphin using whistles and echolocation clicks.

    PubMed

    Freitag, L E; Tyack, P L

    1993-04-01

    A method for localization and tracking of calling marine mammals was tested under realistic field conditions that include noise, multipath, and arbitrarily located sensors. Experiments were performed in two locations using four and six hydrophones with captive Atlantic bottlenose dolphins (Tursiops truncatus). Acoustic signals from the animals were collected in the field using a digital acoustic data acquisition system. The data were then processed off-line to determine relative hydrophone positions and the animal locations. Accurate hydrophone position estimates are achieved by pinging sequentially from each hydrophone to all the others. A two-step least-squares algorithm is then used to determine sensor locations from the calibration data. Animal locations are determined by estimating the time differences of arrival of the dolphin signals at the different sensors. The peak of a matched filter output or the first cycle of the observed waveform is used to determine arrival time of an echolocation click. Cross correlation between hydrophones is used to determine inter-sensor time delays of whistles. Calculation of source location using the time difference of arrival measurements is done using a least-squares solution to minimize error. These preliminary experimental results based on a small set of data show that realistic trajectories for moving animals may be generated from consecutive location estimates.

  2. Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.; Smirnova, Z. N.

    2015-05-01

    Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.

  3. Simultaneous Observation of Hybrid States for Cyber-Physical Systems: A Case Study of Electric Vehicle Powertrain.

    PubMed

    Lv, Chen; Liu, Yahui; Hu, Xiaosong; Guo, Hongyan; Cao, Dongpu; Wang, Fei-Yue

    2017-08-22

    As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer.

  4. Position estimation and driving of an autonomous vehicle by monocular vision

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.

    2007-04-01

    Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.

  5. Cross-scale controls on carbon emissions from boreal forest megafires.

    PubMed

    Walker, Xanthe J; Rogers, Brendan M; Baltzer, Jennifer L; Cumming, Steven G; Day, Nicola J; Goetz, Scott J; Johnstone, Jill F; Schuur, Edward A G; Turetsky, Merritt R; Mack, Michelle C

    2018-04-26

    Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m -2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine-scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale. © 2018 John Wiley & Sons Ltd.

  6. Hatching and fledging times from grassland passerine nests

    USGS Publications Warehouse

    Pietz, Pamela J.; Granfors, Diane A.; Grant, Todd A.; Ribic, Christine A.; Thompson, Frank R.; Pietz, Pamela J.

    2012-01-01

    1 day and was positively correlated with clutch size. Length of the fledging period for a brood was usually Accurate estimates of fledging age are needed in field studies to avoid inducing premature fledging or missing the fledging event. Both may lead to misinterpretation of nest fate. Correctly assessing nest fate and length of the nestling period can be critical for accurate calculation of nest survival rates. For researchers who mark nestlings, knowing the age at which their activities may cause young to leave nests prematurely could prevent introducing bias to their studies. We obtained estimates of fledging age using data from grassland bird nests monitored from hatching through fledging with video-surveillance systems in North Dakota and Minnesota during 1996–2001. We compared these values to those obtained from traditional nest visits and from available literature. Mean and modal fledging ages for video-monitored nests were generally similar to those for visited nests, although Clay-colored Sparrows (Spizella pallida) typically fledged 1 day earlier from visited nests. Average fledging ages from both video and nest visits occurred within ranges reported in the literature, but expanded by 1–2 days the upper age limit for Clay-colored Sparrows and the lower age limit for Bobolinks (Dolichonyx oryzivorus). Video showed that eggs hatched throughout the day whereas most young fledged in the morning (06:30–12:30 CDT). Length of the hatching period for a clutch was usually >1 day and was positively correlated with clutch size. Length of the fledging period for a brood was usually <1 day, and in nearly half the nests, fledging was completed within <2 hr. Video surveillance has proven to be a useful tool for providing new information and for corroborating published statements related to hatching and fledging chronology. Comparison of data collected from video and nest visits showed that carefully conducted nest visits generally can provide reliable data for deriving estimates of survival.

  7. Error properties of Argos satellite telemetry locations using least squares and Kalman filtering.

    PubMed

    Boyd, Janice D; Brightsmith, Donald J

    2013-01-01

    Study of animal movements is key for understanding their ecology and facilitating their conservation. The Argos satellite system is a valuable tool for tracking species which move long distances, inhabit remote areas, and are otherwise difficult to track with traditional VHF telemetry and are not suitable for GPS systems. Previous research has raised doubts about the magnitude of position errors quoted by the satellite service provider CLS. In addition, no peer-reviewed publications have evaluated the usefulness of the CLS supplied error ellipses nor the accuracy of the new Kalman filtering (KF) processing method. Using transmitters hung from towers and trees in southeastern Peru, we show the Argos error ellipses generally contain <25% of the true locations and therefore do not adequately describe the true location errors. We also find that KF processing does not significantly increase location accuracy. The errors for both LS and KF processing methods were found to be lognormally distributed, which has important repercussions for error calculation, statistical analysis, and data interpretation. In brief, "good" positions (location codes 3, 2, 1, A) are accurate to about 2 km, while 0 and B locations are accurate to about 5-10 km. However, due to the lognormal distribution of the errors, larger outliers are to be expected in all location codes and need to be accounted for in the user's data processing. We evaluate five different empirical error estimates and find that 68% lognormal error ellipses provided the most useful error estimates. Longitude errors are larger than latitude errors by a factor of 2 to 3, supporting the use of elliptical error ellipses. Numerous studies over the past 15 years have also found fault with the CLS-claimed error estimates yet CLS has failed to correct their misleading information. We hope this will be reversed in the near future.

  8. A comparison of kinematic algorithms to estimate gait events during overground running.

    PubMed

    Smith, Laura; Preece, Stephen; Mason, Duncan; Bramah, Christopher

    2015-01-01

    The gait cycle is frequently divided into two distinct phases, stance and swing, which can be accurately determined from ground reaction force data. In the absence of such data, kinematic algorithms can be used to estimate footstrike and toe-off. The performance of previously published algorithms is not consistent between studies. Furthermore, previous algorithms have not been tested at higher running speeds nor used to estimate ground contact times. Therefore the purpose of this study was to both develop a new, custom-designed, event detection algorithm and compare its performance with four previously tested algorithms at higher running speeds. Kinematic and force data were collected on twenty runners during overground running at 5.6m/s. The five algorithms were then implemented and estimated times for footstrike, toe-off and contact time were compared to ground reaction force data. There were large differences in the performance of each algorithm. The custom-designed algorithm provided the most accurate estimation of footstrike (True Error 1.2 ± 17.1 ms) and contact time (True Error 3.5 ± 18.2 ms). Compared to the other tested algorithms, the custom-designed algorithm provided an accurate estimation of footstrike and toe-off across different footstrike patterns. The custom-designed algorithm provides a simple but effective method to accurately estimate footstrike, toe-off and contact time from kinematic data. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Quantification of HTLV-1 Clonality and TCR Diversity

    PubMed Central

    Laydon, Daniel J.; Melamed, Anat; Sim, Aaron; Gillet, Nicolas A.; Sim, Kathleen; Darko, Sam; Kroll, J. Simon; Douek, Daniel C.; Price, David A.; Bangham, Charles R. M.; Asquith, Becca

    2014-01-01

    Estimation of immunological and microbiological diversity is vital to our understanding of infection and the immune response. For instance, what is the diversity of the T cell repertoire? These questions are partially addressed by high-throughput sequencing techniques that enable identification of immunological and microbiological “species” in a sample. Estimators of the number of unseen species are needed to estimate population diversity from sample diversity. Here we test five widely used non-parametric estimators, and develop and validate a novel method, DivE, to estimate species richness and distribution. We used three independent datasets: (i) viral populations from subjects infected with human T-lymphotropic virus type 1; (ii) T cell antigen receptor clonotype repertoires; and (iii) microbial data from infant faecal samples. When applied to datasets with rarefaction curves that did not plateau, existing estimators systematically increased with sample size. In contrast, DivE consistently and accurately estimated diversity for all datasets. We identify conditions that limit the application of DivE. We also show that DivE can be used to accurately estimate the underlying population frequency distribution. We have developed a novel method that is significantly more accurate than commonly used biodiversity estimators in microbiological and immunological populations. PMID:24945836

  10. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  11. Association between temporal mean arterial pressure and brachial noninvasive blood pressure during shoulder surgery in the beach chair position during general anesthesia.

