New model accurately predicts reformate composition
Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )
1994-01-31
Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.
Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows
NASA Astrophysics Data System (ADS)
Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng
Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.
Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations
NASA Astrophysics Data System (ADS)
Bowman, J.; Jensen, S.; McDonald, Mark
2010-10-01
High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.
Mouse models of human AML accurately predict chemotherapy response
Zuber, Johannes; Radtke, Ina; Pardee, Timothy S.; Zhao, Zhen; Rappaport, Amy R.; Luo, Weijun; McCurrach, Mila E.; Yang, Miao-Miao; Dolan, M. Eileen; Kogan, Scott C.; Downing, James R.; Lowe, Scott W.
2009-01-01
The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691
Mouse models of human AML accurately predict chemotherapy response.
Zuber, Johannes; Radtke, Ina; Pardee, Timothy S; Zhao, Zhen; Rappaport, Amy R; Luo, Weijun; McCurrach, Mila E; Yang, Miao-Miao; Dolan, M Eileen; Kogan, Scott C; Downing, James R; Lowe, Scott W
2009-04-01
The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691
NASA Astrophysics Data System (ADS)
Grasso, Robert J.; Russo, Leonard P.; Barrett, John L.; Odhner, Jefferson E.; Egbert, Paul I.
2007-09-01
BAE Systems presents the results of a program to model the performance of Raman LIDAR systems for the remote detection of atmospheric gases, air polluting hydrocarbons, chemical and biological weapons, and other molecular species of interest. Our model, which integrates remote Raman spectroscopy, 2D and 3D LADAR, and USAF atmospheric propagation codes permits accurate determination of the performance of a Raman LIDAR system. The very high predictive performance accuracy of our model is due to the very accurate calculation of the differential scattering cross section for the specie of interest at user selected wavelengths. We show excellent correlation of our calculated cross section data, used in our model, with experimental data obtained from both laboratory measurements and the published literature. In addition, the use of standard USAF atmospheric models provides very accurate determination of the atmospheric extinction at both the excitation and Raman shifted wavelengths.
Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L
2016-08-01
Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises. PMID:27260782
Can phenological models predict tree phenology accurately under climate change conditions?
NASA Astrophysics Data System (ADS)
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2014-05-01
The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2016-10-01
The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. PMID:27272707
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Field, Scott E.; Galley, Chad R.; Szilágyi, Béla; Scheel, Mark A.; Tiglio, Manuel; Hemberger, Daniel A.
2015-09-01
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic -2Yℓm waveform modes resolved by the NR code up to ℓ=8 . We compare our surrogate model to effective one body waveforms from 50 M⊙ to 300 M⊙ for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
Accurate verification of the conserved-vector-current and standard-model predictions
Sirlin, A.; Zucchini, R.
1986-10-20
An approximate analytic calculation of O(Z..cap alpha../sup 2/) corrections to Fermi decays is presented. When the analysis of Koslowsky et al. is modified to take into account the new results, it is found that each of the eight accurately studied scrFt values differs from the average by approx. <1sigma, thus significantly improving the comparison of experiments with conserved-vector-current predictions. The new scrFt values are lower than before, which also brings experiments into very good agreement with the three-generation standard model, at the level of its quantum corrections.
A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina
Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish
2016-01-01
Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143
A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.
Maturana, Matias I; Apollo, Nicholas V; Hadjinicolaou, Alex E; Garrett, David J; Cloherty, Shaun L; Kameneva, Tatiana; Grayden, David B; Ibbotson, Michael R; Meffin, Hamish
2016-04-01
Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143
Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-09-18
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases). PMID:26430979
conSSert: Consensus SVM Model for Accurate Prediction of Ordered Secondary Structure.
Kieslich, Chris A; Smadbeck, James; Khoury, George A; Floudas, Christodoulos A
2016-03-28
Accurate prediction of protein secondary structure remains a crucial step in most approaches to the protein-folding problem, yet the prediction of ordered secondary structure, specifically beta-strands, remains a challenge. We developed a consensus secondary structure prediction method, conSSert, which is based on support vector machines (SVM) and provides exceptional accuracy for the prediction of beta-strands with QE accuracy of over 0.82 and a Q2-EH of 0.86. conSSert uses as input probabilities for the three types of secondary structure (helix, strand, and coil) that are predicted by four top performing methods: PSSpred, PSIPRED, SPINE-X, and RAPTOR. conSSert was trained/tested using 4261 protein chains from PDBSelect25, and 8632 chains from PISCES. Further validation was performed using targets from CASP9, CASP10, and CASP11. Our data suggest that poor performance in strand prediction is likely a result of training bias and not solely due to the nonlocal nature of beta-sheet contacts. conSSert is freely available for noncommercial use as a webservice: http://ares.tamu.edu/conSSert/ . PMID:26928531
Towards more accurate wind and solar power prediction by improving NWP model physics
NASA Astrophysics Data System (ADS)
Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo
2014-05-01
The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during
NASA Astrophysics Data System (ADS)
Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus
2016-04-01
The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?
More accurate predictions with transonic Navier-Stokes methods through improved turbulence modeling
NASA Technical Reports Server (NTRS)
Johnson, Dennis A.
1989-01-01
Significant improvements in predictive accuracies for off-design conditions are achievable through better turbulence modeling; and, without necessarily adding any significant complication to the numerics. One well established fact about turbulence is it is slow to respond to changes in the mean strain field. With the 'equilibrium' algebraic turbulence models no attempt is made to model this characteristic and as a consequence these turbulence models exaggerate the turbulent boundary layer's ability to produce turbulent Reynolds shear stresses in regions of adverse pressure gradient. As a consequence, too little momentum loss within the boundary layer is predicted in the region of the shock wave and along the aft part of the airfoil where the surface pressure undergoes further increases. Recently, a 'nonequilibrium' algebraic turbulence model was formulated which attempts to capture this important characteristic of turbulence. This 'nonequilibrium' algebraic model employs an ordinary differential equation to model the slow response of the turbulence to changes in local flow conditions. In its original form, there was some question as to whether this 'nonequilibrium' model performed as well as the 'equilibrium' models for weak interaction cases. However, this turbulence model has since been further improved wherein it now appears that this turbulence model performs at least as well as the 'equilibrium' models for weak interaction cases and for strong interaction cases represents a very significant improvement. The performance of this turbulence model relative to popular 'equilibrium' models is illustrated for three airfoil test cases of the 1987 AIAA Viscous Transonic Airfoil Workshop, Reno, Nevada. A form of this 'nonequilibrium' turbulence model is currently being applied to wing flows for which similar improvements in predictive accuracy are being realized.
NASA Astrophysics Data System (ADS)
Rong, Y. M.; Chang, Y.; Huang, Y.; Zhang, G. J.; Shao, X. Y.
2015-12-01
There are few researches that concentrate on the prediction of the bead geometry for laser brazing with crimping butt. This paper addressed the accurate prediction of the bead profile by developing a generalized regression neural network (GRNN) algorithm. Firstly GRNN model was developed and trained to decrease the prediction error that may be influenced by the sample size. Then the prediction accuracy was demonstrated by comparing with other articles and back propagation artificial neural network (BPNN) algorithm. Eventually the reliability and stability of GRNN model were discussed from the points of average relative error (ARE), mean square error (MSE) and root mean square error (RMSE), while the maximum ARE and MSE were 6.94% and 0.0303 that were clearly less than those (14.28% and 0.0832) predicted by BPNN. Obviously, it was proved that the prediction accuracy was improved at least 2 times, and the stability was also increased much more.
Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data.
Pagán, Josué; De Orbe, M Irene; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L; Mora, J Vivancos; Moya, José M; Ayala, José L
2015-01-01
Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103
Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data
Pagán, Josué; Irene De Orbe, M.; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L.; Vivancos Mora, J.; Moya, José M.; Ayala, José L.
2015-01-01
Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103
Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R
2016-01-25
Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. PMID:26708965
Accurate prediction of the refractive index of polymers using first principles and data modeling
NASA Astrophysics Data System (ADS)
Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes
Organic polymers with a high refractive index (RI) have recently attracted considerable interest due to their potential application in optical and optoelectronic devices. The ability to tailor the molecular structure of polymers is the key to increasing the accessible RI values. Our work concerns the creation of predictive in silico models for the optical properties of organic polymers, the screening of large-scale candidate libraries, and the mining of the resulting data to extract the underlying design principles that govern their performance. This work was set up to guide our experimentalist partners and allow them to target the most promising candidates. Our model is based on the Lorentz-Lorenz equation and thus includes the polarizability and number density values for each candidate. For the former, we performed a detailed benchmark study of different density functionals, basis sets, and the extrapolation scheme towards the polymer limit. For the number density we devised an exceedingly efficient machine learning approach to correlate the polymer structure and the packing fraction in the bulk material. We validated the proposed RI model against the experimentally known RI values of 112 polymers. We could show that the proposed combination of physical and data modeling is both successful and highly economical to characterize a wide range of organic polymers, which is a prerequisite for virtual high-throughput screening.
Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke
2015-11-15
attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.
Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S
2009-04-01
The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin. PMID:19054059
Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu
2015-09-01
Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. PMID:26121186
Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy
2014-07-01
With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. PMID:24375512
NASA Astrophysics Data System (ADS)
Xin, Cui; Di-Yu, Zhang; Gao, Chen; Ji-Gen, Chen; Si-Liang, Zeng; Fu-Ming, Guo; Yu-Jun, Yang
2016-03-01
We demonstrate that the interference minima in the linear molecular harmonic spectra can be accurately predicted by a modified two-center model. Based on systematically investigating the interference minima in the linear molecular harmonic spectra by the strong-field approximation (SFA), it is found that the locations of the harmonic minima are related not only to the nuclear distance between the two main atoms contributing to the harmonic generation, but also to the symmetry of the molecular orbital. Therefore, we modify the initial phase difference between the double wave sources in the two-center model, and predict the harmonic minimum positions consistent with those simulated by SFA. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant Nos. 11274001, 11274141, 11304116, 11247024, and 11034003), and the Jilin Provincial Research Foundation for Basic Research, China (Grant Nos. 20130101012JC and 20140101168JC).
NASA Astrophysics Data System (ADS)
Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua
2015-05-01
Hemodynamics altered by stent implantation is well-known to be closely related to in-stent restenosis. Computational fluid dynamics (CFD) method has been used to investigate the hemodynamics in stented arteries in detail and help to analyze the performances of stents. In this study, blood models with Newtonian or non-Newtonian properties were numerically investigated for the hemodynamics at steady or pulsatile inlet conditions respectively employing CFD based on the finite volume method. The results showed that the blood model with non-Newtonian property decreased the area of low wall shear stress (WSS) compared with the blood model with Newtonian property and the magnitude of WSS varied with the magnitude and waveform of the inlet velocity. The study indicates that the inlet conditions and blood models are all important for accurately predicting the hemodynamics. This will be beneficial to estimate the performances of stents and also help clinicians to select the proper stents for the patients.
Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.
2008-10-20
One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic
Mathematical model accurately predicts protein release from an affinity-based delivery system.
Vulic, Katarina; Pakulska, Malgosia M; Sonthalia, Rohit; Ramachandran, Arun; Shoichet, Molly S
2015-01-10
Affinity-based controlled release modulates the delivery of protein or small molecule therapeutics through transient dissociation/association. To understand which parameters can be used to tune release, we used a mathematical model based on simple binding kinetics. A comprehensive asymptotic analysis revealed three characteristic regimes for therapeutic release from affinity-based systems. These regimes can be controlled by diffusion or unbinding kinetics, and can exhibit release over either a single stage or two stages. This analysis fundamentally changes the way we think of controlling release from affinity-based systems and thereby explains some of the discrepancies in the literature on which parameters influence affinity-based release. The rate of protein release from affinity-based systems is determined by the balance of diffusion of the therapeutic agent through the hydrogel and the dissociation kinetics of the affinity pair. Equations for tuning protein release rate by altering the strength (KD) of the affinity interaction, the concentration of binding ligand in the system, the rate of dissociation (koff) of the complex, and the hydrogel size and geometry, are provided. We validated our model by collapsing the model simulations and the experimental data from a recently described affinity release system, to a single master curve. Importantly, this mathematical analysis can be applied to any single species affinity-based system to determine the parameters required for a desired release profile. PMID:25449806
Predict amine solution properties accurately
Cheng, S.; Meisen, A.; Chakma, A.
1996-02-01
Improved process design begins with using accurate physical property data. Especially in the preliminary design stage, physical property data such as density viscosity, thermal conductivity and specific heat can affect the overall performance of absorbers, heat exchangers, reboilers and pump. These properties can also influence temperature profiles in heat transfer equipment and thus control or affect the rate of amine breakdown. Aqueous-amine solution physical property data are available in graphical form. However, it is not convenient to use with computer-based calculations. Developed equations allow improved correlations of derived physical property estimates with published data. Expressions are given which can be used to estimate physical properties of methyldiethanolamine (MDEA), monoethanolamine (MEA) and diglycolamine (DGA) solutions.
Mui, K W; Wong, L T; Chung, L Y
2009-11-01
Atmospheric visibility impairment has gained increasing concern as it is associated with the existence of a number of aerosols as well as common air pollutants and produces unfavorable conditions for observation, dispersion, and transportation. This study analyzed the atmospheric visibility data measured in urban and suburban Hong Kong (two selected stations) with respect to time-matched mass concentrations of common air pollutants including nitrogen dioxide (NO(2)), nitrogen monoxide (NO), respirable suspended particulates (PM(10)), sulfur dioxide (SO(2)), carbon monoxide (CO), and meteorological parameters including air temperature, relative humidity, and wind speed. No significant difference in atmospheric visibility was reported between the two measurement locations (p > or = 0.6, t test); and good atmospheric visibility was observed more frequently in summer and autumn than in winter and spring (p < 0.01, t test). It was also found that atmospheric visibility increased with temperature but decreased with the concentrations of SO(2), CO, PM(10), NO, and NO(2). The results showed that atmospheric visibility was season dependent and would have significant correlations with temperature, the mass concentrations of PM(10) and NO(2), and the air pollution index API (correlation coefficients mid R: R mid R: > or = 0.7, p < or = 0.0001, t test). Mathematical expressions catering to the seasonal variations of atmospheric visibility were thus proposed. By comparison, the proposed visibility prediction models were more accurate than some existing regional models. In addition to improving visibility prediction accuracy, this study would be useful for understanding the context of low atmospheric visibility, exploring possible remedial measures, and evaluating the impact of air pollution and atmospheric visibility impairment in this region. PMID:18951139
Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.
2008-07-01
Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares these profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a Support Vector Machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity, and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of ~0.8 with a standard deviation of less than 0.025. Furthermore, we demonstrate that these results are achievable with a small set of 12 variables and can achieve high proteome coverage. Availability: http://omics.pnl.gov/software/STEPP.php
NASA Astrophysics Data System (ADS)
Pau, George Shu Heng; Shen, Chaopeng; Riley, William J.; Liu, Yaning
2016-02-01
The topography, and the biotic and abiotic parameters are typically upscaled to make watershed-scale hydrologic-biogeochemical models computationally tractable. However, upscaling procedure can produce biases when nonlinear interactions between different processes are not fully captured at coarse resolutions. Here we applied the Proper Orthogonal Decomposition Mapping Method (PODMM) to downscale the field solutions from a coarse (7 km) resolution grid to a fine (220 m) resolution grid. PODMM trains a reduced-order model (ROM) with coarse-resolution and fine-resolution solutions, here obtained using PAWS+CLM, a quasi-3-D watershed processes model that has been validated for many temperate watersheds. Subsequent fine-resolution solutions were approximated based only on coarse-resolution solutions and the ROM. The approximation errors were efficiently quantified using an error estimator. By jointly estimating correlated variables and temporally varying the ROM parameters, we further reduced the approximation errors by up to 20%. We also improved the method's robustness by constructing multiple ROMs using different set of variables, and selecting the best approximation based on the error estimator. The ROMs produced accurate downscaling of soil moisture, latent heat flux, and net primary production with O(1000) reduction in computational cost. The subgrid distributions were also nearly indistinguishable from the ones obtained using the fine-resolution model. Compared to coarse-resolution solutions, biases in upscaled ROM solutions were reduced by up to 80%. This method has the potential to help address the long-standing spatial scaling problem in hydrology and enable long-time integration, parameter estimation, and stochastic uncertainty analysis while accurately representing the heterogeneities.
Predicting accurate probabilities with a ranking loss
Menon, Aditya Krishna; Jiang, Xiaoqian J; Vembu, Shankar; Elkan, Charles; Ohno-Machado, Lucila
2013-01-01
In many real-world applications of machine learning classifiers, it is essential to predict the probability of an example belonging to a particular class. This paper proposes a simple technique for predicting probabilities based on optimizing a ranking loss, followed by isotonic regression. This semi-parametric technique offers both good ranking and regression performance, and models a richer set of probability distributions than statistical workhorses such as logistic regression. We provide experimental results that show the effectiveness of this technique on real-world applications of probability prediction. PMID:25285328
Grassi, Lorenzo; Väänänen, Sami P; Ristinmaa, Matti; Jurvelin, Jukka S; Isaksson, Hanna
2016-03-21
Subject-specific finite element models have been proposed as a tool to improve fracture risk assessment in individuals. A thorough laboratory validation against experimental data is required before introducing such models in clinical practice. Results from digital image correlation can provide full-field strain distribution over the specimen surface during in vitro test, instead of at a few pre-defined locations as with strain gauges. The aim of this study was to validate finite element models of human femora against experimental data from three cadaver femora, both in terms of femoral strength and of the full-field strain distribution collected with digital image correlation. The results showed a high accuracy between predicted and measured principal strains (R(2)=0.93, RMSE=10%, 1600 validated data points per specimen). Femoral strength was predicted using a rate dependent material model with specific strain limit values for yield and failure. This provided an accurate prediction (<2% error) for two out of three specimens. In the third specimen, an accidental change in the boundary conditions occurred during the experiment, which compromised the femoral strength validation. The achieved strain accuracy was comparable to that obtained in state-of-the-art studies which validated their prediction accuracy against 10-16 strain gauge measurements. Fracture force was accurately predicted, with the predicted failure location being very close to the experimental fracture rim. Despite the low sample size and the single loading condition tested, the present combined numerical-experimental method showed that finite element models can predict femoral strength by providing a thorough description of the local bone mechanical response. PMID:26944687
2014-01-01
Background Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. Results SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. Conclusions SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/. PMID:24980894
Accurate Prediction of Docked Protein Structure Similarity.
Akbal-Delibas, Bahar; Pomplun, Marc; Haspel, Nurit
2015-09-01
One of the major challenges for protein-protein docking methods is to accurately discriminate nativelike structures. The protein docking community agrees on the existence of a relationship between various favorable intermolecular interactions (e.g. Van der Waals, electrostatic, desolvation forces, etc.) and the similarity of a conformation to its native structure. Different docking algorithms often formulate this relationship as a weighted sum of selected terms and calibrate their weights against specific training data to evaluate and rank candidate structures. However, the exact form of this relationship is unknown and the accuracy of such methods is impaired by the pervasiveness of false positives. Unlike the conventional scoring functions, we propose a novel machine learning approach that not only ranks the candidate structures relative to each other but also indicates how similar each candidate is to the native conformation. We trained the AccuRMSD neural network with an extensive dataset using the back-propagation learning algorithm. Our method achieved predicting RMSDs of unbound docked complexes with 0.4Å error margin. PMID:26335807
NASA Astrophysics Data System (ADS)
Ansari, R.; Mirnezhad, M.; Sahmani, S.
2015-04-01
Molecular mechanics theory has been widely used to investigate the mechanical properties of nanostructures analytically. However, there is a limited number of research in which molecular mechanics model is utilized to predict the elastic properties of boron nitride nanotubes (BNNTs). In the current study, the mechanical properties of chiral single-walled BNNTs are predicted analytically based on an accurate molecular mechanics model. For this purpose, based upon the density functional theory (DFT) within the framework of the generalized gradient approximation (GGA), the exchange correlation of Perdew-Burke-Ernzerhof is adopted to evaluate force constants used in the molecular mechanics model. Afterwards, based on the principle of molecular mechanics, explicit expressions are given to calculate surface Young's modulus and Poisson's ratio of the single-walled BNNTs for different values of tube diameter and types of chirality. Moreover, the values of surface Young's modulus, Poisson's ratio and bending stiffness of boron nitride sheets are obtained via the DFT as byproducts. The results predicted by the present model are in reasonable agreement with those reported by other models in the literature.
Zuñiga, Cristal; Li, Chien-Ting; Huelsman, Tyler; Levering, Jennifer; Zielinski, Daniel C; McConnell, Brian O; Long, Christopher P; Knoshaug, Eric P; Guarnieri, Michael T; Antoniewicz, Maciek R; Betenbaugh, Michael J; Zengler, Karsten
2016-09-01
The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. PMID:27372244
Wang, Shiyao; Deng, Zhidong; Yin, Gang
2016-01-01
A high-performance differential global positioning system (GPS) receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108
Wang, Shiyao; Deng, Zhidong; Yin, Gang
2016-01-01
A high-performance differential global positioning system (GPS) receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108
Mohaghegh, S.; Balan, B.; Ameri, S.
1995-12-31
The ultimate test for any technique that bears the claim of permeability prediction from well log data, is accurate and verifiable prediction of permeability for wells from which only the well log data is available. So far all the available models and techniques have been tried on data that includes both well logs and the corresponding permeability values. This approach at best is nothing more than linear or nonlinear curve fitting. The objective of this paper is to test the capability of the most promising of these techniques in independent (where corresponding permeability values are not available or have not been used in development of the model) prediction of permeability in a heterogeneous formation. These techniques are {open_quotes}Multiple Regression{close_quotes} and {open_quotes}Virtual Measurements using Artificial Neural Networks.{close_quotes} For the purposes of this study several wells from a heterogeneous formation in West Virginia were selected. Well log data and corresponding permeability values for these wells were available. The techniques were applied to the remaining data and a permeability model for the field was developed. The model was then applied to the well that was separated from the rest of the data earlier and the results were compared. This approach will test the generalization power of each technique. The result will show that although Multiple Regression provides acceptable results for wells that were used during model development, (good curve fitting,) it lacks a consistent generalization capability, meaning that it does not perform as well with data it has not been exposed to (the data from well that has been put aside). On the other hand, Virtual Measurement technique provides a steady generalization power. This technique is able to perform the permeability prediction task even for the entire wells with no prior exposure to their permeability profile.
NASA Astrophysics Data System (ADS)
Tsao, Chao-hsi; Freniere, Edward R.; Smith, Linda
2009-02-01
The use of white LEDs for solid-state lighting to address applications in the automotive, architectural and general illumination markets is just emerging. LEDs promise greater energy efficiency and lower maintenance costs. However, there is a significant amount of design and cost optimization to be done while companies continue to improve semiconductor manufacturing processes and begin to apply more efficient and better color rendering luminescent materials such as phosphor and quantum dot nanomaterials. In the last decade, accurate and predictive opto-mechanical software modeling has enabled adherence to performance, consistency, cost, and aesthetic criteria without the cost and time associated with iterative hardware prototyping. More sophisticated models that include simulation of optical phenomenon, such as luminescence, promise to yield designs that are more predictive - giving design engineers and materials scientists more control over the design process to quickly reach optimum performance, manufacturability, and cost criteria. A design case study is presented where first, a phosphor formulation and excitation source are optimized for a white light. The phosphor formulation, the excitation source and other LED components are optically and mechanically modeled and ray traced. Finally, its performance is analyzed. A blue LED source is characterized by its relative spectral power distribution and angular intensity distribution. YAG:Ce phosphor is characterized by relative absorption, excitation and emission spectra, quantum efficiency and bulk absorption coefficient. Bulk scatter properties are characterized by wavelength dependent scatter coefficients, anisotropy and bulk absorption coefficient.
You Can Accurately Predict Land Acquisition Costs.
ERIC Educational Resources Information Center
Garrigan, Richard
1967-01-01
Land acquisition costs were tested for predictability based upon the 1962 assessed valuations of privately held land acquired for campus expansion by the University of Wisconsin from 1963-1965. By correlating the land acquisition costs of 108 properties acquired during the 3 year period with--(1) the assessed value of the land, (2) the assessed…
Renfrew, Paul Douglas; Quan, Hude; Doig, Christopher James; Dixon, Elijah; Molinari, Michele
2011-01-01
OBJECTIVE: To determine the generalizability of the predictions for 90-day mortality generated by Model for End-stage Liver Disease (MELD) and the serum sodium augmented MELD (MELDNa) to Atlantic Canadian adults with end-stage liver disease awaiting liver transplantation (LT). METHODS: The predictive accuracy of the MELD and the MELDNa was evaluated by measurement of the discrimination and calibration of the respective models’ estimates for the occurrence of 90-day mortality in a consecutive cohort of LT candidates accrued over a five-year period. Accuracy of discrimination was measured by the area under the ROC curves. Calibration accuracy was evaluated by comparing the observed and model-estimated incidences of 90-day wait-list failure for the total cohort and within quantiles of risk. RESULTS: The area under the ROC curve for the MELD was 0.887 (95% CI 0.705 to 0.978) – consistent with very good accuracy of discrimination. The area under the ROC curve for the MELDNa was 0.848 (95% CI 0.681 to 0.965). The observed incidence of 90-day wait-list mortality in the validation cohort was 7.9%, which was not significantly different from the MELD estimate of 6.6% (95% CI 4.9% to 8.4%; P=0.177) or the MELDNa estimate of 5.8% (95% CI 3.5% to 8.0%; P=0.065). Global goodness-of-fit testing found no evidence of significant lack of fit for either model (Hosmer-Lemeshow χ2 [df=3] for MELD 2.941, P=0.401; for MELDNa 2.895, P=0.414). CONCLUSION: Both the MELD and the MELDNa accurately predicted the occurrence of 90-day wait-list mortality in the study cohort and, therefore, are generalizable to Atlantic Canadians with end-stage liver disease awaiting LT. PMID:21876856
Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates
Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; et al
2013-03-07
In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less
Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates
Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.
2013-03-07
In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.
Accurate modeling of parallel scientific computations
NASA Technical Reports Server (NTRS)
Nicol, David M.; Townsend, James C.
1988-01-01
Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.
Anatomically accurate individual face modeling.
Zhang, Yu; Prakash, Edmond C; Sung, Eric
2003-01-01
This paper presents a new 3D face model of a specific person constructed from the anatomical perspective. By exploiting the laser range data, a 3D facial mesh precisely representing the skin geometry is reconstructed. Based on the geometric facial mesh, we develop a deformable multi-layer skin model. It takes into account the nonlinear stress-strain relationship and dynamically simulates the non-homogenous behavior of the real skin. The face model also incorporates a set of anatomically-motivated facial muscle actuators and underlying skull structure. Lagrangian mechanics governs the facial motion dynamics, dictating the dynamic deformation of facial skin in response to the muscle contraction. PMID:15455936
Passive samplers accurately predict PAH levels in resident crayfish.
Paulik, L Blair; Smith, Brian W; Bergmann, Alan J; Sower, Greg J; Forsberg, Norman D; Teeguarden, Justin G; Anderson, Kim A
2016-02-15
Contamination of resident aquatic organisms is a major concern for environmental risk assessors. However, collecting organisms to estimate risk is often prohibitively time and resource-intensive. Passive sampling accurately estimates resident organism contamination, and it saves time and resources. This study used low density polyethylene (LDPE) passive water samplers to predict polycyclic aromatic hydrocarbon (PAH) levels in signal crayfish, Pacifastacus leniusculus. Resident crayfish were collected at 5 sites within and outside of the Portland Harbor Superfund Megasite (PHSM) in the Willamette River in Portland, Oregon. LDPE deployment was spatially and temporally paired with crayfish collection. Crayfish visceral and tail tissue, as well as water-deployed LDPE, were extracted and analyzed for 62 PAHs using GC-MS/MS. Freely-dissolved concentrations (Cfree) of PAHs in water were calculated from concentrations in LDPE. Carcinogenic risks were estimated for all crayfish tissues, using benzo[a]pyrene equivalent concentrations (BaPeq). ∑PAH were 5-20 times higher in viscera than in tails, and ∑BaPeq were 6-70 times higher in viscera than in tails. Eating only tail tissue of crayfish would therefore significantly reduce carcinogenic risk compared to also eating viscera. Additionally, PAH levels in crayfish were compared to levels in crayfish collected 10 years earlier. PAH levels in crayfish were higher upriver of the PHSM and unchanged within the PHSM after the 10-year period. Finally, a linear regression model predicted levels of 34 PAHs in crayfish viscera with an associated R-squared value of 0.52 (and a correlation coefficient of 0.72), using only the Cfree PAHs in water. On average, the model predicted PAH concentrations in crayfish tissue within a factor of 2.4 ± 1.8 of measured concentrations. This affirms that passive water sampling accurately estimates PAH contamination in crayfish. Furthermore, the strong predictive ability of this simple model suggests
A new generalized correlation for accurate vapor pressure prediction
NASA Astrophysics Data System (ADS)
An, Hui; Yang, Wenming
2012-08-01
An accurate knowledge of the vapor pressure of organic liquids is very important for the oil and gas processing operations. In combustion modeling, the accuracy of numerical predictions is also highly dependent on the fuel properties such as vapor pressure. In this Letter, a new generalized correlation is proposed based on the Lee-Kesler's method where a fuel dependent parameter 'A' is introduced. The proposed method only requires the input parameters of critical temperature, normal boiling temperature and the acentric factor of the fluid. With this method, vapor pressures have been calculated and compared with the data reported in data compilation for 42 organic liquids over 1366 data points, and the overall average absolute percentage deviation is only 1.95%.
The importance of accurate atmospheric modeling
NASA Astrophysics Data System (ADS)
Payne, Dylan; Schroeder, John; Liang, Pang
2014-11-01
This paper will focus on the effect of atmospheric conditions on EO sensor performance using computer models. We have shown the importance of accurately modeling atmospheric effects for predicting the performance of an EO sensor. A simple example will demonstrated how real conditions for several sites in China will significantly impact on image correction, hyperspectral imaging, and remote sensing. The current state-of-the-art model for computing atmospheric transmission and radiance is, MODTRAN® 5, developed by the US Air Force Research Laboratory and Spectral Science, Inc. Research by the US Air Force, Navy and Army resulted in the public release of LOWTRAN 2 in the early 1970's. Subsequent releases of LOWTRAN and MODTRAN® have continued until the present. Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not be published without this approval. Please contact author_help@spie.org with any questions or concerns. The paper will demonstrate the importance of using validated models and local measured meteorological, atmospheric and aerosol conditions to accurately simulate the atmospheric transmission and radiance. Frequently default conditions are used which can produce errors of as much as 75% in these values. This can have significant impact on remote sensing applications.
Predictive modeling of complications.
Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P
2016-09-01
Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions. PMID:27286683
Marko, Nicholas F.; Weil, Robert J.; Schroeder, Jason L.; Lang, Frederick F.; Suki, Dima; Sawaya, Raymond E.
2014-01-01
Purpose Approximately 12,000 glioblastomas are diagnosed annually in the United States. The median survival rate for this disease is 12 months, but individual survival rates can vary with patient-specific factors, including extent of surgical resection (EOR). The goal of our investigation is to develop a reliable strategy for personalized survival prediction and for quantifying the relationship between survival, EOR, and adjuvant chemoradiotherapy. Patients and Methods We used accelerated failure time (AFT) modeling using data from 721 newly diagnosed patients with glioblastoma (from 1993 to 2010) to model the factors affecting individualized survival after surgical resection, and we used the model to construct probabilistic, patient-specific tools for survival prediction. We validated this model with independent data from 109 patients from a second institution. Results AFT modeling using age, Karnofsky performance score, EOR, and adjuvant chemoradiotherapy produced a continuous, nonlinear, multivariable survival model for glioblastoma. The median personalized predictive error was 4.37 months, representing a more than 20% improvement over current methods. Subsequent model-based calculations yield patient-specific predictions of the incremental effects of EOR and adjuvant therapy on survival. Conclusion Nonlinear, multivariable AFT modeling outperforms current methods for estimating individual survival after glioblastoma resection. The model produces personalized survival curves and quantifies the relationship between variables modulating patient-specific survival. This approach provides comprehensive, personalized, probabilistic, and clinically relevant information regarding the anticipated course of disease, the overall prognosis, and the patient-specific influence of EOR and adjuvant chemoradiotherapy. The continuous, nonlinear relationship identified between expected median survival and EOR argues against a surgical management strategy based on rigid EOR
Accurate mask model for advanced nodes
NASA Astrophysics Data System (ADS)
Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Ndiaye, El Hadji Omar; Mishra, Kushlendra; Paninjath, Sankaranarayanan; Bork, Ingo; Buck, Peter; Toublan, Olivier; Schanen, Isabelle
2014-07-01
Standard OPC models consist of a physical optical model and an empirical resist model. The resist model compensates the optical model imprecision on top of modeling resist development. The optical model imprecision may result from mask topography effects and real mask information including mask ebeam writing and mask process contributions. For advanced technology nodes, significant progress has been made to model mask topography to improve optical model accuracy. However, mask information is difficult to decorrelate from standard OPC model. Our goal is to establish an accurate mask model through a dedicated calibration exercise. In this paper, we present a flow to calibrate an accurate mask enabling its implementation. The study covers the different effects that should be embedded in the mask model as well as the experiment required to model them.
Incarnato, Danny; Neri, Francesco; Diamanti, Daniela; Oliviero, Salvatore
2013-01-01
The prediction of pairing between microRNAs (miRNAs) and the miRNA recognition elements (MREs) on mRNAs is expected to be an important tool for understanding gene regulation. Here, we show that mRNAs that contain Pumilio recognition elements (PRE) in the proximity of predicted miRNA-binding sites are more likely to form stable secondary structures within their 3′-UTR, and we demonstrated using a PUM1 and PUM2 double knockdown that Pumilio proteins are general regulators of miRNA accessibility. On the basis of these findings, we developed a computational method for predicting miRNA targets that accounts for the presence of PRE in the proximity of seed-match sequences within poorly accessible structures. Moreover, we implement the miRNA-MRE duplex pairing as a two-step model, which better fits the available structural data. This algorithm, called MREdictor, allows for the identification of miRNA targets in poorly accessible regions and is not restricted to a perfect seed-match; these features are not present in other computational prediction methods. PMID:23863844
Kousera, C A; Nijjer, S; Torii, R; Petraco, R; Sen, S; Foin, N; Hughes, A D; Francis, D P P; Xu, X Y; Davies, J E
2014-06-01
Computational fluid dynamics (CFD) is increasingly being developed for the diagnostics of arterial diseases. Imaging methods such as computed tomography (CT) and angiography are commonly used. However, these have limited spatial resolution and are subject to movement artifact. This study developed a new approach to generate CFD models by combining high-fidelity, patient-specific coronary anatomy models derived from optical coherence tomography (OCT) imaging with patient-specific pressure and velocity phasic data. Additionally, we used a new technique which does not require the catheter to be used to determine the centerline of the vessel. The CFD data were then compared with invasively measured pressure and velocity. Angiography imaging data of 21 vessels collected from 19 patients were fused with OCT visualizations of the same vessels using an algorithm that produces reconstructions inheriting the in-plane (10 μm) and longitudinal (0.2 mm) resolution of OCT. Proximal pressure and distal velocity waveforms ensemble averaged from invasively measured data were used as inlet and outlet boundary conditions, respectively, in CFD simulations. The resulting distal pressure waveform was compared against the measured waveform to test the model. The results followed the shape of the measured waveforms closely (cross-correlation coefficient = 0.898 ± 0.005, ), indicating realistic modeling of flow resistance, the mean of differences between measured and simulated results was -3. 5 mmHg, standard deviation of differences (SDD) = 8.2 mmHg over the cycle and -9.8 mmHg, SDD = 16.4 mmHg at peak flow. Models incorporating phasic velocity in patient-specific models of coronary anatomy derived from high-resolution OCT images show a good correlation with the measured pressure waveforms in all cases, indicating that the model results may be an accurate representation of the measured flow conditions. PMID:24845301
Accurate Prediction of Binding Thermodynamics for DNA on Surfaces
Vainrub, Arnold; Pettitt, B. Montgomery
2011-01-01
For DNA mounted on surfaces for microarrays, microbeads and nanoparticles, the nature of the random attachment of oligonucleotide probes to an amorphous surface gives rise to a locally inhomogeneous probe density. These fluctuations of the probe surface density are inherent to all common surface or bead platforms, regardless if they exploit either an attachment of pre-synthesized probes or probes synthesized in situ on the surface. Here, we demonstrate for the first time the crucial role of the probe surface density fluctuations in performance of DNA arrays. We account for the density fluctuations with a disordered two-dimensional surface model and derive the corresponding array hybridization isotherm that includes a counter-ion screened electrostatic repulsion between the assayed DNA and probe array. The calculated melting curves are in excellent agreement with published experimental results for arrays with both pre-synthesized and in-situ synthesized oligonucleotide probes. The approach developed allows one to accurately predict the melting curves of DNA arrays using only the known sequence dependent hybridization enthalpy and entropy in solution and the experimental macroscopic surface density of probes. This opens the way to high precision theoretical design and optimization of probes and primers in widely used DNA array-based high-throughput technologies for gene expression, genotyping, next-generation sequencing, and surface polymerase extension. PMID:21972932
NASA Astrophysics Data System (ADS)
Liu, Tong; Pantazatos, Dennis; Li, Sheng; Hamuro, Yoshitomo; Hilser, Vincent J.; Woods, Virgil L.
2012-01-01
Peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) data are often used to qualitatively support models for protein structure. We have developed and validated a method (DXCOREX) by which exchange data can be used to quantitatively assess the accuracy of three-dimensional (3-D) models of protein structure. The method utilizes the COREX algorithm to predict a protein's amide hydrogen exchange rates by reference to a hypothesized structure, and these values are used to generate a virtual data set (deuteron incorporation per peptide) that can be quantitatively compared with the deuteration level of the peptide probes measured by hydrogen exchange experimentation. The accuracy of DXCOREX was established in studies performed with 13 proteins for which both high-resolution structures and experimental data were available. The DXCOREX-calculated and experimental data for each protein was highly correlated. We then employed correlation analysis of DXCOREX-calculated versus DXMS experimental data to assess the accuracy of a recently proposed structural model for the catalytic domain of a Ca2+-independent phospholipase A2. The model's calculated exchange behavior was highly correlated with the experimental exchange results available for the protein, supporting the accuracy of the proposed model. This method of analysis will substantially increase the precision with which experimental hydrogen exchange data can help decipher challenging questions regarding protein structure and dynamics.
Pre-Modeling Ensures Accurate Solid Models
ERIC Educational Resources Information Center
Gow, George
2010-01-01
Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…
IRIS: Towards an Accurate and Fast Stage Weight Prediction Method
NASA Astrophysics Data System (ADS)
Taponier, V.; Balu, A.
2002-01-01
The knowledge of the structural mass fraction (or the mass ratio) of a given stage, which affects the performance of a rocket, is essential for the analysis of new or upgraded launchers or stages, whose need is increased by the quick evolution of the space programs and by the necessity of their adaptation to the market needs. The availability of this highly scattered variable, ranging between 0.05 and 0.15, is of primary importance at the early steps of the preliminary design studies. At the start of the staging and performance studies, the lack of frozen weight data (to be obtained later on from propulsion, trajectory and sizing studies) leads to rely on rough estimates, generally derived from printed sources and adapted. When needed, a consolidation can be acquired trough a specific analysis activity involving several techniques and implying additional effort and time. The present empirical approach allows thus to get approximated values (i.e. not necessarily accurate or consistent), inducing some result inaccuracy as well as, consequently, difficulties of performance ranking for a multiple option analysis, and an increase of the processing duration. This forms a classical harsh fact of the preliminary design system studies, insufficiently discussed to date. It appears therefore highly desirable to have, for all the evaluation activities, a reliable, fast and easy-to-use weight or mass fraction prediction method. Additionally, the latter should allow for a pre selection of the alternative preliminary configurations, making possible a global system approach. For that purpose, an attempt at modeling has been undertaken, whose objective was the determination of a parametric formulation of the mass fraction, to be expressed from a limited number of parameters available at the early steps of the project. It is based on the innovative use of a statistical method applicable to a variable as a function of several independent parameters. A specific polynomial generator
NASA Astrophysics Data System (ADS)
Arockia Bazil Raj, A.; Padmavathi, S.
2016-07-01
Atmospheric parameters strongly affect the performance of Free Space Optical Communication (FSOC) system when the optical wave is propagating through the inhomogeneous turbulent medium. Developing a model to get an accurate prediction of optical attenuation according to meteorological parameters becomes significant to understand the behaviour of FSOC channel during different seasons. A dedicated free space optical link experimental set-up is developed for the range of 0.5 km at an altitude of 15.25 m. The diurnal profile of received power and corresponding meteorological parameters are continuously measured using the developed optoelectronic assembly and weather station, respectively, and stored in a data logging computer. Measured meteorological parameters (as input factors) and optical attenuation (as response factor) of size [177147 × 4] are used for linear regression analysis and to design the mathematical model that is more suitable to predict the atmospheric optical attenuation at our test field. A model that exhibits the R2 value of 98.76% and average percentage deviation of 1.59% is considered for practical implementation. The prediction accuracy of the proposed model is investigated along with the comparative results obtained from some of the existing models in terms of Root Mean Square Error (RMSE) during different local seasons in one-year period. The average RMSE value of 0.043-dB/km is obtained in the longer range dynamic of meteorological parameters variations.
