Science.gov

Sample records for accurate proper motion

  1. PROMOTIONS: PROper MOTION Software

    NASA Astrophysics Data System (ADS)

    Caleb Wherry, John; Sahai, R.

    2009-05-01

    We report on the development of a software tool (PROMOTIONS) to streamline the process of measuring proper motions of material in expanding nebulae. Our tool makes use of IDL's widget programming capabilities to design a unique GUI that is used to compare images of the objects from two epochs. The software allows us to first orient and register the images to a common frame of reference and pixel scale, using field stars in each of the images. We then cross-correlate specific morphological features in order to determine their proper motions, which consist of the proper motion of the nebula as a whole (PM-neb), and expansion motions of the features relative to the center. If the central star is not visible (quite common in bipolar nebulae with dense dusty waists), point-symmetric expansion is assumed and we use the average motion of high-quality symmetric pairs of features on opposite sides of the nebular center to compute PM-neb. This is then subtracted out to determine the individual movements of these and additional features relative to the nebular center. PROMOTIONS should find wide applicability in measuring proper motions in astrophysical objects such as the expanding outflows/jets commonly seen around young and dying stars. We present first results from using PROMOTIONS to successfully measure proper motions in several pre-planetary nebulae (transition objects between the red giant and planetary nebula phases), using images taken 7-10 years apart with the WFPC2 and ACS instruments on board HST. The authors are grateful to NASA's Undergradute Scholars Research Program (USRP) for supporting this research.

  2. Aberration in proper motions for Galactic stars

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Xie, Y.; Zhu, Z.

    2014-12-01

    Accelerations of both the solar system barycenter (SSB) and stars in the MilkyWay cause a systematic observational effect on the stellar proper motions, which was first studied by J. Kovalevsky (2003). This paper intends to extend that work and aims to estimate the magnitude and significance of the aberration in proper motions of stars, especially in the region near the Galactic center (GC). We adopt two models for the Galactic rotation curve to evaluate the aberrational effect on the Galactic plane. We show that the effect of aberration in proper motions depends on the galactocentric distance of stars; it is dominated by the acceleration of stars in the central region of the Galaxy. Then we investigate the applicability of the theoretical expressions: if the orbital period of stars is only a fraction of the light time from the star to the SSB, the expression with approximation proposed by Kovalevsky is not appropriate. With a more suitable formulation, we found that the aberration has no effect on the determination of the stellar orbits on the celestial sphere. In the future this aberrational effect under consideration should be considered with high-accurate astrometry, particularly in constructing the Gaia celestial reference system realized by Galactic stars.

  3. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    SciTech Connect

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A.; Beckman, J. E-mail: leonel@astro.unam.mx E-mail: jal@astro.unam.mx

    2015-01-10

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.

  4. Proper motion measurements of HH 224

    NASA Astrophysics Data System (ADS)

    Perez Rivera, Erika F.; Ybarra, Jason E.; Barsony, Mary; Phelps, Randy L.; Román-Zuñíga, Carlos; Tapia, Mauricio; José Downes, Juan

    2015-01-01

    We measured the proper motion of the components of Herbig-Haro object HH 224 embedded in the rho Ophiuchi cloud core using two epochs of [S II] imaging with a 17-year baseline. Our analysis finds the direction of HH 224N to be consistent with the other components of HH 224S suggesting HH 224S and HH 224N are part of the same flow. We discuss possible driving sources. We acknowledge partial support from PAPPIT-IN101813.

  5. VVV IR high proper motion stars

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Gromadzki, M.; Beamin, J. C.; Peña, K.; Folkes, S.; Ivanov, V. D.; Borissova, J.; Kuhn, M.; Villanueva, V.; Minniti, D.; Mendez, R.; Lucas, P.; Smith, L.; Pinfield, D.; Antonova, A.

    2015-10-01

    We used the VISTA Variables en Vía Láctea (VVV) survey to search for large proper motion (PM) objects in the zone of avoidance in the Milky Way bulge and southern Galactic disk. This survey is multi-epoch and already spans a period of more than four years, giving us an excellent opportunity for proper motion and parallax studies. We found around 1700 PM objects with PM>30 mas yr(-1) . The majority of them are early and mid M-dwarfs. There are also few later spectral type objects, as well as numerous new K- and G-dwarfs. 75 of the stars have PM>300 mas (-1) and 189 stars have PM>200 mas (-1) . There are only 42 previously known stars in the VVV area with proper motion PM>200 mas (-1) . We also found three dM+WD binaries and new members of the immediate solar vicinity of 25 pc. We generated a catalog which will be a complementary to the existing catalogs outside this zone.

  6. Aberration in proper motions for stars in our Galaxy

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Xie, Y.; Zhu, Z.

    2013-08-01

    Accelerations of both the Solar system barycentre (SSB) and stars in the Milky Way cause a systematic observational effect on the stellar proper motions, which was first studied in the early 1990s and developed by Kovalevsky (aberration in proper motions). This paper intends to extend that work and aims to estimate the magnitude and significance of the aberration in proper motions of stars, especially in the region near the Galactic Centre. We adopt two models for the Galactic rotation curve to evaluate the aberrational effect on the Galactic plane. Based on the theoretical developments, we show that the effect of aberration in proper motions depends on the Galactocentric distance of stars; it is dominated by the acceleration of stars in the central region of the Galaxy. Within 200 pc from the Galactic Centre, the systematic proper motion can reach an amplitude larger than 1000 μas yr- 1 by applying a flat rotation curve. With a more realistic rotation curve which is linearly rising in the core region of the Galaxy, the aberrational proper motions are limited up to about 150 μas yr- 1. Then we investigate the applicability of the theoretical expressions concerning the aberrational proper motions, especially for those stars with short period orbits. If the orbital period of stars is only a fraction of the light time from the star to the SSB, the expression proposed by Kovalevsky is not appropriate. With a more suitable formulation, we found that the aberration has no effect on the determination of the stellar orbits on the celestial sphere. The aberrational effect under consideration is small but not negligible with high-accurate astrometry in the future, particularly in constructing the Gaia celestial reference system realized by Galactic stars.

  7. Measuring Proper Motion of Barnard's Star

    NASA Astrophysics Data System (ADS)

    Wiechmann, Katrina; Michalik, Tom

    2009-03-01

    Stars of the night sky are generally considered to be fixed points, not changing noticeably over generations of observations. While most stars seem to appear in the same place year after year, some change location noticeably, the best example being Barnard's Star. Barnard's star is closer to Earth than any other star except Proxima Centauri. It also appears to move across the sky faster than any other star. This change in apparent location is caused by the movements of our Solar System and the motion of the star in question, and is known as proper motion. Using the astrometric capabilities of the MIRA software along with precise positional information for reference stars from the Tycho satellite star catalogue, the position of Barnard's star is computed relative to the reference stars. We calibrate a series of images of Barnard's Star taken in the Randolph College Observatory between 2001 and 2008 in order to independently determine the coordinates of Barnard's Star, revealing how these change over time. By measuring changes in the celestial coordinates, Right Ascension and Declination, we determine the proper motion of Barnard's star and compare this measurement to the accepted value of 10.25'' per year.

  8. Absolute Proper Motions of Southern Globular Clusters

    NASA Astrophysics Data System (ADS)

    Dinescu, D. I.; Girard, T. M.; van Altena, W. F.

    1996-05-01

    Our program involves the determination of absolute proper motions with respect to galaxies for a sample of globular clusters situated in the southern sky. The plates cover a 6(deg) x 6(deg) area and are taken with the 51-cm double astrograph at Cesco Observatory in El Leoncito, Argentina. We have developed special methods to deal with the modelling error of the plate transformation and we correct for magnitude equation using the cluster stars. This careful astrometric treatment leads to accuracies of from 0.5 to 1.0 mas/yr for the absolute proper motion of each cluster, depending primarily on the number of measurable cluster stars which in turn is related to the cluster's distance. Space velocities are then derived which, in association with metallicities, provide key information for the formation scenario of the Galaxy, i.e. accretion and/or dissipational collapse. Here we present results for NGC 1851, NGC 6752, NGC 6584, NGC 6362 and NGC 288.

  9. Δ μ binaries among stars with large proper motions

    NASA Astrophysics Data System (ADS)

    Khovritchev, M. Yu.; Kulikova, A. M.

    2015-12-01

    Based on observations performed with the Pulkovo normal astrograph in 2008-2015 and data from sky surveys (DSS, 2MASS, SDSS DR12, WISE), we have investigated the motions of 1308 stars with proper motions larger than 300 mas yr-1 down to magnitude 17. The main idea of our search for binary stars based on this material is reduced to comparing the quasi-mean (POSS2-POSS1; an epoch difference of ≈50 yr) and quasi-instantaneous (2МASS, SDSS, WISE, Pulkovo; an epoch difference of ≈10 yr) proper motions. If the difference is statistically significant compared to the proper motion errors, then the object may be considered as a Δ μ-binary candidate. One hundred and twenty one stars from among those included in the observational program satisfy this requirement. Additional confirmations of binarity for a number of stars have been obtained by comparing the calculated proper motions with the data from several programs of stellar trigonometric parallax determinations and by analyzing the asymmetry of stellar images on sky-survey CCD frames. Analysis of the highly accurate SDSS photometric data for four stars (J0656+3827, J0838+3940, J1229+5332, J2330+4639) allows us to reach a conclusion about the probability that these Δ μ binaries are white dwarf +Mdwarf pairs.

  10. The Proper Motion of Palomar 5

    NASA Astrophysics Data System (ADS)

    Fritz, T. K.; Kallivayalil, N.

    2015-10-01

    Palomar 5 (Pal 5) is a faint halo globular cluster associated with narrow tidal tails. It is a useful system to understand the process of tidal dissolution, as well as to constrain the potential of the Milky Way. A well-determined orbit for Pal 5 would enable detailed study of these open questions. We present here the first CCD-based proper motion measurement of Pal 5 obtained using SDSS as a first epoch and new Large Binocular Telescope/Large Binocular Camera (LBC) images as a second, giving a baseline of 15 years. We perform relative astrometry, using SDSS as a distortion-free reference, and images of the cluster and also of the Pal 5 stream for the derivation of the distortion correction for LBC. The reference frame is made up of background galaxies. We correct for differential chromatic refraction using relations obtained from SDSS colors as well as from flux-calibrated spectra, finding that the correction relations for stars and for galaxies are different. We obtain μα = -2.296 ± 0.186 mas yr-1 and μδ = -2.257 ± 0.181 mas yr-1 for the proper motion of Pal 5. We use this motion, and the publicly available code galpy, to model the disruption of Pal 5 in different Milky Way models consisting of a bulge, a disk, and a spherical dark matter halo. Our fits to the observed stream properties (streak and radial velocity gradient) result in a preference for a relatively large Pal 5 distance of around 24 kpc. A slightly larger absolute proper motion than what we measure also results in better matches but the best solutions need a change in distance. We find that a spherical Milky Way model, with V0 = 220 km s-1 and V20 kpc, i.e., approximately at the apocenter of Pal 5, of 218 km s-1, can match the data well, at least for our choice of disk and bulge parametrization. Based on LBT data. The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The Ohio State University, and The Research

  11. Tracking magnetogram proper motions by multiscale regularization

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.

    1995-01-01

    Long uninterrupted sequences of solar magnetograms from the global oscillations network group (GONG) network and from the solar and heliospheric observatory (SOHO) satellite will provide the opportunity to study the proper motions of magnetic features. The possible use of multiscale regularization, a scale-recursive estimation technique which begins with a prior model of how state variables and their statistical properties propagate over scale. Short magnetogram sequences are analyzed with the multiscale regularization algorithm as applied to optical flow. This algorithm is found to be efficient, provides results for all the spatial scales spanned by the data and provides error estimates for the solutions. It is found that the algorithm is less sensitive to evolutionary changes than correlation tracking.

  12. Star catalog position and proper motion corrections in asteroid astrometry

    NASA Astrophysics Data System (ADS)

    Farnocchia, D.; Chesley, S. R.; Chamberlin, A. B.; Tholen, D. J.

    2015-01-01

    We provide a scheme to correct asteroid astrometric observations for star catalog systematic errors due to inaccurate star positions and proper motions. As reference we select the most accurate stars in the PPMXL catalog, i.e., those based on 2MASS astrometry. We compute position and proper motion corrections for 19 of the most used star catalogs. The use of these corrections provides better ephemeris predictions and improves the error statistics of astrometric observations, e.g., by removing most of the regional systematic errors previously seen in Pan-STARRS PS1 asteroid astrometry. The correction table is publicly available at ftp://ssd.jpl.nasa.gov/pub/ssd/debias/debias_2014.tgz and can be freely used in orbit determination algorithms to obtain more reliable asteroid trajectories.

  13. High proper motion X-ray binaries from the Yale Southern Proper Motion Survey

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas J.; Girard, Terrence M.; Casetti-Dinescu, Dana I.

    2014-05-01

    We discuss the results of cross-correlating catalogues of bright X-ray binaries with the Yale Southern Proper Motion Catalog (version 4.0). Several objects already known to have large proper motions from Hipparcos are recovered. Two additional objects are found which show substantial proper motions, both of which are unusual in their X-ray properties. One is IGR J17544-2619, one of the supergiant fast X-ray transients. Assuming the quoted distances in the literature for this source of about 3 kpc are correct, this system has a peculiar velocity of about 275 km s-1 - greater than the velocity of a Keplerian orbit at its location of the Galaxy and in line with the expectations formed from suggestions that the supergiant fast X-ray transients should be highly eccentric. We discuss the possibility that these objects may help explain the existence of short gamma-ray bursts outside the central regions of galaxies. The other is the source 2A 1822-371, which is a member of the small class of objects which are low-mass X-ray binaries and long (i.e. >100 ms) X-ray pulsars. This system also shows both an anomalously high X-ray luminosity and a large orbital period derivative for a system with its orbital period, and some possible indications of an eccentric orbit. A coherent picture can be developed by adding in the proper motion information in which this system formed in the Perseus spiral arm of the Galaxy about 3 Myr ago and retains a slightly eccentric orbit which leads to enhanced mass transfer.

  14. Proper motion survey with the forty-eight inch Schmidt telescope. 33: Proper motions for 3478 faint stars

    NASA Technical Reports Server (NTRS)

    Luyten, W. J.

    1972-01-01

    Data for the motions of 3478 stars are presented. The data were obtained with the automated-computerized plate scanner and measuring machine. Only data for those stars for which no earlier determination of proper motions are included.

  15. THE SOUTHERN PROPER MOTION PROGRAM. IV. THE SPM4 CATALOG

    SciTech Connect

    Girard, Terrence M.; Van Altena, William F.; Vieira, Katherine; Casetti-Dinescu, Dana I. E-mail: william.vanaltena@yale.edu E-mail: dana.casetti@yale.edu

    2011-07-15

    We present the fourth installment of the Yale/San Juan Southern Proper Motion Catalog, SPM4. The SPM4 contains absolute proper motions, celestial coordinates, and B, V photometry for over 103 million stars and galaxies between the south celestial pole and -20{sup 0} declination. The catalog is roughly complete to V = 17.5 and is based on photographic and CCD observations taken with the Yale Southern Observatory's double astrograph at Cesco Observatory in El Leoncito, Argentina. The proper-motion precision, for well-measured stars, is estimated to be 2-3 mas yr{sup -1}, depending on the type of second-epoch material. At the bright end, proper motions are on the International Celestial Reference System by way of Hipparcos Catalog stars, while the faint end is anchored to the inertial system using external galaxies. Systematic uncertainties in the absolute proper motions are on the order of 1 mas yr{sup -1}.

  16. Detection of Proper Motion in OQ208?

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; C, Stanghellini; D, Dallacasa; M, Bondi

    2000-04-01

    We report on an ongoing work aimed to detect the separation speed of the two hot-spots of the compact symmetric object OQ208. Comparing images at 8.4 GHz taken in 6 epoches between 1994 and 1997 we obtain an estimate of 0.058±0.038 mas/year as the relative motions between two components of the radio source. At the red-shift of OQ208 1 mas correspond to 1 pc, thus we obtain a projected jet speed of 0.095±0.062c. With an inclination of 45° between the jets and the line of sight, we have an actual jet velocity of 0.134±0.088c and therefore the kinematic age of the source is so young of 320±210 years.

  17. Cataclysmic variables in the SUPERBLINK proper motion survey

    SciTech Connect

    Skinner, Julie N.; Thorstensen, John R.; Lépine, Sébastien

    2014-12-01

    We have discovered a new high proper motion cataclysmic variable (CV) in the SUPERBLINK proper motion survey, which is sensitive to stars with proper motions greater than 40 mas yr{sup −1}. This CV was selected for follow-up observations as part of a larger search for CVs selected based on proper motions and their near-UV−V and V−K{sub s} colors. We present spectroscopic observations from the 2.4 m Hiltner Telescope at MDM Observatory. The new CV's orbital period is near 96 minutes, its spectrum shows the double-peaked Balmer emission lines characteristic of quiescent dwarf novae, and its V magnitude is near 18.2. Additionally, we present a full list of known CVs in the SUPERBLINK catalog.

  18. The Bonn contribution to the extragalactic link of the HIPPARCOS proper motion system.

    NASA Astrophysics Data System (ADS)

    Tucholke, H.-J.; Brosche, P.; Odenkirchen, M.

    1997-05-01

    In order to calibrate the proper motions of the Hipparcos astrometry satellite, our group has measured accurate absolute proper motions of Hipparcos stars in small fields around optically bright extragalactic radio sources or bright galaxies with star-like features. In addition, we also use fields where relative proper motions are calibrated by measurements of large numbers of stars and galaxies on wide-field plates. The median internal accuracy of our relative proper motions, based on photographic plates with epoch differences up to 100 years (typically 70 years), is 1.0 milliarcsec/year (mas/a), while the calibration to an inertial system in each of the 13 fields has a median uncertainty of 1.3 mas/a. We compute the rotation from the Hipparcos proper motions (median internal errors \\e{0.9}{mas/a}) to the extragalactic reference frame represented by our absolute proper motions, using 88 stars in common. The three components of the angular velocity vector have internal errors of 0.3 mas/a. Our rotation solution has been used together with those of independent groups for the extragalactic calibration of the Hipparcos proper motion system (\\cite[Kovalevsky et al. 1996)]{kova96}. It compares favourably with the adopted mean solution. Based on observations made with the ESA Hipparcos satellite.

  19. Automated Photographic Proper Motions: Selected Fields and Whole Schmidt Plates

    NASA Astrophysics Data System (ADS)

    MacConnell, D. J.; Roberts, W. J.

    1993-12-01

    Scanning of the POSS R--band plates of the northern hemisphere, completed recently at the STScI, together with the scans of the ``Quick-V'' plates taken for the HST Guide Star Catalogue, make possible the determination of proper motions of large numbers of stars in selected--target or survey modes. In the first mode, we have been obtaining motions for stars of kinematic and astrophysical interest as requested by several collaborators (H. Jahreiß- ARI--Heidelberg: candidate nearby stars; J. Liebert - U. of Arizona: hot DAs from the Palomar-Green survey; M. Parthasarathy - Indian Inst. of Astroph.: low-mass, post-AGB stars; P. Green - CfA: high-latitude carbon stars; Rex Saffer: sdO stars). We report on a test of the derived motions for a set of the Naval Observatory parallax program stars and discuss the completeness of the Luyten Two--Tenths Survey. We have also searched for proper motions over entire POSS regions using an overlapping subplate technique. This method is very flexible in that it computes individual relative proper motions against several sets of reference stars, giving a thorough analysis of the errors and providing a check against spurious measuremts due to statistical fluctuations. The method is vulnerable to cosmetic and astrometric defects of the plates, and also fails for large proper motions. Using the existing plate archive it is possible to measure about one million previously unknown proper motions down to 0\\farcs035 and V=17.5. We present a comparison of our results for the region of the NGP with those of other work, and with another selected region near the galactic equator.

  20. Proper Motion of Components in 4C 39.25

    NASA Technical Reports Server (NTRS)

    Guirado, J. C.; Marcaide, J. M.; Alberdi, A.; Elosegui, P.; Ratner, M. I.; Shapiro, I. I.; Kilger, R.; Mantovani, F.; Venturi, T.; Rius, A.; Ros, E.; Trigilio, C.; Whitney, A. R.

    1995-01-01

    From a series of simultaneous 8.4 and 2.3 GHz VLBI observations of the quasar 4C 39.25 phase referenced to the radio source 0920+390, carried out in 1990-1992, we have measured the proper motion of component b in 4C 39.25: mu(sub alpha) = 90 +/- 43 (mu)as/yr, mu(sub beta) = 7 +/- 68 (mu)as/yr, where the quoted uncertainties account for the contribution of the statistical standard deviation and the errors assumed for the parameters related to the geometry of the interferometric array, the atmosphere, and the source structure. This proper motion is consistent with earlier interpretations of VLBI hybrid mapping results, which showed an internal motion of this component with respect to other structural components. Our differential astrometry analyses show component b to be the one in motion. Our results thus further constrain models of this quasar.

  1. Lick Northern Proper Motion Program. III. Lick NPM2 Catalog

    NASA Astrophysics Data System (ADS)

    Hanson, Robert B.; Klemola, Arnold R.; Jones, Burton F.; Monet, David G.

    2004-09-01

    The Lick Northern Proper Motion (NPM) program, a two-epoch (1947-1988) photographic survey of the northern two-thirds of the sky (δ>~-23deg), has measured absolute proper motions, on an inertial system defined by distant galaxies, for 378,360 stars in the magnitude range 8<~B<~18. The 1993 NPM1 Catalog contains 148,940 stars in 899 fields outside the Milky Way's zone of avoidance. The 2003 NPM2 Catalog contains 232,062 stars in the remaining 347 NPM fields near the plane of the Milky Way. This paper describes the NPM2 star selection, plate measurements, astrometric and photometric data reductions, and catalog compilation. The NPM2 Catalog contains 122,806 faint (B>=14) anonymous stars for astrometry and Galactic studies, 91,648 bright (B<14) positional reference stars, and 34,868 ``special stars'' chosen for astrophysical interest. The NPM2 proper motions are on the ICRS system, via Tycho-2 stars, to an accuracy of 0.6 mas yr-1 in each field. The rms proper-motion precision is 6 mas yr-1. Positional errors average 80 mas at the mean plate epoch 1968, and 200 mas at the NPM2 catalog epoch 2000. NPM2 photographic photometry errors average 0.18 mag in B and 0.20 mag in B-V. The NPM2 Catalog and the updated (to J2000.0) NPM1 Catalog are available at the CDS Strasbourg data center and on the NPM Web site. The NPM2 Catalog completes the Lick Northern Proper Motion program after a half-century of work by three generations of Lick Observatory astronomers. The NPM Catalogs will serve as a database for research in Galactic structure, stellar kinematics, and astrometry.

  2. The Proper Motion of Palomar 5 and its Tidal Tails

    NASA Astrophysics Data System (ADS)

    Kupper, Andreas

    2014-10-01

    The outer-halo Milky Way globular cluster Palomar 5 (Pal 5) shows prominent tidal tails (TT) extending over tens of degrees. Published ground-based proper motion (PM) measurements of Pal 5 are inconsistent with each other, and also with predictions from our numerical modeling (PM greater than 2 mas/yr in each component). Accurate PM would allow a detailed reconstruction of Pal 5's dissolution history and provide independent constraints on the shape of the Galactic potential. We propose to measure the PM of the Pal 5 cluster and a field 5 deg (2 kpc) along its TT with an accuracy of < 0.4 mas/yr via multi-epoch WFC3 and ACS observations in Cycles 20 and 22. We have identified a large number of QSOs and galaxies in these fields, which will allow us to achieve this accuracy on a three-year baseline. Combined with the large amount of available radial velocity data and detailed numerical modeling, the proposed observations will constrain the orbit of Pal 5 to greater accuracy than any other outer-halo satellite (< 30 km/s). Hence, it will enable us to tightly constrain the Galactic circular velocity and the flattening of the Galactic potential to less than 10% uncertainty. We will further use the PM-cleaned sample of stars in Pal 5 and its TT to unambiguously probe for variations of the present-day stellar mass function down to 0.2 Msun, enabling a direct estimate of Pal 5's mass loss rate. Together with the orbital information this will provide unique insights to the complex interplay of two-body relaxation and tidal shocking, which will have direct consequence for our understanding of the build-up of galaxy field populations and the evolution of cluster mass functions.

  3. The Proper Motion of Palomar 5 and its Tidal Tails

    NASA Astrophysics Data System (ADS)

    Kupper, Andreas

    2012-10-01

    The outer-halo Milky Way globular cluster Palomar 5 {Pal 5} shows prominent tidal tails {TT} extending over tens of degrees. Published ground-based proper motion {PM} measurements of Pal 5 are inconsistent with each other, and also with predictions from our numerical modeling {PM greater than 2 mas/yr in each component}. Accurate PM would allow a detailed reconstruction of Pal 5's dissolution history and provide independent constraints on the shape of the Galactic potential. We propose to measure the PM of the Pal 5 cluster and a field 5 deg {2 kpc} along its TT with an accuracy of < 0.4 mas/yr via multi-epoch WFC3 and ACS observations in Cycles 20 and 22. We have identified a large number of QSOs and galaxies in these fields, which will allow us to achieve this accuracy on a three-year baseline. Combined with the large amount of available radial velocity data and detailed numerical modeling, the proposed observations will constrain the orbit of Pal 5 to greater accuracy than any other outer-halo satellite {< 30 km/s}. Hence, it will enable us to tightly constrain the Galactic circular velocity and the flattening of the Galactic potential to less than 10% uncertainty. We will further use the PM-cleaned sample of stars in Pal 5 and its TT to unambiguously probe for variations of the present-day stellar mass function down to 0.2 Msun, enabling a direct estimate of Pal 5's mass loss rate. Together with the orbital information this will provide unique insights to the complex interplay of two-body relaxation and tidal shocking, which will have direct consequence for our understanding of the build-up of galaxy field populations and the evolution of cluster mass functions.

  4. Vertical velocities from proper motions of red clump giants

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Abedi, H.; Garzón, F.; Figueras, F.

    2014-12-01

    Aims: We derive the vertical velocities of disk stars in the range of Galactocentric radii of R = 5 - 16 kpc within 2 kpc in height from the Galactic plane. This kinematic information is connected to dynamical aspects in the formation and evolution of the Milky Way, such as the passage of satellites and vertical resonance and determines whether the warp is a long-lived or a transient feature. Methods: We used the PPMXL survey, which contains the USNO-B1 proper motions catalog cross-correlated with the astrometry and near-infrared photometry of the 2MASS point source catalog. To improve the accuracy of the proper motions, the systematic shifts from zero were calculated by using the average proper motions of quasars in this PPMXL survey, and we applied the corresponding correction to the proper motions of the whole survey, which reduces the systematic error. From the color-magnitude diagram K versus (J - K) we selected the standard candles corresponding to red clump giants and used the information of their proper motions to build a map of the vertical motions of our Galaxy. We derived the kinematics of the warp both analytically and through a particle simulation to fit these data. Complementarily, we also carried out the same analysis with red clump giants spectroscopically selected with APOGEE data, and we predict the improvements in accuracy that will be reached with future Gaia data. Results: A simple model of warp with the height of the disk zw(R,φ) = γ(R - R⊙)sin(φ - φw) fits the vertical motions if dot {γ }/γ = -34±17 Gyr-1; the contribution to dot {γ } comes from the southern warp and is negligible in the north. If we assume this 2σ detection to be real, the period of this oscillation is shorter than 0.43 Gyr at 68.3% C.L. and shorter than 4.64 Gyr at 95.4% C.L., which excludes with high confidence the slow variations (periods longer than 5 Gyr) that correspond to long-lived features. Our particle simulation also indicates a probable abrupt decrease

  5. Proper motions of embedded protostellar jets in Serpens

    NASA Astrophysics Data System (ADS)

    Djupvik, A. A.; Liimets, T.; Zinnecker, H.; Barzdis, A.; Rastorgueva-Foi, E. A.; Petersen, L. R.

    2016-03-01

    Aims: We determine the proper motion of protostellar jets around Class 0 and Class I sources in an active star forming region in Serpens. Methods: Multi-epoch deep images in the 2.122 μm line of molecular hydrogen, v = 1-0 S(1), obtained with the near-infrared instrument NOTCam on a timescale of 10 years, are used to determine the proper motion of knots and jets. K-band spectroscopy of the brighter knots is used to supply radial velocities, estimate extinction, excitation temperature, and H2 column densities towards these knots. Results: We measure the proper motion of 31 knots on different timescales (2, 4, 6, 8, and 10 years). The typical tangential velocity is around 50 km s-1 for the 10-year baseline, but for shorter timescales, a maximum tangential velocity up to 300 km s-1 is found for a few knots. Based on morphology, velocity information, and the locations of known protostars, we argue for the existence of at least three partly overlapping and deeply embedded flows, one Class 0 flow and two Class I flows. The multi-epoch proper motion results indicate time-variable velocities of the knots, for the first time directly measured for a Class 0 jet. We find in general higher velocities for the Class 0 jet than for the two Class I jets. While the bolometric luminosites of the three driving sources are about equal, the derived mass flow rate Ṁout is two orders of magnitude higher in the Class 0 flow than in the two Class I flows. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  6. Anomalous Proper-Motions in the Cygnus Super Bubble Region

    NASA Astrophysics Data System (ADS)

    Comeron, F.; Torra, J.; Jordi, C.; Gomez, A. E.

    1993-10-01

    In an analysis of proper motions of O and B stars contained in the Input Catalogue for Hipparcos, we have found a clear deviation from the expected pattern of systematic motions which can be readily identified with the associations Cygnus OB1 and Cygnus OB9, located near the edge of the Cygnus Superbubble. The anomalous motions are directed outwards from the center of the Superbubble, which is coincident with the association Cygnus OB2. This seems to support the hypothesis of a strong stellar and supernova activity in Cygnus OB2 giving rise to the Superbubble and, by means of gravitational instabilities in its boundaries, to Cygnus CB1 and Cygnus OB9. New uvbyβ aperture photometry of selected O and B stars in the area of Cygnus OB1 and Cygnus OB9 is also presented and analyzed in this paper.

  7. Parallaxes and Proper Motions of QSOs: A Test of Astrometric Precision and Accuracy

    NASA Astrophysics Data System (ADS)

    Harris, Hugh C.; Dahn, Conard C.; Zacharias, Norbert; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Monet, David G.; Pier, Jeffrey R.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L.; Johnston, Kenneth J.

    2016-11-01

    Optical astrometry of 12 fields containing quasi-stellar objects (QSOs) is presented. The targets are radio sources in the International Celestial Reference Frame with accurate radio positions that also have optical counterparts. The data are used to test several quantities: the internal precision of the relative optical astrometry, the relative parallaxes and proper motions, the procedures to correct from relative to absolute parallax and proper motion, the accuracy of the absolute parallaxes and proper motions, and the stability of the optical photocenters for these optically variable QSOs. For these 12 fields, the mean error in absolute parallax is 0.38 mas and the mean error in each coordinate of absolute proper motion is 1.1 mas yr‑1. The results yield a mean absolute parallax of ‑0.03 ± 0.11 mas. For 11 targets, we find no significant systematic motions of the photocenters at the level of 1–2 mas over the 10 years of this study; for one BL Lac object, we find a possible motion of 4 mas correlated with its brightness.

  8. RELATIVE PROPER MOTIONS IN THE RHO OPHIUCHI CLUSTER

    SciTech Connect

    Wilking, Bruce A.; Sullivan, Timothy; Vrba, Frederick J. E-mail: tsullivan@umsl.edu

    2015-12-10

    Near-infrared images optimized for astrometry have been obtained for four fields in the high-density L 1688 cloud core over a 12 year period. The targeted regions include deeply embedded young stellar objects (YSOs) and very low luminosity objects too faint and/or heavily veiled for spectroscopy. Relative proper motions in R.A. and decl. were computed for 111 sources and again for a subset of 65 YSOs, resulting in a mean proper motion of (0,0) for each field. Assuming each field has the same mean proper motion, YSOs in the four fields were combined to yield estimates of the velocity dispersions in R.A. and decl. that are consistent with 1.0 km s{sup −1}. These values appear to be independent of the evolutionary state of the YSOs. The observed velocity dispersions are consistent with the dispersion in radial velocity derived for optically visible YSOs at the periphery of the cloud core and are consistent with virial equilibrium. The higher velocity dispersion of the YSOs in the plane of the sky relative to that of dense cores may be a consequence of stellar encounters due to dense cores and filaments fragmenting to form small groups of stars or the global collapse of the L 1688 cloud core. An analysis of the differential magnitudes of objects over the 12 year baseline has not only confirmed the near-infrared variability for 29 YSOs established by prior studies, but has also identified 18 new variability candidates. Four of these have not been previously identified as YSOs and may be newly identified cluster members.

  9. Spectrophotometric characterization of high proper motion sources from WISE

    NASA Astrophysics Data System (ADS)

    Beamín, J. C.; Ivanov, V. D.; Minniti, D.; Smart, R. L.; Mužić, K.; Mendez, R. A.; Beletsky, Y.; Bayo, A.; Gromadzki, M.; Kurtev, R.

    2015-12-01

    The census of the solar neighbourhood is almost complete for stars and becoming more complete in the brown dwarf regime. Spectroscopic, photometric and kinematic characterization of nearby objects helps us to understand the local mass function, the binary fraction, and provides new targets for sensitive planet searches. We aim to derive spectral types and spectrophotometric distances of a sample of new high proper motion sources found with the WISE (Wide-field Infrared Survey Explorer) satellite, and obtain parallaxes for those objects that fall within the area observed by the Vista Variables in the Vía Láctea survey (VVV). We used low-resolution spectroscopy and template fitting to derive spectral types, multiwavelength photometry to characterize the companion candidates and obtain photometric distances. Multi-epoch imaging from the VVV survey was used to measure the parallaxes and proper motions for three sources. We confirm a new T2 brown dwarf within ˜15 pc. We derived optical spectral types for 24 sources, mostly M dwarfs within 50 pc. We addressed the wide binary nature of 16 objects found by the WISE mission and previously known high proper motion sources. Six of these are probably members of wide binaries, two of those are new, and present evidence against the physical binary nature of two candidate binary stars found in the literature, and eight that we selected as possible binary systems. We discuss a likely microlensing event produced by a nearby low-mass star and a galaxy, that is to occur in the following five years.

  10. uvby photometry in McCormick proper motion fields

    NASA Technical Reports Server (NTRS)

    Degewij, J.

    1982-01-01

    The Danish 50 cm telescope at the European Southern Observatory was used to obtain high-precision uvby photometry for 50 F2 to G2 stars, with V values in the 9.4-12.3 mag range, which were selected in the southern galactic polar regions of the McCormick proper motion fields and measured on six different nights. The brighter stars are found to systematically exhibit smaller m(1) indices, of about 0.02 mag, upon comparison with the earlier data of Blaauw et al (1976). Single measurements are given for 98 stars in eight McCormick fields at intermediate southern galactic latitudes.

  11. Proper Motions of Massive Stars in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2013-10-01

    We propose an ambitious proper motion survey of massive stars in the 30 Doradus region of the Large Magellanic Cloud using the unique capabilities of HST. We will derive the directions of motion of massive runaway stars, searching in particular for massive stars which have been ejected from the central very massive cluster R136. These data will be combined with radial velocities from the VLT-FLAMES Survey of the Tarantula Nebula and with atmospheric analyses and stellar evolution models to constrain their origins. We will also search for very young isolated massive stars to test models of single-star formation. This work is highly relevant to star formation, cluster dynamics, the origin of field WR stars and GRBs, the creation of very massive stars by runaway mergers, and the possible formation of intermediate-mass black holes.

  12. Forward Shock Proper Motions of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Katsuda, S.; Tsunemi, H.; Uchida, H.; Kimura, M.

    2008-12-01

    The X-ray structure of Kepler's supernova remnant shows a rounded shape delineated by forward shocks. We measure proper motions of the forward shocks on overall rims of the remnant, by using archival Chandra data taken in two epochs with time difference of 6.09 yr. The proper motions of the forward shocks on the northern rim are measured to be 0.076'' (±0.032'' ±0.016'') to 0.11'' (±0.014'' ±0.016'') yr-1, while those on the rest of the rims are measured to be 0.15'' (±0.017'' ±0.016'') to 0.30'' (±0.048'' ±0.016'') yr-1 here the first-term errors are statistical uncertainties and the second-term errors are systematic uncertainties. Combining the best-estimated shock velocity of 1660 +/- 120 km s-1 measured for Balmer-dominated filaments in the northern and central portions of the remnant (Sankrit et al. 2005) with the proper motions derived for the forward shocks on the northern rim, we estimate a distance of 3.3+1.6-0.4 kpc to the remnant. We measure the expansion indices, m (defined as R propto tm), to be 0.47-0.82 for most of the rims. These values are consistent with those expected in Type Ia SN explosion models, in which the ejecta and the circumstellar medium have power-law density profiles whose indices are 5-7 and 0-2, respectively. In addition, we should note the slower expansion on the northern rim than that on the southern rim. This is likely caused by the inhomogeneous circumstellar medium; the density of the circumstellar medium is higher in the north than that in the south of the remnant. The newly estimated geometric center, around which we believe the explosion point exists, is located at ~5'' offset to the north of the radio center.

  13. Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    2014-12-01

    One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.

  14. Proper-Motion Based Kinematics Study of Galactic RR Lyraes

    NASA Astrophysics Data System (ADS)

    Dambis, Andrei K.; Berdnikov, Leonid N.; Rastorguev, Alexei S.; Zabolotskikh, Marina V.

    2016-08-01

    We use the UCAC4 and SDSS proper motions of about 7500 RR Lyrae type variables located within ~10 kpc from the Sun to study the dependence of their velocity ellipsoid on Galactocentric distance in the R G = 3-17 kpc interval. The radial velocity dispersion, σ VR , decreases from ~190 km/s at R G = 3.5-5.5 kpc down to ~100 km/s at R G = 13-15 kpc, and the σ VT /σ VR ratio remains virtually constant (σ VT /σ VR ~0.54-0.64) in the Galactocentric distance interval from R G = 4.5 kpc to R G = 10.5 kpc increasing to ~0.9 both toward the Galactic center and beyond R G = 11 kpc.

  15. Search for high-proper motion objects with infrared excess

    NASA Astrophysics Data System (ADS)

    Teodorani, Massimo

    2014-12-01

    The possibility of interstellar migration has been theorized during the past thirty years in the form of 'Dysonships' that, using non-relativistic propulsion systems, are able to colonize the Galaxy in a relatively short time compared to the age of the Galaxy and consequently penetrate inside our solar system too. Observational evidence of this can be potentially obtained using the present state of the art of telescopes and related sensors, by following aimed searches and an expanded SETI protocol. Some transient and unrepeated radio signals recorded during standard SETI observations might be due to the transit of high-proper motion artificial sources of extraterrestrial origin, which are expected to show a very weak optical emission, a strong infrared excess and occasional high-energy bursts in the X and Gamma-ray wavelength ranges. Such artificial sources might show an interest to Earth by sending probes to visit it: such a possibility can be investigated scientifically as well.

  16. Halley's Discovery of Stellar Proper Motion: The Aldebaran Problem

    NASA Astrophysics Data System (ADS)

    Brandt, John C.

    2009-01-01

    Halley (1717) compared contemporary positions of Arcturus, Sirius, and Aldebaran with the ancient positions recorded in the Almagest (Book VII 3) and attributed to Timocharis, Hipparcus, and Ptolemy. He found that these stars had apparently moved southward by more than 30 arc minutes and concluded that these stars had their own particular motions. Modern proper motion measurements are consistent with this conclusion for Arcturus and Sirius, but are not even close for Aldebaran. While some authors (Fomenko et al. 1993; Evans 1998) are aware of the problem, it generally is not mentioned in books on the history of astronomy (e.g., Clerke 1908; Pannekoek 1961; Neugebauer 1975) or in the major biographies of Halley (Armitage 1966; Ronan 1969; Lancaster-Brown 1985; Cook 1998). None of the possibilities for resolving this problem_errors in the ancient and/or the 17th-18th century positions; errors in Halley's calculations; or misidentification of the star--- seem plausible and final resolution may require locating the original calculations in Halley's papers.

  17. Globular cluster orbits based on Hipparcos proper motions

    NASA Astrophysics Data System (ADS)

    Odenkirchen, M.; Brosche, P.; Geffert, M.; Tucholke, H.-J.

    1997-11-01

    We present and analyse space motions and orbits for a sample of 15 galactic globular clusters. The absolute proper motions of these clusters have been determined with respect to reference stars of the new Hipparcos system. Orbital integrations in two model potentials for the Galaxy are considered. The sample shows a mean rotation near 40 km s-1 in the sense of rotation of the galactic disk. Six clusters are however found to be in retrograde motion. Velocity dispersions are around 104 km s-1 in the direction of rotation, near 116 km s-1 in latitudinal direction and near 127 km s-1 in radial direction. The orbits of the clusters preferentially have small axial angular momenta and high eccentricities, the median of the orbital eccentricities being 0.62. From the spatial extent of the orbits we conclude that the Galaxy must have a massive halo with a radius of at least 30 kpc. The space density distribution of our sample of clusters system, except for distances less than 4 kpc from the galactic center. space density distribution of the total globular cluster system, except for distances less than 4 kpc from the galactic center. The largest apogalactic distances in the sample reach out to 65 kpc. The orbits provide evidence that the more metal-rich clusters are concentrated towards the galactic center. The clusters with significant retrograde motion have metal abundances between - 1.5 and - 2.0 and hence appear to be relatively homogeneous in chemical composition. The small subgroup of 'young halo' clusters within our sample is orbiting with a net retrograde rotation of -9 km s-1. A general relation between orbital eccentricity and metal-abundance does not show up in the sample. The observed radii of the clusters are found to be in a well-defined relation to the tidal limits imposed by orbital motion in the galactic field. It is shown that the cluster radii are however not uniquely determined by the perigalactic distances, but involve at least also the geometry of the

  18. Proper Motion of the Remarkable Irradiated Jet HH399 in the Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, Farhad

    2007-07-01

    The Trifid nebula has recently been of much interest because of its identification with a large number of massive protostars, as well as young stellar objects. HH 399 is one of the most spectacular Herbig-Haro flows recognized to be irradiated by the UV flux of the massive O7.5 star in the Trifid nebula. The irradiated jet, which is propagating in a fully ionized medium, contains numerous knots along the jet and also shows evidence for a number of isolated knots running immediately outside the jet. Two different HST observations of the nebula, with different scientific goals, were carried out in 1997 and 2002, having sensitivities that differed by a factor of 10. We performed preliminary proper motion measurements of the jet based on these observations and discovered a continuous velocity structure of the bright knots of about 230 km/sec. Here we propose four WFPC2 orbits to reobserve HH 399 in order to carry out accurate proper motion measurements over the full extent of the jet, based on observations spanning more than 10 years and having equally deep sensitivity. The proposed observations are not simply a repeat of previous measurements, as this will be the first highly accurate proper motion measurement of an irradiated jet based on two identical epochs of WFPC2 observations. The observations will improve the accuracy of proper motion measurements for HH 399 by more than a factor of five and will address important questions beyond our preliminary result. Currently measured velocity differences between the jet features are barely significant. The factor of 5 increase in accuracy will establish the evidence for deceleration along the jet and the lateral motion of the jet. In addition, these measurements will address the kinematics of individual entrained and isolated blobs of the jet as it propagates into an HII region associated with the nebula. This is the last opportunity to perform this experiment before WFPC2 is removed from HST.

  19. Joint astrometric solution of HIPPARCOS and Gaia. A recipe for the Hundred Thousand Proper Motions project

    NASA Astrophysics Data System (ADS)

    Michalik, Daniel; Lindegren, Lennart; Hobbs, David; Lammers, Uwe

    2014-11-01

    Context. The first release of astrometric data from Gaia is expected in 2016. It will contain the mean stellar positions and magnitudes from the first year of observations. For more than 100 000 stars in common with the Hipparcos Catalogue it will be possible to compute very accurate proper motions due to the time difference of about 24 years between the two missions. This Hundred Thousand Proper Motions (HTPM) project is planned to be part of the first release. Aims: Our aim is to investigate how early Gaia data can be optimally combined with information from the Hipparcos Catalogue in order to provide the most accurate and reliable results for HTPM. Methods: The Astrometric Global Iterative Solution (AGIS) was developed to compute the astrometric core solution based on the Gaia observations and will be used for all releases of astrometric data from Gaia. We adapt AGIS to process Hipparcos data in addition to Gaia observations, and use simulations to verify and study the joint solution method. Results: For the HTPM stars we predict proper motion accuracies between 14 and 134 μas yr-1, depending on stellar magnitude and amount of Gaia data available. Perspective effects will be important for a significant number of HTPM stars, and in order to treat these effects accurately we introduce a formalism called scaled model of kinematics (SMOK). We define a goodness-of-fit statistic which is sensitive to deviations from uniform space motion, caused for example by binaries with periods of 10-50 years. Conclusions: HTPM will significantly improve the proper motions of the Hipparcos Catalogue well before highly accurate Gaia-only results become available. Also, HTPM will allow us to detect long period binary and exoplanetary candidates which would be impossible to detect from Gaia data alone. The full sensitivity will not be reached with the first Gaia release but with subsequent data releases. Therefore HTPM should be repeated when more Gaia data become available

  20. Precession Constant Correction and Proper Motion Systems of FK5 and Hipparcos

    NASA Astrophysics Data System (ADS)

    Zhu, Zi

    2007-07-01

    Results of many researches have shown that the relation between the proper motion systems of FK5 and Hipparcos is not consistent with the precession constant corrections determined by VLBI and LLR. We analysed proper motion data of PPM and ACRS based on the FK5 system for many different sub-samples and found that consistent values of the precession correction and equinox motion correction can not be given by either PPM or ACRS proper motion data, thereby indicating that the internal systematic error of the FK5 proper motion is the main underlying factor of the inconsistency.

  1. Precessional correction and the proper-motion systems of FK5 and Hipparcos

    NASA Astrophysics Data System (ADS)

    Zhu, Z.

    2006-10-01

    Comparing proper motions of the FK5 and Hipparcos, several authors declared that the two proper-motion systems are inconsistent with the value of the precessional correction obtained from VLBI and LLR observations. Based on the proper-motion data from the PPM and ACRS catalogues which are constructed on the FK5 system, the discrepant values of the precessional correction and of the correction of the equinoctial motion, derived from the different subsets of stellar samples, have be found. One of the reasons for those discrepancies should be mostly due to the internal biased proper-motion system of the FK5.

  2. A technique to derive improved proper motions for Kepler objects of interest

    SciTech Connect

    Benedict, G. Fritz; Tanner, Angelle M.; Cargile, Phillip A.; Ciardi, David R.

    2014-12-01

    We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper-motion precision, we combine first-moment centroids of Kepler pixel data from a single season with existing catalog positions and proper motions. We use this astrometry to produce improved reduced-proper-motion diagrams, analogous to a Hertzsprung-Russell (H-R) diagram, for stars identified as Kepler objects of interest. The more precise the relative proper motions, the better the discrimination between stellar luminosity classes. Using UCAC4 and PPMXL epoch 2000 positions (and proper motions from those catalogs as quasi-Bayesian priors), astrometry for a single test Channel (21) and Season (0) spanning 2 yr yields proper motions with an average per-coordinate proper-motion error of 1.0 mas yr{sup –1}, which is over a factor of three better than existing catalogs. We apply a mapping between a reduced-proper-motion diagram and an H-R diagram, both constructed using Hubble Space Telescope parallaxes and proper motions, to estimate Kepler object of interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well as to the rest of the Kepler field.

  3. Predicted space motions for hypervelocity and runaway stars: proper motions and radial velocities for the Gaia Era

    SciTech Connect

    Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J.; Bromley, Benjamin C. E-mail: wbrown@cfa.harvard.edu E-mail: bromley@physics.utah.edu

    2014-10-01

    We predict the distinctive three-dimensional space motions of hypervelocity stars (HVSs) and runaway stars moving in a realistic Galactic potential. For nearby stars with distances less than 10 kpc, unbound stars are rare; proper motions alone rarely isolate bound HVSs and runaways from indigenous halo stars. At large distances of 20-100 kpc, unbound HVSs are much more common than runaways; radial velocities easily distinguish both from indigenous halo stars. Comparisons of the predictions with existing observations are encouraging. Although the models fail to match observations of solar-type HVS candidates from SEGUE, they agree well with data for B-type HVS and runaways from other surveys. Complete samples of g ≲ 20 stars with Gaia should provide clear tests of formation models for HVSs and runaways and will enable accurate probes of the shape of the Galactic potential.