    PubMed

    Triplet, Jacob J; Lonetta, Christopher M; Everding, Nathan G; Moor, Molly A; Levy, Jonathan C

    2015-01-01

    Estimation of cerebral perfusion pressure during elective shoulder surgery in the beach chair position is regularly performed by noninvasive brachial blood pressure (NIBP) measurements. The relationship between brachial mean arterial pressure and estimated temporal mean arterial pressure (eTMAP) is not well established and may vary with patient positioning. Establishing a ratio between eTMAP and NIBP at varying positions may provide a more accurate estimation of cerebral perfusion using noninvasive measurements. This prospective study included 57 patients undergoing elective shoulder surgery in the beach chair position. All patients received an interscalene block and general anesthesia. After the induction of general anesthesia, values for eTMAP and NIBP were recorded at 0°, 30°, and 70° of incline. A statistically significant, strong, and direct correlation between NIBP and eTMAP was found at 0° (r = 0.909, P ≤ .001), 30° (r = 0.874, P < .001), and 70° (r = 0.819, P < .001) of incline. The mean ratios of eTMAP to NIBP at 0°, 30°, and 70° of incline were 0.939 (95% confidence interval [CI], 0.915-0.964), 0.738 (95% CI, 0.704-0.771), and 0.629 (95% CI, 0.584-0.673), respectively. There was a statistically significant decrease in the eTMAP/NIBP ratio as patient incline increased from 0° to 30° (P < .001) and from 30° to 70° (P < .001). The eTMAP-to-NIBP ratio decreases as an anesthetized patient is placed into the beach chair position. Awareness of this phenomenon is important to ensure adequate cerebral perfusion and prevent hypoxic-related injuries. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.

    PubMed

    Khushaba, Rami N; Takruri, Maen; Miro, Jaime Valls; Kodagoda, Sarath

    2014-07-01

    Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sensitivity and specificity of the 'knee-up test' for estimation of the American Spinal Injury Association Impairment Scale in patients with acute motor incomplete cervical spinal cord injury.

    PubMed

    Yugué, Itaru; Okada, Seiji; Maeda, Takeshi; Ueta, Takayoshi; Shiba, Keiichiro

    2018-04-01

    A retrospective study. Precise classification of the neurological state of patients with acute cervical spinal cord injury (CSCI) can be challenging. This study proposed a useful and simple clinical method to help classify patients with incomplete CSCI. Spinal Injuries Centre, Japan. The sensitivity and specificity of the 'knee-up test' were evaluated in patients with acute CSCI classified as American Spinal Injury Association Impairment Scale (AIS) C or D. The result is positive if the patient can lift the knee in one or both legs to an upright position, whereas the result is negative if the patient is unable to lift the knee in either leg to an upright position. The AIS of these patients was classified according to a strict computerised algorithm designed by Walden et al., and the knee-up test was tested by non-expert examiners. Among the 200 patients, 95 and 105 were classified as AIS C and AIS D, respectively. Overall, 126 and 74 patients demonstrated positive and negative results, respectively, when evaluated using the knee-up test. A total of 104 patients with positive results and 73 patients with negative results were classified as AIS D and AIS C, respectively. The sensitivity, specificity, positive predictive and negative predictive values of this test for all patients were 99.1, 76.8, 82.5 and 98.7, respectively. The knee-up test may allow easy and highly accurate estimation, without the need for special skills, of AIS classification for patients with incomplete CSCI.

  14. Cost-Conscious of Anesthesia Physicians: An awareness survey.

    PubMed

    Hakimoglu, Sedat; Hancı, Volkan; Karcıoglu, Murat; Tuzcu, Kasım; Davarcı, Isıl; Kiraz, Hasan Ali; Turhanoglu, Selim

    2015-01-01

    Increasing competitive pressure and health performance system in the hospitals result in pressure to reduce the resources allocated. The aim of this study was to evaluate the anesthesiology and intensive care physicians awareness of the cost of the materials used and to determine the factors that influence it. This survey was conducted between September 2012 and September 2013 after the approval of the local ethics committee. Overall 149 anesthetists were included in the study. Participants were asked to estimate the cost of 30 products used by anesthesiology and intensive care units. One hundred forty nine doctors, 45% female and 55% male, participated in this study. Of the total 30 questions the averages of cost estimations were 5.8% accurate estimation, 35.13% underestimation and 59.16% overestimation. When the participants were divided into the different groups of institution, duration of working in this profession and sex, there were no statistically significant differences regarding accurate estimation. However, there was statistically significant difference in underestimation. In underestimation, there was no significant difference between 16-20 year group and >20 year group but these two groups have more price overestimation than the other groups (p=0.031). Furthermore, when all the participants were evaluated there were no significant difference between age-accurate cost estimation and profession time-accurate cost estimation. Anesthesiology and intensive care physicians in this survey have an insufficient awareness of the cost of the drugs and materials that they use. The institution and experience are not effective factors for accurate estimate. Programs for improving the health workers knowledge creating awareness of cost should be planned in order to use the resources more efficiently and cost effectively.

  15. Apparatus for continuous, fast, and precise measurements of position and velocity of a small spherical particle

    NASA Technical Reports Server (NTRS)

    Venkataraman, T. S.; Eidson, W. W.; Cohen, L. D.; Farina, J. D.; Acquista, C.

    1983-01-01

    The position and velocity of optically levitated glass spheres (radii 10-20 microns) movng in a gas are measured accurately, rapidly, and continuously using a high-speed rotating polygon mirror. The experimental technique developed here has repeatable position accuracies better than 20 microns. Each measurement takes less than 1 microsec and can be repeated every 100 microsec. The position of the levitated glass spheres can be manipulated accurately by modulating the laser power with an acoustic optic modulator. The technique provides a fast and accurate method to study general particle dynamics in a fluid.

  16. Bias estimation for moving optical sensor measurements with targets of opportunity

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov

    2014-06-01

    Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.

  17. Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks.

    PubMed

    Schwartz, Rachel S; Mueller, Rachel L

    2010-01-11

    Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.

  18. Method for hyperspectral imagery exploitation and pixel spectral unmixing

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2003-01-01

    An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.

  19. Association of systemic lupus erythematosus with uveitis.

    PubMed

    Gallagher, Kevin; Viswanathan, Ananth; Okhravi, Narciss

    2015-10-01

    Systemic lupus erythematosus (SLE) can be associated with uveitis. The reported prevalence of SLE in patients with uveitis varies from 0.1% to 4.8%. Accordingly, the positive predictive value of antinuclear antibody testing in diagnosing SLE in a patient with uveitis varies enormously. An accurate estimate of SLE prevalence in uveitis is needed to establish the value of routine antinuclear antibody testing in patients with uveitis. A literature review using the Medline database was performed to find studies reporting data on uveitis etiology from January 1, 1984, to March 20, 2015. Studies were included where there were sufficient data to draw conclusions on the prevalence of SLE as an etiological factor in uveitis. Data for 53 315 patients were reviewed and 63 studies from 30 countries were included. The prevalence of SLE as a cause of uveitis was estimated to be 0.47% (95% CI, 0.41%-0.53%). The positive predictive value of routine antinuclear antibody testing was 2.9% (95% CI, 2.65%-3.19%). Systemic lupus erythematosus is a rare cause of uveitis. Routine antinuclear antibody testing has a low positive predictive value for SLE. These data suggest such testing should be reserved for patients where there is a higher pretest probability of SLE.

  20. Numerical calculation of listener-specific head-related transfer functions and sound localization: Microphone model and mesh discretization

    PubMed Central

    Ziegelwanger, Harald; Majdak, Piotr; Kreuzer, Wolfgang

    2015-01-01

    Head-related transfer functions (HRTFs) can be numerically calculated by applying the boundary element method on the geometry of a listener’s head and pinnae. The calculation results are defined by geometrical, numerical, and acoustical parameters like the microphone used in acoustic measurements. The scope of this study was to estimate requirements on the size and position of the microphone model and on the discretization of the boundary geometry as triangular polygon mesh for accurate sound localization. The evaluation involved the analysis of localization errors predicted by a sagittal-plane localization model, the comparison of equivalent head radii estimated by a time-of-arrival model, and the analysis of actual localization errors obtained in a sound-localization experiment. While the average edge length (AEL) of the mesh had a negligible effect on localization performance in the lateral dimension, the localization performance in sagittal planes, however, degraded for larger AELs with the geometrical error as dominant factor. A microphone position at an arbitrary position at the entrance of the ear canal, a microphone size of 1 mm radius, and a mesh with 1 mm AEL yielded a localization performance similar to or better than observed with acoustically measured HRTFs. PMID:26233020

  1. Light Detection and Ranging-Based Terrain Navigation: A Concept Exploration

    NASA Technical Reports Server (NTRS)

    Campbell, Jacob; UijtdeHaag, Maarten; vanGraas, Frank; Young, Steve

    2003-01-01

    This paper discusses the use of Airborne Light Detection And Ranging (LiDAR) equipment for terrain navigation. Airborne LiDAR is a relatively new technology used primarily by the geo-spatial mapping community to produce highly accurate and dense terrain elevation maps. In this paper, the term LiDAR refers to a scanning laser ranger rigidly mounted to an aircraft, as opposed to an integrated sensor system that consists of a scanning laser ranger integrated with Global Positioning System (GPS) and Inertial Measurement Unit (IMU) data. Data from the laser range scanner and IMU will be integrated with a terrain database to estimate the aircraft position and data from the laser range scanner will be integrated with GPS to estimate the aircraft attitude. LiDAR data was collected using NASA Dryden's DC-8 flying laboratory in Reno, NV and was used to test the proposed terrain navigation system. The results of LiDAR-based terrain navigation shown in this paper indicate that airborne LiDAR is a viable technology enabler for fully autonomous aircraft navigation. The navigation performance is highly dependent on the quality of the terrain databases used for positioning and therefore high-resolution (2 m post-spacing) data was used as the terrain reference.