Boursier, J; Ducancelle, A; Vergniol, J; Veillon, P; Moal, V; Dufour, C; Bronowicki, J-P; Larrey, D; Hézode, C; Zoulim, F; Fontaine, H; Canva, V; Poynard, T; Allam, S; De Lédinghen, V
2015-12-01
Triple therapy using boceprevir or telaprevir remains the reference treatment for genotype 1 chronic hepatitis C in countries where new interferon-free regimens have not yet become available. Antiviral treatment is highly required in cirrhotic patients, but they represent a difficult-to-treat population. We aimed to develop a simple algorithm for the prediction of sustained viral response (SVR) in cirrhotic patients treated with triple therapy. A total of 484 cirrhotic patients from the ANRS CO20 CUPIC cohort treated with triple therapy were randomly distributed into derivation and validation sets. A total of 52.1% of patients achieved SVR. In the derivation set, a D0 score for the prediction of SVR before treatment initiation included the following independent predictors collected at day 0: prior treatment response, gamma-GT, platelets, telaprevir treatment, viral load. To refine the prediction at the early phase of the treatment, a W4 score included as additional parameter the viral load collected at week 4. The D0 and W4 scores were combined in the CUPIC algorithm defining three subgroups: 'no treatment initiation or early stop at week 4', 'undetermined' and 'SVR highly probable'. In the validation set, the rates of SVR in these three subgroups were, respectively, 11.1%, 50.0% and 82.2% (P < 0.001). By replacing the variable 'prior treatment response' with 'IL28B genotype', another algorithm was derived for treatment-naïve patients with similar results. The CUPIC algorithm is an easy-to-use tool that helps physicians weigh their decision between immediately treating cirrhotic patients using boceprevir/telaprevir triple therapy or waiting for new drugs to become available in their country. PMID:26216230
Bertels, Luke W.; Mazziotti, David A.
2014-07-28
Multireference correlation in diradical molecules can be captured by a single-reference 2-electron reduced-density-matrix (2-RDM) calculation with only single and double excitations in the 2-RDM parametrization. The 2-RDM parametrization is determined by N-representability conditions that are non-perturbative in their treatment of the electron correlation. Conventional single-reference wave function methods cannot describe the entanglement within diradical molecules without employing triple- and potentially even higher-order excitations of the mean-field determinant. In the isomerization of bicyclobutane to gauche-1,3-butadiene the parametric 2-RDM (p2-RDM) method predicts that the diradical disrotatory transition state is 58.9 kcal/mol above bicyclobutane. This barrier is in agreement with previous multireference calculations as well as recent Monte Carlo and higher-order coupled cluster calculations. The p2-RDM method predicts the Nth natural-orbital occupation number of the transition state to be 0.635, revealing its diradical character. The optimized geometry from the p2-RDM method differs in important details from the complete-active-space self-consistent-field geometry used in many previous studies including the Monte Carlo calculation.
More-Accurate Model of Flows in Rocket Injectors
NASA Technical Reports Server (NTRS)
Hosangadi, Ashvin; Chenoweth, James; Brinckman, Kevin; Dash, Sanford
2011-01-01
An improved computational model for simulating flows in liquid-propellant injectors in rocket engines has been developed. Models like this one are needed for predicting fluxes of heat in, and performances of, the engines. An important part of predicting performance is predicting fluctuations of temperature, fluctuations of concentrations of chemical species, and effects of turbulence on diffusion of heat and chemical species. Customarily, diffusion effects are represented by parameters known in the art as the Prandtl and Schmidt numbers. Prior formulations include ad hoc assumptions of constant values of these parameters, but these assumptions and, hence, the formulations, are inaccurate for complex flows. In the improved model, these parameters are neither constant nor specified in advance: instead, they are variables obtained as part of the solution. Consequently, this model represents the effects of turbulence on diffusion of heat and chemical species more accurately than prior formulations do, and may enable more-accurate prediction of mixing and flows of heat in rocket-engine combustion chambers. The model has been implemented within CRUNCH CFD, a proprietary computational fluid dynamics (CFD) computer program, and has been tested within that program. The model could also be implemented within other CFD programs.
Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2001-01-01
A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.
Accurate indel prediction using paired-end short reads
2013-01-01
Background One of the major open challenges in next generation sequencing (NGS) is the accurate identification of structural variants such as insertions and deletions (indels). Current methods for indel calling assign scores to different types of evidence or counter-evidence for the presence of an indel, such as the number of split read alignments spanning the boundaries of a deletion candidate or reads that map within a putative deletion. Candidates with a score above a manually defined threshold are then predicted to be true indels. As a consequence, structural variants detected in this manner contain many false positives. Results Here, we present a machine learning based method which is able to discover and distinguish true from false indel candidates in order to reduce the false positive rate. Our method identifies indel candidates using a discriminative classifier based on features of split read alignment profiles and trained on true and false indel candidates that were validated by Sanger sequencing. We demonstrate the usefulness of our method with paired-end Illumina reads from 80 genomes of the first phase of the 1001 Genomes Project ( http://www.1001genomes.org) in Arabidopsis thaliana. Conclusion In this work we show that indel classification is a necessary step to reduce the number of false positive candidates. We demonstrate that missing classification may lead to spurious biological interpretations. The software is available at: http://agkb.is.tuebingen.mpg.de/Forschung/SV-M/. PMID:23442375
Fast and accurate predictions of covalent bonds in chemical space.
Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole
2016-05-01
We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi
Fast and accurate predictions of covalent bonds in chemical space
NASA Astrophysics Data System (ADS)
Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
2016-05-01
We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (˜1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2+ . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi
Change in BMI Accurately Predicted by Social Exposure to Acquaintances
Oloritun, Rahman O.; Ouarda, Taha B. M. J.; Moturu, Sai; Madan, Anmol; Pentland, Alex (Sandy); Khayal, Inas
2013-01-01
Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO) method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC) and R2. This study found a model that explains 68% (p<0.0001) of the variation in change in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as close friends. PMID
Accurate theoretical chemistry with coupled pair models.
Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan
2009-05-19
Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now
Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting
Khan, Tarik A.; Friedensohn, Simon; de Vries, Arthur R. Gorter; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T.
2016-01-01
High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion—the intraclonal diversity index—which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology. PMID:26998518
Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting.
Khan, Tarik A; Friedensohn, Simon; Gorter de Vries, Arthur R; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T
2016-03-01
High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion-the intraclonal diversity index-which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology. PMID:26998518
Accurate method of modeling cluster scaling relations in modified gravity
NASA Astrophysics Data System (ADS)
He, Jian-hua; Li, Baojiu
2016-06-01
We propose a new method to model cluster scaling relations in modified gravity. Using a suite of nonradiative hydrodynamical simulations, we show that the scaling relations of accumulated gas quantities, such as the Sunyaev-Zel'dovich effect (Compton-y parameter) and the x-ray Compton-y parameter, can be accurately predicted using the known results in the Λ CDM model with a precision of ˜3 % . This method provides a reliable way to analyze the gas physics in modified gravity using the less demanding and much more efficient pure cold dark matter simulations. Our results therefore have important theoretical and practical implications in constraining gravity using cluster surveys.
Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin
2015-01-01
Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale. PMID:26198229
Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin
2015-01-01
Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale. PMID:26198229
Anisotropic Turbulence Modeling for Accurate Rod Bundle Simulations
Baglietto, Emilio
2006-07-01
An improved anisotropic eddy viscosity model has been developed for accurate predictions of the thermal hydraulic performances of nuclear reactor fuel assemblies. The proposed model adopts a non-linear formulation of the stress-strain relationship in order to include the reproduction of the anisotropic phenomena, and in combination with an optimized low-Reynolds-number formulation based on Direct Numerical Simulation (DNS) to produce correct damping of the turbulent viscosity in the near wall region. This work underlines the importance of accurate anisotropic modeling to faithfully reproduce the scale of the turbulence driven secondary flows inside the bundle subchannels, by comparison with various isothermal and heated experimental cases. The very low scale secondary motion is responsible for the increased turbulence transport which produces a noticeable homogenization of the velocity distribution and consequently of the circumferential cladding temperature distribution, which is of main interest in bundle design. Various fully developed bare bundles test cases are shown for different geometrical and flow conditions, where the proposed model shows clearly improved predictions, in close agreement with experimental findings, for regular as well as distorted geometries. Finally the applicability of the model for practical bundle calculations is evaluated through its application in the high-Reynolds form on coarse grids, with excellent results. (author)
A review of the kinetic detail required for accurate predictions of normal shock waves
NASA Technical Reports Server (NTRS)
Muntz, E. P.; Erwin, Daniel A.; Pham-Van-diep, Gerald C.
1991-01-01
Several aspects of the kinetic models used in the collision phase of Monte Carlo direct simulations have been studied. Accurate molecular velocity distribution function predictions require a significantly increased number of computational cells in one maximum slope shock thickness, compared to predictions of macroscopic properties. The shape of the highly repulsive portion of the interatomic potential for argon is not well modeled by conventional interatomic potentials; this portion of the potential controls high Mach number shock thickness predictions, indicating that the specification of the energetic repulsive portion of interatomic or intermolecular potentials must be chosen with care for correct modeling of nonequilibrium flows at high temperatures. It has been shown for inverse power potentials that the assumption of variable hard sphere scattering provides accurate predictions of the macroscopic properties in shock waves, by comparison with simulations in which differential scattering is employed in the collision phase. On the other hand, velocity distribution functions are not well predicted by the variable hard sphere scattering model for softer potentials at higher Mach numbers.
Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter.
Samsudin, Firdaus; Parker, Joanne L; Sansom, Mark S P; Newstead, Simon; Fowler, Philip W
2016-02-18
Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the ?-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887
Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter
Samsudin, Firdaus; Parker, Joanne L.; Sansom, Mark S.P.; Newstead, Simon; Fowler, Philip W.
2016-01-01
Summary Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887
Accurately Predicting Complex Reaction Kinetics from First Principles
NASA Astrophysics Data System (ADS)
Green, William
Many important systems contain a multitude of reactive chemical species, some of which react on a timescale faster than collisional thermalization, i.e. they never achieve a Boltzmann energy distribution. Usually it is impossible to fully elucidate the processes by experiments alone. Here we report recent progress toward predicting the time-evolving composition of these systems a priori: how unexpected reactions can be discovered on the computer, how reaction rates are computed from first principles, and how the many individual reactions are efficiently combined into a predictive simulation for the whole system. Some experimental tests of the a priori predictions are also presented.
Is Three-Dimensional Soft Tissue Prediction by Software Accurate?
Nam, Ki-Uk; Hong, Jongrak
2015-11-01
The authors assessed whether virtual surgery, performed with a soft tissue prediction program, could correctly simulate the actual surgical outcome, focusing on soft tissue movement. Preoperative and postoperative computed tomography (CT) data for 29 patients, who had undergone orthognathic surgery, were obtained and analyzed using the Simplant Pro software. The program made a predicted soft tissue image (A) based on presurgical CT data. After the operation, we obtained actual postoperative CT data and an actual soft tissue image (B) was generated. Finally, the 2 images (A and B) were superimposed and analyzed differences between the A and B. Results were grouped in 2 classes: absolute values and vector values. In the absolute values, the left mouth corner was the most significant error point (2.36 mm). The right mouth corner (2.28 mm), labrale inferius (2.08 mm), and the pogonion (2.03 mm) also had significant errors. In vector values, prediction of the right-left side had a left-sided tendency, the superior-inferior had a superior tendency, and the anterior-posterior showed an anterior tendency. As a result, with this program, the position of points tended to be located more left, anterior, and superior than the "real" situation. There is a need to improve the prediction accuracy for soft tissue images. Such software is particularly valuable in predicting craniofacial soft tissues landmarks, such as the pronasale. With this software, landmark positions were most inaccurate in terms of anterior-posterior predictions. PMID:26594988
Accurate perception of negative emotions predicts functional capacity in schizophrenia.
Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J
2014-04-30
Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration. PMID:24524947
Towards Accurate Ab Initio Predictions of the Spectrum of Methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2001-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
Standardized EEG interpretation accurately predicts prognosis after cardiac arrest
Rossetti, Andrea O.; van Rootselaar, Anne-Fleur; Wesenberg Kjaer, Troels; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Rosén, Ingmar; Åneman, Anders; Erlinge, David; Gasche, Yvan; Hassager, Christian; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wetterslev, Jørn; Wise, Matt P.; Cronberg, Tobias
2016-01-01
Objective: To identify reliable predictors of outcome in comatose patients after cardiac arrest using a single routine EEG and standardized interpretation according to the terminology proposed by the American Clinical Neurophysiology Society. Methods: In this cohort study, 4 EEG specialists, blinded to outcome, evaluated prospectively recorded EEGs in the Target Temperature Management trial (TTM trial) that randomized patients to 33°C vs 36°C. Routine EEG was performed in patients still comatose after rewarming. EEGs were classified into highly malignant (suppression, suppression with periodic discharges, burst-suppression), malignant (periodic or rhythmic patterns, pathological or nonreactive background), and benign EEG (absence of malignant features). Poor outcome was defined as best Cerebral Performance Category score 3–5 until 180 days. Results: Eight TTM sites randomized 202 patients. EEGs were recorded in 103 patients at a median 77 hours after cardiac arrest; 37% had a highly malignant EEG and all had a poor outcome (specificity 100%, sensitivity 50%). Any malignant EEG feature had a low specificity to predict poor prognosis (48%) but if 2 malignant EEG features were present specificity increased to 96% (p < 0.001). Specificity and sensitivity were not significantly affected by targeted temperature or sedation. A benign EEG was found in 1% of the patients with a poor outcome. Conclusions: Highly malignant EEG after rewarming reliably predicted poor outcome in half of patients without false predictions. An isolated finding of a single malignant feature did not predict poor outcome whereas a benign EEG was highly predictive of a good outcome. PMID:26865516
PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D.; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri
2014-01-01
Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp. PMID:24453961
Accurate astronomical atmospheric dispersion models in ZEMAX
NASA Astrophysics Data System (ADS)
Spanò, P.
2014-07-01
ZEMAX provides a standard built-in atmospheric model to simulate atmospheric refraction and dispersion. This model has been compared with other ones to assess its intrinsic accuracy, critical for very demanding application like ADCs for AO-assisted extremely large telescopes. A revised simple model, based on updated published data of the air refractivity, is proposed by using the "Gradient 5" surface of Zemax. At large zenith angles (65 deg), discrepancies up to 100 mas in the differential refraction are expected near the UV atmospheric transmission cutoff. When high-accuracy modeling is required, the latter model should be preferred.
How Accurately Can We Predict Eclipses for Algol? (Poster abstract)
NASA Astrophysics Data System (ADS)
Turner, D.
2016-06-01
(Abstract only) beta Persei, or Algol, is a very well known eclipsing binary system consisting of a late B-type dwarf that is regularly eclipsed by a GK subgiant every 2.867 days. Eclipses, which last about 8 hours, are regular enough that predictions for times of minima are published in various places, Sky & Telescope magazine and The Observer's Handbook, for example. But eclipse minimum lasts for less than a half hour, whereas subtle mistakes in the current ephemeris for the star can result in predictions that are off by a few hours or more. The Algol system is fairly complex, with the Algol A and Algol B eclipsing system also orbited by Algol C with an orbital period of nearly 2 years. Added to that are complex long-term O-C variations with a periodicity of almost two centuries that, although suggested by Hoffmeister to be spurious, fit the type of light travel time variations expected for a fourth star also belonging to the system. The AB sub-system also undergoes mass transfer events that add complexities to its O-C behavior. Is it actually possible to predict precise times of eclipse minima for Algol months in advance given such complications, or is it better to encourage ongoing observations of the star so that O-C variations can be tracked in real time?
Accurate spectral modeling for infrared radiation
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Gupta, S. K.
1977-01-01
Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.
Predicting accurate line shape parameters for CO2 transitions
NASA Astrophysics Data System (ADS)
Gamache, Robert R.; Lamouroux, Julien
2013-11-01
The vibrational dependence of CO2 half-widths and line shifts are given by a modification of the model proposed by Gamache and Hartmann [Gamache R, Hartmann J-M. J Quant Spectrosc Radiat Transfer 2004;83:119]. This model allows the half-widths and line shifts for a ro-vibrational transition to be expressed in terms of the number of vibrational quanta exchanged in the transition raised to a power and a reference ro-vibrational transition. Calculations were made for 24 bands for lower rotational quantum numbers from 0 to 160 for N2-, O2-, air-, and self-collisions with CO2. These data were extrapolated to J″=200 to accommodate several databases. Comparison of the CRB calculations with measurement gives very high confidence in the data. In the model a Quantum Coordinate is defined by (c1 |Δν1|+c2 |Δν2|+c3|Δν3|)p. The power p is adjusted and a linear least-squares fit to the data by the model expression is made. The procedure is iterated on the correlation coefficient, R, until [|R|-1] is less than a threshold. The results demonstrate the appropriateness of the model. The model allows the determination of the slope and intercept as a function of rotational transition, broadening gas, and temperature. From the data of the fits, the half-width, line shift, and the temperature dependence of the half-width can be estimated for any ro-vibrational transition, allowing spectroscopic CO2 databases to have complete information for the line shape parameters.
Accurate predictions for the production of vaporized water
Morin, E.; Montel, F.
1995-12-31
The production of water vaporized in the gas phase is controlled by the local conditions around the wellbore. The pressure gradient applied to the formation creates a sharp increase of the molar water content in the hydrocarbon phase approaching the well; this leads to a drop in the pore water saturation around the wellbore. The extent of the dehydrated zone which is formed is the key controlling the bottom-hole content of vaporized water. The maximum water content in the hydrocarbon phase at a given pressure, temperature and salinity is corrected by capillarity or adsorption phenomena depending on the actual water saturation. Describing the mass transfer of the water between the hydrocarbon phases and the aqueous phase into the tubing gives a clear idea of vaporization effects on the formation of scales. Field example are presented for gas fields with temperatures ranging between 140{degrees}C and 180{degrees}C, where water vaporization effects are significant. Conditions for salt plugging in the tubing are predicted.
Michael, Denna; Kanjala, Chifundo; Calvert, Clara; Pretorius, Carel; Wringe, Alison; Todd, Jim; Mtenga, Balthazar; Isingo, Raphael; Zaba, Basia; Urassa, Mark
2014-01-01
Introduction Spectrum epidemiological models are used by UNAIDS to provide global, regional and national HIV estimates and projections, which are then used for evidence-based health planning for HIV services. However, there are no validations of the Spectrum model against empirical serological and mortality data from populations in sub-Saharan Africa. Methods Serologic, demographic and verbal autopsy data have been regularly collected among over 30,000 residents in north-western Tanzania since 1994. Five-year age-specific mortality rates (ASMRs) per 1,000 person years and the probability of dying between 15 and 60 years of age (45Q15,) were calculated and compared with the Spectrum model outputs. Mortality trends by HIV status are shown for periods before the introduction of antiretroviral therapy (1994–1999, 2000–2005) and the first 5 years afterwards (2005–2009). Results Among 30–34 year olds of both sexes, observed ASMRs per 1,000 person years were 13.33 (95% CI: 10.75–16.52) in the period 1994–1999, 11.03 (95% CI: 8.84–13.77) in 2000–2004, and 6.22 (95% CI; 4.75–8.15) in 2005–2009. Among the same age group, the ASMRs estimated by the Spectrum model were 10.55, 11.13 and 8.15 for the periods 1994–1999, 2000–2004 and 2005–2009, respectively. The cohort data, for both sexes combined, showed that the 45Q15 declined from 39% (95% CI: 27–55%) in 1994 to 22% (95% CI: 17–29%) in 2009, whereas the Spectrum model predicted a decline from 43% in 1994 to 37% in 2009. Conclusion From 1994 to 2009, the observed decrease in ASMRs was steeper in younger age groups than that predicted by the Spectrum model, perhaps because the Spectrum model under-estimated the ASMRs in 30–34 year olds in 1994–99. However, the Spectrum model predicted a greater decrease in 45Q15 mortality than observed in the cohort, although the reasons for this over-estimate are unclear. PMID:24438873
Kieslich, Chris A.; Tamamis, Phanourios; Guzman, Yannis A.; Onel, Melis; Floudas, Christodoulos A.
2016-01-01
HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/. PMID:26859389
Doré, Bruce P; Meksin, Robert; Mather, Mara; Hirst, William; Ochsner, Kevin N
2016-06-01
In the aftermath of a national tragedy, important decisions are predicated on judgments of the emotional significance of the tragedy in the present and future. Research in affective forecasting has largely focused on ways in which people fail to make accurate predictions about the nature and duration of feelings experienced in the aftermath of an event. Here we ask a related but understudied question: can people forecast how they will feel in the future about a tragic event that has already occurred? We found that people were strikingly accurate when predicting how they would feel about the September 11 attacks over 1-, 2-, and 7-year prediction intervals. Although people slightly under- or overestimated their future feelings at times, they nonetheless showed high accuracy in forecasting (a) the overall intensity of their future negative emotion, and (b) the relative degree of different types of negative emotion (i.e., sadness, fear, or anger). Using a path model, we found that the relationship between forecasted and actual future emotion was partially mediated by current emotion and remembered emotion. These results extend theories of affective forecasting by showing that emotional responses to an event of ongoing national significance can be predicted with high accuracy, and by identifying current and remembered feelings as independent sources of this accuracy. (PsycINFO Database Record PMID:27100309
Sengupta, Arkajyoti; Raghavachari, Krishnan
2014-10-14
Accurate modeling of the chemical reactions in many diverse areas such as combustion, photochemistry, or atmospheric chemistry strongly depends on the availability of thermochemical information of the radicals involved. However, accurate thermochemical investigations of radical systems using state of the art composite methods have mostly been restricted to the study of hydrocarbon radicals of modest size. In an alternative approach, systematic error-canceling thermochemical hierarchy of reaction schemes can be applied to yield accurate results for such systems. In this work, we have extended our connectivity-based hierarchy (CBH) method to the investigation of radical systems. We have calibrated our method using a test set of 30 medium sized radicals to evaluate their heats of formation. The CBH-rad30 test set contains radicals containing diverse functional groups as well as cyclic systems. We demonstrate that the sophisticated error-canceling isoatomic scheme (CBH-2) with modest levels of theory is adequate to provide heats of formation accurate to ∼1.5 kcal/mol. Finally, we predict heats of formation of 19 other large and medium sized radicals for which the accuracy of available heats of formation are less well-known. PMID:26588131
Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.
Wu, Tim; Hung, Alice; Mithraratne, Kumar
2014-11-01
This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data. PMID:26355331
Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre
2015-06-04
Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less
Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre
2015-06-04
Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.
Toward an Accurate Prediction of the Arrival Time of Geomagnetic-Effective Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Shi, T.; Wang, Y.; Wan, L.; Cheng, X.; Ding, M.; Zhang, J.
2015-12-01
Accurately predicting the arrival of coronal mass ejections (CMEs) to the Earth based on remote images is of critical significance for the study of space weather. Here we make a statistical study of 21 Earth-directed CMEs, specifically exploring the relationship between CME initial speeds and transit times. The initial speed of a CME is obtained by fitting the CME with the Graduated Cylindrical Shell model and is thus free of projection effects. We then use the drag force model to fit results of the transit time versus the initial speed. By adopting different drag regimes, i.e., the viscous, aerodynamics, and hybrid regimes, we get similar results, with a least mean estimation error of the hybrid model of 12.9 hr. CMEs with a propagation angle (the angle between the propagation direction and the Sun-Earth line) larger than their half-angular widths arrive at the Earth with an angular deviation caused by factors other than the radial solar wind drag. The drag force model cannot be reliably applied to such events. If we exclude these events in the sample, the prediction accuracy can be improved, i.e., the estimation error reduces to 6.8 hr. This work suggests that it is viable to predict the arrival time of CMEs to the Earth based on the initial parameters with fairly good accuracy. Thus, it provides a method of forecasting space weather 1-5 days following the occurrence of CMEs.
SIFTER search: a web server for accurate phylogeny-based protein function prediction.
Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E
2015-07-01
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. PMID:25979264
Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias
2015-01-01
Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. PMID:25794106
Ihm, Yungok; Cooper, Valentino R; Gallego, Nidia C; Contescu, Cristian I; Morris, James R
2014-01-01
We demonstrate a successful, efficient framework for predicting gas adsorption properties in real materials based on first-principles calculations, with a specific comparison of experiment and theory for methane adsorption in activated carbons. These carbon materials have different pore size distributions, leading to a variety of uptake characteristics. Utilizing these distributions, we accurately predict experimental uptakes and heats of adsorption without empirical potentials or lengthy simulations. We demonstrate that materials with smaller pores have higher heats of adsorption, leading to a higher gas density in these pores. This pore-size dependence must be accounted for, in order to predict and understand the adsorption behavior. The theoretical approach combines: (1) ab initio calculations with a van der Waals density functional to determine adsorbent-adsorbate interactions, and (2) a thermodynamic method that predicts equilibrium adsorption densities by directly incorporating the calculated potential energy surface in a slit pore model. The predicted uptake at P=20 bar and T=298 K is in excellent agreement for all five activated carbon materials used. This approach uses only the pore-size distribution as an input, with no fitting parameters or empirical adsorbent-adsorbate interactions, and thus can be easily applied to other adsorbent-adsorbate combinations.
SIFTER search: a web server for accurate phylogeny-based protein function prediction
Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.
2015-05-15
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.
SIFTER search: a web server for accurate phylogeny-based protein function prediction
Sahraeian, Sayed M.; Luo, Kevin R.; Brenner, Steven E.
2015-05-15
We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access tomore » precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. Lastly, the SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded.« less
NASA Technical Reports Server (NTRS)
Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris
2011-01-01
A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.
How accurately can we predict the melting points of drug-like compounds?
Tetko, Igor V; Sushko, Yurii; Novotarskyi, Sergii; Patiny, Luc; Kondratov, Ivan; Petrenko, Alexander E; Charochkina, Larisa; Asiri, Abdullah M
2014-12-22
This article contributes a highly accurate model for predicting the melting points (MPs) of medicinal chemistry compounds. The model was developed using the largest published data set, comprising more than 47k compounds. The distributions of MPs in drug-like and drug lead sets showed that >90% of molecules melt within [50,250]°C. The final model calculated an RMSE of less than 33 °C for molecules from this temperature interval, which is the most important for medicinal chemistry users. This performance was achieved using a consensus model that performed calculations to a significantly higher accuracy than the individual models. We found that compounds with reactive and unstable groups were overrepresented among outlying compounds. These compounds could decompose during storage or measurement, thus introducing experimental errors. While filtering the data by removing outliers generally increased the accuracy of individual models, it did not significantly affect the results of the consensus models. Three analyzed distance to models did not allow us to flag molecules, which had MP values fell outside the applicability domain of the model. We believe that this negative result and the public availability of data from this article will encourage future studies to develop better approaches to define the applicability domain of models. The final model, MP data, and identified reactive groups are available online at http://ochem.eu/article/55638. PMID:25489863
How Accurately Can We Predict the Melting Points of Drug-like Compounds?
2014-01-01
This article contributes a highly accurate model for predicting the melting points (MPs) of medicinal chemistry compounds. The model was developed using the largest published data set, comprising more than 47k compounds. The distributions of MPs in drug-like and drug lead sets showed that >90% of molecules melt within [50,250]°C. The final model calculated an RMSE of less than 33 °C for molecules from this temperature interval, which is the most important for medicinal chemistry users. This performance was achieved using a consensus model that performed calculations to a significantly higher accuracy than the individual models. We found that compounds with reactive and unstable groups were overrepresented among outlying compounds. These compounds could decompose during storage or measurement, thus introducing experimental errors. While filtering the data by removing outliers generally increased the accuracy of individual models, it did not significantly affect the results of the consensus models. Three analyzed distance to models did not allow us to flag molecules, which had MP values fell outside the applicability domain of the model. We believe that this negative result and the public availability of data from this article will encourage future studies to develop better approaches to define the applicability domain of models. The final model, MP data, and identified reactive groups are available online at http://ochem.eu/article/55638. PMID:25489863
Towards Accurate Molecular Modeling of Plastic Bonded Explosives
NASA Astrophysics Data System (ADS)
Chantawansri, T. L.; Andzelm, J.; Taylor, D.; Byrd, E.; Rice, B.
2010-03-01
There is substantial interest in identifying the controlling factors that influence the susceptibility of polymer bonded explosives (PBXs) to accidental initiation. Numerous Molecular Dynamics (MD) simulations of PBXs using the COMPASS force field have been reported in recent years, where the validity of the force field in modeling the solid EM fill has been judged solely on its ability to reproduce lattice parameters, which is an insufficient metric. Performance of the COMPASS force field in modeling EMs and the polymeric binder has been assessed by calculating structural, thermal, and mechanical properties, where only fair agreement with experimental data is obtained. We performed MD simulations using the COMPASS force field for the polymer binder hydroxyl-terminated polybutadiene and five EMs: cyclotrimethylenetrinitramine, 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane, 2,4,6,8,10,12-hexantirohexaazazisowurzitane, 2,4,6-trinitro-1,3,5-benzenetriamine, and pentaerythritol tetranitate. Predicted EM crystallographic and molecular structural parameters, as well as calculated properties for the binder will be compared with experimental results for different simulation conditions. We also present novel simulation protocols, which improve agreement between experimental and computation results thus leading to the accurate modeling of PBXs.
High Order Schemes in Bats-R-US for Faster and More Accurate Predictions
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Gombosi, T. I.
2014-12-01
BATS-R-US is a widely used global magnetohydrodynamics model that originally employed second order accurate TVD schemes combined with block based Adaptive Mesh Refinement (AMR) to achieve high resolution in the regions of interest. In the last years we have implemented fifth order accurate finite difference schemes CWENO5 and MP5 for uniform Cartesian grids. Now the high order schemes have been extended to generalized coordinates, including spherical grids and also to the non-uniform AMR grids including dynamic regridding. We present numerical tests that verify the preservation of free-stream solution and high-order accuracy as well as robust oscillation-free behavior near discontinuities. We apply the new high order accurate schemes to both heliospheric and magnetospheric simulations and show that it is robust and can achieve the same accuracy as the second order scheme with much less computational resources. This is especially important for space weather prediction that requires faster than real time code execution.
2009-12-31
The Software consists of a model used to predict battery capacity fade and resistance growth for arbitrary cycling and temperature profiles. It allows the user to extrapolate from experimental data to predict actual life cycle.
Accurate prediction of helix interactions and residue contacts in membrane proteins.
Hönigschmid, Peter; Frishman, Dmitrij
2016-04-01
Accurate prediction of intra-molecular interactions from amino acid sequence is an important pre-requisite for obtaining high-quality protein models. Over the recent years, remarkable progress in this area has been achieved through the application of novel co-variation algorithms, which eliminate transitive evolutionary connections between residues. In this work we present a new contact prediction method for α-helical transmembrane proteins, MemConP, in which evolutionary couplings are combined with a machine learning approach. MemConP achieves a substantially improved accuracy (precision: 56.0%, recall: 17.5%, MCC: 0.288) compared to the use of either machine learning or co-evolution methods alone. The method also achieves 91.4% precision, 42.1% recall and a MCC of 0.490 in predicting helix-helix interactions based on predicted contacts. The approach was trained and rigorously benchmarked by cross-validation and independent testing on up-to-date non-redundant datasets of 90 and 30 experimental three dimensional structures, respectively. MemConP is a standalone tool that can be downloaded together with the associated training data from http://webclu.bio.wzw.tum.de/MemConP. PMID:26851352
Base-resolution methylation patterns accurately predict transcription factor bindings in vivo
Xu, Tianlei; Li, Ben; Zhao, Meng; Szulwach, Keith E.; Street, R. Craig; Lin, Li; Yao, Bing; Zhang, Feiran; Jin, Peng; Wu, Hao; Qin, Zhaohui S.
2015-01-01
Detecting in vivo transcription factor (TF) binding is important for understanding gene regulatory circuitries. ChIP-seq is a powerful technique to empirically define TF binding in vivo. However, the multitude of distinct TFs makes genome-wide profiling for them all labor-intensive and costly. Algorithms for in silico prediction of TF binding have been developed, based mostly on histone modification or DNase I hypersensitivity data in conjunction with DNA motif and other genomic features. However, technical limitations of these methods prevent them from being applied broadly, especially in clinical settings. We conducted a comprehensive survey involving multiple cell lines, TFs, and methylation types and found that there are intimate relationships between TF binding and methylation level changes around the binding sites. Exploiting the connection between DNA methylation and TF binding, we proposed a novel supervised learning approach to predict TF–DNA interaction using data from base-resolution whole-genome methylation sequencing experiments. We devised beta-binomial models to characterize methylation data around TF binding sites and the background. Along with other static genomic features, we adopted a random forest framework to predict TF–DNA interaction. After conducting comprehensive tests, we saw that the proposed method accurately predicts TF binding and performs favorably versus competing methods. PMID:25722376
NASA Astrophysics Data System (ADS)
Garrison, Stephen L.
2005-07-01
The combination of molecular simulations and potentials obtained from quantum chemistry is shown to be able to provide reasonably accurate thermodynamic property predictions. Gibbs ensemble Monte Carlo simulations are used to understand the effects of small perturbations to various regions of the model Lennard-Jones 12-6 potential. However, when the phase behavior and second virial coefficient are scaled by the critical properties calculated for each potential, the results obey a corresponding states relation suggesting a non-uniqueness problem for interaction potentials fit to experimental phase behavior. Several variations of a procedure collectively referred to as quantum mechanical Hybrid Methods for Interaction Energies (HM-IE) are developed and used to accurately estimate interaction energies from CCSD(T) calculations with a large basis set in a computationally efficient manner for the neon-neon, acetylene-acetylene, and nitrogen-benzene systems. Using these results and methods, an ab initio, pairwise-additive, site-site potential for acetylene is determined and then improved using results from molecular simulations using this initial potential. The initial simulation results also indicate that a limited range of energies important for accurate phase behavior predictions. Second virial coefficients calculated from the improved potential indicate that one set of experimental data in the literature is likely erroneous. This prescription is then applied to methanethiol. Difficulties in modeling the effects of the lone pair electrons suggest that charges on the lone pair sites negatively impact the ability of the intermolecular potential to describe certain orientations, but that the lone pair sites may be necessary to reasonably duplicate the interaction energies for several orientations. Two possible methods for incorporating the effects of three-body interactions into simulations within the pairwise-additivity formulation are also developed. A low density
NASA Technical Reports Server (NTRS)
Levy, R.; Mcginness, H.
1976-01-01
Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.
Accurate and Robust Genomic Prediction of Celiac Disease Using Statistical Learning
Abraham, Gad; Tye-Din, Jason A.; Bhalala, Oneil G.; Kowalczyk, Adam; Zobel, Justin; Inouye, Michael
2014-01-01
Practical application of genomic-based risk stratification to clinical diagnosis is appealing yet performance varies widely depending on the disease and genomic risk score (GRS) method. Celiac disease (CD), a common immune-mediated illness, is strongly genetically determined and requires specific HLA haplotypes. HLA testing can exclude diagnosis but has low specificity, providing little information suitable for clinical risk stratification. Using six European cohorts, we provide a proof-of-concept that statistical learning approaches which simultaneously model all SNPs can generate robust and highly accurate predictive models of CD based on genome-wide SNP profiles. The high predictive capacity replicated both in cross-validation within each cohort (AUC of 0.87–0.89) and in independent replication across cohorts (AUC of 0.86–0.9), despite differences in ethnicity. The models explained 30–35% of disease variance and up to ∼43% of heritability. The GRS's utility was assessed in different clinically relevant settings. Comparable to HLA typing, the GRS can be used to identify individuals without CD with ≥99.6% negative predictive value however, unlike HLA typing, fine-scale stratification of individuals into categories of higher-risk for CD can identify those that would benefit from more invasive and costly definitive testing. The GRS is flexible and its performance can be adapted to the clinical situation by adjusting the threshold cut-off. Despite explaining a minority of disease heritability, our findings indicate a genomic risk score provides clinically relevant information to improve upon current diagnostic pathways for CD and support further studies evaluating the clinical utility of this approach in CD and other complex diseases. PMID:24550740
NASA Astrophysics Data System (ADS)
Rey, M.; Nikitin, A. V.; Tyuterev, V.
2014-06-01
Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical
Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru
2016-01-01
Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research. PMID:27571061
NASA Astrophysics Data System (ADS)
Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.
2015-12-01
We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.
Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?
Edwards, G E; Baker, N R
1993-08-01
Analysis is made of the energetics of CO2 fixation, the photochemical quantum requirement per CO2 fixed, and sinks for utilising reductive power in the C4 plant maize. CO2 assimilation is the primary sink for energy derived from photochemistry, whereas photorespiration and nitrogen assimilation are relatively small sinks, particularly in developed leaves. Measurement of O2 exchange by mass spectrometry and CO2 exchange by infrared gas analysis under varying levels of CO2 indicate that there is a very close relationship between the true rate of O2 evolution from PS II and the net rate of CO2 fixation. Consideration is given to measurements of the quantum yields of PS II (φ PS II) from fluorescence analysis and of CO2 assimilation ([Formula: see text]) in maize over a wide range of conditions. The[Formula: see text] ratio was found to remain reasonably constant (ca. 12) over a range of physiological conditions in developed leaves, with varying temperature, CO2 concentrations, light intensities (from 5% to 100% of full sunlight), and following photoinhibition under high light and low temperature. A simple model for predicting CO2 assimilation from fluorescence parameters is presented and evaluated. It is concluded that under a wide range of conditions fluorescence parameters can be used to predict accurately and rapidly CO2 assimilation rates in maize. PMID:24317706
New process model proves accurate in tests on catalytic reformer
Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. )
1994-07-25
A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.
Energy expenditure during level human walking: seeking a simple and accurate predictive solution.
Ludlow, Lindsay W; Weyand, Peter G
2016-03-01
Accurate prediction of the metabolic energy that walking requires can inform numerous health, bodily status, and fitness outcomes. We adopted a two-step approach to identifying a concise, generalized equation for predicting level human walking metabolism. Using literature-aggregated values we compared 1) the predictive accuracy of three literature equations: American College of Sports Medicine (ACSM), Pandolf et al., and Height-Weight-Speed (HWS); and 2) the goodness-of-fit possible from one- vs. two-component descriptions of walking metabolism. Literature metabolic rate values (n = 127; speed range = 0.4 to 1.9 m/s) were aggregated from 25 subject populations (n = 5-42) whose means spanned a 1.8-fold range of heights and a 4.2-fold range of weights. Population-specific resting metabolic rates (V̇o2 rest) were determined using standardized equations. Our first finding was that the ACSM and Pandolf et al. equations underpredicted nearly all 127 literature-aggregated values. Consequently, their standard errors of estimate (SEE) were nearly four times greater than those of the HWS equation (4.51 and 4.39 vs. 1.13 ml O2·kg(-1)·min(-1), respectively). For our second comparison, empirical best-fit relationships for walking metabolism were derived from the data set in one- and two-component forms for three V̇o2-speed model types: linear (∝V(1.0)), exponential (∝V(2.0)), and exponential/height (∝V(2.0)/Ht). We found that the proportion of variance (R(2)) accounted for, when averaged across the three model types, was substantially lower for one- vs. two-component versions (0.63 ± 0.1 vs. 0.90 ± 0.03) and the predictive errors were nearly twice as great (SEE = 2.22 vs. 1.21 ml O2·kg(-1)·min(-1)). Our final analysis identified the following concise, generalized equation for predicting level human walking metabolism: V̇o2 total = V̇o2 rest + 3.85 + 5.97·V(2)/Ht (where V is measured in m/s, Ht in meters, and V̇o2 in ml O2·kg(-1)·min(-1)). PMID:26679617
Water wave model with accurate dispersion and vertical vorticity
NASA Astrophysics Data System (ADS)
Bokhove, Onno
2010-05-01
Cotter and Bokhove (Journal of Engineering Mathematics 2010) derived a variational water wave model with accurate dispersion and vertical vorticity. In one limit, it leads to Luke's variational principle for potential flow water waves. In the another limit it leads to the depth-averaged shallow water equations including vertical vorticity. Presently, focus will be put on the Hamiltonian formulation of the variational model and its boundary conditions.
An Accurate and Dynamic Computer Graphics Muscle Model
NASA Technical Reports Server (NTRS)
Levine, David Asher
1997-01-01
A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.
Young, Jonathan; Modat, Marc; Cardoso, Manuel J.; Mendelson, Alex; Cash, Dave; Ourselin, Sebastien
2013-01-01
Accurately identifying the patients that have mild cognitive impairment (MCI) who will go on to develop Alzheimer's disease (AD) will become essential as new treatments will require identification of AD patients at earlier stages in the disease process. Most previous work in this area has centred around the same automated techniques used to diagnose AD patients from healthy controls, by coupling high dimensional brain image data or other relevant biomarker data to modern machine learning techniques. Such studies can now distinguish between AD patients and controls as accurately as an experienced clinician. Models trained on patients with AD and control subjects can also distinguish between MCI patients that will convert to AD within a given timeframe (MCI-c) and those that remain stable (MCI-s), although differences between these groups are smaller and thus, the corresponding accuracy is lower. The most common type of classifier used in these studies is the support vector machine, which gives categorical class decisions. In this paper, we introduce Gaussian process (GP) classification to the problem. This fully Bayesian method produces naturally probabilistic predictions, which we show correlate well with the actual chances of converting to AD within 3 years in a population of 96 MCI-s and 47 MCI-c subjects. Furthermore, we show that GPs can integrate multimodal data (in this study volumetric MRI, FDG-PET, cerebrospinal fluid, and APOE genotype with the classification process through the use of a mixed kernel). The GP approach aids combination of different data sources by learning parameters automatically from training data via type-II maximum likelihood, which we compare to a more conventional method based on cross validation and an SVM classifier. When the resulting probabilities from the GP are dichotomised to produce a binary classification, the results for predicting MCI conversion based on the combination of all three types of data show a balanced accuracy
What do saliency models predict?
Koehler, Kathryn; Guo, Fei; Zhang, Sheng; Eckstein, Miguel P.