  4. The understanding of the FK5 and Hipparcos proper-motion systems†

    NASA Astrophysics Data System (ADS)

    Zhu, Z.

    2008-07-01

    Comparing proper motions of the FK5 and Hipparcos, several authors declared that the two proper-motion systems are inconsistent with the value of the precession correction obtained from VLBI and LLR observations. Based on the proper-motion data from the PPM and ACRS catalogues which are constructed on the FK5 system, the inconsistent values of the precessional correction and of the time-dependent term of equinox correction, derived from the different subsets of stellar samples, have been found. One of the reasons for those discrepancies should be mostly due to the internally biased proper-motion system of the FK5.

  5. Local systematic differences in proper motions derived from 2MASS positions

    NASA Astrophysics Data System (ADS)

    Bustos Fierro, I. H.; Calderón, J. H.

    2016-04-01

    We want to draw attention to local systematic differences that appear in the proper motions derived from 2MASS positions when they are compared with other astrometric catalogs such as UCAC4, SPM4 and USNO-B1. It is shown that 2MASS effectively causes these systematic effects in the proper motions of PPMXL and URAT1. Also it is shown that using 2MASS positions rectified with respect to UCAC4 the systematic pattern of the proper motions of URAT1 is eliminated. Therefore, we propose the use of rectified 2MASS positions in order to derive proper motions free from 2MASS systematics.

  6. Gaia reference frame amid quasar variability and proper motion patterns in the data

    NASA Astrophysics Data System (ADS)

    Bachchan, R. K.; Hobbs, D.; Lindegren, L.

    2016-05-01

    Context. Gaia's very accurate astrometric measurements will allow the optical realisation of the International Celestial Reference System to be improved by a few orders of magnitude. Several sets of quasars are used to define a kinematically stable non-rotating reference frame with the barycentre of the solar system as its origin. Gaia will also observe a large number of galaxies. Although they are not point-like, it may be possible to determine accurate positions and proper motions for some of their compact bright features. Aims: The optical stability of the quasars is critical, and we investigate how accurately the reference frame can be recovered. Various proper motion patterns are also present in the data, the best known is caused by the acceleration of the solar system barycentre, presumably, towards the Galactic centre. We review some other less well-known effects that are not part of standard astrometric models. Methods: We modelled quasars and galaxies using realistic sky distributions, magnitudes, and redshifts. Position variability was introduced using a Markov chain model. The reference frame was determined using the algorithm developed for the Gaia mission, which also determines the acceleration of the solar system. We also tested a method for measuring the velocity of the solar system barycentre in a cosmological frame. Results: We simulated the recovery of the reference frame and the acceleration of the solar system and conclude that they are not significantly disturbed by quasar variability, which is statistically averaged. However, the effect of a non-uniform sky distribution of the quasars can result in a correlation between the parameters describing the spin components of the reference frame and the acceleration components, which degrades the solution. Our results suggest that an attempt should be made to astrometrically determine the redshift-dependent apparent drift of galaxies that is due to our velocity relative to the cosmic microwave

  7. A Proper-Motion Search for New Low-Mass Members of Nearby Clusters

    NASA Astrophysics Data System (ADS)

    Pitts, Mark A.; Magnier, E. A.

    2010-01-01

    We present new low-mass (m <= 0.1 Msol) members of six nearby (d <= 300 pc) clusters using a combination of proper-motion and color criteria. CFHT imaging data from multiple epochs spanning roughly six years have been analyzed by the Pan-STARRS Image Processing Pipeline (IPP) in order to obtain highly accurate proper-motion measurements. These data are combined with 2MASS detections in order to construct (i-J) colors and obtain new member candidates. Spectroscopic follow-up from the IRTF and Subaru facilities has allowed us to classify our candidates as members or nonmembers based on overall SED shape as well as previously-developed spectral indices sensitive to temperature and gravity. Additional verification of members from the youngest clusters is provided by H-alpha detections indicative of ongoing accretion. In the case of more ambiguous candidates, a dynamical analysis was performed using a Galactic field population model to determine the likelihood of candidates being old dwarf interlopers along the line-of-sight. This method of combining kinematic and photometric criteria to identify potential cluster members will yield impressive results once the Pan-STARRS 3-Pi Survey begins in late 2009, as it will be regularly imaging 75% of the total sky over multiple years. This work has been made possible by a generous grant from the National Science Foundation.

  8. Messier 35 (NGC 2168) DANCe. I. Membership, proper motions, and multiwavelength photometry

    NASA Astrophysics Data System (ADS)

    Bouy, H.; Bertin, E.; Barrado, D.; Sarro, L. M.; Olivares, J.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Ribas, Á.; Beletsky, Y.

    2015-03-01

    Context. Messier 35 (NGC 2168) is an important young nearby cluster. Its age, richness and relative proximity make it an ideal target for stellar evolution studies. The Kepler K2 mission recently observed it and provided a high accuracy photometric time series of a large number of sources in this area of the sky. Identifying the cluster's members is therefore of high importance to optimize the interpretation and analysis of the Kepler K2 data. Aims: We aim to identify the cluster's members by deriving membership probabilities for the sources within 1° of the cluster's center, which is farther away than equivalent previous studies. Methods: We measure accurate proper motions and multiwavelength (optical and near-infrared) photometry using ground-based archival images of the cluster. We use these measurements to compute membership probabilities. The list of candidate members from the literature is used as a training set to identify the cluster's locus in a multidimensional space made of proper motions, luminosities, and colors. Results: The final catalog includes 338 892 sources with multiwavelength photometry. Approximately half (194 452) were detected at more than two epochs and we measured their proper motion and used it to derive membership probability. A total of 4349 candidate members with membership probabilities greater than 50% are found in this sample in the luminosity range between 10 mag and 22 mag. The slow proper motion of the cluster and the overlap of its sequence with the field and background sequences in almost all color-magnitude and color-color diagrams complicate the analysis and the contamination level is expected to be significant. Our study, nevertheless, provides a coherent and quantitative membership analysis of Messier 35 based on a large fraction of the best ground-based data sets obtained over the past 18 years. As such, it represents a valuable input for follow-up studies using, in particular, the Kepler K2 photometric time series

  9. THE SPACE MOTION OF LEO I: HUBBLE SPACE TELESCOPE PROPER MOTION AND IMPLIED ORBIT

    SciTech Connect

    Sohn, Sangmo Tony; Van der Marel, Roeland P.; Besla, Gurtina; Boylan-Kolchin, Michael; Bullock, James S.; Majewski, Steven R.

    2013-05-10

    We present the first absolute proper motion measurement of Leo I, based on two epochs of Hubble Space Telescope ACS/WFC images separated by {approx}5 years in time. The average shift of Leo I stars with respect to {approx}100 background galaxies implies a proper motion of ({mu}{sub W}, {mu}{sub N}) = (0.1140 {+-} 0.0295, -0.1256 {+-} 0.0293) mas yr{sup -1}. The implied Galactocentric velocity vector, corrected for the reflex motion of the Sun, has radial and tangential components V{sub rad} = 167.9 {+-} 2.8 km s{sup -1} and V{sub tan} = 101.0 {+-} 34.4 km s{sup -1}, respectively. We study the detailed orbital history of Leo I by solving its equations of motion backward in time for a range of plausible mass models for the Milky Way (MW) and its surrounding galaxies. Leo I entered the MW virial radius 2.33 {+-} 0.21 Gyr ago, most likely on its first infall. It had a pericentric approach 1.05 {+-} 0.09 Gyr ago at a Galactocentric distance of 91 {+-} 36 kpc. We associate these timescales with characteristic timescales in Leo I's star formation history, which shows an enhanced star formation activity {approx}2 Gyr ago and quenching {approx}1 Gyr ago. There is no indication from our calculations that other galaxies have significantly influenced Leo I's orbit, although there is a small probability that it may have interacted with either Ursa Minor or Leo II within the last {approx}1 Gyr. For most plausible MW masses, the observed velocity implies that Leo I is bound to the MW. However, it may not be appropriate to include it in models of the MW satellite population that assume dynamical equilibrium, given its recent infall. Solution of the complete (non-radial) timing equations for the Leo I orbit implies an MW mass M{sub MW,vir} = 3.15{sub -1.36}{sup +1.58} x 10{sup 12} M{sub Sun }, with the large uncertainty dominated by cosmic scatter. In a companion paper, we compare the new observations to the properties of Leo I subhalo analogs extracted from cosmological

  10. A Proper-Motion Study of Two Fields, in the Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    King, Ivan

    1999-07-01

    We propose, using only 5 orbits of HST time, to carry out high-precision astrometry in two fields in the globular cluster 47 Tucanae in order to {1} measure the relative proper motions in the radial and tangential directions, for many thousands of main-sequence stars and white dwarfs, and determine the anisotropy of stellar motions as a function of stellar mass; {2} strengthen our current determination of the distance of the cluster, which depends on comparing proper motions with radial velocities; {3} extend the luminosity function of the cluster 3-4 magnitudes fainter, reaching well below 0.1>m_odot; {4} measure the rotation of the cluster in the plane of the sky; {5} measure the absolute proper motion of the cluster; and {6} possibly measure the proper motion of the Small Magellanic Cloud.

  11. A survey of proper-motion stars. IV - A search for southern extreme-velocity stars

    NASA Astrophysics Data System (ADS)

    Carney, Bruce W.; Peterson, Ruth C.

    1988-07-01

    We are conducting a search for extreme-velocity stars as a means of placing a lower limit to the local value of the Galaxy's escape velocity. We report here the results of a survey of (largely) southern hemisphere proper-motion stars: 27 metal-poor F and G stars near the South Galactic Pole; 18 stars identified by Eggen as extreme-velocity candidates; and five other field stars. We obtained radial velocities and JHK photometry for almost all the stars, and some uvby and UBV photometry. Accurate distance moduli based on B - V, b - y, V - K, and J - K color indices are presented in conjunction with reddening and metallicity estimates. Kinematical properties of the stars are reported, including U, V, and W velocities, and the velocity in the Galaxy's rest frame, VRF. Five of the program stars were found to have VRF >380 km s-1.

  12. The far distance to G7.47+0.06 from proper motion measurement of H2O masers

    NASA Astrophysics Data System (ADS)

    Yamauchi, Aya; Yamashita, Kazuyoshi; Honma, Mareki; Sunada, Kazuyoshi; Nakagawa, Akiharu; Ueno, Yuji

    2016-08-01

    We report on a distance measurement of 22 GHz H2O maser features associated with an ultra-compact H II region G7.47+0.06 using VERA (VLBI Exploration of Radio Astrometry). Since the source is located farther away than 10 kpc, it turned out to be difficult to derive the distance from annual parallax measurement. Meanwhile, we clearly detected the source's proper motion parallel to the Galactic plane. The proper motion is μ = -5.03 ± 0.07 mas yr-1 and is approaching the Galactic center. We applied a new method to determine the source distance based on absolute proper motions. Considering uncertainties of the Galactic rotation curve and the solar peculiar motion, the detected proper motion leads to a source distance of D = 20 ± 2 kpc, demonstrating that astrometric observation can provide an accurate distance measurement at a 10% level even for sources too distant to measure the annual parallax. Lastly, we scale the physical parameters of the H II region estimated in a previous paper to be 20 kpc, and show that the H2O maser features are associated with a massive star-forming region corresponding to the spectral type of O5.5.

  13. Proper-motion binaries in the Hipparcos catalogue. Comparison with radial velocity data

    NASA Astrophysics Data System (ADS)

    Frankowski, A.; Jancart, S.; Jorissen, A.

    2007-03-01

    Context: This paper is the last in a series devoted to the analysis of the binary content of the Hipparcos Catalogue. Aims: The comparison of the proper motions constructed from positions spanning a short (Hipparcos) or long time (Tycho-2) makes it possible to uncover binaries with periods of the order of or somewhat larger than the short time span (in this case, the 3 yr duration of the Hipparcos mission), since the unrecognised orbital motion will then add to the proper motion. Methods: A list of candidate proper motion binaries is constructed from a carefully designed χ2 test evaluating the statistical significance of the difference between the Tycho-2 and Hipparcos proper motions for 103 134 stars in common between the two catalogues (excluding components of visual systems). Since similar lists of proper-motion binaries have already been constructed, the present paper focuses on the evaluation of the detection efficiency of proper-motion binaries, using different kinds of control data (mostly radial velocities). The detection rate for entries from the Ninth Catalogue of Spectroscopic Binary Orbits (S_B^9) is evaluated, as well as for stars like barium stars, which are known to be all binaries, and finally for spectroscopic binaries identified from radial velocity data in the Geneva-Copenhagen survey of F and G dwarfs in the solar neighbourhood. Results: Proper motion binaries are efficiently detected for systems with parallaxes in excess of ~20 mas, and periods in the range 1000-30 000 d. The shortest periods in this range (1000-2000 d, i.e., once to twice the duration of the Hipparcos mission) may appear only as DMSA/G binaries (accelerated proper motion in the Hipparcos Double and Multiple System Annex). Proper motion binaries detected among S_B9 systems having periods shorter than about 400 d hint at triple systems, the proper-motion binary involving a component with a longer orbital period. A list of 19 candidate triple systems is provided. Binaries

  14. PROPER-MOTION STUDY OF THE MAGELLANIC CLOUDS USING SPM MATERIAL

    SciTech Connect

    Vieira, Katherine; Girard, Terrence M.; Van Altena, William F.; Casetti-Dinescu, Dana I.; Korchagin, Vladimir I.; Herrera, David E-mail: terry.girard@yale.ed

    2010-12-15

    Absolute proper motions are determined for stars and galaxies to V = 17.5 over a 450 deg{sup 2} area that encloses both Magellanic Clouds. The proper motions are based on photographic and CCD observations of the Yale/San Juan Southern Proper Motion program, which span a baseline of 40 years. Multiple, local relative proper-motion measures are combined in an overlap solution using photometrically selected Galactic disk stars to define a global relative system that is then transformed to absolute using external galaxies and Hipparcos stars to tie into the ICRS. The resulting catalog of 1.4 million objects is used to derive the mean absolute proper motions of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC); ({mu}{sub {alpha}}cos {delta}, {mu}{sub {delta}}){sub LMC} = (1.89, + 0.39) {+-} (0.27, 0.27) masyr{sup -1} and ({mu}{sub {alpha}}cos {delta}, {mu}{sub {delta}}){sub SMC} = (0.98, - 1.01) {+-} (0.30, 0.29) masyr{sup -1}. These mean motions are based on best-measured samples of 3822 LMC stars and 964 SMC stars. A dominant portion (0.25 mas yr{sup -1}) of the formal errors is due to the estimated uncertainty in the inertial system of the Hipparcos Catalog stars used to anchor the bright end of our proper motion measures. A more precise determination can be made for the proper motion of the SMC relative to the LMC; ({mu}{sub {alpha}cos {delta}}, {mu}{sub {delta}}){sub SMC-LMC} = (-0.91, - 1.49) {+-} (0.16, 0.15) masyr{sup -1}. This differential value is combined with measurements of the proper motion of the LMC taken from the literature to produce new absolute proper-motion determinations for the SMC, as well as an estimate of the total velocity difference of the two clouds to within {+-}54 km s{sup -1}. The absolute proper-motion results are consistent with the Clouds' orbits being marginally bound to the Milky Way, albeit on an elongated orbit. The inferred relative velocity between the Clouds places them near their binding energy limit and

  15. Dynamics of a Type Ia Supernova Remnant: X-ray and Radio Proper Motions in Tycho's SNR

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Blondin, John M.; Borkowski, Kazimierz J.; Chomiuk, Laura; Ghavamian, Parviz; Hewitt, John W.; Petre, Robert; Reynolds, Stephen P.

    2016-01-01

    We present results from new Chandra X-ray and JVLA radio observations of Tycho's supernova remnant, the remains of the supernova of 1572 A.D. The high spatial resolution of these instruments allows for accurate measurements of the proper motion of the forward shock in Tycho, with baselines now at 15 years for the X-ray data and 30 years for the radio. Type Ia SNe are of fundamental importance in astrophysics, yet the nature of their environments and progenitor systems is poorly understood. In a recent work, we have shown that theISM surrounding Tycho varies systematically in density by a factor of 5, with larger excursions in some locations. A substantial density variation is consistent with limited previous proper motion studies that have been done in radio and X-rays. Our expanded baseline measurements allow us to further explore the variations in the dynamics of the shock wave, which can also be used to localize the explosion site. Previous proper motion measurements, made over much shorter time baselines, have shown some discrepancies in the shockvelocity as measured in radio and X-rays. With our new, much improved data, we can compare proper motions in these two energy bands with much greater accuracy.

  16. St. Helena, Edmond Halley, the discovery of stellar proper motion, and the mystery of Aldebaran

    NASA Astrophysics Data System (ADS)

    Brandt, John C.

    2010-07-01

    St. Helena was the location of Halley's observatory in 1677-1678. The site has been identified and I report on a visit in November 2006. The principal use of the observatory was to accurately map the stars of the southern sky. In the summary of his work, the Catalogus Stellarum Australium, Halley noted evidence for the "... mutability of the fixed Stars." He would not return to this subject until much later in his career. Halley later compared contemporary positions of Arcturus, Sirius, and Aldebaran with the ancient positions recorded in the Almagest. He found that these stars had apparently moved southward by >30' and concluded that they had their own particular motions. Modern proper motion measurements are consistent with this conclusion for Arcturus and Sirius, but are not even close for Aldebaran. While some authors are aware of the problem, it generally is not mentioned in books on the history of astronomy or in biographical works on Halley. Errors in the Almagest positions can be ruled out; an error of 30' in the early eighteenth century position is highly unlikely; a misidentification of the star is implausible; and, we are left with the conclusion that there is most likely an error in Halley's calculations.

  17. Proper motion of the Draco dwarf galaxy from Subaru Suprime-Cam data

    NASA Astrophysics Data System (ADS)

    Casetti-Dinescu, Dana I.; Girard, Terrence M.

    2016-09-01

    We have measured the absolute proper motion of the Draco dwarf spheroidal galaxy using Subaru Suprime-Cam images taken at three epochs, with time baselines of 4.4 and 7 yr. The magnitude limit of the proper-motion study is i = 25, thus allowing for thousands of background galaxies and Draco stars to be used to perform extensive astrometric tests and to derive the correction to an inertial reference frame. The derived proper motion is (μα, μδ) = (-0.284 ± 0.047, -0.289 ± 0.041) mas yr-1. This motion implies an orbit that takes Draco to a pericentre of ˜20 kpc; a somewhat disruptive orbit suggesting that tides might account for the rising velocity-dispersion profile of Draco seen in line-of-sight velocity studies. The orbit is only marginally consistent with Draco's membership to the vast polar structure of Galactic satellites, in contrast to a recent Hubble Space Telescope proper-motion measurement that finds alignment very likely. Our study is a test case to demonstrate that deep imaging with mosaic cameras of appropriate resolution can be used for high-accuracy, ground-based proper-motion measurement. As a useful by-product of the study, we also identify two faint brown-dwarf candidates in the foreground field.

  18. AN ASYMMETRIC STREAMING MOTION IN THE GALACTIC BULGE X-SHAPED STRUCTURE REVEALED BY OGLE-III PROPER MOTIONS

    SciTech Connect

    Poleski, Radosław; Gould, Andrew; Udalski, Andrzej; Szymański, M. K.; Soszyński, I.; Kubiak, M.; Pietrzyński, G.; Ulaczyk, K.; Wyrzykowski, Ł.

    2013-10-20

    The Galactic bulge shows a double red clump in sightlines at |b| ∼> 5° and –3° ∼< l ∼< 4°. This dump is interpreted as the signature of an X-shaped structure seen almost edge-on. We measure the proper motions of the stars belonging to the closer and the further arms of the X-shaped structure. The intrinsic kinematic properties of the two arms are found by incorporating information taken from the luminosity function. At b = –5°, we find that the proper motion difference between the two arms is a linear function of Galactic longitude for –0.°1 < l < 0.°5, which we interpret as a streaming motion of the stars within the X-shaped structure. A streaming motion was previously reported based on radial velocity data, not the proper motions. The proper motion difference in longitude is constant for –0.°8 < l < –0.°1, which provides an estimate of the bulge rotational speed of 87.9 ± 8.2 km s{sup –1} kpc{sup –1}.

  19. PROPER MOTION OF THE SAGITTARIUS DWARF GALAXY BASED ON HUBBLE SPACE TELESCOPE IMAGING

    SciTech Connect

    Pryor, Carlton; Piatek, Slawomir; Olszewski, Edward W. E-mail: piatek@physics.rutgers.edu

    2010-03-15

    We have derived a proper motion of Sagittarius using archival data obtained with the Hubble Space Telescope. The data consist of imaging at three epochs with a time baseline of about four years in three distinct fields. The zero point for the proper motion is based on the foreground Galactic stellar populations along the line of sight. The measured proper motion in the Galactic coordinate system is ({mu}{sub l}, {mu} {sub b}) = (-2.615 {+-} 0.22, 1.87 {+-} 0.19) mas yr{sup -1} and in the equatorial coordinate system is ({mu}{sub {alpha}}, {mu}{sub {delta}}) = (-2.75 {+-} 0.20, - 1.65 {+-} 0.22) mas yr{sup -1}. Removing the contribution of the motion of the Sun and of the LSR to the measured proper motion produces a Galactic rest-frame proper motion of ({mu}{sup Grf} {sub l}, {mu}{sup Grf} {sub b}) = (-0.82 {+-} 0.22, 1.98 {+-} 0.19) mas yr{sup -1} and ({mu}{sup Grf} {sub {alpha}}, {mu}{sup Grf} {sub {delta}}) = (-2.14 {+-} 0.20, 0.03 {+-} 0.20) mas yr{sup -1}. The implied space velocity with respect to the Galactic center is ({pi}, {theta}, Z) = (141.9 {+-} 6.9, 117 {+-} 29, 238 {+-} 27) km s{sup -1}. This velocity implies that the instantaneous orbital inclination is 67 deg., with a 95% confidence interval of (58 deg., 79 deg.). We also present photometry and membership probabilities for the stars in our sample, which can be used to generate color-magnitude diagrams for stellar populations selected by proper motion.

  20. Proper motions of 15 pulsars: a comparison between Bayesian and frequentist algorithms

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, N.; Yuan, J. P.; Wang, J. B.; Hobbs, G.; Lentati, L.; Manchester, R. N.

    2016-08-01

    We present proper motions for 15 pulsars which are observed regularly by the Nanshan 25-m radio telescope. Two methods, the frequentist method and the Bayesian method, are used and the results are compared. We demonstrate that the two methods can be applied to young pulsar data sets that exhibit large amounts of timing noise with steep spectral exponents and give consistent results. The measured positions also agree with very long baseline interferometric positions. Proper motions for four pulsars are obtained for the first time, and improved values are obtained for five pulsars.

  1. Improved proper motion determinations for 15 open clusters based on the UCAC4 catalog

    NASA Astrophysics Data System (ADS)

    Kurtenkov, Alexander; Dimitrova, Nadezhda; Atanasov, Alexander; Aleksiev, Teodor D.

    2016-07-01

    The proper motions of 15 nearby (d > 1 kpc) open clusters (OCs) were recalculated using data from the UCAC4 catalog. Only evolved or main sequence stars inside a certain radius from the center of the cluster were used. The results significantly differ from the ones presented by Dias et al. (2014). This could be explained by a different approach in which we take the field star contamination into account. The present work aims to emphasize the importance of applying photometric criteria for the calculation of OC proper motions.

  2. On the separations of common proper motion binaries containing white dwarfs

    NASA Technical Reports Server (NTRS)

    Oswalt, T. D.; Sion, E. M.

    1989-01-01

    It is expected, on the basis of proper motion and estimated colors, that over 500 known common proper motion binaries (CPMBs) contain at least one white dwarf (WD) component, usually paired with a late type main sequence (MS) star. This paper examines 210 probable MS + MS and 26 probable WD + MS pairs from the LDS catalog to determine whether significant orbital expansion occurred as a consequence of the post-MS mass loss expected to accompany the formation of WDs in the CPMBs. It was found that, in the WD + MS pairs, the physical separation is nearly twice that in the MS + MS pairs.

  3. A Very High Proper Motion Star and the First L Dwarf in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Gizis, John E.; Troup, Nicholas W.; Burgasser, Adam J.

    2011-08-01

    We report two nearby high proper motion dwarfs of special interest identified using the Preliminary Data Release of the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey. WISEP J191239.91-361516.4 has a motion of 2.1 arcsec yr-1. Photometry identifies it as a mid-M dwarf. WISEP J190648.47+401106.8 is a spectroscopically confirmed L1 dwarf in the Kepler Mission field with a motion of 0.48 arcsec yr-1. The estimated distance is 17 pc. Both lie at relatively low galactic latitudes and demonstrate the possibility of discovering proper motion stars independent of the historic photographic sky surveys.

  4. A 2 epoch proper motion catalogue from the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Smith, Leigh; Lucas, Phil; Burningham, Ben; Jones, Hugh; Pinfield, David; Smart, Ricky; Andrei, Alexandre

    2013-04-01

    The UKIDSS Large Area Survey (LAS) began in 2005, with the start of the UKIDSS program as a 7 year effort to survey roughly 4000 square degrees at high galactic latitudes in Y, J, H and K bands. The survey also included a significant quantity of 2-epoch J band observations, with epoch baselines ranging from 2 to 7 years. We present a proper motion catalogue for the 1500 square degrees of the 2 epoch LAS data, which includes some 800,000 sources with motions detected above the 5σ level. We developed a bespoke proper motion pipeline which applies a source-unique second order polynomial transformation to UKIDSS array coordinates of each source to counter potential local non-uniformity in the focal plane. Our catalogue agrees well with the proper motion data supplied in the current WFCAM Science Archive (WSA) DR9 catalogue where there is overlap, and in various optical catalogues, but it benefits from some improvements. One improvement is that we provide absolute proper motions, using LAS galaxies for the relative to absolute correction. Also, by using unique, local, 2nd order polynomial tranformations, as opposed to the linear transformations in the WSA, we correct better for any local distortions in the focal plane, not including the radial distortion that is removed by their pipeline.

  5. Proper motions of young stars in Chamaeleon. I. A Virtual Observatory study of spectroscopically confirmed members

    NASA Astrophysics Data System (ADS)

    Lopez Martí, B.; Jimenez Esteban, F.; Bayo, A.; Barrado, D.; Solano, E.; Rodrigo, C.

    2013-03-01

    Context. The study of the motion of the members of a given open cluster or stellar association provides key information about their formation and early evolution. The Chamaeleon cloud complex constitutes one of the closest and best studied low-mass star-forming regions in the Galaxy. Aims: We want to provide further evidence of the origin of the proposed stellar members of Chamaeleon and to identify interlopers from the foreground ɛ Cha and η Cha associations. Methods: We have compiled lists of spectroscopically confirmed members of Chamaeleon I and II, ɛ Cha and η Cha, and of background objects in the same line of sight. Using Virtual Observatory tools, we cross-match these lists with the UCAC3 catalogue to get the proper motions of the objects. In the vector point diagram, we identify the different moving groups, and use this information to study the membership of proposed candidate members of the associations from the literature. For those objects with available radial velocities, we compute their Galactic space velocities. We look for correlations between the known properties of the objects and their proper motions. Results: The members of the dark clouds exhibit clearly different proper motions from those of the foreground associations and of the background stars. The data suggest that Chamaeleon II could have different dynamical properties from Chamaeleon I. Although the two foreground clusters ɛ and η Chamaeleontis constitute two different proper motion groups, they have similar spatial motions, which are different from the spatial motion of Chamaeleon I. On the other hand, the space motions of the Chamaeleon II stars look more similar to those of the foreground clusters than to the Chamaeleon I stars, but the numbers are low. We find no correlations between the proper motions and the properties of the objects in either of the clouds. Conclusions: On the basis of proper motion, Chamaeleon I and II constitute two physical entities unrelated to the

  6. Plans for the Second Epoch of the Southern Proper-Motion Program

    NASA Astrophysics Data System (ADS)

    Lopez, C. E.; Lee, J. F.; van Altena, W.

    The first photographs for the Yale-San Juan Southern Proper Motion program with respect to faint galaxies were taken with the collaboration of Columbia University in 1965. The first epoch photography was essentially completed in 1974 and plans are now under way to begin the second epoch observations in 1986.

  7. The Proper Motion of M31 Vast Plane Galaxy LGS3

    NASA Astrophysics Data System (ADS)

    Shaya, Edward

    2014-10-01

    We propose to measure the proper motion of Local Group dwarf galaxy LGS-3 with a 10 year baseline provided by existing first epoch ACS imaging. An HST-determined proper motion can both constrain the mass of M31 to 20% and test whether LGS-3 is indeed a part of the recently discovered thin plane of M31 dwarf galaxies (Ibata et al., 2013). If it is, we will trace its orbit backwards in time to understand the origin of this plane; how it formed, how it persists, and why all of the blueshifted members are on one side of M31 and the redshifted members are on the other side.The long HST baseline and the fact that the field is extra rich in background galaxies that can define an excellent reference frame will allow a second epoch of deep images in the ACS to reach a proper motion error of about 7 - 8 microas/yr in each angular component. At the distance of LGS-3, Gaia is unlikely to detect any stars, making this a measurement that can only be made by HST.There are two important reasons to learn the 3-d velocity of this particular galaxy. The distance of LGS-3 from M31 is known to 2% accuracy, and modeling indicates that LGS 3 is falling nearly radially toward M31 with proper motion amplitude of ~60 microas/yr (Shaya & Tully, 2014). Therefore, a proper motion that refines this value can constrain the mass of M31 to 20% and through the Local Group timing argument, will also constrain the mass of the MW to 30%. LGS 3 happens to be in a recently discovered thin plane of dwarf galaxies. It is important to get the 3-d velocity of at least one of these to discriminate between different theories about the origin of such planes of galaxies or else to point to new possibilities.

  8. A Proper Motion Survey Using the First Sky Pass of NEOWISE-reactivation Data

    NASA Astrophysics Data System (ADS)

    Schneider, Adam C.; Greco, Jennifer; Cushing, Michael C.; Kirkpatrick, J. Davy; Mainzer, Amy; Gelino, Christopher R.; Fajardo-Acosta, Sergio B.; Bauer, James

    2016-02-01

    The Wide-field Infrared Survey Explorer (WISE) was reactivated in 2013 December (NEOWISE) to search for potentially hazardous near-Earth objects. We have conducted a survey using the first sky pass of NEOWISE data and the AllWISE catalog to identify nearby stars and brown dwarfs with large proper motions ({μ }{{total}} ≳ 250 mas yr-1). A total of 20,548 high proper motion objects were identified, 1006 of which are new discoveries. This survey has uncovered a significantly larger sample of fainter objects (W2 ≳ 13 mag) than the previous WISE motion surveys of Luhman and Kirkpatrick et al. Many of these objects are predicted to be new L and T dwarfs based on near- and mid-infrared colors. Using estimated spectral types along with distance estimates, we have identified several objects that likely belong to the nearby solar neighborhood (d < 25 pc). We have followed up 19 of these new discoveries with near-infrared or optical spectroscopy, focusing on potentially nearby objects, objects with the latest predicted spectral types, and potential late-type subdwarfs. This subset includes six M dwarfs, five of which are likely subdwarfs, as well as eight L dwarfs and five T dwarfs, many of which have blue near-infrared colors. As an additional supplement, we provide 2MASS and AllWISE positions and photometry for every object found in our search, as well as 2MASS/AllWISE calculated proper motions.

  9. Proper motions and membership probabilities of stars in the region of globular cluster NGC 6366

    NASA Astrophysics Data System (ADS)

    Sariya, Devesh P.; Yadav, R. K. S.

    2015-12-01

    Context. NGC 6366 is a metal-rich globular cluster that is relatively unstudied. It is a kinematically interesting cluster, reported as belonging to the slowly rotating halo system, which is unusual given its metallicity and spatial location in the Galaxy. Aims: The purpose of this research is to determine the relative proper motion and membership probability of the stars in the region of globular cluster NGC 6366. To target cluster members reliably during spectroscopic surveys without including field stars, a good proper motion and membership probability catalogue of NGC 6366 is needed. Methods: To derive relative proper motions, the archival data from the Wide Field Imager mounted on the ESO 2.2 m telescope have been reduced using a high precision astrometric software. The images used are in the B,V, and I photometric bands with an epoch gap of ~3.2 yr. The calibrated BVI magnitudes have been determined using recent data for secondary standard stars. Results: We determined relative proper motions and cluster membership probabilities for 2530 stars in the field of globular cluster NGC 6366. The median proper motion rms errors for stars brighter than V ~ 18 mag is ~2 mas yr-1, which gradually increases to ~5 mas yr-1 for stars having magnitudes V ~ 20 mag. Based on the membership catalogue, we checked the membership status of the X-ray sources and variable stars of NGC 6366 mentioned in the literature. We also provide the astronomical community with an electronic catalogue that includes B, V, and I magnitudes; relative proper motions; and membership probabilities of the stars in the region of NGC 6366. Based on observations with the MPG/ESO 2.2 m and ESO/VLT telescopes, located at La Silla and Paranal Observatory, Chile, under DDT programs 164.O-0561(F), 71.D-0220(A) and the archive material.Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A59

  10. A FIRST MEASUREMENT OF THE PROPER MOTION OF THE LEO II DWARF SPHEROIDAL GALAXY

    SciTech Connect

    Lepine, Sebastien; Koch, Andreas; Rich, R. Michael; Kuijken, Konrad

    2011-11-10

    We use 14 year baseline images obtained with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope (HST) to derive a proper motion for one of the Milky Way's most distant dwarf spheroidal companions, Leo II, relative to an extragalactic background reference frame. Astrometric measurements are performed in the effective point-spread function formalism using our own developed code. An astrometric reference grid is defined using 3224 stars that are members of Leo II and brighter than a magnitude of 25 in the F814W band. We identify 17 compact extragalactic sources, for which we measure a systemic proper motion relative to this stellar reference grid. We derive a proper motion [{mu}{sub {alpha},{mu}{delta}}] = [+104 {+-}113,-33 {+-} 151] {mu}as yr{sup -1} for Leo II in the heliocentric reference frame. Though marginally detected, the proper motion yields constraints on the orbit of Leo II. Given a distance of d {approx_equal} 230 kpc and a heliocentric radial velocity v{sub r} = +79 km s{sup -1}, and after subtraction of the solar motion, our measurement indicates a total orbital motion v{sub G} = 266.1 {+-} 128.7 km s{sup -1} in the Galactocentric reference frame, with a radial component v{sub r{sub G}}=21.5{+-}4.3 km s{sup -1} and tangential component v{sub t{sub G}} = 265.2 {+-} 129.4 km s{sup -1}. The small radial component indicates that Leo II either has a low-eccentricity orbit or is currently close to perigalacticon or apogalacticon distance. We see evidence for systematic errors in the astrometry of the extragalactic sources which, while close to being point sources, are slightly resolved in the HST images. We argue that more extensive observations at later epochs will be necessary to better constrain the proper motion of Leo II. We provide a detailed catalog of the stellar and extragalactic sources identified in the HST data which should provide a solid early-epoch reference for future astrometric measurements.

  11. Optical BVRI photometry of common proper motion F/G/K+M wide separation binaries

    SciTech Connect

    Li, Ting; Marshall, Jennifer L.; Williams, Patrick; Chavez, Joy; Lépine, Sébastien

    2014-10-01

    We present optical (BVRI) photometric measurements of a sample of 76 common proper motion wide separation main-sequence binary pairs. The pairs are composed of a F-, G-, or K-type primary star and an M-type secondary. The sample is selected from the revised NLTT catalog and the LSPM catalog. The photometry is generally precise to 0.03 mag in all bands. We separate our sample into two groups, dwarf candidates and subdwarf candidates, using the reduced proper motion diagram constructed with our improved photometry. The M subdwarf candidates in general have larger V – R colors than the M dwarf candidates at a given V – I color. This is consistent with an average metallicity difference between the two groups, as predicted by the PHOENIX/BT-Settl models. The improved photometry will be used as input into a technique to determine the metallicities of the M-type stars.

  12. Discovery of High Proper-Motion Ancient White Dwarfs: Nearby Massive Compact Halo Objects?

    PubMed

    Ibata; Irwin; Bienaymé; Scholz; Guibert

    2000-03-20

    We present the discovery and spectroscopic identification of two very high proper-motion ancient white dwarf stars, found in a systematic proper-motion survey. Their kinematics and apparent magnitude clearly indicate that they are halo members, while their optical spectra are almost identical to the recently identified cool halo white dwarf WD 0346+246. Canonical stellar halo models predict a white dwarf volume density that is 2 orders of magnitude less than the rho approximately 7x10-4 M middle dot in circle pc-3 inferred from this survey. With the caveat that the sample size is very small, it appears that a significant fraction, approximately 10%, of the local dark matter halo is in the form of very old, cool, white dwarfs. PMID:10702128

  13. Optical BVRI Photometry of Common Proper Motion F/G/K+M Wide Separation Binaries

    NASA Astrophysics Data System (ADS)

    Li, Ting; Marshall, Jennifer L.; Lépine, Sébastien; Williams, Patrick; Chavez, Joy

    2014-10-01

    We present optical (BVRI) photometric measurements of a sample of 76 common proper motion wide separation main-sequence binary pairs. The pairs are composed of a F-, G-, or K-type primary star and an M-type secondary. The sample is selected from the revised NLTT catalog and the LSPM catalog. The photometry is generally precise to 0.03 mag in all bands. We separate our sample into two groups, dwarf candidates and subdwarf candidates, using the reduced proper motion diagram constructed with our improved photometry. The M subdwarf candidates in general have larger V - R colors than the M dwarf candidates at a given V - I color. This is consistent with an average metallicity difference between the two groups, as predicted by the PHOENIX/BT-Settl models. The improved photometry will be used as input into a technique to determine the metallicities of the M-type stars.

  14. Discovery of High Proper-Motion Ancient White Dwarfs: Nearby Massive Compact Halo Objects?

    PubMed

    Ibata; Irwin; Bienaymé; Scholz; Guibert

    2000-03-20

    We present the discovery and spectroscopic identification of two very high proper-motion ancient white dwarf stars, found in a systematic proper-motion survey. Their kinematics and apparent magnitude clearly indicate that they are halo members, while their optical spectra are almost identical to the recently identified cool halo white dwarf WD 0346+246. Canonical stellar halo models predict a white dwarf volume density that is 2 orders of magnitude less than the rho approximately 7x10-4 M middle dot in circle pc-3 inferred from this survey. With the caveat that the sample size is very small, it appears that a significant fraction, approximately 10%, of the local dark matter halo is in the form of very old, cool, white dwarfs.

  15. Four years experience in APMS star plate processing - Results and future plans. [Automated Proper Motion Study

    NASA Technical Reports Server (NTRS)

    Newcomb, J. S.

    1975-01-01

    The present paper describes an automated system for measuring stellar proper motions on the basis of information contained in photographic plates. In this system, the images on a star plate are digitized by a scanning microdensitometer using light from a He-Ne gas laser, and a special-purpose computer arranges the measurements in computer-compatible form on magnetic tape. The scanning and image-reconstruction processes are briefly outlined, and the image-evaluation techniques are discussed. It is shown that the present system has been especially successful in measuring the proper motions of low-luminosity stars, including 119 stars with less than 1/10,000 of the solar bolometric luminosity. Plans for measurements of high-density Milky Way star plates are noted.

  16. Proper motion of the Draco dwarf galaxy based on Hubble space telescope imaging

    SciTech Connect

    Pryor, Carlton; Piatek, Slawomir; Olszewski, Edward W. E-mail: piatek@physics.rutgers.edu

    2015-02-01

    We have measured the proper motion of the Draco dwarf galaxy using images at two epochs with a time baseline of about two years taken with the Hubble Space Telescope Advanced Camera for Surveys. Wide Field Channels 1 and 2 provide two adjacent fields, each containing a known QSO. The zero point for the proper motion is determined using both background galaxies and the QSOs and the two methods produce consistent measurements within each field. Averaging the results from the two fields gives a proper motion in the equatorial coordinate system of (μ{sub α},μ{sub δ})=(17.7±6.3,−22.1±6.3) mas century{sup −1} and in the Galactic coordinate system of (μ{sub ℓ},μ{sub b})=(−23.1±6.3,−16.3±6.3) mas century{sup −1}. Removing the contributions of the motion of the Sun and of the LSR to the measured proper motion yields a Galactic rest-frame proper motion of (μ{sub α}{sup Grf},μ{sub δ}{sup Grf})=(51.4±6.3,−18.7±6.3) mas century{sup −1} and (μ{sub ℓ}{sup Grf},μ{sub b}{sup Grf})=(−21.8±6.3,−50.1±6.3) mas century{sup −1}. The implied space velocity with respect to the Galactic center is (Π,Θ,Z)=(27±14,89±25,−212±20) km s{sup −1}. This velocity implies that the orbital inclination is 70{sup ∘}, with a 95% confidence interval of (59{sup ∘},80{sup ∘}), and that the plane of the orbit is consistent with that of the vast polar structure (VPOS) of Galactic satellite galaxies.

  17. Astrometry with MCAO: HST-GeMS proper motions in the globular cluster NGC 6681

    NASA Astrophysics Data System (ADS)

    Massari, D.; Fiorentino, G.; McConnachie, A.; Bellini, A.; Tolstoy, E.; Turri, P.; Andersen, D.; Bono, G.; Stetson, P. B.; Veran, J.-P.

    2016-10-01

    Aims: For the first time the astrometric capabilities of the Gemini Multi-Conjugate Adaptive Optics System (GeMS) facility at the Gemini South Adaptive Optics Imager (GSAOI) camera on Gemini-South are tested to quantify the accuracy in determining stellar proper motions in the Galactic globular cluster NGC 6681. Methods: Proper motions from the Hubble Space Telescope (HST) for a sample of its stars are already available, allowing us to construct a distortion-free reference at the epoch of GeMS observations that is used to measure and correct the temporally changing distortions for each GeMS exposure. In this way, we are able to compare the corrected GeMS images with a first-epoch of HST-Advanced Camera for Survey (ACS) images to recover the relative proper motion of the Sagittarius dwarf spheroidal galaxy with respect to NGC 6681. Results: We find this to be (μαcosδ,μδ) = (4.09,-3.41)mas yr-1, which matches previous HST/ACS measurements with a very good accuracy of 0.03 mas yr-1 and with a comparable precision (rms of 0.43 mas yr-1). Conclusions: This study successfully demonstrates that high-quality proper motions can be measured for relatively large fields of view (85''× 85'') with MCAO-assisted, ground-based cameras and provides a first, successful test of the performances of GeMS on multi-epoch data. The final reduced data (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/L2

  18. X-ray Proper Motions and Shock Speeds along the Northwest Rim of SN1006

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Long, Knox S.; Petre, Robert; Reynolds, Stephen P.; Williams, Brian J.; Winkler, P. Frank

    2012-01-01

    We report the results of an X-ray proper motion measurement for the NW rim of SN 1006, carried out by comparing Chandra observations from 2001 and 2012. The NW limb has predominantly thermal X-ray emission, and it is the only location in SN 1006 with signi cant optical emission: a thin, Balmer-dominated lament. For most of the NW rim, the proper motion is approximately equal to 0.30"yr(exp -1), essentially the same as has been measured from the H alpha lament. Isolated regions of the NW limb are dominated by nonthermal emission, and here the proper motion is much higher, 0:49"yr(exp -1), close to the value measured in X-rays along the much brighter NE limb, where the X-rays are overwhelmingly nonthermal. At the 2.2 kpc distance to SN 1006, the proper motions imply shock velocities of approximately 3000 kms(exp -1) and approximately 5000 kms(exp -1) in the thermal and nonthermal regions, respectively. A lower velocity behind the H alpha filament is consistent with the picture that SN 1006 is encountering denser gas in the NW, as is also suggested by its overall morphology. In the thermally-dominated portion of the X-ray shell, we also see an o set in the radial profiles at different energies; the 0.5-0.6 keV peak dominated by O VII is closer to the shock front than that of the 0.8-3 keV emission|due to the longer times for heavier elements to reach ionization states where they produce strong X-ray emission.

  19. VVV High proper motion stars I. The catalogue of bright KS ≤ 13.5 stars

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Gromadzki, M.; Beamín, J. C.; Folkes, S. L.; Pena Ramirez, K.; Ivanov, V. D.; Borissova, J.; Villanueva, V.; Minniti, D.; Mendez, R.; Lucas, P. W.; Smith, L. C.; Pinfield, D. J.; Kuhn, M. A.; Jones, H. R. A.; Antonova, A.; Yip, A. K. P.

    2016-09-01

    Knowledge of the stellar content near the Sun is important for a broad range of topics ranging from the search for planets to the study of Milky Way structure. The most powerful method for identifying potentially nearby stars is proper motion (PM) surveys. All old optical surveys avoid, or are at least substantially incomplete, near the Galactic plane. The depth and breadth of the "Vista Variables in Vía Láctea" (VVV) near-IR survey significantly improves this situation. Taking advantage of the VVV survey database, we have measured PMs in the densest regions of the MW bulge and southern plane in order to complete the census of nearby objects. We have developed a custom PM pipeline based on VVV catalogues from the Cambridge Astronomy Survey Unit (CASU), by comparing the first epoch of JHKS with the multi-epoch KS-bands acquired later. Taking advantage of the large time baseline between the 2MASS and the VVV observations, we also obtained 2MASS-VVV PMs. We present a near-IR proper motion catalogue for the whole area of the VVV survey, which includes 3003 moving stellar sources. All of these have been visually inspected and are real PM objects. Our catalogue is in very good agreement with the proper motion data supplied in IR catalogues outside the densest zone of the MW. The majority of the PM objects in our catalogue are nearby M-dwarfs, as expected. This new database allow us to identify 57 common proper motion binary candidates, among which are two new systems within 30 pc of the Sun.

  20. X-RAY PROPER MOTIONS AND SHOCK SPEEDS ALONG THE NORTHWEST RIM OF SN 1006

    SciTech Connect

    Katsuda, Satoru; Long, Knox S.; Williams, Brian J.; Petre, Robert; Reynolds, Stephen P.; Winkler, P. Frank E-mail: long@stsci.edu E-mail: reynolds@ncsu.edu

    2013-02-15

    We report the results of an X-ray proper-motion measurement for the NW rim of SN 1006, carried out by comparing Chandra observations from 2001 to 2012. The NW limb has predominantly thermal X-ray emission, and it is the only location in SN 1006 with significant optical emission: a thin, Balmer-dominated filament. For most of the NW rim, the proper motion is Almost-Equal-To 0.''30 yr{sup -1}, essentially the same as has been measured from the H{alpha} filament. Isolated regions of the NW limb are dominated by nonthermal emission, and here the proper motion is much higher, 0.''49 yr{sup -1}, close to the value measured in X-rays along the much brighter NE limb, where the X-rays are overwhelmingly nonthermal. At the 2.2 kpc distance to SN 1006, the proper motions imply shock velocities of {approx}3000 km s{sup -1} and {approx}5000 km s{sup -1} in the thermal and nonthermal regions, respectively. A lower velocity behind the H{alpha} filament is consistent with the picture that SN 1006 is encountering denser gas in the NW, as is also suggested by its overall morphology. In the thermally dominated portion of the X-ray shell, we also see an offset in the radial profiles at different energies; the 0.5-0.6 keV peak dominated by O VII is closer to the shock front than that of the 0.8-3 keV emission-due to the longer times for heavier elements to reach ionization states where they produce strong X-ray emission.