  2. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  3. Combined approach to the Hubble Space Telescope wave-front distortion analysis

    NASA Astrophysics Data System (ADS)

    Roddier, Claude; Roddier, Francois

    1993-06-01

    Stellar images taken by the HST at various focus positions have been analyzed to estimate wave-front distortion. Rather than using a single algorithm, we found that better results were obtained by combining the advantages of various algorithms. For the planetary camera, the most accurate algorithms consistently gave a spherical aberration of -0.290-micron rms with a maximum deviation of 0.005 micron. Evidence was found that the spherical aberration is essentially produced by the primary mirror. The illumination in the telescope pupil plane was reconstructed and evidence was found for a slight camera misalignment.

  4. Reliability of Soft Tissue Model Based Implant Surgical Guides; A Methodological Mistake.

    PubMed

    Sabour, Siamak; Dastjerdi, Elahe Vahid

    2012-08-20

    Abstract We were interested to read the paper by Maney P and colleagues published in the July 2012 issue of J Oral Implantol. The authors aimed to assess the reliability of soft tissue model based implant surgical guides reported that the accuracy was evaluated using software. 1 I found the manuscript title of Maney P, et al. incorrect and misleading. Moreover, they reported twenty-two sites (46.81%) were considered accurate (13 of 24 maxillary and 9 of 23 mandibular sites). As the authors point out in their conclusion, Soft tissue models do not always provide sufficient accuracy for implant surgical guide fabrication.Reliability (precision) and validity (accuracy) are two different methodological issues in researches. Sensitivity, specificity, PPV, NPV, likelihood ratio positive (true positive/false negative) and likelihood ratio negative (false positive/ true negative) as well as odds ratio (true results\\false results - preferably more than 50) are among the tests to evaluate the validity (accuracy) of a single test compared to a gold standard.2-4 It is not clear that the reported twenty-two sites (46.81%) which were considered accurate related to which of the above mentioned estimates for validity analysis. Reliability (repeatability or reproducibility) is being assessed by different statistical tests such as Pearson r, least square and paired t.test which all of them are among common mistakes in reliability analysis 5. Briefly, for quantitative variable Intra Class Correlation Coefficient (ICC) and for qualitative variables weighted kappa should be used with caution because kappa has its own limitation too. Regarding reliability or agreement, it is good to know that for computing kappa value, just concordant cells are being considered, whereas discordant cells should also be taking into account in order to reach a correct estimation of agreement (Weighted kappa).2-4 As a take home message, for reliability and validity analysis, appropriate tests should be applied.

  5. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Bernard L., E-mail: bernard.jones@ucdenver.edu; Westerly, David; Miften, Moyed

    2015-02-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for themore » absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during stereotactic body radiotherapy.« less

  6. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  7. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  8. Development of a Trip Energy Estimation Model Using Real-World Global Positioning System Driving Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Jacob; Wood, Eric W; Zhu, Lei

    A data-driven technique for estimation of energy requirements for a proposed vehicle trip has been developed. Based on over 700,000 miles of driving data, the technique has been applied to generate a model that estimates trip energy requirements. The model uses a novel binning approach to categorize driving by road type, traffic conditions, and driving profile. The trip-level energy estimations can easily be aggregated to any higher-level transportation system network desired. The model has been tested and validated on the Austin, Texas, data set used to build this model. Ground-truth energy consumption for the data set was obtained from Futuremore » Automotive Systems Technology Simulator (FASTSim) vehicle simulation results. The energy estimation model has demonstrated 12.1 percent normalized total absolute error. The energy estimation from the model can be used to inform control strategies in routing tools, such as change in departure time, alternate routing, and alternate destinations, to reduce energy consumption. The model can also be used to determine more accurate energy consumption of regional or national transportation networks if trip origin and destinations are known. Additionally, this method allows the estimation tool to be tuned to a specific driver or vehicle type.« less

  9. IEEE 802.15.4 ZigBee-Based Time-of-Arrival Estimation for Wireless Sensor Networks.

    PubMed

    Cheon, Jeonghyeon; Hwang, Hyunsu; Kim, Dongsun; Jung, Yunho

    2016-02-05

    Precise time-of-arrival (TOA) estimation is one of the most important techniques in RF-based positioning systems that use wireless sensor networks (WSNs). Because the accuracy of TOA estimation is proportional to the RF signal bandwidth, using broad bandwidth is the most fundamental approach for achieving higher accuracy. Hence, ultra-wide-band (UWB) systems with a bandwidth of 500 MHz are commonly used. However, wireless systems with broad bandwidth suffer from the disadvantages of high complexity and high power consumption. Therefore, it is difficult to employ such systems in various WSN applications. In this paper, we present a precise time-of-arrival (TOA) estimation algorithm using an IEEE 802.15.4 ZigBee system with a narrow bandwidth of 2 MHz. In order to overcome the lack of bandwidth, the proposed algorithm estimates the fractional TOA within the sampling interval. Simulation results show that the proposed TOA estimation algorithm provides an accuracy of 0.5 m at a signal-to-noise ratio (SNR) of 8 dB and achieves an SNR gain of 5 dB as compared with the existing algorithm. In addition, experimental results indicate that the proposed algorithm provides accurate TOA estimation in a real indoor environment.

  10. Estimation of distributed Fermat-point location for wireless sensor networking.

    PubMed

    Huang, Po-Hsian; Chen, Jiann-Liang; Larosa, Yanuarius Teofilus; Chiang, Tsui-Lien

    2011-01-01

    This work presents a localization scheme for use in wireless sensor networks (WSNs) that is based on a proposed connectivity-based RF localization strategy called the distributed Fermat-point location estimation algorithm (DFPLE). DFPLE applies triangle area of location estimation formed by intersections of three neighboring beacon nodes. The Fermat point is determined as the shortest path from three vertices of the triangle. The area of estimated location then refined using Fermat point to achieve minimum error in estimating sensor nodes location. DFPLE solves problems of large errors and poor performance encountered by localization schemes that are based on a bounding box algorithm. Performance analysis of a 200-node development environment reveals that, when the number of sensor nodes is below 150, the mean error decreases rapidly as the node density increases, and when the number of sensor nodes exceeds 170, the mean error remains below 1% as the node density increases. Second, when the number of beacon nodes is less than 60, normal nodes lack sufficient beacon nodes to enable their locations to be estimated. However, the mean error changes slightly as the number of beacon nodes increases above 60. Simulation results revealed that the proposed algorithm for estimating sensor positions is more accurate than existing algorithms, and improves upon conventional bounding box strategies.

  11. Trajectory prediction for ballistic missiles based on boost-phase LOS measurements

    NASA Astrophysics Data System (ADS)

    Yeddanapudi, Murali; Bar-Shalom, Yaakov

    1997-10-01

    This paper addresses the problem of the estimation of the trajectory of a tactical ballistic missile using line of sight (LOS) measurements from one or more passive sensors (typically satellites). The major difficulties of this problem include: the estimation of the unknown time of launch, incorporation of (inaccurate) target thrust profiles to model the target dynamics during the boost phase and an overall ill-conditioning of the estimation problem due to poor observability of the target motion via the LOS measurements. We present a robust estimation procedure based on the Levenberg-Marquardt algorithm that provides both the target state estimate and error covariance taking into consideration the complications mentioned above. An important consideration in the defense against tactical ballistic missiles is the determination of the target position and error covariance at the acquisition range of a surveillance radar in the vicinity of the impact point. We present a systematic procedure to propagate the target state and covariance to a nominal time, when it is within the detection range of a surveillance radar to obtain a cueing volume. Mont Carlo simulation studies on typical single and two sensor scenarios indicate that the proposed algorithms are accurate in terms of the estimates and the estimator calculated covariances are consistent with the errors.

  12. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; E Garcia, O.; Rypdal, M.

    2017-05-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type.

  13. Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.

    PubMed

    Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van

    2017-06-01

    In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.