2014-01-01
Saliency models have been frequently used to predict eye movements made during image viewing without a specified task (free viewing). Use of a single image set to systematically compare free viewing to other tasks has never been performed. We investigated the effect of task differences on the ability of three models of saliency to predict the performance of humans viewing a novel database of 800 natural images. We introduced a novel task where 100 observers made explicit perceptual judgments about the most salient image region. Other groups of observers performed a free viewing task, saliency search task, or cued object search task. Behavior on the popular free viewing task was not best predicted by standard saliency models. Instead, the models most accurately predicted the explicit saliency selections and eye movements made while performing saliency judgments. Observers' fixations varied similarly across images for the saliency and free viewing tasks, suggesting that these two tasks are related. The variability of observers' eye movements was modulated by the task (lowest for the object search task and greatest for the free viewing and saliency search tasks) as well as the clutter content of the images. Eye movement variability in saliency search and free viewing might be also limited by inherent variation of what observers consider salient. Our results contribute to understanding the tasks and behavioral measures for which saliency models are best suited as predictors of human behavior, the relationship across various perceptual tasks, and the factors contributing to observer variability in fixational eye movements. PMID:24618107
Cas9-chromatin binding information enables more accurate CRISPR off-target prediction
Singh, Ritambhara; Kuscu, Cem; Quinlan, Aaron; Qi, Yanjun; Adli, Mazhar
2015-01-01
The CRISPR system has become a powerful biological tool with a wide range of applications. However, improving targeting specificity and accurately predicting potential off-targets remains a significant goal. Here, we introduce a web-based CRISPR/Cas9 Off-target Prediction and Identification Tool (CROP-IT) that performs improved off-target binding and cleavage site predictions. Unlike existing prediction programs that solely use DNA sequence information; CROP-IT integrates whole genome level biological information from existing Cas9 binding and cleavage data sets. Utilizing whole-genome chromatin state information from 125 human cell types further enhances its computational prediction power. Comparative analyses on experimentally validated datasets show that CROP-IT outperforms existing computational algorithms in predicting both Cas9 binding as well as cleavage sites. With a user-friendly web-interface, CROP-IT outputs scored and ranked list of potential off-targets that enables improved guide RNA design and more accurate prediction of Cas9 binding or cleavage sites. PMID:26032770
Cestari, Andrea
2013-01-01
Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology. PMID:23423686
Atmospheric prediction model survey
NASA Technical Reports Server (NTRS)
Wellck, R. E.
1976-01-01
As part of the SEASAT Satellite program of NASA, a survey of representative primitive equation atmospheric prediction models that exist in the world today was written for the Jet Propulsion Laboratory. Seventeen models developed by eleven different operational and research centers throughout the world are included in the survey. The surveys are tutorial in nature describing the features of the various models in a systematic manner.
Accurate rotor loads prediction using the FLAP (Force and Loads Analysis Program) dynamics code
Wright, A.D.; Thresher, R.W.
1987-10-01
Accurately predicting wind turbine blade loads and response is very important in predicting the fatigue life of wind turbines. There is a clear need in the wind turbine community for validated and user-friendly structural dynamics codes for predicting blade loads and response. At the Solar Energy Research Institute (SERI), a Force and Loads Analysis Program (FLAP) has been refined and validated and is ready for general use. Currently, FLAP is operational on an IBM-PC compatible computer and can be used to analyze both rigid- and teetering-hub configurations. The results of this paper show that FLAP can be used to accurately predict the deterministic loads for rigid-hub rotors. This paper compares analytical predictions to field test measurements for a three-bladed, upwind turbine with a rigid-hub configuration. The deterministic loads predicted by FLAP are compared with 10-min azimuth averages of blade root flapwise bending moments for different wind speeds. 6 refs., 12 figs., 3 tabs.
Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method
Burger, Lukas; van Nimwegen, Erik
2008-01-01
Accurate and large-scale prediction of protein–protein interactions directly from amino-acid sequences is one of the great challenges in computational biology. Here we present a new Bayesian network method that predicts interaction partners using only multiple alignments of amino-acid sequences of interacting protein domains, without tunable parameters, and without the need for any training examples. We first apply the method to bacterial two-component systems and comprehensively reconstruct two-component signaling networks across all sequenced bacteria. Comparisons of our predictions with known interactions show that our method infers interaction partners genome-wide with high accuracy. To demonstrate the general applicability of our method we show that it also accurately predicts interaction partners in a recent dataset of polyketide synthases. Analysis of the predicted genome-wide two-component signaling networks shows that cognates (interacting kinase/regulator pairs, which lie adjacent on the genome) and orphans (which lie isolated) form two relatively independent components of the signaling network in each genome. In addition, while most genes are predicted to have only a small number of interaction partners, we find that 10% of orphans form a separate class of ‘hub' nodes that distribute and integrate signals to and from up to tens of different interaction partners. PMID:18277381
An Accurate Temperature Correction Model for Thermocouple Hygrometers 1
Savage, Michael J.; Cass, Alfred; de Jager, James M.
1982-01-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241
An accurate temperature correction model for thermocouple hygrometers.
Savage, M J; Cass, A; de Jager, J M
1982-02-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques.In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38 degrees C). The model based on calibration at two temperatures is superior to that based on only one calibration.The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25 degrees C, if the calibration slopes are corrected for temperature. PMID:16662241
Wong, Florence; O’Leary, Jacqueline G; Reddy, K Rajender; Patton, Heather; Kamath, Patrick S; Fallon, Michael B; Garcia-Tsao, Guadalupe; Subramanian, Ram M.; Malik, Raza; Maliakkal, Benedict; Thacker, Leroy R; Bajaj, Jasmohan S
2015-01-01
Background & Aims A consensus conference proposed that cirrhosis-associated acute kidney injury (AKI) be defined as an increase in serum creatinine by >50% from the stable baseline value in <6 months or by ≥0.3mg/dL in <48 hrs. We prospectively evaluated the ability of these criteria to predict mortality within 30 days among hospitalized patients with cirrhosis and infection. Methods 337 patients with cirrhosis admitted with or developed an infection in hospital (56% men; 56±10 y old; model for end-stage liver disease score, 20±8) were followed. We compared data on 30-day mortality, hospital length-of-stay, and organ failure between patients with and without AKI. Results 166 (49%) developed AKI during hospitalization, based on the consensus criteria. Patients who developed AKI had higher admission Child-Pugh (11.0±2.1 vs 9.6±2.1; P<.0001), and MELD scores (23±8 vs17±7; P<.0001), and lower mean arterial pressure (81±16mmHg vs 85±15mmHg; P<.01) than those who did not. Also higher amongst patients with AKI were mortality in ≤30 days (34% vs 7%), intensive care unit transfer (46% vs 20%), ventilation requirement (27% vs 6%), and shock (31% vs 8%); AKI patients also had longer hospital stays (17.8±19.8 days vs 13.3±31.8 days) (all P<.001). 56% of AKI episodes were transient, 28% persistent, and 16% resulted in dialysis. Mortality was 80% among those without renal recovery, higher compared to partial (40%) or complete recovery (15%), or AKI-free patients (7%; P<.0001). Conclusions 30-day mortality is 10-fold higher among infected hospitalized cirrhotic patients with irreversible AKI than those without AKI. The consensus definition of AKI accurately predicts 30-day mortality, length of hospital stay, and organ failure. PMID:23999172
NASA Technical Reports Server (NTRS)
Ashrafi, S.
1991-01-01
K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.
Arvis, P; Guivarc'h-Levêque, A; Varlan, E; Colella, C; Lehert, P
2013-02-01
A predictive model is a mathematical expression estimating the probability of pregnancy, by combining predictive variables, or indicators. Its development requires three successive phases: formulation of the model, its validation--internal then external--and the impact study. Its performance is assessed by its discrimination and its calibration. Numerous models were proposed, for spontaneous pregnancies, IUI and IVF, but with rather poor results, and their external validation was seldom carried out and was mainly inconclusive. The impact study-consisting in ascertaining whether their use improves medical practice--was exceptionally done. The ideal ART predictive model is a "Center specific" model, helping physicians to choose between abstention, IUI and IVF, by providing a reliable cumulative rate of pregnancy for each option. This tool would allow to rationalize the practices, by avoiding premature, late, or hopeless treatments. The model would also allow to compare the performances between ART Centers based on objective criteria. Today the best solution is to adjust the existing models to one's own practice, by considering models validated with variables describing the treated population, whilst adjusting the calculation to the Center's performances. PMID:23182786
On the importance of having accurate data for astrophysical modelling
NASA Astrophysics Data System (ADS)
Lique, Francois
2016-06-01
The Herschel telescope and the ALMA and NOEMA interferometers have opened new windows of observation for wavelengths ranging from far infrared to sub-millimeter with spatial and spectral resolutions previously unmatched. To make the most of these observations, an accurate knowledge of the physical and chemical processes occurring in the interstellar and circumstellar media is essential.In this presentation, I will discuss what are the current needs of astrophysics in terms of molecular data and I will show that accurate molecular data are crucial for the proper determination of the physical conditions in molecular clouds.First, I will focus on collisional excitation studies that are needed for molecular lines modelling beyond the Local Thermodynamic Equilibrium (LTE) approach. In particular, I will show how new collisional data for the HCN and HNC isomers, two tracers of star forming conditions, have allowed solving the problem of their respective abundance in cold molecular clouds. I will also present the last collisional data that have been computed in order to analyse new highly resolved observations provided by the ALMA interferometer.Then, I will present the calculation of accurate rate constants for the F+H2 → HF+H and Cl+H2 ↔ HCl+H reactions, which have allowed a more accurate determination of the physical conditions in diffuse molecular clouds. I will also present the recent work on the ortho-para-H2 conversion due to hydrogen exchange that allow more accurate determination of the ortho-to-para-H2 ratio in the universe and that imply a significant revision of the cooling mechanism in astrophysical media.
A Single Linear Prediction Filter that Accurately Predicts the AL Index
NASA Astrophysics Data System (ADS)
McPherron, R. L.; Chu, X.
2015-12-01
The AL index is a measure of the strength of the westward electrojet flowing along the auroral oval. It has two components: one from the global DP-2 current system and a second from the DP-1 current that is more localized near midnight. It is generally believed that the index a very poor measure of these currents because of its dependence on the distance of stations from the source of the two currents. In fact over season and solar cycle the coupling strength defined as the steady state ratio of the output AL to the input coupling function varies by a factor of four. There are four factors that lead to this variation. First is the equinoctial effect that modulates coupling strength with peaks (strongest coupling) at the equinoxes. Second is the saturation of the polar cap potential which decreases coupling strength as the strength of the driver increases. Since saturation occurs more frequently at solar maximum we obtain the result that maximum coupling strength occurs at equinox at solar minimum. A third factor is ionospheric conductivity with stronger coupling at summer solstice as compared to winter. The fourth factor is the definition of a solar wind coupling function appropriate to a given index. We have developed an optimum coupling function depending on solar wind speed, density, transverse magnetic field, and IMF clock angle which is better than previous functions. Using this we have determined the seasonal variation of coupling strength and developed an inverse function that modulates the optimum coupling function so that all seasonal variation is removed. In a similar manner we have determined the dependence of coupling strength on solar wind driver strength. The inverse of this function is used to scale a linear prediction filter thus eliminating the dependence on driver strength. Our result is a single linear filter that is adjusted in a nonlinear manner by driver strength and an optimum coupling function that is seasonal modulated. Together this
NASA Astrophysics Data System (ADS)
Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.
2016-02-01
The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process.
NASA Astrophysics Data System (ADS)
Hedrick, A. R.; Marks, D. G.; Winstral, A. H.; Marshall, H. P.
2014-12-01
The ability to forecast snow water equivalent, or SWE, in mountain catchments would benefit many different communities ranging from avalanche hazard mitigation to water resource management. Historical model runs of Isnobal, the physically based energy balance snow model, have been produced over the 2150 km2 Boise River Basin for water years 2012 - 2014 at 100-meter resolution. Spatially distributed forcing parameters such as precipitation, wind, and relative humidity are generated from automated weather stations located throughout the watershed, and are supplied to Isnobal at hourly timesteps. Similarly, the Weather Research & Forecasting (WRF) Model provides hourly predictions of the same forcing parameters from an atmospheric physics perspective. This work aims to quantitatively compare WRF model output to the spatial meteorologic fields developed to force Isnobal, with the hopes of eventually using WRF predictions to create accurate hourly forecasts of SWE over a large mountainous basin.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
An accurate model potential for alkali neon systems.
Zanuttini, D; Jacquet, E; Giglio, E; Douady, J; Gervais, B
2009-12-01
We present a detailed investigation of the ground and lowest excited states of M-Ne dimers, for M=Li, Na, and K. We show that the potential energy curves of these Van der Waals dimers can be obtained accurately by considering the alkali neon systems as one-electron systems. Following previous authors, the model describes the evolution of the alkali valence electron in the combined potentials of the alkali and neon cores by means of core polarization pseudopotentials. The key parameter for an accurate model is the M(+)-Ne potential energy curve, which was obtained by means of ab initio CCSD(T) calculation using a large basis set. For each MNe dimer, a systematic comparison with ab initio computation of the potential energy curve for the X, A, and B states shows the remarkable accuracy of the model. The vibrational analysis and the comparison with existing experimental data strengthens this conclusion and allows for a precise assignment of the vibrational levels. PMID:19968334
2015-01-01
Background Biclustering is a popular method for identifying under which experimental conditions biological signatures are co-expressed. However, the general biclustering problem is NP-hard, offering room to focus algorithms on specific biological tasks. We hypothesize that conditional co-regulation of genes is a key factor in determining cell phenotype and that accurately segregating conditions in biclusters will improve such predictions. Thus, we developed a bicluster sampled coherence metric (BSCM) for determining which conditions and signals should be included in a bicluster. Results Our BSCM calculates condition and cluster size specific p-values, and we incorporated these into the popular integrated biclustering algorithm cMonkey. We demonstrate that incorporation of our new algorithm significantly improves bicluster co-regulation scores (p-value = 0.009) and GO annotation scores (p-value = 0.004). Additionally, we used a bicluster based signal to predict whether a given experimental condition will result in yeast peroxisome induction. Using the new algorithm, the classifier accuracy improves from 41.9% to 76.1% correct. Conclusions We demonstrate that the proposed BSCM helps determine which signals ought to be co-clustered, resulting in more accurately assigned bicluster membership. Furthermore, we show that BSCM can be extended to more accurately detect under which experimental conditions the genes are co-clustered. Features derived from this more accurate analysis of conditional regulation results in a dramatic improvement in the ability to predict a cellular phenotype in yeast. The latest cMonkey is available for download at https://github.com/baliga-lab/cmonkey2. The experimental data and source code featured in this paper is available http://AitchisonLab.com/BSCM. BSCM has been incorporated in the official cMonkey release. PMID:25881257
Accurate similarity index based on activity and connectivity of node for link prediction
NASA Astrophysics Data System (ADS)
Li, Longjie; Qian, Lvjian; Wang, Xiaoping; Luo, Shishun; Chen, Xiaoyun
2015-05-01
Recent years have witnessed the increasing of available network data; however, much of those data is incomplete. Link prediction, which can find the missing links of a network, plays an important role in the research and analysis of complex networks. Based on the assumption that two unconnected nodes which are highly similar are very likely to have an interaction, most of the existing algorithms solve the link prediction problem by computing nodes' similarities. The fundamental requirement of those algorithms is accurate and effective similarity indices. In this paper, we propose a new similarity index, namely similarity based on activity and connectivity (SAC), which performs link prediction more accurately. To compute the similarity between two nodes, this index employs the average activity of these two nodes in their common neighborhood and the connectivities between them and their common neighbors. The higher the average activity is and the stronger the connectivities are, the more similar the two nodes are. The proposed index not only commendably distinguishes the contributions of paths but also incorporates the influence of endpoints. Therefore, it can achieve a better predicting result. To verify the performance of SAC, we conduct experiments on 10 real-world networks. Experimental results demonstrate that SAC outperforms the compared baselines.
Unilateral Prostate Cancer Cannot be Accurately Predicted in Low-Risk Patients
Isbarn, Hendrik; Karakiewicz, Pierre I.; Vogel, Susanne
2010-07-01
Purpose: Hemiablative therapy (HAT) is increasing in popularity for treatment of patients with low-risk prostate cancer (PCa). The validity of this therapeutic modality, which exclusively treats PCa within a single prostate lobe, rests on accurate staging. We tested the accuracy of unilaterally unremarkable biopsy findings in cases of low-risk PCa patients who are potential candidates for HAT. Methods and Materials: The study population consisted of 243 men with clinical stage {<=}T2a, a prostate-specific antigen (PSA) concentration of <10 ng/ml, a biopsy-proven Gleason sum of {<=}6, and a maximum of 2 ipsilateral positive biopsy results out of 10 or more cores. All men underwent a radical prostatectomy, and pathology stage was used as the gold standard. Univariable and multivariable logistic regression models were tested for significant predictors of unilateral, organ-confined PCa. These predictors consisted of PSA, %fPSA (defined as the quotient of free [uncomplexed] PSA divided by the total PSA), clinical stage (T2a vs. T1c), gland volume, and number of positive biopsy cores (2 vs. 1). Results: Despite unilateral stage at biopsy, bilateral or even non-organ-confined PCa was reported in 64% of all patients. In multivariable analyses, no variable could clearly and independently predict the presence of unilateral PCa. This was reflected in an overall accuracy of 58% (95% confidence interval, 50.6-65.8%). Conclusions: Two-thirds of patients with unilateral low-risk PCa, confirmed by clinical stage and biopsy findings, have bilateral or non-organ-confined PCa at radical prostatectomy. This alarming finding questions the safety and validity of HAT.
Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2002-01-01
NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.
Planar Near-Field Phase Retrieval Using GPUs for Accurate THz Far-Field Prediction
NASA Astrophysics Data System (ADS)
Junkin, Gary
2013-04-01
With a view to using Phase Retrieval to accurately predict Terahertz antenna far-field from near-field intensity measurements, this paper reports on three fundamental advances that achieve very low algorithmic error penalties. The first is a new Gaussian beam analysis that provides accurate initial complex aperture estimates including defocus and astigmatic phase errors, based only on first and second moment calculations. The second is a powerful noise tolerant near-field Phase Retrieval algorithm that combines Anderson's Plane-to-Plane (PTP) with Fienup's Hybrid-Input-Output (HIO) and Successive Over-Relaxation (SOR) to achieve increased accuracy at reduced scan separations. The third advance employs teraflop Graphical Processing Units (GPUs) to achieve practically real time near-field phase retrieval and to obtain the optimum aperture constraint without any a priori information.
A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes
Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.
2004-12-01
We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.
A machine learning approach to the accurate prediction of multi-leaf collimator positional errors
NASA Astrophysics Data System (ADS)
Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon
2016-03-01
Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD = 1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be
A machine learning approach to the accurate prediction of multi-leaf collimator positional errors.
Carlson, Joel N K; Park, Jong Min; Park, So-Yeon; Park, Jong In; Choi, Yunseok; Ye, Sung-Joon
2016-03-21
Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD = 1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be
NASA Astrophysics Data System (ADS)
Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat
2015-05-01
Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.
Identification of accurate nonlinear rainfall-runoff models with unique parameters
NASA Astrophysics Data System (ADS)
Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N.
2009-04-01
We propose a strategy to identify models with unique parameters that yield accurate streamflow predictions, given a time-series of rainfall inputs. The procedure consists of five general steps. First, an a priori range of model structures is specified based on prior general and site-specific hydrologic knowledge. To this end, we rely on a flexible model code that allows a specification of a wide range of model structures, from simple to complex. Second, using global optimization each model structure is calibrated to a record of rainfall-runoff data, yielding optimal parameter values for each model structure. Third, accuracy of each model structure is determined by estimating model prediction errors using independent validation and statistical theory. Fourth, parameter identifiability of each calibrated model structure is estimated by means of Monte Carlo Markov Chain simulation. Finally, an assessment is made about each model structure in terms of its accuracy of mimicking rainfall-runoff processes (step 3), and the uniqueness of its parameters (step 4). The procedure results in the identification of the most complex and accurate model supported by the data, without causing parameter equifinality. As such, it provides insight into the information content of the data for identifying nonlinear rainfall-runoff models. We illustrate the method using rainfall-runoff data records from several MOPEX basins in the US.
Material Models for Accurate Simulation of Sheet Metal Forming and Springback
NASA Astrophysics Data System (ADS)
Yoshida, Fusahito
2010-06-01
For anisotropic sheet metals, modeling of anisotropy and the Bauschinger effect is discussed in the framework of Yoshida-Uemori kinematic hardening model incorporating with anisotropic yield functions. The performances of the models in predicting yield loci, cyclic stress-strain responses on several types of steel and aluminum sheets are demonstrated by comparing the numerical simulation results with the corresponding experimental observations. From some examples of FE simulation of sheet metal forming and springback, it is concluded that modeling of both the anisotropy and the Bauschinger effect is essential for the accurate numerical simulation.
Geng, Hao; Jiang, Fan; Wu, Yun-Dong
2016-05-19
Cyclic peptides (CPs) are promising candidates for drugs, chemical biology tools, and self-assembling nanomaterials. However, the development of reliable and accurate computational methods for their structure prediction has been challenging. Here, 20 all-trans CPs of 5-12 residues selected from Cambridge Structure Database have been simulated using replica-exchange molecular dynamics with four different force fields. Our recently developed residue-specific force fields RSFF1 and RSFF2 can correctly identify the crystal-like conformations of more than half CPs as the most populated conformation. The RSFF2 performs the best, which consistently predicts the crystal structures of 17 out of 20 CPs with rmsd < 1.1 Å. We also compared the backbone (ϕ, ψ) sampling of residues in CPs with those in short linear peptides and in globular proteins. In general, unlike linear peptides, CPs have local conformational free energies and entropies quite similar to globular proteins. PMID:27128113
Accurate, low-cost 3D-models of gullies
NASA Astrophysics Data System (ADS)
Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine
2015-04-01
Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we
2014-01-01
Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a predetermined theory-inspired functional form for the relationship between the variables that describe an experimentally determined or modeled structure of a protein–ligand complex and its binding affinity. The inherent problem of this approach is in the difficulty of explicitly modeling the various contributions of intermolecular interactions to binding affinity. New scoring functions based on machine-learning regression models, which are able to exploit effectively much larger amounts of experimental data and circumvent the need for a predetermined functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein–ligand complex does not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result: modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational heterogeneity in data. PMID:24528282
NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.
Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua
2013-01-01
Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713
NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data
Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua
2013-01-01
Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713
Convertino, Victor A; Wirt, Michael D; Glenn, John F; Lein, Brian C
2016-06-01
Shock is deadly and unpredictable if it is not recognized and treated in early stages of hemorrhage. Unfortunately, measurements of standard vital signs that are displayed on current medical monitors fail to provide accurate or early indicators of shock because of physiological mechanisms that effectively compensate for blood loss. As a result of new insights provided by the latest research on the physiology of shock using human experimental models of controlled hemorrhage, it is now recognized that measurement of the body's reserve to compensate for reduced circulating blood volume is the single most important indicator for early and accurate assessment of shock. We have called this function the "compensatory reserve," which can be accurately assessed by real-time measurements of changes in the features of the arterial waveform. In this paper, the physiology underlying the development and evaluation of a new noninvasive technology that allows for real-time measurement of the compensatory reserve will be reviewed, with its clinical implications for earlier and more accurate prediction of shock. PMID:26950588
2016-01-01
Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an 'intraocular pressure (IOP)-integrated VF trend analysis' was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553
Asaoka, Ryo; Fujino, Yuri; Murata, Hiroshi; Miki, Atsuya; Tanito, Masaki; Mizoue, Shiro; Mori, Kazuhiko; Suzuki, Katsuyoshi; Yamashita, Takehiro; Kashiwagi, Kenji; Shoji, Nobuyuki
2016-01-01
Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an ‘intraocular pressure (IOP)-integrated VF trend analysis’ was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553
Braun, Tatjana; Koehler Leman, Julia; Lange, Oliver F.
2015-01-01
Recent work has shown that the accuracy of ab initio structure prediction can be significantly improved by integrating evolutionary information in form of intra-protein residue-residue contacts. Following this seminal result, much effort is put into the improvement of contact predictions. However, there is also a substantial need to develop structure prediction protocols tailored to the type of restraints gained by contact predictions. Here, we present a structure prediction protocol that combines evolutionary information with the resolution-adapted structural recombination approach of Rosetta, called RASREC. Compared to the classic Rosetta ab initio protocol, RASREC achieves improved sampling, better convergence and higher robustness against incorrect distance restraints, making it the ideal sampling strategy for the stated problem. To demonstrate the accuracy of our protocol, we tested the approach on a diverse set of 28 globular proteins. Our method is able to converge for 26 out of the 28 targets and improves the average TM-score of the entire benchmark set from 0.55 to 0.72 when compared to the top ranked models obtained by the EVFold web server using identical contact predictions. Using a smaller benchmark, we furthermore show that the prediction accuracy of our method is only slightly reduced when the contact prediction accuracy is comparatively low. This observation is of special interest for protein sequences that only have a limited number of homologs. PMID:26713437
An accurate and simple quantum model for liquid water.
Paesani, Francesco; Zhang, Wei; Case, David A; Cheatham, Thomas E; Voth, Gregory A
2006-11-14
The path-integral molecular dynamics and centroid molecular dynamics methods have been applied to investigate the behavior of liquid water at ambient conditions starting from a recently developed simple point charge/flexible (SPC/Fw) model. Several quantum structural, thermodynamic, and dynamical properties have been computed and compared to the corresponding classical values, as well as to the available experimental data. The path-integral molecular dynamics simulations show that the inclusion of quantum effects results in a less structured liquid with a reduced amount of hydrogen bonding in comparison to its classical analog. The nuclear quantization also leads to a smaller dielectric constant and a larger diffusion coefficient relative to the corresponding classical values. Collective and single molecule time correlation functions show a faster decay than their classical counterparts. Good agreement with the experimental measurements in the low-frequency region is obtained for the quantum infrared spectrum, which also shows a higher intensity and a redshift relative to its classical analog. A modification of the original parametrization of the SPC/Fw model is suggested and tested in order to construct an accurate quantum model, called q-SPC/Fw, for liquid water. The quantum results for several thermodynamic and dynamical properties computed with the new model are shown to be in a significantly better agreement with the experimental data. Finally, a force-matching approach was applied to the q-SPC/Fw model to derive an effective quantum force field for liquid water in which the effects due to the nuclear quantization are explicitly distinguished from those due to the underlying molecular interactions. Thermodynamic and dynamical properties computed using standard classical simulations with this effective quantum potential are found in excellent agreement with those obtained from significantly more computationally demanding full centroid molecular dynamics
Intermolecular potentials and the accurate prediction of the thermodynamic properties of water.
Shvab, I; Sadus, Richard J
2013-11-21
The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g∕cm(3) for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC∕E and TIP4P∕2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC∕E and TIP4P∕2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K. PMID:24320337
Intermolecular potentials and the accurate prediction of the thermodynamic properties of water
NASA Astrophysics Data System (ADS)
Shvab, I.; Sadus, Richard J.
2013-11-01
The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm3 for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.
Towards first-principles based prediction of highly accurate electrochemical Pourbiax diagrams
NASA Astrophysics Data System (ADS)
Zeng, Zhenhua; Chan, Maria; Greeley, Jeff
2015-03-01
Electrochemical Pourbaix diagrams lie at the heart of aqueous electrochemical processes and are central to the identification of stable phases of metals for processes ranging from electrocatalysis to corrosion. Even though standard DFT calculations are potentially powerful tools for the prediction of such Pourbaix diagrams, inherent errors in the description of strongly-correlated transition metal (hydr)oxides, together with neglect of weak van der Waals (vdW) interactions, has limited the reliability of the predictions for even the simplest bulk systems; corresponding predictions for more complex alloy or surface structures are even more challenging . Through introduction of a Hubbard U correction, employment of a state-of-the-art van der Waals functional, and use of pure water as a reference state for the calculations, these errors are systematically corrected. The strong performance is illustrated on a series of bulk transition metal (Mn, Fe, Co and Ni) hydroxide, oxyhydroxide, binary and ternary oxides where the corresponding thermodynamics of oxidation and reduction can be accurately described with standard errors of less than 0.04 eV in comparison with experiment.
Intermolecular potentials and the accurate prediction of the thermodynamic properties of water
Shvab, I.; Sadus, Richard J.
2013-11-21
The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.
Feng, Hui; Jiang, Ni; Huang, Chenglong; Fang, Wei; Yang, Wanneng; Chen, Guoxing; Xiong, Lizhong; Liu, Qian
2013-09-01
Biomass is an important component of the plant phenomics, and the existing methods for biomass estimation for individual plants are either destructive or lack accuracy. In this study, a hyperspectral imaging system was developed for the accurate prediction of the above-ground biomass of individual rice plants in the visible and near-infrared spectral region. First, the structure of the system and the influence of various parameters on the camera acquisition speed were established. Then the system was used to image 152 rice plants, which selected from the rice mini-core collection, in two stages, the tillering to elongation (T-E) stage and the booting to heading (B-H) stage. Several variables were extracted from the images. Following, linear stepwise regression analysis and 5-fold cross-validation were used to select effective variables for model construction and test the stability of the model, respectively. For the T-E stage, the R(2) value was 0.940 for the fresh weight (FW) and 0.935 for the dry weight (DW). For the B-H stage, the R(2) value was 0.891 for the FW and 0.783 for the DW. Moreover, estimations of the biomass using visible light images were also calculated. These comparisons showed that hyperspectral imaging performed better than the visible light imaging. Therefore, this study provides not only a stable hyperspectral imaging platform but also an accurate and nondestructive method for the prediction of biomass for individual rice plants. PMID:24089866
Direct Pressure Monitoring Accurately Predicts Pulmonary Vein Occlusion During Cryoballoon Ablation
Kosmidou, Ioanna; Wooden, Shannnon; Jones, Brian; Deering, Thomas; Wickliffe, Andrew; Dan, Dan
2013-01-01
Cryoballoon ablation (CBA) is an established therapy for atrial fibrillation (AF). Pulmonary vein (PV) occlusion is essential for achieving antral contact and PV isolation and is typically assessed by contrast injection. We present a novel method of direct pressure monitoring for assessment of PV occlusion. Transcatheter pressure is monitored during balloon advancement to the PV antrum. Pressure is recorded via a single pressure transducer connected to the inner lumen of the cryoballoon. Pressure curve characteristics are used to assess occlusion in conjunction with fluoroscopic or intracardiac echocardiography (ICE) guidance. PV occlusion is confirmed when loss of typical left atrial (LA) pressure waveform is observed with recordings of PA pressure characteristics (no A wave and rapid V wave upstroke). Complete pulmonary vein occlusion as assessed with this technique has been confirmed with concurrent contrast utilization during the initial testing of the technique and has been shown to be highly accurate and readily reproducible. We evaluated the efficacy of this novel technique in 35 patients. A total of 128 veins were assessed for occlusion with the cryoballoon utilizing the pressure monitoring technique; occlusive pressure was demonstrated in 113 veins with resultant successful pulmonary vein isolation in 111 veins (98.2%). Occlusion was confirmed with subsequent contrast injection during the initial ten procedures, after which contrast utilization was rapidly reduced or eliminated given the highly accurate identification of occlusive pressure waveform with limited initial training. Verification of PV occlusive pressure during CBA is a novel approach to assessing effective PV occlusion and it accurately predicts electrical isolation. Utilization of this method results in significant decrease in fluoroscopy time and volume of contrast. PMID:23485956
Direct pressure monitoring accurately predicts pulmonary vein occlusion during cryoballoon ablation.
Kosmidou, Ioanna; Wooden, Shannnon; Jones, Brian; Deering, Thomas; Wickliffe, Andrew; Dan, Dan
2013-01-01
Cryoballoon ablation (CBA) is an established therapy for atrial fibrillation (AF). Pulmonary vein (PV) occlusion is essential for achieving antral contact and PV isolation and is typically assessed by contrast injection. We present a novel method of direct pressure monitoring for assessment of PV occlusion. Transcatheter pressure is monitored during balloon advancement to the PV antrum. Pressure is recorded via a single pressure transducer connected to the inner lumen of the cryoballoon. Pressure curve characteristics are used to assess occlusion in conjunction with fluoroscopic or intracardiac echocardiography (ICE) guidance. PV occlusion is confirmed when loss of typical left atrial (LA) pressure waveform is observed with recordings of PA pressure characteristics (no A wave and rapid V wave upstroke). Complete pulmonary vein occlusion as assessed with this technique has been confirmed with concurrent contrast utilization during the initial testing of the technique and has been shown to be highly accurate and readily reproducible. We evaluated the efficacy of this novel technique in 35 patients. A total of 128 veins were assessed for occlusion with the cryoballoon utilizing the pressure monitoring technique; occlusive pressure was demonstrated in 113 veins with resultant successful pulmonary vein isolation in 111 veins (98.2%). Occlusion was confirmed with subsequent contrast injection during the initial ten procedures, after which contrast utilization was rapidly reduced or eliminated given the highly accurate identification of occlusive pressure waveform with limited initial training. Verification of PV occlusive pressure during CBA is a novel approach to assessing effective PV occlusion and it accurately predicts electrical isolation. Utilization of this method results in significant decrease in fluoroscopy time and volume of contrast. PMID:23485956
NASA Astrophysics Data System (ADS)
Delahaye, Thibault; Rey, Michael; Tyuterev, Vladimir; Nikitin, Andrei V.; Szalay, Peter
2015-06-01
Hydrocarbons such as ethylene (C_2H_4) and methane (CH_4) are of considerable interest for the modeling of planetary atmospheres and other astrophysical applications. Knowledge of rovibrational transitions of hydrocarbons is of primary importance in many fields but remains a formidable challenge for the theory and spectral analysis. Essentially two theoretical approaches for the computation and prediction of spectra exist. The first one is based on empirically-fitted effective spectroscopic models. Several databases aim at collecting the corresponding data but the information about C_2H_4 spectrum present in these databases remains limited, only some spectral ranges around 1000, 3000 and 6000 cm-1 being available. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. Although they do not yet reach the spectroscopic accuracy, they could provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on two necessary ingredients: (i) accurate intramolecular potential energy surface and dipole moment surface components and (ii) efficient computational methods to achieve a good numerical convergence. We report predictions of vibrational and rovibrational energy levels of C_2H_4 using our new ground state potential energy surface obtained from extended ab initio calculations. Additionally we will introduce line positions and line intensities predictions based on a new dipole moment surface for ethylene. These results will be compared with previous works on ethylene and its isotopologues.
A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows
NASA Astrophysics Data System (ADS)
Bijleveld, H. A.; Veldman, A. E. P.
2014-12-01
A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.
NASA Astrophysics Data System (ADS)
Zacharias, Panagiotis P.; Chatzineofytou, Elpida G.; Spantideas, Sotirios T.; Capsalis, Christos N.
2016-07-01
In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.
Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain
Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul
2010-05-14
Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.
Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain
Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul
2010-09-15
Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)
Dal Moro, F; Abate, A; Lanckriet, G R G; Arandjelovic, G; Gasparella, P; Bassi, P; Mancini, M; Pagano, F
2006-01-01
The objective of this study was to optimally predict the spontaneous passage of ureteral stones in patients with renal colic by applying for the first time support vector machines (SVM), an instance of kernel methods, for classification. After reviewing the results found in the literature, we compared the performances obtained with logistic regression (LR) and accurately trained artificial neural networks (ANN) to those obtained with SVM, that is, the standard SVM, and the linear programming SVM (LP-SVM); the latter techniques show an improved performance. Moreover, we rank the prediction factors according to their importance using Fisher scores and the LP-SVM feature weights. A data set of 1163 patients affected by renal colic has been analyzed and restricted to single out a statistically coherent subset of 402 patients. Nine clinical factors are used as inputs for the classification algorithms, to predict one binary output. The algorithms are cross-validated by training and testing on randomly selected train- and test-set partitions of the data and reporting the average performance on the test sets. The SVM-based approaches obtained a sensitivity of 84.5% and a specificity of 86.9%. The feature ranking based on LP-SVM gives the highest importance to stone size, stone position and symptom duration before check-up. We propose a statistically correct way of employing LR, ANN and SVM for the prediction of spontaneous passage of ureteral stones in patients with renal colic. SVM outperformed ANN, as well as LR. This study will soon be translated into a practical software toolbox for actual clinical usage. PMID:16374437
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Meier, Susan M.; Nissley, David M.; Sheffler, Keith D.; Cruse, Thomas A.
1991-01-01
A thermal barrier coated (TBC) turbine component design system, including an accurate TBC life prediction model, is needed to realize the full potential of available TBC engine performance and/or durability benefits. The objective of this work, which was sponsored in part by NASA, was to generate a life prediction model for electron beam - physical vapor deposited (EB-PVD) zirconia TBC. Specific results include EB-PVD zirconia mechanical and physical properties, coating adherence strength measurements, interfacial oxide growth characteristics, quantitative cyclic thermal spallation life data, and a spallation life model.
Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A
2015-02-01
As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1). PMID:24274986
Luo, Longqiang; Li, Dingfang; Zhang, Wen; Tu, Shikui; Zhu, Xiaopeng; Tian, Gang
2016-01-01
Background Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules. The transposon-derived piRNA prediction can enrich the research contents of small ncRNAs as well as help to further understand generation mechanism of gamete. Methods In this paper, we attempt to differentiate transposon-derived piRNAs from non-piRNAs based on their sequential and physicochemical features by using machine learning methods. We explore six sequence-derived features, i.e. spectrum profile, mismatch profile, subsequence profile, position-specific scoring matrix, pseudo dinucleotide composition and local structure-sequence triplet elements, and systematically evaluate their performances for transposon-derived piRNA prediction. Finally, we consider two approaches: direct combination and ensemble learning to integrate useful features and achieve high-accuracy prediction models. Results We construct three datasets, covering three species: Human, Mouse and Drosophila, and evaluate the performances of prediction models by 10-fold cross validation. In the computational experiments, direct combination models achieve AUC of 0.917, 0.922 and 0.992 on Human, Mouse and Drosophila, respectively; ensemble learning models achieve AUC of 0.922, 0.926 and 0.994 on the three datasets. Conclusions Compared with other state-of-the-art methods, our methods can lead to better performances. In conclusion, the proposed methods are promising for the transposon-derived piRNA prediction. The source codes and datasets are available in S1 File. PMID:27074043
ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers
Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.
2009-02-01
A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.
Probabilistic microcell prediction model
NASA Astrophysics Data System (ADS)
Kim, Song-Kyoo
2002-06-01
A microcell is a cell with 1-km or less radius which is suitable for heavily urbanized area such as a metropolitan city. This paper deals with the microcell prediction model of propagation loss which uses probabilistic techniques. The RSL (Receive Signal Level) is the factor which can evaluate the performance of a microcell and the LOS (Line-Of-Sight) component and the blockage loss directly effect on the RSL. We are combining the probabilistic method to get these performance factors. The mathematical methods include the CLT (Central Limit Theorem) and the SPC (Statistical Process Control) to get the parameters of the distribution. This probabilistic solution gives us better measuring of performance factors. In addition, it gives the probabilistic optimization of strategies such as the number of cells, cell location, capacity of cells, range of cells and so on. Specially, the probabilistic optimization techniques by itself can be applied to real-world problems such as computer-networking, human resources and manufacturing process.
Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.
2013-01-01
Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944
Gröning, Flora; Jones, Marc E H; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E; Fagan, Michael J
2013-07-01
Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944
ON PREDICTION AND MODEL VALIDATION
M. MCKAY; R. BECKMAN; K. CAMPBELL
2001-02-01
Quantification of prediction uncertainty is an important consideration when using mathematical models of physical systems. This paper proposes a way to incorporate ''validation data'' in a methodology for quantifying uncertainty of the mathematical predictions. The report outlines a theoretical framework.
Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay
2012-07-01
Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.
Nissley, Daniel A; Sharma, Ajeet K; Ahmed, Nabeel; Friedrich, Ulrike A; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P
2016-01-01
The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592
Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.
2016-01-01
The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally—a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592
NASA Astrophysics Data System (ADS)
Bozinoski, Radoslav
Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the inherently three-dimensional ow structures that are prevalent in many of today's "real-world" problems. Increases in computational capacity and the development of efficient numerical methods can change this and allow for the solution of the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for practical three-dimensional aerodynamic applications. An integral part of this capability has been the performance and accuracy of the turbulence models coupled with advanced parallel computing techniques. This report begins with a brief literature survey of the role fully three-dimensional, unsteady, Navier-Stokes solvers have on the current state of numerical analysis. Next, the process of creating a baseline three-dimensional Multi-Block FLOw procedure called MBFLO3 is presented. Solutions for an inviscid circular arc bump, laminar at plate, laminar cylinder, and turbulent at plate are then presented. Results show good agreement with available experimental, numerical, and theoretical data. Scalability data for the parallel version of MBFLO3 is presented and shows efficiencies of 90% and higher for processes of no less than 100,000 computational grid points. Next, the description and implementation techniques used for several turbulence models are presented. Following the successful implementation of the URANS and DES procedures, the validation data for separated, non-reattaching flows over a NACA 0012 airfoil, wall-mounted hump, and a wing-body junction geometry are presented. Results for the NACA 0012 showed significant improvement in flow predictions
A Method for Accurate in silico modeling of Ultrasound Transducer Arrays
Guenther, Drake A.; Walker, William F.
2009-01-01
This paper presents a new approach to improve the in silico modeling of ultrasound transducer arrays. While current simulation tools accurately predict the theoretical element spatio-temporal pressure response, transducers do not always behave as theorized. In practice, using the probe's physical dimensions and published specifications in silico, often results in unsatisfactory agreement between simulation and experiment. We describe a general optimization procedure used to maximize the correlation between the observed and simulated spatio-temporal response of a pulsed single element in a commercial ultrasound probe. A linear systems approach is employed to model element angular sensitivity, lens effects, and diffraction phenomena. A numerical deconvolution method is described to characterize the intrinsic electro-mechanical impulse response of the element. Once the response of the element and optimal element characteristics are known, prediction of the pressure response for arbitrary apertures and excitation signals is performed through direct convolution using available tools. We achieve a correlation of 0.846 between the experimental emitted waveform and simulated waveform when using the probe's physical specifications in silico. A far superior correlation of 0.988 is achieved when using the optimized in silico model. Electronic noise appears to be the main effect preventing the realization of higher correlation coefficients. More accurate in silico modeling will improve the evaluation and design of ultrasound transducers as well as aid in the development of sophisticated beamforming strategies. PMID:19041997
Accurate Prediction of Drug-Induced Liver Injury Using Stem Cell-Derived Populations
Szkolnicka, Dagmara; Farnworth, Sarah L.; Lucendo-Villarin, Baltasar; Storck, Christopher; Zhou, Wenli; Iredale, John P.; Flint, Oliver
2014-01-01
Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies. PMID:24375539
A high order accurate finite element algorithm for high Reynolds number flow prediction
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.
Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach
Saa, Pedro A.; Nielsen, Lars K.
2016-01-01
Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear and have complex interactions. Many powerful fitting strategies are ruled out by the intractability of the likelihood function. Here, we have developed a computational framework capable of fitting feasible and accurate kinetic models using Approximate Bayesian Computation. This framework readily supports advanced modelling features such as model selection and model-based experimental design. We illustrate this approach on the tightly-regulated mammalian methionine cycle. Sampling from the posterior distribution, the proposed framework generated thermodynamically feasible parameter samples that converged on the true values, and displayed remarkable prediction accuracy in several validation tests. Furthermore, a posteriori analysis of the parameter distributions enabled appraisal of the systems properties of the network (e.g., control structure) and key metabolic regulations. Finally, the framework was used to predict missing allosteric interactions. PMID:27417285
ERIC Educational Resources Information Center
Frees, Edward W.; Kim, Jee-Seon
2006-01-01
Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…
Beekhuizen, Johan; Kromhout, Hans; Bürgi, Alfred; Huss, Anke; Vermeulen, Roel
2015-01-01
The increase in mobile communication technology has led to concern about potential health effects of radio frequency electromagnetic fields (RF-EMFs) from mobile phone base stations. Different RF-EMF prediction models have been applied to assess population exposure to RF-EMF. Our study examines what input data are needed to accurately model RF-EMF, as detailed data are not always available for epidemiological studies. We used NISMap, a 3D radio wave propagation model, to test models with various levels of detail in building and antenna input data. The model outcomes were compared with outdoor measurements taken in Amsterdam, the Netherlands. Results showed good agreement between modelled and measured RF-EMF when 3D building data and basic antenna information (location, height, frequency and direction) were used: Spearman correlations were >0.6. Model performance was not sensitive to changes in building damping parameters. Antenna-specific information about down-tilt, type and output power did not significantly improve model performance compared with using average down-tilt and power values, or assuming one standard antenna type. We conclude that 3D radio wave propagation modelling is a feasible approach to predict outdoor RF-EMF levels for ranking exposure levels in epidemiological studies, when 3D building data and information on the antenna height, frequency, location and direction are available. PMID:24472756
Accurate prediction of V1 location from cortical folds in a surface coordinate system
Hinds, Oliver P.; Rajendran, Niranjini; Polimeni, Jonathan R.; Augustinack, Jean C.; Wiggins, Graham; Wald, Lawrence L.; Rosas, H. Diana; Potthast, Andreas; Schwartz, Eric L.; Fischl, Bruce
2008-01-01
Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904; Stensaas et al., 1974; Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better
Accurate and efficient halo-based galaxy clustering modelling with simulations
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Guo, Hong
2016-06-01
Small- and intermediate-scale galaxy clustering can be used to establish the galaxy-halo connection to study galaxy formation and evolution and to tighten constraints on cosmological parameters. With the increasing precision of galaxy clustering measurements from ongoing and forthcoming large galaxy surveys, accurate models are required to interpret the data and extract relevant information. We introduce a method based on high-resolution N-body simulations to accurately and efficiently model the galaxy two-point correlation functions (2PCFs) in projected and redshift spaces. The basic idea is to tabulate all information of haloes in the simulations necessary for computing the galaxy 2PCFs within the framework of halo occupation distribution or conditional luminosity function. It is equivalent to populating galaxies to dark matter haloes and using the mock 2PCF measurements as the model predictions. Besides the accurate 2PCF calculations, the method is also fast and therefore enables an efficient exploration of the parameter space. As an example of the method, we decompose the redshift-space galaxy 2PCF into different components based on the type of galaxy pairs and show the redshift-space distortion effect in each component. The generalizations and limitations of the method are discussed.
NASA Astrophysics Data System (ADS)
Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.
2016-06-01
We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k < 10 h Mpc-1, and we present theoretically motivated extensions to cover non-minimally coupled scalar fields, massive neutrinos and Vainshtein screened modified gravity models that result in few per cent accurate power spectra for k < 10 h Mpc-1. For chameleon screened models, we achieve only 10 per cent accuracy for the same range of scales. Finally, we use our halo model to investigate degeneracies between different extensions to the standard cosmological model, finding that the impact of baryonic feedback on the non-linear matter power spectrum can be considered independently of modified gravity or massive neutrino extensions. In contrast, considering the impact of modified gravity and massive neutrinos independently results in biased estimates of power at the level of 5 per cent at scales k > 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.
TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients
Gunnerson, Kyle J.; Shaw, Andrew D.; Chawla, Lakhmir S.; Bihorac, Azra; Al-Khafaji, Ali; Kashani, Kianoush; Lissauer, Matthew; Shi, Jing; Walker, Michael G.; Kellum, John A.
2016-01-01
BACKGROUND Acute kidney injury (AKI) is an important complication in surgical patients. Existing biomarkers and clinical prediction models underestimate the risk for developing AKI. We recently reported data from two trials of 728 and 408 critically ill adult patients in whom urinary TIMP2•IGFBP7 (NephroCheck, Astute Medical) was used to identify patients at risk of developing AKI. Here we report a preplanned analysis of surgical patients from both trials to assess whether urinary tissue inhibitor of metalloproteinase 2 (TIMP-2) and insulin-like growth factor–binding protein 7 (IGFBP7) accurately identify surgical patients at risk of developing AKI. STUDY DESIGN We enrolled adult surgical patients at risk for AKI who were admitted to one of 39 intensive care units across Europe and North America. The primary end point was moderate-severe AKI (equivalent to KDIGO [Kidney Disease Improving Global Outcomes] stages 2–3) within 12 hours of enrollment. Biomarker performance was assessed using the area under the receiver operating characteristic curve, integrated discrimination improvement, and category-free net reclassification improvement. RESULTS A total of 375 patients were included in the final analysis of whom 35 (9%) developed moderate-severe AKI within 12 hours. The area under the receiver operating characteristic curve for [TIMP-2]•[IGFBP7] alone was 0.84 (95% confidence interval, 0.76–0.90; p < 0.0001). Biomarker performance was robust in sensitivity analysis across predefined subgroups (urgency and type of surgery). CONCLUSION For postoperative surgical intensive care unit patients, a single urinary TIMP2•IGFBP7 test accurately identified patients at risk for developing AKI within the ensuing 12 hours and its inclusion in clinical risk prediction models significantly enhances their performance. LEVEL OF EVIDENCE Prognostic study, level I. PMID:26816218
Random generalized linear model: a highly accurate and interpretable ensemble predictor
2013-01-01
Background Ensemble predictors such as the random forest are known to have superior accuracy but their black-box predictions are difficult to interpret. In contrast, a generalized linear model (GLM) is very interpretable especially when forward feature selection is used to construct the model. However, forward feature selection tends to overfit the data and leads to low predictive accuracy. Therefore, it remains an important research goal to combine the advantages of ensemble predictors (high accuracy) with the advantages of forward regression modeling (interpretability). To address this goal several articles have explored GLM based ensemble predictors. Since limited evaluations suggested that these ensemble predictors were less accurate than alternative predictors, they have found little attention in the literature. Results Comprehensive evaluations involving hundreds of genomic data sets, the UCI machine learning benchmark data, and simulations are used to give GLM based ensemble predictors a new and careful look. A novel bootstrap aggregated (bagged) GLM predictor that incorporates several elements of randomness and instability (random subspace method, optional interaction terms, forward variable selection) often outperforms a host of alternative prediction methods including random forests and penalized regression models (ridge regression, elastic net, lasso). This random generalized linear model (RGLM) predictor provides variable importance measures that can be used to define a “thinned” ensemble predictor (involving few features) that retains excellent predictive accuracy. Conclusion RGLM is a state of the art predictor that shares the advantages of a random forest (excellent predictive accuracy, feature importance measures, out-of-bag estimates of accuracy) with those of a forward selected generalized linear model (interpretability). These methods are implemented in the freely available R software package randomGLM. PMID:23323760
Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens
Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn
2013-11-01
Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.
Oksel, Ceyda; Winkler, David A; Ma, Cai Y; Wilkins, Terry; Wang, Xue Z
2016-09-01
The number of engineered nanomaterials (ENMs) being exploited commercially is growing rapidly, due to the novel properties they exhibit. Clearly, it is important to understand and minimize any risks to health or the environment posed by the presence of ENMs. Data-driven models that decode the relationships between the biological activities of ENMs and their physicochemical characteristics provide an attractive means of maximizing the value of scarce and expensive experimental data. Although such structure-activity relationship (SAR) methods have become very useful tools for modelling nanotoxicity endpoints (nanoSAR), they have limited robustness and predictivity and, most importantly, interpretation of the models they generate is often very difficult. New computational modelling tools or new ways of using existing tools are required to model the relatively sparse and sometimes lower quality data on the biological effects of ENMs. The most commonly used SAR modelling methods work best with large datasets, are not particularly good at feature selection, can be relatively opaque to interpretation, and may not account for nonlinearity in the structure-property relationships. To overcome these limitations, we describe the application of a novel algorithm, a genetic programming-based decision tree construction tool (GPTree) to nanoSAR modelling. We demonstrate the use of GPTree in the construction of accurate and interpretable nanoSAR models by applying it to four diverse literature datasets. We describe the algorithm and compare model results across the four studies. We show that GPTree generates models with accuracies equivalent to or superior to those of prior modelling studies on the same datasets. GPTree is a robust, automatic method for generation of accurate nanoSAR models with important advantages that it works with small datasets, automatically selects descriptors, and provides significantly improved interpretability of models. PMID:26956430
NASA Astrophysics Data System (ADS)
Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.
2013-06-01
This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.
Accuracy assessment of landslide prediction models
NASA Astrophysics Data System (ADS)
Othman, A. N.; Mohd, W. M. N. W.; Noraini, S.
2014-02-01
The increasing population and expansion of settlements over hilly areas has greatly increased the impact of natural disasters such as landslide. Therefore, it is important to developed models which could accurately predict landslide hazard zones. Over the years, various techniques and models have been developed to predict landslide hazard zones. The aim of this paper is to access the accuracy of landslide prediction models developed by the authors. The methodology involved the selection of study area, data acquisition, data processing and model development and also data analysis. The development of these models are based on nine different landslide inducing parameters i.e. slope, land use, lithology, soil properties, geomorphology, flow accumulation, aspect, proximity to river and proximity to road. Rank sum, rating, pairwise comparison and AHP techniques are used to determine the weights for each of the parameters used. Four (4) different models which consider different parameter combinations are developed by the authors. Results obtained are compared to landslide history and accuracies for Model 1, Model 2, Model 3 and Model 4 are 66.7, 66.7%, 60% and 22.9% respectively. From the results, rank sum, rating and pairwise comparison can be useful techniques to predict landslide hazard zones.
Fromer, Menachem; Yanover, Chen
2009-05-15
The task of engineering a protein to assume a target three-dimensional structure is known as protein design. Computational search algorithms are devised to predict a minimal energy amino acid sequence for a particular structure. In practice, however, an ensemble of low-energy sequences is often sought. Primarily, this is performed because an individual predicted low-energy sequence may not necessarily fold to the target structure because of both inaccuracies in modeling protein energetics and the nonoptimal nature of search algorithms employed. Additionally, some low-energy sequences may be overly stable and thus lack the dynamic flexibility required for biological functionality. Furthermore, the investigation of low-energy sequence ensembles will provide crucial insights into the pseudo-physical energy force fields that have been derived to describe structural energetics for protein design. Significantly, numerous studies have predicted low-energy sequences, which were subsequently synthesized and demonstrated to fold to desired structures. However, the characterization of the sequence space defined by such energy functions as compatible with a target structure has not been performed in full detail. This issue is critical for protein design scientists to successfully continue using these force fields at an ever-increasing pace and scale. In this paper, we present a conceptually novel algorithm that rapidly predicts the set of lowest energy sequences for a given structure. Based on the theory of probabilistic graphical models, it performs efficient inspection and partitioning of the near-optimal sequence space, without making any assumptions of positional independence. We benchmark its performance on a diverse set of relevant protein design examples and show that it consistently yields sequences of lower energy than those derived from state-of-the-art techniques. Thus, we find that previously presented search techniques do not fully depict the low-energy space as
Coupling Efforts to the Accurate and Efficient Tsunami Modelling System
NASA Astrophysics Data System (ADS)
Son, S.
2015-12-01
In the present study, we couple two different types of tsunami models, i.e., nondispersive shallow water model of characteristic form(MOST ver.4) and dispersive Boussinesq model of non-characteristic form(Son et al. (2011)) in an attempt to improve modelling accuracy and efficiency. Since each model deals with different type of primary variables, additional care on matching boundary condition is required. Using an absorbing-generating boundary condition developed by Van Dongeren and Svendsen(1997), model coupling and integration is achieved. Characteristic variables(i.e., Riemann invariants) in MOST are converted to non-characteristic variables for Boussinesq solver without any loss of physical consistency. Established modelling system has been validated through typical test problems to realistic tsunami events. Simulated results reveal good performance of developed modelling system. Since coupled modelling system provides advantageous flexibility feature during implementation, great efficiencies and accuracies are expected to be gained through spot-focusing application of Boussinesq model inside the entire domain of tsunami propagation.
Sequence features accurately predict genome-wide MeCP2 binding in vivo.
Rube, H Tomas; Lee, Wooje; Hejna, Miroslav; Chen, Huaiyang; Yasui, Dag H; Hess, John F; LaSalle, Janine M; Song, Jun S; Gong, Qizhi
2016-01-01
Methyl-CpG binding protein 2 (MeCP2) is critical for proper brain development and expressed at near-histone levels in neurons, but the mechanism of its genomic localization remains poorly understood. Using high-resolution MeCP2-binding data, we show that DNA sequence features alone can predict binding with 88% accuracy. Integrating MeCP2 binding and DNA methylation in a probabilistic graphical model, we demonstrate that previously reported genome-wide association with methylation is in part due to MeCP2's affinity to GC-rich chromatin, a result replicated using published data. Furthermore, MeCP2 co-localizes with nucleosomes. Finally, MeCP2 binding downstream of promoters correlates with increased expression in Mecp2-deficient neurons. PMID:27008915
nuMap: a web platform for accurate prediction of nucleosome positioning.
Alharbi, Bader A; Alshammari, Thamir H; Felton, Nathan L; Zhurkin, Victor B; Cui, Feng
2014-10-01
Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site. PMID:25220945
Sequence features accurately predict genome-wide MeCP2 binding in vivo
Rube, H. Tomas; Lee, Wooje; Hejna, Miroslav; Chen, Huaiyang; Yasui, Dag H.; Hess, John F.; LaSalle, Janine M.; Song, Jun S.; Gong, Qizhi
2016-01-01
Methyl-CpG binding protein 2 (MeCP2) is critical for proper brain development and expressed at near-histone levels in neurons, but the mechanism of its genomic localization remains poorly understood. Using high-resolution MeCP2-binding data, we show that DNA sequence features alone can predict binding with 88% accuracy. Integrating MeCP2 binding and DNA methylation in a probabilistic graphical model, we demonstrate that previously reported genome-wide association with methylation is in part due to MeCP2's affinity to GC-rich chromatin, a result replicated using published data. Furthermore, MeCP2 co-localizes with nucleosomes. Finally, MeCP2 binding downstream of promoters correlates with increased expression in Mecp2-deficient neurons. PMID:27008915
Combining Modeling and Gaming for Predictive Analytics
Riensche, Roderick M.; Whitney, Paul D.
2012-08-22
Many of our most significant challenges involve people. While human behavior has long been studied, there are recent advances in computational modeling of human behavior. With advances in computational capabilities come increases in the volume and complexity of data that humans must understand in order to make sense of and capitalize on these modeling advances. Ultimately, models represent an encapsulation of human knowledge. One inherent challenge in modeling is efficient and accurate transfer of knowledge from humans to models, and subsequent retrieval. The simulated real-world environment of games presents one avenue for these knowledge transfers. In this paper we describe our approach of combining modeling and gaming disciplines to develop predictive capabilities, using formal models to inform game development, and using games to provide data for modeling.
Felmy, Andrew R.; Mason, Marvin; Qafoku, Odeta; Xia, Yuanxian; Wang, Zheming; MacLean, Graham
2003-03-27
Developing accurate thermodynamic models for predicting the chemistry of the high-level waste tanks at Hanford is an extremely daunting challenge in electrolyte and radionuclide chemistry. These challenges stem from the extremely high ionic strength of the tank waste supernatants, presence of chelating agents in selected tanks, wide temperature range in processing conditions and the presence of important actinide species in multiple oxidation states. This presentation summarizes progress made to date in developing accurate models for these tank waste solutions, how these data are being used at Hanford and the important challenges that remain. New thermodynamic measurements on Sr and actinide complexation with specific chelating agents (EDTA, HEDTA and gluconate) will also be presented.
Advancements in predictive plasma formation modeling
NASA Astrophysics Data System (ADS)
Purvis, Michael A.; Schafgans, Alexander; Brown, Daniel J. W.; Fomenkov, Igor; Rafac, Rob; Brown, Josh; Tao, Yezheng; Rokitski, Slava; Abraham, Mathew; Vargas, Mike; Rich, Spencer; Taylor, Ted; Brandt, David; Pirati, Alberto; Fisher, Aaron; Scott, Howard; Koniges, Alice; Eder, David; Wilks, Scott; Link, Anthony; Langer, Steven
2016-03-01
We present highlights from plasma simulations performed in collaboration with Lawrence Livermore National Labs. This modeling is performed to advance the rate of learning about optimal EUV generation for laser produced plasmas and to provide insights where experimental results are not currently available. The goal is to identify key physical processes necessary for an accurate and predictive model capable of simulating a wide range of conditions. This modeling will help to drive source performance scaling in support of the EUV Lithography roadmap. The model simulates pre-pulse laser interaction with the tin droplet and follows the droplet expansion into the main pulse target zone. Next, the interaction of the expanded droplet with the main laser pulse is simulated. We demonstrate the predictive nature of the code and provide comparison with experimental results.
Knorr, K L; Hilsenbeck, S G; Wenger, C R; Pounds, G; Oldaker, T; Vendely, P; Pandian, M R; Harrington, D; Clark, G M
1992-01-01
Determining an appropriate level of adjuvant therapy is one of the most difficult facets of treating breast cancer patients. Although the myriad of prognostic factors aid in this decision, often they give conflicting reports of a patient's prognosis. What we need is a survival model which can properly utilize the information contained in these factors and give an accurate, reliable account of the patient's probability of recurrence. We also need a method of evaluating these models' predictive ability instead of simply measuring goodness-of-fit, as is currently done. Often, prognostic factors are broken into two categories such as positive or negative. But this dichotomization may hide valuable prognostic information. We investigated whether continuous representations of factors, including standard transformations--logarithmic, square root, categorical, and smoothers--might more accurately estimate the underlying relationship between each factor and survival. We chose the logistic regression model, a special case of the commonly used Cox model, to test our hypothesis. The model containing continuous transformed factors fit the data more closely than the model containing the traditional dichotomized factors. In order to appropriately evaluate these models, we introduce three predictive validity statistics--the Calibration score, the Overall Calibration score, and the Brier score--designed to assess the model's accuracy and reliability. These standardized scores showed the transformed factors predicted three year survival accurately and reliably. The scores can also be used to assess models or compare across studies. PMID:1391991
Melanoma Risk Prediction Models
Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
PREDICTIVE MODELS. Enhanced Oil Recovery Model
Ray, R.M.
1992-02-26
PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding; 2 carbon dioxide miscible flooding; 3 in-situ combustion; 4 polymer flooding; and 5 steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.
NASA Astrophysics Data System (ADS)
Balabin, Roman M.; Lomakina, Ekaterina I.
2009-08-01
Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6±0.2 kcal mol-1. In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.
Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC
NASA Technical Reports Server (NTRS)
Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.
2001-01-01
The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.
Santolini, Marc; Mora, Thierry; Hakim, Vincent
2014-01-01
The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond
Khan, Usman; Falconi, Christian
2014-01-01
Ideally, the design of high-performance micro-hotplates would require a large number of simulations because of the existence of many important design parameters as well as the possibly crucial effects of both spread and drift. However, the computational cost of FEM simulations, which are the only available tool for accurately predicting the temperature in micro-hotplates, is very high. As a result, micro-hotplate designers generally have no effective simulation-tools for the optimization. In order to circumvent these issues, here, we propose a model for practical circular-symmetric micro-hot-plates which takes advantage of modified Bessel functions, computationally efficient matrix-approach for considering the relevant boundary conditions, Taylor linearization for modeling the Joule heating and radiation losses, and external-region-segmentation strategy in order to accurately take into account radiation losses in the entire micro-hotplate. The proposed model is almost as accurate as FEM simulations and two to three orders of magnitude more computationally efficient (e.g., 45 s versus more than 8 h). The residual errors, which are mainly associated to the undesired heating in the electrical contacts, are small (e.g., few degrees Celsius for an 800 °C operating temperature) and, for important analyses, almost constant. Therefore, we also introduce a computationally-easy single-FEM-compensation strategy in order to reduce the residual errors to about 1 °C. As illustrative examples of the power of our approach, we report the systematic investigation of a spread in the membrane thermal conductivity and of combined variations of both ambient and bulk temperatures. Our model enables a much faster characterization of micro-hotplates and, thus, a much more effective optimization prior to fabrication. PMID:24763214
An Accurate and Computationally Efficient Model for Membrane-Type Circular-Symmetric Micro-Hotplates
Khan, Usman; Falconi, Christian
2014-01-01
Ideally, the design of high-performance micro-hotplates would require a large number of simulations because of the existence of many important design parameters as well as the possibly crucial effects of both spread and drift. However, the computational cost of FEM simulations, which are the only available tool for accurately predicting the temperature in micro-hotplates, is very high. As a result, micro-hotplate designers generally have no effective simulation-tools for the optimization. In order to circumvent these issues, here, we propose a model for practical circular-symmetric micro-hot-plates which takes advantage of modified Bessel functions, computationally efficient matrix-approach for considering the relevant boundary conditions, Taylor linearization for modeling the Joule heating and radiation losses, and external-region-segmentation strategy in order to accurately take into account radiation losses in the entire micro-hotplate. The proposed model is almost as accurate as FEM simulations and two to three orders of magnitude more computationally efficient (e.g., 45 s versus more than 8 h). The residual errors, which are mainly associated to the undesired heating in the electrical contacts, are small (e.g., few degrees Celsius for an 800 °C operating temperature) and, for important analyses, almost constant. Therefore, we also introduce a computationally-easy single-FEM-compensation strategy in order to reduce the residual errors to about 1 °C. As illustrative examples of the power of our approach, we report the systematic investigation of a spread in the membrane thermal conductivity and of combined variations of both ambient and bulk temperatures. Our model enables a much faster characterization of micro-hotplates and, thus, a much more effective optimization prior to fabrication. PMID:24763214
Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J
2015-09-30
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a
Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.
2015-01-01
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a
Accurate modelling of flow induced stresses in rigid colloidal aggregates
NASA Astrophysics Data System (ADS)
Vanni, Marco
2015-07-01
A method has been developed to estimate the motion and the internal stresses induced by a fluid flow on a rigid aggregate. The approach couples Stokesian dynamics and structural mechanics in order to take into account accurately the effect of the complex geometry of the aggregates on hydrodynamic forces and the internal redistribution of stresses. The intrinsic error of the method, due to the low-order truncation of the multipole expansion of the Stokes solution, has been assessed by comparison with the analytical solution for the case of a doublet in a shear flow. In addition, it has been shown that the error becomes smaller as the number of primary particles in the aggregate increases and hence it is expected to be negligible for realistic reproductions of large aggregates. The evaluation of internal forces is performed by an adaptation of the matrix methods of structural mechanics to the geometric features of the aggregates and to the particular stress-strain relationship that occurs at intermonomer contacts. A preliminary investigation on the stress distribution in rigid aggregates and their mode of breakup has been performed by studying the response to an elongational flow of both realistic reproductions of colloidal aggregates (made of several hundreds monomers) and highly simplified structures. A very different behaviour has been evidenced between low-density aggregates with isostatic or weakly hyperstatic structures and compact aggregates with highly hyperstatic configuration. In low-density clusters breakup is caused directly by the failure of the most stressed intermonomer contact, which is typically located in the inner region of the aggregate and hence originates the birth of fragments of similar size. On the contrary, breakup of compact and highly cross-linked clusters is seldom caused by the failure of a single bond. When this happens, it proceeds through the removal of a tiny fragment from the external part of the structure. More commonly, however
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Magnetic field models of nine CP stars from "accurate" measurements
NASA Astrophysics Data System (ADS)
Glagolevskij, Yu. V.
2013-01-01
The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.
NASA Astrophysics Data System (ADS)
Shauly, Eitan; Rotstein, Israel; Peltinov, Ram; Latinski, Sergei; Adan, Ofer; Levi, Shimon; Menadeva, Ovadya
2009-03-01
The continues transistors scaling efforts, for smaller devices, similar (or larger) drive current/um and faster devices, increase the challenge to predict and to control the transistor off-state current. Typically, electrical simulators like SPICE, are using the design intent (as-drawn GDS data). At more sophisticated cases, the simulators are fed with the pattern after lithography and etch process simulations. As the importance of electrical simulation accuracy is increasing and leakage is becoming more dominant, there is a need to feed these simulators, with more accurate information extracted from physical on-silicon transistors. Our methodology to predict changes in device performances due to systematic lithography and etch effects was used in this paper. In general, the methodology consists on using the OPCCmaxTM for systematic Edge-Contour-Extraction (ECE) from transistors, taking along the manufacturing and includes any image distortions like line-end shortening, corner rounding and line-edge roughness. These measurements are used for SPICE modeling. Possible application of this new metrology is to provide a-head of time, physical and electrical statistical data improving time to market. In this work, we applied our methodology to analyze a small and large array's of 2.14um2 6T-SRAM, manufactured using Tower Standard Logic for General Purposes Platform. 4 out of the 6 transistors used "U-Shape AA", known to have higher variability. The predicted electrical performances of the transistors drive current and leakage current, in terms of nominal values and variability are presented. We also used the methodology to analyze an entire SRAM Block array. Study of an isolation leakage and variability are presented.
Can contaminant transport models predict breakthrough?
Peng, Wei-Shyuan; Hampton, Duane R.; Konikow, Leonard F.; Kambham, Kiran; Benegar, Jeffery J.
2000-01-01
A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test. Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT. Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength.
Predictive Modeling in Race Walking
Wiktorowicz, Krzysztof; Przednowek, Krzysztof; Lassota, Lesław; Krzeszowski, Tomasz
2015-01-01
This paper presents the use of linear and nonlinear multivariable models as tools to support training process of race walkers. These models are calculated using data collected from race walkers' training events and they are used to predict the result over a 3 km race based on training loads. The material consists of 122 training plans for 21 athletes. In order to choose the best model leave-one-out cross-validation method is used. The main contribution of the paper is to propose the nonlinear modifications for linear models in order to achieve smaller prediction error. It is shown that the best model is a modified LASSO regression with quadratic terms in the nonlinear part. This model has the smallest prediction error and simplified structure by eliminating some of the predictors. PMID:26339230
An Accurate In Vitro Model of the E. coli Envelope
Clifton, Luke A; Holt, Stephen A; Hughes, Arwel V; Daulton, Emma L; Arunmanee, Wanatchaporn; Heinrich, Frank; Khalid, Syma; Jefferies, Damien; Charlton, Timothy R; Webster, John R P; Kinane, Christian J; Lakey, Jeremy H
2015-01-01
Gram-negative bacteria are an increasingly serious source of antibiotic-resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development. PMID:26331292
Leidenfrost effect: accurate drop shape modeling and new scaling laws
NASA Astrophysics Data System (ADS)
Sobac, Benjamin; Rednikov, Alexey; Dorbolo, Stéphane; Colinet, Pierre
2014-11-01
In this study, we theoretically investigate the shape of a drop in a Leidenfrost state, focusing on the geometry of the vapor layer. The drop geometry is modeled by numerically matching the solution of the hydrostatic shape of a superhydrophobic drop (for the upper part) with the solution of the lubrication equation of the vapor flow underlying the drop (for the bottom part). The results highlight that the vapor layer, fed by evaporation, forms a concave depression in the drop interface that becomes increasingly marked with the drop size. The vapor layer then consists of a gas pocket in the center and a thin annular neck surrounding it. The film thickness increases with the size of the drop, and the thickness at the neck appears to be of the order of 10--100 μm in the case of water. The model is compared to recent experimental results [Burton et al., Phys. Rev. Lett., 074301 (2012)] and shows an excellent agreement, without any fitting parameter. New scaling laws also emerge from this model. The geometry of the vapor pocket is only weakly dependent on the superheat (and thus on the evaporation rate), this weak dependence being more pronounced in the neck region. In turn, the vapor layer characteristics strongly depend on the drop size.
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Hillery, R. V.; Pilsner, B. H.; Mcknight, R. L.; Cook, T. S.; Hartle, M. S.
1988-01-01
This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life.
Zhao, Li; Chen, Yiyun; Bajaj, Amol Onkar; Eblimit, Aiden; Xu, Mingchu; Soens, Zachry T; Wang, Feng; Ge, Zhongqi; Jung, Sung Yun; He, Feng; Li, Yumei; Wensel, Theodore G; Qin, Jun; Chen, Rui
2016-05-01
Proteomic profiling on subcellular fractions provides invaluable information regarding both protein abundance and subcellular localization. When integrated with other data sets, it can greatly enhance our ability to predict gene function genome-wide. In this study, we performed a comprehensive proteomic analysis on the light-sensing compartment of photoreceptors called the outer segment (OS). By comparing with the protein profile obtained from the retina tissue depleted of OS, an enrichment score for each protein is calculated to quantify protein subcellular localization, and 84% accuracy is achieved compared with experimental data. By integrating the protein OS enrichment score, the protein abundance, and the retina transcriptome, the probability of a gene playing an essential function in photoreceptor cells is derived with high specificity and sensitivity. As a result, a list of genes that will likely result in human retinal disease when mutated was identified and validated by previous literature and/or animal model studies. Therefore, this new methodology demonstrates the synergy of combining subcellular fractionation proteomics with other omics data sets and is generally applicable to other tissues and diseases. PMID:26912414
Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.
Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit
2015-05-01
A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies. PMID:25502920
Accurate microRNA target prediction correlates with protein repression levels
Maragkakis, Manolis; Alexiou, Panagiotis; Papadopoulos, Giorgio L; Reczko, Martin; Dalamagas, Theodore; Giannopoulos, George; Goumas, George; Koukis, Evangelos; Kourtis, Kornilios; Simossis, Victor A; Sethupathy, Praveen; Vergoulis, Thanasis; Koziris, Nectarios; Sellis, Timos; Tsanakas, Panagiotis; Hatzigeorgiou, Artemis G
2009-01-01
Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at PMID:19765283
Modeling and Prediction of Fan Noise
NASA Technical Reports Server (NTRS)
Envia, Ed
2008-01-01
Fan noise is a significant contributor to the total noise signature of a modern high bypass ratio aircraft engine and with the advent of ultra high bypass ratio engines like the geared turbofan, it is likely to remain so in the future. As such, accurate modeling and prediction of the basic characteristics of fan noise are necessary ingredients in designing quieter aircraft engines in order to ensure compliance with ever more stringent aviation noise regulations. In this paper, results from a comprehensive study aimed at establishing the utility of current tools for modeling and predicting fan noise will be summarized. It should be emphasized that these tools exemplify present state of the practice and embody what is currently used at NASA and Industry for predicting fan noise. The ability of these tools to model and predict fan noise is assessed against a set of benchmark fan noise databases obtained for a range of representative fan cycles and operating conditions. Detailed comparisons between the predicted and measured narrowband spectral and directivity characteristics of fan nose will be presented in the full paper. General conclusions regarding the utility of current tools and recommendations for future improvements will also be given.
Model aids cuttings transport prediction
Gavignet, A.A. ); Sobey, I.J. )
1989-09-01
Drilling of highly deviated wells can be complicated by the formation of a thick bed of cuttings at low flow rates. The model proposed in this paper shows what mechanisms control the thickness of such a bed, and the model predictions are compared with experimental results.
Zimmermann, Olav; Hansmann, Ulrich H E
2008-09-01
Constraint generation for 3d structure prediction and structure-based database searches benefit from fine-grained prediction of local structure. In this work, we present LOCUSTRA, a novel scheme for the multiclass prediction of local structure that uses two layers of support vector machines (SVM). Using a 16-letter structural alphabet from de Brevern et al. (Proteins: Struct., Funct., Bioinf. 2000, 41, 271-287), we assess its prediction ability for an independent test set of 222 proteins and compare our method to three-class secondary structure prediction and direct prediction of dihedral angles. The prediction accuracy is Q16=61.0% for the 16 classes of the structural alphabet and Q3=79.2% for a simple mapping to the three secondary classes helix, sheet, and coil. We achieve a mean phi(psi) error of 24.74 degrees (38.35 degrees) and a median RMSDA (root-mean-square deviation of the (dihedral) angles) per protein chain of 52.1 degrees. These results compare favorably with related approaches. The LOCUSTRA web server is freely available to researchers at http://www.fz-juelich.de/nic/cbb/service/service.php. PMID:18763837
Davis, J.L.; Grant, J.W.
2014-01-01
Anatomically correct turtle utricle geometry was incorporated into two finite element models. The geometrically accurate model included appropriately shaped macular surface and otoconial layer, compact gel and column filament (or shear) layer thicknesses and thickness distributions. The first model included a shear layer where the effects of hair bundle stiffness was included as part of the shear layer modulus. This solid model’s undamped natural frequency was matched to an experimentally measured value. This frequency match established a realistic value of the effective shear layer Young’s modulus of 16 Pascals. We feel this is the most accurate prediction of this shear layer modulus and fits with other estimates (Kondrachuk, 2001b). The second model incorporated only beam elements in the shear layer to represent hair cell bundle stiffness. The beam element stiffness’s were further distributed to represent their location on the neuroepithelial surface. Experimentally measured striola hair cell bundles mean stiffness values were used in the striolar region and the mean extrastriola hair cell bundles stiffness values were used in this region. The results from this second model indicated that hair cell bundle stiffness contributes approximately 40% to the overall stiffness of the shear layer– hair cell bundle complex. This analysis shows that high mass saccules, in general, achieve high gain at the sacrifice of frequency bandwidth. We propose the mechanism by which this can be achieved is through increase the otoconial layer mass. The theoretical difference in gain (deflection per acceleration) is shown for saccules with large otoconial layer mass relative to saccules and utricles with small otoconial layer mass. Also discussed is the necessity of these high mass saccules to increase their overall system shear layer stiffness. Undamped natural frequencies and mode shapes for these sensors are shown. PMID:25445820
Urban daytime traffic noise prediction models.
da Paz, Elaine Carvalho; Zannin, Paulo Henrique Trombetta
2010-04-01
An evaluation was made of the acoustic environment generated by an urban highway using in situ measurements. Based on the data collected, a mathematical model was designed for the main sound levels (L (eq), L (10), L (50), and L (90)) as a function of the correlation between sound levels and between the equivalent sound pressure level and traffic variables. Four valid groups of mathematical models were generated to calculate daytime sound levels, which were statistically validated. It was found that the new models can be considered as accurate as other models presented in the literature to assess and predict daytime traffic noise, and that they stand out and differ from the existing models described in the literature thanks to two characteristics, namely, their linearity and the application of class intervals. PMID:19353296
Nielsen, Jens; D’Avezac, Mayeul; Hetherington, James; Stamatakis, Michail
2013-12-14
Ab initio kinetic Monte Carlo (KMC) simulations have been successfully applied for over two decades to elucidate the underlying physico-chemical phenomena on the surfaces of heterogeneous catalysts. These simulations necessitate detailed knowledge of the kinetics of elementary reactions constituting the reaction mechanism, and the energetics of the species participating in the chemistry. The information about the energetics is encoded in the formation energies of gas and surface-bound species, and the lateral interactions between adsorbates on the catalytic surface, which can be modeled at different levels of detail. The majority of previous works accounted for only pairwise-additive first nearest-neighbor interactions. More recently, cluster-expansion Hamiltonians incorporating long-range interactions and many-body terms have been used for detailed estimations of catalytic rate [C. Wu, D. J. Schmidt, C. Wolverton, and W. F. Schneider, J. Catal. 286, 88 (2012)]. In view of the increasing interest in accurate predictions of catalytic performance, there is a need for general-purpose KMC approaches incorporating detailed cluster expansion models for the adlayer energetics. We have addressed this need by building on the previously introduced graph-theoretical KMC framework, and we have developed Zacros, a FORTRAN2003 KMC package for simulating catalytic chemistries. To tackle the high computational cost in the presence of long-range interactions we introduce parallelization with OpenMP. We further benchmark our framework by simulating a KMC analogue of the NO oxidation system established by Schneider and co-workers [J. Catal. 286, 88 (2012)]. We show that taking into account only first nearest-neighbor interactions may lead to large errors in the prediction of the catalytic rate, whereas for accurate estimates thereof, one needs to include long-range terms in the cluster expansion.
2011-01-01
Background Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck). PMID:22185645
Sensor Data Fusion for Accurate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory
Li, Jiaming; Luo, Suhuai; Jin, Jesse S.
2010-01-01
Sensor data fusion technology can be used to best extract useful information from multiple sensor observations. It has been widely applied in various applications such as target tracking, surveillance, robot navigation, signal and image processing. This paper introduces a novel data fusion approach in a multiple radiation sensor environment using Dempster-Shafer evidence theory. The methodology is used to predict cloud presence based on the inputs of radiation sensors. Different radiation data have been used for the cloud prediction. The potential application areas of the algorithm include renewable power for virtual power station where the prediction of cloud presence is the most challenging issue for its photovoltaic output. The algorithm is validated by comparing the predicted cloud presence with the corresponding sunshine occurrence data that were recorded as the benchmark. Our experiments have indicated that comparing to the approaches using individual sensors, the proposed data fusion approach can increase correct rate of cloud prediction by ten percent, and decrease unknown rate of cloud prediction by twenty three percent. PMID:22163414
A contrail cirrus prediction model
NASA Astrophysics Data System (ADS)
Schumann, U.
2012-05-01
A new model to simulate and predict the properties of a large ensemble of contrails as a function of given air traffic and meteorology is described. The model is designed for approximate prediction of contrail cirrus cover and analysis of contrail climate impact, e.g. within aviation system optimization processes. The model simulates the full contrail life-cycle. Contrail segments form between waypoints of individual aircraft tracks in sufficiently cold and humid air masses. The initial contrail properties depend on the aircraft. The advection and evolution of the contrails is followed with a Lagrangian Gaussian plume model. Mixing and bulk cloud processes are treated quasi analytically or with an effective numerical scheme. Contrails disappear when the bulk ice content is sublimating or precipitating. The model has been implemented in a "Contrail Cirrus Prediction Tool" (CoCiP). This paper describes the model assumptions, the equations for individual contrails, and the analysis-method for contrail-cirrus cover derived from the optical depth of the ensemble of contrails and background cirrus. The model has been applied for a case study and compared to the results of other models and in-situ contrail measurements. The simple model reproduces a considerable part of observed contrail properties. Mid-aged contrails provide the largest contributions to the product of optical depth and contrail width, important for climate impact.
Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1997-01-01
The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various
DISPLAR: an accurate method for predicting DNA-binding sites on protein surfaces
Tjong, Harianto; Zhou, Huan-Xiang
2007-01-01
Structural and physical properties of DNA provide important constraints on the binding sites formed on surfaces of DNA-targeting proteins. Characteristics of such binding sites may form the basis for predicting DNA-binding sites from the structures of proteins alone. Such an approach has been successfully developed for predicting protein–protein interface. Here this approach is adapted for predicting DNA-binding sites. We used a representative set of 264 protein–DNA complexes from the Protein Data Bank to analyze characteristics and to train and test a neural network predictor of DNA-binding sites. The input to the predictor consisted of PSI-blast sequence profiles and solvent accessibilities of each surface residue and 14 of its closest neighboring residues. Predicted DNA-contacting residues cover 60% of actual DNA-contacting residues and have an accuracy of 76%. This method significantly outperforms previous attempts of DNA-binding site predictions. Its application to the prion protein yielded a DNA-binding site that is consistent with recent NMR chemical shift perturbation data, suggesting that it can complement experimental techniques in characterizing protein–DNA interfaces. PMID:17284455
Hall, Barry G; Cardenas, Heliodoro; Barlow, Miriam
2013-01-01
In clinical settings it is often important to know not just the identity of a microorganism, but also the danger posed by that particular strain. For instance, Escherichia coli can range from being a harmless commensal to being a very dangerous enterohemorrhagic (EHEC) strain. Determining pathogenic phenotypes can be both time consuming and expensive. Here we propose a simple, rapid, and inexpensive method of predicting pathogenic phenotypes on the basis of the presence or absence of short homologous DNA segments in an isolate. Our method compares completely sequenced genomes without the necessity of genome alignments in order to identify the presence or absence of the segments to produce an automatic alignment of the binary string that describes each genome. Analysis of the segment alignment allows identification of those segments whose presence strongly predicts a phenotype. Clinical application of the method requires nothing more that PCR amplification of each of the set of predictive segments. Here we apply the method to identifying EHEC strains of E. coli and to distinguishing E. coli from Shigella. We show in silico that with as few as 8 predictive sequences, if even three of those predictive sequences are amplified the probability of being EHEC or Shigella is >0.99. The method is thus very robust to the occasional amplification failure for spurious reasons. Experimentally, we apply the method to screening a set of 98 isolates to distinguishing E. coli from Shigella, and EHEC from non-EHEC E. coli strains and show that all isolates are correctly identified. PMID:23935901
Towards accurate kinetic modeling of prompt NO formation in hydrocarbon flames via the NCN pathway
Sutton, Jeffrey A.; Fleming, James W.