  1. WATER MASERS IN THE ANDROMEDA GALAXY: THE FIRST STEP TOWARD PROPER MOTION

    SciTech Connect

    Darling, Jeremy

    2011-05-01

    We have detected and confirmed five water maser complexes in the Andromeda Galaxy (M31) using the Green Bank Telescope. These masers will provide the high brightness temperature point sources needed for proper motion studies of M31, enabling measurement of its full three-dimensional velocity vector and its geometric distance via proper rotation. The motion of M31 is the keystone of Local Group dynamics and a gateway to the dark matter profiles of galaxies in general. Our survey for water masers selected 206 luminous compact 24 {mu}m emitting regions in M31 and was sensitive enough to detect any maser useful for {approx}10 {mu}as yr{sup -1} astrometry. The newly discovered masers span the isotropic luminosity range (0.3-1.9) x 10{sup -3} L{sub sun} in single spectral components and are analogous to luminous Galactic masers. The masers are distributed around the molecular ring, including locations close to the major and minor axes, which is nearly ideal for proper motion studies. We find no correlation between 24 {mu}m luminosity and water maser luminosity, suggesting that while water masers arise in star-forming regions, the nonlinear amplification pathways and beamed nature of the water masers means that they are not predictable based on IR luminosity alone. This suggests that there are additional bright masers to be found in M31. We predict that the geometric distance and systemic proper motion of M31 can be measured in 2-3 years with current facilities. A 'moving cluster' observation of diverging masers as M31 approaches the Galaxy may be possible in the long term.

  2. Characterization of High Proper Motion Objects from the Wide-field Infrared Survey Explorer

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Sheppard, Scott S.

    2014-06-01

    We present an analysis of high proper motion objects that we have found in a recent study and in this work with multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE). Using photometry and proper motions from the Two Micron All-Sky Survey and WISE, we have identified the members of this sample that are likely to be late-type, nearby, or metal-poor. We have performed optical and near-infrared spectroscopy on 41 objects, from which we measure spectral types that range from M4-T2.5. This sample includes 11 blue L dwarfs and 5 subdwarfs; the latter were also classified as such in the recent study by Kirkpatrick and coworkers. Based on their spectral types and photometry, several of our spectroscopic targets may have distances of <20 pc with the closest at ~12 pc. The tangential velocities implied by the spectrophotometric distances and proper motions indicate that four of the five subdwarfs are probably members of the Galactic halo while several other objects, including the early-T dwarf WISE J210529.08-623558.7, may belong to the thick disk. Based on data from the Wide-field Infrared Survey Explorer, the Two Micron All-Sky Survey, the NASA Infrared Telescope Facility, Gemini Observatory, the SOAR Telescope, and the Magellan Telescopes.

  3. Characterization of high proper motion objects from the wide-field infrared survey explorer

    SciTech Connect

    Luhman, K. L.; Sheppard, Scott S.

    2014-06-01

    We present an analysis of high proper motion objects that we have found in a recent study and in this work with multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE). Using photometry and proper motions from the Two Micron All-Sky Survey and WISE, we have identified the members of this sample that are likely to be late-type, nearby, or metal-poor. We have performed optical and near-infrared spectroscopy on 41 objects, from which we measure spectral types that range from M4-T2.5. This sample includes 11 blue L dwarfs and 5 subdwarfs; the latter were also classified as such in the recent study by Kirkpatrick and coworkers. Based on their spectral types and photometry, several of our spectroscopic targets may have distances of <20 pc with the closest at ∼12 pc. The tangential velocities implied by the spectrophotometric distances and proper motions indicate that four of the five subdwarfs are probably members of the Galactic halo while several other objects, including the early-T dwarf WISE J210529.08–623558.7, may belong to the thick disk.

  4. Determination of Proper Motions of Circumpolar Stars by Using Images from Ukrvo Plate Archives

    NASA Astrophysics Data System (ADS)

    Protsyuk, Yu.; Andruk, V.; Mazhaev, A.; Kovylianska, O.; Protsyuk, S.; Golovnya, V.

    UkrVO plate archives contain informationobtained at different time periods and in different observatories for the same regions of the sky [3, 5, 6, 7, 8]. It allows us to carry out joint processing of plates and to receive new results for interesting objects. To obtain proper motions of stars in circumpolar areas, we selected 34 photographic plates from the RI NAO archive and 161 plates from the archive of the MAO NAS. A mean epoch difference between the plates from these archives is 55 years. Scanning of the plates and data processing were independently carried out by both observatories. A catalog of equatorial positions for 195 thousand stars up to 15m was compiled in the RI NAO (black dots in Fig. 1). A catalog of equatorial positions for 1050 thousand stars up to 16.5m was compiled in MAO (gray dots in Fig. 1). A comparison of positions for common stars contained in these catalogs was conducted. A catalog of proper motions for 30 thousand common stars up to 15m was compiled using these two input catalogs. The obtained result suggests the advisability of processing of all observations to receive proper motions of stars up to 14-15m in the declination zone of 65° to 90°.

  5. ON THE CONNECTION OF THE APPARENT PROPER MOTION AND THE VLBI STRUCTURE OF COMPACT RADIO SOURCES

    SciTech Connect

    Moor, A.; Frey, S.; Lambert, S. B.; Bakos, J. E-mail: frey@sgo.fomi.hu E-mail: oleg.titov@ga.gov.au

    2011-06-15

    Many of the compact extragalactic radio sources that are used as fiducial points to define the celestial reference frame are known to have proper motions detectable with long-term geodetic/astrometric very long baseline interferometry (VLBI) measurements. These changes can be as high as several hundred microarcseconds per year for certain objects. When imaged with VLBI at milliarcsecond (mas) angular resolution, these sources (radio-loud active galactic nuclei) typically show structures dominated by a compact, often unresolved 'core' and a one-sided 'jet'. The positional instability of compact radio sources is believed to be connected with changes in their brightness distribution structure. For the first time, we test this assumption in a statistical sense on a large sample rather than on only individual objects. We investigate a sample of 62 radio sources for which reliable long-term time series of astrometric positions as well as detailed 8 GHz VLBI brightness distribution models are available. We compare the characteristic direction of their extended jet structure and the direction of their apparent proper motion. We present our data and analysis method, and conclude that there is indeed a correlation between the two characteristic directions. However, there are cases where the {approx}1-10 mas scale VLBI jet directions are significantly misaligned with respect to the apparent proper motion direction.

  6. Radial velocities for the HIPPARCOS-Gaia Hundred-Thousand-Proper-Motion project

    NASA Astrophysics Data System (ADS)

    de Bruijne, J. H. J.; Eilers, A.-C.

    2012-10-01

    Context. The Hundred-Thousand-Proper-Motion (HTPM) project will determine the proper motions of ~113 500 stars using a ~23-year baseline. The proper motions will be based on space-based measurements exclusively, with the Hipparcos data, with epoch 1991.25, as first epoch and with the first intermediate-release Gaia astrometry, with epoch ~2014.5, as second epoch. The expected HTPM proper-motion standard errors are 30-190 μas yr-1, depending on stellar magnitude. Aims: Depending on the astrometric characteristics of an object, in particular its distance and velocity, its radial velocity can have a significant impact on the determination of its proper motion. The impact of this perspective acceleration is largest for fast-moving, nearby stars. Our goal is to determine, for each star in the Hipparcos catalogue, the radial-velocity standard error that is required to guarantee a negligible contribution of perspective acceleration to the HTPM proper-motion precision. Methods: We employ two evaluation criteria, both based on Monte-Carlo simulations, with which we determine which stars need to be spectroscopically (re-)measured. Both criteria take the Hipparcos measurement errors into account. The first criterion, the Gaussian criterion, is applicable to nearby stars. For distant stars, this criterion works but returns overly pessimistic results. We therefore use a second criterion, the robust criterion, which is equivalent to the Gaussian criterion for nearby stars but avoids biases for distant stars and/or objects without literature radial velocity. The robust criterion is hence our prefered choice for all stars, regardless of distance. Results: For each star in the Hipparcos catalogue, we determine the confidence level with which the available radial velocity and its standard error, taken from the XHIP compilation catalogue, are acceptable. We find that for 97 stars, the radial velocities available in the literature are insufficiently precise for a 68.27% confidence

  7. INVESTIGATION OF THE ERRORS IN SLOAN DIGITAL SKY SURVEY PROPER-MOTION MEASUREMENTS USING SAMPLES OF QUASARS

    SciTech Connect

    Dong Ruobing; Gunn, James; Knapp, Gillian; Rockosi, Constance

    2011-10-15

    We investigate in detail the probability distribution function (pdf) of the proper-motion measurement errors in the SDSS+USNO-B proper-motion catalog of Munn et al. using clean quasar samples. The pdf of the errors is well represented by a Gaussian core with extended wings, plus a very small fraction (<0.1%) of 'outliers'. We find that while formally the pdf could be well fit by a five-parameter fitting function, for many purposes it is also adequate to represent the pdf with a one-parameter approximation to this function. We apply this pdf to the calculation of the confidence intervals on the true proper motion for an SDSS+USNO-B proper-motion measurement, and discuss several scientific applications of the SDSS proper-motion catalog. Our results have various applications in studies of the galactic structure and stellar kinematics. Specifically, they are crucial for searching hyper-velocity stars in the Galaxy.

  8. The implementation of binned Kernel density estimation to determine open clusters' proper motions: validation of the method

    NASA Astrophysics Data System (ADS)

    Priyatikanto, R.; Arifyanto, M. I.

    2015-01-01

    Stellar membership determination of an open cluster is an important process to do before further analysis. Basically, there are two classes of membership determination method: parametric and non-parametric. In this study, an alternative of non-parametric method based on Binned Kernel Density Estimation that accounts measurements errors (simply called BKDE- e) is proposed. This method is applied upon proper motions data to determine cluster's membership kinematically and estimate the average proper motions of the cluster. Monte Carlo simulations show that the average proper motions determination using this proposed method is statistically more accurate than ordinary Kernel Density Estimator (KDE). By including measurement errors in the calculation, the mode location from the resulting density estimate is less sensitive to non-physical or stochastic fluctuation as compared to ordinary KDE that excludes measurement errors. For the typical mean measurement error of 7 mas/yr, BKDE- e suppresses the potential of miscalculation by a factor of two compared to KDE. With median accuracy of about 93 %, BKDE- e method has comparable accuracy with respect to parametric method (modified Sanders algorithm). Application to real data from The Fourth USNO CCD Astrograph Catalog (UCAC4), especially to NGC 2682 is also performed. The mode of member stars distribution on Vector Point Diagram is located at μ α cos δ=-9.94±0.85 mas/yr and μ δ =-4.92±0.88 mas/yr. Although the BKDE- e performance does not overtake parametric approach, it serves a new view of doing membership analysis, expandable to astrometric and photometric data or even in binary cluster search.

  9. Precessional parameters obtained from biased data of Hipparcos-FK5 proper motions

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Marco, F. J.; Lopez, J. A.

    2008-04-01

    The Hipparcos catalogue provides a reference frame in optical wavelength for the new ICRS. The differences in the system of proper motions of Hipparcos and the previous materialization of the reference frame, the FK5, are expected to be caused only by the combined effects of the motion of the equinox of the FK5 as well as the Luni-solar and planetary precession, but several authors have signaled the existence of an inconsistency for the proper motion differences of the FK5-Hipparcos with the ∆p values corresponding to the Luni-solar precession as determined from VLBI and LLR It is a fact that the widely employed parametric models do not remove the bias in the random variables. The introduction of a non parametric method, combined with the inner product in L2 over S 2 shows the necessity of removing the bias. The precessional formulas should be rearranged to be used in this case. When applying this model, the obtained values for the precession corrections are very consistent with the ones currently adopted by the IAU.

  10. An HST Proper-motion Study of the Large-scale Jet of 3C273

    NASA Astrophysics Data System (ADS)

    Meyer, Eileen T.; Sparks, William B.; Georganopoulos, Markos; Anderson, Jay; van der Marel, Roeland; Biretta, John; Sohn, Sangmo Tony; Chiaberge, Marco; Perlman, Eric; Norman, Colin

    2016-02-01

    The radio galaxy 3C 273 hosts one of the nearest and best-studied powerful quasar jets. Having been imaged repeatedly by the Hubble Space Telescope (HST) over the past twenty years, it was chosen for an HST program to measure proper motions in the kiloparsec-scale resolved jets of nearby radio-loud active galaxies. The jet in 3C 273 is highly relativistic on sub-parsec scales, with apparent proper motions up to 15c observed by very long baseline interferometry. In contrast, we find that the kiloparsec-scale knots are compatible with being stationary, with a mean speed of -0.2 ± 0.5c over the whole jet. Assuming the knots are packets of moving plasma, an upper limit of 1c implies a bulk Lorentz factor Γ < 2.9. This suggests that the jet has either decelerated significantly by the time it reaches the kiloparsec scale, or that the knots in the jet are standing shock features. The second scenario is incompatible with the inverse Compton off the Cosmic Microwave Background (IC/CMB) model for the X-ray emission of these knots, which requires the knots to be in motion, but IC/CMB is also disfavored in the first scenario due to energetic considerations, in agreement with the recent finding of Meyer & Georganopoulos which ruled out the IC/CMB model for the X-ray emission of 3C 273 via gamma-ray upper limits.

  11. Proper motion sky survey of 2.7 million stars with the Bordeaux automated CCD meridian circle .

    NASA Astrophysics Data System (ADS)

    Ducourant, C.; Le Campion, J. F.; Rapaport, M.; Camargo, J. I. B.; Soubiran, C.; Périe, J. P.; Teixeira, R.; Daigne, G.; Triaud, A.; Réquième, Y.; Fresneau, A.; Colin, J.

    The Bordeaux observatory astrometric group has made significant efforts to produce and exploit large data base surveys. This effort has been undertaken to extend and enrich the ICRS marterialized using Tycho2 catalogue. It includes the systematic re-observation of the Bordeaux Carte du Ciel zone with the Bordeaux automatic CCD meridian circle ; it also contains the digitization of ancient plate archive and the exploitation of large sky surveys such as the AC2000.2 catalogue, the USNO-A2.0 catalogue and the unpublished Yellow Sky (YS3) USNO catalogue. The whole effort led to the construction of three astrometric catalogues (M2000 [Rapaport et al. 2001], PM2000 [Ducourant et al. 2005] and CdC2000 [Rapaport et al. 2005]) of positions and proper motions (sigma 1-6 mas/yr) down to V 16.4 for 1/20 of the celestial sphere. The high precision achieved, allowed us to test the precision of the present day reference catalogues such as 2MASS and UCAC2 and to reveal systematic offsets in them. Due to its accurate proper motions, this catalogue offers a rich database for the cinematic analysis of Galactic stellar populations.

  12. A SEARCH FOR HIGH PROPER MOTION T DWARFS WITH Pan-STARRS1 + 2MASS + WISE

    SciTech Connect

    Liu, Michael C.; Deacon, Niall R.; Magnier, Eugene A.; Aller, Kimberly M.; Bowler, Brendan P.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Dupuy, Trent J.; Redstone, Joshua; Goldman, Bertrand; Price, P. A.

    2011-10-20

    We have searched {approx}8200 deg{sup 2} for high proper motion ({approx}0.''5-2.''7 year{sup -1}) T dwarfs by combining first-epoch data from the Pan-STARRS1 (PS1) 3{pi} Survey, the Two Micron All Sky Survey (2MASS) All-Sky Point Source Catalog, and the WISE Preliminary Data Release. We identified two high proper motion objects with the very red (W1 - W2) colors characteristic of T dwarfs, one being the known T7.5 dwarf GJ 570D. Near-IR spectroscopy of the other object (PSO J043.5395+02.3995 {identical_to} WISEP J025409.45+022359.1) reveals a spectral type of T8, leading to a photometric distance of 7.2 {+-} 0.7 pc. The 2.''56 year{sup -1} proper motion of PSO J043.5+02 is the second highest among field T dwarfs, corresponding to a tangential velocity of 87 {+-} 8 km s{sup -1}. According to the Besancon galaxy model, this velocity indicates that its galactic membership is probably in the thin disk, with the thick disk an unlikely possibility. Such membership is in accord with the near-IR spectrum, which points to a surface gravity (age) and metallicity typical of the field population. We combine 2MASS, Sloan Digital Sky Survey, WISE, and PS1 astrometry to derive a preliminary parallax of 171 {+-} 45 mas (5.8{sup +2.0} {sub -1.2} pc), the first such measurement using PS1 data. The proximity and brightness of PSO J043.5+02 will facilitate future characterization of its atmosphere, variability, multiplicity, distance, and kinematics. The modest number of candidates from our search suggests that the immediate ({approx}10 pc) solar neighborhood does not contain a large reservoir of undiscovered T dwarfs earlier than about T8.

  13. The geometric distance and proper motion of the Triangulum Galaxy (M33).

    PubMed

    Brunthaler, Andreas; Reid, Mark J; Falcke, Heino; Greenhill, Lincoln J; Henkel, Christian

    2005-03-01

    We measured the angular rotation and proper motion of the Triangulum Galaxy (M33) with the Very Long Baseline Array by observing two H2O masers on opposite sides of the galaxy. By comparing the angular rotation rate with the inclination and rotation speed, we obtained a distance of 730 +/- 168 kiloparsecs. This distance is consistent with the most recent Cepheid distance measurement. M33 is moving with a velocity of 190 +/- 59 kilometers per second relative to the Milky Way. These measurements promise a method to determine dynamical models for the Local Group and the mass and dark-matter halos of M31, M33, and the Milky Way.

  14. A Proper-Motion Census of Star-Forming Regions in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Kraus, Adam; Stauffer, John; Evans, Neal; Allers, Katelyn; Dunham, Michael; Lu, Jessica; Jaffe, Daniel

    2012-09-01

    Over the past decade, Spitzer has revolutionized our understanding of the membership, mass functions, and disk populations of the star-forming regions in the solar neighborhood. However, the faintest members of these populations have remained elusive, particularly in highly-embedded regions of ongoing star formation. Mid-infrared color selection is not effective at distinguishing proto-brown dwarfs and disk-free young stars from dusty galaxies or reddened field stars, and optical/NIR spectroscopic confirmation remains too expensive. The most cost-effective method to identify this missing population is to confirm common proper motion with their host regions. The astrometric performance of IRAC has been considered insufficient for this task, but as we demonstrate, our new characterization of the IRAC optical distortion improves the astrometric noise floor from 0.1-0.2 arcsec to 0.01-0.02 arcsec at each epoch, corresponding to proper motion uncertainties as low as 2 mas/yr. We propose a Spitzer/IRAC Exploration Science program for 560 hours to conduct second-epoch imaging for a proper-motion search of six stellar populations: Ophiuchus, Lupus, Chamaeleon, Perseus, Taurus, and Corona Australis. We will observe dense mosaics that span the areas which were previously observed during the cryogenic mission. In combination with the existing first-epoch astrometry, we will measure proper motions with uncertainties of <=5 mas/yr for sources as faint as m_[3.6] = 17.5, reaching photospheric fluxes corresponding to 1-2 MJup at 1 Myr. Our census will reveal the shape and slope of the proto(sub)stellar luminosity function, identify free-floating counterparts of young giant planets, search for the dynamical signatures of star formation models, and study disk evolution/dispersal and planet formation around the youngest and lowest-mass primaries. In summary, our program will unveil the last unidentified members in the benchmark star-forming regions which have been studied so

  15. Identifying low-mass members of nearby star clusters using proper motion & color selection

    NASA Astrophysics Data System (ADS)

    Pitts, Mark A.

    I present a combined kinematic and photometric search for new, low-mass (m ≤ 0.2 M⊙ ) members of nearby (d < 300 pc) star clusters. Using both proper motion and color criteria, a total of 33 low-mass objects have been newly recognized as members of the Taurus, Praesepe, and Pleiades clusters. In addition, 18 potential cluster members are noted, and 4 members are recovered from previous member searches. Multi-epoch imaging was performed using i-band Megacam observations unique to this study, combined with archival CFH telescope data in the optical I and Z bands. Near-infrared detections were also acquired from the 2MASS survey. The imaging data were processed using the Pan-STARRS IPP data pipeline software in order to provide high-precision relative astrometry, from which proper motions were extracted. Low-resolution, near-infrared spectroscopy from the IRTF telescope gives confirmation on the membership status of the selected candidates. The addition of proper motion criteria to complement the often-used color selection allows for a more effective identification of low-mass cluster members whose broadband spectral features are similar to the bulk of galactic field objects lying along the line-of-sight. Culling the candidates using proper motion also significantly reduces the amount of candidates that require spectroscopic follow-up, even in the NIR color-space with the highest levels of field contamination. Comparison of the search results to a galactic field model by Robin et al. (2003) provides strong evidence that brighter member candidates in Taurus (i < 17) found to be of mid-M spectral types are highly likely to be clusters members rather than field dwarfs. While the addition of new members to the Praesepe and Pleiades clusters are minor compared to the current known population, there is suggestive evidence that the mass function of Taurus is significantly lacking in mid-M dwarfs, and in fact may actually resemble the mass functions of other similarly

  16. USING RUNNING DIFFERENCE IMAGES TO TRACK PROPER MOTIONS OF XUV CORONAL INTENSITY ON THE SUN

    SciTech Connect

    Sheeley, N. R. Jr.; Warren, H. P.; Lee, J. E-mail: harry.warren@nrl.navy.mil; Chung, S.; Katz, J.; Namkung, M

    2014-12-20

    We have developed a procedure for observing and tracking proper motions of faint XUV coronal intensity on the Sun and have applied this procedure to study the collective motions of cellular plumes and the shorter-period waves in sunspots. Our space/time maps of cellular plumes show a series of tracks with the same 5-8 minute repetition times and ∼100 km s{sup –1} sky-plane speeds found previously in active-region fans and in coronal hole plumes. By synchronizing movies and space/time maps, we find that the tracks are produced by elongated ejections from the unipolar flux concentrations at the bases of the cellular plumes and that the phases of these ejections are uncorrelated from cell to cell. Thus, the large-scale motion is not a continuous flow, but is more like a system of independent conveyor belts all moving in the same direction along the magnetic field. In contrast, the proper motions in sunspots are clearly waves resulting from periodic disturbances in the sunspot umbras. The periods are ∼2.6 minutes, but the sky-plane speeds and wavelengths depend on the heights of the waves above the sunspot. In the chromosphere, the waves decelerate from 35-45 km s{sup –1} in the umbra to 7-8 km s{sup –1} toward the outer edge of the penumbra, but in the corona, the waves accelerate to ∼60-100 km s{sup –1}. Because chromospheric and coronal tracks originate from the same space/time locations, the coronal waves must emerge from the same umbral flashes that produce the chromospheric waves.

  17. ON THE INTERPRETATION OF RECENT PROPER MOTION DATA FOR THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Bekki, Kenji

    2011-03-20

    Recent observational studies using the Hubble Space Telescope have derived the center-of-mass proper motion (CMPM) of the Large Magellanic Cloud (LMC). Although these studies carefully treated both rotation and perspective effects in deriving the proper motion (PM) for each of the sampled fields, they did not consider the effects of local random motion in the derivation. This means that the average PM of the fields (i.e., the observed CMPM) could significantly deviate from the true CMPM, because the effect of local random motion cannot be close to zero in making the average PM for the small number of fields ({approx}10). We discuss how significantly the observationally derived CMPM can deviate from the true CMPM by applying the same method as used in the observations for a dynamical model of the LMC with a known true CMPM. We find that the deviation can be as large as {approx}50 km s{sup -1} ({approx}0.21 mas yr{sup -1}), if the LMC has a thick disk and a maximum circular velocity of {approx}120 km s{sup -1}. We also find that the deviation depends both on the total number of sampled fields and on the structure and kinematics of the LMC. We therefore suggest that there is a possibility that the observed CMPM of the LMC deviates from the true one to some extent. We also show that a simple mean of PM for a large number of LMC fields ({approx}1000) can be much closer to the true CMPM.

  18. Using Running Difference Images to Track Proper Motions of XUV Coronal Intensity on the Sun

    NASA Astrophysics Data System (ADS)

    Sheeley, N. R., Jr.; Warren, H. P.; Lee, J.; Chung, S.; Katz, J.; Namkung, M.

    2014-12-01

    We have developed a procedure for observing and tracking proper motions of faint XUV coronal intensity on the Sun and have applied this procedure to study the collective motions of cellular plumes and the shorter-period waves in sunspots. Our space/time maps of cellular plumes show a series of tracks with the same 5-8 minute repetition times and ~100 km s-1 sky-plane speeds found previously in active-region fans and in coronal hole plumes. By synchronizing movies and space/time maps, we find that the tracks are produced by elongated ejections from the unipolar flux concentrations at the bases of the cellular plumes and that the phases of these ejections are uncorrelated from cell to cell. Thus, the large-scale motion is not a continuous flow, but is more like a system of independent conveyor belts all moving in the same direction along the magnetic field. In contrast, the proper motions in sunspots are clearly waves resulting from periodic disturbances in the sunspot umbras. The periods are ~2.6 minutes, but the sky-plane speeds and wavelengths depend on the heights of the waves above the sunspot. In the chromosphere, the waves decelerate from 35-45 km s-1 in the umbra to 7-8 km s-1 toward the outer edge of the penumbra, but in the corona, the waves accelerate to ~60-100 km s-1. Because chromospheric and coronal tracks originate from the same space/time locations, the coronal waves must emerge from the same umbral flashes that produce the chromospheric waves.

  19. A SUBSTELLAR COMMON PROPER-MOTION COMPANION TO THE PLEIAD H II 1348

    SciTech Connect

    Geissler, Kerstin; Metchev, Stanimir A.; Pham, Alfonse; Larkin, James E.; McElwain, Michael; Hillenbrand, Lynne A.

    2012-02-10

    We announce the identification of a proper-motion companion to the star H II 1348, a K5 V member of the Pleiades open cluster. The existence of a faint point source 1.''1 away from H II 1348 was previously known from adaptive optics imaging by Bouvier et al. However, because of a high likelihood of background star contamination and in the absence of follow-up astrometry, Bouvier et al. tentatively concluded that the candidate companion was not physically associated with H II 1348. We establish the proper-motion association of the pair from adaptive optics imaging with the Palomar 5 m telescope. Adaptive optics spectroscopy with the integral field spectrograph OSIRIS on the Keck 10 m telescope reveals that the companion has a spectral type of M8 {+-} 1. According to substellar evolution models, the M8 spectral type resides within the substellar mass regime at the age of the Pleiades. The primary itself is a known double-lined spectroscopic binary, which makes the resolved companion, H II 1348B, the least massive and widest component of this hierarchical triple system and the first substellar companion to a stellar primary in the Pleiades.

  20. THE INTERNAL PROPER MOTIONS OF STARS IN THE OPEN CLUSTER M35

    SciTech Connect

    McNamara, Bernard J.; Harrison, Thomas E.; McArthur, Barbara E.; Fritz Benedict, G.

    2011-08-15

    Relative proper motions, based on 108 orbits of Hubble Space Telescope Fine Guidance Sensor data extending from 1992 to 2006, are reported for 74 stars in the open cluster M35 (NGC 2168). A subset of 22 of these objects are then used to compute the cluster's internal proper motion dispersions in both right ascension and declination. We find that these dispersions are equal to within their measurement errors. The average one-dimensional dispersion is 0.018 {+-} 0.002 arcsec century{sup -1}. When combined with the M35 radial velocity dispersion of 0.65 {+-} 0.10 km s{sup -1} found by Geller et al., this produces a cluster distance of 762 {+-} 145 pc. Using isochrone fits to the cluster main sequence, this distance suggests that M35 has an age of about 133 Myr. Although this age is consistent with that typically found for M35, the formal error in the dynamical distance of {+-}19% can accommodate ages between 65 Myr and 201 Myr.

  1. A deep proper motion catalog within the Sloan digital sky survey footprint

    SciTech Connect

    Munn, Jeffrey A.; Harris, Hugh C.; Tilleman, Trudy M.; Hippel, Ted von; Kilic, Mukremin; Liebert, James W.; Williams, Kurtis A.; DeGenarro, Steven; Jeffery, Elizabeth E-mail: hch@nofs.navy.mil E-mail: ted.vonhippel@erau.edu E-mail: jamesliebert@gmail.com E-mail: studiofortytwo@yahoo.com

    2014-12-01

    A new proper motion catalog is presented, combining the Sloan Digital Sky Survey (SDSS) with second epoch observations in the r band within a portion of the SDSS imaging footprint. The new observations were obtained with the 90prime camera on the Steward Observatory Bok 90 inch telescope, and the Array Camera on the U.S. Naval Observatory, Flagstaff Station, 1.3 m telescope. The catalog covers 1098 square degrees to r = 22.0, an additional 1521 square degrees to r = 20.9, plus a further 488 square degrees of lesser quality data. Statistical errors in the proper motions range from 5 mas year{sup −1} at the bright end to 15 mas year{sup −1} at the faint end, for a typical epoch difference of six years. Systematic errors are estimated to be roughly 1 mas year{sup −1} for the Array Camera data, and as much as 2–4 mas year{sup −1} for the 90prime data (though typically less). The catalog also includes a second epoch of r band photometry.

  2. PROPER MOTIONS IN KAPTEYN SELECTED AREA 103: A PRELIMINARY ORBIT FOR THE VIRGO STELLAR STREAM

    SciTech Connect

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Van Altena, William F.; Majewski, Steven R.; Carlin, Jeffrey L.; Vivas, A. Katherina; Wilhelm, Ronald; Beers, Timothy C.

    2009-08-10

    We present absolute proper motions in Kapteyn Selected Area (SA) 103. This field is located 7 deg. west of the center of the Virgo Stellar Stream (VSS), and has a well-defined main sequence representing the stream. In SA 103, we identify one RR Lyrae star as a member of the VSS, according to its metallicity, radial velocity, and distance. VSS candidate turnoff and subgiant stars have proper motions consistent with that of the RR Lyrae star. The three-dimensional velocity data imply an orbit with a pericenter of {approx}11 kpc and an apocenter of {approx}90 kpc. Thus, the VSS comprises tidal debris found near the pericenter of a highly destructive orbit. Examining the six globular clusters at distances larger than 50 kpc from the Galactic center, and the proposed orbit of the VSS, we find one tentative association, NGC 2419. We speculate that NGC 2419 is possibly the nucleus of a disrupted system of which the VSS is a part.

  3. Proper Motion of the Irradiated Jet HH 399 in the Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Biretta, J.; Wardle, M.

    2005-05-01

    HH 399 is one of the first Herbig-Haro flows recognized to be irradiated by the UV radiation of the massive O7.5 star in the Trifid Nebula. We present the proper motion of the first irradiated jet, based on two epochs of Hubble Space Telescope (HST) observations of HH 399 separated by nearly 5 yr, using Hα and [S II] line filters. High proper motion with continuous velocities between 200+/-55 and 528+/-24 km s-1 is detected in both lines along the 18" extent of the jet axis. The irradiated fully ionized jet consists of numerous knots along the jet but also shows evidence for a number of isolated blob like structures running immediately outside the jet with lower transverse velocities. The transverse velocities combined with radial velocity measurements indicate that the jet axis lies away from the plane of the sky by only a few degrees. We argue that the jet is fully ionized, based on a [S II]/Hα line ratio, as well as radio continuum emission detected from the full extent of the jet at a 3.6 cm wavelength. The stellar mass-loss rate producing HH 399 is estimated to be ~2×10-6 Msolar yr-1.

  4. VizieR Online Data Catalog: Corrected proper motion for HIP stars (Damljanovic+, 2011)

    NASA Astrophysics Data System (ADS)

    Damljanovic, G.; Milic, I. S.

    2011-11-01

    During the last century, there were many so-called independent latitude (IL) stations with the observations which were included into data of a few international organizations (like Bureau International de l'Heure - BIH, International Polar Motion Service - IPMS) and the Earth rotation programmes for determining the Earth Orientation Parameters - EOP. Because of this, nowadays, there are numerous astrometric ground-based observations (made over many decades) of some stars included in the Hipparcos Catalogue (ESA 1997, Cat. I/239). We used these latitude data for the inverse investigations - to improve the proper motions in declination μδ of the mentioned Hipparcos stars. We determined the corrections Δμδ and investigated agreement of our μδ and those from the catalogues Hipparcos and new Hipparcos (van Leeuwen 2007, Cat. I/311). To do this we used the latitude variations of 7 stations (Belgrade, Blagoveschtschensk, Irkutsk, Poltava, Pulkovo, Warsaw and Mizusawa), covering different intervals in the period 1904.7-1992.0, obtained with 6 visual and 1 floating zenith telescopes (Mizusawa). On the other hand, with regard that about two decades have elapsed since the Hipparcos ESA mission observations (the epoch of Hipparcos catalogue is 1991.25), the error of apparent places of Hipparcos stars has increased by nearly 20mas because of proper motion errors. Also, the mission lasted less than four years which was not enough for a sufficient accuracy of proper motions of some stars (such as double or multiple ones). Our method of calculation, and the calculated μδ for the common IL/Hipparcos stars are presented here. We constructed an IL catalogue of 1200 stars: there are 707 stars in the first part (with at least 20 years of IL observations) and 493 stars in the second one (less than 20 years). In the case of μδ of IL stars observed at some stations (Blagoveschtschensk, Irkutsk, Mizusawa, Poltava and Pulkovo) we find the formal errors less than the corresponding

  5. The first allwise proper motion discovery: Wisea J070720.50+170532.7

    SciTech Connect

    Wright, Edward L.; Mace, Gregory; McLean, Ian S.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Fajardo-Acosta, Sergio; Eisenhardt, Peter R.; Stern, Daniel; Skrutskie, M. F.; Oza, Apurva; Nelson, M. J.; Cushing, Michael C.; Reid, I. Neill; Fumagalli, Michele; Burgasser, Adam J.

    2014-03-01

    While quality checking a new motion-aware co-addition of all 12.5 months of Wide-field Infrared Survey Explorer (WISE) data, we found that the source WISE J070720.48+170533.0 moved 0.''9 in six months. Backtracking this motion allowed us to identify this source as 2MASS J07071961+1705464, with several entries in the USNO B catalog. An astrometric fit to these archival data gives a proper motion of μ = 1793 ± 2 mas yr{sup –1} and a parallax of piv = 35 ± 42 mas. Photometry from WISE, 2MASS, and the POSS can be fit reasonably well by a blackbody with T = 3658 K and an angular radius of 4.36 × 10{sup –11} radians. No clear evidence of H{sub 2} collision-induced absorption is seen in the near-infrared. An optical spectrum shows broad deep CaH bands at 638 and 690 nm, broad deep Na D at 598.2 nm, and weak or absent TiO, indicating that this source is an ultra-subdwarf M star with a radial velocity v {sub rad} ≈ –21 ± 18 km s{sup –1} relative to the Sun. Given its apparent magnitude, the distance is about 39 ± 9 pc and the tangential velocity is probably ≈330 km s{sup –1}, but a more precise parallax is needed to be certain.

  6. Blue straggler star populations in globular clusters - II. Proper-motion cleaned HST catalogues of BSSs in 38 Galactic GCs

    NASA Astrophysics Data System (ADS)

    Simunovic, Mirko; Puzia, Thomas H.

    2016-11-01

    We present new blue straggler star (BSS) catalogues in 38 Milky Way globular clusters (GCs) based on multipassband and multi-epoch treasury survey data from the Hubble Space Telescope. We measure precise astrometry and relative proper motions of stars in all target clusters and performed a subsequent cluster membership selection. We study the accuracy of our proper-motion measurements using estimates of central velocity dispersions and find very good agreement with previous studies in the literature. Finally, we present a homogeneous BSS selection method, that expands the classic BSS selection parameter space to more evolved BSS evolutionary stages. We apply this method to the proper-motion cleaned GC star catalogues in order to define proper-motion cleaned BSS catalogues in all 38 GCs, which we make publicly available to enable further study and follow-up observations.

  7. Lowell proper motion survey: Southern Hemisphere (Giclas, Burnham, and Thomas 1978). Documentation for the machine-readable version

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.

    1989-01-01

    The machine-readable version of the catalog, as it is currently being distributed from the Astronomical Data Center, is described. The catalog is a summary compilation of the Lowell Proper Motion Survey for the Southern Hemisphere, as completed to mid-1978 and published in the Lowell Observatory Bulletins. This summary catalog serves as a Southern Hemisphere companion to the Lowell Proper Motion Survey, Northern Hemisphere.

  8. A bag of tricks: Using proper motions of Galactic stars to identify the Hercules ultra-faint dwarf galaxy members

    NASA Astrophysics Data System (ADS)

    Fabrizio, M.; Raimondo, G.; Brocato, E.; Bellini, A.; Libralato, M.; Testa, V.; Cantiello, M.; Musella, I.; Clementini, G.; Carini, R.; Marconi, M.; Piotto, G.; Ripepi, V.; Buonanno, R.; Sani, E.; Speziali, R.

    2014-10-01

    Context. Discovered in the last decade as overdensities of resolved stars, the ultra-faint dwarfs (UFDs) are among the least luminous, most dark-matter dominated, and most metal-poor galaxies known today. They appear as sparse, loose objects with high mass-to-light ratios. Hercules is the prototype of the UFD galaxies. To date, there are still no firm constraints on its total luminosity due to the difficulty of disentangling Hercules bona-fide stars from the severe Galactic field contamination. Aims: To better constrain Hercules properties, we aim at removing foreground and background contaminants in the galaxy field using the proper motions of the Milky Way stars and the colour-colour diagram. Methods: We have obtained images of Hercules in the rSloan , BBessel and Uspec bands with the Large Binocular Telescope (LBT) and LBC-BIN mode capabilities. The rSloan new dataset combined with data from the LBT archive span a time baseline of about 5 yr, allowing us to measure proper motions of stars in the Hercules direction for the first time. The Uspec data along with existing LBT photometry allowed us to use colour-colour diagram to further remove the field contamination. Results: Thanks to a highly-accurate procedure to derive the rSloan -filter geometric distortion solution for the LBC-red, we were able to measure stellar relative proper motions to a precision of better than 5 mas yr-1 down to rSloan≃ 22 mag and disentangle a significant fraction (>90%) of Milky Way contaminants. We ended up with a sample of 528 sources distributed over a large portion of the galaxy body (~0.12 deg2). Of these sources, 171 turned out to be background galaxies and additional foreground stars from the analysis of the Uspec - BBessel vs. BBessel - rSloan colour-colour diagram. This leaves us with a sample of 357 likely members of the Hercules UFD. We compared the cleaned colour-magnitude diagram (CMD) with evolutionary models and synthetic CMDs, confirming the presence in Hercules of

  9. Very-Large-Scale Motions in the Atmospheric Boundary Layer Educed by Snapshot Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Shah, Stimit; Bou-Zeid, Elie

    2014-12-01

    Large-eddy simulations of the atmospheric boundary layer (ABL) under a wide range of stabilities are conducted to educe very-large-scale motions and then to study their dynamics and how they are influenced by buoyancy. Preliminary flow visualizations suggest that smaller-scale motions that resemble hairpins are embedded in much larger scale streamwise meandering rolls. Using simulations that represent more than 150 h of physical time, many snapshots in the -, - and -planes are then collected to perform snapshot proper orthogonal decomposition and further investigate the large structures. These analyses confirm that large streamwise rolls that share several features with the very-large-scale motions observed in laboratory studies arise as the dominant modes under most stabilities, but the effect of the surface kinematic buoyancy flux on the energy content of these dominant modes is very significant. The first two modes in the -plane in the neutral case contain up to 3 % of the total turbulent kinetic energy; they also have a vertical tilt angle in the -plane of about 0 to 30 due to the turning effect associated with the Coriolis force. Unstable cases also feature streamwise rolls, but in the convective ABL they are strengthened by rising plumes in between them, with two to four rolls spanning the whole domain in the first few modes; the Coriolis effect is much weaker in the unstable ABL. These rolls are no longer the dominant modes under stable conditions where the first mode is observed to contain sheet-like motions with high turbulent kinetic energy. Using these proper orthogonal decomposition modes, we are also able to extract the vertical velocity fields corresponding to individual modes and then to correlate them with the horizontal velocity or temperature fields to obtain the momentum and heat flux carried by individual modes. Structurally, the fluxes are explained by the topology of their corresponding modes. However, the fraction of the fluxes produced by

  10. VizieR Online Data Catalog: NEOWISE/AllWISE high proper motion objects (Schneider+, 2016)

    NASA Astrophysics Data System (ADS)

    Schneider, A. C.; Greco, J.; Cushing, M. C.; Kirkpatrick, J. D.; Mainzer, A.; Gelino, C. R.; Fajardo-Acosta, S. B.; Bauer, J.

    2016-04-01

    The NEOWISE reactivation mission was carried out using the W1 (3.4um) and W2 (4.6um) passbands of the WISE telescope. Considering the ~4 year time baseline between the first sky pass of NEOWISE and the first WISE epochs, our 1" search radius gives us a nominal minimum proper motion limit of ~250mas/yr (see section 2). Low-resolution (R=75-120) spectra were acquired for several sources with the upgraded SpeX spectrograph at the 3m NASA Infrared Telescope Facility (IRTF) on Mauna Kea. A summary of all IRTF/SpeX observations is given in Table 11. Three targets were observed with the Double Spectrograph on the Hale 5m telescope on the night of UT 2015 September 07. (3 data files).

  11. VizieR Online Data Catalog: 1103 parallaxes and proper motions from URAT (Finch+, 2016)

    NASA Astrophysics Data System (ADS)

    Finch, C. T.; Zacharias, N.

    2016-07-01

    We present 1103 trigonometric parallaxes and proper motions from the United States Naval Observatory (USNO) Robotic Astrometric Telescope (URAT) observations taken at the Naval Observatory Flagstaff Station (NOFS). URAT observes through a single filter (part of the dewar window) to provide a fixed bandpass of about 680 to 760nm. The clear aperture of the USNO astrograph is 206mm with a focal length of only 2m. A single exposure covers 28 square degrees with a resolution of 0.9arcsec/pixel. Each of the four large CCDs in the focal plane covers a 2.65 by 2.65 deg area on the sky. Data of all three years of operations (2012 April to 2015 June) at the NOFS are used here for this parallax investigation. For more details about the project, instrument, and observing the reader is referred to the URAT1 paper (Zacharias et al. 2015, cat. I/329). (3 data files).

  12. A Common Proper Motion Stellar Companion to HAT-P-7

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.; McElwain, Michael W.; Narita, Norio; Takahashi, Yasuhiro H.; Kuzuhara, Masayuki; Hirano, Teruyuki; Suenaga, Takuya

    2012-01-01

    We report that HAT-P-7 has a common proper motion stellar companion. The companion is located at approx. 3.9 arcsec to the east and estimated as an M5.5V dwarf based on its colors. We also confirm the presence of the third companion, which was first reported by Winn et al. (2009), based on long-term radial velocity measurements. We revisit the migration mechanism of HAT-P-7b given the presence of those companions, and propose sequential Kozai migration as a likely scenario in this system. This scenario may explain the reason for an outlier in the discussion of the spin-orbit alignment timescale for HAT-P-7b by Albrecht et al. (2012).

  13. Searching for common proper-motion companions in the Local Association and its young kinematic subgroups

    NASA Astrophysics Data System (ADS)

    Alonso-Floriano, F. J.; Caballero, J. A.; Montes, D.

    2013-05-01

    We describe the results of an ongoing project aimed to identify new members of young associations by searching for common proper-motion companions to already-known members. We have used the Aladin sky atlas of the Virtual Observatory and the 2MASS, USNO-B1 and PPMXL astro-photometric catalogues to look for new faint members in the the Local Association and its young kinematic groups (Tucana-Horologium, β Pictoris, AB Doradus). We have discovered several new late-type stellar companions. For one of the new identified objects, we have taken low-resolution spectroscopy to confirm its young nature and characterise its stellar properties. A detailed study of Tucana-Horologium has provided an unprecedented view of the moving group nucleus around β^{01+02+03} Tuc, which lies at the centre of the remnant of the cluster that originated the group.

  14. PG1258+593 and its common proper motion magnetic white dwarf counterpart

    NASA Astrophysics Data System (ADS)

    Girven, J.; Gänsicke, B. T.; Külebi, B.; Steeghs, D.; Jordan, S.; Marsh, T. R.; Koester, D.

    2010-05-01

    We confirm SDSSJ130033.48+590407.0 as a common proper motion companion to the well-studied hydrogen-atmosphere (DA) white dwarf PG1258+593 (GD322). The system lies at a distance of 68 +/- 3pc, where the angular separation of 16.1 +/- 0.1arcsec corresponds to a minimum binary separation of 1091 +/- 7au. SDSSJ1300+5904 is a cool (Teff = 6300 +/- 300K) magnetic white dwarf (B ~= 6mG). PG1258+593 is a DA white dwarf with Teff = 14790 +/- 77K and logg = 7.87 +/- 0.02. Using the white dwarf mass-radius relation implies the masses of SDSSJ1300+5904 and PG1258+593 are 0.54 +/- 0.06 and 0.54 +/- 0.01Msolar, respectively, and therefore a cooling age difference of 1.67 +/- 0.05Gyr. Adopting main-sequence lifetimes from stellar models, we derive an upper limit of 2.2Msolar for the mass of the progenitor of PG1258+593. A plausible range of initial masses is 1.4-1.8 Msolar for PG1258+593 and 2-3 Msolar for SDSSJ1300+5904. Our analysis shows that white dwarf common proper motion binaries can potentially constrain the white dwarf initial mass-final mass relation and the formation mechanism for magnetic white dwarfs. The magnetic field of SDSSJ1300+5904 is consistent with an Ap progenitor star. A common envelope origin of the system cannot be excluded, but requires a triple system as progenitor.

  15. OPTICAL PROPER MOTION MEASUREMENTS OF THE M87 JET: NEW RESULTS FROM THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Meyer, Eileen T.; Sparks, W. B.; Biretta, J. A.; Anderson, Jay; Sohn, Sangmo Tony; Van der Marel, Roeland P.; Norman, Colin; Nakamura, Masanori

    2013-09-10

    We report new results from a Hubble Space Telescope archival program to study proper motions in the optical jet of the nearby radio galaxy M87. Using over 13 yr of archival imaging, we reach accuracies below 0.1c in measuring the apparent velocities of individual knots in the jet. We confirm previous findings of speeds up to 4.5c in the inner 6'' of the jet, and report new speeds for optical components in the outer part of the jet. We find evidence of significant motion transverse to the jet axis on the order of 0.6c in the inner jet features, and superluminal velocities parallel and transverse to the jet in the outer knot components, with an apparent ordering of velocity vectors possibly consistent with a helical jet pattern. Previous results suggested a global deceleration over the length of the jet in the form of decreasing maximum speeds of knot components from HST-1 outward, but our results suggest that superluminal speeds persist out to knot C, with large differentials in very nearby features all along the jet. We find significant apparent accelerations in directions parallel and transverse to the jet axis, along with evidence for stationary features in knots D, E, and I. These results are expected to place important constraints on detailed models of kiloparsec-scale relativistic jets.

  16. Proper Motions of New Dust in the Colliding Wind Binary WR 140

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Tuthill, P. G.; Danchi, W. C.

    2002-03-01

    The eccentric W-R + O binary system WR 140 produces dust for a few months at intervals of 7.94 yr coincident with periastron passage. We present the first resolved images of this dust shell, at binary phases φ~0.039 and ~0.055, using aperture masking techniques on the Keck I telescope to achieve diffraction-limited resolution. Proper motions of approximately 1.1 mas per day were detected, implying a distance <~1.5 kpc from the known wind speed. The dust plume observed is not as simple as the ``pinwheel'' nebulae seen around other W-R colliding wind binaries, indicating the orbital plane is highly inclined to our line of sight and/or the dust formation is very clumpy. Follow-up imaging in the mid-infrared and with adaptive optics is urgently required to track the dust motion further, necessary for unambiguously determining the orbital geometry, which we only partially constrain here. With full knowledge of the orbital elements, these infrared images can be used to reconstruct the dust distribution along the colliding wind interface, providing a unique tool for probing the postshock physical conditions of violent astrophysical flows.