  14. Accuracy of maximum likelihood and least-squares estimates in the lidar slope method with noisy data.

    PubMed

    Eberhard, Wynn L

    2017-04-01

    The maximum likelihood estimator (MLE) is derived for retrieving the extinction coefficient and zero-range intercept in the lidar slope method in the presence of random and independent Gaussian noise. Least-squares fitting, weighted by the inverse of the noise variance, is equivalent to the MLE. Monte Carlo simulations demonstrate that two traditional least-squares fitting schemes, which use different weights, are less accurate. Alternative fitting schemes that have some positive attributes are introduced and evaluated. The principal factors governing accuracy of all these schemes are elucidated. Applying these schemes to data with Poisson rather than Gaussian noise alters accuracy little, even when the signal-to-noise ratio is low. Methods to estimate optimum weighting factors in actual data are presented. Even when the weighting estimates are coarse, retrieval accuracy declines only modestly. Mathematical tools are described for predicting retrieval accuracy. Least-squares fitting with inverse variance weighting has optimum accuracy for retrieval of parameters from single-wavelength lidar measurements when noise, errors, and uncertainties are Gaussian distributed, or close to optimum when only approximately Gaussian.

  15. Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include realtime, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify & other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  16. Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include real-time, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identity other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  17. Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  18. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    PubMed

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  19. Predicting Ambulance Time of Arrival to the Emergency Department Using Global Positioning System and Google Maps

    PubMed Central

    Fleischman, Ross J.; Lundquist, Mark; Jui, Jonathan; Newgard, Craig D.; Warden, Craig

    2014-01-01

    Objective To derive and validate a model that accurately predicts ambulance arrival time that could be implemented as a Google Maps web application. Methods This was a retrospective study of all scene transports in Multnomah County, Oregon, from January 1 through December 31, 2008. Scene and destination hospital addresses were converted to coordinates. ArcGIS Network Analyst was used to estimate transport times based on street network speed limits. We then created a linear regression model to improve the accuracy of these street network estimates using weather, patient characteristics, use of lights and sirens, daylight, and rush-hour intervals. The model was derived from a 50% sample and validated on the remainder. Significance of the covariates was determined by p < 0.05 for a t-test of the model coefficients. Accuracy was quantified by the proportion of estimates that were within 5 minutes of the actual transport times recorded by computer-aided dispatch. We then built a Google Maps-based web application to demonstrate application in real-world EMS operations. Results There were 48,308 included transports. Street network estimates of transport time were accurate within 5 minutes of actual transport time less than 16% of the time. Actual transport times were longer during daylight and rush-hour intervals and shorter with use of lights and sirens. Age under 18 years, gender, wet weather, and trauma system entry were not significant predictors of transport time. Our model predicted arrival time within 5 minutes 73% of the time. For lights and sirens transports, accuracy was within 5 minutes 77% of the time. Accuracy was identical in the validation dataset. Lights and sirens saved an average of 3.1 minutes for transports under 8.8 minutes, and 5.3 minutes for longer transports. Conclusions An estimate of transport time based only on a street network significantly underestimated transport times. A simple model incorporating few variables can predict ambulance time of arrival to the emergency department with good accuracy. This model could be linked to global positioning system data and an automated Google Maps web application to optimize emergency department resource use. Use of lights and sirens had a significant effect on transport times. PMID:23865736

  20. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to be extracted from single-axis accelerometer data.

  1. Hydrogen atoms can be located accurately and precisely by x-ray crystallography.

    PubMed

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-05-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.

  2. Hydrogen atoms can be located accurately and precisely by x-ray crystallography

    PubMed Central

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M.; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-01-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A–H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A–H bond lengths with those from neutron measurements for A–H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors. PMID:27386545

  3. Analysis of methods to assess frontal sinus extent in osteoplastic flap surgery: transillumination versus 6-ft Caldwell versus image guidance.

    PubMed

    Melroy, Christopher T; Dubin, Marc G; Hardy, Stuart M; Senior, Brent A

    2006-01-01

    The aim of this study was to compare three common methods (transillumination, plain radiographs, and computerized tomography [CT] image guidance) for estimating the position and extent of pneumatization of the frontal sinus in osteoplastic flap surgery. Axial CT scans and 6-ft Caldwell radiographs were performed on 10 cadaver heads. For each head, soft tissue overlying the frontal bone was raised and the anticipated position and extent of the frontal sinus at four points was marked using three common methods. The silhouette of the frontal sinus from the Caldwell plain radiograph was excised and placed in position. Four points at the periphery also were made using information obtained from a passive optically guided image-guided surgery device, and transillumination via a frontal trephination also was used to estimate sinus extent. The true sinus size was measured at each point and compared with experimental values. The use of CT image guidance generated the least difference between measured and actual values (mean = 1.91 mm; SEM = 0.29); this method was found statistically superior to Caldwell (p = 0.040) and transillumination (p = 0.007). Image guidance did not overestimate the size of the sinus (0/36) and was quicker than the Caldwell approach (8.5 versus 11.5 minutes). There was no learning curve appreciated with image guidance. Accurate and precise estimation of the position and extent of the frontal sinus is crucial when performing osteoplastic flap surgery. Use of CT image guidance was statistically superior to Caldwell and transillumination methods and proved to be safe, reproducible, economic, and easy to learn.

  4. Thrombus segmentation by texture dynamics from microscopic image sequences

    NASA Astrophysics Data System (ADS)

    Brieu, Nicolas; Serbanovic-Canic, Jovana; Cvejic, Ana; Stemple, Derek; Ouwehand, Willem; Navab, Nassir; Groher, Martin

    2010-03-01

    The genetic factors of thrombosis are commonly explored by microscopically imaging the coagulation of blood cells induced by injuring a vessel of mice or of zebrafish mutants. The latter species is particularly interesting since skin transparency permits to non-invasively acquire microscopic images of the scene with a CCD camera and to estimate the parameters characterizing the thrombus development. These parameters are currently determined by manual outlining, which is both error prone and extremely time consuming. Even though a technique for automatic thrombus extraction would be highly valuable for gene analysts, little work can be found, which is mainly due to very low image contrast and spurious structures. In this work, we propose to semi-automatically segment the thrombus over time from microscopic image sequences of wild-type zebrafish larvae. To compensate the lack of valuable spatial information, our main idea consists of exploiting the temporal information by modeling the variations of the pixel intensities over successive temporal windows with a linear Markov-based dynamic texture formalization. We then derive an image from the estimated model parameters, which represents the probability of a pixel to belong to the thrombus. We employ this probability image to accurately estimate the thrombus position via an active contour segmentation incorporating also prior and spatial information of the underlying intensity images. The performance of our approach is tested on three microscopic image sequences. We show that the thrombus is accurately tracked over time in each sequence if the respective parameters controlling prior influence and contour stiffness are correctly chosen.

  5. Myocardial strains from 3D displacement encoded magnetic resonance imaging

    PubMed Central

    2012-01-01

    Background The ability to measure and quantify myocardial motion and deformation provides a useful tool to assist in the diagnosis, prognosis and management of heart disease. The recent development of magnetic resonance imaging methods, such as harmonic phase analysis of tagging and displacement encoding with stimulated echoes (DENSE), make detailed non-invasive 3D kinematic analyses of human myocardium possible in the clinic and for research purposes. A robust analysis method is required, however. Methods We propose to estimate strain using a polynomial function which produces local models of the displacement field obtained with DENSE. Given a specific polynomial order, the model is obtained as the least squares fit of the acquired displacement field. These local models are subsequently used to produce estimates of the full strain tensor. Results The proposed method is evaluated on a numerical phantom as well as in vivo on a healthy human heart. The evaluation showed that the proposed method produced accurate results and showed low sensitivity to noise in the numerical phantom. The method was also demonstrated in vivo by assessment of the full strain tensor and to resolve transmural strain variations. Conclusions Strain estimation within a 3D myocardial volume based on polynomial functions yields accurate and robust results when validated on an analytical model. The polynomial field is capable of resolving the measured material positions from the in vivo data, and the obtained in vivo strains values agree with previously reported myocardial strains in normal human hearts. PMID:22533791

  6. Estimating Physical Activity Energy Expenditure with the Kinect Sensor in an Exergaming Environment

    PubMed Central

    Nathan, David; Huynh, Du Q.; Rubenson, Jonas; Rosenberg, Michael

    2015-01-01

    Active video games that require physical exertion during game play have been shown to confer health benefits. Typically, energy expended during game play is measured using devices attached to players, such as accelerometers, or portable gas analyzers. Since 2010, active video gaming technology incorporates marker-less motion capture devices to simulate human movement into game play. Using the Kinect Sensor and Microsoft SDK this research aimed to estimate the mechanical work performed by the human body and estimate subsequent metabolic energy using predictive algorithmic models. Nineteen University students participated in a repeated measures experiment performing four fundamental movements (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic energy was captured using a Cortex Metamax 3B automated gas analysis system with mechanical movement captured by the combined motion data from two Kinect cameras. Estimations of the body segment properties, such as segment mass, length, centre of mass position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a linear regression technique were evaluated for their performance on predicting the metabolic cost from new feature vectors. The experimental results show that Gaussian Process Regression outperformed the other two techniques by a small margin. This study demonstrated that physical activity energy expenditure during exercise, using the Kinect camera as a motion capture system, can be estimated from segmental mechanical work. Estimates for high-energy activities, such as standing jumps and jumping jacks, can be made accurately, but for low-energy activities, such as squatting, the posture of static poses should be considered as a contributing factor. When translated into the active video gaming environment, the results could be incorporated into game play to more accurately control the energy expenditure requirements. PMID:26000460