2008-08-15
A basic kinetic mechanism that can predict the appropriate prompt-NO precursor NCN, as shown by experiment, with relative accuracy while still producing postflame NO results that can be calculated as accurately as or more accurately than through the former HCN pathway is presented for the first time. The basic NCN submechanism should be a starting point for future NCN kinetic and prompt NO formation refinement.
Koot, Yvonne E. M.; van Hooff, Sander R.; Boomsma, Carolien M.; van Leenen, Dik; Groot Koerkamp, Marian J. A.; Goddijn, Mariëtte; Eijkemans, Marinus J. C.; Fauser, Bart C. J. M.; Holstege, Frank C. P.; Macklon, Nick S.
2016-01-01
The primary limiting factor for effective IVF treatment is successful embryo implantation. Recurrent implantation failure (RIF) is a condition whereby couples fail to achieve pregnancy despite consecutive embryo transfers. Here we describe the collection of gene expression profiles from mid-luteal phase endometrial biopsies (n = 115) from women experiencing RIF and healthy controls. Using a signature discovery set (n = 81) we identify a signature containing 303 genes predictive of RIF. Independent validation in 34 samples shows that the gene signature predicts RIF with 100% positive predictive value (PPV). The strength of the RIF associated expression signature also stratifies RIF patients into distinct groups with different subsequent implantation success rates. Exploration of the expression changes suggests that RIF is primarily associated with reduced cellular proliferation. The gene signature will be of value in counselling and guiding further treatment of women who fail to conceive upon IVF and suggests new avenues for developing intervention. PMID:26797113
Accurate and inexpensive prediction of the color optical properties of anthocyanins in solution.
Ge, Xiaochuan; Timrov, Iurii; Binnie, Simon; Biancardi, Alessandro; Calzolari, Arrigo; Baroni, Stefano
2015-04-23
The simulation of the color optical properties of molecular dyes in liquid solution requires the calculation of time evolution of the solute absorption spectra fluctuating in the solvent at finite temperature. Time-averaged spectra can be directly evaluated by combining ab initio Car-Parrinello molecular dynamics and time-dependent density functional theory calculations. The inclusion of hybrid exchange-correlation functionals, necessary for the prediction of the correct transition frequencies, prevents one from using these techniques for the simulation of the optical properties of large realistic systems. Here we present an alternative approach for the prediction of the color of natural dyes in solution with a low computational cost. We applied this approach to representative anthocyanin dyes: the excellent agreement between the simulated and the experimental colors makes this method a straightforward and inexpensive tool for the high-throughput prediction of colors of molecules in liquid solvents. PMID:25830823
Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.
2014-01-01
NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135
Victora, Andrea; Möller, Heiko M; Exner, Thomas E
2014-12-16
NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3-0.6 ppm and correlation coefficients (r(2)) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135
Predictive Computational Modeling of Chromatin Folding
NASA Astrophysics Data System (ADS)
di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.
In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.
Onken, Michael D.; Worley, Lori A.; Tuscan, Meghan D.; Harbour, J. William
2010-01-01
Uveal (ocular) melanoma is an aggressive cancer that often forms undetectable micrometastases before diagnosis of the primary tumor. These micrometastases later multiply to generate metastatic tumors that are resistant to therapy and are uniformly fatal. We have previously identified a gene expression profile derived from the primary tumor that is extremely accurate for identifying patients at high risk of metastatic disease. Development of a practical clinically feasible platform for analyzing this expression profile would benefit high-risk patients through intensified metastatic surveillance, earlier intervention for metastasis, and stratification for entry into clinical trials of adjuvant therapy. Here, we migrate the expression profile from a hybridization-based microarray platform to a robust, clinically practical, PCR-based 15-gene assay comprising 12 discriminating genes and three endogenous control genes. We analyze the technical performance of the assay in a prospective study of 609 tumor samples, including 421 samples sent from distant locations. We show that the assay can be performed accurately on fine needle aspirate biopsy samples, even when the quantity of RNA is below detectable limits. Preliminary outcome data from the prospective study affirm the prognostic accuracy of the assay. This prognostic assay provides an important addition to the armamentarium for managing patients with uveal melanoma, and it provides a proof of principle for the development of similar assays for other cancers. PMID:20413675
Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.
Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek
2016-02-01
Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674
Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations
Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek
2016-01-01
Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-‘one-click’ experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674
Updating outdated predictive accident models.
Wood, A G; Mountain, L J; Connors, R D; Maher, M J; Ropkins, K
2013-06-01
Reliable predictive accident models (PAMs) (also referred to as safety performance functions (SPFs)) are essential to design and maintain safe road networks however, ongoing changes in road and vehicle design coupled with road safety initiatives, mean that these models can quickly become dated. Unfortunately, because the fitting of sophisticated PAMs including a wide range of explanatory variables is not a trivial task, available models tend to be based on data collected many years ago and seem unlikely to give reliable estimates of current accidents. Large, expensive studies to produce new models are likely to be, at best, only a temporary solution. This paper thus seeks to develop a practical and efficient methodology to allow currently available PAMs to be updated to give unbiased estimates of accident frequencies at any point in time. Two principal issues are examined: the extent to which the temporal transferability of predictive accident models varies with model complexity; and the practicality and efficiency of two alternative updating strategies. The models used to illustrate these issues are the suites of models developed for rural dual and single carriageway roads in the UK. These are widely used in several software packages in spite of being based on data collected during the 1980s and early 1990s. It was found that increased model complexity by no means ensures better temporal transferability and that calibration of the models using a scale factor can be a practical alternative to fitting new models. PMID:23510788
Accurate integral equation theory for the central force model of liquid water and ionic solutions
NASA Astrophysics Data System (ADS)
Ichiye, Toshiko; Haymet, A. D. J.
1988-10-01
The atom-atom pair correlation functions and thermodynamics of the central force model of water, introduced by Lemberg, Stillinger, and Rahman, have been calculated accurately by an integral equation method which incorporates two new developments. First, a rapid new scheme has been used to solve the Ornstein-Zernike equation. This scheme combines the renormalization methods of Allnatt, and Rossky and Friedman with an extension of the trigonometric basis-set solution of Labik and co-workers. Second, by adding approximate ``bridge'' functions to the hypernetted-chain (HNC) integral equation, we have obtained predictions for liquid water in which the hydrogen bond length and number are in good agreement with ``exact'' computer simulations of the same model force laws. In addition, for dilute ionic solutions, the ion-oxygen and ion-hydrogen coordination numbers display both the physically correct stoichiometry and good agreement with earlier simulations. These results represent a measurable improvement over both a previous HNC solution of the central force model and the ex-RISM integral equation solutions for the TIPS and other rigid molecule models of water.
PREDICTIVE MODELS. Enhanced Oil Recovery Model
Ray, R.M.
1992-02-26
PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.
Viewing men's faces does not lead to accurate predictions of trustworthiness
Efferson, Charles; Vogt, Sonja
2013-01-01
The evolution of cooperation requires some mechanism that reduces the risk of exploitation for cooperative individuals. Recent studies have shown that men with wide faces are anti-social, and they are perceived that way by others. This suggests that people could use facial width to identify anti-social men and thus limit the risk of exploitation. To see if people can make accurate inferences like this, we conducted a two-part experiment. First, males played a sequential social dilemma, and we took photographs of their faces. Second, raters then viewed these photographs and guessed how second movers behaved. Raters achieved significant accuracy by guessing that second movers exhibited reciprocal behaviour. Raters were not able to use the photographs to further improve accuracy. Indeed, some raters used the photographs to their detriment; they could have potentially achieved greater accuracy and earned more money by ignoring the photographs and assuming all second movers reciprocate. PMID:23308340
Accurate prediction of the ammonia probes of a variable proton-to-electron mass ratio
NASA Astrophysics Data System (ADS)
Owens, A.; Yurchenko, S. N.; Thiel, W.; Špirko, V.
2015-07-01
A comprehensive study of the mass sensitivity of the vibration-rotation-inversion transitions of 14NH3, 15NH3, 14ND3 and 15ND3 is carried out variationally using the TROVE approach. Variational calculations are robust and accurate, offering a new way to compute sensitivity coefficients. Particular attention is paid to the Δk = ±3 transitions between the accidentally coinciding rotation-inversion energy levels of the ν2 = 0+, 0-, 1+ and 1- states, and the inversion transitions in the ν4 = 1 state affected by the `giant' l-type doubling effect. These transitions exhibit highly anomalous sensitivities, thus appearing as promising probes of a possible cosmological variation of the proton-to-electron mass ratio μ. Moreover, a simultaneous comparison of the calculated sensitivities reveals a sizeable isotopic dependence which could aid an exclusive ammonia detection.
Predictive Models of Liver Cancer
Predictive models of chemical-induced liver cancer face the challenge of bridging causative molecular mechanisms to adverse clinical outcomes. The latent sequence of intervening events from chemical insult to toxicity are poorly understood because they span multiple levels of bio...
Accurate, conformation-dependent predictions of solvent effects on protein ionization constants
Barth, P.; Alber, T.; Harbury, P. B.
2007-01-01
Predicting how aqueous solvent modulates the conformational transitions and influences the pKa values that regulate the biological functions of biomolecules remains an unsolved challenge. To address this problem, we developed FDPB_MF, a rotamer repacking method that exhaustively samples side chain conformational space and rigorously calculates multibody protein–solvent interactions. FDPB_MF predicts the effects on pKa values of various solvent exposures, large ionic strength variations, strong energetic couplings, structural reorganizations and sequence mutations. The method achieves high accuracy, with root mean square deviations within 0.3 pH unit of the experimental values measured for turkey ovomucoid third domain, hen lysozyme, Bacillus circulans xylanase, and human and Escherichia coli thioredoxins. FDPB_MF provides a faithful, quantitative assessment of electrostatic interactions in biological macromolecules. PMID:17360348
FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.
El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant
2016-01-01
A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein
FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues
EL-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant
2016-01-01
A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein
Accurate Fault Prediction of BlueGene/P RAS Logs Via Geometric Reduction
Jones, Terry R; Kirby, Michael; Ladd, Joshua S; Dreisigmeyer, David; Thompson, Joshua
2010-01-01
The authors are building two algorithms for fault prediction using raw system-log data. This work is preliminary, and has only been applied to a limited dataset, however the results seem promising. The conclusions are that: (1) obtaining useful data from RAS-logs is challenging; (2) extracting concentrated information improves efficiency and accuracy; and (3) function evaluation algorithms are fast and lend well to scaling.
Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej
2014-01-01
We present a new approach for predicting the Accessible Surface Area (ASA) using a General Neural Network (GENN). The novelty of the new approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Instead we use solely sequential window information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is tested on predicting the ASA of globular proteins and found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for GENN and ASAquick are available from Research and Information Systems at http://mamiris.com, from the SPARKS Lab at http://sparks-lab.org, and from the Battelle Center for Mathematical Medicine at http://mathmed.org. PMID:25204636
Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J
2009-12-24
In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure. PMID:19950907
Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej
2014-11-01
We present a new approach for predicting the Accessible Surface Area (ASA) using a General Neural Network (GENN). The novelty of the new approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Instead we use solely sequential window information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment-based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is tested on predicting the ASA of globular proteins and found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for GENN and ASAquick are available from Research and Information Systems at http://mamiris.com, from the SPARKS Lab at http://sparks-lab.org, and from the Battelle Center for Mathematical Medicine at http://mathmed.org. PMID:25204636
Orbit Modelling for Satellites Using the NASA Prediction Bulletins
NASA Technical Reports Server (NTRS)
Bonavito, N. L.; Koch, D. W.; Maslyar, G. A.; Foreman, J. C.
1976-01-01
For some satellites the NASA Prediction Bulletins are the only means available to the general user for obtaining orbital information. A computational interface between the information given in the NASA Prediction Bulletins and standard orbit determination programs is provided. Such an interface is necessary to obtain accurate orbit predictions. The theoretical considerations and their computational verification in this interface modelling are presented. This analysis was performed in conjunction with satellite aided search and rescue position location experiments where accurate orbits of the Amateur Satellite Corporation (AMSAT) OSCAR-6 and OSCAR-7 spacecraft are a prerequisite.
Gay, Guillaume; Courtheoux, Thibault; Reyes, Céline
2012-01-01
In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduces the timing of correct chromosome biorientation and segregation seen in fission yeast. Prevention of attachment defects requires both appropriate kinetochore orientation and an Aurora B–like activity. The model also reproduces abnormal chromosome segregation behavior (caused by, for example, inhibition of Aurora B). It predicts that, in metaphase, merotelic attachment is prevented by a kinetochore orientation effect and corrected by an Aurora B–like activity, whereas in anaphase, it is corrected through unbalanced forces applied to the kinetochore. These unbalanced forces are sufficient to prevent aneuploidy. PMID:22412019
Accurate models for P-gp drug recognition induced from a cancer cell line cytotoxicity screen.
Levatić, Jurica; Ćurak, Jasna; Kralj, Marijeta; Šmuc, Tomislav; Osmak, Maja; Supek, Fran
2013-07-25
P-glycoprotein (P-gp, MDR1) is a promiscuous drug efflux pump of substantial pharmacological importance. Taking advantage of large-scale cytotoxicity screening data involving 60 cancer cell lines, we correlated the differential biological activities of ∼13,000 compounds against cellular P-gp levels. We created a large set of 934 high-confidence P-gp substrates or nonsubstrates by enforcing agreement with an orthogonal criterion involving P-gp overexpressing ADR-RES cells. A support vector machine (SVM) was 86.7% accurate in discriminating P-gp substrates on independent test data, exceeding previous models. Two molecular features had an overarching influence: nearly all P-gp substrates were large (>35 atoms including H) and dense (specific volume of <7.3 Å(3)/atom) molecules. Seven other descriptors and 24 molecular fragments ("effluxophores") were found enriched in the (non)substrates and incorporated into interpretable rule-based models. Biological experiments on an independent P-gp overexpressing cell line, the vincristine-resistant VK2, allowed us to reclassify six compounds previously annotated as substrates, validating our method's predictive ability. Models are freely available at http://pgp.biozyne.com . PMID:23772653
Fang, Tao; Li, Wei; Gu, Fangwei; Li, Shuhua
2015-01-13
We extend the generalized energy-based fragmentation (GEBF) approach to molecular crystals under periodic boundary conditions (PBC), and we demonstrate the performance of the method for a variety of molecular crystals. With this approach, the lattice energy of a molecular crystal can be obtained from the energies of a series of embedded subsystems, which can be computed with existing advanced molecular quantum chemistry methods. The use of the field compensation method allows the method to take long-range electrostatic interaction of the infinite crystal environment into account and make the method almost translationally invariant. The computational cost of the present method scales linearly with the number of molecules in the unit cell. Illustrative applications demonstrate that the PBC-GEBF method with explicitly correlated quantum chemistry methods is capable of providing accurate descriptions on the lattice energies and structures for various types of molecular crystals. In addition, this approach can be employed to quantify the contributions of various intermolecular interactions to the theoretical lattice energy. Such qualitative understanding is very useful for rational design of molecular crystals. PMID:26574207
O’Connor, James PB; Boult, Jessica KR; Jamin, Yann; Babur, Muhammad; Finegan, Katherine G; Williams, Kaye J; Little, Ross A; Jackson, Alan; Parker, Geoff JM; Reynolds, Andrew R; Waterton, John C; Robinson, Simon P
2015-01-01
There is a clinical need for non-invasive biomarkers of tumor hypoxia for prognostic and predictive studies, radiotherapy planning and therapy monitoring. Oxygen enhanced MRI (OE-MRI) is an emerging imaging technique for quantifying the spatial distribution and extent of tumor oxygen delivery in vivo. In OE-MRI, the longitudinal relaxation rate of protons (ΔR1) changes in proportion to the concentration of molecular oxygen dissolved in plasma or interstitial tissue fluid. Therefore, well-oxygenated tissues show positive ΔR1. We hypothesized that the fraction of tumor tissue refractory to oxygen challenge (lack of positive ΔR1, termed “Oxy-R fraction”) would be a robust biomarker of hypoxia in models with varying vascular and hypoxic features. Here we demonstrate that OE-MRI signals are accurate, precise and sensitive to changes in tumor pO2 in highly vascular 786-0 renal cancer xenografts. Furthermore, we show that Oxy-R fraction can quantify the hypoxic fraction in multiple models with differing hypoxic and vascular phenotypes, when used in combination with measurements of tumor perfusion. Finally, Oxy-R fraction can detect dynamic changes in hypoxia induced by the vasomodulator agent hydralazine. In contrast, more conventional biomarkers of hypoxia (derived from blood oxygenation-level dependent MRI and dynamic contrast-enhanced MRI) did not relate to tumor hypoxia consistently. Our results show that the Oxy-R fraction accurately quantifies tumor hypoxia non-invasively and is immediately translatable to the clinic. PMID:26659574
Wang, Zhiheng; Yang, Qianqian; Li, Tonghua; Cong, Peisheng
2015-01-01
The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS) obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction) tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database. Availability The DisoMCS is available at http://cal.tongji.edu.cn/disorder/. PMID:26090958
Predictive Capability Maturity Model (PCMM).
Swiler, Laura Painton; Knupp, Patrick Michael; Urbina, Angel
2010-10-01
Predictive Capability Maturity Model (PCMM) is a communication tool that must include a dicussion of the supporting evidence. PCMM is a tool for managing risk in the use of modeling and simulation. PCMM is in the service of organizing evidence to help tell the modeling and simulation (M&S) story. PCMM table describes what activities within each element are undertaken at each of the levels of maturity. Target levels of maturity can be established based on the intended application. The assessment is to inform what level has been achieved compared to the desired level, to help prioritize the VU activities & to allocate resources.
Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.
2014-01-28
Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.
NASA Astrophysics Data System (ADS)
Liu, Qianlong; Reifsnider, Kenneth
2012-11-01
The basis of dielectrophoresis (DEP) is the prediction of the force and torque on particles. The classical approach to the prediction is based on the effective moment method, which, however, is an approximate approach, assumes infinitesimal particles. Therefore, it is well-known that for finite-sized particles, the DEP approximation is inaccurate as the mutual field, particle, wall interactions become strong, a situation presently attracting extensive research for practical significant applications. In the present talk, we provide accurate calculations of the force and torque on the particles from first principles, by directly resolving the local geometry and properties and accurately accounting for the mutual interactions for finite-sized particles with both dielectric polarization and conduction in a sinusoidally steady-state electric field. Since the approach has a significant advantage, compared to other numerical methods, to efficiently simulate many closely packed particles, it provides an important, unique, and accurate technique to investigate complex DEP phenomena, for example heterogeneous mixtures containing particle chains, nanoparticle assembly, biological cells, non-spherical effects, etc. This study was supported by the Department of Energy under funding for an EFRC (the HeteroFoaM Center), grant no. DE-SC0001061.
Oyeyemi, Victor B; Krisiloff, David B; Keith, John A; Libisch, Florian; Pavone, Michele; Carter, Emily A
2014-01-28
Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs. PMID:25669533
NASA Astrophysics Data System (ADS)
Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.
2014-01-01
Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.
Liu, Lili; Zhang, Zijun; Mei, Qian; Chen, Ming
2013-01-01
Predicting the subcellular localization of proteins conquers the major drawbacks of high-throughput localization experiments that are costly and time-consuming. However, current subcellular localization predictors are limited in scope and accuracy. In particular, most predictors perform well on certain locations or with certain data sets while poorly on others. Here, we present PSI, a novel high accuracy web server for plant subcellular localization prediction. PSI derives the wisdom of multiple specialized predictors via a joint-approach of group decision making strategy and machine learning methods to give an integrated best result. The overall accuracy obtained (up to 93.4%) was higher than best individual (CELLO) by ~10.7%. The precision of each predicable subcellular location (more than 80%) far exceeds that of the individual predictors. It can also deal with multi-localization proteins. PSI is expected to be a powerful tool in protein location engineering as well as in plant sciences, while the strategy employed could be applied to other integrative problems. A user-friendly web server, PSI, has been developed for free access at http://bis.zju.edu.cn/psi/. PMID:24194827
Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie
2008-03-28
Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html. PMID:18376982
ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS
Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.
2009-12-10
A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance LAMBDACDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and LAMBDACDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the LAMBDACDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass
A Foundation for the Accurate Prediction of the Soft Error Vulnerability of Scientific Applications
Bronevetsky, G; de Supinski, B; Schulz, M
2009-02-13
Understanding the soft error vulnerability of supercomputer applications is critical as these systems are using ever larger numbers of devices that have decreasing feature sizes and, thus, increasing frequency of soft errors. As many large scale parallel scientific applications use BLAS and LAPACK linear algebra routines, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. This paper analyzes the vulnerability of these routines to soft errors by characterizing how their outputs are affected by injected errors and by evaluating several techniques for predicting how errors propagate from the input to the output of each routine. The resulting error profiles can be used to understand the fault vulnerability of full applications that use these routines.
NASA Astrophysics Data System (ADS)
McNamara, Roger P.; Eagle, C. D.
1992-08-01
Planetary Observer High Accuracy Orbit Prediction Program (POHOP), an existing numerical integrator, was modified with the solar and lunar formulae developed by T.C. Van Flandern and K.F. Pulkkinen to provide the accuracy required to evaluate long-term orbit characteristics of objects on the geosynchronous region. The orbit of a 1000 kg class spacecraft is numerically integrated over 50 years using both the original and the more accurate solar and lunar ephemerides methods. Results of this study demonstrate that, over the long term, for an object located in the geosynchronous region, the more accurate solar and lunar ephemerides effects on the objects's position are significantly different than using the current POHOP ephemeris.
Fortin, Élise; Platt, Robert W.; Fontela, Patricia S.; Buckeridge, David L.; Quach, Caroline
2015-01-01
Objective The optimal way to measure antimicrobial use in hospital populations, as a complement to surveillance of resistance is still unclear. Using respiratory isolates and antimicrobial prescriptions of nine intensive care units (ICUs), this study aimed to identify the indicator of antimicrobial use that predicted prevalence and incidence rates of resistance with the best accuracy. Methods Retrospective cohort study including all patients admitted to three neonatal (NICU), two pediatric (PICU) and four adult ICUs between April 2006 and March 2010. Ten different resistance / antimicrobial use combinations were studied. After adjustment for ICU type, indicators of antimicrobial use were successively tested in regression models, to predict resistance prevalence and incidence rates, per 4-week time period, per ICU. Binomial regression and Poisson regression were used to model prevalence and incidence rates, respectively. Multiplicative and additive models were tested, as well as no time lag and a one 4-week-period time lag. For each model, the mean absolute error (MAE) in prediction of resistance was computed. The most accurate indicator was compared to other indicators using t-tests. Results Results for all indicators were equivalent, except for 1/20 scenarios studied. In this scenario, where prevalence of carbapenem-resistant Pseudomonas sp. was predicted with carbapenem use, recommended daily doses per 100 admissions were less accurate than courses per 100 patient-days (p = 0.0006). Conclusions A single best indicator to predict antimicrobial resistance might not exist. Feasibility considerations such as ease of computation or potential external comparisons could be decisive in the choice of an indicator for surveillance of healthcare antimicrobial use. PMID:26710322
The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1...
Elvira, L; Hernandez, F; Cuesta, P; Cano, S; Gonzalez-Martin, J-V; Astiz, S
2013-06-01
Although the intensive production system of Lacaune dairy sheep is the only profitable method for producers outside of the French Roquefort area, little is known about this type of systems. This study evaluated yield records of 3677 Lacaune sheep under intensive management between 2005 and 2010 in order to describe the lactation curve of this breed and to investigate the suitability of different mathematical functions for modeling this curve. A total of 7873 complete lactations during a 40-week lactation period corresponding to 201 281 pieces of weekly yield data were used. First, five mathematical functions were evaluated on the basis of the residual mean square, determination coefficient, Durbin Watson and Runs Test values. The two better models were found to be Pollott Additive and fractional polynomial (FP). In the second part of the study, the milk yield, peak of milk yield, day of peak and persistency of the lactations were calculated with Pollot Additive and FP models and compared with the real data. The results indicate that both models gave an extremely accurate fit to Lacaune lactation curves in order to predict milk yields (P = 0.871), with the FP model being the best choice to provide a good fit to an extensive amount of real data and applicable on farm without specific statistical software. On the other hand, the interpretation of the parameters of the Pollott Additive function helps to understand the biology of the udder of the Lacaune sheep. The characteristics of the Lacaune lactation curve and milk yield are affected by lactation number and length. The lactation curves obtained in the present study allow the early identification of ewes with low milk yield potential, which will help to optimize farm profitability. PMID:23257242
MONA: An accurate two-phase well flow model based on phase slippage
Asheim, H.
1984-10-01
In two phase flow, holdup and pressure loss are related to interfacial slippage. A model based on the slippage concept has been developed and tested using production well data from Forties, the Ekofisk area, and flowline data from Prudhoe Bay. The model developed turned out considerably more accurate than the standard models used for comparison.
Benzi, Caterina; Cossi, Maurizio; Barone, Vincenzo
2005-11-15
High-level ab initio g and A tensor components have been calculated for PD-tempone and tempo-palmitate (TP) radical spin probes dissolved in n-pentyl and n-hexyl cyanobiphenyl liquid crystals. Solvent effects have been included in the proposed approach by means of the polarizable continuum model, allowing for solvent anisotropy. An in-depth analysis of the electronic structure of probes was performed to choose a suitable model for TP and make the calculations more accessible. Computed magnetic tensor components have been compared with corresponding values measured in the rigid limit. The quality of the results suggests the use of quantum-mechanical data to determine the order parameter of the nematic from experimental electron-spin resonance measurements. PMID:16321115
Margot Gerritsen
2008-10-31
Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids
Shakibaee, Abolfazl; Faghihzadeh, Soghrat; Alishiri, Gholam Hossein; Ebrahimpour, Zeynab; Faradjzadeh, Shahram; Sobhani, Vahid; Asgari, Alireza
2015-01-01
Background: The body composition varies according to different life styles (i.e. intake calories and caloric expenditure). Therefore, it is wise to record military personnel’s body composition periodically and encourage those who abide to the regulations. Different methods have been introduced for body composition assessment: invasive and non-invasive. Amongst them, the Jackson and Pollock equation is most popular. Objectives: The recommended anthropometric prediction equations for assessing men’s body composition were compared with dual-energy X-ray absorptiometry (DEXA) gold standard to develop a modified equation to assess body composition and obesity quantitatively among Iranian military men. Patients and Methods: A total of 101 military men aged 23 - 52 years old with a mean age of 35.5 years were recruited and evaluated in the present study (average height, 173.9 cm and weight, 81.5 kg). The body-fat percentages of subjects were assessed both with anthropometric assessment and DEXA scan. The data obtained from these two methods were then compared using multiple regression analysis. Results: The mean and standard deviation of body fat percentage of the DEXA assessment was 21.2 ± 4.3 and body fat percentage obtained from three Jackson and Pollock 3-, 4- and 7-site equations were 21.1 ± 5.8, 22.2 ± 6.0 and 20.9 ± 5.7, respectively. There was a strong correlation between these three equations and DEXA (R² = 0.98). Conclusions: The mean percentage of body fat obtained from the three equations of Jackson and Pollock was very close to that of body fat obtained from DEXA; however, we suggest using a modified Jackson-Pollock 3-site equation for volunteer military men because the 3-site equation analysis method is simpler and faster than other methods. PMID:26715964
Creation of Anatomically Accurate Computer-Aided Design (CAD) Solid Models from Medical Images
NASA Technical Reports Server (NTRS)
Stewart, John E.; Graham, R. Scott; Samareh, Jamshid A.; Oberlander, Eric J.; Broaddus, William C.
1999-01-01
Most surgical instrumentation and implants used in the world today are designed with sophisticated Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) software. This software automates the mechanical development of a product from its conceptual design through manufacturing. CAD software also provides a means of manipulating solid models prior to Finite Element Modeling (FEM). Few surgical products are designed in conjunction with accurate CAD models of human anatomy because of the difficulty with which these models are created. We have developed a novel technique that creates anatomically accurate, patient specific CAD solids from medical images in a matter of minutes.
A prediction model for Clostridium difficile recurrence
LaBarbera, Francis D.; Nikiforov, Ivan; Parvathenani, Arvin; Pramil, Varsha; Gorrepati, Subhash
2015-01-01
Background Clostridium difficile infection (CDI) is a growing problem in the community and hospital setting. Its incidence has been on the rise over the past two decades, and it is quickly becoming a major concern for the health care system. High rate of recurrence is one of the major hurdles in the successful treatment of C. difficile infection. There have been few studies that have looked at patterns of recurrence. The studies currently available have shown a number of risk factors associated with C. difficile recurrence (CDR); however, there is little consensus on the impact of most of the identified risk factors. Methods Our study was a retrospective chart review of 198 patients diagnosed with CDI via Polymerase Chain Reaction (PCR) from January 2009 to Jun 2013. In our study, we decided to use a machine learning algorithm called the Random Forest (RF) to analyze all of the factors proposed to be associated with CDR. This model is capable of making predictions based on a large number of variables, and has outperformed numerous other models and statistical methods. Results We came up with a model that was able to accurately predict the CDR with a sensitivity of 83.3%, specificity of 63.1%, and area under curve of 82.6%. Like other similar studies that have used the RF model, we also had very impressive results. Conclusions We hope that in the future, machine learning algorithms, such as the RF, will see a wider application. PMID:25656667
Comparison of Predictive Modeling Methods of Aircraft Landing Speed
NASA Technical Reports Server (NTRS)
Diallo, Ousmane H.
2012-01-01
Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.
Mars solar conjunction prediction modeling
NASA Astrophysics Data System (ADS)
Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Kushvah, Badam Singh
2016-01-01
During the Mars solar conjunction, telecommunication and tracking between the spacecraft and the Earth degrades significantly. The radio signal degradation depends on the angular separation between the Sun, Earth and probe (SEP), the signal frequency band and the solar activity. All radiometric tracking data types display increased noise and signatures for smaller SEP angles. Due to scintillation, telemetry frame errors increase significantly when solar elongation becomes small enough. This degradation in telemetry data return starts at solar elongation angles of around 5° at S-band, around 2° at X-band and about 1° at Ka-band. This paper presents a mathematical model for predicting Mars superior solar conjunction for any Mars orbiting spacecraft. The described model is simulated for the Mars Orbiter Mission which experienced Mars solar conjunction during May-July 2015. Such a model may be useful to flight projects and design engineers in the planning of Mars solar conjunction operational scenarios.
Leng, Wei; Ju, Lili; Gunzburger, Max; Price, Stephen; Ringler, Todd
2012-01-01
The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.
NASA Astrophysics Data System (ADS)
Wosnik, M.; Bachant, P.
2014-12-01
Cross-flow turbines, often referred to as vertical-axis turbines, show potential for success in marine hydrokinetic (MHK) and wind energy applications, ranging from small- to utility-scale installations in tidal/ocean currents and offshore wind. As turbine designs mature, the research focus is shifting from individual devices to the optimization of turbine arrays. It would be expensive and time-consuming to conduct physical model studies of large arrays at large model scales (to achieve sufficiently high Reynolds numbers), and hence numerical techniques are generally better suited to explore the array design parameter space. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries (e.g., grid resolution into the viscous sublayer on turbine blades), the turbines' interaction with the energy resource (water current or wind) needs to be parameterized, or modeled. Models used today--a common model is the actuator disk concept--are not able to predict the unique wake structure generated by cross-flow turbines. This wake structure has been shown to create "constructive" interference in some cases, improving turbine performance in array configurations, in contrast with axial-flow, or horizontal axis devices. Towards a more accurate parameterization of cross-flow turbines, an extensive experimental study was carried out using a high-resolution turbine test bed with wake measurement capability in a large cross-section tow tank. The experimental results were then "interpolated" using high-fidelity Navier--Stokes simulations, to gain insight into the turbine's near-wake. The study was designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. The end product of
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.; Conrad, Joy
1996-01-01
The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field
Hu, Y.X.; Stamnes, K. )
1993-04-01
A new parameterization of the radiative Properties of water clouds is presented. Cloud optical properties for valent radius throughout the solar and both solar and terrestrial spectra and for cloud equivalent radii in the range 2.5-60 [mu]m are calculated from Mie theory. It is found that cloud optical properties depend mainly on equivalent radius throughout the solar and terrestrial spectrum and are insensitive to the details of the droplet size distribution, such as shape, skewness, width, and modality (single or bimodal). This suggests that in cloud models, aimed at predicting the evolution of cloud microphysics with climate change, it is sufficient to determine the third and the second moments of the size distribution (the ratio of which determines the equivalent radius). It also implies that measurements of the cloud liquid water content and the extinction coefficient are sufficient to determine cloud optical properties experimentally (i.e., measuring the complete droplet size distribution is not required). Based on the detailed calculations, the optical properties are parameterized as a function of cloud liquid water path and equivalent cloud droplet radius by using a nonlinear least-square fitting. The parameterization is performed separately for the range of radii 2.5-12 [mu]m, 12-30,[mu]m, and 30-60 [mu]m. Cloud heating and cooling rates are computed from this parameterization by using a comprehensive radiation model. Comparison with similar results obtained from exact Mie scattering calculations shows that this parameterization yields very accurate results and that it is several thousand times faster. This parameterization separates the dependence of cloud optical properties on droplet size and liquid water content, and is suitable for inclusion into climate models. 22 refs., 7 figs., 6 tabs.
Gaussian mixture models as flux prediction method for central receivers
NASA Astrophysics Data System (ADS)
Grobler, Annemarie; Gauché, Paul; Smit, Willie
2016-05-01
Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.
Climate Modeling and Prediction at NSIPP
NASA Technical Reports Server (NTRS)
Suarez, Max; Einaudi, Franco (Technical Monitor)
2001-01-01
The talk will review modeling and prediction efforts undertaken as part of NASA's Seasonal to Interannual Prediction Project (NSIPP). The focus will be on atmospheric model results, including its use for experimental seasonal prediction and the diagnostic analysis of climate anomalies. The model's performance in coupled experiments with land and atmosphere models will also be discussed.
Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue
Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William
2008-01-01
In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.
Sweat loss prediction using a multi-model approach
NASA Astrophysics Data System (ADS)
Xu, Xiaojiang; Santee, William R.
2011-07-01
A new multi-model approach (MMA) for sweat loss prediction is proposed to improve prediction accuracy. MMA was computed as the average of sweat loss predicted by two existing thermoregulation models: i.e., the rational model SCENARIO and the empirical model Heat Strain Decision Aid (HSDA). Three independent physiological datasets, a total of 44 trials, were used to compare predictions by MMA, SCENARIO, and HSDA. The observed sweat losses were collected under different combinations of uniform ensembles, environmental conditions (15-40°C, RH 25-75%), and exercise intensities (250-600 W). Root mean square deviation (RMSD), residual plots, and paired t tests were used to compare predictions with observations. Overall, MMA reduced RMSD by 30-39% in comparison with either SCENARIO or HSDA, and increased the prediction accuracy to 66% from 34% or 55%. Of the MMA predictions, 70% fell within the range of mean observed value ± SD, while only 43% of SCENARIO and 50% of HSDA predictions fell within the same range. Paired t tests showed that differences between observations and MMA predictions were not significant, but differences between observations and SCENARIO or HSDA predictions were significantly different for two datasets. Thus, MMA predicted sweat loss more accurately than either of the two single models for the three datasets used. Future work will be to evaluate MMA using additional physiological data to expand the scope of populations and conditions.
Reynolds, Andrew M.; Lihoreau, Mathieu; Chittka, Lars
2013-01-01
Pollinating bees develop foraging circuits (traplines) to visit multiple flowers in a manner that minimizes overall travel distance, a task analogous to the travelling salesman problem. We report on an in-depth exploration of an iterative improvement heuristic model of bumblebee traplining previously found to accurately replicate the establishment of stable routes by bees between flowers distributed over several hectares. The critical test for a model is its predictive power for empirical data for which the model has not been specifically developed, and here the model is shown to be consistent with observations from different research groups made at several spatial scales and using multiple configurations of flowers. We refine the model to account for the spatial search strategy of bees exploring their environment, and test several previously unexplored predictions. We find that the model predicts accurately 1) the increasing propensity of bees to optimize their foraging routes with increasing spatial scale; 2) that bees cannot establish stable optimal traplines for all spatial configurations of rewarding flowers; 3) the observed trade-off between travel distance and prioritization of high-reward sites (with a slight modification of the model); 4) the temporal pattern with which bees acquire approximate solutions to travelling salesman-like problems over several dozen foraging bouts; 5) the instability of visitation schedules in some spatial configurations of flowers; 6) the observation that in some flower arrays, bees' visitation schedules are highly individually different; 7) the searching behaviour that leads to efficient location of flowers and routes between them. Our model constitutes a robust theoretical platform to generate novel hypotheses and refine our understanding about how small-brained insects develop a representation of space and use it to navigate in complex and dynamic environments. PMID:23505353
2015-01-01
Background Accurately predicting the binding affinities of large sets of protein-ligand complexes is a key challenge in computational biomolecular science, with applications in drug discovery, chemical biology, and structural biology. Since a scoring function (SF) is used to score, rank, and identify drug leads, the fidelity with which it predicts the affinity of a ligand candidate for a protein's binding site has a significant bearing on the accuracy of virtual screening. Despite intense efforts in developing conventional SFs, which are either force-field based, knowledge-based, or empirical, their limited predictive power has been a major roadblock toward cost-effective drug discovery. Therefore, in this work, we present novel SFs employing a large ensemble of neural networks (NN) in conjunction with a diverse set of physicochemical and geometrical features characterizing protein-ligand complexes to predict binding affinity. Results We assess the scoring accuracies of two new ensemble NN SFs based on bagging (BgN-Score) and boosting (BsN-Score), as well as those of conventional SFs in the context of the 2007 PDBbind benchmark that encompasses a diverse set of high-quality protein families. We find that BgN-Score and BsN-Score have more than 25% better Pearson's correlation coefficient (0.804 and 0.816 vs. 0.644) between predicted and measured binding affinities compared to that achieved by a state-of-the-art conventional SF. In addition, these ensemble NN SFs are also at least 19% more accurate (0.804 and 0.816 vs. 0.675) than SFs based on a single neural network that has been traditionally used in drug discovery applications. We further find that ensemble models based on NNs surpass SFs based on the decision-tree ensemble technique Random Forests. Conclusions Ensemble neural networks SFs, BgN-Score and BsN-Score, are the most accurate in predicting binding affinity of protein-ligand complexes among the considered SFs. Moreover, their accuracies are even higher
Luo, Wei; Nguyen, Thin; Nichols, Melanie; Tran, Truyen; Rana, Santu; Gupta, Sunil; Phung, Dinh; Venkatesh, Svetha; Allender, Steve
2015-01-01
For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease. PMID:25938675
Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation
NASA Astrophysics Data System (ADS)
Chung, Haejun; Ha, Sang-Gyu; Choi, Jaehoon; Jung, Kyung-Young
2015-07-01
This article presents an accurate finite-difference time domain (FDTD) dispersive modelling suitable for complex dispersive media. A quadratic complex rational function (QCRF) is used to characterise their dispersive relations. To obtain accurate coefficients of QCRF, in this work, we use an analytical approach and a particle swarm optimisation (PSO) simultaneously. In specific, an analytical approach is used to obtain the QCRF matrix-solving equation and PSO is applied to adjust a weighting function of this equation. Numerical examples are used to illustrate the validity of the proposed FDTD dispersion model.
Pollastri, Gianluca; Martin, Alberto JM; Mooney, Catherine; Vullo, Alessandro
2007-01-01
Background Structural properties of proteins such as secondary structure and solvent accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but also when homology information to known structures is available. Structural properties are also routinely used in protein analysis even when homology is available, largely because homology modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors of secondary structure and solvent accessibility are virtually always ab initio. Results Here we develop high-throughput machine learning systems for the prediction of protein secondary structure and solvent accessibility that exploit homology to proteins of known structure, where available, in the form of simple structural frequency profiles extracted from sets of PDB templates. We compare these systems to their state-of-the-art ab initio counterparts, and with a number of baselines in which secondary structures and solvent accessibilities are extracted directly from the templates. We show that structural information from templates greatly improves secondary structure and solvent accessibility prediction quality, and that, on average, the systems significantly enrich the information contained in the templates. For sequence similarity exceeding 30%, secondary structure prediction quality is approximately 90%, close to its theoretical maximum, and 2-class solvent accessibility roughly 85%. Gains are robust with respect to template selection noise, and significant for marginal sequence similarity and for short alignments, supporting the claim that these improved predictions may prove beneficial beyond the case in which clear homology is available. Conclusion The predictive system are publicly available at the address . PMID:17570843
NASA Astrophysics Data System (ADS)
Lachaume, Regis; Rabus, Markus; Jordan, Andres
2015-08-01
In stellar interferometry, the assumption that the observables can be seen as Gaussian, independent variables is the norm. In particular, neither the optical interferometry FITS (OIFITS) format nor the most popular fitting software in the field, LITpro, offer means to specify a covariance matrix or non-Gaussian uncertainties. Interferometric observables are correlated by construct, though. Also, the calibration by an instrumental transfer function ensures that the resulting observables are not Gaussian, even if uncalibrated ones happened to be so.While analytic frameworks have been published in the past, they are cumbersome and there is no generic implementation available. We propose here a relatively simple way of dealing with correlated errors without the need to extend the OIFITS specification or making some Gaussian assumptions. By repeatedly picking at random which interferograms, which calibrator stars, and which are the errors on their diameters, and performing the data processing on the bootstrapped data, we derive a sampling of p(O), the multivariate probability density function (PDF) of the observables O. The results can be stored in a normal OIFITS file. Then, given a model m with parameters P predicting observables O = m(P), we can estimate the PDF of the model parameters f(P) = p(m(P)) by using a density estimation of the observables' PDF p.With observations repeated over different baselines, on nights several days apart, and with a significant set of calibrators systematic errors are de facto taken into account. We apply the technique to a precise and accurate assessment of stellar diameters obtained at the Very Large Telescope Interferometer with PIONIER.