  17. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. 3; Measurement for URSA Minor

    NASA Technical Reports Server (NTRS)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2005-01-01

    This article presents a measurement of the proper motion of the Ursa Minor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope in two distinct fields. Each field contains a quasi-stellar object that serves as the "reference point". Integrating the motion of Ursa Minor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 40 (10, 76) and 89 (78, 160) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.39 (0.09, 0.79), and the orbital period is 1.5 (1.1, 2.7) Gyr. The orbit is retrograde and inclined by 124 degrees (94 deg, 36 deg ) to the Galactic plane. Ursa Minor is not a likely member of a proposed stream of galaxies on similar orbits around the Milky Way, nor is the plane of its orbit coincident with a recently proposed planar alignment of galaxies around the Milky Way. Comparing the orbits of Ursa Minor and Carina shows no reason for the different star formation histories of these two galaxies. Ursa Minor must contain dark matter to have a high probability of having survived disruption by the Galactic tidal force until the present.

  18. HST Astrometry in the 30 Doradus Region: Measuring Proper Motions of Individual Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Platais, Imants; van der Marel, Roeland P.; Lennon, Daniel J.; Anderson, Jay; Bellini, Andrea; Sabbi, Elena; Sana, Hugues; Bedin, Luigi R.

    2015-09-01

    We present measurements of positions and relative proper motions in the 30 Doradus region of the LMC. We detail the construction of a single-epoch astrometric reference frame, based on specially designed observations obtained with the two main imaging instruments Advanced Camera for Surveys/Wide Field Channel and Wide Field Camera 3/UVIS on board the Hubble Space Telescope (HST). Internal comparisons indicate a sub milliarcsecond (mas) precision in the positions and the presence of semi-periodic systematics with a mean amplitude of ˜0.8 mas. We combined these observations with numerous archival images taken with Wide Field Planetary Camera 2 and spanning 17 years. The precision of the resulting proper motions for well-measured stars around the massive cluster Radcliffe 136 (R136) can be as good as ˜20 μas yr-1, although the true accuracy of proper motions is generally lower due to the residual systematic errors. The observed proper-motion dispersion for our highest-quality measurements is ˜0.1 mas yr-1. Our catalog of positions and proper motions contains 86,590 stars down to V ˜ 25 and over a total area of ˜70 square arcmin. We examined the proper motions of 105 relatively bright stars and identified a total of six candidate runaway stars. We are able to tentatively confirm the runaway status of star VFTS 285, consistent with the findings from line of sight velocities, and to show that this star has likely been ejected from R136. This study demonstrates that with HST it is now possible to reliably measure proper motions of individual stars in the nearest dwarf galaxies such as the LMC.

  19. Globular Cluster Orbits from HST Proper Motions: Constraining the Formation and Mass of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Sohn, S. Tony; Van Der Marel, Roeland P.; Deason, Alis J.; Bellini, Andrea; Besla, Gurtina; Watkins, Laura

    2016-06-01

    The globular cluster (GC) system of the Milky Way (MW) provides important information on the MW's present structure and past evolution. GCs in the halo are particularly useful tracers; because of their long dynamical timescales, their orbits retain imprints of their origin or accretion history. Full 3D motions are required to calculate past orbits. While most GCs have known line of sight velocities, accurate proper motion (PM) measurements are currently available for only a few halo GCs. Our goal is to create the first high-quality PM database for halo GCs. We have identified suitable 1st-epoch data in the HST Archive for 20 halo GCs at 10-100 kpc from the Galactic Center. We are in the process of obtaining the necessary 2nd-epoch data to determine absolute PMs of the target GCs through our HST program GO-14235. We will use the same advanced astrometric techniques that allowed us to measure the PMs of M31 and Leo I. Previous studies of the halo GC system based on e.g., stellar populations, metallicities, RR Lyrae properties, and structural properties have revealed a dichotomy between old and young halo GCs. This may reflect distinct formation scenarios (in situ vs. accreted). Orbit calculations based on our PMs will directly test this. The PMs will also yield the best handle yet on the velocity anisotropy profile of any tracer population in the halo. This will resolve the mass-anisotropy degeneracy to provide an improved estimate of the MW mass, which is at present poorly known. In summary, our project will deliver the first accurate PMs for halo GCs, and will significantly increase our understanding of the formation, evolution, and mass of the MW.

  20. Discovery of new companions to high proper motion stars from the VVV Survey

    NASA Astrophysics Data System (ADS)

    Ivanov, Valentin D.; Minniti, Dante; Hempel, Maren; Kurtev, Radostin; Toledo, Ignacio; Saito, Roberto K.; Alonso-García, Javier; Beamín, Juan Carlos; Borissova, Jura; Catelan, Márcio; Chené, André-Nicolas; Emerson, Jim; González, Óscar A.; Lucas, Phillip W.; Martín, Eduardo L.; Rejkuba, Marina; Gromadzki, Mariusz

    2013-12-01

    Context. The severe crowding in the direction of the inner Milky Way suggests that the census of stars within a few tens of parsecs in that direction may not be complete. Aims: We searched for new nearby object companions of known high proper motion (HPM) stars located towards the densest regions of the southern Milky Way where the background contamination presented a major problem to previous observations. Methods: The common proper motion (PM) method was used. We inspected the area around 167 known HPM (≥200 mas yr-1) stars: 67 in the disk and 100 in the bulge. Multi-epoch images were provided by the Two Micron All Sky Survey (2MASS) and the VISTA Variables in Via Lactea (VVV). The VVV is a new on-going ZYJHKS plus multi-epoch KS survey of ~562 deg2 of the Milky Way bulge and inner southern disk. Results: Seven new co-moving companions were discovered around known HPM stars (L 149-77, LHS 2881, L 200-41, LHS 3188, LP 487-4, LHS 5333, and LP 922-16); six known co-moving pairs were recovered (LTT 5140 A + LTT 5140 B, L 412-3 + L 412-4, LP 920-25 + LP 920-26, LTT 6990 A + LTT 6990 B, M 124.22158.2900 + M 124.22158.2910, and GJ 2136 A + GJ 2136 B); a pair of stars that was thought to be co-moving was found to have different proper motions (LTT 7318, LTT 7319); published HPMs of eight stars were not confirmed (C* 1925, C* 1930, C* 1936, CD-60 4613, LP 866-17, OGLE BUL-SC20 625107, OGLE BUL-SC21 298351, and OGLE BUL-SC32 388121); last but not least, spectral types ranging from G8V to M5V were derived from new infrared spectroscopy for seventeen stars, members of the co-moving pairs. Conclusions: The seven newly discovered stars constitute ~4% of the nearby HPM star list, but this is not a firm limit on the HPM star incompleteness because our starting point - the HPM list assembled from the literature - is incomplete itself, missing many nearby HPM M- and L-type objects, and it is contaminated with non-HPM stars. We have demonstrated that the superior sub

  1. UCAC3 PROPER MOTION SURVEY. I. DISCOVERY OF NEW PROPER MOTION STARS IN UCAC3 WITH 0.''40 yr{sup -1} > {mu} {>=} 0.''18 yr{sup -1} BETWEEN DECLINATIONS -90{sup 0} AND -47{sup 0}

    SciTech Connect

    Finch, Charlie T.; Zacharias, Norbert; Henry, Todd J.

    2010-09-15

    This paper presents 442 new proper motion stellar systems in the southern sky between declinations -90{sup 0} and -47{sup 0} with 0.''40 yr{sup -1} > {mu} {>=} 0.''18 yr{sup -1}. These systems constitute a 25.3% increase in new systems for the same region of the sky covered by previous SuperCOSMOS RECONS (SCR) searches that used Schmidt plates as the primary source of discovery. Among the new systems are 25 multiples, plus an additional 7 new common proper motion (CPM) companions to previously known primaries. All stars have been discovered using the third U.S. Naval Observatory (USNO) CCD Astrograph Catalog (UCAC3). A comparison of the UCAC3 proper motions to those from the Hipparcos, Tycho-2, Southern Proper Motion (SPM4), and SuperCOSMOS efforts is presented and shows that UCAC3 provides similar values and precision to the first three surveys. The comparison between UCAC3 and SuperCOSMOS indicates that proper motions in R.A. are systematically shifted in the SuperCOSMOS data but are consistent in decl. data, while overall showing a significantly higher scatter. Distance estimates are derived for stars having SuperCOSMOS Sky Survey B{sub J} , R{sub 59F}, and I{sub IVN} plate magnitudes and Two-Micron All Sky Survey infrared photometry. We find 15 systems estimated to be within 25 pc, including UPM 1710-5300 our closest new discovery estimated at 13.5 pc. Such new discoveries suggest that more nearby stars are yet to be found in these slower proper motion regimes, indicating that more work is needed to develop a complete map of the solar neighborhood.

  2. Co-latitudinal Radial Veloctiy Profile Confirmation Via Differential Proper Motion of the Bipolar Egg Nebula

    NASA Astrophysics Data System (ADS)

    Tomasino, Rachael

    2013-10-01

    Requesting the use of ACS/WFC for one orbit to obtain a deep 3rd epoch exposure of the Cygnus Egg Nebula. The proposed observation of the Egg will not only yield multi-epoch snapshots of the circumstellar arcs but also determine the co-latitudinal velocity field that helps break the degeneracy in model fitting. Full 3-D model calculations, done by CoI Kim, have already quantified the co-latitudinal dependence due to the binary orbital motion, relating the orbital speed of the binary stars to the resulting structural pattern in the circumstellar density distributions. We will be able to constrain the orbital properties of the Egg Nebula via a new set of specific model fitting. The duplication of the epoch 2 observation {PI: W. Sparks} is by design and with a baseline between the 2nd and 3rd epoch of more than 11 years, there is a lower limit shift of 1.32 pixels for the slower moving arcs and it will be more than enough to perform a differential proper-motion study. The Cygnus Egg Nebula is a proto-planetary nebula, which means that the circumstellar density structure still retains valuable clues pertaining to the early asymptotic giant branch mass loss history and initial development of their aspherical shell structure. One of the most peculiar characteristics of the circumstellar shell structure of the Egg Nebula is the co-presence of the nebula's signature bipolar lobes and rather circular concentric arcs superposed on top of each other. There is no consensus among researchers on their origins, especially because of the paradox due to the co-presence of the circular arcs and bipolar lobes.

  3. Motion Verified Red Stars (MoVeRS): A Catalog of Proper Motion Selected Low-mass Stars from WISE, SDSS, and 2MASS

    NASA Astrophysics Data System (ADS)

    Theissen, Christopher A.; West, Andrew A.; Dhital, Saurav

    2016-02-01

    We present a photometric catalog of 8,735,004 proper motion selected low-mass stars (KML-spectral types) within the Sloan Digital Sky Survey (SDSS) footprint, from the combined SDSS Data Release 10 (DR10), Two Micron All-Sky Survey (2MASS) point-source catalog (PSC), and Wide-field Infrared Survey Explorer (WISE) AllWISE catalog. Stars were selected using r - i, i - z, r - z, z - J, and z - W1 colors, and SDSS, WISE, and 2MASS astrometry was combined to compute proper motions. The resulting 3,518,150 stars were augmented with proper motions for 5,216,854 earlier type stars from the combined SDSS and United States Naval Observatory B1.0 catalog (USNO-B). We used SDSS+USNO-B proper motions to determine the best criteria for selecting a clean sample of stars. Only stars whose proper motions were greater than their 2σ uncertainty were included. Our Motion Verified Red Stars catalog is available through SDSS CasJobs and VizieR.

  4. PARALLAXES AND PROPER MOTIONS OF ULTRACOOL BROWN DWARFS OF SPECTRAL TYPES Y AND LATE T

    SciTech Connect

    Marsh, Kenneth A.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Wright, Edward L.; Cushing, Michael C.; Skrutskie, Michael F.; Eisenhardt, Peter R.

    2013-01-10

    We present astrometric measurements of 11 nearby ultracool brown dwarfs of spectral types Y and late-T, based on imaging observations from a variety of space-based and ground-based telescopes. These measurements have been used to estimate relative parallaxes and proper motions via maximum likelihood fitting of geometric model curves. To compensate for the modest statistical significance ({approx}< 7) of our parallax measurements we have employed a novel Bayesian procedure for distance estimation which makes use of an a priori distribution of tangential velocities, V {sub tan}, assumed similar to that implied by previous observations of T dwarfs. Our estimated distances are therefore somewhat dependent on that assumption. Nevertheless, the results have yielded distances for five of our eight Y dwarfs and all three T dwarfs. Estimated distances in all cases are {approx}> 3 pc. In addition, we have obtained significant estimates of V {sub tan} for two of the Y dwarfs; both are <100 km s{sup -1}, consistent with membership in the thin disk population. Comparison of absolute magnitudes with model predictions as a function of color shows that the Y dwarfs are significantly redder in J - H than predicted by a cloud-free model.

  5. VizieR Online Data Catalog: Photometry and proper motions in Praesepe (Wang+, 2014)

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Chen, W. P.; Lin, C. C.; Pandey, A. K.; Huang, C. K.; Panwar, N.; Lee, C. H.; Tsai, M. F.; Tang, C.-H.; Goldman, B.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Grav, T.; Heasley, J. N.; Hodapp, K. W.; Huber, M. E.; Jedicke, R.; Kaiser, N.; Kudritzki, R.-P.; Luppino, G. A.; Lupton, R. H.; Magnier, E. A.; Metcalfe, N.; Monet, D. G.; Morgan, J. S.; Onaka, P. M.; Price, P. A.; Stubbs, C. W.; Sweeney, W.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2016-08-01

    Data used in this study include photometry and proper motion measurements within a 5° radius around the Praesepe center (R.A.=08h40m, decl.=+19°42', J2000). Archival data were taken from the 2MASS Point Sources Catalog (2MASS; cat. II/246), PPMXL (Roeser et al. 2010, cat. I/317), and Panoramic Survey Telescope And Rapid Response (Pan-STARRS). Pan-STARRS is a wide-field (7deg2) imaging system, with a 1.8m, f/4.4 telescope, equipped with a 1.4 giga-pixel camera. The prototype (PS1), located atop Haleakala, Maui, USA, has been patrolling the entire sky north of -30° declination since mid-2010 with a combination of gP1, rP1, iP1, zP1, and yP1 bands. The PS1 filters differ slightly from those of the SDSS. The gP1 filter extends 20nm redward of gSDSS for greater sensitivity and lower systematics for photometric redshift estimates. SDSS has no corresponding y filter (Tonry et al. 2012, cat. J/ApJ/750/99). Upon the completion of its 3.5yr mission by early 2014, PS1 will provide reliable photometry and astrometry. Table1 lists the properties of the 1040 candidates. (1 data file).

  6. PROPER MOTIONS AND ORIGINS OF SGR 1806-20 AND SGR 1900+14

    SciTech Connect

    Tendulkar, Shriharsh P.; Kulkarni, Shrinivas R.; Cameron, P. Brian

    2012-12-10

    We present results from high-resolution infrared observations of magnetars SGR 1806-20 and SGR 1900+14 over 5 years using laser-supported adaptive optics at the 10 m Keck Observatory. Our measurements of the proper motions of these magnetars provide robust links between magnetars and their progenitors and provide age estimates for magnetars. At the measured distances of their putative associations, we measure the linear transverse velocity of SGR 1806-20 to be 350 {+-} 100 km s{sup -1} and of SGR 1900+14 to be 130 {+-} 30 km s{sup -1}. The transverse velocity vectors for both magnetars point away from the clusters of massive stars, solidifying their proposed associations. Assuming that the magnetars were born in the clusters, we can estimate the braking index to be {approx}1.8 for SGR 1806-20 and {approx}1.2 for SGR 1900+14. This is significantly lower than the canonical value of n = 3 predicted by the magnetic dipole spin-down suggesting an alternative source of dissipation such as twisted magnetospheres or particle winds.

  7. Photometric and Proper Motion Study of the Neglected Open Cluster NGC 2215

    NASA Astrophysics Data System (ADS)

    Fitzgerald, M. T.; Inwood, L.; McKinnon, D. H.; Dias, W. S.; Sacchi, M.; Scott, B.; Zolinski, M.; Danaia, L.; Edwards, R.

    2015-06-01

    Optical UBVRI photometric measurements using the Faulkes Telescope North were taken in early 2011 and combined with 2MASS JHKs and WISE infrared photometry as well as UCAC4 proper motion data in order to estimate the main parameters of the galactic open cluster NGC 2215 of which large uncertainty exists in the current literature. Fitting a King model we estimate a core radius of 1.‧12 ± 0.‧04 (0.24 ± 0.01 pc) and a limiting radius of 4.‧3 ± 0.‧5 (0.94 ± 0.11 pc) for the cluster. The results of isochrone fits indicates an age of log (t)=8.85+/- 0.10 with a distance of d=790+/- 90 pc, a metallicity of [Fe/H]=-0.40+/- 0.10 dex, and a reddening of E(B-V)=0.26+/- 0.04. A proportion of the work in this study was undertaken by Australian and Canadian upper secondary school students involved in the Space to Grow astronomy education project, and is the first scientific publication to have utilized our star cluster photometry curriculum materials.

  8. The Quintuplet cluster - A young massive cluster study based on proper motion membership

    NASA Astrophysics Data System (ADS)

    Hußmann, Benjamin

    2014-01-01

    Young massive clusters define the high mass range of current clustered star formation and are frequently found in starburst and interacting galaxies. As - with the exception of the nearest galaxies within the local group - extragalactic clusters can not be resolved into individual stars, the few young massive clusters in the Milky Way and the Magellanic Clouds might serve as templates for unresolved young massive clusters in more distant galaxies. Due to their high masses, these clusters sample the full range of stellar masses. In combination with the small or negligible spreads in age or metallicity of their stellar populations, this makes these object unique laboratories to study stellar evolution, especially in the high mass range.Furthermore, they allow to probe the initial mass function, which describes the distribution of masses of a stellar population at its birth, in its entirety. The Quintuplet cluster is one of three known young massive clusters residing in the central molecular zone and is located at a projected distance of 30 pc from the Galactic centre. Because of the rather extreme conditions in this region, a potential dependence of the outcome of the star formation process on the environmental conditions under which the star formation event takes place might leave its imprint in the stellar mass function. As the Quintuplet cluster is lacking a dense core and shows a somewhat dispersed appearance, it is crucial to effectively distinguish between cluster stars and the rich population of stars from the Galactic field along the line of sight to the Galactic centre in order to measure its present-day mass function. In this thesis, a clean sample of cluster stars is derived based on the common bulk proper motion of the cluster with respect to the Galactic field and a subsequent colour selection. The diffraction limited resolution of multi-epoch near-infrared imaging observations obtained at the ESO Very Large Telescope with adaptive optics correction

  9. Calibrating the Relative Metallicity Scale of M Subdwarfs Using Wide, Common Proper Motion Binaries

    NASA Astrophysics Data System (ADS)

    Dhital, Saurav; Lepine, Sebastien; West, Andrew A.; Stassun, Keivan G.

    2011-08-01

    Metallicity is an important parameter that determines all aspects of stellar evolution and observable properties but is very hard to measure for M dwarfs. M dwarf binaries provide coeval laboratories for studying the properties of the most numerous stellar constituents of the Milky Way; using their common metallicity, we can empirically determine how various molecular indices change with effective temperature. However, despite their ubiquity, M dwarfs are intrinsically faint; previous studies of resolved M dwarf binaries have been limited to small samples, which consist largely of disk dwarfs and are notoriously deficient in metal-poor systems. We propose to observe a sample of ~51 subdwarf (i.e. metal-poor dwarf) binaries to determine how the relative bandstrengths of CaH and TiO vary with metallicity and temperature in low-mass stars. By combining our proposed subdwarf binary sample with previously observed low-mass pairs, we will refine the CaH/TiO-based relative metallicity and probe a large range of metallicity and effective temperature. In addition, we will be able to confirm the binarity of these common proper motion halo pairs and study dynamical evolution/destruction of wide halo binaries. In combination with ongoing companion studies, this will pave the way towards a absolute metallicity scale for M dwarfs and a comprehensive study of chemical and dynamical evolution of the Galaxy.

  10. The First X-Ray Proper-Motion Measurements of the Forward Shock in the Northeastern Limb of Sn 1006

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Long, Knox S.; Reynolds, Stephen P.; Winkler, P. Frank; Mori, Koji; Tsunemi, Hiroshi

    2009-01-01

    We report on the first X-ray proper-motion measurements of the nonthermally-dominated forward shock in the northeastern limb of SN 1006, based on two Chandra observations taken in 2000 and 2008. We find that the proper motion of the forward shock is about 0.48"/yr and does not vary around the rim within the approx.10% measurement uncertainties. The proper motion measured is consistent with that determined by the previous radio observations. The mean expansion index of the forward shock is calculated to be approx..0.54 which matches the value expected based on an evolutionary model of a Type Ia supernova with either a power-law or an exponential ejecta density profile. Assuming pressure equilibrium around the periphery from the thermally-dominated northwestern rim to the nonthermally-dominated northeastern rim, we estimate the ambient density to the northeast of SN 1006 to be approx..0.085/cu cm.

  11. FIRST RESULTS FROM Pan-STARRS1: FAINT, HIGH PROPER MOTION WHITE DWARFS IN THE MEDIUM-DEEP FIELDS

    SciTech Connect

    Tonry, J. L.; Flewelling, H. A.; Deacon, N. R.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Kudritzki, R.-P.; Hodapp, K. W.; Magnier, E. A.; Morgan, J. S.; Wainscoat, R. J.; Stubbs, C. W.; Kilic, M.; Chornock, R.; Berger, E.; Price, P. A.

    2012-01-20

    The Pan-STARRS1 survey has obtained multi-epoch imaging in five bands (Pan-STARRS1 g{sub P1}, r{sub P1}, i{sub P1}, z{sub P1}, and y{sub P1}) on 12 'Medium-Deep fields', each of which spans a 3.{sup 0}3 circle. For the period between 2009 April and 2011 April these fields were observed 50-200 times. Using a reduced proper motion diagram, we have extracted a list of 47 white dwarf (WD) candidates whose Pan-STARRS1 astrometry indicates a non-zero proper motion at the 6{sigma} level, with a typical 1{sigma} proper motion uncertainty of 10 mas yr{sup -1}. We also used astrometry from the Sloan Digital Sky Survey (when available) and USNO-B to assess our proper motion fits. None of the WD candidates exhibits evidence of statistically significant parallaxes, with a typical 1{sigma} uncertainty of 8 mas. Twelve of these candidates are known WDs, including the high proper motion (1.''7 yr{sup -1}) WD LHS 291. We confirm seven more objects as WDs through optical spectroscopy. Based on the Pan-STARRS1 colors, ten of the stars are likely to be cool WDs with 4170 K proper motion WDs that are part of the old thick disk and halo.

  12. THE M31 VELOCITY VECTOR. I. HUBBLE SPACE TELESCOPE PROPER-MOTION MEASUREMENTS

    SciTech Connect

    Sohn, Sangmo Tony; Anderson, Jay; Van der Marel, Roeland P.

    2012-07-01

    We present the first proper-motion (PM) measurements for the galaxy M31. We obtained new V-band imaging data with the Hubble Space Telescope ACS/WFC and the WFC3/UVIS instruments of three fields: a spheroid field near the minor axis, an outer disk field along the major axis, and a field on the Giant Southern Stream. The data provide five to seven year time baselines with respect to pre-existing deep first-epoch observations of the same fields. We measure the positions of thousands of M31 stars and hundreds of compact background galaxies in each field. High accuracy and robustness is achieved by building and fitting a unique template for each individual object. The average PM for each field is obtained from the average motion of the M31 stars between the epochs with respect to the background galaxies. For the three fields, the observed PMs ({mu}{sub W}, {mu}{sub N}) are, in units of mas yr{sup -1}, (- 0.0458, -0.0376) {+-} (0.0165, 0.0154), (- 0.0533, -0.0104) {+-} (0.0246, 0.0244), and (- 0.0179, -0.0357) {+-} (0.0278, 0.0272), respectively. The ability to average over large numbers of objects and over the three fields yields a final displacement accuracy of a few thousandths of a pixel, corresponding to only 12 {mu}as yr{sup -1}. This is comparable to what has been achieved for other Local Group galaxies using Very Long Baseline Array observations of water masers. Potential systematic errors are controlled by an analysis strategy that corrects for detector charge transfer inefficiency, spatially and time-dependent geometric distortion, and point-spread function variations. The robustness of the PM measurements and uncertainties are supported by the fact that data from different instruments, taken at different times and with different telescope orientations, as well as measurements of different fields, all yield statistically consistent results. Papers II and III of this series explore the implications of the new measurements for our understanding of the history

  13. An accurate representation of the motion of Pluto

    NASA Astrophysics Data System (ADS)

    Goffin, E.; Meeus, J.; Steyaert, C.

    1986-02-01

    Three series of periodic terms are presented which make it possible to calculate the heliocentric coordinates of Pluto (longitude, latitude, radius vector) during a time interval of more than two centuries. The terms and coefficients have been derived indirectly by least-square approximation of a numerical integration of the motion of Pluto. For the years 1885 to 2099, the maximum error is 0.5 arcsec in longitude, 0.1 arcsec in latitude, and 0.00002 AU in radius vector as compared to the numerical integration.

  14. SLoWPoKES-II: 100,000 Wide Binaries Identified in SDSS without Proper Motions

    NASA Astrophysics Data System (ADS)

    Dhital, Saurav; West, Andrew A.; Stassun, Keivan G.; Schluns, Kyle J.; Massey, Angela P.

    2015-08-01

    We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability of chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.

  15. THE PROPER MOTION OF THE GALACTIC CENTER PULSAR RELATIVE TO SAGITTARIUS A*

    SciTech Connect

    Bower, Geoffrey C.; Deller, Adam; Falcke, Heino; Demorest, Paul; Brunthaler, Andreas; Eatough, Ralph P.; Kramer, Michael; Lee, K. J.; Spitler, Laura; Desvignes, Gregory; Moscibrodzka, Monika; O'Leary, Ryan M.; Rushton, Anthony P.; Doeleman, Sheperd; Reid, Mark J.

    2015-01-10

    We measure the proper motion of the pulsar PSR J1745-2900 relative to the Galactic center massive black hole, Sgr A*, using the Very Long Baseline Array (VLBA). The pulsar has a transverse velocity of 236 ± 11 km s{sup –1} at position angle 22 ± 2 deg east of north at a projected separation of 0.097 pc from Sgr A*. Given the unknown radial velocity, this transverse velocity measurement does not conclusively prove that the pulsar is bound to Sgr A*; however, the probability of chance alignment is very small. We do show that the velocity and position are consistent with a bound orbit originating in the clockwise disk of massive stars orbiting Sgr A* and a natal velocity kick of ≲ 500 km s{sup –1}. An origin among the isotropic stellar cluster is possible but less probable. If the pulsar remains radio-bright, multiyear astrometry of PSR J1745-2900 can detect its acceleration and determine the full three-dimensional orbit. We also demonstrate that PSR J1745-2900 exhibits the same angular broadening as Sgr A* over a wavelength range of 3.6 cm to 0.7 cm, further confirming that the two sources share the same interstellar scattering properties. Finally, we place the first limits on the presence of a wavelength-dependent shift in the position of Sgr A*, i.e., the core shift, one of the expected properties of optically thick jet emission. Our results for PSR J1745-2900 support the hypothesis that Galactic center pulsars will originate from the stellar disk and deepen the mystery regarding the small number of detected Galactic center pulsars.

  16. Ancient eruptions of η Carinae: a tale written in proper motions

    NASA Astrophysics Data System (ADS)

    Kiminki, Megan M.; Reiter, Megan; Smith, Nathan

    2016-11-01

    We analyse eight epochs of Hubble Space Telescope Hα+[N II] imaging of η Carinae's outer ejecta. Proper motions of nearly 800 knots reveal that the detected ejecta are divided into three apparent age groups, dating to around 1250 A.D., to around 1550 A.D., and to during or shortly before the Great Eruption of the 1840s. Ejecta from these groups reside in different locations and provide a firm constraint that η Car experienced multiple major eruptions prior to the nineteenth century. The 1250 and 1550 events did not share the same axisymmetry as the Homunculus; the 1250 event was particularly asymmetric, even one-sided. In addition, the ejecta in the S ridge, which have been associated with the Great Eruption, appear to predate the ejection of the Homunculus by several decades. We detect essentially ballistic expansion across multiple epochs. We find no evidence for large-scale deceleration of the observed knots that could power the soft X-ray shell by ploughing into surrounding material, suggesting that the observed X-rays arise instead from fast, rarefied ejecta from the 1840s overtaking the older dense knots. Early deceleration and subsequent coasting cannot explain the origin of the older outer ejecta - significant episodic mass loss prior to the nineteenth century is required. The time-scale and geometry of the past eruptions provide important constraints for any theoretical physical mechanisms driving η Car's behaviour. Non-repeating mechanisms such as the merger of a close binary in a triple system would require additional complexities to explain the observations.

  17. SLoWPoKES-II: 100,000 WIDE BINARIES IDENTIFIED IN SDSS WITHOUT PROPER MOTIONS

    SciTech Connect

    Dhital, Saurav; West, Andrew A.; Schluns, Kyle J.; Massey, Angela P.; Stassun, Keivan G.

    2015-08-15

    We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability of chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.

  18. Ancient eruptions of η Carinae: A tale written in proper motions

    NASA Astrophysics Data System (ADS)

    Kiminki, Megan M.; Reiter, Megan; Smith, Nathan

    2016-09-01

    We analyze eight epochs of Hubble Space Telescope Hα+[N II] imaging of η Carinae's outer ejecta. Proper motions of nearly 800 knots reveal that the detected ejecta are divided into three apparent age groups, dating to around 1250 A.D., to around 1550 A.D., and to during or shortly before the Great Eruption of the 1840s. Ejecta from these groups reside in different locations and provide a firm constraint that η Car experienced multiple major eruptions prior to the 19th century. The 1250 and 1550 events did not share the same axisymmetry as the Homunculus; the 1250 event was particularly asymmetric, even one-sided. In addition, the ejecta in the S ridge, which have been associated with the Great Eruption, appear to predate the ejection of the Homunculus by several decades. We detect essentially ballistic expansion across multiple epochs. We find no evidence for large-scale deceleration of the observed knots that could power the soft X-ray shell by plowing into surrounding material, suggesting that the observed X-rays arise instead from fast, rarefied ejecta from the 1840s overtaking the older dense knots. Early deceleration and subsequent coasting cannot explain the origin of the older outer ejecta-significant episodic mass loss prior to the 19th century is required. The timescale and geometry of the past eruptions provide important constraints for any theoretical physical mechanisms driving η Car's behavior. Non-repeating mechanisms such as the merger of a close binary in a triple system would require additional complexities to explain the observations.

  19. DISCOVERIES FROM A NEAR-INFRARED PROPER MOTION SURVEY USING MULTI-EPOCH TWO MICRON ALL-SKY SURVEY DATA

    SciTech Connect

    Kirkpatrick, J. Davy; Cutri, Roc M.; Looper, Dagny L.; Burgasser, Adam J.; Schurr, Steven D.; Cushing, Michael C.; Cruz, Kelle L.; Sweet, Anne C.; Knapp, Gillian R.; Barman, Travis S.; Bochanski, John J.; Roellig, Thomas L.; McLean, Ian S.; McGovern, Mark R.; Rice, Emily L.

    2010-09-15

    We have conducted a 4030 deg{sup 2} near-infrared proper motion survey using multi-epoch data from the Two Micron All-Sky Survey (2MASS). We find 2778 proper motion candidates, 647 of which are not listed in SIMBAD. After comparison to Digitized Sky Survey images, we find that 107 of our proper motion candidates lack counterparts at B, R, and I bands and are thus 2MASS-only detections. We present results of spectroscopic follow-up of 188 targets that include the infrared-only sources along with selected optical-counterpart sources with faint reduced proper motions or interesting colors. We also establish a set of near-infrared spectroscopic standards with which to anchor near-infrared classifications for our objects. Among the discoveries are six young field brown dwarfs, five 'red L' dwarfs, three L-type subdwarfs, twelve M-type subdwarfs, eight 'blue L' dwarfs, and several T dwarfs. We further refine the definitions of these exotic classes to aid future identification of similar objects. We examine their kinematics and find that both the 'blue L' and 'red L' dwarfs appear to be drawn from a relatively old population. This survey provides a glimpse of the kinds of research that will be possible through time-domain infrared projects such as the UKIDSS Large Area Survey, various VISTA surveys, and WISE, and also through z- or y-band enabled, multi-epoch surveys such as Pan-STARRS and LSST.

  20. Documentation for the machine-readable version of the Lowell Proper Motion Survey northern hemisphere, the G numbered stars

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    Observed positions, proper motions, estimated photographic magnitudes and colors, and references to identifications in other catalogs are included. Photoelectric data on the UBV system are included for many stars, but no attempt was made to find all existing photometry. The machine-readable catalog is described.

  1. Hubble imaging of V1331 Cygni: proper motion study of its circumstellar structures

    NASA Astrophysics Data System (ADS)

    Choudhary, A.; Stecklum, B.; Linz, Hendrik

    2016-05-01

    Aims: The young star V1331 Cyg received previous attention because it is surrounded by an optical, arc-like reflection nebula. V1331 Cyg is commonly considered to be a candidate for an object that has undergone an FU-Ori (FUOR) outbreak in the past. This in turn could lead to a time-varying appearance of the dusty arcs that may be revealed by multi-epoch imaging. In particular, a radial colour analysis of the dust arcs can then be attempted to check whether the radial grain size distribution was modified by a previous FUOR wind. Methods: Second-epoch imaging of V1331 Cyg was obtained by us in 2009 using the Hubble Space Telescope (HST). By comparing this to archival HST data from 2000, we studied the time evolution of the circumstellar nebulae. After a point spread function subtraction using model point spread functions, we used customised routines to perform a proper motion analysis. The nebula expansion was derived by deconvolving and correlating the two-epoch radial brightness profiles. Additional data from other facilities - TLS, UKIDSS, Spitzer, and Herschel - were also incorporated to improve our understanding of the star in terms of environment, viewing angle, bipolar outflow length, and the FUOR phenomenon. Results: The outer dust arc is found to be expanding at ≈14.8 ± 3.6 km s-1 on average. The expansion velocity for the inner ring is less consistent, between 0.8 km s-1 and 3.0 km s-1. The derived radial colour profiles do not indicate a spatial separation of the dust grain sizes. The Herschel 160 μm images show for the first time thermal emission from dust probably residing in the outer arc. By viewing V1331 Cyg almost pole-on, the length of the bipolar outflow exceeds previous estimates by far. Conclusions: The outer arc expansion timescale is consistent with the implantation time of the CO torus, which supports the hypothesis of an outburst that occurred a few thousand years ago. The azimuthal colour variation of the outer arc is probably due to

  2. BVRIJHK photometry and proper motion analysis of NGC 6253 and the surrounding field

    NASA Astrophysics Data System (ADS)

    Montalto, M.; Piotto, G.; Desidera, S.; Platais, I.; Carraro, G.; Momany, Y.; de Marchi, F.; Recio-Blanco, A.

    2009-10-01

    Context: We present a photometric and astrometric catalog of 187 963 stars located in the field around the old super-metal-rich Galactic open cluster NGC 6253. The total field-of-view covered by the catalog is 34”×33”. In this field, we provide CCD BVRI photometry. For a smaller region close to the cluster's center, we also provide near-infrared JHK photometry. Aims: We analyze the properties of NGC 6253 by using our new photometric data and astrometric membership. Methods: In June 2004, we targeted the cluster during a 10 day multi-site campaign, which involved the MPG/ESO 2.2 m telescope with its wide-field imager and the Anglo-Australian 3.9 m telescope, equipped with the IRIS2 near-infrared imager. Archival CCD images of NGC 6253 were used to derive relative proper motions and to calculate the cluster membership probabilities. Results: We have refined the cluster's fundamental parameters, deriving (V_0-M_v)=11.15, E(B - V) = 0.15, E(V - I) = 0.25, E(V - J) = 0.50, and E(V - H) = 0.55. The color excess ratios obtained using both the optical and near infrared colors indicate a normal reddening law in the direction of NGC 6253. The age of NGC 6253 at 3.5 Gyr, determined from our best-fitting isochrone appears to be slightly older than the previous estimates. Finally, we estimated the binary fraction among the cluster members to be ~20%-30% and identified 11 blue straggler candidates. Based on observation made at the European Southern Observatory, La Silla, Chile and at the Anglo-Australian Observatory, Siding Spring, Australia. The catalog presented in this paper is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/1129

  3. Desktop Parallax and Proper Motion: A Laboratory Exercise on Astrometry of Asteroids from Project CLEA

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Snyder, G. A.; Good, R. F.; Hayden, M. B.; Cooper, P. R.

    1998-12-01

    Students in introductory and advanced astronomy classes can now experience the process of discovering asteroids, can measure proper motions, and can actually see the parallax of real astronomical objects on the screen, using a new set of computer-based exercises from Project CLEA. The heart of the exercise is a sophisticated astrometry program "Astrometry of Asteroids", which is a restricted version of CLEA's research software "Tools for Astrometry" described elsewhere at this meeting. The program, as used in the teaching lab, allows students to read and display digital images, co-align pairs of images using designated reference stars, blink and identify moving objects on the pairs, compare images with charts produced from the HST Guide Star Catalog (GSC), and fit equatorial coordinates to the images using designated reference stars from the GSC. Complete technical manuals for the exercise are provided for the use of the instructor, and a set of digital images, in FITS format, is included for the exercise. A student manual is provided for an exercise in which students go through the step-by-step process of determining the tangential velocity of an asteroid. Students first examine a series of images of a near-earth asteroid taken over several hours, blinking pairs to identify the moving object. They next measure the equatorial coordinates on a half-dozen images, and from this calculate an angular velocity of the object. Finally, using a pair of images of the asteroid taken simultaneously at the National Undergraduate Research Observatory (NURO) and at Colgate University, they measure the parallax of the asteroid, and thus its distance, which enables them to convert the angular velocity into a tangential velocity. An optional set of 10 pairs of images is provided, some of which contain asteroids, so that students can try to "find the asteroid" for themselves. The software is extremely flexible, and though materials are provided for a self-contained exercise, teachers

  4. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture.

    PubMed

    Gao, Zhiquan; Yu, Yao; Zhou, Yu; Du, Sidan

    2015-09-22

    Accurate motion capture plays an important role in sports analysis, the medical field and virtual reality. Current methods for motion capture often suffer from occlusions, which limits the accuracy of their pose estimation. In this paper, we propose a complete system to measure the pose parameters of the human body accurately. Different from previous monocular depth camera systems, we leverage two Kinect sensors to acquire more information about human movements, which ensures that we can still get an accurate estimation even when significant occlusion occurs. Because human motion is temporally constant, we adopt a learning analysis to mine the temporal information across the posture variations. Using this information, we estimate human pose parameters accurately, regardless of rapid movement. Our experimental results show that our system can perform an accurate pose estimation of the human body with the constraint of information from the temporal domain.

  5. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture

    PubMed Central

    Gao, Zhiquan; Yu, Yao; Zhou, Yu; Du, Sidan

    2015-01-01

    Accurate motion capture plays an important role in sports analysis, the medical field and virtual reality. Current methods for motion capture often suffer from occlusions, which limits the accuracy of their pose estimation. In this paper, we propose a complete system to measure the pose parameters of the human body accurately. Different from previous monocular depth camera systems, we leverage two Kinect sensors to acquire more information about human movements, which ensures that we can still get an accurate estimation even when significant occlusion occurs. Because human motion is temporally constant, we adopt a learning analysis to mine the temporal information across the posture variations. Using this information, we estimate human pose parameters accurately, regardless of rapid movement. Our experimental results show that our system can perform an accurate pose estimation of the human body with the constraint of information from the temporal domain. PMID:26402681

  6. The VMC survey. XVII. Proper motions of the Small Magellanic Cloud and the Milky Way globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Cioni, Maria-Rosa L.; Bekki, Kenji; Girardi, Léo; de Grijs, Richard; Irwin, Mike J.; Ivanov, Valentin D.; Marconi, Marcella; Oliveira, Joana M.; Piatti, Andrés E.; Ripepi, Vincenzo; van Loon, Jacco Th.

    2016-02-01

    Aims: In this study we use multi-epoch near-infrared observations from the VISTA survey of the Magellanic Cloud system (VMC) to measure the proper motions of different stellar populations in a tile of 1.5 deg2 in size in the direction of the Galactic globular cluster 47 Tuc. We obtain the proper motion of the cluster itself, of the Small Magellanic Cloud (SMC), and of the field Milky Way stars. Methods: Stars of the three main stellar components are selected according to their spatial distributions and their distributions in colour-magnitude diagrams. Their average coordinate displacement is computed from the difference between multiple Ks-band observations for stars as faint as Ks = 19 mag. Proper motions are derived from the slope of the best-fitting line among ten VMC epochs over a time baseline of ~1 yr. Background galaxies are used to calibrate the absolute astrometric reference frame. Results: The resulting absolute proper motion of 47 Tuc is (μαcos(δ), μδ) = (+7.26 ± 0.03, -1.25 ± 0.03) mas yr-1. This measurement refers to about 35 000 sources distributed between 10' and 60' from the cluster centre. For the SMC we obtain (μαcos(δ), μδ) = (+1.16 ± 0.07, -0.81 ± 0.07) mas yr-1 from about 5250 red clump and red giant branch stars. The absolute proper motion of the Milky Way population in the line of sight (l = 305.9, b = -44.9) of this VISTA tile is (μαcos(δ), μδ) = (+10.22 ± 0.14, -1.27 ± 0.12) mas yr-1 and has been calculated from about 4000 sources. Systematic uncertainties associated with the astrometric reference system are 0.18 mas yr-1. Thanks to the proper motion we detect 47 Tuc stars beyond its tidal radius. Based on observations made with VISTA at the Paranal Observatory under program ID 179.B-2003.

  7. Global survey of star clusters in the Milky Way. IV. 63 new open clusters detected by proper motions

    NASA Astrophysics Data System (ADS)

    Scholz, R.-D.; Kharchenko, N. V.; Piskunov, A. E.; Röser, S.; Schilbach, E.

    2015-09-01

    Context. The global Milky Way Star Clusters (MWSC) survey provided new cluster membership lists and mean cluster parameters for nearly 80% of all previously known Galactic clusters. The MWSC data reduction pipeline involved the catalogue of positions and proper motions (PPMXL) on the International Celestial Reference System (ICRS) and near-infrared photometry from the Two Micron All Sky Survey (2MASS). Aims: In the first extension to the MWSC, photometric filters were applied to the 2MASS catalogue to find new cluster candidates that were subsequently confirmed or rejected by the MWSC pipeline. To further extend the MWSC census, particularly of nearby clusters, we aimed at discovering new clusters by conducting an almost global search in proper motion catalogues as a starting point. Methods: We first selected high-quality samples from the PPMXL and the Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4) for comparison and verification of the proper motions. For 441 circular proper motion bins (radius 15 mas/yr) within ±50 mas/yr, the sky outside a thin Galactic plane zone (| b | < 5°) was binned in small areas ("sky pixels") of 0.25 × 0.25 deg2. Sky pixels with enhanced numbers of stars with a certain common proper motion in both catalogues were considered as cluster candidates. After visual inspection of the sky images, we built an automated procedure that combined these representations of the sky for neighbouring proper motion subsamples after a background correction. The 692 compact cluster candidates detected above a threshold that was equivalent to a minimum of 12 to 130 cluster stars in dependence on the Galactic latitude were then cross-checked with known star clusters and clusters of galaxies. New candidates served as input for the MWSC pipeline. Results: About half of our candidates overlapped with known clusters (46 globular and 68 open clusters in the Galaxy, about 150 known clusters of galaxies) or the Magellanic Clouds. About 10% of our

  8. Conversion of positions and proper motions from B1950.0 to the IAU system at J2000.0

    NASA Technical Reports Server (NTRS)

    Standish, E. M., Jr.

    1982-01-01

    The complete transformation of positions and proper motions from B1950.0 to J2000.0 on the basis of IAU recommendations including the transition from FK4 to FK5 equinox may be rigorously accomplished with a simple vector equation. The equation is first presented in this paper and then subsequently derived. The transformation of the FK4 to FK5 system described by functions f(alpha, delta, m) is in preparation in Heidelberg.

  9. PROPER MOTIONS AND ORIGINS OF AXP 1E 2259+586 AND AXP 4U 0142+61

    SciTech Connect

    Tendulkar, Shriharsh P.; Kulkarni, Shrinivas R.; Cameron, P. Brian E-mail: srk@astro.caltech.edu

    2013-07-20

    Using high-resolution NIR images supported by laser guide star adaptive optics from the Keck II telescope from 2005 to 2012, we have measured the proper motions of two anomalous X-ray pulsars, AXP 1E 2259+586 and AXP 4U 0142+61. The proper motion of AXP 1E 2259+586 in the sky frame is ({mu}{sub {alpha}}, {mu}{sub {delta}}) = (- 6.4 {+-} 0.6, -2.3 {+-} 0.6) mas yr{sup -1} and that of AXP 4U 0142+61 is ({mu}{sub {alpha}}, {mu}{sub {delta}}) = (- 4.1 {+-} 1, 1.9 {+-} 1) mas yr{sup -1}. After correcting for the velocity of the progenitors, we calculate the tangential ejection velocities of the magnetars to be 157 {+-} 17 km s{sup -1} and 102 {+-} 26 km s{sup -1} respectively. The proper motion vector of AXP 1E 2259+586 is directed away from the putative center of the supernova remnant CTB 109 that has long been proposed to be associated with AXP 1E 2259+586. This is significant evidence for linking the pulsar with CTB 109. We comment on the possible movement of CTB 109 after the explosion. We narrow the search cone for the birthsite or remnant of AXP 4U 0142+61 to an opening angle of 24 Degree-Sign . However, we are unable to find any suitable association.

  10. Hubble space telescope absolute proper motions of NGC 6681 (M70) and the sagittarius dwarf spheroidal galaxy

    SciTech Connect

    Massari, D.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.

    2013-12-10

    We have measured absolute proper motions for the three populations intercepted in the direction of the Galactic globular cluster NGC 6681: the cluster itself, the Sagittarius dwarf spheroidal galaxy, and the field. For this, we used Hubble Space Telescope ACS/WFC and WFC3/UVIS optical imaging data separated by a temporal baseline of 5.464 yr. Five background galaxies were used to determine the zero point of the absolute-motion reference frame. The resulting absolute proper motion of NGC 6681 is (μ{sub α}cos δ, μ{sub δ}) = (1.58 ± 0.18, –4.57 ± 0.16) mas yr{sup –1}. This is the first estimate ever made for this cluster. For the Sgr dSph we obtain (μ{sub α}cos δ, μ{sub δ}) = –2.54 ± 0.18, –1.19 ± 0.16) mas yr{sup –1}, consistent with previous measurements and with the values predicted by theoretical models. The absolute proper motion of the Galaxy population in our field of view is (μ{sub α}cos δ, μ{sub δ}) = (– 1.21 ± 0.27, –4.39 ± 0.26) mas yr{sup –1}. In this study we also use background Sagittarius Dwarf Spheroidal stars to determine the rotation of the globular cluster in the plane of the sky and find that NGC 6681 is not rotating significantly: v {sub rot} = 0.82 ± 1.02 km s{sup –1} at a distance of 1' from the cluster center.

  11. Accurate Event-Driven Motion Compensation in High-Resolution PET Incorporating Scattered and Random Events

    PubMed Central

    Dinelle, Katie; Cheng, Ju-Chieh; Shilov, Mikhail A.; Segars, William P.; Lidstone, Sarah C.; Blinder, Stephan; Rousset, Olivier G.; Vajihollahi, Hamid; Tsui, Benjamin M. W.; Wong, Dean F.; Sossi, Vesna

    2010-01-01

    With continuing improvements in spatial resolution of positron emission tomography (PET) scanners, small patient movements during PET imaging become a significant source of resolution degradation. This work develops and investigates a comprehensive formalism for accurate motion-compensated reconstruction which at the same time is very feasible in the context of high-resolution PET. In particular, this paper proposes an effective method to incorporate presence of scattered and random coincidences in the context of motion (which is similarly applicable to various other motion correction schemes). The overall reconstruction framework takes into consideration missing projection data which are not detected due to motion, and additionally, incorporates information from all detected events, including those which fall outside the field-of-view following motion correction. The proposed approach has been extensively validated using phantom experiments as well as realistic simulations of a new mathematical brain phantom developed in this work, and the results for a dynamic patient study are also presented. PMID:18672420

  12. HALO7D: Investigating the Structure and Accretion History of the Milky Way Stellar Halo with HST Proper Motions and Keck Spectra

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily Clifford; Deason, Alis; Guhathakurta, Puragra; Rockosi, Constance; Kirby, Evan; van der marel, roeland p.; Sohn, Sangmo Tony

    2015-08-01

    The Milky Way (MW) is shrouded in a faint metal-poor stellar halo. Its structure and kinematics provide a unique archaeological record of the MW's formation, past evolution, and accretion history. These data also help us constrain the dark matter mass out to large radii (50 to 100 kpc). However, studies of the MW stellar halo are hindered by observational constraints. Beyond D~10 kpc, our knowledge of the MWhalo is limited to line of sight velocities and rare tracer populations (blue horizontal branch and red giant branch stars). We aim to address these limitations using highly accurate HST-measured proper motions and very deep (8-24 hour integrations) Keck DEIMOS spectroscopy of MW main sequence turn-off stars in the CANDELS fields. By combining these two datasets, we can obtain 6D phase-space information plus chemical abundances for our halo stars. This survey, which will be unique even in the era of Gaia, will vastly improve our understanding of the Milky Way structure, evolution and mass in a way that neither the HST proper motions nor Keck spectroscopy can do on their own.