  7. Brain potentials predict substance abuse treatment completion in a prison sample.

    PubMed

    Fink, Brandi C; Steele, Vaughn R; Maurer, Michael J; Fede, Samantha J; Calhoun, Vince D; Kiehl, Kent A

    2016-08-01

    National estimates suggest that up to 80% of prison inmates meet diagnostic criteria for a substance use disorder. Because more substance abuse treatment while incarcerated is associated with better post-release outcomes, including a reduced risk of accidental overdose death, the stakes are high in developing novel predictors of substance abuse treatment completion in inmate populations. Using electroencephalography (EEG), this study investigated stimulus-locked ERP components elicited by distractor stimuli in three tasks (VO-Distinct, VO-Repeated, Go/NoGo) as a predictor of treatment discontinuation in a sample of male and female prison inmates. We predicted that those who discontinued treatment early would exhibit a less positive P3a amplitude elicited by distractor stimuli. Our predictions regarding ERP components were partially supported. Those who discontinued treatment early exhibited a less positive P3a amplitude and a less positive PC4 in the VO-D task. In the VO-R task, however, those who discontinued treatment early exhibited a more negative N200 amplitude rather than the hypothesized less positive P3a amplitude. The discontinuation group also displayed less positive PC4 amplitude. Surprisingly, there were no time-domain or principle component differences among the groups in the Go/NoGo task. Support Vector Machine (SVM) models of the three tasks accurately classified individuals who discontinued treatment with the best model accurately classifying 75% of inmates. PCA techniques were more sensitive in differentiating groups than the classic time-domain windowed approach. Our pattern of findings are consistent with the context-updating theory of P300 and may help identify subtypes of ultrahigh-risk substance abusers who need specialized treatment programs.

  8. Psychophysical study of the visual sun location in pictures of cloudy and twilight skies inspired by Viking navigation.

    PubMed

    Barta, András; Horváth, Gábor; Meyer-Rochow, Victor Benno

    2005-06-01

    In the late 1960s it was hypothesized that Vikings had been able to navigate the open seas, even when the sun was occluded by clouds or below the sea horizon, by using the angle of polarization of skylight. To detect the direction of skylight polarization, they were thought to have made use of birefringent crystals, called "sun-stones," and a large part of the scientific community still firmly believe that Vikings were capable of polarimetric navigation. However, there are some critics who treat the usefulness of skylight polarization for orientation under partly cloudy or twilight conditions with extreme skepticism. One of their counterarguments has been the assumption that solar positions or solar azimuth directions could be estimated quite accurately by the naked eye, even if the sun was behind clouds or below the sea horizon. Thus under partly cloudy or twilight conditions there might have been no serious need for a polarimetric method to determine the position of the sun. The aim of our study was to test quantitatively the validity of this qualitative counterargument. In our psychophysical laboratory experiments, test subjects were confronted with numerous 180 degrees field-of-view color photographs of partly cloudy skies with the sun occluded by clouds or of twilight skies with the sun below the horizon. The task of the subjects was to guess the position or the azimuth direction of the invisible sun with the naked eye. We calculated means and standard deviations of the estimated solar positions and azimuth angles to characterize the accuracy of the visual sun location. Our data do not support the common belief that the invisible sun can be located quite accurately from the celestial brightness and/or color patterns under cloudy or twilight conditions. Although our results underestimate the accuracy of visual sun location by experienced Viking navigators, the mentioned counterargument cannot be taken seriously as a valid criticism of the theory of the alleged polarimetric Viking navigation. Our results, however, do not bear on the polarimetric theory itself.

  9. Psychophysical study of the visual sun location in pictures of cloudy and twilight skies inspired by Viking navigation

    NASA Astrophysics Data System (ADS)

    Barta, András; Horváth, Gábor; Benno Meyer-Rochow, Victor

    2005-06-01

    In the late 1960s it was hypothesized that Vikings had been able to navigate the open seas, even when the sun was occluded by clouds or below the sea horizon, by using the angle of polarization of skylight. To detect the direction of skylight polarization, they were thought to have made use of birefringent crystals, called "sunstones," and a large part of the scientific community still firmly believe that Vikings were capable of polarimetric navigation. However, there are some critics who treat the usefulness of skylight polarization for orientation under partly cloudy or twilight conditions with extreme skepticism. One of their counterarguments has been the assumption that solar positions or solar azimuth directions could be estimated quite accurately by the naked eye, even if the sun was behind clouds or below the sea horizon. Thus under partly cloudy or twilight conditions there might have been no serious need for a polarimetric method to determine the position of the sun. The aim of our study was to test quantitatively the validity of this qualitative counterargument. In our psychophysical laboratory experiments, test subjects were confronted with numerous 180° field-of-view color photographs of partly cloudy skies with the sun occluded by clouds or of twilight skies with the sun below the horizon. The task of the subjects was to guess the position or the azimuth direction of the invisible sun with the naked eye. We calculated means and standard deviations of the estimated solar positions and azimuth angles to characterize the accuracy of the visual sun location. Our data do not support the common belief that the invisible sun can be located quite accurately from the celestial brightness and/or color patterns under cloudy or twilight conditions. Although our results underestimate the accuracy of visual sun location by experienced Viking navigators, the mentioned counterargument cannot be taken seriously as a valid criticism of the theory of the alleged polarimetric Viking navigation. Our results, however, do not bear on the polarimetric theory itself.

  10. Unbiased mean direction of paleomagnetic data and better estimate of paleolatitude

    NASA Astrophysics Data System (ADS)

    Hatakeyama, T.; Shibuya, H.

    2010-12-01

    In paleomagnetism, when we obtain only paleodirection data without paleointensities we calculate Fisher-mean directions (I, D) and Fisher-mean VGP positions as the description of the mean field. However, Kono (1997) and Hatakeyama and Kono (2001) indicated that these averaged directions does not show the unbiased estimated mean directions derived from the time-averaged field (TAF). Hatakeyama and Kono (2002) calculated the TAF and paleosecular variation (PSV) models for the past 5My with considering the biases due to the averaging of the nonlinear functions such as the summation of the unit vectors in the Fisher statistics process. Here we will show a zonal TAF model based on the Hatakeyama and Kono TAF model. Moreover, we will introduce the biased angles due to the PSV in the mean direction and a method for determining true paleolatitudes, which represents the TAF, from paleodirections. This method will helps tectonics studies, especially in the estimation of the accurate paleolatitude in the middle latitude regions.

  11. An improved estimator for the hydration of fat-free mass from in vivo measurements subject to additive technical errors.

    PubMed

    Kinnamon, Daniel D; Lipsitz, Stuart R; Ludwig, David A; Lipshultz, Steven E; Miller, Tracie L

    2010-04-01

    The hydration of fat-free mass, or hydration fraction (HF), is often defined as a constant body composition parameter in a two-compartment model and then estimated from in vivo measurements. We showed that the widely used estimator for the HF parameter in this model, the mean of the ratios of measured total body water (TBW) to fat-free mass (FFM) in individual subjects, can be inaccurate in the presence of additive technical errors. We then proposed a new instrumental variables estimator that accurately estimates the HF parameter in the presence of such errors. In Monte Carlo simulations, the mean of the ratios of TBW to FFM was an inaccurate estimator of the HF parameter, and inferences based on it had actual type I error rates more than 13 times the nominal 0.05 level under certain conditions. The instrumental variables estimator was accurate and maintained an actual type I error rate close to the nominal level in all simulations. When estimating and performing inference on the HF parameter, the proposed instrumental variables estimator should yield accurate estimates and correct inferences in the presence of additive technical errors, but the mean of the ratios of TBW to FFM in individual subjects may not.

  12. A hybrid localization technique for patient tracking.

    PubMed

    Rodionov, Denis; Kolev, George; Bushminkin, Kirill

    2013-01-01

    Nowadays numerous technologies are employed for tracking patients and assets in hospitals or nursing homes. Each of them has advantages and drawbacks. For example, WiFi localization has relatively good accuracy but cannot be used in case of power outage or in the areas with poor WiFi coverage. Magnetometer positioning or cellular network does not have such problems but they are not as accurate as localization with WiFi. This paper describes technique that simultaneously employs different localization technologies for enhancing stability and average accuracy of localization. The proposed algorithm is based on fingerprinting method paired with data fusion and prediction algorithms for estimating the object location. The core idea of the algorithm is technology fusion using error estimation methods. For testing accuracy and performance of the algorithm testing simulation environment has been implemented. Significant accuracy improvement was showed in practical scenarios.