Prediction of Standard Enthalpy of Formation by a QSPR Model
Vatani, Ali; Mehrpooya, Mehdi; Gharagheizi, Farhad
2007-01-01
The standard enthalpy of formation of 1115 compounds from all chemical groups, were predicted using genetic algorithm-based multivariate linear regression (GA-MLR). The obtained multivariate linear five descriptors model by GA-MLR has correlation coefficient (R2 = 0.9830). All molecular descriptors which have entered in this model are calculated from chemical structure of any molecule. As a result, application of this model for any compound is easy and accurate.
Predictive models and computational toxicology.
Knudsen, Thomas; Martin, Matthew; Chandler, Kelly; Kleinstreuer, Nicole; Judson, Richard; Sipes, Nisha
2013-01-01
Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The ToxCast computational toxicology research program was launched by EPA in 2007 and is part of the federal Tox21 consortium to develop a cost-effective approach for efficiently prioritizing the toxicity testing of thousands of chemicals and the application of this information to assessing human toxicology. ToxCast addresses this problem through an integrated workflow using high-throughput screening (HTS) of chemical libraries across more than 650 in vitro assays including biochemical assays, human cells and cell lines, and alternative models such as mouse embryonic stem cells and zebrafish embryo development. The initial phase of ToxCast profiled a library of 309 environmental chemicals, mostly pesticidal actives having rich in vivo data from guideline studies that include chronic/cancer bioassays in mice and rats, multigenerational reproductive studies in rats, and prenatal developmental toxicity endpoints in rats and rabbits. The first phase of ToxCast was used to build models that aim to determine how well in vivo animal effects can be predicted solely from the in vitro data. Phase I is now complete and both the in vitro data (ToxCast) and anchoring in vivo database (ToxRefDB) have been made available to the public (http://actor.epa.gov/). As Phase II of ToxCast is now underway, the purpose of this chapter is to review progress to date with ToxCast predictive modeling, using specific examples on developmental and reproductive effects in rats and rabbits with lessons learned during Phase I. PMID:23138916
Bigdeli, T. Bernard; Lee, Donghyung; Webb, Bradley Todd; Riley, Brien P.; Vladimirov, Vladimir I.; Fanous, Ayman H.; Kendler, Kenneth S.; Bacanu, Silviu-Alin
2016-01-01
Motivation: For genetic studies, statistically significant variants explain far less trait variance than ‘sub-threshold’ association signals. To dimension follow-up studies, researchers need to accurately estimate ‘true’ effect sizes at each SNP, e.g. the true mean of odds ratios (ORs)/regression coefficients (RRs) or Z-score noncentralities. Naïve estimates of effect sizes incur winner’s curse biases, which are reduced only by laborious winner’s curse adjustments (WCAs). Given that Z-scores estimates can be theoretically translated on other scales, we propose a simple method to compute WCA for Z-scores, i.e. their true means/noncentralities. Results:WCA of Z-scores shrinks these towards zero while, on P-value scale, multiple testing adjustment (MTA) shrinks P-values toward one, which corresponds to the zero Z-score value. Thus, WCA on Z-scores scale is a proxy for MTA on P-value scale. Therefore, to estimate Z-score noncentralities for all SNPs in genome scans, we propose FDR Inverse Quantile Transformation (FIQT). It (i) performs the simpler MTA of P-values using FDR and (ii) obtains noncentralities by back-transforming MTA P-values on Z-score scale. When compared to competitors, realistic simulations suggest that FIQT is more (i) accurate and (ii) computationally efficient by orders of magnitude. Practical application of FIQT to Psychiatric Genetic Consortium schizophrenia cohort predicts a non-trivial fraction of sub-threshold signals which become significant in much larger supersamples. Conclusions: FIQT is a simple, yet accurate, WCA method for Z-scores (and ORs/RRs, via simple transformations). Availability and Implementation: A 10 lines R function implementation is available at https://github.com/bacanusa/FIQT. Contact: sabacanu@vcu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27187203
Steele, Mark A.; Forrester, Graham E.
2005-01-01
Field experiments provide rigorous tests of ecological hypotheses but are usually limited to small spatial scales. It is thus unclear whether these findings extrapolate to larger scales relevant to conservation and management. We show that the results of experiments detecting density-dependent mortality of reef fish on small habitat patches scale up to have similar effects on much larger entire reefs that are the size of small marine reserves and approach the scale at which some reef fisheries operate. We suggest that accurate scaling is due to the type of species interaction causing local density dependence and the fact that localized events can be aggregated to describe larger-scale interactions with minimal distortion. Careful extrapolation from small-scale experiments identifying species interactions and their effects should improve our ability to predict the outcomes of alternative management strategies for coral reef fishes and their habitats. PMID:16150721
Steele, Mark A; Forrester, Graham E
2005-09-20
Field experiments provide rigorous tests of ecological hypotheses but are usually limited to small spatial scales. It is thus unclear whether these findings extrapolate to larger scales relevant to conservation and management. We show that the results of experiments detecting density-dependent mortality of reef fish on small habitat patches scale up to have similar effects on much larger entire reefs that are the size of small marine reserves and approach the scale at which some reef fisheries operate. We suggest that accurate scaling is due to the type of species interaction causing local density dependence and the fact that localized events can be aggregated to describe larger-scale interactions with minimal distortion. Careful extrapolation from small-scale experiments identifying species interactions and their effects should improve our ability to predict the outcomes of alternative management strategies for coral reef fishes and their habitats. PMID:16150721
Sprenger, K G; Jaeger, Vance W; Pfaendtner, Jim
2015-05-01
We have applied molecular dynamics to calculate thermodynamic and transport properties of a set of 19 room-temperature ionic liquids. Since accurately simulating the thermophysical properties of solvents strongly depends upon the force field of choice, we tested the accuracy of the general AMBER force field, without refinement, for the case of ionic liquids. Electrostatic point charges were developed using ab initio calculations and a charge scaling factor of 0.8 to more accurately predict dynamic properties. The density, heat capacity, molar enthalpy of vaporization, self-diffusivity, and shear viscosity of the ionic liquids were computed and compared to experimentally available data, and good agreement across a wide range of cation and anion types was observed. Results show that, for a wide range of ionic liquids, the general AMBER force field, with no tuning of parameters, can reproduce a variety of thermodynamic and transport properties with similar accuracy to that of other published, often IL-specific, force fields. PMID:25853313
A Maximal Graded Exercise Test to Accurately Predict VO2max in 18-65-Year-Old Adults
ERIC Educational Resources Information Center
George, James D.; Bradshaw, Danielle I.; Hyde, Annette; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2007-01-01
The purpose of this study was to develop an age-generalized regression model to predict maximal oxygen uptake (VO sub 2 max) based on a maximal treadmill graded exercise test (GXT; George, 1996). Participants (N = 100), ages 18-65 years, reached a maximal level of exertion (mean plus or minus standard deviation [SD]; maximal heart rate [HR sub…
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
Hashem, Somaya; Esmat, Gamal; Elakel, Wafaa; Habashy, Shahira; Abdel Raouf, Safaa; Darweesh, Samar; Soliman, Mohamad; Elhefnawi, Mohamed; El-Adawy, Mohamed; ElHefnawi, Mahmoud
2016-01-01
Background/Aim. Respectively with the prevalence of chronic hepatitis C in the world, using noninvasive methods as an alternative method in staging chronic liver diseases for avoiding the drawbacks of biopsy is significantly increasing. The aim of this study is to combine the serum biomarkers and clinical information to develop a classification model that can predict advanced liver fibrosis. Methods. 39,567 patients with chronic hepatitis C were included and randomly divided into two separate sets. Liver fibrosis was assessed via METAVIR score; patients were categorized as mild to moderate (F0–F2) or advanced (F3-F4) fibrosis stages. Two models were developed using alternating decision tree algorithm. Model 1 uses six parameters, while model 2 uses four, which are similar to FIB-4 features except alpha-fetoprotein instead of alanine aminotransferase. Sensitivity and receiver operating characteristic curve were performed to evaluate the performance of the proposed models. Results. The best model achieved 86.2% negative predictive value and 0.78 ROC with 84.8% accuracy which is better than FIB-4. Conclusions. The risk of advanced liver fibrosis, due to chronic hepatitis C, could be predicted with high accuracy using decision tree learning algorithm that could be used to reduce the need to assess the liver biopsy. PMID:26880886
Hashem, Somaya; Esmat, Gamal; Elakel, Wafaa; Habashy, Shahira; Abdel Raouf, Safaa; Darweesh, Samar; Soliman, Mohamad; Elhefnawi, Mohamed; El-Adawy, Mohamed; ElHefnawi, Mahmoud
2016-01-01
Background/Aim. Respectively with the prevalence of chronic hepatitis C in the world, using noninvasive methods as an alternative method in staging chronic liver diseases for avoiding the drawbacks of biopsy is significantly increasing. The aim of this study is to combine the serum biomarkers and clinical information to develop a classification model that can predict advanced liver fibrosis. Methods. 39,567 patients with chronic hepatitis C were included and randomly divided into two separate sets. Liver fibrosis was assessed via METAVIR score; patients were categorized as mild to moderate (F0-F2) or advanced (F3-F4) fibrosis stages. Two models were developed using alternating decision tree algorithm. Model 1 uses six parameters, while model 2 uses four, which are similar to FIB-4 features except alpha-fetoprotein instead of alanine aminotransferase. Sensitivity and receiver operating characteristic curve were performed to evaluate the performance of the proposed models. Results. The best model achieved 86.2% negative predictive value and 0.78 ROC with 84.8% accuracy which is better than FIB-4. Conclusions. The risk of advanced liver fibrosis, due to chronic hepatitis C, could be predicted with high accuracy using decision tree learning algorithm that could be used to reduce the need to assess the liver biopsy. PMID:26880886
Predictive Modeling of Tokamak Configurations*
NASA Astrophysics Data System (ADS)
Casper, T. A.; Lodestro, L. L.; Pearlstein, L. D.; Bulmer, R. H.; Jong, R. A.; Kaiser, T. B.; Moller, J. M.
2001-10-01
The Corsica code provides comprehensive toroidal plasma simulation and design capabilities with current applications [1] to tokamak, reversed field pinch (RFP) and spheromak configurations. It calculates fixed and free boundary equilibria coupled to Ohm's law, sources, transport models and MHD stability modules. We are exploring operations scenarios for both the DIII-D and KSTAR tokamaks. We will present simulations of the effects of electron cyclotron heating (ECH) and current drive (ECCD) relevant to the Quiescent Double Barrier (QDB) regime on DIII-D exploring long pulse operation issues. KSTAR simulations using ECH/ECCD in negative central shear configurations explore evolution to steady state while shape evolution studies during current ramp up using a hyper-resistivity model investigate startup scenarios and limitations. Studies of high bootstrap fraction operation stimulated by recent ECH/ECCD experiments on DIIID will also be presented. [1] Pearlstein, L.D., et al, Predictive Modeling of Axisymmetric Toroidal Configurations, 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira, Portugal, June 18-22, 2001. * Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Predictive Modeling of Cardiac Ischemia
NASA Technical Reports Server (NTRS)
Anderson, Gary T.
1996-01-01
The goal of the Contextual Alarms Management System (CALMS) project is to develop sophisticated models to predict the onset of clinical cardiac ischemia before it occurs. The system will continuously monitor cardiac patients and set off an alarm when they appear about to suffer an ischemic episode. The models take as inputs information from patient history and combine it with continuously updated information extracted from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural network and rough set methodologies are then used to forecast the onset of clinical ischemia before it transpires, thus allowing early intervention aimed at preventing morbid complications from occurring. The models will differ from previous attempts by including combinations of continuous and discrete inputs. A commercial medical instrumentation and software company has invested funds in the project with a goal of commercialization of the technology. The end product will be a system that analyzes physiologic parameters and produces an alarm when myocardial ischemia is present. If proven feasible, a CALMS-based system will be added to existing heart monitoring hardware.
Numerical weather prediction model tuning via ensemble prediction system
NASA Astrophysics Data System (ADS)
Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.
2011-12-01
This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.
NASA Astrophysics Data System (ADS)
Smith, Grant D.; Jaffe, Richard L.; Yoon, Do. Y.
1998-06-01
High-level ab initio quantum chemistry calculations are shown to predict conformer populations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane that are consistent with gas-phase NMR vicinal coupling constant measurements. The conformational energies of the cyclic ether 5-methoxy-1,3-dioxane are found to be consistent with those predicted by a rotational isomeric state (RIS) model based upon the acyclic analog 1,2-dimethoxypropane. The quantum chemistry and RIS calculations indicate the presence of strong attractive 1,5 C(H 3)⋯O electrostatic interactions in these molecules, similar to those found in 1,2-dimethoxyethane.
Predicting Market Impact Costs Using Nonparametric Machine Learning Models.
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance. PMID:26926235
Predicting Market Impact Costs Using Nonparametric Machine Learning Models
Park, Saerom; Lee, Jaewook; Son, Youngdoo
2016-01-01
Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance. PMID:26926235
Harb, Moussab
2015-10-14
Using accurate first-principles quantum calculations based on DFT (including the DFPT) with the range-separated hybrid HSE06 exchange-correlation functional, we can predict the essential fundamental properties (such as bandgap, optical absorption co-efficient, dielectric constant, charge carrier effective masses and exciton binding energy) of two stable monoclinic vanadium oxynitride (VON) semiconductor crystals for solar energy conversion applications. In addition to the predicted band gaps in the optimal range for making single-junction solar cells, both polymorphs exhibit a relatively high absorption efficiency in the visible range, high dielectric constant, high charge carrier mobility and much lower exciton binding energy than the thermal energy at room temperature. Moreover, their optical absorption, dielectric and exciton dissociation properties were found to be better than those obtained for semiconductors frequently utilized in photovoltaic devices such as Si, CdTe and GaAs. These novel results offer a great opportunity for this stoichiometric VON material to be properly synthesized and considered as a new good candidate for photovoltaic applications. PMID:26351755
Christensen, S.; Cooley, R.L.
1999-01-01
We tested the accuracy of 95% individual prediction intervals for hydraulic heads, streamflow gains, and effective transmissivities computed by groundwater models of two Danish aquifers. To compute the intervals, we assumed that each predicted value can be written as the sum of a computed dependent variable and a random error. Testing was accomplished by using a cross-validation method and by using new field measurements of hydraulic heads and transmissivities that were not used to develop or calibrate the models. The tested null hypotheses are that the coverage probability of the prediction intervals is not significantly smaller than the assumed probability (95%) and that each tail probability is not significantly different from the assumed probability (2.5%). In all cases tested, these hypotheses were accepted at the 5% level of significance. We therefore conclude that for the groundwater models of two real aquifers the individual prediction intervals appear to be accurate.We tested the accuracy of 95% individual prediction intervals for hydraulic heads, streamflow gains, and effective transmissivities computed by groundwater models of two Danish aquifers. To compute the intervals, we assumed that each predicted value can be written as the sum of a computed dependent variable and a random error. Testing was accomplished by using a cross-validation method and by using new field measurements of hydraulic heads and transmissivities that were not used to develop or calibrate the models. The tested null hypotheses are that the coverage probability of the prediction intervals is not significantly smaller than the assumed probability (95%) and that each tail probability is not significantly different from the assumed probability (2.5%). In all cases tested, these hypotheses were accepted at the 5% level of significance. We therefore conclude that for the groundwater models of two real aquifers the individual prediction intervals appear to be accurate.
Keshavarz, Mohammad Hossein; Gharagheizi, Farhad; Shokrolahi, Arash; Zakinejad, Sajjad
2012-10-30
Most of benzoic acid derivatives are toxic, which may cause serious public health and environmental problems. Two novel simple and reliable models are introduced for desk calculations of the toxicity of benzoic acid compounds in mice via oral LD(50) with more reliance on their answers as one could attach to the more complex outputs. They require only elemental composition and molecular fragments without using any computer codes. The first model is based on only the number of carbon and hydrogen atoms, which can be improved by several molecular fragments in the second model. For 57 benzoic compounds, where the computed results of quantitative structure-toxicity relationship (QSTR) were recently reported, the predicted results of two simple models of present method are more reliable than QSTR computations. The present simple method is also tested with further 324 benzoic acid compounds including complex molecular structures, which confirm good forecasting ability of the second model. PMID:22959133
D’Adamo, Giuseppe; Pelissetto, Andrea; Pierleoni, Carlo
2014-12-28
A coarse-graining strategy, previously developed for polymer solutions, is extended here to mixtures of linear polymers and hard-sphere colloids. In this approach, groups of monomers are mapped onto a single pseudoatom (a blob) and the effective blob-blob interactions are obtained by requiring the model to reproduce some large-scale structural properties in the zero-density limit. We show that an accurate parametrization of the polymer-colloid interactions is obtained by simply introducing pair potentials between blobs and colloids. For the coarse-grained (CG) model in which polymers are modelled as four-blob chains (tetramers), the pair potentials are determined by means of the iterative Boltzmann inversion scheme, taking full-monomer (FM) pair correlation functions at zero-density as targets. For a larger number n of blobs, pair potentials are determined by using a simple transferability assumption based on the polymer self-similarity. We validate the model by comparing its predictions with full-monomer results for the interfacial properties of polymer solutions in the presence of a single colloid and for thermodynamic and structural properties in the homogeneous phase at finite polymer and colloid density. The tetramer model is quite accurate for q ≲ 1 (q=R{sup ^}{sub g}/R{sub c}, where R{sup ^}{sub g} is the zero-density polymer radius of gyration and R{sub c} is the colloid radius) and reasonably good also for q = 2. For q = 2, an accurate coarse-grained description is obtained by using the n = 10 blob model. We also compare our results with those obtained by using single-blob models with state-dependent potentials.
Predicting Historical Droughts in the US With a Multi-model Seasonal Hydrologic Prediction System
NASA Astrophysics Data System (ADS)
Luo, L.; Wood, E.; Sheffield, J.; Li, H.
2008-12-01
Droughts are as much a part of weather and climate extremes as floods, hurricanes and tornadoes are, but they are the most costly extremes among all natural disasters in the U.S. The estimated annual direct losses to the U.S economy due to droughts are about 6-8 billion, with the drought of 1988 estimated to have damages over $39 billion. Having a seasonal drought prediction system that can accurately predict the onset, development and recovery of drought episodes will significantly help to reduce the loss due to drought. In this study, a seasonal hydrologic ensemble prediction system developed for the eastern United States is used to predict historical droughts in the US retrospectively. The system uses a hydrologic model (i.e., the Variable Infiltration Capacity model) as the central element for producing ensemble predictions of soil moisture, snow, and streamflow with lead times up to six months. One unique feature of this system is in the method for generating ensemble atmospheric forcings for the forecast period. It merges seasonal climate forecasts from multiple climate models with observed climatology in a Bayesian framework, such that the uncertainties related to the atmospheric forcings can be better quantified while the signals from individual models are combined. Simultaneously, climate model forecasts are downscaled to an appropriate spatial scale for hydrologic predictions. When generating daily meteorological forcing, the system uses the rank structures of selected historical forcing records to ensure reasonable weather patterns in space and time. The system is applied to different regions in the US to predict historical drought episodes. These forecasts use seasonal climate forecast from a combination of the NCEP CFS and seven climate models in the European Union's Development of a European Multimodel Ensemble System for Seasonal to-Interannual Prediction (CFS+DEMETER). This study validates the approach of using seasonal climate predictions from
Development of modified cable models to simulate accurate neuronal active behaviors
2014-01-01
In large network and single three-dimensional (3-D) neuron simulations, high computing speed dictates using reduced cable models to simulate neuronal firing behaviors. However, these models are unwarranted under active conditions and lack accurate representation of dendritic active conductances that greatly shape neuronal firing. Here, realistic 3-D (R3D) models (which contain full anatomical details of dendrites) of spinal motoneurons were systematically compared with their reduced single unbranched cable (SUC, which reduces the dendrites to a single electrically equivalent cable) counterpart under passive and active conditions. The SUC models matched the R3D model's passive properties but failed to match key active properties, especially active behaviors originating from dendrites. For instance, persistent inward currents (PIC) hysteresis, frequency-current (FI) relationship secondary range slope, firing hysteresis, plateau potential partial deactivation, staircase currents, synaptic current transfer ratio, and regional FI relationships were not accurately reproduced by the SUC models. The dendritic morphology oversimplification and lack of dendritic active conductances spatial segregation in the SUC models caused significant underestimation of those behaviors. Next, SUC models were modified by adding key branching features in an attempt to restore their active behaviors. The addition of primary dendritic branching only partially restored some active behaviors, whereas the addition of secondary dendritic branching restored most behaviors. Importantly, the proposed modified models successfully replicated the active properties without sacrificing model simplicity, making them attractive candidates for running R3D single neuron and network simulations with accurate firing behaviors. The present results indicate that using reduced models to examine PIC behaviors in spinal motoneurons is unwarranted. PMID:25277743
NASA Astrophysics Data System (ADS)
Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent
2013-11-01
The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.
NASA Astrophysics Data System (ADS)
Kim, Jibeom; Jeon, Joonhyeon
2015-01-01
Recently, related studies on Equation Of State (EOS) have reported that generalized van der Waals (GvdW) shows poor representations in the near critical region for non-polar and non-sphere molecules. Hence, there are still remains a problem of GvdW parameters to minimize loss in describing saturated vapor densities and vice versa. This paper describes a recursive model GvdW (rGvdW) for an accurate representation of pure fluid materials in the near critical region. For the performance evaluation of rGvdW in the near critical region, other EOS models are also applied together with two pure molecule group: alkane and amine. The comparison results show rGvdW provides much more accurate and reliable predictions of pressure than the others. The calculating model of EOS through this approach gives an additional insight into the physical significance of accurate prediction of pressure in the nearcritical region.
Evaluation of Turbulence-Model Performance as Applied to Jet-Noise Prediction
NASA Technical Reports Server (NTRS)
Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.
1998-01-01
The accurate prediction of jet noise is possible only if the jet flow field can be predicted accurately. Predictions for the mean velocity and turbulence quantities in the jet flowfield are typically the product of a Reynolds-averaged Navier-Stokes solver coupled with a turbulence model. To evaluate the effectiveness of solvers and turbulence models in predicting those quantities most important to jet noise prediction, two CFD codes and several turbulence models were applied to a jet configuration over a range of jet temperatures for which experimental data is available.
Methodology to set up accurate OPC model using optical CD metrology and atomic force microscopy
NASA Astrophysics Data System (ADS)
Shim, Yeon-Ah; Kang, Jaehyun; Lee, Sang-Uk; Kim, Jeahee; Kim, Keeho
2007-03-01
For the 90nm node and beyond, smaller Critical Dimension(CD) control budget is required and the ways to control good CD uniformity are needed. Moreover Optical Proximity Correction(OPC) for the sub-90nm node demands more accurate wafer CD data in order to improve accuracy of OPC model. Scanning Electron Microscope (SEM) is the typical method for measuring CD until ArF process. However SEM can give serious attack such as shrinkage of Photo Resist(PR) by burning of weak chemical structure of ArF PR due to high energy electron beam. In fact about 5nm CD narrowing occur when we measure CD by using CD-SEM in ArF photo process. Optical CD Metrology(OCD) and Atomic Force Microscopy(AFM) has been considered to the method for measuring CD without attack of organic materials. Also the OCD and AFM measurement system have the merits of speed, easiness and accurate data. For model-based OPC, the model is generated using CD data of test patterns transferred onto the wafer. In this study we discuss to generate accurate OPC model using OCD and AFM measurement system.
Improved analytical model for residual stress prediction in orthogonal cutting
NASA Astrophysics Data System (ADS)
Qi, Zhaoxu; Li, Bin; Xiong, Liangshan
2014-09-01
The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann's model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volumeconstancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann's model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann's model.
Improved analytical model for residual stress prediction in orthogonal cutting
NASA Astrophysics Data System (ADS)
Qi, Zhaoxu; Li, Bin; Xiong, Liangshan
2014-09-01
The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann's model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volume-constancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann's model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann's model.
NASA Astrophysics Data System (ADS)
Theologou, I.; Patelaki, M.; Karantzalos, K.
2015-04-01
Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn't establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium (r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation rates.
Short communication: Accounting for new mutations in genomic prediction models.
Casellas, Joaquim; Esquivelzeta, Cecilia; Legarra, Andrés
2013-08-01
Genomic evaluation models so far do not allow for accounting of newly generated genetic variation due to mutation. The main target of this research was to extend current genomic BLUP models with mutational relationships (model AM), and compare them against standard genomic BLUP models (model A) by analyzing simulated data. Model performance and precision of the predicted breeding values were evaluated under different population structures and heritabilities. The deviance information criterion (DIC) clearly favored the mutational relationship model under large heritabilities or populations with moderate-to-deep pedigrees contributing phenotypic data (i.e., differences equal or larger than 10 DIC units); this model provided slightly higher correlation coefficients between simulated and predicted genomic breeding values. On the other hand, null DIC differences, or even relevant advantages for the standard genomic BLUP model, were reported under small heritabilities and shallow pedigrees, although precision of the genomic breeding values did not differ across models at a significant level. This method allows for slightly more accurate genomic predictions and handling of newly created variation; moreover, this approach does not require additional genotyping or phenotyping efforts, but a more accurate handing of available data. PMID:23746579
Michalkova, A; Gorb, L; Hill, F; Leszczynski, J
2011-03-24
This study presents new insight into the prediction of partitioning of organic compounds between a carbon surface (soot) and water, and it also sheds light on the sluggish desorption of interacting molecules from activated and nonactivated carbon surfaces. This paper provides details about the structure and interactions of benzene, polycyclic aromatic hydrocarbons, and aromatic nitrocompounds with a carbon surface modeled by coronene using a density functional theory approach along with the M05-2X functional. The adsorption was studied in vacuum and from water solution. The molecules studied are physisorbed on the carbon surface. While the intermolecular interactions of benzene and hydrocarbons are governed by dispersion forces, nitrocompounds are adsorbed also due to quite strong electrostatic interactions with all types of carbon surfaces. On the basis of these results, we conclude that the method of prediction presented in this study allows one to approach the experimental level of accuracy in predicting thermodynamic parameters of adsorption on a carbon surface from the gas phase. The empirical modification of the polarized continuum model leads also to a quantitative agreement with the experimental data for the Gibbs free energy values of the adsorption from water solution. PMID:21361266
Building an accurate 3D model of a circular feature for robot vision
NASA Astrophysics Data System (ADS)
Li, L.
2012-06-01
In this paper, an accurate 3D model analysis of a circular feature is built with error compensation for robot vision. We propose an efficient method of fitting ellipses to data points by minimizing the algebraic distance subject to the constraint that a conic should be an ellipse and solving the ellipse parameters through a direct ellipse fitting method by analysing the 3D geometrical representation in a perspective projection scheme, the 3D position of a circular feature with known radius can be obtained. A set of identical circles, machined on a calibration board whose centres were known, was calibrated with a camera and did the model analysis that our method developed. Experimental results show that our method is more accurate than other methods.
Seth A Veitzer
2008-10-21
Effects of stray electrons are a main factor limiting performance of many accelerators. Because heavy-ion fusion (HIF) accelerators will operate in regimes of higher current and with walls much closer to the beam than accelerators operating today, stray electrons might have a large, detrimental effect on the performance of an HIF accelerator. A primary source of stray electrons is electrons generated when halo ions strike the beam pipe walls. There is some research on these types of secondary electrons for the HIF community to draw upon, but this work is missing one crucial ingredient: the effect of grazing incidence. The overall goal of this project was to develop the numerical tools necessary to accurately model the effect of grazing incidence on the behavior of halo ions in a HIF accelerator, and further, to provide accurate models of heavy ion stopping powers with applications to ICF, WDM, and HEDP experiments.
Spiliopoulou, Athina; Nagy, Reka; Bermingham, Mairead L.; Huffman, Jennifer E.; Hayward, Caroline; Vitart, Veronique; Rudan, Igor; Campbell, Harry; Wright, Alan F.; Wilson, James F.; Pong-Wong, Ricardo; Agakov, Felix; Navarro, Pau; Haley, Chris S.
2015-01-01
We explore the prediction of individuals' phenotypes for complex traits using genomic data. We compare several widely used prediction models, including Ridge Regression, LASSO and Elastic Nets estimated from cohort data, and polygenic risk scores constructed using published summary statistics from genome-wide association meta-analyses (GWAMA). We evaluate the interplay between relatedness, trait architecture and optimal marker density, by predicting height, body mass index (BMI) and high-density lipoprotein level (HDL) in two data cohorts, originating from Croatia and Scotland. We empirically demonstrate that dense models are better when all genetic effects are small (height and BMI) and target individuals are related to the training samples, while sparse models predict better in unrelated individuals and when some effects have moderate size (HDL). For HDL sparse models achieved good across-cohort prediction, performing similarly to the GWAMA risk score and to models trained within the same cohort, which indicates that, for predicting traits with moderately sized effects, large sample sizes and familial structure become less important, though still potentially useful. Finally, we propose a novel ensemble of whole-genome predictors with GWAMA risk scores and demonstrate that the resulting meta-model achieves higher prediction accuracy than either model on its own. We conclude that although current genomic predictors are not accurate enough for diagnostic purposes, performance can be improved without requiring access to large-scale individual-level data. Our methodologically simple meta-model is a means of performing predictive meta-analysis for optimizing genomic predictions and can be easily extended to incorporate multiple population-level summary statistics or other domain knowledge. PMID:25918167
Spiliopoulou, Athina; Nagy, Reka; Bermingham, Mairead L; Huffman, Jennifer E; Hayward, Caroline; Vitart, Veronique; Rudan, Igor; Campbell, Harry; Wright, Alan F; Wilson, James F; Pong-Wong, Ricardo; Agakov, Felix; Navarro, Pau; Haley, Chris S
2015-07-15
We explore the prediction of individuals' phenotypes for complex traits using genomic data. We compare several widely used prediction models, including Ridge Regression, LASSO and Elastic Nets estimated from cohort data, and polygenic risk scores constructed using published summary statistics from genome-wide association meta-analyses (GWAMA). We evaluate the interplay between relatedness, trait architecture and optimal marker density, by predicting height, body mass index (BMI) and high-density lipoprotein level (HDL) in two data cohorts, originating from Croatia and Scotland. We empirically demonstrate that dense models are better when all genetic effects are small (height and BMI) and target individuals are related to the training samples, while sparse models predict better in unrelated individuals and when some effects have moderate size (HDL). For HDL sparse models achieved good across-cohort prediction, performing similarly to the GWAMA risk score and to models trained within the same cohort, which indicates that, for predicting traits with moderately sized effects, large sample sizes and familial structure become less important, though still potentially useful. Finally, we propose a novel ensemble of whole-genome predictors with GWAMA risk scores and demonstrate that the resulting meta-model achieves higher prediction accuracy than either model on its own. We conclude that although current genomic predictors are not accurate enough for diagnostic purposes, performance can be improved without requiring access to large-scale individual-level data. Our methodologically simple meta-model is a means of performing predictive meta-analysis for optimizing genomic predictions and can be easily extended to incorporate multiple population-level summary statistics or other domain knowledge. PMID:25918167
Zhang, Jin-Feng; Chen, Yao; Lin, Guo-Shi; Zhang, Jian-Dong; Tang, Wen-Long; Huang, Jian-Huang; Chen, Jin-Shou; Wang, Xing-Fu; Lin, Zhi-Xiong
2016-06-01
Interferon-induced protein with tetratricopeptide repeat 1 (IFIT1) plays a key role in growth suppression and apoptosis promotion in cancer cells. Interferon was reported to induce the expression of IFIT1 and inhibit the expression of O-6-methylguanine-DNA methyltransferase (MGMT).This study aimed to investigate the expression of IFIT1, the correlation between IFIT1 and MGMT, and their impact on the clinical outcome in newly diagnosed glioblastoma. The expression of IFIT1 and MGMT and their correlation were investigated in the tumor tissues from 70 patients with newly diagnosed glioblastoma. The effects on progression-free survival and overall survival were evaluated. Of 70 cases, 57 (81.4%) tissue samples showed high expression of IFIT1 by immunostaining. The χ(2) test indicated that the expression of IFIT1 and MGMT was negatively correlated (r = -0.288, P = .016). Univariate and multivariate analyses confirmed high IFIT1 expression as a favorable prognostic indicator for progression-free survival (P = .005 and .017) and overall survival (P = .001 and .001), respectively. Patients with 2 favorable factors (high IFIT1 and low MGMT) had an improved prognosis as compared with others. The results demonstrated significantly increased expression of IFIT1 in newly diagnosed glioblastoma tissue. The negative correlation between IFIT1 and MGMT expression may be triggered by interferon. High IFIT1 can be a predictive biomarker of favorable clinical outcome, and IFIT1 along with MGMT more accurately predicts prognosis in newly diagnosed glioblastoma. PMID:26980050
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-01-01
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-01-01
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769
NASA Astrophysics Data System (ADS)
Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang
2015-10-01
Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.
A Predictive Model of High Shear Thrombus Growth.
Mehrabadi, Marmar; Casa, Lauren D C; Aidun, Cyrus K; Ku, David N
2016-08-01
The ability to predict the timescale of thrombotic occlusion in stenotic vessels may improve patient risk assessment for thrombotic events. In blood contacting devices, thrombosis predictions can lead to improved designs to minimize thrombotic risks. We have developed and validated a model of high shear thrombosis based on empirical correlations between thrombus growth and shear rate. A mathematical model was developed to predict the growth of thrombus based on the hemodynamic shear rate. The model predicts thrombus deposition based on initial geometric and fluid mechanic conditions, which are updated throughout the simulation to reflect the changing lumen dimensions. The model was validated by comparing predictions against actual thrombus growth in six separate in vitro experiments: stenotic glass capillary tubes (diameter = 345 µm) at three shear rates, the PFA-100(®) system, two microfluidic channel dimensions (heights = 300 and 82 µm), and a stenotic aortic graft (diameter = 5.5 mm). Comparison of the predicted occlusion times to experimental results shows excellent agreement. The model is also applied to a clinical angiography image to illustrate the time course of thrombosis in a stenotic carotid artery after plaque cap rupture. Our model can accurately predict thrombotic occlusion time over a wide range of hemodynamic conditions. PMID:26795978
Comparing prediction models for radiographic exposures
NASA Astrophysics Data System (ADS)
Ching, W.; Robinson, J.; McEntee, M. F.
2015-03-01
During radiographic exposures the milliampere-seconds (mAs), kilovoltage peak (kVp) and source-to-image distance can be adjusted for variations in patient thicknesses. Several exposure adjustment systems have been developed to assist with this selection. This study compares the accuracy of four systems to predict the required mAs for pelvic radiographs taken on a direct digital radiography system (DDR). Sixty radiographs were obtained by adjusting mAs to compensate for varying combinations of source-to-image distance (SID), kVp and patient thicknesses. The 25% rule, the DuPont Bit System and the DigiBit system were compared to determine which of these three most accurately predicted the mAs required for an increase in patient thickness. Similarly, the 15% rule, the DuPont Bit System and the DigiBit system were compared for an increase in kVp. The exposure index (EI) was used as an indication of exposure to the DDR. For each exposure combination the mAs was adjusted until an EI of 1500+/-2% was achieved. The 25% rule was the most accurate at predicting the mAs required for an increase in patient thickness, with 53% of the mAs predictions correct. The DigiBit system was the most accurate at predicting mAs needed for changes in kVp, with 33% of predictions correct. This study demonstrated that the 25% rule and DigiBit system were the most accurate predictors of mAs required for an increase in patient thickness and kVp respectively. The DigiBit system worked well in both scenarios as it is a single exposure adjustment system that considers a variety of exposure factors.
Accurate protein structure modeling using sparse NMR data and homologous structure information
Thompson, James M.; Sgourakis, Nikolaos G.; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L.; Szyperski, Thomas; Montelione, Gaetano T.; Baker, David
2012-01-01
While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining , 13C, and 15N backbone and 13Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2–1.9 Å relative to the conventional determined NMR ensembles and of 0.9–1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments. PMID:22665781
Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters.
Zagni, F; Cicoria, G; Lucconi, G; Infantino, A; Lodi, F; Marengo, M
2014-12-01
Accurate determination of calibration factors for radionuclide activity meters is crucial for quantitative studies and in the optimization step of radiation protection, as these detectors are widespread in radiopharmacy and nuclear medicine facilities. In this work we developed the Monte Carlo model of a widely used activity meter, using the Geant4 simulation toolkit. More precisely the "PENELOPE" EM physics models were employed. The model was validated by means of several certified sources, traceable to primary activity standards, and other sources locally standardized with spectrometry measurements, plus other experimental tests. Great care was taken in order to accurately reproduce the geometrical details of the gas chamber and the activity sources, each of which is different in shape and enclosed in a unique container. Both relative calibration factors and ionization current obtained with simulations were compared against experimental measurements; further tests were carried out, such as the comparison of the relative response of the chamber for a source placed at different positions. The results showed a satisfactory level of accuracy in the energy range of interest, with the discrepancies lower than 4% for all the tested parameters. This shows that an accurate Monte Carlo modeling of this type of detector is feasible using the low-energy physics models embedded in Geant4. The obtained Monte Carlo model establishes a powerful tool for first instance determination of new calibration factors for non-standard radionuclides, for custom containers, when a reference source is not available. Moreover, the model provides an experimental setup for further research and optimization with regards to materials and geometrical details of the measuring setup, such as the ionization chamber itself or the containers configuration. PMID:25195174
NASA Astrophysics Data System (ADS)
Yahja, A.; Kim, C.; Lin, Y.; Bajcsy, P.
2008-12-01
This paper addresses the problem of accurate estimation of geospatial models from a set of groundwater recharge & discharge (R&D) maps and from auxiliary remote sensing and terrestrial raster measurements. The motivation for our work is driven by the cost of field measurements, and by the limitations of currently available physics-based modeling techniques that do not include all relevant variables and allow accurate predictions only at coarse spatial scales. The goal is to improve our understanding of the underlying physical phenomena and increase the accuracy of geospatial models--with a combination of remote sensing, field measurements and physics-based modeling. Our approach is to process a set of R&D maps generated from interpolated sparse field measurements using existing physics-based models, and identify the R&D map that would be the most suitable for extracting a set of rules between the auxiliary variables of interest and the R&D map labels. We implemented this approach by ranking R&D maps using information entropy and mutual information criteria, and then by deriving a set of rules using a machine learning technique, such as the decision tree method. The novelty of our work is in developing a general framework for building geospatial models with the ultimate goal of minimizing cost and maximizing model accuracy. The framework is demonstrated for groundwater R&D rate models but could be applied to other similar studies, for instance, to understanding hypoxia based on physics-based models and remotely sensed variables. Furthermore, our key contribution is in designing a ranking method for R&D maps that allows us to analyze multiple plausible R&D maps with a different number of zones which was not possible in our earlier prototype of the framework called Spatial Pattern to Learn. We will present experimental results using examples R&D and other maps from an area in Wisconsin.
Gao, Yaozong; Shao, Yeqin; Lian, Jun; Wang, Andrew Z; Chen, Ronald C; Shen, Dinggang
2016-06-01
Segmenting male pelvic organs from CT images is a prerequisite for prostate cancer radiotherapy. The efficacy of radiation treatment highly depends on segmentation accuracy. However, accurate segmentation of male pelvic organs is challenging due to low tissue contrast of CT images, as well as large variations of shape and appearance of the pelvic organs. Among existing segmentation methods, deformable models are the most popular, as shape prior can be easily incorporated to regularize the segmentation. Nonetheless, the sensitivity to initialization often limits their performance, especially for segmenting organs with large shape variations. In this paper, we propose a novel approach to guide deformable models, thus making them robust against arbitrary initializations. Specifically, we learn a displacement regressor, which predicts 3D displacement from any image voxel to the target organ boundary based on the local patch appearance. This regressor provides a non-local external force for each vertex of deformable model, thus overcoming the initialization problem suffered by the traditional deformable models. To learn a reliable displacement regressor, two strategies are particularly proposed. 1) A multi-task random forest is proposed to learn the displacement regressor jointly with the organ classifier; 2) an auto-context model is used to iteratively enforce structural information during voxel-wise prediction. Extensive experiments on 313 planning CT scans of 313 patients show that our method achieves better results than alternative classification or regression based methods, and also several other existing methods in CT pelvic organ segmentation. PMID:26800531
Sethurajan, Athinthra Krishnaswamy; Krachkovskiy, Sergey A; Halalay, Ion C; Goward, Gillian R; Protas, Bartosz
2015-09-17
We used NMR imaging (MRI) combined with data analysis based on inverse modeling of the mass transport problem to determine ionic diffusion coefficients and transference numbers in electrolyte solutions of interest for Li-ion batteries. Sensitivity analyses have shown that accurate estimates of these parameters (as a function of concentration) are critical to the reliability of the predictions provided by models of porous electrodes. The inverse modeling (IM) solution was generated with an extension of the Planck-Nernst model for the transport of ionic species in electrolyte solutions. Concentration-dependent diffusion coefficients and transference numbers were derived using concentration profiles obtained from in situ (19)F MRI measurements. Material properties were reconstructed under minimal assumptions using methods of variational optimization to minimize the least-squares deviation between experimental and simulated concentration values with uncertainty of the reconstructions quantified using a Monte Carlo analysis. The diffusion coefficients obtained by pulsed field gradient NMR (PFG-NMR) fall within the 95% confidence bounds for the diffusion coefficient values obtained by the MRI+IM method. The MRI+IM method also yields the concentration dependence of the Li(+) transference number in agreement with trends obtained by electrochemical methods for similar systems and with predictions of theoretical models for concentrated electrolyte solutions, in marked contrast to the salt concentration dependence of transport numbers determined from PFG-NMR data. PMID:26247105
NASA Astrophysics Data System (ADS)
Wu, Jie; Ren, Hong-Li; Zuo, Jinqing; Zhao, Chongbo; Chen, Lijuan; Li, Qiaoping
2016-09-01
This study evaluates performance of Madden-Julian oscillation (MJO) prediction in the Beijing Climate Center Atmospheric General Circulation Model (BCC_AGCM2.2). By using the real-time multivariate MJO (RMM) indices, it is shown that the MJO prediction skill of BCC_AGCM2.2 extends to about 16-17 days before the bivariate anomaly correlation coefficient drops to 0.5 and the root-mean-square error increases to the level of the climatological prediction. The prediction skill showed a seasonal dependence, with the highest skill occurring in boreal autumn, and a phase dependence with higher skill for predictions initiated from phases 2-4. The results of the MJO predictability analysis showed that the upper bounds of the prediction skill can be extended to 26 days by using a single-member estimate, and to 42 days by using the ensemble-mean estimate, which also exhibited an initial amplitude and phase dependence. The observed relationship between the MJO and the North Atlantic Oscillation was accurately reproduced by BCC_AGCM2.2 for most initial phases of the MJO, accompanied with the Rossby wave trains in the Northern Hemisphere extratropics driven by MJO convection forcing. Overall, BCC_AGCM2.2 displayed a significant ability to predict the MJO and its teleconnections without interacting with the ocean, which provided a useful tool for fully extracting the predictability source of subseasonal prediction.
Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.
Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George E
2009-01-01
We present a coarse-grained red blood cell (RBC) model with accurate and realistic mechanical properties, rheology and dynamics. The modeled membrane is represented by a triangular mesh which incorporates shear inplane energy, bending energy, and area and volume conservation constraints. The macroscopic membrane elastic properties are imposed through semi-analytic theory, and are matched with those obtained in optical tweezers stretching experiments. Rheological measurements characterized by time-dependent complex modulus are extracted from the membrane thermal fluctuations, and compared with those obtained from the optical magnetic twisting cytometry results. The results allow us to define a meaningful characteristic time of the membrane. The dynamics of RBCs observed in shear flow suggests that a purely elastic model for the RBC membrane is not appropriate, and therefore a viscoelastic model is required. The set of proposed analyses and numerical tests can be used as a complete model testbed in order to calibrate the modeled viscoelastic membranes to accurately represent RBCs in health and disease. PMID:19965026
Predictive models of radiative neutrino masses
NASA Astrophysics Data System (ADS)
Julio, J.
2016-06-01
We discuss two models of radiative neutrino mass generation. The first model features one-loop Zee model with Z4 symmetry. The second model is the two-loop neutrino mass model with singly- and doubly-charged scalars. These two models fit neutrino oscillation data well and predict some interesting rates for lepton flavor violation processes.
Accurate Analytic Results for the Steady State Distribution of the Eigen Model
NASA Astrophysics Data System (ADS)
Huang, Guan-Rong; Saakian, David B.; Hu, Chin-Kun
2016-04-01
Eigen model of molecular evolution is popular in studying complex biological and biomedical systems. Using the Hamilton-Jacobi equation method, we have calculated analytic equations for the steady state distribution of the Eigen model with a relative accuracy of O(1/N), where N is the length of genome. Our results can be applied for the case of small genome length N, as well as the cases where the direct numerics can not give accurate result, e.g., the tail of distribution.
How to Establish Clinical Prediction Models
Bang, Heejung
2016-01-01
A clinical prediction model can be applied to several challenging clinical scenarios: screening high-risk individuals for asymptomatic disease, predicting future events such as disease or death, and assisting medical decision-making and health education. Despite the impact of clinical prediction models on practice, prediction modeling is a complex process requiring careful statistical analyses and sound clinical judgement. Although there is no definite consensus on the best methodology for model development and validation, a few recommendations and checklists have been proposed. In this review, we summarize five steps for developing and validating a clinical prediction model: preparation for establishing clinical prediction models; dataset selection; handling variables; model generation; and model evaluation and validation. We also review several studies that detail methods for developing clinical prediction models with comparable examples from real practice. After model development and vigorous validation in relevant settings, possibly with evaluation of utility/usability and fine-tuning, good models can be ready for the use in practice. We anticipate that this framework will revitalize the use of predictive or prognostic research in endocrinology, leading to active applications in real clinical practice. PMID:26996421
How to Establish Clinical Prediction Models.
Lee, Yong Ho; Bang, Heejung; Kim, Dae Jung
2016-03-01
A clinical prediction model can be applied to several challenging clinical scenarios: screening high-risk individuals for asymptomatic disease, predicting future events such as disease or death, and assisting medical decision-making and health education. Despite the impact of clinical prediction models on practice, prediction modeling is a complex process requiring careful statistical analyses and sound clinical judgement. Although there is no definite consensus on the best methodology for model development and validation, a few recommendations and checklists have been proposed. In this review, we summarize five steps for developing and validating a clinical prediction model: preparation for establishing clinical prediction models; dataset selection; handling variables; model generation; and model evaluation and validation. We also review several studies that detail methods for developing clinical prediction models with comparable examples from real practice. After model development and vigorous validation in relevant settings, possibly with evaluation of utility/usability and fine-tuning, good models can be ready for the use in practice. We anticipate that this framework will revitalize the use of predictive or prognostic research in endocrinology, leading to active applications in real clinical practice. PMID:26996421
A comprehensive model to predict mitotic division in budding yeasts
Sutradhar, Sabyasachi; Yadav, Vikas; Sridhar, Shreyas; Sreekumar, Lakshmi; Bhattacharyya, Dibyendu; Ghosh, Santanu Kumar; Paul, Raja; Sanyal, Kaustuv
2015-01-01
High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division. PMID:26310442
Predictive Modeling for Comfortable Death Outcome Using Electronic Health Records
Lodhi, Muhammad Kamran; Ansari, Rashid; Yao, Yingwei; Keenan, Gail M.; Wilkie, Diana J.; Khokhar, Ashfaq A.
2016-01-01
Electronic health record (EHR) systems are used in healthcare industry to observe the progress of patients. With fast growth of the data, EHR data analysis has become a big data problem. Most EHRs are sparse and multi-dimensional datasets and mining them is a challenging task due to a number of reasons. In this paper, we have used a nursing EHR system to build predictive models to determine what factors impact death anxiety, a significant problem for the dying patients. Different existing modeling techniques have been used to develop coarse-grained as well as fine-grained models to predict patient outcomes. The coarse-grained models help in predicting the outcome at the end of each hospitalization, whereas fine-grained models help in predicting the outcome at the end of each shift, therefore providing a trajectory of predicted outcomes. Based on different modeling techniques, our results show significantly accurate predictions, due to relatively noise-free data. These models can help in determining effective treatments, lowering healthcare costs, and improving the quality of end-of-life (EOL) care.
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Rappe, Andrew M.
2016-01-01
Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C8 and C10 between small molecules. We find that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C8 and 7% for C10. Inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.
Atmospheric drag model calibrations for spacecraft lifetime prediction
NASA Technical Reports Server (NTRS)
Binebrink, A. L.; Radomski, M. S.; Samii, M. V.
1989-01-01
Although solar activity prediction uncertainty normally dominates decay prediction error budget for near-Earth spacecraft, the effect of drag force modeling errors for given levels of solar activity needs to be considered. Two atmospheric density models, the modified Harris-Priester model and the Jacchia-Roberts model, to reproduce the decay histories of the Solar Mesosphere Explorer (SME) and Solar Maximum Mission (SMM) spacecraft in the 490- to 540-kilometer altitude range were analyzed. Historical solar activity data were used in the input to the density computations. For each spacecraft and atmospheric model, a drag scaling adjustment factor was determined for a high-solar-activity year, such that the observed annual decay in the mean semimajor axis was reproduced by an averaged variation-of-parameters (VOP) orbit propagation. The SME (SMM) calibration was performed using calendar year 1983 (1982). The resulting calibration factors differ by 20 to 40 percent from the predictions of the prelaunch ballistic coefficients. The orbit propagations for each spacecraft were extended to the middle of 1988 using the calibrated drag models. For the Jaccia-Roberts density model, the observed decay in the mean semimajor axis of SME (SMM) over the 4.5-year (5.5-year) predictive period was reproduced to within 1.5 (4.4) percent. The corresponding figure for the Harris-Priester model was 8.6 (20.6) percent. Detailed results and conclusions regarding the importance of accurate drag force modeling for lifetime predictions are presented.
Underwater Sound Propagation Modeling Methods for Predicting Marine Animal Exposure.
Hamm, Craig A; McCammon, Diana F; Taillefer, Martin L
2016-01-01
The offshore exploration and production (E&P) industry requires comprehensive and accurate ocean acoustic models for determining the exposure of marine life to the high levels of sound used in seismic surveys and other E&P activities. This paper reviews the types of acoustic models most useful for predicting the propagation of undersea noise sources and describes current exposure models. The severe problems caused by model sensitivity to the uncertainty in the environment are highlighted to support the conclusion that it is vital that risk assessments include transmission loss estimates with statistical measures of confidence. PMID:26610982
Fast and accurate modeling of molecular atomization energies with machine learning.
Rupp, Matthias; Tkatchenko, Alexandre; Müller, Klaus-Robert; von Lilienfeld, O Anatole
2012-02-01
We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrödinger equation is mapped onto a nonlinear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross validation over more than seven thousand organic molecules yields a mean absolute error of ∼10 kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves. PMID:22400967
Optimization approaches to nonlinear model predictive control
Biegler, L.T. . Dept. of Chemical Engineering); Rawlings, J.B. . Dept. of Chemical Engineering)
1991-01-01
With the development of sophisticated methods for nonlinear programming and powerful computer hardware, it now becomes useful and efficient to formulate and solve nonlinear process control problems through on-line optimization methods. This paper explores and reviews control techniques based on repeated solution of nonlinear programming (NLP) problems. Here several advantages present themselves. These include minimization of readily quantifiable objectives, coordinated and accurate handling of process nonlinearities and interactions, and systematic ways of dealing with process constraints. We motivate this NLP-based approach with small nonlinear examples and present a basic algorithm for optimization-based process control. As can be seen this approach is a straightforward extension of popular model-predictive controllers (MPCs) that are used for linear systems. The statement of the basic algorithm raises a number of questions regarding stability and robustness of the method, efficiency of the control calculations, incorporation of feedback into the controller and reliable ways of handling process constraints. Each of these will be treated through analysis and/or modification of the basic algorithm. To highlight and support this discussion, several examples are presented and key results are examined and further developed. 74 refs., 11 figs.
Harris, Adam; Harries, Priscilla
2016-01-01
overall accuracy being reported. Data were extracted using a standardised tool, by one reviewer, which could have introduced bias. Devising search terms for prognostic studies is challenging. Every attempt was made to devise search terms that were sufficiently sensitive to detect all prognostic studies; however, it remains possible that some studies were not identified. Conclusion Studies of prognostic accuracy in palliative care are heterogeneous, but the evidence suggests that clinicians’ predictions are frequently inaccurate. No sub-group of clinicians was consistently shown to be more accurate than any other. Implications of Key Findings Further research is needed to understand how clinical predictions are formulated and how their accuracy can be improved. PMID:27560380
Comparing Sediment Yield Predictions from Different Hydrologic Modeling Schemes
NASA Astrophysics Data System (ADS)
Dahl, T. A.; Kendall, A. D.; Hyndman, D. W.
2015-12-01
Sediment yield, or the delivery of sediment from the landscape to a river, is a difficult process to accurately model. It is primarily a function of hydrology and climate, but influenced by landcover and the underlying soils. These additional factors make it much more difficult to accurately model than water flow alone. It is not intuitive what impact different hydrologic modeling schemes may have on the prediction of sediment yield. Here, two implementations of the Modified Universal Soil Loss Equation (MUSLE) are compared to examine the effects of hydrologic model choice. Both the Soil and Water Assessment Tool (SWAT) and the Landscape Hydrology Model (LHM) utilize the MUSLE for calculating sediment yield. SWAT is a lumped parameter hydrologic model developed by the USDA, which is commonly used for predicting sediment yield. LHM is a fully distributed hydrologic model developed primarily for integrated surface and groundwater studies at the watershed to regional scale. SWAT and LHM models were developed and tested for two large, adjacent watersheds in the Great Lakes region; the Maumee River and the St. Joseph River. The models were run using a variety of single model and ensemble downscaled climate change scenarios from the Coupled Model Intercomparison Project 5 (CMIP5). The initial results of this comparison are discussed here.
Predicting adverse drug events using pharmacological network models.
Cami, Aurel; Arnold, Alana; Manzi, Shannon; Reis, Ben
2011-12-21
Early and accurate identification of adverse drug events (ADEs) is critically important for public health. We have developed a novel approach for predicting ADEs, called predictive pharmacosafety networks (PPNs). PPNs integrate the network structure formed by known drug-ADE relationships with information on specific drugs and adverse events to predict likely unknown ADEs. Rather than waiting for sufficient post-market evidence to accumulate for a given ADE, this predictive approach relies on leveraging existing, contextual drug safety information, thereby having the potential to identify certain ADEs earlier. We constructed a network representation of drug-ADE associations for 809 drugs and 852 ADEs on the basis of a snapshot of a widely used drug safety database from 2005 and supplemented these data with additional pharmacological information. We trained a logistic regression model to predict unknown drug-ADE associations that were not listed in the 2005 snapshot. We evaluated the model's performance by comparing these predictions with the new drug-ADE associations that appeared in a 2010 snapshot of the same drug safety database. The proposed model achieved an AUROC (area under the receiver operating characteristic curve) statistic of 0.87, with a sensitivity of 0.42 given a specificity of 0.95. These findings suggest that predictive network methods can be useful for predicting unknown ADEs. PMID:22190238
Accurate modeling of switched reluctance machine based on hybrid trained WNN
Song, Shoujun Ge, Lefei; Ma, Shaojie; Zhang, Man
2014-04-15
According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, the nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.
Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models
NASA Astrophysics Data System (ADS)
Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo
2014-04-01
We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.
Beyond Ellipse(s): Accurately Modelling the Isophotal Structure of Galaxies with ISOFIT and CMODEL
NASA Astrophysics Data System (ADS)
Ciambur, B. C.
2015-09-01
This work introduces a new fitting formalism for isophotes that enables more accurate modeling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter that defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar coordinate to the “eccentric anomaly.” This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial, cross-like features in residual images are completely removed. The formalism has been implemented into the Image Reduction and Analysis Facility tasks Ellipse and Bmodel to create the new tasks “Isofit,” and “Cmodel.” The new tools are demonstrated here with application to five galaxies, chosen to be representative case-studies for several areas where this technique makes it possible to gain new scientific insight. Specifically: properly quantifying boxy/disky isophotes via the fourth harmonic order in edge-on galaxies, quantifying X-shaped/peanut bulges, higher-order Fourier moments for modeling bars in disks, and complex isophote shapes. Higher order (n > 4) harmonics now become meaningful and may correlate with structural properties, as boxyness/diskyness is known to do. This work also illustrates how the accurate construction, and subtraction, of a model from a galaxy image facilitates the identification and recovery of over-lapping sources such as globular clusters and the optical counterparts of X-ray sources.
Towards more accurate numerical modeling of impedance based high frequency harmonic vibration
NASA Astrophysics Data System (ADS)
Lim, Yee Yan; Kiong Soh, Chee
2014-03-01
The application of smart materials in various fields of engineering has recently become increasingly popular. For instance, the high frequency based electromechanical impedance (EMI) technique employing smart piezoelectric materials is found to be versatile in structural health monitoring (SHM). Thus far, considerable efforts have been made to study and improve the technique. Various theoretical models of the EMI technique have been proposed in an attempt to better understand its behavior. So far, the three-dimensional (3D) coupled field finite element (FE) model has proved to be the most accurate. However, large discrepancies between the results of the FE model and experimental tests, especially in terms of the slope and magnitude of the admittance signatures, continue to exist and are yet to be resolved. This paper presents a series of parametric studies using the 3D coupled field finite element method (FEM) on all properties of materials involved in the lead zirconate titanate (PZT) structure interaction of the EMI technique, to investigate their effect on the admittance signatures acquired. FE model updating is then performed by adjusting the parameters to match the experimental results. One of the main reasons for the lower accuracy, especially in terms of magnitude and slope, of previous FE models is the difficulty in determining the damping related coefficients and the stiffness of the bonding layer. In this study, using the hysteretic damping model in place of Rayleigh damping, which is used by most researchers in this field, and updated bonding stiffness, an improved and more accurate FE model is achieved. The results of this paper are expected to be useful for future study of the subject area in terms of research and application, such as modeling, design and optimization.
Development and Application of Chronic Disease Risk Prediction Models
Oh, Sun Min; Stefani, Katherine M.
2014-01-01
Currently, non-communicable chronic diseases are a major cause of morbidity and mortality worldwide, and a large proportion of chronic diseases are preventable through risk factor management. However, the prevention efficacy at the individual level is not yet satisfactory. Chronic disease prediction models have been developed to assist physicians and individuals in clinical decision-making. A chronic disease prediction model assesses multiple risk factors together and estimates an absolute disease risk for the individual. Accurate prediction of an individual's future risk for a certain disease enables the comparison of benefits and risks of treatment, the costs of alternative prevention strategies, and selection of the most efficient strategy for the individual. A large number of chronic disease prediction models, especially targeting cardiovascular diseases and cancers, have been suggested, and some of them have been adopted in the clinical practice guidelines and recommendations of many countries. Although few chronic disease prediction tools have been suggested in the Korean population, their clinical utility is not as high as expected. This article reviews methodologies that are commonly used for developing and evaluating a chronic disease prediction model and discusses the current status of chronic disease prediction in Korea. PMID:24954311
Ustinov, E A
2014-10-01
Commensurate-incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs-Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton-graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton-carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas-solid and solid-solid system. PMID:25296827
Ustinov, E. A.
2014-10-07
Commensurate–incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs–Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton–graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton–carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas–solid and solid–solid system.
Charge transport model to predict intrinsic reliability for dielectric materials
Ogden, Sean P.; Borja, Juan; Plawsky, Joel L. Gill, William N.; Lu, T.-M.; Yeap, Kong Boon
2015-09-28
Several lifetime models, mostly empirical in nature, are used to predict reliability for low-k dielectrics used in integrated circuits. There is a dispute over which model provides the most accurate prediction for device lifetime at operating conditions. As a result, there is a need to transition from the use of these largely empirical models to one built entirely on theory. Therefore, a charge transport model was developed to predict the device lifetime of low-k interconnect systems. The model is based on electron transport and donor-type defect formation. Breakdown occurs when a critical defect concentration accumulates, resulting in electron tunneling and the emptying of positively charged traps. The enhanced local electric field lowers the barrier for electron injection into the dielectric, causing a positive feedforward failure. The charge transport model is able to replicate experimental I-V and I-t curves, capturing the current decay at early stress times and the rapid current increase at failure. The model is based on field-driven and current-driven failure mechanisms and uses a minimal number of parameters. All the parameters have some theoretical basis or have been measured experimentally and are not directly used to fit the slope of the time-to-failure versus applied field curve. Despite this simplicity, the model is able to accurately predict device lifetime for three different sources of experimental data. The simulation's predictions at low fields and very long lifetimes show that the use of a single empirical model can lead to inaccuracies in device reliability.
Charge transport model to predict intrinsic reliability for dielectric materials
NASA Astrophysics Data System (ADS)
Ogden, Sean P.; Borja, Juan; Plawsky, Joel L.; Lu, T.-M.; Yeap, Kong Boon; Gill, William N.
2015-09-01
Several lifetime models, mostly empirical in nature, are used to predict reliability for low-k dielectrics used in integrated circuits. There is a dispute over which model provides the most accurate prediction for device lifetime at operating conditions. As a result, there is a need to transition from the use of these largely empirical models to one built entirely on theory. Therefore, a charge transport model was developed to predict the device lifetime of low-k interconnect systems. The model is based on electron transport and donor-type defect formation. Breakdown occurs when a critical defect concentration accumulates, resulting in electron tunneling and the emptying of positively charged traps. The enhanced local electric field lowers the barrier for electron injection into the dielectric, causing a positive feedforward failure. The charge transport model is able to replicate experimental I-V and I-t curves, capturing the current decay at early stress times and the rapid current increase at failure. The model is based on field-driven and current-driven failure mechanisms and uses a minimal number of parameters. All the parameters have some theoretical basis or have been measured experimentally and are not directly used to fit the slope of the time-to-failure versus applied field curve. Despite this simplicity, the model is able to accurately predict device lifetime for three different sources of experimental data. The simulation's predictions at low fields and very long lifetimes show that the use of a single empirical model can lead to inaccuracies in device reliability.
Chen, Y; Mo, X; Chen, M; Olivera, G; Parnell, D; Key, S; Lu, W; Reeher, M; Galmarini, D
2014-06-01
Purpose: An accurate leaf fluence model can be used in applications such as patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is known that the total fluence is not a linear combination of individual leaf fluence due to leakage-transmission, tongue-and-groove, and source occlusion effect. Here we propose a method to model the nonlinear effects as linear terms thus making the MLC-detector system a linear system. Methods: A leaf pattern basis (LPB) consisting of no-leaf-open, single-leaf-open, double-leaf-open and triple-leaf-open patterns are chosen to represent linear and major nonlinear effects of leaf fluence as a linear system. An arbitrary leaf pattern can be expressed as (or decomposed to) a linear combination of the LPB either pulse by pulse or weighted by dwelling time. The exit detector responses to the LPB are obtained by processing returned detector signals resulting from the predefined leaf patterns for each jaw setting. Through forward transformation, detector signal can be predicted given a delivery plan. An equivalent leaf open time (LOT) sinogram containing output variation information can also be inversely calculated from the measured detector signals. Twelve patient plans were delivered in air. The equivalent LOT sinograms were compared with their planned sinograms. Results: The whole calibration process was done in 20 minutes. For two randomly generated leaf patterns, 98.5% of the active channels showed differences within 0.5% of the local maximum between the predicted and measured signals. Averaged over the twelve plans, 90% of LOT errors were within +/−10 ms. The LOT systematic error increases and shows an oscillating pattern when LOT is shorter than 50 ms. Conclusion: The LPB method models the MLC-detector response accurately, which improves patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is sensitive enough to detect systematic LOT errors as small as 10 ms.
Berger, Perrine; Alouini, Mehdi; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel
2010-01-18
We developed an improved model in order to predict the RF behavior and the slow light properties of the SOA valid for any experimental conditions. It takes into account the dynamic saturation of the SOA, which can be fully characterized by a simple measurement, and only relies on material fitting parameters, independent of the optical intensity and the injected current. The present model is validated by showing a good agreement with experiments for small and large modulation indices. PMID:20173888
Huang, Gui-Qian; Zhu, Gui-Qi; Liu, Yan-Long; Wang, Li-Ren; Braddock, Martin; Zheng, Ming-Hua; Zhou, Meng-Tao
2016-01-01
Objectives Neutrophil lymphocyte ratio (NLR) has been shown to predict prognosis of cancers in several studies. This study was designed to evaluate the impact of stratified NLR in patients who have received curative liver resection (CLR) for hepatocellular carcinoma (HCC). Methods A total of 1659 patients who underwent CLR for suspected HCC between 2007 and 2014 were reviewed. The preoperative NLR was categorized into quartiles based on the quantity of the study population and the distribution of NLR. Hazard ratios (HRs) and 95% confidence intervals (CIs) were significantly associated with overall survival (OS) and derived by Cox proportional hazard regression analyses. Univariate and multivariate Cox proportional hazard regression analyses were evaluated for association of all independent parameters with disease prognosis. Results Multivariable Cox proportional hazards models showed that the level of NLR (HR = 1.031, 95%CI: 1.002-1.060, P = 0.033), number of nodules (HR = 1.679, 95%CI: 1.285-2.194, P<0.001), portal vein thrombosis (HR = 4.329, 95%CI: 1.968-9.521, P<0.001), microvascular invasion (HR = 2.527, 95%CI: 1.726-3.700, P<0.001) and CTP score (HR = 1.675, 95%CI: 1.153-2.433, P = 0.007) were significant predictors of mortality. From the Kaplan-Meier analysis of overall survival (OS), each NLR quartile showed a progressively worse OS and apparent separation (log-rank P=0.008). The highest 5-year OS rate following CLR (60%) in HCC patients was observed in quartile 1. In contrast, the lowest 5-year OS rate (27%) was obtained in quartile 4. Conclusions Stratified NLR may predict significantly improved outcomes and strengthen the predictive power for patient responses to therapeutic intervention. PMID:26716411
Evaluating the Predictive Value of Growth Prediction Models
ERIC Educational Resources Information Center
Murphy, Daniel L.; Gaertner, Matthew N.
2014-01-01
This study evaluates four growth prediction models--projection, student growth percentile, trajectory, and transition table--commonly used to forecast (and give schools credit for) middle school students' future proficiency. Analyses focused on vertically scaled summative mathematics assessments, and two performance standards conditions (high…
A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals
NASA Astrophysics Data System (ADS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1994-01-01
Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.
Predicting lettuce canopy photosynthesis with statistical and neural network models
NASA Technical Reports Server (NTRS)
Frick, J.; Precetti, C.; Mitchell, C. A.
1998-01-01
An artificial neural network (NN) and a statistical regression model were developed to predict canopy photosynthetic rates (Pn) for 'Waldman's Green' leaf lettuce (Latuca sativa L.). All data used to develop and test the models were collected for crop stands grown hydroponically and under controlled-environment conditions. In the NN and regression models, canopy Pn was predicted as a function of three independent variables: shootzone CO2 concentration (600 to 1500 micromoles mol-1), photosynthetic photon flux (PPF) (600 to 1100 micromoles m-2 s-1), and canopy age (10 to 20 days after planting). The models were used to determine the combinations of CO2 and PPF setpoints required each day to maintain maximum canopy Pn. The statistical model (a third-order polynomial) predicted Pn more accurately than the simple NN (a three-layer, fully connected net). Over an 11-day validation period, average percent difference between predicted and actual Pn was 12.3% and 24.6% for the statistical and NN models, respectively. Both models lost considerable accuracy when used to determine relatively long-range Pn predictions (> or = 6 days into the future).
Predicting lettuce canopy photosynthesis with statistical and neural network models.
Frick, J; Precetti, C; Mitchell, C A
1998-11-01
An artificial neural network (NN) and a statistical regression model were developed to predict canopy photosynthetic rates (Pn) for 'Waldman's Green' leaf lettuce (Latuca sativa L.). All data used to develop and test the models were collected for crop stands grown hydroponically and under controlled-environment conditions. In the NN and regression models, canopy Pn was predicted as a function of three independent variables: shootzone CO2 concentration (600 to 1500 micromoles mol-1), photosynthetic photon flux (PPF) (600 to 1100 micromoles m-2 s-1), and canopy age (10 to 20 days after planting). The models were used to determine the combinations of CO2 and PPF setpoints required each day to maintain maximum canopy Pn. The statistical model (a third-order polynomial) predicted Pn more accurately than the simple NN (a three-layer, fully connected net). Over an 11-day validation period, average percent difference between predicted and actual Pn was 12.3% and 24.6% for the statistical and NN models, respectively. Both models lost considerable accuracy when used to determine relatively long-range Pn predictions (> or = 6 days into the future). PMID:11542672
Double Cluster Heads Model for Secure and Accurate Data Fusion in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
Secure and accurate data fusion is an important issue in wireless sensor networks (WSNs) and has been extensively researched in the literature. In this paper, by combining clustering techniques, reputation and trust systems, and data fusion algorithms, we propose a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for secure and accurate data fusion in WSNs. Different from traditional clustering models in WSNs, two cluster heads are selected after clustering for each cluster based on the reputation and trust system and they perform data fusion independently of each other. Then, the results are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust system, which can help us to identify and delete the compromised sensor nodes in time. Through a series of extensive simulations, we found that the DCHM performed very well in data fusion security and accuracy. PMID:25608211
NASA Astrophysics Data System (ADS)
Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.
2012-11-01
A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.
Applying an accurate spherical model to gamma-ray burst afterglow observations
NASA Astrophysics Data System (ADS)
Leventis, K.; van der Horst, A. J.; van Eerten, H. J.; Wijers, R. A. M. J.
2013-05-01
We present results of model fits to afterglow data sets of GRB 970508, GRB 980703 and GRB 070125, characterized by long and broad-band coverage. The model assumes synchrotron radiation (including self-absorption) from a spherical adiabatic blast wave and consists of analytic flux prescriptions based on numerical results. For the first time it combines the accuracy of hydrodynamic simulations through different stages of the outflow dynamics with the flexibility of simple heuristic formulas. The prescriptions are especially geared towards accurate description of the dynamical transition of the outflow from relativistic to Newtonian velocities in an arbitrary power-law density environment. We show that the spherical model can accurately describe the data only in the case of GRB 970508, for which we find a circumburst medium density n ∝ r-2. We investigate in detail the implied spectra and physical parameters of that burst. For the microphysics we show evidence for equipartition between the fraction of energy density carried by relativistic electrons and magnetic field. We also find that for the blast wave to be adiabatic, the fraction of electrons accelerated at the shock has to be smaller than 1. We present best-fitting parameters for the afterglows of all three bursts, including uncertainties in the parameters of GRB 970508, and compare the inferred values to those obtained by different authors.
NASA Astrophysics Data System (ADS)
Wohlfeil, J.; Hirschmüller, H.; Piltz, B.; Börner, A.; Suppa, M.
2012-07-01
Modern pixel-wise image matching algorithms like Semi-Global Matching (SGM) are able to compute high resolution digital surface models from airborne and spaceborne stereo imagery. Although image matching itself can be performed automatically, there are prerequisites, like high geometric accuracy, which are essential for ensuring the high quality of resulting surface models. Especially for line cameras, these prerequisites currently require laborious manual interaction using standard tools, which is a growing problem due to continually increasing demand for such surface models. The tedious work includes partly or fully manual selection of tie- and/or ground control points for ensuring the required accuracy of the relative orientation of images for stereo matching. It also includes masking of large water areas that seriously reduce the quality of the results. Furthermore, a good estimate of the depth range is required, since accurate estimates can seriously reduce the processing time for stereo matching. In this paper an approach is presented that allows performing all these steps fully automated. It includes very robust and precise tie point selection, enabling the accurate calculation of the images' relative orientation via bundle adjustment. It is also shown how water masking and elevation range estimation can be performed automatically on the base of freely available SRTM data. Extensive tests with a large number of different satellite images from QuickBird and WorldView are presented as proof of the robustness and reliability of the proposed method.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
An accurate and comprehensive model of thin fluid flows with inertia on curved substrates
NASA Astrophysics Data System (ADS)
Roberts, A. J.; Li, Zhenquan
2006-04-01
Consider the three-dimensional flow of a viscous Newtonian fluid upon a curved two-dimensional substrate when the fluid film is thin, as occurs in many draining, coating and biological flows. We derive a comprehensive model of the dynamics of the film, the model being expressed in terms of the film thickness eta and the average lateral velocity bar{bm u}. Centre manifold theory assures us that the model accurately and systematically includes the effects of the curvature of substrate, gravitational body force, fluid inertia and dissipation. The model resolves wavelike phenomena in the dynamics of viscous fluid flows over arbitrarily curved substrates such as cylinders, tubes and spheres. We briefly illustrate its use in simulating drop formation on cylindrical fibres, wave transitions, three-dimensional instabilities, Faraday waves, viscous hydraulic jumps, flow vortices in a compound channel and flow down and up a step. These models are the most complete models for thin-film flow of a Newtonian fluid; many other thin-film models can be obtained by different restrictions and truncations of the model derived here.
Digitalized accurate modeling of SPCB with multi-spiral surface based on CPC algorithm
NASA Astrophysics Data System (ADS)
Huang, Yanhua; Gu, Lizhi
2015-09-01
The main methods of the existing multi-spiral surface geometry modeling include spatial analytic geometry algorithms, graphical method, interpolation and approximation algorithms. However, there are some shortcomings in these modeling methods, such as large amount of calculation, complex process, visible errors, and so on. The above methods have, to some extent, restricted the design and manufacture of the premium and high-precision products with spiral surface considerably. This paper introduces the concepts of the spatially parallel coupling with multi-spiral surface and spatially parallel coupling body. The typical geometry and topological features of each spiral surface forming the multi-spiral surface body are determined, by using the extraction principle of datum point cluster, the algorithm of coupling point cluster by removing singular point, and the "spatially parallel coupling" principle based on the non-uniform B-spline for each spiral surface. The orientation and quantitative relationships of datum point cluster and coupling point cluster in Euclidean space are determined accurately and in digital description and expression, coupling coalescence of the surfaces with multi-coupling point clusters under the Pro/E environment. The digitally accurate modeling of spatially parallel coupling body with multi-spiral surface is realized. The smooth and fairing processing is done to the three-blade end-milling cutter's end section area by applying the principle of spatially parallel coupling with multi-spiral surface, and the alternative entity model is processed in the four axis machining center after the end mill is disposed. And the algorithm is verified and then applied effectively to the transition area among the multi-spiral surface. The proposed model and algorithms may be used in design and manufacture of the multi-spiral surface body products, as well as in solving essentially the problems of considerable modeling errors in computer graphics and
Incorporating uncertainty in predictive species distribution modelling
Beale, Colin M.; Lennon, Jack J.
2012-01-01
Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates. PMID:22144387
Nudds, Robert L.; Taylor, Graham K.; Thomas, Adrian L. R.
2004-01-01
The wing kinematics of birds vary systematically with body size, but we still, after several decades of research, lack a clear mechanistic understanding of the aerodynamic selection pressures that shape them. Swimming and flying animals have recently been shown to cruise at Strouhal numbers (St) corresponding to a regime of vortex growth and shedding in which the propulsive efficiency of flapping foils peaks (St approximately fA/U, where f is wingbeat frequency, U is cruising speed and A approximately bsin(theta/2) is stroke amplitude, in which b is wingspan and theta is stroke angle). We show that St is a simple and accurate predictor of wingbeat frequency in birds. The Strouhal numbers of cruising birds have converged on the lower end of the range 0.2 < St < 0.4 associated with high propulsive efficiency. Stroke angle scales as theta approximately 67b-0.24, so wingbeat frequency can be predicted as f approximately St.U/bsin(33.5b-0.24), with St0.21 and St0.25 for direct and intermittent fliers, respectively. This simple aerodynamic model predicts wingbeat frequency better than any other relationship proposed to date, explaining 90% of the observed variance in a sample of 60 bird species. Avian wing kinematics therefore appear to have been tuned by natural selection for high aerodynamic efficiency: physical and physiological constraints upon wing kinematics must be reconsidered in this light. PMID:15451698
Modeling and Predicting Pesticide Exposures
Models provide a means for representing a real system in an understandable way. They take many forms, beginning with conceptual models that explain the way a system works, such as delineation of all the factors and parameters of how a pesticide particle moves in the air after a s...
Posterior Predictive Bayesian Phylogenetic Model Selection
Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn
2014-01-01
We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892
NASA Astrophysics Data System (ADS)
Smith, R.; Flynn, C.; Candlish, G. N.; Fellhauer, M.; Gibson, B. K.
2015-04-01
We present accurate models of the gravitational potential produced by a radially exponential disc mass distribution. The models are produced by combining three separate Miyamoto-Nagai discs. Such models have been used previously to model the disc of the Milky Way, but here we extend this framework to allow its application to discs of any mass, scalelength, and a wide range of thickness from infinitely thin to near spherical (ellipticities from 0 to 0.9). The models have the advantage of simplicity of implementation, and we expect faster run speeds over a double exponential disc treatment. The potentials are fully analytical, and differentiable at all points. The mass distribution of our models deviates from the radial mass distribution of a pure exponential disc by <0.4 per cent out to 4 disc scalelengths, and <1.9 per cent out to 10 disc scalelengths. We tabulate fitting parameters which facilitate construction of exponential discs for any scalelength, and a wide range of disc thickness (a user-friendly, web-based interface is also available). Our recipe is well suited for numerical modelling of the tidal effects of a giant disc galaxy on star clusters or dwarf galaxies. We consider three worked examples; the Milky Way thin and thick disc, and a discy dwarf galaxy.
Incorporating model uncertainty into spatial predictions
Handcock, M.S.
1996-12-31
We consider a modeling approach for spatially distributed data. We are concerned with aspects of statistical inference for Gaussian random fields when the ultimate objective is to predict the value of the random field at unobserved locations. However the exact statistical model is seldom known before hand and is usually estimated from the very same data relative to which the predictions are made. Our objective is to assess the effect of the fact that the model is estimated, rather than known, on the prediction and the associated prediction uncertainty. We describe a method for achieving this objective. We, in essence, consider the best linear unbiased prediction procedure based on the model within a Bayesian framework. These ideas are implemented for the spring temperature over the region in the northern United States based on the stations in the United States historical climatological network reported in Karl, Williams, Quinlan & Boden.
Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.
Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko
2016-03-01
In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. PMID:26774211
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2016-01-01
In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553
Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.
2016-03-01
Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.
Fu, Q.; Sun, W.B.; Yang, P.
1998-09-01
An accurate parameterization is presented for the infrared radiative properties of cirrus clouds. For the single-scattering calculations, a composite scheme is developed for randomly oriented hexagonal ice crystals by comparing results from Mie theory, anomalous diffraction theory (ADT), the geometric optics method (GOM), and the finite-difference time domain technique. This scheme employs a linear combination of single-scattering properties from the Mie theory, ADT, and GOM, which is accurate for a wide range of size parameters. Following the approach of Q. Fu, the extinction coefficient, absorption coefficient, and asymmetry factor are parameterized as functions of the cloud ice water content and generalized effective size (D{sub ge}). The present parameterization of the single-scattering properties of cirrus clouds is validated by examining the bulk radiative properties for a wide range of atmospheric conditions. Compared with reference results, the typical relative error in emissivity due to the parameterization is {approximately}2.2%. The accuracy of this parameterization guarantees its reliability in applications to climate models. The present parameterization complements the scheme for the solar radiative properties of cirrus clouds developed by Q. Fu for use in numerical models.
Time dependent patient no-show predictive modelling development.
Huang, Yu-Li; Hanauer, David A
2016-05-01
Purpose - The purpose of this paper is to develop evident-based predictive no-show models considering patients' each past appointment status, a time-dependent component, as an independent predictor to improve predictability. Design/methodology/approach - A ten-year retrospective data set was extracted from a pediatric clinic. It consisted of 7,291 distinct patients who had at least two visits along with their appointment characteristics, patient demographics, and insurance information. Logistic regression was adopted to develop no-show models using two-thirds of the data for training and the remaining data for validation. The no-show threshold was then determined based on minimizing the misclassification of show/no-show assignments. There were a total of 26 predictive model developed based on the number of available past appointments. Simulation was employed to test the effective of each model on costs of patient wait time, physician idle time, and overtime. Findings - The results demonstrated the misclassification rate and the area under the curve of the receiver operating characteristic gradually improved as more appointment history was included until around the 20th predictive model. The overbooking method with no-show predictive models suggested incorporating up to the 16th model and outperformed other overbooking methods by as much as 9.4 per cent in the cost per patient while allowing two additional patients in a clinic day. Research limitations/implications - The challenge now is to actually implement the no-show predictive model systematically to further demonstrate its robustness and simplicity in various scheduling systems. Originality/value - This paper provides examples of how to build the no-show predictive models with time-dependent components to improve the overbooking policy. Accurately identifying scheduled patients' show/no-show status allows clinics to proactively schedule patients to reduce the negative impact of patient no-shows. PMID:27142954
Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761
Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761
NASA Technical Reports Server (NTRS)
Kopasakis, George
2014-01-01
The presentation covers a recently developed methodology to model atmospheric turbulence as disturbances for aero vehicle gust loads and for controls development like flutter and inlet shock position. The approach models atmospheric turbulence in their natural fractional order form, which provides for more accuracy compared to traditional methods like the Dryden model, especially for high speed vehicle. The presentation provides a historical background on atmospheric turbulence modeling and the approaches utilized for air vehicles. This is followed by the motivation and the methodology utilized to develop the atmospheric turbulence fractional order modeling approach. Some examples covering the application of this method are also provided, followed by concluding remarks.