  13. "New Proper Motion Measurements of the Superluminal Velocities in the M87 Optical Jet with HST"

    NASA Astrophysics Data System (ADS)

    Meyer, Eileen T.; Sparks, W. B.; Biretta, J. A.; Sohn, S.; Anderson, J.; Van Der Marel, R. P.; Norman, C. A.; Nakamura, M.

    2014-01-01

    Using over 13 years of archival HST observations of the relativistic jet in the archetypal radio galaxy M87, we have produced astrometric speed measurements of the optically bright synchrotron emitting plasma components in the jet with unprecedented accuracy. Building on previous work showing the superluminal nature of the jet in the optical, we have found that the jet motion is incredibly complex, with both transverse motions and flux variations which can be seen very clearly by eye in the timeseries of deep exposures. These observations of M87 provide us with a unique dataset with which to refine theoretical models of the largescale jet structure, potentially addressing open questions such as the jet collimation mechanism, bulk acceleration and deceleration in the jet, and the presence of a helical structure. I will also present very recent results using data from the HST archive on the optical counterjet and nuclear regions of M87 and discuss the larger implications of these detailed studies of one of the most nearby AGN jets.

  14. Documentation for the machine-readable version of the Lowell Proper Motion Survey, Northern Hemisphere, the G numbered stars

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1983-01-01

    This catalog contains a summary of many individual papers published in the Lowell Observatory Bulletins in the years 1958 to 1970. The data in the machine-readable version include observed positions, proper motions, estimated photographic magnitudes and colors, and references to identifications in other catalogs. Photoelectric data on the UBV system are included for many stars, but no attempt was made to find all existing photometry. The machine version contains all data of the published catalog, except the Lowell Bulletin numbers where finding charts can be found. A separate file contains the notes published in the original catalog.

  15. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  16. Linking GAIA proper motions to the extragalactic reference system by QSO observations

    NASA Technical Reports Server (NTRS)

    Schilbach, Elena; Scholz, R.-D.

    1995-01-01

    A direct link to an extragalactic reference system is considered as being a principle aim of the global astrometric interferometer for astrophysics (GAIA) mission. The data available from an extragalactic data base and a quasi stellar object (QSO) catalog were used to obtain an estimation of the number of QSO link candidates. The quality of presently available data and the expected accuracy of the extragalactic link are discussed. It is concluded that at least 150 QSO's must be observed by GAIA in order to guarantee an accuracy of better than 1 microarcsec/year for the link. New observations will be needed before the GAIA launch in order to reduce uncertainties in the positions, magnitudes and redshifts for some known quasars. The variability of QSO's with magnitudes near the GAIA observation limit can raise a potential problem. The motions of nearby QSO's are expected to be much smaller than 2 microarcsec/year, and therefore, will not affect the accuracy of the link in the proposed GAIA mission.

  17. Trigonometric distance and proper motion of IRAS 20056+3350: a massive star-forming region on the solar circle

    SciTech Connect

    Burns, Ross A.; Handa, Toshihiro; Omodaka, Toshihiro; Nakagawa, Akiharu; Nakanishi, Hiroyuki; Nagayama, Takumi; Hayashi, Masahiko; Shizugami, Makoto

    2014-12-10

    We report our measurement of the trigonometric distance and proper motion of IRAS 20056+3350, obtained from the annual parallax of H{sub 2}O masers. Our distance of D=4.69{sub −0.51}{sup +0.65} kpc, which is 2.8 times larger than the near kinematic distance adopted in the literature, places IRAS 20056+3350 at the leading tip of the Local arm and proximal to the solar circle. Using our distance, we reevaluate past observations to reveal IRAS 20056+3350 as a site of massive star formation at a young stage of evolution. This result is consistent with the spectral energy distribution of the source evaluated with published photometric data from UKIDSS, WISE, AKARI, IRAS, and the submillimeter continuum. Both analytical approaches reveal the luminosity of the region to be 2.4 × 10{sup 4} L {sub ☉}, and suggest that IRAS 20056+3350 is forming an embedded star of ≥16 M {sub ☉}. We estimated the proper motion of IRAS 20056+3350 to be (μ{sub α}cos δ, μ{sub δ}) = (–2.62 ± 0.33, –5.65 ± 0.52) mas yr{sup –1} from the group motion of H{sub 2}O masers, and use our results to estimate the angular velocity of Galactic rotation at the Galactocentric distance of the Sun, Ω{sub 0} = 29.75 ± 2.29 km s{sup –1} kpc{sup –1}, which is consistent with the values obtained for other tangent point and solar circle objects.

  18. Proper motion with HST: Searching for high-velocity stars in the core of the globular cluster 47 Tucanae

    SciTech Connect

    Meylan, G.; Minniti, D.; Pryor, C.; Tinney, C.G.; Phinney, E.S.; Sams, B.

    1996-02-13

    Binary stars play an essential role during the late phases of the dynamical evolution of a globular cluster. They transfer energy to passing stars and so can strongly influence the cluster evolution, enough to delay, halt, and even reverse core collapse. Hard binaries are known to exist in cluster cores, e.g., in the form of millisecond pulsars (about half of the millisecond pulsars observed in 47 Tucanae are such hard binaries). The presence of hard binaries may also be revealed by searching for the by-products of close encounters: high- velocity stars, such as those discovered in the core of 47 Tuc by Meylan et al. (1991) and Gebhardt et al. (1995). These studies represent the limit of the radial velocity data which can be obtained from the ground. If more progress is to be made, it must come through obtaining proper motions--a task for which {ital only} the Hubble Space Telescope (HST) is suitable. We are using WFPC2 to obtain deep U (F300W) images of the core of 47 Tuc at three different epochs over two years, with which we will measure differential proper motions to a 1-{sigma} limit of 0.23 mas/yr. This--rather conservative--estimate corresponds to a 5-{sigma} detection of all stars with tangential velocities greater than 22 km s{sup -1}. By using the F300W filter we can measure stars over the whole color-magnitude diagram, from the red-giant branch to well down the main sequence. Such a complete census will provide unique constraints as a function of the stellar mass on relaxation processes, collision and ejection rates, and the velocity distribution. Here we report on the first-epoch (Cycle 5) observations of this project. Although no proper motions are available yet, some preliminary by-product results are presented. These include luminosity functions and color-magnitude diagrams for the core of 47 Tuc and the light curves of variable blue straggler stars and of a candidate X-ray source. 32 refs., 5 figs.

  19. Cluster membership probabilities from proper motions and multi-wavelength photometric catalogues. I. Method and application to the Pleiades cluster

    NASA Astrophysics Data System (ADS)

    Sarro, L. M.; Bouy, H.; Berihuete, A.; Bertin, E.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Barrado, D.; Solano, E.

    2014-03-01

    Context. With the advent of deep wide surveys, large photometric and astrometric catalogues of literally all nearby clusters and associations have been produced. The unprecedented accuracy and sensitivity of these data sets and their broad spatial, temporal and wavelength coverage make obsolete the classical membership selection methods that were based on a handful of colours and luminosities. We present a new technique designed to take full advantage of the high dimensionality (photometric, astrometric, temporal) of such a survey to derive self-consistent and robust membership probabilities of the Pleiades cluster. Aims: We aim at developing a methodology to infer membership probabilities to the Pleiades cluster from the DANCe multidimensional astro-photometric data set in a consistent way throughout the entire derivation. The determination of the membership probabilities has to be applicable to censored data and must incorporate the measurement uncertainties into the inference procedure. Methods: We use Bayes' theorem and a curvilinear forward model for the likelihood of the measurements of cluster members in the colour-magnitude space, to infer posterior membership probabilities. The distribution of the cluster members proper motions and the distribution of contaminants in the full multidimensional astro-photometric space is modelled with a mixture-of-Gaussians likelihood. Results: We analyse several representation spaces composed of the proper motions plus a subset of the available magnitudes and colour indices. We select two prominent representation spaces composed of variables selected using feature relevance determination techniques based in Random Forests, and analyse the resulting samples of high probability candidates. We consistently find lists of high probability (p > 0.9975) candidates with ≈1000 sources, 4 to 5 times more than obtained in the most recent astro-photometric studies of the cluster. Conclusions: Multidimensional data sets require

  20. Deep study on the proper motion and collimated tail of the oldish PSR J2055+2539

    NASA Astrophysics Data System (ADS)

    Marelli, Martino

    2014-09-01

    The bright, radio-quiet, and possibly near, J2055+2539 is the less energetic non-recycled pulsar emitting in gamma-rays. In X-rays we found the faint, pulsating counterpart. Two tails of X-ray emission have been discovered protruding from the pulsar forming an angle of about 150deg. These tails are long - 13' and 4' - bright - 10 and 2 times the pulsar luminosity - and extremely collimated - the longest one is 5 to 20'' wide. These characteristics make J2055 tails the best test for all the nebular emission models, making it a better case than fainter Guitar nebula. Two Chandra observations at different epochs are requested in order to a) find the pulsar proper motion, with a possible alignment with one of the tails, and b) study the shape and low-scale structures of the nebulae.

  1. THE PROPER MOTION OF PSR J1550-5418 MEASURED WITH VLBI: A SECOND MAGNETAR VELOCITY MEASUREMENT

    SciTech Connect

    Deller, A. T.; Camilo, F.; Halpern, J. P.; Reynolds, J. E.

    2012-03-20

    The formation mechanism of neutron stars with extremely large magnetic field strengths (magnetars) remains unclear. Some formation scenarios predict that magnetars should be born with extremely high space velocities, >1000 km s{sup -1}. Using the Long Baseline Array in Australia, we have measured the proper motion of the intermittently radio-bright magnetar PSR J1550-5418 (1E 1547.0-5408): {mu} = 9.2 {+-} 0.6 mas yr{sup -1}. For a likely distance of 6 {+-} 2 kpc, the implied transverse velocity is 280{sup +130}{sub -120} km s{sup -1} after correcting for Galactic rotation. Along with the Almost-Equal-To 200 km s{sup -1} transverse velocity measured for the magnetar XTE J1810-197, this result suggests that formation pathways producing large magnetic fields do not require very large birth kicks.

  2. Cygnus OB2 DANCe: A high-precision proper motion study of the Cygnus OB2 association

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Bouy, Herve; Drew, Janet E.; Sarro, Luis Manuel; Bertin, Emmanuel; Cuillandre, Jean-Charles; Barrado, David

    2016-08-01

    We present a high-precision proper motion study of 873 X-ray and spectroscopically selected stars in the massive OB association Cygnus OB2 as part of the DANCe project. These were calculated from images spanning a 15 yr baseline and have typical precisions <1 mas yr-1. We calculate the velocity dispersion in the two axes to be σ _α (c) = 13.0^{+0.8}_{-0.7} and σ _δ (c) = 9.1^{+0.5}_{-0.5} km s-1, using a two-component, two-dimensional model that takes into account the uncertainties on the measurements. This gives a three-dimensional velocity dispersion of σ3D = 17.8 ± 0.6 km s-1 implying a virial mass significantly larger than the observed stellar mass, confirming that the association is gravitationally unbound. The association appears to be dynamically unevolved, as evidenced by considerable kinematic substructure, non-isotropic velocity dispersions and a lack of energy equipartition. The proper motions show no evidence for a global expansion pattern, with approximately the same amount of kinetic energy in expansion as there is in contraction, which argues against the association being an expanded star cluster disrupted by process such as residual gas expulsion or tidal heating. The kinematic substructures, which appear to be close to virial equilibrium and have typical masses of 40-400 M⊙, also do not appear to have been affected by the expulsion of the residual gas. We conclude that Cyg OB2 was most likely born highly substructured and globally unbound, with the individual subgroups born in (or close to) virial equilibrium, and that the OB association has not experienced significant dynamical evolution since then.

  3. The Origin of the Metal-Poor Common Proper Motion Pair HD 134439/134440: Insights from New Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Chen, Yu; King, Jeremy R.; Boesgaard, Ann M.

    2014-11-01

    The low [α/Fe] ratio in the metal-poor ([Fe/H] ~ -1.50) common proper motion pair HD 134439 and HD 134440 has been variously attributed to chemical evolution in an extragalactic environment with an irregular star formation history, planetesimal accretion, and formation in an environment with an unusually high dust-to-gas ratio. We explore these various putative origins using CNO, Be, Ag, and Eu abundances derived from high-resolution near-UV Keck/HIRES spectroscopy. While we confirm a previously suggested correlation between elemental abundance ratios and condensation temperature at the 95% confidence level, these ratios lie within the continuum of values manifested by extant dSph data. We argue that the most plausible origin of our stars' distinctive abundance distribution relative to the Galactic halo field is formation in an environment chemically dominated by products of Type II SN of low progenitor mass; such a progenitor mass bias has been previously suggested as an explanation of low α-element ratios of dSph stars. The proper motion pair's heavy-to-light n-capture element ratio, which is >=0.3-0.5 dex lower than in the Galactic halo field and dSph stars, is discussed in the context of the truncated r-process, phenomenological n-capture production models, and α-rich freezeout in a high neutron excess environment; the latter simultaneously provides an attractive explanation of the difference in [Ca, Ti/O, Mg, Si] ratio in HD 134439/134440 compared to in situ dSph stars.

  4. Observations of 6.7 GHz methanol masers with East-Asian VLBI Network. II. Internal proper motion measurement in G006.79-00.25

    NASA Astrophysics Data System (ADS)

    Sugiyama, Koichiro; Fujisawa, Kenta; Hachisuka, Kazuya; Yonekura, Yoshinori; Motogi, Kazuhito; Sawada-Satoh, Satoko; Matsumoto, Naoko; Hirano, Daiki; Hayashi, Kyonosuke; Kobayashi, Hideyuki; Kawaguchi, Noriyuki; Shibata, Katsunori M.; Honma, Mareki; Hirota, Tomoya; Murata, Yasuhiro; Doi, Akihiro; Ogawa, Hideo; Kimura, Kimihiro; Niinuma, Kotaro; Chen, Xi; Xia, Bo; Li, Bin; Sorai, Kazuo; Momose, Munetake; Saito, Yu; Takaba, Hiroshi; Omodaka, Toshihiro; Kim, Kee-Tae; Shen, Zhiqiang

    2016-10-01

    We detected internal proper motions of the methanol maser features at 6.7 GHz in a high-mass star-forming region G006.79-00.25 with the East-Asian VLBI Network. The spatial distribution of the maser features shows an elliptical morphology. The internal proper motions of 17 methanol maser features relative to the barycenter of the features were measured. The amplitude of the internal motions ranged from 1.30 to 10.25 km s-1. Most of the internal proper motions of the maser features seem to point counterclockwise along the elliptical morphology of the maser features. We applied the disk model, which includes both rotating and expanding components, to the observed positions, l.o.s. velocities, and proper motions. The derived rotation, expansion, and systemic velocities are +3^{+2}_{-2}, +6^{+2}_{-2}, and +21^{+2}_{-2}km s-1, respectively, at the radius of 1260 au on the disk with a position angle of the semi-major axis of - 140° and an inclination of 60°. The derived rotating motion suggests that the methanol maser emissions showing the elliptical spatial morphology possibly trace the rotating disk. The derived expanding motion might be caused by the magnetic-centrifugal wind on the disk, which was estimated on the basis of the typical magnetic field strength at emitting zones of a methanol maser.

  5. Accurate estimation of motion blur parameters in noisy remote sensing image

    NASA Astrophysics Data System (ADS)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  6. Spectroscopic follow-up of L- and T-type proper-motion member candidates in the Pleiades

    NASA Astrophysics Data System (ADS)

    Zapatero Osorio, M. R.; Béjar, V. J. S.; Martín, E. L.; Gálvez Ortiz, M. C.; Rebolo, R.; Bihain, G.; Henning, Th.; Boudreault, S.; Goldman, B.; Mundt, R.; Caballero, J. A.; Miles-Páez, P. A.

    2014-12-01

    We report on the near-infrared (JHK-bands) low-resolution spectroscopy and red optical (Z-band) photometry of seven proper-motion, very low-mass substellar member candidates of the Pleiades cluster with magnitudes in the interval J = 17.5-20.8 and K = 16.1-18.5 mag. Spectra were acquired for six objects with the LIRIS and NIRSPEC instruments mounted on the 4.2-m William Herschel and the 10-m Keck II telescopes, respectively. Z-band images of two of the faintest candidates were collected with the ACAM instrument on the WHT. The new data confirm the low temperatures of all seven Pleiades proper motion candidates. From the imaging observations, we find extremely red Z - J and Z - K colors that suggest that the faintest target, Calar Pleiades 25, has a Galactic rather than extragalactic nature. We tentatively classify the spectroscopic targets from early-L to ~T0 and suggest that the L/T transition, which accounts for the onset of methane absorption at 2.1 μm, may take place at J ≈ 20.3 and K ≈ 17.8 mag in the Pleiades (absolute values of MJ ≈ 14.7 and MK ≈ 12.2 mag). We find evidence of likely low-gravity atmospheres based on the presence of triangular-shape H-band fluxes and the high flux ratio K/H (compatible with red H - K colors) of Calar Pleiades 20, 21, and 22, which is a feature also seen in field low-gravity dwarfs. Weak K i absorption lines at around 1.25 μm are probably seen in two targets. These observations add support to the cluster membership of all seven objects in the Pleiades. The trend delineated by the spectroscopic sequence of Pleiades late-M and L dwarfs resembles that of the field. With masses estimated at 0.012-0.015 M⊙ (solar metallicity and 120 Myr), Calar Pleiades 20 (L6±1), 21 (L7±1), and 22 (L/T) may become the coolest and least massive Pleiades members that are corroborated with photometry, astrometry, and spectroscopy. Calar Pleiades 25 (<0.012 M⊙) is a firm free-floating planetary-mass candidate in the Pleiades. Appendix

  7. Discovery of Four High Proper Motion L Dwarfs, Including a 10 pc L Dwarf at the L/T Transition

    NASA Astrophysics Data System (ADS)

    Castro, Philip J.; Gizis, John E.; Harris, Hugh C.; Mace, Gregory N.; Kirkpatrick, J. Davy; McLean, Ian S.; Pattarakijwanich, Petchara; Skrutskie, Michael F.

    2013-10-01

    We discover four high proper motion L dwarfs by comparing the Wide-field Infrared Survey Explorer (WISE) to the Two Micron All Sky Survey. WISE J140533.32+835030.5 is an L dwarf at the L/T transition with a proper motion of 0.85 ± 0.''02 yr-1, previously overlooked due to its proximity to a bright star (V ≈ 12 mag). From optical spectroscopy we find a spectral type of L8, and from moderate-resolution J band spectroscopy we find a near-infrared spectral type of L9. We find WISE J140533.32+835030.5 to have a distance of 9.7 ± 1.7 pc, bringing the number of L dwarfs at the L/T transition within 10 pc from six to seven. WISE J040137.21+284951.7, WISE J040418.01+412735.6, and WISE J062442.37+662625.6 are all early L dwarfs within 25 pc, and were classified using optical and low-resolution near-infrared spectra. WISE J040418.01+412735.6 is an L2 pec (red) dwarf, a member of the class of unusually red L dwarfs. We use follow-up optical and low-resolution near-infrared spectroscopy to classify a previously discovered fifth object WISEP J060738.65+242953.4 as an (L8 Opt/L9 NIR), confirming it as an L dwarf at the L/T transition within 10 pc. WISEP J060738.65+242953.4 shows tentative CH4 in the H band, possibly the result of unresolved binarity with an early T dwarf, a scenario not supported by binary spectral template fitting. If WISEP J060738.65+242953.4 is a single object, it represents the earliest onset of CH4 in the H band of an L/T transition dwarf in the SpeX Library. As very late L dwarfs within 10 pc, WISE J140533.32+835030.5 and WISEP J060738.65+242953.4 will play a vital role in resolving outstanding issues at the L/T transition.

  8. Beyond the Blur: Construction and Characterization of the First Autonomous AO System, and, An AO Survey of Magnetar Proper Motions

    NASA Astrophysics Data System (ADS)

    Tendulkar, Shriharsh Prakash

    Adaptive optics (AO) corrects distortions created by atmospheric turbulence and delivers diffraction-limited images on ground-based telescopes. The vastly improved spatial resolution and sensitivity has been utilized for studying everything from the magnetic fields of sunspots upto the internal dynamics of high-redshift galaxies. This thesis about AO science from small and large telescopes is divided into two parts: Robo-AO and magnetar kinematics. In the first part, I discuss the construction and performance of the world's first fully autonomous visible light AO system, Robo-AO, at the Palomar 60-inch telescope. Robo-AO operates extremely efficiently with an overhead < 50s, typically observing about 22 targets every hour. We have performed large AO programs observing a total of over 7,500 targets since May 2012. In the visible band, the images have a Strehl ratio of about 10% and achieve a contrast of upto 6 magnitudes at a separation of 1‧‧. The full-width at half maximum achieved is 110-130 milli-arcsecond. I describe how Robo-AO is used to constrain the evolutionary models of low-mass pre-main-sequence stars by measuring resolved spectral energy distributions of stellar multiples in the visible band, more than doubling the current sample. I conclude this part with a discussion of possible future improvements to the Robo-AO system. In the second part, I describe a study of magnetar kinematics using high-resolution near-infrared (NIR) AO imaging from the 10-meter Keck II telescope. Measuring the proper motions of five magnetars with a precision of upto 0.7 milli-arcsecond/yr -1, we have more than tripled the previously known sample of magnetar proper motions and proved that magnetar kinematics are equivalent to those of radio pulsars. We conclusively showed that SGR 1900+14 and SGR 1806-20 were ejected from the stellar clusters with which they were traditionally associated. The inferred kinematic ages of these two magnetars are 6 +/- 1.8 kyr and 650 +/-3 00

  9. CHARACTERIZING THE COOL KOIs. III. KOI 961: A SMALL STAR WITH LARGE PROPER MOTION AND THREE SMALL PLANETS

    SciTech Connect

    Muirhead, Philip S.; Johnson, John Asher; Morton, Timothy D.; Pineda, John Sebastian; Bottom, Michael; Crepp, Justin R.; Kirby, Evan N.; Apps, Kevin; Carter, Joshua A.; Fabrycky, Daniel C.; Hamren, Katherine; Schlawin, Everett; Covey, Kevin R.; Stassun, Keivan G.; Pepper, Joshua; Hebb, Leslie; Howard, Andrew W.; Isaacson, Howard T.; Marcy, Geoffrey W.; and others

    2012-03-10

    We characterize the star KOI 961, an M dwarf with transit signals indicative of three short-period exoplanets discovered by the Kepler mission. We proceed by comparing KOI 961 to Barnard's Star, a nearby, well-characterized mid-M dwarf. We compare colors, optical and near-infrared spectra, and find remarkable agreement between the two, implying similar effective temperatures and metallicities. Both are metal-poor compared to the Solar neighborhood, have low projected rotational velocity, high absolute radial velocity, large proper motion, and no quiescent H{alpha} emission-all of which are consistent with being old M dwarfs. We combine empirical measurements of Barnard's Star and expectations from evolutionary isochrones to estimate KOI 961's mass (0.13 {+-} 0.05 M{sub Sun }), radius (0.17 {+-} 0.04 R{sub Sun }), and luminosity (2.40 Multiplication-Sign 10{sup -3.0{+-}0.3} L{sub Sun }). We calculate KOI 961's distance (38.7 {+-} 6.3 pc) and space motions, which, like Barnard's Star, are consistent with a high scale-height population in the Milky Way. We perform an independent multi-transit fit to the public Kepler light curve and significantly revise the transit parameters for the three planets. We calculate the false-positive probability for each planet candidate, and find a less than 1% chance that any one of the transiting signals is due to a background or hierarchical eclipsing binary, validating the planetary nature of the transits. The best-fitting radii for all three planets are less than 1 R{sub Circled-Plus }, with KOI 961.03 being Mars-sized (R{sub P} = 0.57 {+-} 0.18 R{sub Circled-Plus }), and they represent some of the smallest exoplanets detected to date.

  10. X-Ray Analysis of the Proper Motion and Pulsar Wind Nebula for PSR J1741-2054

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie; Slane, Patrick; Romani, Roger W.; Posselt, Bettina; Pavlov, George G.; Kargaltsev, Oleg; Ng, C.-Y.; Temim, Tea; Weisskopf, Martin. C.; Bykov, Andrei; Swartz, Douglas A.

    2015-03-01

    We obtained six observations of PSR J1741-2054 using the Chandra ACIS-S detector totaling ∼300 ks. By registering this new epoch of observations to an archival observation taken 3.2 yr earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at μ =109+/- 10 mas y{{r}-1} in a direction consistent with the symmetry axis of the observed Hα nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index Γ = 2.68 ± 0.04, plus a blackbody with an emission radius of (4.5-2.5+3.2){{d}0.38} km, for a DM-estimated distance of 0.38{{d}0.38} kpc and a temperature of 61.7 ± 3.0 eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of Γ = 1.67 ± 0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures.

  11. Characterization of the Praesepe star cluster by photometry and proper motions with 2MASS, PPMXL, and Pan-STARRS

    SciTech Connect

    Wang, P. F.; Chen, W. P.; Lin, C. C.; Huang, C. K.; Panwar, N.; Lee, C. H.; Pandey, A. K.; Tsai, M. F.; Tang, C.-H.; Goldman, B.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Heasley, J. N.; Hodapp, K. W.; Huber, M. E.; Jedicke, R.; Kaiser, N.; Draper, P. W.; Grav, T.; and others

    2014-03-20

    Membership identification is the first step in determining the properties of a star cluster. Low-mass members in particular could be used to trace the dynamical history, such as mass segregation, stellar evaporation, or tidal stripping, of a star cluster in its Galactic environment. We identified member candidates of the intermediate-age Praesepe cluster (M44) with stellar masses ∼0.11-2.4 M {sub ☉}, using Panoramic Survey Telescope And Rapid Response System and Two Micron All Sky Survey photometry, and PPMXL proper motions. Within a sky area of 3° radius, 1040 candidates are identified, of which 96 are new inclusions. Using the same set of selection criteria on field stars, an estimated false positive rate of 16% was determined, suggesting that 872 of the candidates are true members. This most complete and reliable membership list allows us to favor the BT-Settl model over other stellar models. The cluster shows a distinct binary track above the main sequence, with a binary frequency of 20%-40%, and a high occurrence rate of similar mass pairs. The mass function is consistent with that of the disk population but shows a deficit of members below 0.3 solar masses. A clear mass segregation is evidenced, with the lowest-mass members in our sample being evaporated from this disintegrating cluster.

  12. LOW-MASS TERTIARY COMPANIONS TO SPECTROSCOPIC BINARIES. I. COMMON PROPER MOTION SURVEY FOR WIDE COMPANIONS USING 2MASS

    SciTech Connect

    Allen, Peter R.; Burgasser, Adam J.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy

    2012-08-15

    We report the first results of a multi-epoch search for wide (separations greater than a few tens of AU), low-mass tertiary companions of a volume-limited sample of 118 known spectroscopic binaries within 30 pc of the Sun, using the Two Micron All Sky Survey Point Source Catalog and follow-up observations with the KPNO and CTIO 4 m telescopes. Note that this sample is not volume complete but volume limited, and, thus, there is incompleteness in our reported companion rates. We are sensitive to common proper motion companions with separations from roughly 200 AU to 10,000 AU ({approx}10'' {yields} {approx} 10'). From 77 sources followed-up to date, we recover 11 previously known tertiaries, 3 previously known candidate tertiaries, of which 2 are spectroscopically confirmed and 1 rejected, and 3 new candidates, of which 2 are confirmed and 1 rejected. This yields an estimated wide tertiary fraction of 19.5{sup +5.2}{sub -3.7}%. This observed fraction is consistent with predictions set out in star formation simulations where the fraction of wide, low-mass companions to spectroscopic binaries is >10%.

  13. X-Ray Analysis of the Proper Motion and Pulsar Wind Nebula for PSR J1741-2054

    NASA Technical Reports Server (NTRS)

    Auchettl, Katie; Slane, Patrick; Romani, Roger W.; Posselt, Bettina; Pavlov, George G.; Kargaltsev, Oleg; Ng, C-Y.; Temim, Tea; Weisskopf, Martin C.; Bykov, Andrei; Swartz, Douglas

    2015-01-01

    We obtained six observations of PSR J1741-2054 using the Chandra ACIS-S detector totaling approx.300 ks. By registering this new epoch of observations to an archival observation taken 3.2 yr earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at micron = 109 +/- 10 mas yr(exp. -1) in a direction consistent with the symmetry axis of the observed H(alpha) nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index gamma = 2.68 +/- 0.04, plus a blackbody with an emission radius of (4.5(+3.2/-2.5))d(0.38) km, for a DM-estimated distance of 0.38d(0.38) kpc and a temperature of 61.7 +/- 3.0 eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of gamma = 1.67 +/- 0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures.

  14. Characterization of the Praesepe Star Cluster by Photometry and Proper Motions with 2MASS, PPMXL, and Pan-STARRS

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Chen, W. P.; Lin, C. C.; Pandey, A. K.; Huang, C. K.; Panwar, N.; Lee, C. H.; Tsai, M. F.; Tang, C.-H.; Goldman, B.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Grav, T.; Heasley, J. N.; Hodapp, K. W.; Huber, M. E.; Jedicke, R.; Kaiser, N.; Kudritzki, R.-P.; Luppino, G. A.; Lupton, R. H.; Magnier, E. A.; Metcalfe, N.; Monet, D. G.; Morgan, J. S.; Onaka, P. M.; Price, P. A.; Stubbs, C. W.; Sweeney, W.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2014-03-01

    Membership identification is the first step in determining the properties of a star cluster. Low-mass members in particular could be used to trace the dynamical history, such as mass segregation, stellar evaporation, or tidal stripping, of a star cluster in its Galactic environment. We identified member candidates of the intermediate-age Praesepe cluster (M44) with stellar masses ~0.11-2.4 M ⊙, using Panoramic Survey Telescope And Rapid Response System and Two Micron All Sky Survey photometry, and PPMXL proper motions. Within a sky area of 3° radius, 1040 candidates are identified, of which 96 are new inclusions. Using the same set of selection criteria on field stars, an estimated false positive rate of 16% was determined, suggesting that 872 of the candidates are true members. This most complete and reliable membership list allows us to favor the BT-Settl model over other stellar models. The cluster shows a distinct binary track above the main sequence, with a binary frequency of 20%-40%, and a high occurrence rate of similar mass pairs. The mass function is consistent with that of the disk population but shows a deficit of members below 0.3 solar masses. A clear mass segregation is evidenced, with the lowest-mass members in our sample being evaporated from this disintegrating cluster.

  15. Confirmation of the OGLE-2005-BLG-169 Planet Signature and Its Characteristics with Lens-Source Proper Motion Detection

    NASA Astrophysics Data System (ADS)

    Batista, V.; Beaulieu, J.-P.; Bennett, D. P.; Gould, A.; Marquette, J.-B.; Fukui, A.; Bhattacharya, A.

    2015-08-01

    We present Keck NIRC2 high angular resolution adaptive optics observations of the microlensing event OGLE-2005-BLG-169Lb, taken 8.21 years after the discovery of this planetary system. For the first time for a microlensing planetary event, the source and the lens are completely resolved, providing a precise measurement of their heliocentric relative proper motion, {μ }{rel,{helio}}=7.44+/- 0.17 mas yr-1. This confirms and refines the initial model presented in the discovery paper and rules out a range of solutions that were allowed by the microlensing light curve. This is also the first time that parameters derived from a microlensing planetary signal are confirmed, both with the Keck measurements, presented in this paper, and independent measurements obtained with the Hubble Space Telescope in I,V and B bands, presented in a companion paper. Hence, this new measurement of {μ }{rel,{helio}}, as well as the measured brightness of the lens in H band, enabled the mass and distance of the system to be updated: a Uranus-mass planet ({m}{{p}}=13.2+/- 1.3{M}\\oplus ) orbiting a K5-type main sequence star ({M}*=0.65+/- 0.05{M}⊙ ) separated by {a}\\perp =3.4+/- 0.3 AU, at the distance {D}{{L}}=4.0+/- 0.4 kpc from us.

  16. Three very cool degenerate stars in Luyten common proper motion binaries - Implications for the age of the galactic disk

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Oswalt, Terry D.; Liebert, James; Sion, Edward M.

    1989-01-01

    During the course of a spectroscopic study of Luyten common proper motion (CPM) stars, spectrophotometric observations have been obtained of three binaries containing degenerate stars with estimated absolute magnitudes M(V) of about 16. Each of the three pairs consists of a yellow degenerate star primary and a DC 13 + secondary 1.4-2.3 mag fainter. One of the primary stars is spectral class DC 7, another is a sharp-lined DA 8, and the third shows peculiar broad absorption features which we interpret as pressure-shifted C2 Swan bands. The LP 701 - 69/70 system has survived for over 8 billion years without disruption by passing stars, despite its 1500 a.u. orbital major axis. The three cool degenerate companions nearly double the available sample of stars at the low-luminosity terminus of the white dwarf cooling sequence. These findings appear consistent with the conclusion that degenerate stars in the old disk population have not had time to evolve to a luminosity fainter than M(V) about 16.2.

  17. THE PPMXL CATALOG OF POSITIONS AND PROPER MOTIONS ON THE ICRS. COMBINING USNO-B1.0 AND THE TWO MICRON ALL SKY SURVEY (2MASS)

    SciTech Connect

    Roeser, S.; Demleitner, M.; Schilbach, E.

    2010-06-15

    USNO-B1.0 and the Two Micron All Sky Survey (2MASS) are the most widely used all-sky surveys. However, 2MASS has no proper motions at all, and USNO-B1.0 published only relative, not absolute (i.e., on the International Celestial Reference Frame (ICRS), proper motions. We performed a new determination of mean positions and proper motions on the ICRS system by combining USNO-B1.0 and 2MASS astrometry. This catalog is called PPMXL (VO access to the catalog is possible via http://vo.uni-hd.de/ppmxl), and it aims to be completed from the brightest stars down to about V {approx} 20 all sky. PPMXL contains about 900 million objects, some 410 million with 2MASS photometry, and is the largest collection of ICRS proper motions at present. As representative for the ICRS, we chose PPMX. The recently released UCAC3 could not be used because we found plate-dependent distortions in its proper motion system north of -20{sup 0} declination. UCAC3 served as an intermediate system for {delta} {<=} -20{sup 0}. The resulting typical individual mean errors of the proper motions range from 4 mas yr{sup -1} to more than 10 mas yr{sup -1} depending on observational history. The mean errors of positions at epoch 2000.0 are 80-120 mas, if 2MASS astrometry could be used, 150-300 mas else. We also give correction tables to convert USNO-B1.0 observations of, e.g., minor planets to the ICRS system.

  18. Differential contribution of visual and auditory information to accurately predict the direction and rotational motion of a visual stimulus.

    PubMed

    Park, Seoung Hoon; Kim, Seonjin; Kwon, MinHyuk; Christou, Evangelos A

    2016-03-01

    Vision and auditory information are critical for perception and to enhance the ability of an individual to respond accurately to a stimulus. However, it is unknown whether visual and auditory information contribute differentially to identify the direction and rotational motion of the stimulus. The purpose of this study was to determine the ability of an individual to accurately predict the direction and rotational motion of the stimulus based on visual and auditory information. In this study, we recruited 9 expert table-tennis players and used table-tennis service as our experimental model. Participants watched recorded services with different levels of visual and auditory information. The goal was to anticipate the direction of the service (left or right) and the rotational motion of service (topspin, sidespin, or cut). We recorded their responses and quantified the following outcomes: (i) directional accuracy and (ii) rotational motion accuracy. The response accuracy was the accurate predictions relative to the total number of trials. The ability of the participants to predict the direction of the service accurately increased with additional visual information but not with auditory information. In contrast, the ability of the participants to predict the rotational motion of the service accurately increased with the addition of auditory information to visual information but not with additional visual information alone. In conclusion, this finding demonstrates that visual information enhances the ability of an individual to accurately predict the direction of the stimulus, whereas additional auditory information enhances the ability of an individual to accurately predict the rotational motion of stimulus.

  19. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. III. Dynamical Distances and Mass-to-Light Ratios

    NASA Astrophysics Data System (ADS)

    Watkins, Laura L.; van der Marel, Roeland P.; Bellini, Andrea; Anderson, Jay

    2015-10-01

    We present dynamical distance estimates for 15 Galactic globular clusters (GCs) and use these to check the consistency of dynamical and photometric distance estimates. For most of the clusters, this is the first dynamical distance estimate ever determined. We extract proper-motion (PM) dispersion profiles using cleaned samples of bright stars from the Hubble Space Telescope PM catalogs recently presented in Bellini et al. and compile a set of line of sight (LOS) velocity-dispersion profiles from a variety of literature sources. Distances are then estimated by fitting spherical, non-rotating, isotropic, constant mass-to-light ratio (M/L) dynamical models to the PM and LOS dispersion profiles together. We compare our dynamical distance estimates with literature photometric estimates from the Harris GC catalog and find that the mean fractional difference between the two types is consistent with zero at just -1.9 ± 1.7%. This indicates that there are no significant biases in either estimation method and provides an important validation of the stellar-evolution theory that underlies photometric distance estimates. The analysis also estimates dynamical M/Ls for our clusters; on average, the dynamically inferred M/Ls agree with existing stellar-population-based M/Ls that assume a Chabrier initial mass function (IMF) to within -8.8 ± 6.4%, implying that such an IMF is consistent with our data. Our results are also consistent with a Kroupa IMF, but strongly rule out a Salpeter IMF. We detect no correlation between our M/L offsets from literature values and our distance offsets from literature values, strongly indicating that our methods are reliable and our results are robust. Based on proprietary and archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  20. HUBBLE SPACE TELESCOPE PROPER MOTION (HSTPROMO) CATALOGS OF GALACTIC GLOBULAR CLUSTERS. I. SAMPLE SELECTION, DATA REDUCTION, AND NGC 7078 RESULTS

    SciTech Connect

    Bellini, A.; Anderson, J.; Van der Marel, R. P.; Watkins, L. L.; King, I. R.; Bianchini, P.; Chanamé, J.; Chandar, R.; Cool, A. M.; Ferraro, F. R.; Massari, D.; Ford, H.

    2014-12-20

    We present the first study of high-precision internal proper motions (PMs) in a large sample of globular clusters, based on Hubble Space Telescope (HST) data obtained over the past decade with the ACS/WFC, ACS/HRC, and WFC3/UVIS instruments. We determine PMs for over 1.3 million stars in the central regions of 22 clusters, with a median number of ∼60,000 stars per cluster. These PMs have the potential to significantly advance our understanding of the internal kinematics of globular clusters by extending past line-of-sight (LOS) velocity measurements to two- or three-dimensional velocities, lower stellar masses, and larger sample sizes. We describe the reduction pipeline that we developed to derive homogeneous PMs from the very heterogeneous archival data. We demonstrate the quality of the measurements through extensive Monte Carlo simulations. We also discuss the PM errors introduced by various systematic effects and the techniques that we have developed to correct or remove them to the extent possible. We provide in electronic form the catalog for NGC 7078 (M 15), which consists of 77,837 stars in the central 2.'4. We validate the catalog by comparison with existing PM measurements and LOS velocities and use it to study the dependence of the velocity dispersion on radius, stellar magnitude (or mass) along the main sequence, and direction in the plane of the sky (radial or tangential). Subsequent papers in this series will explore a range of applications in globular-cluster science and will also present the PM catalogs for the other sample clusters.

  1. THE PROPER MOTION AND X-RAY ANALYSIS OF THE PULSAR WIND NEBULA, PSR J1741-2054 USING CHANDRA.

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie; Slane, Patrick O.; Romani, Roger W.; Kargaltsev, Oleg; Pavlov, George G.

    2014-08-01

    A pulsar dissipates its rotational energy by generating relativistic winds, which in turn produces a population of high energy electrons and positions that we observe as a synchrotron emitting nebula. If the pulsar has a high space velocity, the corresponding nebula will have a bow-shock morphology due to the pulsar wind being confined by ram pressure. Pulsar wind nebulae (PWNe) provide a good test bed to study the dynamics and interaction of relativistic outflows with their environment and the corresponding shocks that result from these interactions. They can also aid in understanding the evolution of the neutron star and the properties of the local medium with which they are interacting. Here we report on the X-ray analysis of PSR J1741-2054 carried out as a part of the Chandra XVP program (6 ACIS-S observations, totalling ~300 ks over 5 months). By registering this new epoch of observations using X-ray point sources in the field of view to an archival observation taken 3.2 years earlier, we are able to measure the proper motion of the pulsar with >3σ significance. We also investigate the spatial and spectral properties of the pulsar, its compact nebula and extended tail. We find that the compact nebula can be well described with an absorbed power-law with photon index of Γ=1.6+/-0.2, while the tail shows no evidence of variation in the spectral index with the distance from the pulsar. We have also investigated the X-ray spectrum of the neutron star. We find nonthermal emission accompanied by a significant thermal component and will provide constraints on the overall nature of the emission.

  2. Third-epoch Magellanic Cloud proper motions. II. The large Magellanic Cloud rotation field in three dimensions

    SciTech Connect

    Van der Marel, Roeland P.; Kallivayalil, Nitya

    2014-02-01

    We present the first detailed assessment of the large-scale rotation of any galaxy based on full three-dimensional velocity measurements. We do this for the LMC by combining our Hubble Space Telescope average proper motion (PM) measurements for stars in 22 fields, with existing line-of-sight (LOS) velocity measurements for 6790 individual stars. We interpret these data with a model of circular rotation in a flat disk. The PM and LOS data paint a consistent picture of the LMC rotation, and their combination yields several new insights. The PM data imply a stellar dynamical center that coincides with the H I dynamical center, and a rotation curve amplitude consistent with that inferred from LOS velocity studies. The implied disk viewing angles agree with the range of values found in the literature, but continue to indicate variations with stellar population and/or radius. Young (red supergiant) stars rotate faster than old (red and asymptotic giant branch) stars due to asymmetric drift. Outside the central region, the circular velocity is approximately flat at V {sub circ} = 91.7 ± 18.8 km s{sup –1}. This is consistent with the baryonic Tully-Fisher relation and implies an enclosed mass M(8.7 kpc) = (1.7 ± 0.7) × 10{sup 10} M {sub ☉}. The virial mass is larger, depending on the full extent of the LMC's dark halo. The tidal radius is 22.3 ± 5.2 kpc (24.°0 ± 5.°6). Combination of the PM and LOS data yields kinematic distance estimates for the LMC, but these are not yet competitive with other methods.

  3. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. I. Sample Selection, Data Reduction, and NGC 7078 Results

    NASA Astrophysics Data System (ADS)

    Bellini, A.; Anderson, J.; van der Marel, R. P.; Watkins, L. L.; King, I. R.; Bianchini, P.; Chanamé, J.; Chandar, R.; Cool, A. M.; Ferraro, F. R.; Ford, H.; Massari, D.

    2014-12-01

    We present the first study of high-precision internal proper motions (PMs) in a large sample of globular clusters, based on Hubble Space Telescope (HST) data obtained over the past decade with the ACS/WFC, ACS/HRC, and WFC3/UVIS instruments. We determine PMs for over 1.3 million stars in the central regions of 22 clusters, with a median number of ~60,000 stars per cluster. These PMs have the potential to significantly advance our understanding of the internal kinematics of globular clusters by extending past line-of-sight (LOS) velocity measurements to two- or three-dimensional velocities, lower stellar masses, and larger sample sizes. We describe the reduction pipeline that we developed to derive homogeneous PMs from the very heterogeneous archival data. We demonstrate the quality of the measurements through extensive Monte Carlo simulations. We also discuss the PM errors introduced by various systematic effects and the techniques that we have developed to correct or remove them to the extent possible. We provide in electronic form the catalog for NGC 7078 (M 15), which consists of 77,837 stars in the central 2.'4. We validate the catalog by comparison with existing PM measurements and LOS velocities and use it to study the dependence of the velocity dispersion on radius, stellar magnitude (or mass) along the main sequence, and direction in the plane of the sky (radial or tangential). Subsequent papers in this series will explore a range of applications in globular-cluster science and will also present the PM catalogs for the other sample clusters. Based on proprietary and archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  4. DISTANCE AND PROPER MOTION MEASUREMENT OF THE RED SUPERGIANT, PZ CAS, IN VERY LONG BASELINE INTERFEROMETRY H{sub 2}O MASER ASTROMETRY

    SciTech Connect

    Kusuno, K.; Asaki, Y.; Imai, H.; Oyama, T. E-mail: asaki@vsop.isas.jaxa.jp E-mail: t.oyama@nao.ac.jp

    2013-09-10

    We present the very long baseline interferometry H{sub 2}O maser monitoring observations of the red supergiant, PZ Cas, at 12 epochs from 2006 April to 2008 May. We fitted maser motions to a simple model composed of a common annual parallax and linear motions of the individual masers. The maser motions with the parallax subtracted were well modeled by a combination of a common stellar proper motion and a radial expansion motion of the circumstellar envelope. We obtained an annual parallax of 0.356 {+-} 0.026 mas and a stellar proper motion of {mu}{sub {alpha}}{sup *} cos {delta} = -3.7 {+-} 0.2 and {mu}{sup *}{sub {delta}}=-2.0{+-}0.3 mas yr{sup -1} eastward and northward, respectively. The annual parallax corresponds to a trigonometric parallax of 2.81{sup +0.22}{sub -0.19} kpc. By rescaling the luminosity of PZ Cas in any previous studies using our trigonometric parallax, we estimated the location of PZ Cas on a Hertzsprung-Russell diagram and found that it approaches a theoretically evolutionary track around an initial mass of {approx}25 M{sub Sun }. The sky position and the distance to PZ Cas are consistent with the OB association, Cas OB5, which is located in a molecular gas super shell. The proper motion of PZ Cas is close to that of the OB stars and other red supergiants in Cas OB5 measured by the Hipparcos satellite. We derived the peculiar motion of PZ Cas of U{sub s} = 22.8 {+-} 1.5, V{sub s} = 7.1 {+-} 4.4, and W{sub s} = -5.7 {+-} 4.4 km s{sup -1}. This peculiar motion has rather a large U{sub s} component, unlike those of near high-mass star-forming regions with negatively large V{sub s} motions. The uniform proper motions of the Cas OB5 member stars suggest random motions of giant molecular clouds moving into local potential minima in a time-dependent spiral arm, rather than a velocity field caused by the spiral arm density wave.

  5. New method to measure proper motions of microlensed sources: Application to candidate free-floating-planet event MOA-2011-BLG-262

    SciTech Connect

    Skowron, Jan; Udalski, Andrzej; Szymański, Michał K. E-mail: udalski@astrouw.edu.pl; and others

    2014-04-20

    We develop a new method to measure source proper motions in microlensing events, which can partially overcome problems due to blending. It takes advantage of the fact that the source position is known precisely from the microlensing event itself. We apply this method to the event MOA-2011-BLG-262, which has a short timescale t {sub E} = 3.8 day, a companion mass ratio q = 4.7 × 10{sup –3}, and a very high or high lens-source relative proper motion μ{sub rel} = 20 mas yr{sup –1} or 12 mas yr{sup –1} (for two possible models). These three characteristics imply that the lens could be a brown dwarf or a massive planet with a roughly Earth-mass 'moon'. The probability of such an interpretation would be greatly increased if it could be shown that the high lens-source relative proper motion was primarily due to the lens rather than the source. Based on the long-term monitoring data of the Galactic bulge from the Optical Gravitational Lensing Experiment, we measure the source proper motion that is small, μ{sub s}=(−2.3,−0.9)±(2.8,2.6) mas yr{sup −1} in a (north, east) Galactic coordinate frame. These values are then important input into a Bayesian analysis of the event presented in a companion paper by Bennett et al.