  13. Reconstruction-based Digital Dental Occlusion of the Partially Edentulous Dentition

    PubMed Central

    Zhang, Jian; Xia, James J.; Li, Jianfu; Zhou, Xiaobo

    2016-01-01

    Partially edentulous dentition presents a challenging problem for the surgical planning of digital dental occlusion in the field of craniomaxillofacial surgery because of the incorrect maxillomandibular distance caused by missing teeth. We propose an innovative approach called Dental Reconstruction with Symmetrical Teeth (DRST) to achieve accurate dental occlusion for the partially edentulous cases. In this DRST approach, the rigid transformation between two symmetrical teeth existing on the left and right dental model is estimated through probabilistic point registration by matching the two shapes. With the estimated transformation, the partially edentulous space can be virtually filled with the teeth in its symmetrical position. Dental alignment is performed by digital dental occlusion reestablishment algorithm with the reconstructed complete dental model. Satisfactory reconstruction and occlusion results are demonstrated with the synthetic and real partially edentulous models. PMID:26584502

  14. Rover Slip Validation and Prediction Algorithm

    NASA Technical Reports Server (NTRS)

    Yen, Jeng

    2009-01-01

    A physical-based simulation has been developed for the Mars Exploration Rover (MER) mission that applies a slope-induced wheel-slippage to the rover location estimator. Using the digital elevation map from the stereo images, the computational method resolves the quasi-dynamic equations of motion that incorporate the actual wheel-terrain speed to estimate the gross velocity of the vehicle. Based on the empirical slippage measured by the Visual Odometry software of the rover, this algorithm computes two factors for the slip model by minimizing the distance of the predicted and actual vehicle location, and then uses the model to predict the next drives. This technique, which has been deployed to operate the MER rovers in the extended mission periods, can accurately predict the rover position and attitude, mitigating the risk and uncertainties in the path planning on high-slope areas.

  15. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    DOE PAGES

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less

  16. An evaluation of methods for estimating decadal stream loads

    NASA Astrophysics Data System (ADS)

    Lee, Casey J.; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.

    2016-11-01

    Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen - lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale's ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.

  17. An evaluation of methods for estimating decadal stream loads

    USGS Publications Warehouse

    Lee, Casey; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.

    2016-01-01

    Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen – lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale’s ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.

  18. Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.

    PubMed

    Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun

    2018-05-08

    Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.

  19. Mars Science Laboratory Navigation Results

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Kruizingas, Gerhard L.; Burkhart, P. Daniel; Wong, Mau C.; Abilleira, Fernando

    2012-01-01

    The Mars Science Laboratory (MSL), carrying the Curiosity rover to Mars, was launched on November 26, 2011, from Cape Canaveral, Florida. The target for MSL was selected to be Gale Crater, near the equator of Mars, with an arrival date in early August 2012. The two main interplanetary navigation tasks for the mission were to deliver the spacecraft to an entry interface point that would allow the rover to safely reach the landing area, and to tell the spacecraft where it entered the atmosphere of Mars, so it could guide itself accurately to close proximity of the landing target. MSL used entry guidance as it slowed down from the entry speed to a speed low enough to allow for a successful parachute deployment, and this guidance allowed shrinking the landing ellipse to a 99% conservative estimate of 7 by 20 kilometers. Since there is no global positioning system in Mars, achieving this accuracy was predicated on flying a trajectory that closely matched the reference trajectory used to design the guidance algorithm, and on initializing the guidance system with an accurate Mars-relative entry state that could be used as the starting point to integrate the inertial measurement unit data during entry and descent. The pre-launch entry flight path angle (EFPA) delivery requirement was +/- 0.20 deg, but after launch a smaller threshold of +/- 0.05 deg was used as the criteria for late trajectory correction maneuver (TCM) decisions. The pre-launch requirement for entry state knowledge was 2.8 kilometers in position error and 2 meters per second in velocity error, but also smaller thresholds were defined after launch to evaluate entry state update opportunities. The biggest challenge for the navigation team was to accurately predict the trajectory of the spacecraft, so the estimates of the entry conditions could be stable, and late trajectory correction maneuvers or entry parameter updates could be waved off. As a matter of fact, the prediction accuracy was such that the last TCM performed was a small burn executed eight days before landing, and the entry state that was calculated just 36 hours after that TCM, and that was uploaded to the spacecraft the same day, did not need to be updated. The final EFPA was 0.013 deg shallower than the -15.5 deg target, and the on-board entry state was just 200 meters in position and 0.11 meters per second in velocity from the post-landing reconstructed entry state. Overall the entry delivery and knowledge requirements were fulfilled with a margin of more than 90% with respect to the pre-launch thresholds. This excellent accuracy contributed to a very successful and accurate entry, descent, and landing, and surface mission.

  20. Direct volume estimation without segmentation

    NASA Astrophysics Data System (ADS)

    Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.

    2015-03-01

    Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.

  1. A combined vision-inertial fusion approach for 6-DoF object pose estimation

    NASA Astrophysics Data System (ADS)

    Li, Juan; Bernardos, Ana M.; Tarrío, Paula; Casar, José R.

    2015-02-01

    The estimation of the 3D position and orientation of moving objects (`pose' estimation) is a critical process for many applications in robotics, computer vision or mobile services. Although major research efforts have been carried out to design accurate, fast and robust indoor pose estimation systems, it remains as an open challenge to provide a low-cost, easy to deploy and reliable solution. Addressing this issue, this paper describes a hybrid approach for 6 degrees of freedom (6-DoF) pose estimation that fuses acceleration data and stereo vision to overcome the respective weaknesses of single technology approaches. The system relies on COTS technologies (standard webcams, accelerometers) and printable colored markers. It uses a set of infrastructure cameras, located to have the object to be tracked visible most of the operation time; the target object has to include an embedded accelerometer and be tagged with a fiducial marker. This simple marker has been designed for easy detection and segmentation and it may be adapted to different service scenarios (in shape and colors). Experimental results show that the proposed system provides high accuracy, while satisfactorily dealing with the real-time constraints.

  2. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  3. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter

    NASA Astrophysics Data System (ADS)

    Li, Yi; Abdel-Monem, Mohamed; Gopalakrishnan, Rahul; Berecibar, Maitane; Nanini-Maury, Elise; Omar, Noshin; van den Bossche, Peter; Van Mierlo, Joeri

    2018-01-01

    This paper proposes an advanced state of health (SoH) estimation method for high energy NMC lithium-ion batteries based on the incremental capacity (IC) analysis. IC curves are used due to their ability of detect and quantify battery degradation mechanism. A simple and robust smoothing method is proposed based on Gaussian filter to reduce the noise on IC curves, the signatures associated with battery ageing can therefore be accurately identified. A linear regression relationship is found between the battery capacity with the positions of features of interest (FOIs) on IC curves. Results show that the developed SoH estimation function from one single battery cell is able to evaluate the SoH of other batteries cycled under different cycling depth with less than 2.5% maximum errors, which proves the robustness of the proposed method on SoH estimation. With this technique, partial charging voltage curves can be used for SoH estimation and the testing time can be therefore largely reduced. This method shows great potential to be applied in reality, as it only requires static charging curves and can be easily implemented in battery management system (BMS).

  4. Development and evaluation of the photoload sampling technique

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Wildland fire managers need better estimates of fuel loading so they can accurately predict potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents the development and evaluation of a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common...

  5. Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai; Sun, Han; Yu, Xiaowei

    2017-10-01

    To overcome the range anxiety, one of the important strategies is to accurately predict the range or dischargeable time of the battery system. To accurately predict the remaining dischargeable time (RDT) of a battery, a RDT prediction framework based on accurate battery modeling and state estimation is presented in this paper. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery. Then, an online recursive least-square-algorithm method and unscented-Kalman-filter are employed to estimate the system matrices and SOC at every prediction point. Besides, a discrete wavelet transform technique is employed to capture the statistical information of past dynamics of input currents, which are utilized to predict the future battery currents. Finally, the RDT can be predicted based on the battery model, SOC estimation results and predicted future battery currents. The performance of the proposed methodology has been verified by a lithium-ion battery cell. Experimental results indicate that the proposed method can provide an accurate SOC and parameter estimation and the predicted RDT can solve the range anxiety issues.

  6. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    PubMed Central

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  7. Demirjian's stages and Cameriere's third molar maturity index to estimate legal adult age in Peruvian population.