Development of Interpretable Predictive Models for BPH and Prostate Cancer
Bermejo, Pablo; Vivo, Alicia; Tárraga, Pedro J; Rodríguez-Montes, JA
2015-01-01
BACKGROUND Traditional methods for deciding whether to recommend a patient for a prostate biopsy are based on cut-off levels of stand-alone markers such as prostate-specific antigen (PSA) or any of its derivatives. However, in the last decade we have seen the increasing use of predictive models that combine, in a non-linear manner, several predictives that are better able to predict prostate cancer (PC), but these fail to help the clinician to distinguish between PC and benign prostate hyperplasia (BPH) patients. We construct two new models that are capable of predicting both PC and BPH. METHODS An observational study was performed on 150 patients with PSA ≥3 ng/mL and age >50 years. We built a decision tree and a logistic regression model, validated with the leave-one-out methodology, in order to predict PC or BPH, or reject both. RESULTS Statistical dependence with PC and BPH was found for prostate volume (P-value < 0.001), PSA (P-value < 0.001), international prostate symptom score (IPSS; P-value < 0.001), digital rectal examination (DRE; P-value < 0.001), age (P-value < 0.002), antecedents (P-value < 0.006), and meat consumption (P-value < 0.08). The two predictive models that were constructed selected a subset of these, namely, volume, PSA, DRE, and IPSS, obtaining an area under the ROC curve (AUC) between 72% and 80% for both PC and BPH prediction. CONCLUSION PSA and volume together help to build predictive models that accurately distinguish among PC, BPH, and patients without any of these pathologies. Our decision tree and logistic regression models outperform the AUC obtained in the compared studies. Using these models as decision support, the number of unnecessary biopsies might be significantly reduced. PMID:25780348
Risk prediction models for hepatocellular carcinoma in different populations
Ma, Xiao; Yang, Yang; Tu, Hong; Gao, Jing; Tan, Yu-Ting; Zheng, Jia-Li; Bray, Freddie; Xiang, Yong-Bing
2016-01-01
Hepatocellular carcinoma (HCC) is a malignant disease with limited therapeutic options due to its aggressive progression. It places heavy burden on most low and middle income countries to treat HCC patients. Nowadays accurate HCC risk predictions can help making decisions on the need for HCC surveillance and antiviral therapy. HCC risk prediction models based on major risk factors of HCC are useful and helpful in providing adequate surveillance strategies to individuals who have different risk levels. Several risk prediction models among cohorts of different populations for estimating HCC incidence have been presented recently by using simple, efficient, and ready-to-use parameters. Moreover, using predictive scoring systems to assess HCC development can provide suggestions to improve clinical and public health approaches, making them more cost-effective and effort-effective, for inducing personalized surveillance programs according to risk stratification. In this review, the features of risk prediction models of HCC across different populations were summarized, and the perspectives of HCC risk prediction models were discussed as well. PMID:27199512
COMPASS: A Framework for Automated Performance Modeling and Prediction
Lee, Seyong; Meredith, Jeremy S; Vetter, Jeffrey S
2015-01-01
Flexible, accurate performance predictions offer numerous benefits such as gaining insight into and optimizing applications and architectures. However, the development and evaluation of such performance predictions has been a major research challenge, due to the architectural complexities. To address this challenge, we have designed and implemented a prototype system, named COMPASS, for automated performance model generation and prediction. COMPASS generates a structured performance model from the target application's source code using automated static analysis, and then, it evaluates this model using various performance prediction techniques. As we demonstrate on several applications, the results of these predictions can be used for a variety of purposes, such as design space exploration, identifying performance tradeoffs for applications, and understanding sensitivities of important parameters. COMPASS can generate these predictions across several types of applications from traditional, sequential CPU applications to GPU-based, heterogeneous, parallel applications. Our empirical evaluation demonstrates a maximum overhead of 4%, flexibility to generate models for 9 applications, speed, ease of creation, and very low relative errors across a diverse set of architectures.
Risk prediction models for hepatocellular carcinoma in different populations.
Ma, Xiao; Yang, Yang; Tu, Hong; Gao, Jing; Tan, Yu-Ting; Zheng, Jia-Li; Bray, Freddie; Xiang, Yong-Bing
2016-04-01
Hepatocellular carcinoma (HCC) is a malignant disease with limited therapeutic options due to its aggressive progression. It places heavy burden on most low and middle income countries to treat HCC patients. Nowadays accurate HCC risk predictions can help making decisions on the need for HCC surveillance and antiviral therapy. HCC risk prediction models based on major risk factors of HCC are useful and helpful in providing adequate surveillance strategies to individuals who have different risk levels. Several risk prediction models among cohorts of different populations for estimating HCC incidence have been presented recently by using simple, efficient, and ready-to-use parameters. Moreover, using predictive scoring systems to assess HCC development can provide suggestions to improve clinical and public health approaches, making them more cost-effective and effort-effective, for inducing personalized surveillance programs according to risk stratification. In this review, the features of risk prediction models of HCC across different populations were summarized, and the perspectives of HCC risk prediction models were discussed as well. PMID:27199512
Burward-Hoy, J. M.; Geist, W. H.; Krick, M. S.; Mayo, D. R.
2004-01-01
Neutron multiplicity counting is a technique for the rapid, nondestructive measurement of plutonium mass in pure and impure materials. This technique is very powerful because it uses the measured coincidence count rates to determine the sample mass without requiring a set of representative standards for calibration. Interpreting measured singles, doubles, and triples count rates using the three-parameter standard point model accurately determines plutonium mass, neutron multiplication, and the ratio of ({alpha},n) to spontaneous-fission neutrons (alpha) for oxides of moderate mass. However, underlying standard point model assumptions - including constant neutron energy and constant multiplication throughout the sample - cause significant biases for the mass, multiplication, and alpha in measurements of metal and large, dense oxides.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, J. A., Jr.
1998-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional (3-D) electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1998-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional (3-D) electromagnetic computer code, MAxwell's equations by the Finite Integration Algorithm (MAFIA). Cold-test parameters have been calculated for several helical traveLing-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making It possible, for the first time, to design complete TWT via computer simulation.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1997-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.
An Accurate Model for Biomolecular Helices and Its Application to Helix Visualization
Wang, Lincong; Qiao, Hui; Cao, Chen; Xu, Shutan; Zou, Shuxue
2015-01-01
Helices are the most abundant secondary structural elements in proteins and the structural forms assumed by double stranded DNAs (dsDNA). Though the mathematical expression for a helical curve is simple, none of the previous models for the biomolecular helices in either proteins or DNAs use a genuine helical curve, likely because of the complexity of fitting backbone atoms to helical curves. In this paper we model a helix as a series of different but all bona fide helical curves; each one best fits the coordinates of four consecutive backbone Cα atoms for a protein or P atoms for a DNA molecule. An implementation of the model demonstrates that it is more accurate than the previous ones for the description of the deviation of a helix from a standard helical curve. Furthermore, the accuracy of the model makes it possible to correlate deviations with structural and functional significance. When applied to helix visualization, the ribbon diagrams generated by the model are less choppy or have smaller side chain detachment than those by the previous visualization programs that typically model a helix as a series of low-degree splines. PMID:26126117
NASA Astrophysics Data System (ADS)
Kopparla, P.; Natraj, V.; Spurr, R. J. D.; Shia, R. L.; Yung, Y. L.
2014-12-01
Radiative transfer (RT) computations are an essential component of energy budget calculations in climate models. However, full treatment of RT processes is computationally expensive, prompting usage of 2-stream approximations in operational climate models. This simplification introduces errors of the order of 10% in the top of the atmosphere (TOA) fluxes [Randles et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT simulations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those (few) optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Here, we extend the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Comparisons between the new model, called Universal Principal Component Analysis model for Radiative Transfer (UPCART), 2-stream models (such as those used in climate applications) and line-by-line RT models are performed, in order for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the TOA for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and solar and viewing geometries. We demonstrate that very accurate radiative forcing estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases as compared to an exact line-by-line RT model. The model is comparable in speeds to 2-stream models, potentially rendering UPCART useful for operational General Circulation Models (GCMs). The operational speed and accuracy of UPCART can be further
Fast and accurate Monte Carlo sampling of first-passage times from Wiener diffusion models
Drugowitsch, Jan
2016-01-01
We present a new, fast approach for drawing boundary crossing samples from Wiener diffusion models. Diffusion models are widely applied to model choices and reaction times in two-choice decisions. Samples from these models can be used to simulate the choices and reaction times they predict. These samples, in turn, can be utilized to adjust the models’ parameters to match observed behavior from humans and other animals. Usually, such samples are drawn by simulating a stochastic differential equation in discrete time steps, which is slow and leads to biases in the reaction time estimates. Our method, instead, facilitates known expressions for first-passage time densities, which results in unbiased, exact samples and a hundred to thousand-fold speed increase in typical situations. In its most basic form it is restricted to diffusion models with symmetric boundaries and non-leaky accumulation, but our approach can be extended to also handle asymmetric boundaries or to approximate leaky accumulation. PMID:26864391
Simplified Analysis Model for Predicting Pyroshock Responses on Composite Panel
NASA Astrophysics Data System (ADS)
Iwasa, Takashi; Shi, Qinzhong
A simplified analysis model based on the frequency response analysis and the wave propagation analysis was established for predicting Shock Response Spectrum (SRS) on the composite panel subjected to pyroshock loadings. The complex composite panel was modeled as an isotropic single layer panel defined in NASA Lewis Method. Through the conductance of an impact excitation test on a composite panel with no equipment mounted on, it was presented that the simplified analysis model could estimate the SRS as well as the acceleration peak values in both near and far field in an accurate way. In addition, through the simulation for actual pyroshock tests on an actual satellite system, the simplified analysis model was proved to be applicable in predicting the actual pyroshock responses, while bringing forth several technical issues to estimate the pyroshock test specifications in early design stages.
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and
A Simple Model Predicting Individual Weight Change in Humans.
Thomas, Diana M; Martin, Corby K; Heymsfield, Steven; Redman, Leanne M; Schoeller, Dale A; Levine, James A
2011-11-01
Excessive weight in adults is a national concern with over 2/3 of the US population deemed overweight. Because being overweight has been correlated to numerous diseases such as heart disease and type 2 diabetes, there is a need to understand mechanisms and predict outcomes of weight change and weight maintenance. A simple mathematical model that accurately predicts individual weight change offers opportunities to understand how individuals lose and gain weight and can be used to foster patient adherence to diets in clinical settings. For this purpose, we developed a one dimensional differential equation model of weight change based on the energy balance equation is paired to an algebraic relationship between fat free mass and fat mass derived from a large nationally representative sample of recently released data collected by the Centers for Disease Control. We validate the model's ability to predict individual participants' weight change by comparing model estimates of final weight data from two recent underfeeding studies and one overfeeding study. Mean absolute error and standard deviation between model predictions and observed measurements of final weights are less than 1.8 ± 1.3 kg for the underfeeding studies and 2.5 ± 1.6 kg for the overfeeding study. Comparison of the model predictions to other one dimensional models of weight change shows improvement in mean absolute error, standard deviation of mean absolute error, and group mean predictions. The maximum absolute individual error decreased by approximately 60% substantiating reliability in individual weight change predictions. The model provides a viable method for estimating individual weight change as a result of changes in intake and determining individual dietary adherence during weight change studies. PMID:24707319
A Simple Model Predicting Individual Weight Change in Humans
Thomas, Diana M.; Martin, Corby K.; Heymsfield, Steven; Redman, Leanne M.; Schoeller, Dale A.; Levine, James A.
2010-01-01
Excessive weight in adults is a national concern with over 2/3 of the US population deemed overweight. Because being overweight has been correlated to numerous diseases such as heart disease and type 2 diabetes, there is a need to understand mechanisms and predict outcomes of weight change and weight maintenance. A simple mathematical model that accurately predicts individual weight change offers opportunities to understand how individuals lose and gain weight and can be used to foster patient adherence to diets in clinical settings. For this purpose, we developed a one dimensional differential equation model of weight change based on the energy balance equation is paired to an algebraic relationship between fat free mass and fat mass derived from a large nationally representative sample of recently released data collected by the Centers for Disease Control. We validate the model's ability to predict individual participants’ weight change by comparing model estimates of final weight data from two recent underfeeding studies and one overfeeding study. Mean absolute error and standard deviation between model predictions and observed measurements of final weights are less than 1.8 ± 1.3 kg for the underfeeding studies and 2.5 ± 1.6 kg for the overfeeding study. Comparison of the model predictions to other one dimensional models of weight change shows improvement in mean absolute error, standard deviation of mean absolute error, and group mean predictions. The maximum absolute individual error decreased by approximately 60% substantiating reliability in individual weight change predictions. The model provides a viable method for estimating individual weight change as a result of changes in intake and determining individual dietary adherence during weight change studies. PMID:24707319
Brown, Sheldon T.; Tate, Janet P.; Kyriakides, Tassos C.; Kirkwood, Katherine A.; Holodniy, Mark; Goulet, Joseph L.; Angus, Brian J.; Cameron, D. William; Justice, Amy C.
2014-01-01
Objectives The VACS Index is highly predictive of all-cause mortality among HIV infected individuals within the first few years of combination antiretroviral therapy (cART). However, its accuracy among highly treatment experienced individuals and its responsiveness to treatment interventions have yet to be evaluated. We compared the accuracy and responsiveness of the VACS Index with a Restricted Index of age and traditional HIV biomarkers among patients enrolled in the OPTIMA study. Methods Using data from 324/339 (96%) patients in OPTIMA, we evaluated associations between indices and mortality using Kaplan-Meier estimates, proportional hazards models, Harrel’s C-statistic and net reclassification improvement (NRI). We also determined the association between study interventions and risk scores over time, and change in score and mortality. Results Both the Restricted Index (c = 0.70) and VACS Index (c = 0.74) predicted mortality from baseline, but discrimination was improved with the VACS Index (NRI = 23%). Change in score from baseline to 48 weeks was more strongly associated with survival for the VACS Index than the Restricted Index with respective hazard ratios of 0.26 (95% CI 0.14–0.49) and 0.39(95% CI 0.22–0.70) among the 25% most improved scores, and 2.08 (95% CI 1.27–3.38) and 1.51 (95%CI 0.90–2.53) for the 25% least improved scores. Conclusions The VACS Index predicts all-cause mortality more accurately among multi-drug resistant, treatment experienced individuals and is more responsive to changes in risk associated with treatment intervention than an index restricted to age and HIV biomarkers. The VACS Index holds promise as an intermediate outcome for intervention research. PMID:24667813
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
Are Quasi-Steady-State Approximated Models Suitable for Quantifying Intrinsic Noise Accurately?
Sengupta, Dola; Kar, Sandip
2015-01-01
Large gene regulatory networks (GRN) are often modeled with quasi-steady-state approximation (QSSA) to reduce the huge computational time required for intrinsic noise quantification using Gillespie stochastic simulation algorithm (SSA). However, the question still remains whether the stochastic QSSA model measures the intrinsic noise as accurately as the SSA performed for a detailed mechanistic model or not? To address this issue, we have constructed mechanistic and QSSA models for few frequently observed GRNs exhibiting switching behavior and performed stochastic simulations with them. Our results strongly suggest that the performance of a stochastic QSSA model in comparison to SSA performed for a mechanistic model critically relies on the absolute values of the mRNA and protein half-lives involved in the corresponding GRN. The extent of accuracy level achieved by the stochastic QSSA model calculations will depend on the level of bursting frequency generated due to the absolute value of the half-life of either mRNA or protein or for both the species. For the GRNs considered, the stochastic QSSA quantifies the intrinsic noise at the protein level with greater accuracy and for larger combinations of half-life values of mRNA and protein, whereas in case of mRNA the satisfactory accuracy level can only be reached for limited combinations of absolute values of half-lives. Further, we have clearly demonstrated that the abundance levels of mRNA and protein hardly matter for such comparison between QSSA and mechanistic models. Based on our findings, we conclude that QSSA model can be a good choice for evaluating intrinsic noise for other GRNs as well, provided we make a rational choice based on experimental half-life values available in literature. PMID:26327626
Predictive Models of Li-ion Battery Lifetime (Presentation)
Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.
2014-09-01
Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.
Predictive Modeling in Adult Education
ERIC Educational Resources Information Center
Lindner, Charles L.
2011-01-01
The current economic crisis, a growing workforce, the increasing lifespan of workers, and demanding, complex jobs have made organizations highly selective in employee recruitment and retention. It is therefore important, to the adult educator, to develop models of learning that better prepare adult learners for the workplace. The purpose of…
Liver Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Cervical Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Pancreatic Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Prostate Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Ovarian Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Lung Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Bladder Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Testicular Cancer Risk Prediction Models
Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Colorectal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Breast Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Esophageal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing esophageal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Argudo, David; Bethel, Neville P; Marcoline, Frank V; Grabe, Michael
2016-07-01
Biological membranes deform in response to resident proteins leading to a coupling between membrane shape and protein localization. Additionally, the membrane influences the function of membrane proteins. Here we review contributions to this field from continuum elastic membrane models focusing on the class of models that couple the protein to the membrane. While it has been argued that continuum models cannot reproduce the distortions observed in fully-atomistic molecular dynamics simulations, we suggest that this failure can be overcome by using chemically accurate representations of the protein. We outline our recent advances along these lines with our hybrid continuum-atomistic model, and we show the model is in excellent agreement with fully-atomistic simulations of the nhTMEM16 lipid scramblase. We believe that the speed and accuracy of continuum-atomistic methodologies will make it possible to simulate large scale, slow biological processes, such as membrane morphological changes, that are currently beyond the scope of other computational approaches. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26853937
Hybridization modeling of oligonucleotide SNP arrays for accurate DNA copy number estimation
Wan, Lin; Sun, Kelian; Ding, Qi; Cui, Yuehua; Li, Ming; Wen, Yalu; Elston, Robert C.; Qian, Minping; Fu, Wenjiang J
2009-01-01
Affymetrix SNP arrays have been widely used for single-nucleotide polymorphism (SNP) genotype calling and DNA copy number variation inference. Although numerous methods have achieved high accuracy in these fields, most studies have paid little attention to the modeling of hybridization of probes to off-target allele sequences, which can affect the accuracy greatly. In this study, we address this issue and demonstrate that hybridization with mismatch nucleotides (HWMMN) occurs in all SNP probe-sets and has a critical effect on the estimation of allelic concentrations (ACs). We study sequence binding through binding free energy and then binding affinity, and develop a probe intensity composite representation (PICR) model. The PICR model allows the estimation of ACs at a given SNP through statistical regression. Furthermore, we demonstrate with cell-line data of known true copy numbers that the PICR model can achieve reasonable accuracy in copy number estimation at a single SNP locus, by using the ratio of the estimated AC of each sample to that of the reference sample, and can reveal subtle genotype structure of SNPs at abnormal loci. We also demonstrate with HapMap data that the PICR model yields accurate SNP genotype calls consistently across samples, laboratories and even across array platforms. PMID:19586935
NASA Astrophysics Data System (ADS)
Stukel, Michael R.; Landry, Michael R.; Ohman, Mark D.; Goericke, Ralf; Samo, Ty; Benitez-Nelson, Claudia R.
2012-03-01
Despite the increasing use of linear inverse modeling techniques to elucidate fluxes in undersampled marine ecosystems, the accuracy with which they estimate food web flows has not been resolved. New Markov Chain Monte Carlo (MCMC) solution methods have also called into question the biases of the commonly used L2 minimum norm (L 2MN) solution technique. Here, we test the abilities of MCMC and L 2MN methods to recover field-measured ecosystem rates that are sequentially excluded from the model input. For data, we use experimental measurements from process cruises of the California Current Ecosystem (CCE-LTER) Program that include rate estimates of phytoplankton and bacterial production, micro- and mesozooplankton grazing, and carbon export from eight study sites varying from rich coastal upwelling to offshore oligotrophic conditions. Both the MCMC and L 2MN methods predicted well-constrained rates of protozoan and mesozooplankton grazing with reasonable accuracy, but the MCMC method overestimated primary production. The MCMC method more accurately predicted the poorly constrained rate of vertical carbon export than the L 2MN method, which consistently overestimated export. Results involving DOC and bacterial production were equivocal. Overall, when primary production is provided as model input, the MCMC method gives a robust depiction of ecosystem processes. Uncertainty in inverse ecosystem models is large and arises primarily from solution under-determinacy. We thus suggest that experimental programs focusing on food web fluxes expand the range of experimental measurements to include the nature and fate of detrital pools, which play large roles in the model.
Fast and accurate analytical model to solve inverse problem in SHM using Lamb wave propagation
NASA Astrophysics Data System (ADS)
Poddar, Banibrata; Giurgiutiu, Victor
2016-04-01
Lamb wave propagation is at the center of attention of researchers for structural health monitoring of thin walled structures. This is due to the fact that Lamb wave modes are natural modes of wave propagation in these structures with long travel distances and without much attenuation. This brings the prospect of monitoring large structure with few sensors/actuators. However the problem of damage detection and identification is an "inverse problem" where we do not have the luxury to know the exact mathematical model of the system. On top of that the problem is more challenging due to the confounding factors of statistical variation of the material and geometric properties. Typically this problem may also be ill posed. Due to all these complexities the direct solution of the problem of damage detection and identification in SHM is impossible. Therefore an indirect method using the solution of the "forward problem" is popular for solving the "inverse problem". This requires a fast forward problem solver. Due to the complexities involved with the forward problem of scattering of Lamb waves from damages researchers rely primarily on numerical techniques such as FEM, BEM, etc. But these methods are slow and practically impossible to be used in structural health monitoring. We have developed a fast and accurate analytical forward problem solver for this purpose. This solver, CMEP (complex modes expansion and vector projection), can simulate scattering of Lamb waves from all types of damages in thin walled structures fast and accurately to assist the inverse problem solver.
Development and application of accurate analytical models for single active electron potentials
NASA Astrophysics Data System (ADS)
Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas
2015-05-01
The single active electron (SAE) approximation is a theoretical model frequently employed to study scenarios in which inner-shell electrons may productively be treated as frozen spectators to a physical process of interest, and accurate analytical approximations for these potentials are sought as a useful simulation tool. Density function theory is often used to construct a SAE potential, requiring that a further approximation for the exchange correlation functional be enacted. In this study, we employ the Krieger, Li, and Iafrate (KLI) modification to the optimized-effective-potential (OEP) method to reduce the complexity of the problem to the straightforward solution of a system of linear equations through simple arguments regarding the behavior of the exchange-correlation potential in regions where a single orbital dominates. We employ this method for the solution of atomic and molecular potentials, and use the resultant curve to devise a systematic construction for highly accurate and useful analytical approximations for several systems. Supported by the U.S. Department of Energy (Grant No. DE-FG02-09ER16103), and the U.S. National Science Foundation (Graduate Research Fellowship, Grants No. PHY-1125844 and No. PHY-1068706).
Predictive modelling of boiler fouling
Not Available
1991-01-01
The primary objective of this work is the development of a comprehensive numerical model describing the time evolution of fouling under realistic heat exchanger conditions. As fouling is a complex interaction of gas flow, mineral transport and adhesion mechanisms, understanding and subsequently improved controlling of fouling achieved via appropriate manipulation of the various coupled, nonlinear processes in a complex fluid mechanics environment will undoubtedly help reduce the substantial operating costs incurred by the utilities annually, as well as afford greater flexibility in coal selection and reduce the emission of various pollutants. In a more specialized context, the numerical model to be developed as part of this activity will be used as a tool to address the interaction of the various mechanisms controlling deposit development in specific regimes or correlative relationships. These should prove of direct use to the coal burning industry. 11 figs.
Predictive modelling of boiler fouling
Not Available
1992-01-01
The primary objective of this work is the development of a comprehensive numerical model describing the time evolution of fouling under realistic heat exchanger conditions. As fouling is complex interaction of gas flow, mineral transport and adhesion mechanisms, understanding and subsequently improved controlling of fouling achieved via appropriate manipulation of the various coupled, nonlinear processes in a complex fluid mechanics environment will undoubtedly help reduce the substantial operating costs incurred by the utilities annually, as well as afford greater flexibility in coal selection and reduce the emission of various pollutants. In a more specialized context, the numerical model to be developed as part of this activity will be used as a tool to address the interaction of the various mechanisms controlling deposit development in specific regimes or correlative relationships. These should prove of direct use to the coal burning industry.
Predictive modelling of boiler fouling
Not Available
1991-01-01
The primary objective of this work is the development of a comprehensive numerical model describing the time evolution of fouling under realistic heat exchanger conditions. As fouling is a complex interaction of gas flow, mineral transport and adhesion mechanisms, understanding and subsequently improved controlling of fouling achieved via appropriate manipulation of the various coupled, nonlinear processes in a complex fluid mechanics environment will undoubtedly help reduce the substantial operating costs incurred by the utilities annually, as well as afford greater flexibility in coal selection and reduce the emission of various pollutants. In a more specialized context, the numerical model to be developed as part of this activity will be used as a tool to address the interaction of the various mechanisms controlling deposit development in specific regimes or correlative relationships. These should prove of direct use to the coal burning industry.
Irma multisensor predictive signature model
NASA Astrophysics Data System (ADS)
Watson, John S.; Flynn, David S.; Wellfare, Michael R.; Richards, Mike; Prestwood, Lee
1995-06-01
The Irma synthetic signature model was one of the first high resolution synthetic infrared (IR) target and background signature models to be developed for tactical air-to-surface weapon scenarios. Originally developed in 1980 by the Armament Directorate of the Air Force Wright Laboratory (WL/MN), the Irma model was used exclusively to generate IR scenes for smart weapons research and development. In 1988, a number of significant upgrades to Irma were initiated including the addition of a laser channel. This two channel version, Irma 3.0, was released to the user community in 1990. In 1992, an improved scene generator was incorporated into the Irma model which supported correlated frame-to-frame imagery. This and other improvements were released in Irma 2.2. Recently, Irma 3.2, a passive IR/millimeter wave (MMW) code, was completed. Currently, upgrades are underway to include an active MMW channel. Designated Irma 4.0, this code will serve as a cornerstone of sensor fusion research in the laboratory from 6.1 concept development to 6.3 technology demonstration programs for precision guided munitions. Several significant milestones have been reached in this development process and are demonstrated. The Irma 4.0 software design has been developed and interim results are available. Irma is being developed to facilitate multi-sensor smart weapons research and development. It is currently in distribution to over 80 agencies within the U.S. Air Force, U.S. Army, U.S. Navy, ARPA, NASA, Department of Transportation, academia, and industry.
Predicting and Modeling RNA Architecture
Westhof, Eric; Masquida, Benoît; Jossinet, Fabrice
2011-01-01
SUMMARY A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values. PMID:20504963
NASA Astrophysics Data System (ADS)
Yogurtcu, Osman N.; Johnson, Margaret E.
2015-08-01
The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute
A Course in... Model Predictive Control.
ERIC Educational Resources Information Center
Arkun, Yaman; And Others
1988-01-01
Describes a graduate engineering course which specializes in model predictive control. Lists course outline and scope. Discusses some specific topics and teaching methods. Suggests final projects for the students. (MVL)
Predictive Models and Computational Toxicology (II IBAMTOX)
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
NASA Astrophysics Data System (ADS)
McCullagh, Nuala; Jeong, Donghui; Szalay, Alexander S.
2016-01-01
Accurate modelling of non-linearities in the galaxy bispectrum, the Fourier transform of the galaxy three-point correlation function, is essential to fully exploit it as a cosmological probe. In this paper, we present numerical and theoretical challenges in modelling the non-linear bispectrum. First, we test the robustness of the matter bispectrum measured from N-body simulations using different initial conditions generators. We run a suite of N-body simulations using the Zel'dovich approximation and second-order Lagrangian perturbation theory (2LPT) at different starting redshifts, and find that transients from initial decaying modes systematically reduce the non-linearities in the matter bispectrum. To achieve 1 per cent accuracy in the matter bispectrum at z ≤ 3 on scales k < 1 h Mpc-1, 2LPT initial conditions generator with initial redshift z ≳ 100 is required. We then compare various analytical formulas and empirical fitting functions for modelling the non-linear matter bispectrum, and discuss the regimes for which each is valid. We find that the next-to-leading order (one-loop) correction from standard perturbation theory matches with N-body results on quasi-linear scales for z ≥ 1. We find that the fitting formula in Gil-Marín et al. accurately predicts the matter bispectrum for z ≤ 1 on a wide range of scales, but at higher redshifts, the fitting formula given in Scoccimarro & Couchman gives the best agreement with measurements from N-body simulations.
Do Ecological Niche Models Accurately Identify Climatic Determinants of Species Ranges?
Searcy, Christopher A; Shaffer, H Bradley
2016-04-01
Defining species' niches is central to understanding their distributions and is thus fundamental to basic ecology and climate change projections. Ecological niche models (ENMs) are a key component of making accurate projections and include descriptions of the niche in terms of both response curves and rankings of variable importance. In this study, we evaluate Maxent's ranking of environmental variables based on their importance in delimiting species' range boundaries by asking whether these same variables also govern annual recruitment based on long-term demographic studies. We found that Maxent-based assessments of variable importance in setting range boundaries in the California tiger salamander (Ambystoma californiense; CTS) correlate very well with how important those variables are in governing ongoing recruitment of CTS at the population level. This strong correlation suggests that Maxent's ranking of variable importance captures biologically realistic assessments of factors governing population persistence. However, this result holds only when Maxent models are built using best-practice procedures and variables are ranked based on permutation importance. Our study highlights the need for building high-quality niche models and provides encouraging evidence that when such models are built, they can reflect important aspects of a species' ecology. PMID:27028071
Linaro, Daniele; Storace, Marco; Giugliano, Michele
2011-01-01
Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here. PMID:21423712
Efficient and Accurate Explicit Integration Algorithms with Application to Viscoplastic Models
NASA Technical Reports Server (NTRS)
Arya, Vinod K.
1994-01-01
Several explicit integration algorithms with self-adative time integration strategies are developed and investigated for efficiency and accuracy. These algorithms involve the Runge-Kutta second order, the lower Runge-Kutta method of orders one and two, and the exponential integration method. The algorithms are applied to viscoplastic models put forth by Freed and Verrilli and Bodner and Partom for thermal/mechanical loadings (including tensile, relaxation, and cyclic loadings). The large amount of computations performed showed that, for comparable accuracy, the efficiency of an integration algorithm depends significantly on the type of application (loading). However, in general, for the aforementioned loadings and viscoplastic models, the exponential integration algorithm with the proposed self-adaptive time integration strategy worked more (or comparably) efficiently and accurately than the other integration algorithms. Using this strategy for integrating viscoplastic models may lead to considerable savings in computer time (better efficiency) without adversely affecting the accuracy of the results. This conclusion should encourage the utilization of viscoplastic models in the stress analysis and design of structural components.
An accurate and efficient Lagrangian sub-grid model for multi-particle dispersion
NASA Astrophysics Data System (ADS)
Toschi, Federico; Mazzitelli, Irene; Lanotte, Alessandra S.
2014-11-01
Many natural and industrial processes involve the dispersion of particle in turbulent flows. Despite recent theoretical progresses in the understanding of particle dynamics in simple turbulent flows, complex geometries often call for numerical approaches based on eulerian Large Eddy Simulation (LES). One important issue related to the Lagrangian integration of tracers in under-resolved velocity fields is connected to the lack of spatial correlations at unresolved scales. Here we propose a computationally efficient Lagrangian model for the sub-grid velocity of tracers dispersed in statistically homogeneous and isotropic turbulent flows. The model incorporates the multi-scale nature of turbulent temporal and spatial correlations that are essential to correctly reproduce the dynamics of multi-particle dispersion. The new model is able to describe the Lagrangian temporal and spatial correlations in clouds of particles. In particular we show that pairs and tetrads dispersion compare well with results from Direct Numerical Simulations of statistically isotropic and homogeneous 3d turbulence. This model may offer an accurate and efficient way to describe multi-particle dispersion in under resolved turbulent velocity fields such as the one employed in eulerian LES. This work is part of the research programmes FP112 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). We acknowledge support from the EU COST Action MP0806.
Application of thin plate splines for accurate regional ionosphere modeling with multi-GNSS data
NASA Astrophysics Data System (ADS)
Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej
2016-04-01
GNSS-derived regional ionosphere models are widely used in both precise positioning, ionosphere and space weather studies. However, their accuracy is often not sufficient to support precise positioning, RTK in particular. In this paper, we presented new approach that uses solely carrier phase multi-GNSS observables and thin plate splines (TPS) for accurate ionospheric TEC modeling. TPS is a closed solution of a variational problem minimizing both the sum of squared second derivatives of a smoothing function and the deviation between data points and this function. This approach is used in UWM-rt1 regional ionosphere model developed at UWM in Olsztyn. The model allows for providing ionospheric TEC maps with high spatial and temporal resolutions - 0.2x0.2 degrees and 2.5 minutes, respectively. For TEC estimation, EPN and EUPOS reference station data is used. The maps are available with delay of 15-60 minutes. In this paper we compare the performance of UWM-rt1 model with IGS global and CODE regional ionosphere maps during ionospheric storm that took place on March 17th, 2015. During this storm, the TEC level over Europe doubled comparing to earlier quiet days. The performance of the UWM-rt1 model was validated by (a) comparison to reference double-differenced ionospheric corrections over selected baselines, and (b) analysis of post-fit residuals to calibrated carrier phase geometry-free observational arcs at selected test stations. The results show a very good performance of UWM-rt1 model. The obtained post-fit residuals in case of UWM maps are lower by one order of magnitude comparing to IGS maps. The accuracy of UWM-rt1 -derived TEC maps is estimated at 0.5 TECU. This may be directly translated to the user positioning domain.
NASA Astrophysics Data System (ADS)
Somerville, W. R. C.; Auguié, B.; Le Ru, E. C.
2016-03-01
SMARTIES calculates the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. This suite of MATLAB codes provides a fully documented implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. Included are scripts that cover a range of scattering problems relevant to nanophotonics and plasmonics, including calculation of far-field scattering and absorption cross-sections for fixed incidence orientation, orientation-averaged cross-sections and scattering matrix, surface-field calculations as well as near-fields, wavelength-dependent near-field and far-field properties, and access to lower-level functions implementing the T-matrix calculations, including the T-matrix elements which may be calculated more accurately than with competing codes.
Accurate calculation of conductive conductances in complex geometries for spacecrafts thermal models
NASA Astrophysics Data System (ADS)
Garmendia, Iñaki; Anglada, Eva; Vallejo, Haritz; Seco, Miguel
2016-02-01
The thermal subsystem of spacecrafts and payloads is always designed with the help of Thermal Mathematical Models. In the case of the Thermal Lumped Parameter (TLP) method, the non-linear system of equations that is created is solved to calculate the temperature distribution and the heat power that goes between nodes. The accuracy of the results depends largely on the appropriate calculation of the conductive and radiative conductances. Several established methods for the determination of conductive conductances exist but they present some limitations for complex geometries. Two new methods are proposed in this paper to calculate accurately these conductive conductances: The Extended Far Field method and the Mid-Section method. Both are based on a finite element calculation but while the Extended Far Field method uses the calculation of node mean temperatures, the Mid-Section method is based on assuming specific temperature values. They are compared with traditionally used methods showing the advantages of these two new methods.
A fast and accurate PCA based radiative transfer model: Extension to the broadband shortwave region
NASA Astrophysics Data System (ADS)
Kopparla, Pushkar; Natraj, Vijay; Spurr, Robert; Shia, Run-Lie; Crisp, David; Yung, Yuk L.
2016-04-01
Accurate radiative transfer (RT) calculations are necessary for many earth-atmosphere applications, from remote sensing retrieval to climate modeling. A Principal Component Analysis (PCA)-based spectral binning method has been shown to provide an order of magnitude increase in computational speed while maintaining an overall accuracy of 0.01% (compared to line-by-line calculations) over narrow spectral bands. In this paper, we have extended the PCA method for RT calculations over the entire shortwave region of the spectrum from 0.3 to 3 microns. The region is divided into 33 spectral fields covering all major gas absorption regimes. We find that the RT performance runtimes are shorter by factors between 10 and 100, while root mean square errors are of order 0.01%.
Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.
Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M
2016-06-21
We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy. PMID:27230942
Improving the performance of predictive process modeling for large datasets
Finley, Andrew O.; Sang, Huiyan; Banerjee, Sudipto; Gelfand, Alan E.
2009-01-01
Advances in Geographical Information Systems (GIS) and Global Positioning Systems (GPS) enable accurate geocoding of locations where scientific data are collected. This has encouraged collection of large spatial datasets in many fields and has generated considerable interest in statistical modeling for location-referenced spatial data. The setting where the number of locations yielding observations is too large to fit the desired hierarchical spatial random effects models using Markov chain Monte Carlo methods is considered. This problem is exacerbated in spatial-temporal and multivariate settings where many observations occur at each location. The recently proposed predictive process, motivated by kriging ideas, aims to maintain the richness of desired hierarchical spatial modeling specifications in the presence of large datasets. A shortcoming of the original formulation of the predictive process is that it induces a positive bias in the non-spatial error term of the models. A modified predictive process is proposed to address this problem. The predictive process approach is knot-based leading to questions regarding knot design. An algorithm is designed to achieve approximately optimal spatial placement of knots. Detailed illustrations of the modified predictive process using multivariate spatial regression with both a simulated and a real dataset are offered. PMID:20016667
Evaluating and modifying Johanson's rolling model to improve its predictability.
Bi, Mingda; Alvarez-Nunez, Fernando; Alvarez, Francisco
2014-07-01
The purpose of this study is to investigate if Johanson's rolling theory can correctly predict the maximum roll surface pressure during the roll compaction. Three model pharmaceutical formulations were roller compacted using the Gerteis Mini Pactor at multiple combinations of roll forces and roll gaps. The resultant ribbon density at each combination of roll force and roll gap was measured and the corresponding maximum roll surface pressure was predicted using Johanson's rolling model. The measured ribbon density and predicted maximum roll surface pressure from roller compactor was compared with the measured wafer density and maximum axial stress from die compression. The results indicate that predicted maximum roll surface pressure from roller compactor is higher than the axial stress from die compression to manufacture same density ribbons. The root cause of overprediction of maximum roll surface pressure from Johanson's model was found and corrected. The modified model offers reasonably accurate prediction of maximum roll surface pressure for all roller compaction experiments conducted in this study. PMID:24840775
NASA Astrophysics Data System (ADS)
Klostermann, U. K.; Mülders, T.; Schmöller, T.; Lorusso, G. F.; Hendrickx, E.
2010-04-01
In this paper, we discuss the performance of EUV resist models in terms of predictive accuracy, and we assess the readiness of the corresponding model calibration methodology. The study is done on an extensive OPC data set collected at IMEC for the ShinEtsu resist SEVR-59 on the ASML EUV Alpha Demo Tool (ADT), with the data set including more than thousand CD values. We address practical aspects such as the speed of calibration and selection of calibration patterns. The model is calibrated on 12 process window data series varying in pattern width (32, 36, 40 nm), orientation (H, V) and pitch (dense, isolated). The minimum measured feature size at nominal process condition is a 32 nm CD at a dense pitch of 64 nm. Mask metrology is applied to verify and eventually correct nominal width of the drawn CD. Cross-sectional SEM information is included in the calibration to tune the simulated resist loss and sidewall angle. The achieved calibration RMS is ~ 1.0 nm. We show what elements are important to obtain a well calibrated model. We discuss the impact of 3D mask effects on the Bossung tilt. We demonstrate that a correct representation of the flare level during the calibration is important to achieve a high predictability at various flare conditions. Although the model calibration is performed on a limited subset of the measurement data (one dimensional structures only), its accuracy is validated based on a large number of OPC patterns (at nominal dose and focus conditions) not included in the calibration; validation RMS results as small as 1 nm can be reached. Furthermore, we study the model's extendibility to two-dimensional end of line (EOL) structures. Finally, we correlate the experimentally observed fingerprint of the CD uniformity to a model, where EUV tool specific signatures are taken into account.
Predictive modelling of boiler fouling
Not Available
1992-01-01
In this reporting period, efforts were initiated to supplement the comprehensive flow field description obtained from the RNG-Spectral Element Simulations by incorporating, in a general framework, appropriate modules to model particle and condensable species transport to the surface. Specifically, a brief survey of the literature revealed the following possible mechanisms for transporting different ash constituents from the host gas to boiler tubes as deserving prominence in building the overall comprehensive model: (1) Flame-volatilized species, chiefly sulfates, are deposited on cooled boiler tubes via the mechanism of classical vapor diffusion. This mechanism is more efficient than the particulate ash deposition, and as a result there is usually an enrichment of condensable salts, chiefly sulfates, in boiler deposits; (2) Particle diffusion (Brownian motion) may account for deposition of some fine particles below 0. 1 mm in diameter in comparison with the mechanism of vapor diffusion and particle depositions, however, the amount of material transported to the tubes via this route is probably small. (3) Eddy diffusion, thermophoretic and electrophoretic deposition mechanisms are likely to have a marked influence in transporting 0.1 to 5[mu]m particles from the host gas to cooled boiler tubes; (4) Inertial impaction is the dominant mechanism in transporting particles above 5[mu]m in diameter to water and steam tubes in pulverized coal fired boiler, where the typical flue gas velocity is between 10 to 25 m/s. Particles above 10[mu]m usually have kinetic energies in excess of what can be dissipated at impact (in the absence of molten sulfate or viscous slag deposit), resulting in their entrainment in the host gas.
An adaptive multigrid model for hurricane track prediction
NASA Technical Reports Server (NTRS)
Fulton, Scott R.
1993-01-01
This paper describes a simple numerical model for hurricane track prediction which uses a multigrid method to adapt the model resolution as the vortex moves. The model is based on the modified barotropic vorticity equation, discretized in space by conservative finite differences and in time by a Runge-Kutta scheme. A multigrid method is used to solve an elliptic problem for the streamfunction at each time step. Nonuniform resolution is obtained by superimposing uniform grids of different spatial extent; these grids move with the vortex as it moves. Preliminary numerical results indicate that the local mesh refinement allows accurate prediction of the hurricane track with substantially less computer time than required on a single uniform grid.
The S-model: A highly accurate MOST model for CAD
NASA Astrophysics Data System (ADS)
Satter, J. H.
1986-09-01
A new MOST model which combines simplicity and a logical structure with a high accuracy of only 0.5-4.5% is presented. The model is suited for enhancement and depletion devices with either large or small dimensions. It includes the effects of scattering and carrier-velocity saturation as well as the influence of the intrinsic source and drain series resistance. The decrease of the drain current due to substrate bias is incorporated too. The model is in the first place intended for digital purposes. All necessary quantities are calculated in a straightforward manner without iteration. An almost entirely new way of determining the parameters is described and a new cluster parameter is introduced, which is responsible for the high accuracy of the model. The total number of parameters is 7. A still simpler β expression is derived, which is suitable for only one value of the substrate bias and contains only three parameters, while maintaining the accuracy. The way in which the parameters are determined is readily suited for automatic measurement. A simple linear regression procedure programmed in the computer, which controls the measurements, produces the parameter values.
NASA Astrophysics Data System (ADS)
Peng, Xiongqi; Shi, Shaoqing; Hu, Kangkang
2013-10-01
Springback is a crucial factor in sheet metal forming process. An accurate prediction of springback is the premise for its control. An elast