  6. Threshold adjusted calcium scoring using CT is less susceptible to cardiac motion and more accurate.

    PubMed

    Groen, J M; Dijkstra, H; Greuter, M J W; Oudkerk, M

    2009-02-01

    The purpose of this paper is to investigate calcium scoring on computed tomography (CT) using an adjusted threshold depending on the maximum Hounsfield value within the calcification (HU(peak)). The volume of 19 calcifications was retrospectively determined on 64-slice multidetector CT and dual source CT (DSCT) at different thresholds and the threshold associated with the physical volume was determined. In addition, approximately 10 000 computer simulations were done simulating the same process for calcifications with mixed density. Using these data a relation between the HU(peak) and the threshold could be established. Hereafter, this relation was assessed by scanning six calcifications in a phantom at 40-110 beats per minute using DSCT. The influence of motion was determined and the measured calcium scores were compared to the physical volumes and mass. A positive linear correlation was found between the scoring threshold and the HU(peak) of the calcifications both for the phantom measurements as for the computer simulations. Using this relation the individual threshold for each calcification could be calculated. Calcium scores of the moving calcifications determined with an adjusted threshold were approximately 30% less susceptible to cardiac motion compared to standard calcium scoring. Furthermore, these scores approximated the physical volume and mass at least 10% better than the standard calcium scores. The threshold in calcium scoring should be adjusted for each individual calcification based on the HU(peak) of the calcification. Calcium scoring using an adjusted threshold is less susceptible to cardiac motion and more accurate compared to the physical values. PMID:19291982

  7. Large proper motion of the Thorne-Żytkow object candidate HV 2112 reveals its likely nature as foreground Galactic S-star

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas J.; de Mink, Selma E.

    2016-05-01

    Using the Southern Proper Motion (SPM) catalogue, we show that the candidate Thorne-Żytkow object HV 2112 has a proper motion implying a space velocity of about 3000 {km} {s}^{-1}if the object is located at the distance of the Small Magellanic Cloud (SMC). The proper motion is statistically different from that of the SMC at approximately 4σ in SPM, although the result can drop to about 3σ significance by including the UCAC4 data and considering systematic uncertainties in addition to the statistical ones. Assuming the measurement is robust, this proper motion is sufficient to exclude its proposed membership of the SMC and to argue instead that it is likely to be a foreground star in the Milky Way halo. The smaller distance and therefore lower brightness argue against its proposed nature as a Thorne-Żytkow object (the hypothesized star-like object formed when a normal star and a neutron star merge) or a Asymptotic Giant Branch (AGB) star. Instead we propose a binary scenario where this star is the companion of a former massive AGB star, which polluted the object with via its stellar wind, i.e. a special case of an extrinsic S star. Our new scenario solves two additional problems with the two existing scenarios for its nature as Thorne-Żytkow object or present-day super AGB star. The puzzling high ratio of the strength of calcium to iron absorption lines is unexpected for SMC supergiants, but is fully consistent with the expectations for halo abundances. Secondly, its strong variability can now be explained naturally as a manifestation of the Mira phenomenon. We discuss further observational tests that could distinguish between the foreground and SMC scenarios in advance of the improved proper motion measurements likely to come from Gaia.

  8. THE BROWN DWARF KINEMATICS PROJECT. II. DETAILS ON NINE WIDE COMMON PROPER MOTION VERY LOW MASS COMPANIONS TO NEARBY STARS ,

    SciTech Connect

    Faherty, Jacqueline K.; Shara, Michael M.; Burgasser, Adam J.; West, Andrew A.; Bochanski, John J.; Cruz, Kelle L.; Walter, Frederick M.

    2010-01-15

    We report on nine wide common proper motion systems containing late-type M, L, or T companions. We confirm six previously reported companions, and identify three new systems. The ages of these systems are determined using diagnostics for both stellar primaries and low-mass secondaries and masses for the secondaries are inferred using evolutionary models. Of our three new discoveries, the M3+T6.5 pair G 204-39 and SDSS J1758+4633 has an age constrained to 0.5-1.5 Gyr making the secondary a potentially useful brown dwarf benchmark. The G5+L4 pair G 200-28 and SDSS J1416+5006 has a projected separation of {approx}25,000 AU making it one of the widest and lowest binding energy systems known to date. The system containing NLTT 2274 and SDSS J0041+1341 is an older M4+L0 (>4.5 Gyr) pair which shows H{alpha} activity in the secondary but not the primary making it a useful tracer of age/mass/activity trends. Two of the nine systems have discrepant component ages that emerge from stellar or ultracool diagnostics indicating possible shortcomings in our understanding of the age diagnostics of stars and brown dwarfs. We find a resolved binary frequency for widely separated (>100 AU) low-mass companions (i.e., at least a triple system) which is at least twice the frequency found for the field ultracool dwarf population. The ratio of triples to binaries and quadruples to binaries is also high for this sample: 3:5 and 1:4, respectively, compared to 8 pc sample values of 1:4 and 1:26. The additional components in these wide companion systems indicates a formation mechanism that requires a third or fourth component to maintain gravitational stability or facilitate the exchange of angular momentum. The binding energies for the nine multiples discussed in this text are among the lowest known for wide low-mass systems, suggesting that weakly bound, low-to-intermediate mass (0.2 M {sub sun} < M {sub tot}< 1.0 M {sub sun}) multiples can form and survive to exist in the field (1-8 Gyr)

  9. The Brown Dwarf Kinematics Project. II. Details on Nine Wide Common Proper Motion Very Low Mass Companions to Nearby Stars

    NASA Astrophysics Data System (ADS)

    Faherty, Jacqueline K.; Burgasser, Adam J.; West, Andrew A.; Bochanski, John J.; Cruz, Kelle L.; Shara, Michael M.; Walter, Frederick M.

    2010-01-01

    We report on nine wide common proper motion systems containing late-type M, L, or T companions. We confirm six previously reported companions, and identify three new systems. The ages of these systems are determined using diagnostics for both stellar primaries and low-mass secondaries and masses for the secondaries are inferred using evolutionary models. Of our three new discoveries, the M3+T6.5 pair G 204-39 and SDSS J1758+4633 has an age constrained to 0.5-1.5 Gyr making the secondary a potentially useful brown dwarf benchmark. The G5+L4 pair G 200-28 and SDSS J1416+5006 has a projected separation of ~25,000 AU making it one of the widest and lowest binding energy systems known to date. The system containing NLTT 2274 and SDSS J0041+1341 is an older M4+L0 (>4.5 Gyr) pair which shows Hα activity in the secondary but not the primary making it a useful tracer of age/mass/activity trends. Two of the nine systems have discrepant component ages that emerge from stellar or ultracool diagnostics indicating possible shortcomings in our understanding of the age diagnostics of stars and brown dwarfs. We find a resolved binary frequency for widely separated (>100 AU) low-mass companions (i.e., at least a triple system) which is at least twice the frequency found for the field ultracool dwarf population. The ratio of triples to binaries and quadruples to binaries is also high for this sample: 3:5 and 1:4, respectively, compared to 8 pc sample values of 1:4 and 1:26. The additional components in these wide companion systems indicates a formation mechanism that requires a third or fourth component to maintain gravitational stability or facilitate the exchange of angular momentum. The binding energies for the nine multiples discussed in this text are among the lowest known for wide low-mass systems, suggesting that weakly bound, low-to-intermediate mass (0.2 M sun < M tot< 1.0 M sun) multiples can form and survive to exist in the field (1-8 Gyr). This paper includes data

  10. Improved Hubble Space Telescope proper motions for Tycho-G and other stars in the remnant of Tycho's Supernova 1572

    NASA Astrophysics Data System (ADS)

    Bedin, L. R.; Ruiz-Lapuente, P.; González Hernández, J. I.; Canal, R.; Filippenko, A. V.; Mendez, J.

    2014-03-01

    With archival and new Hubble Space Telescope observations, we have refined the space-velocity measurements of the stars in the central region of the remnant of Tycho's supernova (SN) 1572, one of the historical Galactic Type Ia supernova remnants (SNRs). We derived a proper motion for Tycho-G of (μαcos δ; μδ)J2000.0 = (-2.63; -3.98) ± (0.06; 0.04) [formal errors] ± (0.18; 0.10) [expected errors] mas yr-1. If the star were at the distance of the SNR (taken here to be 2.83 kpc), its velocity would be vb = -51 ± 1.5 km s-1. We also reconstruct the binary orbit that Tycho-G should have followed if it were the surviving companion of SN 1572. We redetermine the Ni abundance of this star and compare it with new abundance data from stars of the Galactic disc, finding that [Ni/Fe] is about 1.7σ above the Galactic trend. From the high velocity of Tycho-G perpendicular to the Galactic plane ( - 90 ± 3 km s-1 ≤ vb ≤ -45 ± 1 km s-1, for the allowed range of distances to the star), its metallicity and its Ni excess, we find the probability of it being a chance interloper to be P ≲ 0.000 37 at most. The projected rotational velocity of the star should be below current observational limits. The projected position of Tycho-G is, within the uncertainties, consistent with the centroid of the X-ray emission of Tycho's SNR; moreover, its brightness is generally consistent with the post-explosion evolution of the luminosity of an SN companion. Among the other 23 stars having V < 22 mag and located within 42 arcsec from the X-ray centroid, only 4 are at distances compatible with that of the SNR, and none of them shows any peculiarity. Therefore, if even Tycho-G is not the surviving companion of SN 1572, the absence of other viable candidates does favour the merging of two white dwarfs as the producer of the SN.

  11. NEARBY YOUNG STARS SELECTED BY PROPER MOTION. I. FOUR NEW MEMBERS OF THE {beta} PICTORIS MOVING GROUP FROM THE TYCHO-2 CATALOG

    SciTech Connect

    Lepine, Sebastien; Simon, Michal E-mail: michal.simon@sunysb.edu

    2009-03-15

    We describe a procedure to identify stars from nearby moving groups and associations out of catalogs of stars with large proper motions. We show that from the mean motion vector of a known or suspected moving group, one can identify additional members of the group based on proper motion data and photometry in the optical and infrared, with minimal contamination from background field stars. We demonstrate this technique by conducting a search for low-mass members of the {beta} Pictoris moving group in the Tycho-2 catalog. All known members of the moving group are easily recovered, and a list of 51 possible candidates is generated. Moving group membership is evaluated for 33 candidates based on X-ray flux from ROSAT, H{alpha} line emission, and radial velocity measurement from high-resolution infrared spectra obtained at Infrared Telescope Facility. We confirm three of the candidates to be new members of the group: TYC 1186-706-1, TYC 7443-1102-1, and TYC 2211-1309-1 which are late-K and early-M dwarfs 45-60 pc from the Sun. We also identify a common proper motion companion to the known {beta} Pictoris Moving Group member TYC 7443-1102-1, at a 26.''3 separation; the new companion is associated with the X-ray source 1RXS J195602.8 - 320720. We argue that the present technique could be applied to other large proper motion catalogs to identify most of the elusive, low-mass members of known nearby moving groups and associations.

  12. Nearby Young Stars Selected by Proper Motion. I. Four New Members of the β Pictoris Moving Group From The Tycho-2 Catalog

    NASA Astrophysics Data System (ADS)

    Lépine, Sébastien; Simon, Michal

    2009-03-01

    We describe a procedure to identify stars from nearby moving groups and associations out of catalogs of stars with large proper motions. We show that from the mean motion vector of a known or suspected moving group, one can identify additional members of the group based on proper motion data and photometry in the optical and infrared, with minimal contamination from background field stars. We demonstrate this technique by conducting a search for low-mass members of the β Pictoris moving group in the Tycho-2 catalog. All known members of the moving group are easily recovered, and a list of 51 possible candidates is generated. Moving group membership is evaluated for 33 candidates based on X-ray flux from ROSAT, Hα line emission, and radial velocity measurement from high-resolution infrared spectra obtained at Infrared Telescope Facility. We confirm three of the candidates to be new members of the group: TYC 1186-706-1, TYC 7443-1102-1, and TYC 2211-1309-1 which are late-K and early-M dwarfs 45-60 pc from the Sun. We also identify a common proper motion companion to the known β Pictoris Moving Group member TYC 7443-1102-1, at a 26farcs3 separation; the new companion is associated with the X-ray source 1RXS J195602.8 - 320720. We argue that the present technique could be applied to other large proper motion catalogs to identify most of the elusive, low-mass members of known nearby moving groups and associations. Based on data obtained in part with the 2.4 m Hiltner telescope of the MDM observatory. Based on data obtained in part with the CTIO 1.5 m telescope, operated by SMARTS, the Small and Medium Aperture Telescope System consortium, under contract with the Associated Universities for Research in Astronomy (AURA).

  13. OBJECTS APPEAR SMALLER AS THEY RECEDE: HOW PROPER MOTIONS CAN DIRECTLY REVEAL THE COSMIC EXPANSION, PROVIDE GEOMETRIC DISTANCES, AND MEASURE THE HUBBLE CONSTANT

    SciTech Connect

    Darling, Jeremy

    2013-11-10

    Objects and structures gravitationally decoupled from the Hubble expansion will appear to shrink in angular size as the universe expands. Observations of extragalactic proper motions can thus directly reveal the cosmic expansion. Relatively static structures such as galaxies or galaxy clusters can potentially be used to measure the Hubble constant, and test masses in large scale structures can measure the overdensity. Since recession velocities and angular separations can be precisely measured, apparent proper motions can also provide geometric distance measurements to static structures. The apparent fractional angular compression of static objects is 15 μas yr{sup –1} in the local universe; this motion is modulated by the overdensity in dynamic expansion-decoupled structures. We use the Titov et al. quasar proper motion catalog to examine the pairwise proper motion of a sparse network of test masses. Small-separation pairs (<200 Mpc comoving) are too few to measure the expected effect, yielding an inconclusive 8.3 ± 14.9 μas yr{sup –1}. Large-separation pairs (200-1500 Mpc) show no net convergence or divergence for z < 1, –2.7 ± 3.7 μas yr{sup –1}, consistent with pure Hubble expansion and significantly inconsistent with static structures, as expected. For all pairs a 'null test' gives –0.36 ± 0.62 μas yr{sup –1}, consistent with Hubble expansion and excludes a static locus at ∼5-10σ significance for z ≅ 0.5-2.0. The observed large-separation pairs provide a reference frame for small-separation pairs that will significantly deviate from the Hubble flow. The current limitation is the number of small-separation objects with precise astrometry, but Gaia will address this and will likely detect the cosmic recession.

  14. Ground-based CCD astrometry with wide field imagers. III. WFI@2.2m proper-motion catalog of the globular cluster ω Centauri

    NASA Astrophysics Data System (ADS)

    Bellini, A.; Piotto, G.; Bedin, L. R.; Anderson, J.; Platais, I.; Momany, Y.; Moretti, A.; Milone, A. P.; Ortolani, S.

    2009-01-01

    Context: ω Centauri is the most well studied Galactic Globular Cluster because of its numerous puzzling features: significant dispersion in metallicity, multiple populations, triple main-sequence, horizontal branch morphology, He-rich population(s), and extended star-formation history. Intensive spectroscopic follow-up observing campaigns targeting stars at different positions in the color-magnitude diagram promises to clarify some of these peculiarities. Aims: To be able to target cluster members reliably during spectroscopic surveys and both spatial and radial distributions in the cluster outskirts without including field stars, a high quality proper-motion catalog of ω Cen and membership probability determination are required. The only available wide field proper-motion catalog of ω Cen is derived from photographic plates, and only for stars brighter than B~16. Using ESO archive data, we create a new, CCD-based, proper-motion catalog for this cluster, extending to B~20. Methods: We used high precision astrometric software developed specifically for data acquired by WFI@2.2m telescope and presented in the first paper of this series. We demonstrated previously that a 7 mas astrometric precision level can be achieved with this telescope and camera for well exposed stars in a single exposure, assuming an empirical PSF and a local transformation approach in measuring star displacements. Results: We achieved a good cluster-field separation with a temporal base-line of only four years. We corrected our photometry for sky-concentration effects. We provide calibrated photometry for UBVR_CIC wide-band data plus narrow-band filter data centered on Hα for almost 360 000 stars. We confirm that the ω Cen metal-poor and metal-rich components have the same proper motion, and demonstrate that the metal-intermediate component in addition exhibits the same mean motion as the other RGB stars. We provide membership probability determinations for published ω Cen variable star

  15. Documentation for the machine readable version of the Yale Catalogue of the Positions and Proper Motions of Stars between Declinations -60 deg and -70 deg (Fallon 1983)

    NASA Technical Reports Server (NTRS)

    Roman, N. G.; Warren, W. H., Jr.

    1984-01-01

    The machine-readable, character-coded version of the catalog, as it is currently being distributed from the Astronomical Data Center(ADC), is described. The format and data provided in the magnetic tape version differ somewhat from those of the published catalog, which was also produced from a tape prepared at the ADC. The primary catalog data are positions and proper motions (equinox 1950.0) for 14597 stars.

  16. VERY LONG BASELINE INTERFEROMETRY MEASURED PROPER MOTION AND PARALLAX OF THE γ-RAY MILLISECOND PULSAR PSR J0218+4232

    SciTech Connect

    Du, Yuanjie; Chen, Ding; Yang, Jun; Campbell, Robert M.; Janssen, Gemma; Stappers, Ben

    2014-02-20

    PSR J0218+4232 is a millisecond pulsar (MSP) with a flux density ∼0.9 mJy at 1.4 GHz. It is very bright in the high-energy X-ray and γ-ray domains. We conducted an astrometric program using the European VLBI Network (EVN) at 1.6 GHz to measure its proper motion and parallax. A model-independent distance would also help constrain its γ-ray luminosity. We achieved a detection of signal-to-noise ratio S/N >37 for the weak pulsar in all five epochs. Using an extragalactic radio source lying 20 arcmin away from the pulsar, we estimate the pulsar's proper motion to be μ{sub α}cos δ = 5.35 ± 0.05 mas yr{sup –1} and μ{sub δ} = –3.74 ± 0.12 mas yr{sup –1}, and a parallax of π = 0.16 ± 0.09 mas. The very long baseline interferometry (VLBI) proper motion has significantly improved upon the estimates from long-term pulsar timing observations. The VLBI parallax provides the first model-independent distance constraints: d=6.3{sub −2.3}{sup +8.0} kpc, with a corresponding 3σ lower-limit of d = 2.3 kpc. This is the first pulsar trigonometric parallax measurement based solely on EVN observations. Using the derived distance, we believe that PSR J0218+4232 is the most energetic γ-ray MSP known to date. The luminosity based on even our 3σ lower-limit distance is high enough to pose challenges to the conventional outer gap and slot gap models.

  17. Identifications and limited spectroscopy for Luyten common proper motion stars with probable white dwarf components. I - Pair brighter than 17th magnitude

    NASA Technical Reports Server (NTRS)

    Oswalt, Terry D.; Hintzen, Paul M.; Luyten, Willem J.

    1988-01-01

    Identifications are provided for 103 bright Luyten common proper motion (CPM) stellar systems with m(pg) less than 17.0 mag containing likely white dwarf (WD) components. New spectral types are presented for 55 components, and spectral types for 51 more are available in the literature. With the CPM systems previously published by Giclas et al. (1978), the Luyten stars provide a uniform sample of nearly 200 pairs or multiples brighter than 17h magnitude. Selection effects biasing the combined samples are discussed; in particular, evidence is presented that fewer than 1 percent of wide WD binaries have been detected.

  18. Proper Brushing

    MedlinePlus

    ... 3 teeth using a vibrating back & forth rolling motion. A rolling motion is when the brush makes contact with the ... gumline. Gently brush using back, forth, and rolling motion along all of the inner tooth surfaces. Tilt ...

  19. ON THE DETECTABILITY OF A PREDICTED MESOLENSING EVENT ASSOCIATED WITH THE HIGH PROPER MOTION STAR VB 10

    SciTech Connect

    Lepine, Sebastien; DiStefano, Rosanne E-mail: rd@cfa.harvard.edu

    2012-04-10

    Extrapolation of the astrometric motion of the nearby low-mass star VB 10 indicates that sometime in late 2011 December or during the first 2-3 months of 2012, the star will make a close approach to a background point source. Based on astrometric uncertainties, we estimate a 1 in 2 chance that the distance of closest approach {rho}{sub min} will be less than 100 mas, a 1 in 5 chance that {rho}{sub min} < 50 mas, and a 1 in 10 chance that {rho}{sub min} < 20 mas. The last would result in a microlensing event with a 6% magnification in the light from the background source and an astrometric shift of 3.3 mas. The lensing signal will however be significantly diluted by the light from VB 10, which is 1.5 mag brighter than the background source in B band, 5 mag brighter in I band, and 10 mag brighter in K band, making the event undetectable in all but the bluer optical bands. However, we show that if VB 10 happens to harbor a {approx}1 M{sub J} planet on a moderately wide ( Almost-Equal-To 0.18 AU-0.84 AU) orbit, there is a chance (1% to more than 10%, depending on the distance of closest approach and orbital period and inclination) that a passage of the planet closer to the background source will result in a secondary event of higher magnification. The detection of secondary events could be made possible with a several-times-per-night multi-site monitoring campaign.

  20. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi

    2012-11-01

    Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.

  1. Improved highly accurate localized motion imaging for monitoring high-intensity focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Qu, Xiaolei; Azuma, Takashi; Sugiyama, Ryusuke; Kanazawa, Kengo; Seki, Mika; Sasaki, Akira; Takeuchi, Hideki; Fujiwara, Keisuke; Itani, Kazunori; Tamano, Satoshi; Takagi, Shu; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-07-01

    Visualizing an area subjected to high-intensity focused ultrasound (HIFU) therapy is necessary for controlling the amount of HIFU exposure. One of the promising monitoring methods is localized motion imaging (LMI), which estimates coagulation length by detecting the change in stiffness. In this study, we improved the accuracy of our previous LMI by dynamic cross-correlation window (DCCW) and maximum vibration amount (MVA) methods. The DCCW method was used to increase the accuracy of estimating vibration amplitude, and the MVA method was employed to increase signal-noise ratio of the decrease ratio at the coagulated area. The qualitative comparison of results indicated that the two proposed methods could suppress the effect of noise. Regarding the results of the quantitative comparison, coagulation length was estimated with higher accuracy by the improved LMI method, and the root-mean-square error (RMSE) was reduced from 2.51 to 1.69 mm.

  2. Improved highly accurate localized motion imaging for monitoring high-intensity focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Qu, Xiaolei; Azuma, Takashi; Sugiyama, Ryusuke; Kanazawa, Kengo; Seki, Mika; Sasaki, Akira; Takeuchi, Hideki; Fujiwara, Keisuke; Itani, Kazunori; Tamano, Satoshi; Takagi, Shu; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-07-01

    Visualizing an area subjected to high-intensity focused ultrasound (HIFU) therapy is necessary for controlling the amount of HIFU exposure. One of the promising monitoring methods is localized motion imaging (LMI), which estimates coagulation length by detecting the change in stiffness. In this study, we improved the accuracy of our previous LMI by dynamic cross-correlation window (DCCW) and maximum vibration amount (MVA) methods. The DCCW method was used to increase the accuracy of estimating vibration amplitude, and the MVA method was employed to increase signal–noise ratio of the decrease ratio at the coagulated area. The qualitative comparison of results indicated that the two proposed methods could suppress the effect of noise. Regarding the results of the quantitative comparison, coagulation length was estimated with higher accuracy by the improved LMI method, and the root-mean-square error (RMSE) was reduced from 2.51 to 1.69 mm.

  3. High-precision Radio and Infrared Astrometry of LSPM J1314+1320AB. I. Parallax, Proper Motions, and Limits on Planets

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Dupuy, Trent J.; Reid, Mark J.; Berger, Edo; Rizzuto, Aaron; Mann, Andrew W.; Liu, Michael C.; Aller, Kimberly; Kraus, Adam L.

    2016-08-01

    We present multi-epoch astrometric radio observations with the Very Long Baseline Array (VLBA) of the young ultracool-dwarf binary LSPM J1314+1320AB. The radio emission comes from the secondary star. Combining the VLBA data with Keck near-infrared adaptive-optics observations of both components, a full astrometric fit of parallax (π abs = 57.975 ± 0.045 mas, corresponding to a distance of d = 17.249 ± 0.013 pc), proper motion (μ αcos δ = ‑247.99 ± 0.10 mas yr‑1, μ δ = ‑183.58 ± 0.22 mas yr‑1), and orbital motion is obtained. Despite the fact that the two components have nearly identical masses to within ±2%, the secondary’s radio emission exceeds that of the primary by a factor of ≳30, suggesting a difference in stellar rotation history, which could result in different magnetic field configurations. Alternatively, the emission could be anisotropic and beamed toward us for the secondary but not for the primary. Using only reflex motion, we exclude planets of mass 0.7–10 M jup with orbital periods of 600–10 days, respectively. Additionally, we use the full orbital solution of the binary to derive an upper limit for the semimajor axis of 0.23 au for stable planetary orbits within this system. These limits cover a parameter space that is inaccessible with, and complementary to, near-infrared radial velocity surveys of ultracool dwarfs. Our absolute astrometry will constitute an important test for the astrometric calibration of Gaia.

  4. High-precision Radio and Infrared Astrometry of LSPM J1314+1320AB. I. Parallax, Proper Motions, and Limits on Planets

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Dupuy, Trent J.; Reid, Mark J.; Berger, Edo; Rizzuto, Aaron; Mann, Andrew W.; Liu, Michael C.; Aller, Kimberly; Kraus, Adam L.

    2016-08-01

    We present multi-epoch astrometric radio observations with the Very Long Baseline Array (VLBA) of the young ultracool-dwarf binary LSPM J1314+1320AB. The radio emission comes from the secondary star. Combining the VLBA data with Keck near-infrared adaptive-optics observations of both components, a full astrometric fit of parallax (π abs = 57.975 ± 0.045 mas, corresponding to a distance of d = 17.249 ± 0.013 pc), proper motion (μ αcos δ = -247.99 ± 0.10 mas yr-1, μ δ = -183.58 ± 0.22 mas yr-1), and orbital motion is obtained. Despite the fact that the two components have nearly identical masses to within ±2%, the secondary’s radio emission exceeds that of the primary by a factor of ≳30, suggesting a difference in stellar rotation history, which could result in different magnetic field configurations. Alternatively, the emission could be anisotropic and beamed toward us for the secondary but not for the primary. Using only reflex motion, we exclude planets of mass 0.7-10 M jup with orbital periods of 600-10 days, respectively. Additionally, we use the full orbital solution of the binary to derive an upper limit for the semimajor axis of 0.23 au for stable planetary orbits within this system. These limits cover a parameter space that is inaccessible with, and complementary to, near-infrared radial velocity surveys of ultracool dwarfs. Our absolute astrometry will constitute an important test for the astrometric calibration of Gaia.

  5. Proper Motions of the Arches Cluster with Keck Laser Guide Star Adaptive Optics: The First Kinematic Mass Measurement of the Arches

    NASA Astrophysics Data System (ADS)

    Clarkson, W. I.; Ghez, A. M.; Morris, M. R.; Lu, J. R.; Stolte, A.; McCrady, N.; Do, T.; Yelda, S.

    2012-06-01

    We report the first detection of the intrinsic velocity dispersion of the Arches cluster—a young (~2 Myr), massive (104 M ⊙) starburst cluster located only 26 pc in projection from the Galactic center. This was accomplished using proper motion measurements within the central 10'' × 10'' of the cluster, obtained with the laser guide star adaptive optics system at Keck Observatory over a three-year time baseline (2006-2009). This uniform data set results in proper motion measurements that are improved by a factor ~5 over previous measurements from heterogeneous instruments. By careful, simultaneous accounting of the cluster and field contaminant distributions as well as the possible sources of measurement uncertainties, we estimate the internal velocity dispersion to be 0.15 ± 0.01 mas yr-1, which corresponds to 5.4 ± 0.4 km s-1 at a distance of 8.4 kpc. Projecting a simple model for the cluster onto the sky to compare with our proper motion data set, in conjunction with surface density data, we estimate the total present-day mass of the cluster to be M(r < 1.0 pc) = 1.5+0.74 -0.60 × 104 M ⊙. The mass in stars observed within a cylinder of radius R (for comparison to photometric estimates) is found to be M(R < 0.4 pc) = 0.90+0.40 -0.35 × 104 M ⊙ at formal 3σ confidence. This mass measurement is free from assumptions about the mass function of the cluster, and thus may be used to check mass estimates from photometry and simulation. Photometric mass estimates assuming an initially Salpeter mass function (Γ0 = 1.35, or Γ ~ 1.0 at present, where dN/d(log M)vpropM Γ) suggest a total cluster mass M cl ~ (4-6) × 104 M ⊙ and projected mass (~ 2 <= M(R < 0.4 pc) <= 3) × 104 M ⊙. Photometric mass estimates assuming a globally top-heavy or strongly truncated present-day mass function (PDMF; with Γ ~ 0.6) yield mass estimates closer to M(R < 0.4 pc) ~ 1-1.2 × 104 M ⊙. Consequently, our results support a PDMF that is either top-heavy or truncated at low

  6. PROPER MOTIONS OF THE ARCHES CLUSTER WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS: THE FIRST KINEMATIC MASS MEASUREMENT OF THE ARCHES

    SciTech Connect

    Clarkson, W. I.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Lu, J. R.; Stolte, A.; McCrady, N.; Do, T.

    2012-06-01

    We report the first detection of the intrinsic velocity dispersion of the Arches cluster-a young ({approx}2 Myr), massive (10{sup 4} M{sub Sun }) starburst cluster located only 26 pc in projection from the Galactic center. This was accomplished using proper motion measurements within the central 10'' Multiplication-Sign 10'' of the cluster, obtained with the laser guide star adaptive optics system at Keck Observatory over a three-year time baseline (2006-2009). This uniform data set results in proper motion measurements that are improved by a factor {approx}5 over previous measurements from heterogeneous instruments. By careful, simultaneous accounting of the cluster and field contaminant distributions as well as the possible sources of measurement uncertainties, we estimate the internal velocity dispersion to be 0.15 {+-} 0.01 mas yr{sup -1}, which corresponds to 5.4 {+-} 0.4 km s{sup -1} at a distance of 8.4 kpc. Projecting a simple model for the cluster onto the sky to compare with our proper motion data set, in conjunction with surface density data, we estimate the total present-day mass of the cluster to be M(r < 1.0 pc) = 1.5{sup +0.74}{sub -0.60} Multiplication-Sign 10{sup 4} M{sub Sun }. The mass in stars observed within a cylinder of radius R (for comparison to photometric estimates) is found to be M(R < 0.4 pc) = 0.90{sup +0.40}{sub -0.35} Multiplication-Sign 10{sup 4} M{sub Sun} at formal 3{sigma} confidence. This mass measurement is free from assumptions about the mass function of the cluster, and thus may be used to check mass estimates from photometry and simulation. Photometric mass estimates assuming an initially Salpeter mass function ({Gamma}{sub 0} = 1.35, or {Gamma} {approx} 1.0 at present, where dN/d(log M){proportional_to}M{sup {Gamma}}) suggest a total cluster mass M{sub cl} {approx} (4-6) Multiplication-Sign 10{sup 4} M{sub Sun} and projected mass ({approx} 2 {<=} M(R < 0.4 pc) {<=} 3) Multiplication-Sign 10{sup 4} M{sub Sun }. Photometric

  7. Accurate and portable weigh-in-motion system for manifesting air cargo

    NASA Astrophysics Data System (ADS)

    Nodine, Robert N.; Scudiere, Matthew B.; Jordan, John K.

    1995-12-01

    An automated and portable weigh-in-motion system has been developed at Oak Ridge National Laboratory for the purpose of manifesting cargo onto aircraft. The system has an accuracy range of plus or minus 3.0% to plus or minus 6.0% measuring gross vehicle weight and locating the center of balance of moving vehicles at speeds of 1 to 5 mph. This paper reviews the control/user interface system and weight determination algorithm developed to acquire, process, and interpret multiple sensor inputs. The development effort resulted in a self- zeroing, user-friendly system capable of weighing a wide range of vehicles in any random order. The control system is based on the STANDARD (STD) bus and incorporates custom- designed data acquisition and sensor fusion hardware controlled by a personal computer (PC) based single-board computer. The user interface is written in the 'C' language to display number of axles, axle weight, axle spacing, gross weight, and center of balance. The weighing algorithm developed functions with any linear weight sensor and a set of four axle switches per sensor.

  8. Observation-driven adaptive differential evolution and its application to accurate and smooth bronchoscope three-dimensional motion tracking.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-08-01

    This paper proposes an observation-driven adaptive differential evolution algorithm that fuses bronchoscopic video sequences, electromagnetic sensor measurements, and computed tomography images for accurate and smooth bronchoscope three-dimensional motion tracking. Currently an electromagnetic tracker with a position sensor fixed at the bronchoscope tip is commonly used to estimate bronchoscope movements. The large tracking error from directly using sensor measurements, which may be deteriorated heavily by patient respiratory motion and the magnetic field distortion of the tracker, limits clinical applications. How to effectively use sensor measurements for precise and stable bronchoscope electromagnetic tracking remains challenging. We here exploit an observation-driven adaptive differential evolution framework to address such a challenge and boost the tracking accuracy and smoothness. In our framework, two advantageous points are distinguished from other adaptive differential evolution methods: (1) the current observation including sensor measurements and bronchoscopic video images is used in the mutation equation and the fitness computation, respectively and (2) the mutation factor and the crossover rate are determined adaptively on the basis of the current image observation. The experimental results demonstrate that our framework provides much more accurate and smooth bronchoscope tracking than the state-of-the-art methods. Our approach reduces the tracking error from 3.96 to 2.89 mm, improves the tracking smoothness from 4.08 to 1.62 mm, and increases the visual quality from 0.707 to 0.741. PMID:25660001

  9. Under proper control, oxidation of proteins with known chemical structure provides an accurate and absolute method for the determination of their molar concentration.

    PubMed

    Guermant, C; Azarkan, M; Smolders, N; Baeyens-Volant, D; Nijs, M; Paul, C; Brygier, J; Vincentelli, J; Looze, Y

    2000-01-01

    Oxidation at 120 degrees C of inorganic and organic (including amino acids, di- and tripeptides) model compounds by K(2)Cr(2)O(7) in the presence of H(2)SO(4) (mass fraction: 0.572), Ag(2)SO(4) (catalyst), and HgSO(4) results in the quantitative conversion of their C-atoms into CO(2) within 24 h or less. Under these stressed, well-defined conditions, the S-atoms present in cysteine and cystine residues are oxidized into SO(3) while, interestingly, the oxidation states of all the other (including the N-) atoms normally present in a protein do remain quite unchanged. When the chemical structure of a given protein is available, the total number of electrons the protein is able to transfer to K(2)Cr(2)O(7) and thereof, the total number of moles of Cr(3+) ions which the protein is able to generate upon oxidation can be accurately calculated. In such cases, unknown protein molar concentrations can thus be determined through straightforward spectrophotometric measurements of Cr(3+) concentrations. The values of molar absorption coefficients for several well-characterized proteins have been redetermined on this basis and observed to be in excellent agreement with the most precise values reported in the literature, which fully assesses the validity of the method. When applied to highly purified proteins of known chemical structure (more generally of known atomic composition), this method is absolute and accurate (+/-1%). Furthermore, it is well adapted to series measurements since available commercial kits for chemical oxygen demand (COD) measurements can readily be adapted to work under the experimental conditions recommended here for the protein assay. PMID:10610688

  10. DISCOVERY OF FOUR HIGH PROPER MOTION L DWARFS, INCLUDING A 10 pc L DWARF AT THE L/T TRANSITION {sup ,}

    SciTech Connect

    Castro, Philip J.; Gizis, John E.; Harris, Hugh C.; Mace, Gregory N.; McLean, Ian S.; Kirkpatrick, J. Davy; Pattarakijwanich, Petchara; Skrutskie, Michael F. E-mail: gizis@udel.edu

    2013-10-20

    We discover four high proper motion L dwarfs by comparing the Wide-field Infrared Survey Explorer (WISE) to the Two Micron All Sky Survey. WISE J140533.32+835030.5 is an L dwarf at the L/T transition with a proper motion of 0.85 ± 0.''02 yr{sup –1}, previously overlooked due to its proximity to a bright star (V ≈ 12 mag). From optical spectroscopy we find a spectral type of L8, and from moderate-resolution J band spectroscopy we find a near-infrared spectral type of L9. We find WISE J140533.32+835030.5 to have a distance of 9.7 ± 1.7 pc, bringing the number of L dwarfs at the L/T transition within 10 pc from six to seven. WISE J040137.21+284951.7, WISE J040418.01+412735.6, and WISE J062442.37+662625.6 are all early L dwarfs within 25 pc, and were classified using optical and low-resolution near-infrared spectra. WISE J040418.01+412735.6 is an L2 pec (red) dwarf, a member of the class of unusually red L dwarfs. We use follow-up optical and low-resolution near-infrared spectroscopy to classify a previously discovered fifth object WISEP J060738.65+242953.4 as an (L8 Opt/L9 NIR), confirming it as an L dwarf at the L/T transition within 10 pc. WISEP J060738.65+242953.4 shows tentative CH{sub 4} in the H band, possibly the result of unresolved binarity with an early T dwarf, a scenario not supported by binary spectral template fitting. If WISEP J060738.65+242953.4 is a single object, it represents the earliest onset of CH{sub 4} in the H band of an L/T transition dwarf in the SpeX Library. As very late L dwarfs within 10 pc, WISE J140533.32+835030.5 and WISEP J060738.65+242953.4 will play a vital role in resolving outstanding issues at the L/T transition.

  11. A method for the determination of a system of positions and proper motions of stars with an application to the Washington 6 inch TC observations

    NASA Astrophysics Data System (ADS)

    Schwan, H.

    In the present paper it is shown how a mean system of positions and proper motions of stars can be determined analytically. Using the formulae given by Bien et al. (1978) for the systematic differences Catalogue minus FK4 (Cat - FK4) a series development of the mean system of the catalogues involved is derived. Zero point corrections and catalogue errors are taken into account. This study has been made for providing a possible procedure for the determination of the system of the FK5. The method developed here has been tested by an application to the observations made with the Washington Six-Inch Transit Circle. The systematic differences between the FK4 and the catalogues W10, W25, W1/50, W2/50, W3/50, W4/50, W5/50, and the mean system which is defined by these catalogues are presented by analytical formulae and in tabular form. The results are discussed. In parallel to the analytical method, the system of the Washington Six-Inch Transit Circle has been derived by means of classical techniques. Both results agree very well. Finally it is shown that the developments are applicable for the case where a number of modern catalogues of observation shall serve for the improvement of the fundamental system.

  12. Proper Acknowledgment?

    ERIC Educational Resources Information Center

    East, Julianne

    2005-01-01

    The concern in Australian universities about the prevalence of plagiarism has led to the development of policies about academic integrity and in turn focused attention on the need to inform students about how to avoid plagiarism and how to properly acknowledge. Teaching students how to avoid plagiarism can appear to be straightforward if based on…

  13. VLBI FOR GRAVITY PROBE B. III. A LIMIT ON THE PROPER MOTION OF THE 'CORE' OF THE QUASAR 3C 454.3

    SciTech Connect

    Bartel, N.; Bietenholz, M. F.; Ransom, R. R.; Lebach, D. E.; Ratner, M. I.; Shapiro, I. I.; Lederman, J. I.; Petrov, L.

    2012-07-01

    We made very long baseline interferometry observations at 8.4 GHz between 1997 and 2005 to estimate the coordinates of the 'core' component of the superluminal quasar, 3C 454.3, the ultimate reference point in the distant universe for the NASA/Stanford Gyroscope Relativity Mission, Gravity Probe B (GP-B). These coordinates are determined relative to those of the brightness peaks of two other compact extragalactic sources, B2250+194 and B2252+172, nearby on the sky, and within a celestial reference frame (CRF), defined by a large suite of compact extragalactic radio sources, and nearly identical to the International Celestial Reference Frame 2 (ICRF2). We find that B2250+194 and B2252+172 are stationary relative to each other, and also in the CRF, to within 1{sigma} upper limits of 15 and 30 {mu}as yr{sup -1} in {alpha} and {delta}, respectively. The core of 3C 454.3 appears to jitter in its position along the jet direction over {approx}0.2 mas, likely due to activity close to the putative supermassive black hole nearby, but on average is stationary in the CRF within 1{sigma} upper limits on its proper motion of 39 {mu}as yr{sup -1} (1.0c) and 30 {mu}as yr{sup -1} (0.8c) in {alpha} and {delta}, respectively, for the period 2002-2005. Our corresponding limit over the longer interval, 1998-2005, of more importance to GP-B, is 46 and 56 {mu}as yr{sup -1} in {alpha} and {delta}, respectively. Some of 3C 454.3's jet components show significantly superluminal motion with speeds of up to {approx}200 {mu}as yr{sup -1} or 5c in the CRF. The core of 3C 454.3 thus provides for GP-B a sufficiently stable reference in the distant universe.

  14. Datirovka zvezdnogo kataloga Ptolemeya po sobstvennym dvizheniyam: tysyacheletnyaya problema reshena %t Dating Ptolemy's star catalogue based on proper motions: the thousand-year-old problem solved

    NASA Astrophysics Data System (ADS)

    Dambis, A. K.; Efremov, Yu. N.

    The thousand-year-old problem of the origin of the star catalogue included in Ptolemy's "Almagest" is considered. The dilemma whether stellar coordinates were based on Hipparchus' or Ptolemy's observations has arisen long ago, because the 1 degree error in ecliptic longitudes may be explained either by Ptolemy's error in the initial longitudes of the Sun, or by the fact that Ptolemy adopted the original Hipparchus' coordinates and transformed them to a 265-year later epoch using an erroneous constant for precession. In fact, only indirect evidence for the Hipparchan origin of most of the coordinates was available so far, and most specialists considered the issue still to be resolved. We have successfully applied a new approach based on stellar proper motions. The time-dependent mutual distances in the configurations including 8 fast stars yield an epoch of -53 ± 130 B.C., whereas the bulk method based on an analysis of the Almagest minus computed coordinate differences for 40 fastest stars yields an epoch of -90 ± 120 B.C. Standard errors in the ancient ecliptic longitudes and latitudes are found to be σ(λcosβ) = 18' and σβ = 13', respectively. It is concluded that the stellar coordinates in the Almagest catalogue were observed during Hipparchus' lifetime and that Ptolemy's authorship claim can be rejected at a 94% significance level. Ptolemy's assertion that "we observed as many stars as we could sight down to the sixth magnitude" might simply imply that he found each star of the original catalogue to be near its position in the sky given by Hipparchus, and then adopted Hipparchus' coordinates as measured by a more skilled observer.

  15. High Proper Motion Objects toward the Inner Milky Way: Characterization of Newly Identified Nearby Stars from the VISTA Variables in the Vía Láctea Survey

    NASA Astrophysics Data System (ADS)

    Gromadzki, M.; Kurtev, R.; Beamin, J. C.; Tekola, A.; Ramphul, R.; Ivanov, V. D.; Minniti, D.; Folkes, S. L.; Vaisanen, P.; Kniazev, A. Y.; Borissova, J.; Parsons, S. G.; Villanueva, V.

    2016-09-01

    The census of the Solar neighborhood is still incomplete, as demonstrated by recent discoveries of many objects within 5-10 pc from the Sun. The area around the mid-plane and bulge of the Milky Way presents the most difficulties in searches for such nearby objects, and is therefore deficient in the known population. This is largely due to high stellar densities encountered. Spectroscopic, photometric and kinematic characterization of these objects allows better understanding of the local mass function, the binary fraction, and provides new interesting targets for more detailed studies. We report the spectroscopic follow-up and characterization of twelve bright high proper motion objects, identified from the VISTA Variables in Vía Láctea survey (VVV). We used the 1.9-m telescope of the South African Astronomical Observatory (SAAO) for low-resolution optical spectroscopy and spectral classification, and the MPG/ESP 2.2-m telescope Fiber-fed Extended Range Optical Spectrograph (FEROS) high-resolution optical spectroscopy to obtain the radial and space velocities for three of them. Six of our objects have co-moving companions. We derived optical spectral types and photometric distances, and classified all of them as K and M dwarfs within 27-264 pc from the Sun. Finally, we found that one of the sources, VVV J141421.23-602326.1 (a co-moving companion of VVV J141420.55-602337.1), appears to be a rare massive white dwarf located close to the ZZ Cet instability strip in the CMD and CC diagrams. Many of the objects in our list are interesting targets for exoplanet searches.

  16. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. IV. Kinematic Profiles and Average Masses of Blue Straggler Stars

    NASA Astrophysics Data System (ADS)

    Baldwin, A. T.; Watkins, L. L.; van der Marel, R. P.; Bianchini, P.; Bellini, A.; Anderson, J.

    2016-08-01

    We make use of the Hubble Space Telescope proper-motion catalogs derived by Bellini et al. to produce the first radial velocity dispersion profiles σ (R) for blue straggler stars (BSSs) in Galactic globular clusters (GCs), as well as the first dynamical estimates for the average mass of the entire BSS population. We show that BSSs typically have lower velocity dispersions than stars with mass equal to the main-sequence turnoff mass, as one would expect for a more massive population of stars. Since GCs are expected to experience some degree of energy equipartition, we use the relation σ \\propto {M}-η , where η is related to the degree of energy equipartition, along with our velocity dispersion profiles to estimate BSS masses. We estimate η as a function of cluster relaxation from recent Monte Carlo cluster simulations by Bianchini et al. and then derive an average mass ratio {M}{BSS}/{M}{MSTO}=1.50+/- 0.14 and an average mass {M}{BSS}=1.22+/- 0.12 M ⊙ from 598 BSSs across 19 GCs. The final error bars include any systematic errors that are random between different clusters, but not any potential biases inherent to our methodology. Our results are in good agreement with the average mass of {M}{BSS}=1.22+/- 0.06 M ⊙ for the 35 BSSs in Galactic GCs in the literature with properties that have allowed individual mass determination. Based on proprietary and archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  17. The Solar Neighborhood. XXV. Discovery of New Proper Motion Stars with 0.40 sec/yr > mu > or = 0.18 sec/yr Between Declinations -47 deg and 00 deg

    NASA Technical Reports Server (NTRS)

    Boyd, Mark R.; Winters, Jennifer G.; Henry, Todd J.; Jao, Wei-Chun; Finch, Charlie T.; Subasavage, John P.; Hambly, Nigel C.

    2011-01-01

    We present 2817 new southern proper motion systems with 0.40 sec/yr > mu > or = 0.18 sec/yr and declination between 47 deg and 00 deg. This is a continuation of the SuperCOSMOS-RECONS (SCR) proper motion searches of the southern sky. We use the same photometric relations as previous searches to provide distance estimates based on the assumption that the objects are single main-sequence stars. We find 79 new red dwarf systems predicted to be within 25 pc, including a few new components of previously known systems. Two systems--SCR 1731-2452 at 9.5 pc and SCR 1746-3214 at 9.9 pc--are anticipated to be within 10 pc. We also find 23 new white dwarf (WD) candidates with distance estimates of 15-66 pc, as well as 360 new red subdwarf candidates. With this search, we complete the SCR sweep of the southern sky for stars with mu > or = 0.18 sec/yr and R(sub 59F) < or = 16.5, resulting in a total of 5042 objects in 4724 previously unreported proper motion systems. Here we provide selected comprehensive lists from our SCR proper motion search to date, including 152 red dwarf systems estimated to be within 25 pc (9 within 10 pc), 46 WDs (10 within 25 pc), and 598 subdwarf candidates. The results of this search suggest that there are more nearby systems to be found at fainter magnitudes and lower proper motion limits than those probed so far.