    PubMed

    Quispe Lizarbe, Roselhy Juliana; Solís Adrianzén, Christian; Quezada-Márquez, Milushka Miroslava; Galić, Ivan; Cameriere, Roberto

    2017-03-01

    To compare the accuracy of Demirjian's stages (DS) and Cameriere's third molar maturity index cut-off value (I 3M <0.08) to estimate the age of majority on panoramic radiographs (OPTs) from the dental clinic of the Scientific University of the South (UCSUR), Lima, Peru. An observational cross-sectional study was conducted on the sample of 208 digital panoramic radiographs of patients aged 14-22years examined during 2015 in UCSUR. The left lower third molars were analyzed using Adobe Photoshop® CS6. An effectiveness of specific DS and I 3M <0.08 was evaluated by using accurate classification, sensitivity, specificity, positive (LR+) and negative (LR-) likelihood ratios and Bayes post-test probability (p). Only G and H stages were practical for classify adults and minors in the tested sample, while I 3M <0.08 showed the best performance in both sexes. For I 3M <0.08, the accurate classification, sensitivity and specificity were 0.96, 0.96, 0.96 and 0.90, 0.84 and 0.95 in males and females, respectively. Values of LR+, LR- and p were 24.96, 0.04, 0.97 and 15.68, 0.17, 0.95 in males and females, respectively. The specific cut-off value of third molar maturity index (I 3M <0.08) showed to be more accurate in discriminating adults and minors in Peruvian sample when a test with high sensitivity and specificity is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The impact of fossil calibrations, codon positions and relaxed clocks on the divergence time estimates of the native Australian rodents (Conilurini).

    PubMed

    Nilsson, Maria A; Härlid, Anna; Kullberg, Morgan; Janke, Axel

    2010-05-01

    The native rodents are the most species-rich placental mammal group on the Australian continent. Fossils of native Australian rodents belonging to the group Conilurini are known from Northern Australia at 4.5Ma. These fossil assemblages already display a rich diversity of rodents, but the exact timing of their arrival on the Australian continent is not yet established. The complete mitochondrial genomes of two native Australian rodents, Leggadina lakedownensis (Lakeland Downs mouse) and Pseudomys chapmani (Western Pebble-mound mouse) were sequenced for investigating their evolutionary history. The molecular data were used for studying the phylogenetic position and divergence times of the Australian rodents, using 12 calibration points and various methods. Phylogenetic analyses place the native Australian rodents as the sister-group to the genus Mus. The Mus-Conilurini calibration point (7.3-11.0Ma) is highly critical for estimating rodent divergence times, while the influence of the different algorithms on estimating divergence times is negligible. The influence of the data type was investigated, indicating that amino acid data are more likely to reflect the correct divergence times than nucleotide sequences. The study on the problems related to estimating divergence times in fast-evolving lineages such as rodents, emphasize the choice of data and calibration points as being critical. Furthermore, it is essential to include accurate calibration points for fast-evolving groups, because the divergence times can otherwise be estimated to be significantly older. The divergence times of the Australian rodents are highly congruent and are estimated to 6.5-7.2Ma, a date that is compatible with their fossil record.

  9. Design and verification of a simple 3D dynamic model of speed skating which mimics observed forces and motions.

    PubMed

    van der Kruk, E; Veeger, H E J; van der Helm, F C T; Schwab, A L

    2017-11-07

    Advice about the optimal coordination pattern for an individual speed skater, could be addressed by simulation and optimization of a biomechanical speed skating model. But before getting to this optimization approach one needs a model that can reasonably match observed behaviour. Therefore, the objective of this study is to present a verified three dimensional inverse skater model with minimal complexity, which models the speed skating motion on the straights. The model simulates the upper body transverse translation of the skater together with the forces exerted by the skates on the ice. The input of the model is the changing distance between the upper body and the skate, referred to as the leg extension (Euclidean distance in 3D space). Verification shows that the model mimics the observed forces and motions well. The model is most accurate for the position and velocity estimation (respectively 1.2% and 2.9% maximum residuals) and least accurate for the force estimations (underestimation of 4.5-10%). The model can be used to further investigate variables in the skating motion. For this, the input of the model, the leg extension, can be optimized to obtain a maximal forward velocity of the upper body. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Stiffness degradation-based damage model for RC members and structures using fiber-beam elements

    NASA Astrophysics Data System (ADS)

    Guo, Zongming; Zhang, Yaoting; Lu, Jiezhi; Fan, Jian

    2016-12-01

    To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating story damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.

  11. Real Time Intraoperative Monitoring of Blood Loss with a Novel Tablet Application

    PubMed Central

    Sharareh, Behnam; Woolwine, Spencer; Satish, Siddarth; Abraham, Peter; Schwarzkopf, Ran

    2015-01-01

    Introduction : Real-time monitoring of blood loss is critical in fluid management. Visual estimation remains the standard of care in estimating blood loss, yet is demonstrably inaccurate. Photometric analysis, which is the referenced “gold-standard” for measuring blood loss, is both time-consuming and costly. The purpose of this study was to evaluate the efficacy of a novel tablet-monitoring device for measurement of Hb loss during orthopaedic procedures. Methods : This is a prospective study of 50 patients in a consecutive series of joint arthroplasty cases. The novel System with Feature Extraction Technology was used to measure the amount of Hb contained within surgical sponges intra-operatively. The system’s measures were then compared with those obtained via gravimetric method and photometric analysis. Accuracy was evaluated using linear regression and Bland-Altman analysis. Results : Our results showed a significant positive correlation between Triton tablet system and photometric analysis with respect to intra-operative hemoglobin and blood loss at 0.92 and 0.91, respectively. Discussion : This novel system can accurately determine Hb loss contained within surgical sponges. We believe that this user-friendly software can be used for measurement of total intraoperative blood loss and thus aid in a more accurate fluid management protocols during orthopaedic surgical procedures. PMID:26401167

  12. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

    PubMed

    Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia

    2017-07-15

    The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors. IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent advances in sequencing technology have enabled bottleneck size estimation from pathogen genetic data, although there is not yet a consistency in the statistical methods used. Here, we introduce a new approach to infer the bottleneck size that accounts for variant identification protocols and noise during pathogen replication. We show that failing to account for these factors leads to an underestimation of bottleneck sizes. We apply this method to an existing data set of human influenza virus infections, showing that transmission is governed by a loose, but highly variable, transmission bottleneck whose size is positively associated with the severity of infection of the donor. Beyond advancing our understanding of influenza virus transmission, we hope that this work will provide a standardized statistical approach for bottleneck size estimation for viral pathogens. Copyright © 2017 Sobel Leonard et al.

  13. Using the ratio of the magnetic field to the analytic signal of the magnetic gradient tensor in determining the position of simple shaped magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Karimi, Kurosh; Shirzaditabar, Farzad

    2017-08-01

    The analytic signal of magnitude of the magnetic field’s components and its first derivatives have been employed for locating magnetic structures, which can be considered as point-dipoles or line of dipoles. Although similar methods have been used for locating such magnetic anomalies, they cannot estimate the positions of anomalies in noisy states with an acceptable accuracy. The methods are also inexact in determining the depth of deep anomalies. In noisy cases and in places other than poles, the maximum points of the magnitude of the magnetic vector components and Az are not located exactly above 3D bodies. Consequently, the horizontal location estimates of bodies are accompanied by errors. Here, the previous methods are altered and generalized to locate deeper models in the presence of noise even at lower magnetic latitudes. In addition, a statistical technique is presented for working in noisy areas and a new method, which is resistant to noise by using a ‘depths mean’ method, is made. Reduction to the pole transformation is also used to find the most possible actual horizontal body location. Deep models are also well estimated. The method is tested on real magnetic data over an urban gas pipeline in the vicinity of Kermanshah province, Iran. The estimated location of the pipeline is accurate in accordance with the result of the half-width method.

  14. Robust Vision-Based Pose Estimation Algorithm for AN Uav with Known Gravity Vector

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2016-06-01

    Accurate estimation of camera external orientation with respect to a known object is one of the central problems in photogrammetry and computer vision. In recent years this problem is gaining an increasing attention in the field of UAV autonomous flight. Such application requires a real-time performance and robustness of the external orientation estimation algorithm. The accuracy of the solution is strongly dependent on the number of reference points visible on the given image. The problem only has an analytical solution if 3 or more reference points are visible. However, in limited visibility conditions it is often needed to perform external orientation with only 2 visible reference points. In such case the solution could be found if the gravity vector direction in the camera coordinate system is known. A number of algorithms for external orientation estimation for the case of 2 known reference points and a gravity vector were developed to date. Most of these algorithms provide analytical solution in the form of polynomial equation that is subject to large errors in the case of complex reference points configurations. This paper is focused on the development of a new computationally effective and robust algorithm for external orientation based on positions of 2 known reference points and a gravity vector. The algorithm implementation for guidance of a Parrot AR.Drone 2.0 micro-UAV is discussed. The experimental evaluation of the algorithm proved its computational efficiency and robustness against errors in reference points positions and complex configurations.