  18. THE DIRECTLY IMAGED PLANET AROUND THE YOUNG SOLAR ANALOG 1RXS J160929.1 - 210524: CONFIRMATION OF COMMON PROPER MOTION, TEMPERATURE, AND MASS

    SciTech Connect

    Lafreniere, David; Jayawardhana, Ray; Van Kerkwijk, Marten H.

    2010-08-10

    Giant planets are usually thought to form within a few tens of AU of their host stars, and hence it came as a surprise when we found what appeared to be a planetary mass ({approx}0.008 M {sub sun}) companion around the 5 Myr old solar mass star 1RXS J160929.1 - 210524 in the Upper Scorpius association. At the time, we took the object's membership in Upper Scorpius-established from near-infrared, H- and K-band spectroscopy-and its proximity (2.''2 or 330 AU) to the primary as strong evidence for companionship, but could not verify their common proper motion. Here, we present follow-up astrometric measurements that confirm that the companion is indeed comoving with the primary star, which we interpret as evidence that it is a truly bound planetary mass companion. We also present new J-band spectroscopy and 3.0-3.8 {mu}m photometry of the companion. Based on a comparison with model spectra, these new measurements are consistent with the previous estimate of the companion effective temperature of 1800 {+-} 200 K. We present a new estimate of the companion mass based on evolution models and the calculated bolometric luminosity of the companion; we obtain a value of 0.008{sup +0.003} {sub -0.002} M {sub sun}, again consistent with our previous result. Finally, we present angular differential imaging observations of the system allowing us to rule out additional planets in the system more massive than 1 M {sub Jup}, 2 M {sub Jup}, and 8 M {sub Jup} at projected separations larger than 3'' ({approx}440 AU), 0.''7 ({approx}100 AU), and 0.''35 ({approx}50 AU), respectively. This companion is the least massive known to date at such a large orbital distance; it shows that objects in the planetary mass range exist at orbital separations of several hundred AU, posing a serious challenge for current formation models.

  19. Documentation for the machine-readable version of the AGK3 Star Catalogue of Positions and Proper Motions North of -2 deg .5 declination (Dieckvoss and Collaborators 1975)

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1984-01-01

    A detailed description of the machine-readable astronomical catalog as it is currently being distributed from the Astronomical Data Center is given. Stellar motions and positions are listed herein in tabular form.

  20. TH-C-BRD-08: Reducing the Effect of Respiratory Motion On the Delivered Dose in Proton Therapy Through Proper Field Angle Selection

    SciTech Connect

    Matney, J; Park, P; Court, L; Zhu, X; Li, H; Mohan, R; Liu, W; Dong, L

    2014-06-15

    Purpose: This work investigated a novel planning strategy of selecting radiotherapy beam angles that minimizes the change in water equivalent thickness (dWET) during respiration in order to reduce the effects of respiratory motion in passively scattered proton therapy (PSPT). Methods: In a clinical trial treating locally-advanced lung cancer with proton therapy, 2–4 co-planar beams were previously selected by dosimetrists in the design of physician-approved PSPT treatment plans. The authors identified a cohort of patients in which respiratory motion affected the planned PSPT dose delivery. For this cohort, this work analyzed dWET during respiration over a 360 degree arc of potential treatment angles around the patient: the dWET was defined as the difference in WET between the full-exhale (T50) and full-inhale (T0) phases of the simulation 4DCT. New PSPT plans were redesigned by selecting new beam angles that demonstrated significant reduction in the value of dWET. Between the T50 and T0 phases, the root-mean-square deviation of dose and the change in dose-volume histogram curves (dAUC) for anatomical structures were calculated to compare the original to dWET reduction plans. Results: To date, three plans were retrospectively redesigned based on dWET analysis. In the dWET reduction plan, the root mean square dose (T50-T0) was reduced by 15–35% and the DVH dAUC values were reduced by more than 60%.The PSPT plans redesigned by selecting appropriate field angles to minimize dWET demonstrated less dosimetric variation due to respiration. Conclusion: We have introduced the use of a new metric to quantify respiratory motion in proton therapy: dWET. The use of dWET allows us to minimize the impact of respiratory motion of the entire anatomy in the beam path. This work is a proof of principle that dWET could suggest field angles in proton therapy that are more robust to the effects of respiratory motion.

  1. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  2. A robust and accurate center-frequency estimation (RACE) algorithm for improving motion estimation performance of SinMod on tagged cardiac MR images without known tagging parameters.

    PubMed

    Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei

    2014-11-01

    A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod.

  3. Fundamental Principles of Proper Space Kinematics

    NASA Astrophysics Data System (ADS)

    Wade, Sean

    It is desirable to understand the movement of both matter and energy in the universe based upon fundamental principles of space and time. Time dilation and length contraction are features of Special Relativity derived from the observed constancy of the speed of light. Quantum Mechanics asserts that motion in the universe is probabilistic and not deterministic. While the practicality of these dissimilar theories is well established through widespread application inconsistencies in their marriage persist, marring their utility, and preventing their full expression. After identifying an error in perspective the current theories are tested by modifying logical assumptions to eliminate paradoxical contradictions. Analysis of simultaneous frames of reference leads to a new formulation of space and time that predicts the motion of both kinds of particles. Proper Space is a real, three-dimensional space clocked by proper time that is undergoing a densification at the rate of c. Coordinate transformations to a familiar object space and a mathematical stationary space clarify the counterintuitive aspects of Special Relativity. These symmetries demonstrate that within the local universe stationary observers are a forbidden frame of reference; all is in motion. In lieu of Quantum Mechanics and Uncertainty the use of the imaginary number i is restricted for application to the labeling of mass as either material or immaterial. This material phase difference accounts for both the perceived constant velocity of light and its apparent statistical nature. The application of Proper Space Kinematics will advance more accurate representations of microscopic, oscopic, and cosmological processes and serve as a foundation for further study and reflection thereafter leading to greater insight.

  4. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  5. Real-Time Cosmology with Gaia: Developing the Theory to Use Extragalactic Proper Motions to Make Dynamical Cosmological Tests, to Measure Geometric Distances, and to Detect Primordial Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Darling, Jeremy

    A new field of study, "real-time cosmology," is now possible. This involves observing a dynamic universe that can be seen to change over human timescales. Most cosmological observations are geometrical, using standard candles or rulers to measure the expansion history and curvature as light propagates through the universe. Real-time cosmological measurements are dynamical, revealing the changing geometry of the universe - thus often providing geometrical distances independent of the canonical cosmological distance ladder - and are typically orthogonal to customary cosmological tests. This field of inquiry is no longer far-fetched, and this proposal demonstrates using extant data that many types of measurement are now within a factor of a few of being detectable, but the theory will very soon lag the observational capabilities. The Gaia mission will provide astrometry and proper motions of roughly 100 microarcseconds per year for half a million quasars by the end of its 5-year mission, but the theory for how to employ these data for cosmological tests has not been established. This project will develop the theory, models, and methods needed to make optimal use of the Gaia extragalactic proper motion measurements and to make significant new cosmological tests, distance measurements, and mass measurements. Gaia data can provide rich cosmological tests that are nearly model-independent. This work will build the theoretical framework enabling Gaia to measure or constrain: (1) The real-time growth and recession of structures, providing mass and distance measurements, (2) Extragalactic parallax for a statistical sample and individual galaxies, thus providing geometric distances, (3) The primordial stochastic long-period gravitational wave background, which deflects quasar light in a quadrupolar proper motion pattern, and (4) Cosmic shear, rotation, bulk motion, and local voids that may manifest as an apparent acceleration attributed to dark energy. One can also test the

  6. A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise

    PubMed Central

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente; Barrett, Laura; Esliger, Dale; Hayes, Matthew; Akbare, Shafique; Achart, Jérôme; Kuoch, Sylvain

    2015-01-01

    This study presents the use of a multi-channel opto-electronic sensor (OEPS) to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR) efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA), and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05); a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001); the bias of BAA 0.85 bpm, the standard deviation (SD) 9.20 bpm, and the limits of agreement (LOA) from −17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001); the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from −15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate. PMID:26473860

  7. A multi-channel opto-electronic sensor to accurately monitor heart rate against motion artefact during exercise.

    PubMed

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente; Barrett, Laura; Esliger, Dale; Hayes, Matthew; Akbare, Shafique; Achart, Jérôme; Kuoch, Sylvain

    2015-10-12

    This study presents the use of a multi-channel opto-electronic sensor (OEPS) to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR) efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA), and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05); a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001); the bias of BAA 0.85 bpm, the standard deviation (SD) 9.20 bpm, and the limits of agreement (LOA) from -17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001); the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from -15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate.

  8. A time accurate prediction of the viscous flow in a turbine stage including a rotor in motion

    NASA Astrophysics Data System (ADS)

    Shavalikul, Akamol

    In this current study, the flow field in the Pennsylvania State University Axial Flow Turbine Research Facility (AFTRF) was simulated. This study examined four sets of simulations. The first two sets are for an individual NGV and for an individual rotor. The last two sets use a multiple reference frames approach for a complete turbine stage with two different interface models: a steady circumferential average approach called a mixing plane model, and a time accurate flow simulation approach called a sliding mesh model. The NGV passage flow field was simulated using a three-dimensional Reynolds Averaged Navier-Stokes finite volume solver (RANS) with a standard kappa -- epsilon turbulence model. The mean flow distributions on the NGV surfaces and endwall surfaces were computed. The numerical solutions indicate that two passage vortices begin to be observed approximately at the mid axial chord of the NGV suction surface. The first vortex is a casing passage vortex which occurs at the corner formed by the NGV suction surface and the casing. This vortex is created by the interaction of the passage flow and the radially inward flow, while the second vortex, the hub passage vortex, is observed near the hub. These two vortices become stronger towards the NGV trailing edge. By comparing the results from the X/Cx = 1.025 plane and the X/Cx = 1.09 plane, it can be concluded that the NGV wake decays rapidly within a short axial distance downstream of the NGV. For the rotor, a set of simulations was carried out to examine the flow fields associated with different pressure side tip extension configurations, which are designed to reduce the tip leakage flow. The simulation results show that significant reductions in tip leakage mass flow rate and aerodynamic loss reduction are possible by using suitable tip platform extensions located near the pressure side corner of the blade tip. The computations used realistic turbine rotor inlet flow conditions in a linear cascade arrangement

  9. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs

    SciTech Connect

    Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Budiharto, Tom; Haustermans, Karin; Heuvel, Frank van den

    2010-04-15

    Purpose: A robust and accurate method that allows the automatic detection of fiducial markers in MV and kV projection image pairs is proposed. The method allows to automatically correct for inter or intrafraction motion. Methods: Intratreatment MV projection images are acquired during each of five treatment beams of prostate cancer patients with four implanted fiducial markers. The projection images are first preprocessed using a series of marker enhancing filters. 2D candidate marker locations are generated for each of the filtered projection images and 3D candidate marker locations are reconstructed by pairing candidates in subsequent projection images. The correct marker positions are retrieved in 3D by the minimization of a cost function that combines 2D image intensity and 3D geometric or shape information for the entire marker configuration simultaneously. This optimization problem is solved using dynamic programming such that the globally optimal configuration for all markers is always found. Translational interfraction and intrafraction prostate motion and the required patient repositioning is assessed from the position of the centroid of the detected markers in different MV image pairs. The method was validated on a phantom using CT as ground-truth and on clinical data sets of 16 patients using manual marker annotations as ground-truth. Results: The entire setup was confirmed to be accurate to around 1 mm by the phantom measurements. The reproducibility of the manual marker selection was less than 3.5 pixels in the MV images. In patient images, markers were correctly identified in at least 99% of the cases for anterior projection images and 96% of the cases for oblique projection images. The average marker detection accuracy was 1.4{+-}1.8 pixels in the projection images. The centroid of all four reconstructed marker positions in 3D was positioned within 2 mm of the ground-truth position in 99.73% of all cases. Detecting four markers in a pair of MV images

  10. Scaling laws and accurate small-amplitude stationary solution for the motion of a planar vortex filament in the Cartesian form of the local induction approximation.

    PubMed

    Van Gorder, Robert A

    2013-04-01

    We provide a formulation of the local induction approximation (LIA) for the motion of a vortex filament in the Cartesian reference frame (the extrinsic coordinate system) which allows for scaling of the reference coordinate. For general monotone scalings of the reference coordinate, we derive an equation for the planar solution to the derivative nonlinear Schrödinger equation governing the LIA. We proceed to solve this equation perturbatively in small amplitude through an application of multiple-scales analysis, which allows for accurate computation of the period of the planar vortex filament. The perturbation result is shown to agree strongly with numerical simulations, and we also relate this solution back to the solution obtained in the arclength reference frame (the intrinsic coordinate system). Finally, we discuss nonmonotone coordinate scalings and their application for finding self-intersections of vortex filaments. These self-intersecting vortex filaments are likely unstable and collapse into other structures or dissipate completely.

  11. Proper hand washing (image)

    MedlinePlus

    ... for proper hand washing include: Take off any jewelry. Hold your hands pointing down under warm water ... for proper hand washing include: Take off any jewelry. Hold your hands pointing down under warm water ...

  12. Calculating proper transfer prices

    SciTech Connect

    Dorkey, F.C. ); Jarrell, G.A. )

    1991-01-01

    This article deals with developing a proper transfer pricing method. Decentralization is as American as baseball. While managers laud the widespread benefits of both decentralization and baseball, they often greet the term transfer price policy with a yawn. Since transfer prices are as critical to the success of decentralized firms as good pitchers are to baseball teams, this is quite a mistake on the part of our managers. A transfer price is the price charged to one division for a product or service that another division produced or provided. In many, perhaps most, decentralized organizations, the transfer pricing policies actually used are grossly inefficient and sacrifice the potential advantages of decentralization. Experience shows that far too many companies have transfer pricing policies that cost them significantly in foregone growth and profits.

  13. Properly apply reverse osmosis

    SciTech Connect

    Kucera, J.

    1997-02-01

    Reverse osmosis (RO) is a water purification technique used to reduce the loading of dissolved solids in solution. The popularity of RO for treating boiler feedwater is growing because of the rising cost of ion-exchange-based demineralization as well as safety concerns associated with handling acid and caustic. A properly designed and operated RO-based boiler-feedwater-treatment system can reduce the load to, and costs associated with, ion exchange demineralization. This article discusses RO feedwater quality recommendations, pretreatment techniques, and system monitoring necessary to achieve optimum RO system performance in the most cost-effective manner. Regardless of the application--whether it is the treatment of boiler feedwater, industrial wastewater, or process water--the approach to pretreatment and the other design and operating guidance offered here remains the same.

  14. The Combination of Laser Scanning and Structure from Motion Technology for Creation of Accurate Exterior and Interior Orthophotos of ST. Nicholas Baroque Church

    NASA Astrophysics Data System (ADS)

    Koska, B.; Křemen, T.

    2013-02-01

    Terrestrial laser scanning technology is used for creation of building documentation and 3D building model from its emerging at the turn of the millennium. Photogrammetry has even longer tradition in this field. Both technologies have some technical limitations if they are used for creation of a façade or even an interior orthophoto, but combination of both technologies seems profitable. Laser scanning can be used for creation of an accurate 3D model and photogrammetry for consequent application of high quality colour information. Both technologies were used in synergy to create the building plans, 2D drawing documentation of facades and interior views and the orthophotos of St. Nicholas Baroque church in Prague. The case study is described in details in the paper.

  15. Maintaining proper dental records.

    PubMed

    Leeuw, Wilhemina

    2014-01-01

    Referred to as Standard of Care, the legal duty of a dentist requires exercising the degree of skill and care that would be exhibited by other prudent dentists faced with the same patient-care situation. Primarily, the goal of keeping good dental records is to maintain continuity of care. Diligent and complete documentation and charting procedures are essential to fulfilling the Standard of Care. Secondly, because dental records are considered legal documents they help protect the interest of the dentist and/or the patient by establishing the details of the services rendered. Patients today are better educated and more assertive than ever before and dentists must be equipped to protect themselves against malpractice claims. Every record component must be handled as if it could be summoned to a court room and scrutinized by an attorney, judge or jury. Complete, accurate, objective and honest entries in a patient record are the only way to defend against any clinical and/or legal problems that might arise. Most medical and dental malpractice claims arise from an unfavorable interaction with the dentist and not from a poor treatment outcome. By implementing the suggestions mentioned in this course, dental health care professionals can minimize the legal risks associated with the delivery of dental care to promote greater understanding for patients of their rights and privileges to their complete record. PMID:24834675

  16. Proper Names: Reference and Attribution

    ERIC Educational Resources Information Center

    Maumus, Michael Fletcher

    2012-01-01

    In the wake of Saul Kripke's landmark "Naming and Necessity," the claim that proper names are directly referential expressions devoid of descriptive content has come to verge on philosophical commonplace. Nevertheless, the return to a purely referential semantics for proper names has coincided with the resurgence of the very puzzles…

  17. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  18. Proper Installation Improves Carpet Life.

    ERIC Educational Resources Information Center

    Grogan, Ralph

    1998-01-01

    Explains how proper carpet installation can add to carpet life; includes tips to consider before signing a carpet-installation purchasing agreement that can make the new carpet a better investment. Topics cover how color selection lengthens appearance life, the need for moisture testing, the importance of carpet seams in the purchasing process,…

  19. Sound Assessment through Proper Policy

    ERIC Educational Resources Information Center

    Chappuis, Stephen J.

    2007-01-01

    Aligning a school board policy manual with the faculty handbook would be an excellent application of systems thinking in support of school district mission and goals. This article talks about changing sound assessment practice in accordance with the school's proper policy. One obstacle to changing assessment practice is the prevailing belief that…

  20. The Meaning of Proper Names.

    ERIC Educational Resources Information Center

    Saka, Paul

    The two major schools of thought concerned with the meaning of proper names, i.e., the direct-reference or referrential/causal theory, and the description theory, are outlined, and new arguments are presented for a strong version of the second of these theories. The referential theory takes the meaning of the name as being the same as its…

  1. Proper fit of the bicycle.

    PubMed

    Burke, E R

    1994-01-01

    After cyclists have carefully made adjustments for proper fit, minor aches and pains may develop before the body adjusts to the new riding posture. This is normal--so resist the temptation to fiddle with the position much. They will become accustomed to the new riding position after a few rides, and cycling performance will be improved. Then they can concentrate on bike handling skills and fitness confident that their riding position is as good as can be. Proper bicycle fit requires careful review of bicycle selection, saddle height for proper leg extension, fore-and-aft positioning of the knee over the pedal, saddle tilt, handlebar position, and positioning of the upper body for optimum comfort and performance. Further research on the effects of maintaining an aerodynamic position for extended periods of time needs to be investigated to review fatigue patterns in lower and upper body musculature. The underlying principle of positioning a cyclist on a bicycle is to remember that the bicycle is adjustable, and the cyclist is adaptable. PMID:8111846

  2. SU-E-J-186: Using 4DCT-Based Motion Modeling to Predict Motion and Duty Cycle On Successive Days of Gated Radiotherapy

    SciTech Connect

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J

    2015-06-15

    Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumor motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to

  3. iPhone 4s Photoplethysmography: Which Light Color Yields the Most Accurate Heart Rate and Normalized Pulse Volume Using the iPhysioMeter Application in the Presence of Motion Artifact?

    PubMed Central

    Matsumura, Kenta; Rolfe, Peter; Lee, Jihyoung; Yamakoshi, Takehiro

    2014-01-01

    Recent progress in information and communication technologies has made it possible to measure heart rate (HR) and normalized pulse volume (NPV), which are important physiological indices, using only a smartphone. This has been achieved with reflection mode photoplethysmography (PPG), by using a smartphone’s embedded flash as a light source and the camera as a light sensor. Despite its widespread use, the method of PPG is susceptible to motion artifacts as physical displacements influence photon propagation phenomena and, thereby, the effective optical path length. Further, it is known that the wavelength of light used for PPG influences the photon penetration depth and we therefore hypothesized that influences of motion artifact could be wavelength-dependant. To test this hypothesis, we made measurements in 12 healthy volunteers of HR and NPV derived from reflection mode plethysmograms recorded simultaneously at three different spectral regions (red, green and blue) at the same physical location with a smartphone. We then assessed the accuracy of the HR and NPV measurements under the influence of motion artifacts. The analyses revealed that the accuracy of HR was acceptably high with all three wavelengths (all rs > 0.996, fixed biases: −0.12 to 0.10 beats per minute, proportional biases: r = −0.29 to 0.03), but that of NPV was the best with green light (r = 0.791, fixed biases: −0.01 arbitrary units, proportional bias: r = 0.11). Moreover, the signal-to-noise ratio obtained with green and blue light PPG was higher than that of red light PPG. These findings suggest that green is the most suitable color for measuring HR and NPV from the reflection mode photoplethysmogram under motion artifact conditions. We conclude that the use of green light PPG could be of particular benefit in ambulatory monitoring where motion artifacts are a significant issue. PMID:24618594

  4. iPhone 4s photoplethysmography: which light color yields the most accurate heart rate and normalized pulse volume using the iPhysioMeter Application in the presence of motion artifact?

    PubMed

    Matsumura, Kenta; Rolfe, Peter; Lee, Jihyoung; Yamakoshi, Takehiro

    2014-01-01

    Recent progress in information and communication technologies has made it possible to measure heart rate (HR) and normalized pulse volume (NPV), which are important physiological indices, using only a smartphone. This has been achieved with reflection mode photoplethysmography (PPG), by using a smartphone's embedded flash as a light source and the camera as a light sensor. Despite its widespread use, the method of PPG is susceptible to motion artifacts as physical displacements influence photon propagation phenomena and, thereby, the effective optical path length. Further, it is known that the wavelength of light used for PPG influences the photon penetration depth and we therefore hypothesized that influences of motion artifact could be wavelength-dependant. To test this hypothesis, we made measurements in 12 healthy volunteers of HR and NPV derived from reflection mode plethysmograms recorded simultaneously at three different spectral regions (red, green and blue) at the same physical location with a smartphone. We then assessed the accuracy of the HR and NPV measurements under the influence of motion artifacts. The analyses revealed that the accuracy of HR was acceptably high with all three wavelengths (all rs > 0.996, fixed biases: -0.12 to 0.10 beats per minute, proportional biases: r =  -0.29 to 0.03), but that of NPV was the best with green light (r = 0.791, fixed biases: -0.01 arbitrary units, proportional bias: r = 0.11). Moreover, the signal-to-noise ratio obtained with green and blue light PPG was higher than that of red light PPG. These findings suggest that green is the most suitable color for measuring HR and NPV from the reflection mode photoplethysmogram under motion artifact conditions. We conclude that the use of green light PPG could be of particular benefit in ambulatory monitoring where motion artifacts are a significant issue.

  5. iPhone 4s photoplethysmography: which light color yields the most accurate heart rate and normalized pulse volume using the iPhysioMeter Application in the presence of motion artifact?

    PubMed

    Matsumura, Kenta; Rolfe, Peter; Lee, Jihyoung; Yamakoshi, Takehiro

    2014-01-01

    Recent progress in information and communication technologies has made it possible to measure heart rate (HR) and normalized pulse volume (NPV), which are important physiological indices, using only a smartphone. This has been achieved with reflection mode photoplethysmography (PPG), by using a smartphone's embedded flash as a light source and the camera as a light sensor. Despite its widespread use, the method of PPG is susceptible to motion artifacts as physical displacements influence photon propagation phenomena and, thereby, the effective optical path length. Further, it is known that the wavelength of light used for PPG influences the photon penetration depth and we therefore hypothesized that influences of motion artifact could be wavelength-dependant. To test this hypothesis, we made measurements in 12 healthy volunteers of HR and NPV derived from reflection mode plethysmograms recorded simultaneously at three different spectral regions (red, green and blue) at the same physical location with a smartphone. We then assessed the accuracy of the HR and NPV measurements under the influence of motion artifacts. The analyses revealed that the accuracy of HR was acceptably high with all three wavelengths (all rs > 0.996, fixed biases: -0.12 to 0.10 beats per minute, proportional biases: r =  -0.29 to 0.03), but that of NPV was the best with green light (r = 0.791, fixed biases: -0.01 arbitrary units, proportional bias: r = 0.11). Moreover, the signal-to-noise ratio obtained with green and blue light PPG was higher than that of red light PPG. These findings suggest that green is the most suitable color for measuring HR and NPV from the reflection mode photoplethysmogram under motion artifact conditions. We conclude that the use of green light PPG could be of particular benefit in ambulatory monitoring where motion artifacts are a significant issue. PMID:24618594

  6. 7 CFR 29.112 - Proper light.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Proper light. 29.112 Section 29.112 Agriculture... INSPECTION Regulations Inspectors, Samplers, and Weighers § 29.112 Proper light. Tobacco shall not be inspected or sampled for the purposes of the Act except when displayed in proper light for...

  7. 7 CFR 29.112 - Proper light.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Proper light. 29.112 Section 29.112 Agriculture... INSPECTION Regulations Inspectors, Samplers, and Weighers § 29.112 Proper light. Tobacco shall not be inspected or sampled for the purposes of the Act except when displayed in proper light for...

  8. 7 CFR 29.112 - Proper light.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Proper light. 29.112 Section 29.112 Agriculture... INSPECTION Regulations Inspectors, Samplers, and Weighers § 29.112 Proper light. Tobacco shall not be inspected or sampled for the purposes of the Act except when displayed in proper light for...

  9. 7 CFR 29.112 - Proper light.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Proper light. 29.112 Section 29.112 Agriculture... INSPECTION Regulations Inspectors, Samplers, and Weighers § 29.112 Proper light. Tobacco shall not be inspected or sampled for the purposes of the Act except when displayed in proper light for...

  10. 7 CFR 29.112 - Proper light.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Proper light. 29.112 Section 29.112 Agriculture... INSPECTION Regulations Inspectors, Samplers, and Weighers § 29.112 Proper light. Tobacco shall not be inspected or sampled for the purposes of the Act except when displayed in proper light for...

  11. Relativistic kinematics and stationary motions

    NASA Astrophysics Data System (ADS)

    Russo, Jorge G.; Townsend, Paul K.

    2009-11-01

    The relativistic jerk, snap and all higher-order kinematical D-vectors are defined for the motion of a massive particle in a D-dimensional Minkowski spacetime. We illustrate the formalism with stationary motions, for which we provide a new, Lorentz covariant, classification. We generalize some cases to branes, explaining the relevance to uniform motion in a heat bath. We also consider some non-stationary motions, including motion with constant proper jerk, and free fall into a black hole as viewed from a GEMS perspective.

  12. Motion Sickness

    MedlinePlus

    ... people traveling by car, train, airplanes and especially boats. Motion sickness can start suddenly, with a queasy ... motion sickness. For example, down below on a boat, your inner ear senses motion, but your eyes ...

  13. Supervision of offenders sentenced to their homes: proper training and accurate technology

    NASA Astrophysics Data System (ADS)

    Hudson, Sheila

    1997-01-01

    In the arena of law enforcement, Community Corrections is still a new concept that is evolving with every program started across the country. Unlike law enforcement and the courts that evolved from English Common law, the concept of confining someone in their home and letting them go to their job is new, radical, and, some would say, soft on crime. The hard fact is Community Corrections is a cost effective way of dealing with large numbers of offenders, who have been sanctioned, but do not need the very high cost of incarceration. The first challenge is to define what Community Corections is. How should it work? What are the duties and responsibilities of the officers? Who should operate the program, the state or the county? What qualifications should the officers have? What training should the officers have? Should they carry weapons? What is the risk to the public? Should these officers be state certified law enforcement officers? Who will train and certify officers in this field? There are many questions that have to be asked and answered before Community Corrections can 'come of age' as a legitimate sentencing alternative in the minds of the public. The second challenge is to identify the technologies that exist now and the new ones that are needed for the future of Community Corrections programs. Tracking offenders through buildings, in vehicles, and over large areas at a reasonable cost is the problem. The National laboratories are working on these problems for the military, and the solutions may apply to Community Corrections programs across the country.

  14. Proper Names a Cognitive-Philosophical Study

    ERIC Educational Resources Information Center

    Garcia-Ramirez, Eduardo

    2010-01-01

    Proper Names appear at the heart of several debates in philosophy and the cognitive sciences. These include "reference", "intentionality", and the nature of "belief" as well as "language acquisition", "cognitive development", and "memory". This dissertation follows a cognitive approach to the philosophical problems posed by proper names. It puts…

  15. Large-scale databases of proper names.

    PubMed

    Conley, P; Burgess, C; Hage, D

    1999-05-01

    Few tools for research in proper names have been available--specifically, there is no large-scale corpus of proper names. Two corpora of proper names were constructed, one based on U.S. phone book listings, the other derived from a database of Usenet text. Name frequencies from both corpora were compared with human subjects' reaction times (RTs) to the proper names in a naming task. Regression analysis showed that the Usenet frequencies contributed to predictions of human RT, whereas phone book frequencies did not. In addition, semantic neighborhood density measures derived from the HAL corpus were compared with the subjects' RTs and found to be a better predictor of RT than was frequency in either corpus. These new corpora are freely available on line for download. Potentials for these corpora range from using the names as stimuli in experiments to using the corpus data in software applications. PMID:10495803

  16. 3D models of slow motions in the Earth's crust and upper mantle in the source zones of seismically active regions and their comparison with highly accurate observational data: II. Results of numerical calculations

    NASA Astrophysics Data System (ADS)

    Molodenskii, S. M.; Molodenskii, M. S.; Begitova, T. A.

    2016-09-01

    In the first part of the paper, a new method was developed for solving the inverse problem of coseismic and postseismic deformations in the real (imperfectly elastic, radially and horizontally heterogeneous, self-gravitating) Earth with hydrostatic initial stresses from highly accurate modern satellite data. The method is based on the decomposition of the sought parameters in the orthogonalized basis. The method was suggested for estimating the ambiguity of the solution of the inverse problem for coseismic and postseismic deformations. For obtaining this estimate, the orthogonal complement is constructed to the n-dimensional space spanned by the system of functional derivatives of the residuals in the system of n observed and model data on the coseismic and postseismic displacements at a variety of sites on the ground surface with small variations in the models. Below, we present the results of the numerical modeling of the elastic displacements of the ground surface, which were based on calculating Green's functions of the real Earth for the plane dislocation surface and different orientations of the displacement vector as described in part I of the paper. The calculations were conducted for the model of a horizontally homogeneous but radially heterogeneous selfgravitating Earth with hydrostatic initial stresses and the mantle rheology described by the Lomnitz logarithmic creep function according to (M. Molodenskii, 2014). We compare our results with the previous numerical calculations (Okado, 1985; 1992) for the simplest model of a perfectly elastic nongravitating homogeneous Earth. It is shown that with the source depths starting from the first hundreds of kilometers and with magnitudes of about 8.0 and higher, the discrepancies significantly exceed the errors of the observations and should therefore be taken into account. We present the examples of the numerical calculations of the creep function of the crust and upper mantle for the coseismic deformations. We

  17. Visual motion integration for perception and pursuit

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Beutter, B. R.; Lorenceau, J.

    2000-01-01

    To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.

  18. Considerations for proper selection of dental cements.

    PubMed

    Simon, James F; Darnell, Laura A

    2012-01-01

    Selecting the proper cement for sufficient bond strength has become progressively complicated as the number of different materials for indirect restorations has increased. The success of any restoration is highly dependent on the proper cement being chosen and used. The function of the cement is not only to seal the restoration on the tooth but also, in some cases, to support the retention of the restoration. This ability to strengthen retention varies by the cement chosen by the clinician; therefore, careful consideration must precede cement selection.

  19. Asteroid proper elements and secular resonances

    NASA Technical Reports Server (NTRS)

    Knezevic, Zoran; Milani, Andrea

    1992-01-01

    In a series of papers (e.g., Knezevic, 1991; Milani and Knezevic, 1990; 1991) we reported on the progress we were making in computing asteroid proper elements, both as regards their accuracy and long-term stability. Additionally, we reported on the efficiency and 'intelligence' of our software. At the same time, we studied the associated problems of resonance effects, and we introduced the new class of 'nonlinear' secular resonances; we determined the locations of these secular resonances in proper-element phase space and analyzed their impact on the asteroid family classification. Here we would like to summarize the current status of our work and possible further developments.

  20. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  1. Proper Values of Matrices and Some Applications.

    ERIC Educational Resources Information Center

    Amir-Moez, Ali R.

    1992-01-01

    Presents a short study of proper values of two-by-two matrices with real entries. Gives examples of symmetric matrices and applications to systems of linear equations of perpendicular lines intersecting at the origin and central conics rotated about the origin to eliminate the xy term from its equation. (MDH)

  2. The Essentials of Proper Wine Service.

    ERIC Educational Resources Information Center

    Manago, Gary H.

    This instructional unit was designed to assist the food services instructor and/or the restaurant manager in training students and/or staff in the proper procedure for serving wines to guests. The lesson plans included in this unit focus on: (1) the different types of wine glasses and their uses; (2) the parts of a wine glass; (3) the proper…

  3. Joint moments of proper delay times

    SciTech Connect

    Martínez-Argüello, Angel M.; Martínez-Mares, Moisés; García, Julio C.

    2014-08-15

    We calculate negative moments of the N-dimensional Laguerre distribution for the orthogonal, unitary, and symplectic symmetries. These moments correspond to those of the proper delay times, which are needed to determine the statistical fluctuations of several transport properties through classically chaotic cavities, like quantum dots and microwave cavities with ideal coupling.

  4. Strategy Guideline. Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  5. Strategy Guideline: Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  6. Family Therapy: A Very Proper Failure.

    ERIC Educational Resources Information Center

    Midlarsky, Elizabeth

    This first-person account of a case study on family therapy discusses two latency-age boys who were referred for treatment. The assessment was that in both cases it was the family itself that was disturbed and needed treatment. The therapist worked with the first boy and his family together. The therapy model used was the "proper" family…

  7. Motion sickness.

    PubMed

    Golding, J F

    2016-01-01

    Over 2000 years ago the Greek physician Hippocrates wrote, "sailing on the sea proves that motion disorders the body." Indeed, the word "nausea" derives from the Greek root word naus, hence "nautical," meaning a ship. The primary signs and symptoms of motion sickness are nausea and vomiting. Motion sickness can be provoked by a wide variety of transport environments, including land, sea, air, and space. The recent introduction of new visual technologies may expose more of the population to visually induced motion sickness. This chapter describes the signs and symptoms of motion sickness and different types of provocative stimuli. The "how" of motion sickness (i.e., the mechanism) is generally accepted to involve sensory conflict, for which the evidence is reviewed. New observations concern the identification of putative "sensory conflict" neurons and the underlying brain mechanisms. But what reason or purpose does motion sickness serve, if any? This is the "why" of motion sickness, which is analyzed from both evolutionary and nonfunctional maladaptive theoretic perspectives. Individual differences in susceptibility are great in the normal population and predictors are reviewed. Motion sickness susceptibility also varies dramatically between special groups of patients, including those with different types of vestibular disease and in migraineurs. Finally, the efficacy and relative advantages and disadvantages of various behavioral and pharmacologic countermeasures are evaluated. PMID:27638085

  8. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  9. Boltzmann babies in the proper time measure

    SciTech Connect

    Bousso, Raphael; Freivogel, Ben; Yang, I-S.

    2008-05-15

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  10. Boltzmann babies in the proper time measure

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Freivogel, Ben; Yang, I.-Sheng

    2008-05-01

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  11. Boltzmann babies in the proper time measure

    SciTech Connect

    Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng

    2007-12-20

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  12. Testing effects for common versus proper names.

    PubMed

    Sensenig, Amanda E; Littrell-Baez, Megan K; Delosh, Edward L

    2011-08-01

    The present study examines the testing effect as a function of item meaningfulness. In Experiments 1 and 2 participants studied lists of words that could serve as proper names or occupations (e.g., Mr Baker or baker), with the items given in a name context for one group and an occupation context for a second group. During an intervening phase participants restudied some items and were given a cued recall test (Experiment 1) or a free recall test (Experiment 2) on other items. On a final free recall test memory was better for tested items than studied items in both the name and occupation contexts. Experiment 3 followed the same procedure as Experiment 1, except that participants studied lists of proper names that do not have alternative uses in the English language (e.g., Mr Anderson) or studied concrete nouns (e.g., letter). Tested items were better remembered on a final test than studied items, and there was no interaction with type of study material. These results show that the testing effect extends to proper names, material that is commonly assumed to differ from common names on several dimensions. PMID:21919593

  13. Proper selection of contemporary dental cements.

    PubMed

    Yu, Hao; Zheng, Ming; Chen, Run; Cheng, Hui

    2014-03-01

    Today proper selection of dental cements is a key factor to achieve a successful restoration and will greatly increase the chances of long-term success of the restoration. In recent years, many newly formulated dental cements have been developed with the claim of better performance compared to the traditional materials. Unfortunately, selection of suitable dental cement for a specific clinical application has become increasingly complicated, even for the most experienced dentists. The purpose of this article is to review the currently existing dental cements and to help the dentists choose the most suitable materials for clinical applications.

  14. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  15. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  16. Proper bibeta ROC model: algorithm, software, and performance evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Weijie; Hu, Nan

    2016-03-01

    Semi-parametric models are often used to fit data collected in receiver operating characteristic (ROC) experiments to obtain a smooth ROC curve and ROC parameters for statistical inference purposes. The proper bibeta model as recently proposed by Mossman and Peng enjoys several theoretical properties. In addition to having explicit density functions for the latent decision variable and an explicit functional form of the ROC curve, the two parameter bibeta model also has simple closed-form expressions for true-positive fraction (TPF), false-positive fraction (FPF), and the area under the ROC curve (AUC). In this work, we developed a computational algorithm and R package implementing this model for ROC curve fitting. Our algorithm can deal with any ordinal data (categorical or continuous). To improve accuracy, efficiency, and reliability of our software, we adopted several strategies in our computational algorithm including: (1) the LABROC4 categorization to obtain the true maximum likelihood estimation of the ROC parameters; (2) a principled approach to initializing parameters; (3) analytical first-order and second-order derivatives of the likelihood function; (4) an efficient optimization procedure (the L-BFGS algorithm in the R package "nlopt"); and (5) an analytical delta method to estimate the variance of the AUC. We evaluated the performance of our software with intensive simulation studies and compared with the conventional binormal and the proper binormal-likelihood-ratio models developed at the University of Chicago. Our simulation results indicate that our software is highly accurate, efficient, and reliable.

  17. Assigned value improves memory of proper names.

    PubMed

    Festini, Sara B; Hartley, Alan A; Tauber, Sarah K; Rhodes, Matthew G

    2013-01-01

    Names are more difficult to remember than other personal information such as occupations. The current research examined the influence of assigned point value on memory and metamemory judgements for names and occupations to determine whether incentive can improve recall of proper names. In Experiment 1 participants studied face-name and face-occupation pairs assigned 1 or 10 points, made judgements of learning, and were given a cued recall test. High-value names were recalled more often than low-value names. However, recall of occupations was not influenced by value. In Experiment 2 meaningless nonwords were used for both names and occupations. The name difficulty disappeared, and value influenced recall of both names and occupations. Thus value similarly influenced names and occupations when meaningfulness was held constant. In Experiment 3 participants were required to use overt rote rehearsal for all items. Value did not boost recall of high-value names, suggesting that differential processing could not be implemented to improve memory. Thus incentives may improve memory for proper names by motivating people to engage in selective rehearsal and effortful elaborative processing.

  18. Proper horizontal photospheric flows in a filament channel

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Roudier, T.; Mein, N.; Mein, P.; Malherbe, J. M.; Chandra, R.

    2014-04-01

    Context. An extended filament in the central part of the active region NOAA 11106 crossed the central meridian on Sept. 17, 2010 in the southern hemisphere. It has been observed in Hα with the THEMIS telescope in the Canary Islands and in 304 Å with the EUV imager (AIA) onboard the Solar Dynamic Observatory (SDO). Counterstreaming along the Hα threads and bright moving blobs (jets) along the 304 Å filament channel were observed during 10 h before the filament erupted at 17:03 UT. Aims: The aim of the paper is to understand the coupling between magnetic field and convection in filament channels and relate the horizontal photospheric motions to the activity of the filament. Methods: An analysis of the proper photospheric motions using SDO/HMI continuum images with the new version of the coherent structure tracking (CST) algorithm developed to track granules, as well as the large scale photospheric flows, was performed for three hours. Using corks, we derived the passive scalar points and produced a map of the cork distribution in the filament channel. Averaging the velocity vectors in the southern hemisphere in each latitude in steps of 3.5 arcsec, we defined a profile of the differential rotation. Results: Supergranules are clearly identified in the filament channel. Diverging flows inside the supergranules are similar in and out of the filament channel. Converging flows corresponding to the accumulation of corks are identified well around the Hα filament feet and at the edges of the EUV filament channel. At these convergence points, the horizontal photospheric velocity may reach 1 km s-1, but with a mean velocity of 0.35 km s-1. In some locations, horizontal flows crossing the channel are detected, indicating eventually large scale vorticity. Conclusions: The coupling between convection and magnetic field in the photosphere is relatively strong. The filament experienced the convection motions through its anchorage points with the photosphere, which are

  19. Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion.

    PubMed

    Burnecki, Krzysztof; Kepten, Eldad; Janczura, Joanna; Bronshtein, Irena; Garini, Yuval; Weron, Aleksander

    2012-11-01

    We present a systematic statistical analysis of the recently measured individual trajectories of fluorescently labeled telomeres in the nucleus of living human cells. The experiments were performed in the U2OS cancer cell line. We propose an algorithm for identification of the telomere motion. By expanding the previously published data set, we are able to explore the dynamics in six time orders, a task not possible earlier. As a result, we establish a rigorous mathematical characterization of the stochastic process and identify the basic mathematical mechanisms behind the telomere motion. We find that the increments of the motion are stationary, Gaussian, ergodic, and even more chaotic--mixing. Moreover, the obtained memory parameter estimates, as well as the ensemble average mean square displacement reveal subdiffusive behavior at all time spans. All these findings statistically prove a fractional Brownian motion for the telomere trajectories, which is confirmed by a generalized p-variation test. Taking into account the biophysical nature of telomeres as monomers in the chromatin chain, we suggest polymer dynamics as a sufficient framework for their motion with no influence of other models. In addition, these results shed light on other studies of telomere motion and the alternative telomere lengthening mechanism. We hope that identification of these mechanisms will allow the development of a proper physical and biological model for telomere subdynamics. This array of tests can be easily implemented to other data sets to enable quick and accurate analysis of their statistical characteristics.

  20. Swirl technology: Proper design, application, and evaluation

    SciTech Connect

    Field, R.; O`Connor, T.P.

    1995-10-01

    Swirl and vortex technologies have been with us for over thirty years now, ever since Bernard Smisson incorporated a cylindrical vortex-type combined sewer overflow (CSO) regulator/settleable-solids concentrator into the Bristol, England sewerage system back in the early 1960`s. In the early 1970`s the U.S. Environmental Protection Agency (EPA) conducted a series of projects to develop and demonstrate swirl flow regulator/settleable-solids concentrator (swirl) technology. These projects resulted in the EPA swirl and helical-bend flow regulators/settleable-solids concentrators and the swirl degritter. New generations of this technology emerged after the EPA versions were developed including the Fluidsep{trademark} and the Storm King{trademark} vortex-hydrodynamic separators. However, despite different designs and applications, the main intent of the technologies are the same, i.e., to use the forces that arise from a change in flow direction to enhance settleable-solids separation from the storm flow. A variety of opinions have developed regarding the application of these technologies varying from overwhelming support to detractions that question their effectiveness. This abstract will show that proper design and placement in the sewerage system results in effective use of swirl technology. Reliable swirl pollution control efficiency determination is principally dependent on proper sampling and suspended and settleable-solids analysis techniques of the influent and effluent. Simultaneous flowrate measurement is also important. Without the complete capture of heavy and stratified suspended solids (SS) across the influent flow channel or water column, the apparent performance of the swirl will be less than the actual. Particle-settleability tests which are presented, must be conducted before and after installation, but especially before in order to decide if the inertial characteristics of SS in the storm flow warrants the use of a swirl.

  1. Proper body mechanics from an engineering perspective.

    PubMed

    Mohr, Edward G

    2010-04-01

    The economic viability of the manual therapy practitioner depends on the number of massages/treatments that can be given in a day or week. Fatigue or injuries can have a major impact on the income potential and could ultimately reach the point which causes the practitioner to quit the profession, and seek other, less physically demanding, employment. Manual therapy practitioners in general, and massage therapists in particular, can utilize a large variety of body postures while giving treatment to a client. The hypothesis of this paper is that there is an optimal method for applying force to the client, which maximizes the benefit to the client, and at the same time minimizes the strain and effort required by the practitioner. Two methods were used to quantifiably determine the effect of using "poor" body mechanics (Improper method) and "best" body mechanics (Proper/correct method). The first approach uses computer modeling to compare the two methods. Both postures were modeled, such that the biomechanical effects on the practitioner's elbow, shoulder, hip, knee and ankle joints could be calculated. The force applied to the client, along with the height and angle of application of the force, was held constant for the comparison. The second approach was a field study of massage practitioners (n=18) to determine their maximal force capability, again comparing methods using "Improper and Proper body mechanics". Five application methods were tested at three different application heights, using a digital palm force gauge. Results showed that there was a definite difference between the two methods, and that the use of correct body mechanics can have a large impact on the health and well being of the massage practitioner over both the short and long term.

  2. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  3. A Support System for Motion Training Using Motion Capture and Acceleration Sensors

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Onai, Rikio

    This paper presents a support system for motion training for dances, sports, gestures, etc. In our previous study, we developed a prototype system for supporting motion training using motion caputure, i.e., marker tracking using a DV camera. The prototype system scores a user's motion by comparing tracking data of the user and a model with DP matching. The prototype system has a limit that it cannot accurately obtain acceleration of each part of the body because marker tracking using a DV camera cannot obtain three dimensional motion. By this limit, two different motions sometimes cannot be distinguished. For more effective motion training, in this study, we propose a system combining motion capture and acceleration sensors. We have examined the effectiveness of using acceleration sensors in motion training by comparing the proposed system with the prototype system. Experimental results have shown that two different motions can be more clearly distinguished by using the acceleration sensors.

  4. Proper installation ensures turbine meter accuracy

    SciTech Connect

    Peace, D.W.

    1995-07-01

    Turbine meters are widely used for natural gas measurement and provide high accuracy over large ranges of operation. However, as with many other types of flowmeters, consideration must be given to the design of the turbine meter and the installation piping practice to ensure high-accuracy measurement. National and international standards include guidelines for proper turbine meter installation piping and methods for evaluating the effects of flow disturbances on the design of those meters. Swirl or non-uniform velocity profiles, such as jetting, at the turbine meter inlet can cause undesirable accuracy performance changes. Sources of these types of flow disturbances can be from the installation piping configuration, an upstream regulator, a throttled valve, or a partial blockage upstream of the meter. Test results on the effects of swirl and jetting on different types of meter designs and sizes emphasize the need to consider good engineering design for turbine meters, including integral flow conditioning vanes and adequate installation piping practices for high accuracy measurement.

  5. Accurate ab initio Quartic Force Fields of Cyclic and Bent HC2N Isomers

    NASA Technical Reports Server (NTRS)

    Inostroza, Natalia; Huang, Xinchuan; Lee, Timothy J.

    2012-01-01

    Highly correlated ab initio quartic force field (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC2N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T). Dunning s correlation-consistent basis sets cc-pVXZ, X=3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schr dinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by perturbation theory). On the other hand, this procedure (a QFF together with either perturbation theory or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC2N. All three isomers possess significant dipole moments, 3.05D, 3.06D, and 1.71D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments.

  6. Line gas sampling system ensures accurate analysis

    SciTech Connect

    Not Available

    1992-06-01

    Tremendous changes in the natural gas business have resulted in new approaches to the way natural gas is measured. Electronic flow measurement has altered the business forever, with developments in instrumentation and a new sensitivity to the importance of proper natural gas sampling techniques. This paper reports that YZ Industries Inc., Snyder, Texas, combined its 40 years of sampling experience with the latest in microprocessor-based technology to develop the KynaPak 2000 series, the first on-line natural gas sampling system that is both compact and extremely accurate. This means the composition of the sampled gas must be representative of the whole and related to flow. If so, relative measurement and sampling techniques are married, gas volumes are accurately accounted for and adjustments to composition can be made.