  15. Volume estimation of small phantoms and rat kidneys using three-dimensional ultrasonography and a position sensor.

    PubMed

    Strømmen, Kenneth; Stormark, Tor André; Iversen, Bjarne M; Matre, Knut

    2004-09-01

    To evaluate the accuracy of small volume estimation, both in vivo and in vitro, measurements with a three-dimensional (3D) ultrasound (US) system were carried out. A position sensor was used and the transmitting frequency was 10 MHz. Balloons with known volumes were scanned while rat kidneys were scanned in vivo and in vitro. The Archimedes' principle was used to estimate the true volume. For balloons, the 3D US system gave very good agreement with true volumes in the volume range 0.1 to 10.0 mL (r = 0.999, n = 45, mean difference +/- 2SD = 0.245 +/- 0.370 mL). For rat kidneys in vivo (volume range 0.6 to 2.7 mL) the method was less accurate (r = 0.800, n = 10, mean difference +/- 2SD = -0.288 +/- 0.676 mL). For rat kidneys in vitro (volume range 0.3 to 2.7 mL) the results showed good agreement (r = 0.981, n = 23, mean difference +/- 2SD = 0.039 +/- 0.254 mL). For balloons, kidneys in vivo and in vitro, the mean percentage error was 9.3 +/- 4.8%, -17.1 +/- 17.4%, and 4.6 +/- 11.5%, respectively. This method can estimate the volume of small phantoms and rat kidneys and opens new possibilities for volume measurements of small objects and the study of organ function in small animals. (E-mail ).

  16. Technical note: Instantaneous sampling intervals validated from continuous video observation for behavioral recording of feedlot lambs.

    PubMed

    Pullin, A N; Pairis-Garcia, M D; Campbell, B J; Campler, M R; Proudfoot, K L

    2017-11-01

    When considering methodologies for collecting behavioral data, continuous sampling provides the most complete and accurate data set whereas instantaneous sampling can provide similar results and also increase the efficiency of data collection. However, instantaneous time intervals require validation to ensure accurate estimation of the data. Therefore, the objective of this study was to validate scan sampling intervals for lambs housed in a feedlot environment. Feeding, lying, standing, drinking, locomotion, and oral manipulation were measured on 18 crossbred lambs housed in an indoor feedlot facility for 14 h (0600-2000 h). Data from continuous sampling were compared with data from instantaneous scan sampling intervals of 5, 10, 15, and 20 min using a linear regression analysis. Three criteria determined if a time interval accurately estimated behaviors: 1) ≥ 0.90, 2) slope not statistically different from 1 ( > 0.05), and 3) intercept not statistically different from 0 ( > 0.05). Estimations for lying behavior were accurate up to 20-min intervals, whereas feeding and standing behaviors were accurate only at 5-min intervals (i.e., met all 3 regression criteria). Drinking, locomotion, and oral manipulation demonstrated poor associations () for all tested intervals. The results from this study suggest that a 5-min instantaneous sampling interval will accurately estimate lying, feeding, and standing behaviors for lambs housed in a feedlot, whereas continuous sampling is recommended for the remaining behaviors. This methodology will contribute toward the efficiency, accuracy, and transparency of future behavioral data collection in lamb behavior research.

  17. Computional algorithm for lifetime exposure to antimicrobials in pigs using register data-The LEA algorithm.

    PubMed

    Birkegård, Anna Camilla; Andersen, Vibe Dalhoff; Halasa, Tariq; Jensen, Vibeke Frøkjær; Toft, Nils; Vigre, Håkan

    2017-10-01

    Accurate and detailed data on antimicrobial exposure in pig production are essential when studying the association between antimicrobial exposure and antimicrobial resistance. Due to difficulties in obtaining primary data on antimicrobial exposure in a large number of farms, there is a need for a robust and valid method to estimate the exposure using register data. An approach that estimates the antimicrobial exposure in every rearing period during the lifetime of a pig using register data was developed into a computational algorithm. In this approach data from national registers on antimicrobial purchases, movements of pigs and farm demographics registered at farm level are used. The algorithm traces batches of pigs retrospectively from slaughter to the farm(s) that housed the pigs during their finisher, weaner, and piglet period. Subsequently, the algorithm estimates the antimicrobial exposure as the number of Animal Defined Daily Doses for treatment of one kg pig in each of the rearing periods. Thus, the antimicrobial purchase data at farm level are translated into antimicrobial exposure estimates at batch level. A batch of pigs is defined here as pigs sent to slaughter at the same day from the same farm. In this study we present, validate, and optimise a computational algorithm that calculate the lifetime exposure of antimicrobials for slaughter pigs. The algorithm was evaluated by comparing the computed estimates to data on antimicrobial usage from farm records in 15 farm units. We found a good positive correlation between the two estimates. The algorithm was run for Danish slaughter pigs sent to slaughter in January to March 2015 from farms with more than 200 finishers to estimate the proportion of farms that it was applicable for. In the final process, the algorithm was successfully run for batches of pigs originating from 3026 farms with finisher units (77% of the initial population). This number can be increased if more accurate register data can be obtained. The algorithm provides a systematic and repeatable approach to estimating the antimicrobial exposure throughout the rearing period, independent of rearing site for finisher batches, as a lifetime exposure measurement. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sparsity-driven tomographic reconstruction of atmospheric water vapor using GNSS and InSAR observations

    NASA Astrophysics Data System (ADS)

    Heublein, Marion; Alshawaf, Fadwa; Zhu, Xiao Xiang; Hinz, Stefan

    2016-04-01

    An accurate knowledge of the 3D distribution of water vapor in the atmosphere is a key element for weather forecasting and climate research. On the other hand, as water vapor causes a delay in the microwave signal propagation within the atmosphere, a precise determination of water vapor is required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). However, due to its high variability in time and space, the atmospheric water vapor distribution is difficult to model. Since GNSS meteorology was introduced about twenty years ago, it has increasingly been used as a geodetic technique to generate maps of 2D Precipitable Water Vapor (PWV). Moreover, several approaches for 3D tomographic water vapor reconstruction from GNSS-based estimates using the simple least squares adjustment were presented. In this poster, we present an innovative and sophisticated Compressive Sensing (CS) concept for sparsity-driven tomographic reconstruction of 3D atmospheric wet refractivity fields using data from GNSS and InSAR. The 2D zenith wet delay (ZWD) estimates are obtained by a combination of point-wise estimates of the wet delay using GNSS observations and partial InSAR wet delay maps. These ZWD estimates are aggregated to derive realistic wet delay input data of 100 points as if corresponding to 100 GNSS sites within an area of 100 km × 100 km in the test region of the Upper Rhine Graben. The made-up ZWD values can be mapped into different elevation and azimuth angles. Using the Cosine transform, a sparse representation of the wet refractivity field is obtained. In contrast to existing tomographic approaches, we exploit sparsity as a prior for the regularization of the underdetermined inverse system. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation. The accuracy of the estimated 3D water vapor field is determined by comparing slant integrated wet delays computed from the estimated wet refractivities with real GNSS wet delay estimates. This comparison is performed along different elevation and azimuth angles.

  19. Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water.

    PubMed

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2014-08-15

    Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Enhancing the Use of Argos Satellite Data for Home Range and Long Distance Migration Studies of Marine Animals

    PubMed Central

    Hoenner, Xavier; Whiting, Scott D.; Hindell, Mark A.; McMahon, Clive R.

    2012-01-01

    Accurately quantifying animals’ spatial utilisation is critical for conservation, but has long remained an elusive goal due to technological impediments. The Argos telemetry system has been extensively used to remotely track marine animals, however location estimates are characterised by substantial spatial error. State-space models (SSM) constitute a robust statistical approach to refine Argos tracking data by accounting for observation errors and stochasticity in animal movement. Despite their wide use in ecology, few studies have thoroughly quantified the error associated with SSM predicted locations and no research has assessed their validity for describing animal movement behaviour. We compared home ranges and migratory pathways of seven hawksbill sea turtles (Eretmochelys imbricata) estimated from (a) highly accurate Fastloc GPS data and (b) locations computed using common Argos data analytical approaches. Argos 68th percentile error was <1 km for LC 1, 2, and 3 while markedly less accurate (>4 km) for LC ≤0. Argos error structure was highly longitudinally skewed and was, for all LC, adequately modelled by a Student’s t distribution. Both habitat use and migration routes were best recreated using SSM locations post-processed by re-adding good Argos positions (LC 1, 2 and 3) and filtering terrestrial points (mean distance to migratory tracks ± SD = 2.2±2.4 km; mean home range overlap and error ratio  = 92.2% and 285.6 respectively). This parsimonious and objective statistical procedure however still markedly overestimated true home range sizes, especially for animals exhibiting restricted movements. Post-processing SSM locations nonetheless constitutes the best analytical technique for remotely sensed Argos tracking data and we therefore recommend using this approach to rework historical Argos datasets for better estimation of animal spatial utilisation for research and evidence-based conservation purposes. PMID:22808241

Top