  7. a Comparison of the Proper-Time Equation and the Renormalization Group β-FUNCTION in String Theory

    NASA Astrophysics Data System (ADS)

    Sathiapalan, B.

    It is known that there is a proportionality factor relating the β-function and the equations of motion viz. the Zamolodchikov metric. Usually this factor has to be obtained by other methods. The proper-time equation, on the other hand, is the full equation of motion. We explain the reasons for this and illustrate it by calculating corrections to Maxwell’s equation. The corrections are calculated to cubic order in the field strength, but are exact to all orders in derivatives. We also test the gauge covariance of the proper-time method by calculating higher (covariant) derivative corrections to the Yang-Mills equation.

  8. What's Motion Sickness?

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes What's Motion Sickness? KidsHealth > For Kids > What's Motion Sickness? Print ... motion sickness might get even worse. continue Avoiding Motion Sickness To avoid motion sickness: Put your best ...

  9. Ocean Models and Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Salas-de-Leon, D. A.

    2007-05-01

    The increasing computational developments and the better understanding of mathematical and physical systems resulted in an increasing number of ocean models. Long time ago, modelers were like a secret organization and recognize each other by using secret codes and languages that only a select group of people was able to recognize and understand. The access to computational systems was reduced, on one hand equipment and the using time of computers were expensive and restricted, and on the other hand, they required an advance computational languages that not everybody wanted to learn. Now a days most college freshman own a personal computer (PC or laptop), and/or have access to more sophisticated computational systems than those available for research in the early 80's. The resource availability resulted in a mayor access to all kind models. Today computer speed and time and the algorithms does not seem to be a problem, even though some models take days to run in small computational systems. Almost every oceanographic institution has their own model, what is more, in the same institution from one office to the next there are different models for the same phenomena, developed by different research member, the results does not differ substantially since the equations are the same, and the solving algorithms are similar. The algorithms and the grids, constructed with algorithms, can be found in text books and/or over the internet. Every year more sophisticated models are constructed. The Proper Orthogonal Decomposition is a technique that allows the reduction of the number of variables to solve keeping the model properties, for which it can be a very useful tool in diminishing the processes that have to be solved using "small" computational systems, making sophisticated models available for a greater community.

  10. Geologically current plate motions

    NASA Astrophysics Data System (ADS)

    DeMets, Charles; Gordon, Richard G.; Argus, Donald F.

    2010-04-01

    indicates that motions across the Caribbean-North America and Caribbean-South America plate boundaries are twice as fast as given by NUVEL-1A. Summed, least-squares differences between angular velocities estimated from GPS and those for MORVEL, NUVEL-1 and NUVEL-1A are, respectively, 260 per cent larger for NUVEL-1 and 50 per cent larger for NUVEL-1A than for MORVEL, suggesting that MORVEL more accurately describes historically current plate motions. Significant differences between geological and GPS estimates of Nazca plate motion and Arabia-Eurasia and India-Eurasia motion are reduced but not eliminated when using MORVEL instead of NUVEL-1A, possibly indicating that changes have occurred in those plate motions since 3.16 Ma. The MORVEL and GPS estimates of Pacific-North America plate motion in western North America differ by only 2.6 +/- 1.7mmyr-1, ~25 per cent smaller than for NUVEL-1A. The remaining difference for this plate pair, assuming there are no unrecognized systematic errors and no measurable change in Pacific-North America motion over the past 1-3 Myr, indicates deformation of one or more plates in the global circuit. Tests for closure of six three-plate circuits indicate that two, Pacific-Cocos-Nazca and Sur-Nubia-Antarctic, fail closure, with respective linear velocities of non-closure of 14 +/- 5 and 3 +/- 1mmyr-1 (95 per cent confidence limits) at their triple junctions. We conclude that the rigid plate approximation continues to be tremendously useful, but-absent any unrecognized systematic errors-the plates deform measurably, possibly by thermal contraction and wide plate boundaries with deformation rates near or beneath the level of noise in plate kinematic data.

  11. Proper evaluation of alignment-free network comparison methods

    PubMed Central

    Milenković, Tijana; Pržulj, Nataša

    2015-01-01

    Motivation: Network comparison is a computationally intractable problem with important applications in systems biology and other domains. A key challenge is to properly quantify similarity between wiring patterns of two networks in an alignment-free fashion. Also, alignment-based methods exist that aim to identify an actual node mapping between networks and as such serve a different purpose. Various alignment-free methods that use different global network properties (e.g. degree distribution) have been proposed. Methods based on small local subgraphs called graphlets perform the best in the alignment-free network comparison task, due to high level of topological detail that graphlets can capture. Among different graphlet-based methods, Graphlet Correlation Distance (GCD) was shown to be the most accurate for comparing networks. Recently, a new graphlet-based method called NetDis was proposed, which was claimed to be superior. We argue against this, as the performance of NetDis was not properly evaluated to position it correctly among the other alignment-free methods. Results: We evaluate the performance of available alignment-free network comparison methods, including GCD and NetDis. We do this by measuring accuracy of each method (in a systematic precision-recall framework) in terms of how well the method can group (cluster) topologically similar networks. By testing this on both synthetic and real-world networks from different domains, we show that GCD remains the most accurate, noise-tolerant and computationally efficient alignment-free method. That is, we show that NetDis does not outperform the other methods, as originally claimed, while it is also computationally more expensive. Furthermore, since NetDis is dependent on the choice of a network null model (unlike the other graphlet-based methods), we show that its performance is highly sensitive to the choice of this parameter. Finally, we find that its performance is not independent on network sizes and

  12. VizieR Online Data Catalog: NIR proper motion catalogue from UKIDSS-LAS (Smith+, 2014)

    NASA Astrophysics Data System (ADS)

    Smith, L.; Lucas, P. W.; Burningham, B.; Jones, H. R. A.; Smart, R. L.; Andrei, A. H.; Catalan, S.; Pinfield, D. J.

    2015-07-01

    We constructed two epoch catalogues for each pointing by matching sources within the pairs of multiframes using the Starlink Tables Infrastructure Library Tool Set (STILTS; Taylor 2006, ASP conf. Ser. 351, 666). We required pairs of sources to be uniquely paired to their closest match within 6-arcsec, and we required the J band magnitudes for the two epochs to agree within 0.5mag, to minimize mismatches. (1 data file).

  13. Proper Motions of H2O Masers in the Water Fountain Source IRAS 19190+1102

    NASA Astrophysics Data System (ADS)

    Day, F. M.; Pihlström, Y. M.; Claussen, M. J.; Sahai, R.

    2010-04-01

    We report on the results of two epochs of Very Long Baseline Array observations of the 22 GHz water masers toward IRAS 19190+1102. The water maser emission from this object shows two main arc-shaped formations perpendicular to their NE-SW separation axis. The arcs are separated by ~280 mas in position and are expanding outward at an angular rate of 2.35 mas yr-1. We detect maser emission at velocities between -53.3 km s-1 and +78.0 km s-1, and there is a distinct velocity pattern where the NE masers are blueshifted and the SW masers are redshifted. The outflow has a three-dimensional outflow velocity of 99.8 km s-1 and a dynamical age of about 59 yr. A group of blueshifted masers not located along the arcs shows a change in velocity of more than 25 km s-1 between epochs, and may be indicative of the formation of a new lobe. These observations show that IRAS 19190+1102 is a member of the class of "water fountain" pre-planetary nebulae displaying bipolar structure.

  14. VizieR Online Data Catalog: High proper motion sources from WISE (Beamin+, 2015)

    NASA Astrophysics Data System (ADS)

    Beamin, J. C.; Ivanov, V. D.; Minniti, D.; Smart, R. L.; Muzic, K.; Mendez, R. A.; Beletsky, Y.; Bayo, A.; Gromadzki, M.; Kurtev, R.

    2016-07-01

    The ESO Faint Object Spectrograph and Camera v.2 (EFOSC2) mounted at the 3.6-m New Technology Telescope (NTT) at la Silla observatory, is a versatile instrument for low-resolution spectroscopy, imaging and polarimetry. We obtained low-resolution long-slit spectra for 24 sources (see Table 1) using the same configuration for all the sources: 1 arcsec slit width, grism number one, covering a spectral range of λ=3185-10940Å with a resolution ~48Å. All the sources were observed on 2014 April 17. (3 data files).

  15. Choice of the proper wavelength for photochemotherapy

    NASA Astrophysics Data System (ADS)

    Moan, Johan; Iani, Vladimir; Ma, LiWei

    1996-01-01

    All photosensitizers applied in experimental- and clinical-photochemotherapy (PCT) have broad absorption spectra stretching from the ultraviolet up to 6 - 700 nm. Light of wavelengths in the red part of the spectrum is chosen for PCT even though the extinction coefficients of the sensitizers are usually smaller in this wavelength region than at shorter wavelengths. Thus, if one wants to treat superficial tumors or skin disorders, this may be a wrong choice. Two pieces of information are needed in order to make a proper choice of wavelength to treat a lesion of a given depth: the wavelength dependence of the optical penetration depth into tissue, and the action spectrum for tumor destruction. Additionally, the skin photosensitivity induced by the drug should be considered. We have non-invasively measured the optical penetration spectra of human tissues in vivo and the fluorescence excitation spectra for several sensitizers, including protoporphyrin (PpIX), in cells. Assuming that the action spectrum for cell inactivation can be approximated by the fluorescence excitation spectrum of the sensitizer -- which is indeed the case for a number of sensitizers in cells in vitro -- we have considered the situation for 5-aminolevulinic acid-induced PpIX in human tissue. All the way down to about 2 mm below the surface light in the Soret band (-410 nm) would give the largest cell inactivation, while at depth exceeding 2 mm, the conventional 635 nm light would be optimal. Light at the argon laser wavelength 514.5 nm is more efficient than light at 635 nm down to 1 mm. From the surface and down to 6 mm, the 635 nm peak of the excitation spectrum of PpIX, as evaluated per photon incident on the skin surface, is redshifted by less than 2 nm. In some cases photosensitizing photoproducts are formed during PCT, such as photoprotoporphyrin during PCT with PpIX. In such cases it may be advantageous to apply a broad-band light source with a spectrum that covers also part of the action

  16. Development of a 6DOF robotic motion phantom for radiation therapy

    SciTech Connect

    Belcher, Andrew H.; Liu, Xinmin; Grelewicz, Zachary; Pearson, Erik; Wiersma, Rodney D.

    2014-12-15

    Purpose: The use of medical technology capable of tracking patient motion or positioning patients along 6 degree-of-freedom (6DOF) has steadily increased in the field of radiation therapy. However, due to the complex nature of tracking and performing 6DOF motion, it is critical that such technology is properly verified to be operating within specifications in order to ensure patient safety. In this study, a robotic motion phantom is presented that can be programmed to perform highly accurate motion along any X (left–right), Y (superior–inferior), Z (anterior–posterior), pitch (around X), roll (around Y), and yaw (around Z) axes. In addition, highly synchronized motion along all axes can be performed in order to simulate the dynamic motion of a tumor in 6D. The accuracy and reproducibility of this 6D motion were characterized. Methods: An in-house designed and built 6D robotic motion phantom was constructed following the Stewart–Gough parallel kinematics platform archetype. The device was controlled using an inverse kinematics formulation, and precise movements in all 6 degrees-of-freedom (X, Y, Z, pitch, roll, and yaw) were performed, both simultaneously and separately for each degree-of-freedom. Additionally, previously recorded 6D cranial and prostate motions were effectively executed. The robotic phantom movements were verified using a 15 fps 6D infrared marker tracking system and the measured trajectories were compared quantitatively to the intended input trajectories. The workspace, maximum 6D velocity, backlash, and weight load capabilities of the system were also established. Results: Evaluation of the 6D platform demonstrated translational root mean square error (RMSE) values of 0.14, 0.22, and 0.08 mm over 20 mm in X and Y and 10 mm in Z, respectively, and rotational RMSE values of 0.16°, 0.06°, and 0.08° over 10° of pitch, roll, and yaw, respectively. The robotic stage also effectively performed controlled 6D motions, as well as reproduced

  17. [Motion sickness].

    PubMed

    Taillemite, J P; Devaulx, P; Bousquet, F

    1997-01-01

    Motion sickness is a general term covering sea-sickness, car-sickness, air-sickness, and space-sickness. Symptoms can occur when a person is exposed to unfamiliar movement whether real or simulated. Despite progress in the technology and comfort of modern transportation (planes, boats, and overland vehicles), a great number of travelers still experience motion sickness. Bouts are characterized by an initial phase of mild discomfort followed by neurologic and gastro-intestinal manifestations. The delay in onset depends on specific circumstances and individual susceptibility. Attacks are precipitated by conflicting sensory, visual, and vestibular signals but the underlying mechanism is unclear. Most medications used for prevention and treatment (e.g. anticholinergics and antihistamines) induce unwanted sedation. Furthermore no one drug is completely effective or preventive under all conditions.

  18. Super-Sharp Radio "Vision" Measures Galaxy's Motion in Space

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have measured the motion across the sky of a galaxy nearly 2.4 million light-years from Earth. While scientists have been measuring the motion of galaxies directly toward or away from Earth for decades, this is the first time that the transverse motion (called proper motion by astronomers) has been measured for a galaxy that is not a satellite of our own Milky Way Galaxy. M33 Radio/Optical Image of M33 CREDIT: NRAO/AUI/NSF, NOAO/AURA/NSF (Click on image for more files) An international scientific team analyzed VLBA observations made over two and a half years to detect minuscule shifts in the sky position of the spiral galaxy M33. Combined with previous measurements of the galaxy's motion toward Earth, the new data allowed the astronomers to calculate M33's movement in three dimensions for the first time. "A snail crawling on Mars would appear to be moving across the surface more than 100 times faster than the motion we measured for this galaxy," said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. M33 is a satellite of the larger galaxy M31, the well-known Andromeda Galaxy that is the most distant object visible to the naked eye. Both are part of the Local Group of galaxies that includes the Milky Way. In addition to measuring the motion of M33 as a whole, the astronomers also were able to make a direct measurement of the spiral galaxy's rotation. Both measurements were made by observing the changes in position of giant clouds of molecules inside the galaxy. The water vapor in these clouds acts as a natural maser, strengthening, or amplifying, radio emission the same way that lasers amplify light emission. The natural masers acted as bright radio beacons whose movement could be tracked by the ultra-sharp radio "vision" of the VLBA. Reid and his colleagues plan to continue measuring M33's motion and also to make similar measurements of M31's motion

  19. Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.

    1999-01-01

    This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).

  20. 7 CFR 993.21a - Proper storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Proper storage. 993.21a Section 993.21a Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Order Regulating Handling Definitions § 993.21a Proper storage. Proper storage means storage of...

  1. 7 CFR 993.21a - Proper storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Proper storage. 993.21a Section 993.21a Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Order Regulating Handling Definitions § 993.21a Proper storage. Proper storage means storage of...

  2. 7 CFR 993.21a - Proper storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Proper storage. 993.21a Section 993.21a Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Order Regulating Handling Definitions § 993.21a Proper storage. Proper storage means storage of...

  3. 7 CFR 993.21a - Proper storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Proper storage. 993.21a Section 993.21a Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Order Regulating Handling Definitions § 993.21a Proper storage. Proper storage means storage of...

  4. 7 CFR 993.21a - Proper storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Proper storage. 993.21a Section 993.21a Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Order Regulating Handling Definitions § 993.21a Proper storage. Proper storage means storage of...

  5. Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations

    SciTech Connect

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2011-03-23

    A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy provided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.

  6. Hybrid proper orthogonal decomposition formulation for linear structural dynamics

    NASA Astrophysics Data System (ADS)

    Placzek, A.; Tran, D.-M.; Ohayon, R.

    2008-12-01

    Hybrid proper orthogonal decomposition (PODh) formulation is a POD-based reduced-order modeling method where the continuous equation of the physical system is projected on the POD modes obtained from a discrete model of the system. The aim of this paper is to evaluate the hybrid POD formulation and to compare it with other POD formulations on the simple case of a linear elastic rod subject to prescribed displacements in the perspective of building reduced-order models for coupled fluid-structure systems in the future. In the first part of the paper, the hybrid POD is compared to two other formulations for the response to an initial condition: an approach based on the discrete finite elements equation of the rod called the discrete POD (PODd), and an analytical approach using the exact solution of the problem and consequently called the analytical POD (PODa). This first step is useful to ensure that the PODh performs well with respect to the other formulations. The PODh is therefore used afterwards for the forced motion response where a displacement is imposed at the free end of the rod. The main contribution of this paper lies in the comparison of three techniques used to take into account the non-homogeneous Dirichlet boundary condition with the hybrid POD: the first method relies on control functions, the second on the penalty method and the third on Lagrange multipliers. Finally, the robustness of the hybrid POD is investigated on two examples involving firstly the introduction of structural damping and secondly a nonlinear force applied at the free end of the rod.

  7. [The defense and illustration of proper nouns in cardiology].

    PubMed

    Coatantiec, G

    2004-05-22

    THE PROS AND CONS: The fact that proper nouns are used in medicine is regularly criticised (notably because of the lack of scientific rigour). However, such use in cardiology remains an active tradition for three, historical, precision and linguistic, reasons. SIGNIFICATION: In general, the proper nouns pay a tribute to a famous physician. They reflect the scientific support to Cardiology provided by each country. THE OUTCOME OF PROPER NOUNS: Some proper nouns become inescapable and classic, others become outmoded whilst new ones regularly appear. A proper noun can become forgotten with the regression of a disease, a decline in clinical semiology or in that of a technique.

  8. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    SciTech Connect

    Nusser, Adi; Branchini, Enzo; Davis, Marc E-mail: branchin@fis.uniroma3.it

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  9. A fast and accurate method for echocardiography strain rate imaging

    NASA Astrophysics Data System (ADS)

    Tavakoli, Vahid; Sahba, Nima; Hajebi, Nima; Nambakhsh, Mohammad Saleh

    2009-02-01

    Recently Strain and strain rate imaging have proved their superiority with respect to classical motion estimation methods in myocardial evaluation as a novel technique for quantitative analysis of myocardial function. Here in this paper, we propose a novel strain rate imaging algorithm using a new optical flow technique which is more rapid and accurate than the previous correlation-based methods. The new method presumes a spatiotemporal constancy of intensity and Magnitude of the image. Moreover the method makes use of the spline moment in a multiresolution approach. Moreover cardiac central point is obtained using a combination of center of mass and endocardial tracking. It is proved that the proposed method helps overcome the intensity variations of ultrasound texture while preserving the ability of motion estimation technique for different motions and orientations. Evaluation is performed on simulated, phantom (a contractile rubber balloon) and real sequences and proves that this technique is more accurate and faster than the previous methods.

  10. Independent, Synchronous Access to Color and Motion Features

    ERIC Educational Resources Information Center

    Holcombe, Alex O.; Cavanagh, Patrick

    2008-01-01

    We investigated the role of attention in pairing superimposed visual features. When moving dots alternate in color and in motion direction, reports of the perceived color and motion reveal an asynchrony: the most accurate reports occur when the motion change precedes the associated color change by approximately 100ms [Moutoussis, K., & Zeki, S.…

  11. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  12. 49 CFR 109.11 - Assistance of properly qualified personnel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS AND OIL TRANSPORTATION... properly qualified to perform a function that is essential to the agent's exercise of authority under...

  13. Super-Sharp Radio "Vision" Measures Galaxy's Motion in Space

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have measured the motion across the sky of a galaxy nearly 2.4 million light-years from Earth. While scientists have been measuring the motion of galaxies directly toward or away from Earth for decades, this is the first time that the transverse motion (called proper motion by astronomers) has been measured for a galaxy that is not a satellite of our own Milky Way Galaxy. M33 Radio/Optical Image of M33 CREDIT: NRAO/AUI/NSF, NOAO/AURA/NSF (Click on image for more files) An international scientific team analyzed VLBA observations made over two and a half years to detect minuscule shifts in the sky position of the spiral galaxy M33. Combined with previous measurements of the galaxy's motion toward Earth, the new data allowed the astronomers to calculate M33's movement in three dimensions for the first time. "A snail crawling on Mars would appear to be moving across the surface more than 100 times faster than the motion we measured for this galaxy," said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. M33 is a satellite of the larger galaxy M31, the well-known Andromeda Galaxy that is the most distant object visible to the naked eye. Both are part of the Local Group of galaxies that includes the Milky Way. In addition to measuring the motion of M33 as a whole, the astronomers also were able to make a direct measurement of the spiral galaxy's rotation. Both measurements were made by observing the changes in position of giant clouds of molecules inside the galaxy. The water vapor in these clouds acts as a natural maser, strengthening, or amplifying, radio emission the same way that lasers amplify light emission. The natural masers acted as bright radio beacons whose movement could be tracked by the ultra-sharp radio "vision" of the VLBA. Reid and his colleagues plan to continue measuring M33's motion and also to make similar measurements of M31's motion

  14. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  15. The Effects of Grade Level, Type of Motion, Cueing Strategy, Pictorial Complexity, and Color on Children's Interpretation of Implied Motion in Pictures.

    ERIC Educational Resources Information Center

    Downs, Elizabeth; Jenkins, Stephen J.

    2001-01-01

    Examined the ability of 64 kindergarten and third-grade children to interpret implied motion in pictures accurately. Third graders were more adept at identifying implied motion. Results also show that postural motion was more effective than a flow-line condition in conveying motion, and that cues and relevant pictorial background information…

  16. Security Applications Of Computer Motion Detection

    NASA Astrophysics Data System (ADS)

    Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry

    1987-05-01

    An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.

  17. Second Language Listening and Unfamiliar Proper Names: Comprehension Barrier?

    ERIC Educational Resources Information Center

    Kobeleva, Polina P.

    2012-01-01

    This study examines whether unfamiliar proper names affect English as a second language (ESL) learners' listening comprehension. A total of 110 intermediate to advanced ESL learners participated; comprehension of a short news text was tested under two conditions, Names Known (all proper names pre-taught in advance) and Names Unknown (all proper…

  18. 49 CFR 236.526 - Roadway element not functioning properly.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Roadway element not functioning properly. 236.526... element not functioning properly. When a roadway element except track circuit of automatic train stop... roadway element shall be caused manually to display its most restrictive aspect until such element...

  19. 49 CFR 236.526 - Roadway element not functioning properly.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Roadway element not functioning properly. 236.526... element not functioning properly. When a roadway element except track circuit of automatic train stop... roadway element shall be caused manually to display its most restrictive aspect until such element...

  20. 49 CFR 236.526 - Roadway element not functioning properly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Roadway element not functioning properly. 236.526... element not functioning properly. When a roadway element except track circuit of automatic train stop... roadway element shall be caused manually to display its most restrictive aspect until such element...

  1. Educating Children to Proper Eating Habits in the Classroom.

    ERIC Educational Resources Information Center

    King, Marian

    A brief discussion of proper nutrition in general precedes an examination of proper nutrition for school children and the specification of nutrition education objectives for kindergarten or first grade students. The remainder of the paper delineates food projects by which objectives can be realized (for example, snack necklace, jack-o-lantern…

  2. 49 CFR 236.526 - Roadway element not functioning properly.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway element not functioning properly. 236.526... element not functioning properly. When a roadway element except track circuit of automatic train stop... roadway element shall be caused manually to display its most restrictive aspect until such element...

  3. 49 CFR 236.526 - Roadway element not functioning properly.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Roadway element not functioning properly. 236.526... element not functioning properly. When a roadway element except track circuit of automatic train stop... roadway element shall be caused manually to display its most restrictive aspect until such element...

  4. 29 CFR 1404.20 - Proper use of expedited arbitration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Proper use of expedited arbitration. 1404.20 Section 1404... ARBITRATION SERVICES Expedited Arbitration § 1404.20 Proper use of expedited arbitration. (a) FMCS reserves the right to cease honoring request for Expedited Arbitration if a pattern of misuse of this...

  5. 17 CFR 230.401 - Requirements as to proper form.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Requirements as to proper form... RULES AND REGULATIONS, SECURITIES ACT OF 1933 General Requirements § 230.401 Requirements as to proper... applicable rules and forms as in effect on the initial filing date of such registration statement...

  6. 17 CFR 230.401 - Requirements as to proper form.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Requirements as to proper form... RULES AND REGULATIONS, SECURITIES ACT OF 1933 General Requirements § 230.401 Requirements as to proper... applicable rules and forms as in effect on the initial filing date of such registration statement...

  7. Lethal injection, autonomy and the proper ends of medicine.

    PubMed

    Silver, David

    2003-04-01

    Gerald Dworkin has argued that it is inconsistent with the proper ends of medicine for a physician to participate in an execution by lethal injection. He does this by proposing a principle by which we are to judge whether an action is consistent with the proper ends of medicine. I argue: (a) that this principle, if valid, does not show that it is inconsistent with the proper ends of medicine for a physician to participate in an execution by lethal injection; and (b) that this principle is not valid, and this is because it mistakenly views the promotion of patient autonomy as one of the proper ends of medicine. Rather, I propose, we should view respect for a patient's autonomy as a constraint on the pursuit of the proper ends of medicine, rather than as one of the proper ends itself. With this revised understanding of the proper ends of medicine, we can conclude that it is inconsistent with the proper ends of medicine for a physician to participate in an execution by lethal injection.

  8. 25 CFR 213.35 - Mines to be timbered properly.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Mines to be timbered properly. 213.35 Section 213.35... LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.35 Mines to be timbered properly. In mining operations the lessee shall keep the mine well and sufficiently timbered at all...

  9. Participation in "Handwashing University" Promotes Proper Handwashing Techniques for Youth

    ERIC Educational Resources Information Center

    Fenton, Ginger; Radhakrishna, Rama; Cutter, Catherine Nettles

    2010-01-01

    A study was conducted to assess the effectiveness of the Handwashing University on teaching youth the benefits of proper handwashing. The Handwashing University is an interactive display with several successive stations through which participants move to learn necessary skills for proper handwashing. Upon completion of the Handwashing University,…

  10. 25 CFR 213.35 - Mines to be timbered properly.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Mines to be timbered properly. 213.35 Section 213.35... LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.35 Mines to be timbered properly. In mining operations the lessee shall keep the mine well and sufficiently timbered at all...

  11. 25 CFR 213.35 - Mines to be timbered properly.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Mines to be timbered properly. 213.35 Section 213.35... LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.35 Mines to be timbered properly. In mining operations the lessee shall keep the mine well and sufficiently timbered at all...

  12. 25 CFR 213.35 - Mines to be timbered properly.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Mines to be timbered properly. 213.35 Section 213.35... LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.35 Mines to be timbered properly. In mining operations the lessee shall keep the mine well and sufficiently timbered at all...

  13. 25 CFR 213.35 - Mines to be timbered properly.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Mines to be timbered properly. 213.35 Section 213.35... LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.35 Mines to be timbered properly. In mining operations the lessee shall keep the mine well and sufficiently timbered at all...

  14. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  15. Chromosomal locus tracking with proper accounting of static and dynamic errors.

    PubMed

    Backlund, Mikael P; Joyner, Ryan; Moerner, W E

    2015-06-01

    The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or molecules are ubiquitous metrics for extracting parameters that describe the object's motion, but they are both corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For the simple case of pure Brownian motion, the effects of localization error due to photon statistics ("static error") and motion blur due to finite exposure time ("dynamic error") on the MSD and VAC are already routinely treated. However, particles moving through complex environments such as cells, nuclei, or polymers often exhibit anomalous diffusion, for which the effects of these errors are less often sufficiently treated. We present data from tracked chromosomal loci in yeast that demonstrate the necessity of properly accounting for both static and dynamic error in the context of an anomalous diffusion that is consistent with a fractional Brownian motion (FBM). We compare these data to analytical forms of the expected values of the MSD and VAC for a general FBM in the presence of these errors.

  16. Chromosomal locus tracking with proper accounting of static and dynamic errors

    NASA Astrophysics Data System (ADS)

    Backlund, Mikael P.; Joyner, Ryan; Moerner, W. E.

    2015-06-01

    The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or molecules are ubiquitous metrics for extracting parameters that describe the object's motion, but they are both corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For the simple case of pure Brownian motion, the effects of localization error due to photon statistics ("static error") and motion blur due to finite exposure time ("dynamic error") on the MSD and VAC are already routinely treated. However, particles moving through complex environments such as cells, nuclei, or polymers often exhibit anomalous diffusion, for which the effects of these errors are less often sufficiently treated. We present data from tracked chromosomal loci in yeast that demonstrate the necessity of properly accounting for both static and dynamic error in the context of an anomalous diffusion that is consistent with a fractional Brownian motion (FBM). We compare these data to analytical forms of the expected values of the MSD and VAC for a general FBM in the presence of these errors.

  17. Chromosomal locus tracking with proper accounting of static and dynamic errors

    PubMed Central

    Backlund, Mikael P.; Joyner, Ryan; Moerner, W. E.

    2015-01-01

    The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or molecules are ubiquitous metrics for extracting parameters that describe the object’s motion, but they are both corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For the simple case of pure Brownian motion, the effects of localization error due to photon statistics (“static error”) and motion blur due to finite exposure time (“dynamic error”) on the MSD and VAC are already routinely treated. However, particles moving through complex environments such as cells, nuclei, or polymers often exhibit anomalous diffusion, for which the effects of these errors are less often sufficiently treated. We present data from tracked chromosomal loci in yeast that demonstrate the necessity of properly accounting for both static and dynamic error in the context of an anomalous diffusion that is consistent with a fractional Brownian motion (FBM). We compare these data to analytical forms of the expected values of the MSD and VAC for a general FBM in the presence of these errors. PMID:26172745

  18. Key frame extraction based on spatiotemporal motion trajectory

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzuo; Tao, Ran; Zhang, Feng

    2015-05-01

    Spatiotemporal motion trajectory can accurately reflect the changes of motion state. Motivated by this observation, this letter proposes a method for key frame extraction based on motion trajectory on the spatiotemporal slice. Different from the well-known motion related methods, the proposed method utilizes the inflexions of the motion trajectory on the spatiotemporal slice of all the moving objects. Experimental results show that although a similar performance is achieved in the single-objective screen, by comparing the proposed method to that achieved with the state-of-the-art methods based on motion energy or acceleration, the proposed method shows a better performance in a multiobjective video.

  19. Spatial scale of motion segmentation from speed cues

    NASA Technical Reports Server (NTRS)

    Mestre, D. R.; Masson, G. S.; Stone, L. S.

    2001-01-01

    For the accurate perception of multiple, potentially overlapping, surfaces or objects, the visual system must distinguish different local motion vectors and selectively integrate similar motion vectors over space to segment the retinal image properly. We recently showed that large differences in speed are required to yield a percept of motion transparency. In the present study, to investigate the spatial scale of motion segmentation from speed cues alone, we measured the speed-segmentation threshold (the minimum speed difference required for 75% performance accuracy) for 'corrugated' random-dot patterns, i.e. patterns in which dots with two different speeds were alternately placed in adjacent bars of variable width. In a first experiment, we found that, at large bar widths, a smaller speed difference was required to segment and perceive the corrugated pattern of moving dots, while at small bar-widths, a larger speed difference was required to segment the two speeds and perceive two transparent surfaces of moving dots. Both the perceptual and segmentation performance transitions occurred at a bar width of around 0.4 degrees. In a second experiment, speed-segmentation thresholds were found to increase sharply when dots with different speeds were paired within a local pooling area. The critical pairing distance was about 0.2 degrees in the fovea and increased linearly with stimulus eccentricity. However, across the range of eccentricities tested (up to 15 degrees ), the critical pairing distance did not change much and remained close to the receptive field size of neurons within the primate primary visual cortex. In a third experiment, increasing dot density changed the relationship between speed-segmentation thresholds and bar width. Thresholds decreased for large bar widths, but increased for small bar widths. All of these results are well fit by a simple stochastic model, which estimates the probabilities of having identical or different motion vectors within a

  20. Auditory motion affects visual biological motion processing.

    PubMed

    Brooks, A; van der Zwan, R; Billard, A; Petreska, B; Clarke, S; Blanke, O

    2007-02-01

    The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of

  1. Motion parallax thresholds for unambiguous depth perception.

    PubMed

    Holmin, Jessica; Nawrot, Mark

    2015-10-01

    The perception of unambiguous depth from motion parallax arises from the neural integration of retinal image motion and extra-retinal eye movement signals. It is only recently that these parameters have been articulated in the form of the motion/pursuit ratio. In the current study, we explored the lower limits of the parameter space in which observers could accurately perform near/far relative depth-sign discriminations for a translating random-dot stimulus. Stationary observers pursued a translating random dot stimulus containing relative image motion. Their task was to indicate the location of the peak in an approximate square-wave stimulus. We measured thresholds for depth from motion parallax, quantified as motion/pursuit ratios, as well as lower motion thresholds and pursuit accuracy. Depth thresholds were relatively stable at pursuit velocities 5-20 deg/s, and increased at lower and higher velocities. The pattern of results indicates that minimum motion/pursuit ratios are limited by motion and pursuit signals, both independently and in combination with each other. At low and high pursuit velocities, depth thresholds were limited by inaccurate pursuit signals. At moderate pursuit velocities, depth thresholds were limited by motion signals.

  2. The feasibility of head motion tracking in helical CT: A step toward motion correction

    SciTech Connect

    Kim, Jung-Ha; Nuyts, Johan; Kuncic, Zdenka; Fulton, Roger

    2013-04-15

    Purpose: To establish a practical and accurate motion tracking method for the development of rigid motion correction methods in helical x-ray computed tomography (CT). Methods: A commercially available optical motion tracking system provided 6 degrees of freedom pose measurements at 60 Hz. A 4 Multiplication-Sign 4 calibration matrix was determined to convert raw pose data acquired in tracker coordinates to a fixed CT coordinate system with origin at the isocenter of the scanner. Two calibration methods, absolute orientation (AO), and a new method based on image registration (IR), were compared by means of landmark analysis and correlation coefficient in phantom images coregistered using the derived motion transformations. Results: Transformations calculated using the IR-derived calibration matrix were found to be more accurate, with positional errors less than 0.5 mm (mean RMS), and highly correlated image voxel intensities. The AO-derived calibration matrix yielded larger mean RMS positional errors ( Asymptotically-Equal-To 1.0 mm), and poorer correlation coefficients. Conclusions: The authors have demonstrated the feasibility of accurate motion tracking for retrospective motion correction in helical CT. Their new IR-based calibration method based on image registration and function minimization was simpler to perform and delivered more accurate calibration matrices. This technique is a useful tool for future work on rigid motion correction in helical CT and potentially also other imaging modalities.

  3. Early Improper Motion Detection in Golf Swings Using Wearable Motion Sensors: The First Approach

    PubMed Central

    Stančin, Sara; Tomažič, Sašo

    2013-01-01

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement. PMID:23752563

  4. Early improper motion detection in golf swings using wearable motion sensors: the first approach.

    PubMed

    Stančin, Sara; Tomažič, Sašo

    2013-01-01

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement. PMID:23752563

  5. Analysis And Display Of Human Wrist Motion

    NASA Astrophysics Data System (ADS)

    Peterson, Steven W.; Erdman, Arthur G.

    1983-07-01

    The three-dimensional kinematic analysis of the wrist is a complex problem. A method utilizing high speed stereocinematography has been developed to accurately measure the motion of the bones in the wrist. Both relative and absolute motions can be obtained using this system. The system has been shown to accurately locate a point to +/- 0.003 inch. The three-dimensional motion characteristics of the capitate in radial ulnar deviation were analyzed using this system, and the results are presented. A computer graphics program, developed by the authors, is used to display the motion characteristics of the carpal bones. In this program, the bone surface, defined using a special stereopointer and bicubic surface fitting algorithms, is displayed along with the kinematic data.

  6. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  7. a Covariant Description of the Zitterbewegung of the Electron in Proper Time

    NASA Astrophysics Data System (ADS)

    Thacker, William Dickey

    A proper time Heisenberg picture is developed and applied to the study of the internal geometry of the Dirac electron. We solve the Heisenberg equations for the position operator of the free electron and find that the solution separates into a center of mass moving with constant velocity plus an oscillatory Zitterbewegung around the center of mass. The internal position and momentum of the Zitterbewegung generate the algebra of so(3,2), which includes an intrinsic spin tensor that induces rotations of the internal space and the (Lorentz scalar) Hamiltonian which, besides generating translations in proper time, acts as the parity operator on the internal space. We generalize the Zitterbewegung to a larger system, with the symmetry group SO(4,2), by including scalar and axial -vector dynamical variables. We also investigate the influence of external electromagnetic fields on the Zitterbewegung by solving Heisenberg equations in the special case that the electric and magnetic fields are constant in space -time, and comparing with the motion of a spinless relativistic particle in the same fields. When the external fields are sufficiently weak, we are able to separate the internal and center of mass motions of the electron.

  8. Proper use of skin tests with food extracts in diagnosis of hypersensitivity to food in children.

    PubMed

    Bock, S A; Buckley, J; Holst, A; May, C D

    1977-07-01

    This study was undertaken to determine the proper use of skin tests with food extracts in diagnosis of hypersensitivity to food in children. Cutaneous reactions evoked by graded amounts of food extracts were compared with results of double-blind food challenge and in vitro release of histamine from leucocytes. A 3 mm or greater weal reaction in skin tests by puncture technique using food extracts of 1:20 w/v concentration was found to indicate the degree of hypersensitivity likely to be associated with clinically significant hypersensitivity reactions to food. Proper use of this simple technique will facilitate accurate diagnosis of food hypersensitivity in children by identifying the group among whom all positive reactions to food challenges will be found. Nevertheless, double-blind food challenge is essential to establish a diagnosis of symptomatic hypersensitivity to food.

  9. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  10. 49 CFR 109.11 - Assistance of properly qualified personnel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS AND OIL TRANSPORTATION... conducted under this part if the agent is not properly qualified to perform a function that is essential...

  11. 49 CFR 109.11 - Assistance of properly qualified personnel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS AND OIL TRANSPORTATION... this part if the agent is not properly qualified to perform a function that is essential to the...

  12. 49 CFR 109.11 - Assistance of properly qualified personnel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS AND OIL TRANSPORTATION... this part if the agent is not properly qualified to perform a function that is essential to the...

  13. Proper Use of Audio-Visual Aids: Essential for Educators.

    ERIC Educational Resources Information Center

    Dejardin, Conrad

    1989-01-01

    Criticizes educators as the worst users of audio-visual aids and among the worst public speakers. Offers guidelines for the proper use of an overhead projector and the development of transparencies. (DMM)

  14. 15. INSIDE THEATER PROPER. GROUND FLOOR, UNDER BALCONY, AT REAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INSIDE THEATER PROPER. GROUND FLOOR, UNDER BALCONY, AT REAR OF SEATING AREA (SOUTH END) LOOKING EAST. VIEW OF DECORATIVE CEILING COVE. - Granada Theatre, 6425-6441 North Sheridan Road, Chicago, Cook County, IL

  15. A properly adjusted forage harvester can save time and money

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A properly adjusted forage harvester can save fuel and increase the realizable milk per ton of your silage. This article details the adjustments necessary to minimize energy while maximizing productivity and forage quality....

  16. The Proper Name as Starting Point for Basic Reading Skills

    ERIC Educational Resources Information Center

    Both-de Vries, Anna C.; Bus, Adriana G.

    2010-01-01

    Does alphabetic-phonetic writing start with the proper name and how does the name affect reading and writing skills? Sixty 4- to 5 1/2-year-old children from middle SES families with Dutch as their first language wrote their proper name and named letters. For each child we created unique sets of words with and without the child's first letter of…

  17. Remarks on Existence of Proper Action for Reducible Gauge Theories

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Bering, Klaus

    In the field-antifield formalism, we review existence and uniqueness proofs for the proper action in the reducible case. We give two new existence proofs based on two resolution degrees called "reduced antifield number" and "shifted antifield number," respectively. In particular, we show that for every choice of gauge generators and their higher stage counterparts, there exists a proper action that implements them at the quadratic order in the auxiliary variables.

  18. Augmented proper orthogonal decompositional for problems with moving discontinuities

    SciTech Connect

    Brenner, T.; Fontenot, R.; Cizmas, P.; O'Brien, T.; Breault, R.

    2010-01-01

    A method is proposed to augment the proper orthogonaldecomposition basis functionswith discontinuitymodes to better capture moving discontinuities in reduced-order models. Moving discontinuities can be shocks in unsteady gas flows or bubbles in multiphase flow. The method is shown to work for a simple test problem using the first-order wave equation. A method for detecting discontinuities numerically is developed using mathematical morphology. This method is shown to properly identify the edges of bubbles in multiphase flow.

  19. Foundations for proper-time relativistic quantum theory

    NASA Astrophysics Data System (ADS)

    Gill, Tepper L.; Morris, Trey; Kurtz, Stewart K.

    2015-05-01

    This paper is a progress report on the foundations for the canonical proper-time approach to relativistic quantum theory. We first review the the standard square-root equation of relativistic quantum theory, followed by a review of the Dirac equation, providing new insights into the physical properties of both. We then introduce the canonical proper-time theory. For completeness, we give a brief outline of the canonical proper-time approach to electrodynamics and mechanics, and then introduce the canonical proper-time approach to relativistic quantum theory. This theory leads to three new relativistic wave equations. In each case, the canonical generator of proper-time translations is strictly positive definite, so that it represents a particle. We show that the canonical proper-time extension of the Dirac equation for Hydrogen gives results that are consistently closer to the experimental data, when compared to the Dirac equation. However, these results are not sufficient to account for either the Lamb shift or the anomalous magnetic moment.

  20. A Programmable System for Motion Control

    NASA Technical Reports Server (NTRS)

    Nowlin, Brent C.

    2003-01-01

    The need for improved flow measurements in the flow path of aeronautics testing facilities has led the NASA Glenn Research Center to develop a new motion control system. The new system is programmable, offering a flexibility unheard of in previous systems. The motion control system is PLC-based, which leads to highly accurate positioning ability, as well as reliability. The user interface is a software-based HMI package, which also adds flexibility to the overall system. The system also has the ability to create and execute motion profiles. This paper discusses the system's operation, control implementation, and experiences.

  1. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  2. Unconscious local motion alters global image speed.

    PubMed

    Khuu, Sieu K; Chung, Charles Y L; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed.

  3. Unconscious Local Motion Alters Global Image Speed

    PubMed Central

    Khuu, Sieu K.; Chung, Charles Y. L.; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed. PMID:25503603

  4. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy

    SciTech Connect

    Petasecca, M. Newall, M. K.; Aldosari, A. H.; Fuduli, I.; Espinoza, A. A.; Porumb, C. S.; Guatelli, S.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B.; Booth, J. T.; Colvill, E.; Duncan, M.; Cammarano, D.; Carolan, M.; Oborn, B.; Perevertaylo, V.; Keall, P. J.

    2015-06-15

    Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion

  5. The importance of a proper selection area to be biopsied in nodular leukoplakia: a case report

    PubMed Central

    Santos, Paulo Sérgio da Silva; Del Neri, Nathalia Bigelli; Gustavo de Lima, Heliton; Lara, Vanessa Soares

    2014-01-01

    Nodular leukoplakia is a non-homogeneous type of oral leukoplakia presenting a white surface with verrucous, nodular, ulcerated or erythematous features with a greater risk of malignant transformation when compared to the homogeneous type. Common sites of involvement include lip commissures, buccal mucosa and soft palate. It is often associated with epithelial dysplasia or carcinoma and requires detailed microscopic assessment and regular follow-up. The importance of a proper selection of the area to be biopsied and the close teamwork between a dentist and oral pathologist is the basis of providing an accurate final diagnosis.

  6. Helicopter Flight Simulation Motion Platform Requirements

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery Allyn

    1999-01-01

    To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  7. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages. PMID:8788799

  8. Proper elements and stability of the Trojan asteroids.

    NASA Astrophysics Data System (ADS)

    Burger, C.; Pilat-Lohinger, E.; Dvorak, R.; Christaki, A.

    We now know 413 Trojan asteroids which are moving close to the Lagrangian equilibrium points L4 (246) and L5 (167) of Jupiter. The orbits of all these asteroids were integrated numerically for 10 million years in the dynamical model of the outer planetary system (Jupiter, Saturn, Uranus and Neptune). The proper elements were derived numerically for these asteroids and compared to other available studies (e.g. Bien & Schubart, Milani). We then computed for the whole integration time the RMS of the elements semi-major axes, eccentricities and inclinations. The 3-dimensional graphs (RMS versus proper inclination and proper eccentricities) show the special location of the asteroids with positive Lyapunov exponents.

  9. A comparison between families obtained from different proper elements

    NASA Technical Reports Server (NTRS)

    Zappala, Vincenzo; Cellino, Alberto; Farinella, Paolo

    1992-01-01

    Using the hierarchical method of family identification developed by Zappala et al., the results coming from the data set of proper elements computed by Williams (about 2100 numbered + about 1200 PLS 2 asteroids) and by Milani and Knezevic (5.7 version, about 4200 asteroids) are compared. Apart from some expected discrepancies due to the different data sets and/or low accuracy of proper elements computed in peculiar dynamical zones, a good agreement was found in several cases. It follows that these high reliability families represent a sample which can be considered independent on the methods used for their proper elements computation. Therefore, they should be considered as the best candidates for detailed physical studies.

  10. SU-E-T-373: A Motorized Stage for Fast and Accurate QA of Machine Isocenter

    SciTech Connect

    Moore, J; Velarde, E; Wong, J

    2014-06-01

    Purpose: Precision delivery of radiation dose relies on accurate knowledge of the machine isocenter under a variety of machine motions. This is typically determined by performing a Winston-Lutz test consisting of imaging a known object at multiple gantry/collimator/table angles and ensuring that the maximum offset is within specified tolerance. The first step in the Winston-Lutz test is careful placement of a ball bearing at the machine isocenter as determined by repeated imaging and shifting until accurate placement has been determined. Conventionally this is performed by adjusting a stage manually using vernier scales which carry the limitation that each adjustment must be done inside the treatment room with the risks of inaccurate adjustment of the scale and physical bumping of the table. It is proposed to use a motorized system controlled outside of the room to improve the required time and accuracy of these tests. Methods: The three dimensional vernier scales are replaced by three motors with accuracy of 1 micron and a range of 25.4mm connected via USB to a computer in the control room. Software is designed which automatically detects the motors and assigns them to proper axes and allows for small shifts to be entered and performed. Input values match calculated offsets in magnitude and sign to reduce conversion errors. Speed of setup, number of iterations to setup, and accuracy of final placement are assessed. Results: Automatic BB placement required 2.25 iterations and 13 minutes on average while manual placement required 3.76 iterations and 37.5 minutes. The average final XYZ offsets is 0.02cm, 0.01cm, 0.04cm for automatic setup and 0.04cm, 0.02cm, 0.04cm for manual setup. Conclusion: Automatic placement decreased time and repeat iterations for setup while improving placement accuracy. Automatic placement greatly reduces the time required to perform QA.

  11. Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach.

    PubMed

    Liu, Wenyang; Sawant, Amit; Ruan, Dan

    2016-07-01

    The development of high-dimensional imaging systems in image-guided radiotherapy provides important pathways to the ultimate goal of real-time full volumetric motion monitoring. Effective motion management during radiation treatment usually requires prediction to account for system latency and extra signal/image processing time. It is challenging to predict high-dimensional respiratory motion due to the complexity of the motion pattern combined with the curse of dimensionality. Linear dimension reduction methods such as PCA have been used to construct a linear subspace from the high-dimensional data, followed by efficient predictions on the lower-dimensional subspace. In this study, we extend such rationale to a more general manifold and propose a framework for high-dimensional motion prediction with manifold learning, which allows one to learn more descriptive features compared to linear methods with comparable dimensions. Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where accurate and efficient prediction can be performed. A fixed-point iterative pre-image estimation method is used to recover the predicted value in the original state space. We evaluated and compared the proposed method with a PCA-based approach on level-set surfaces reconstructed from point clouds captured by a 3D photogrammetry system. The prediction accuracy was evaluated in terms of root-mean-squared-error. Our proposed method achieved consistent higher prediction accuracy (sub-millimeter) for both 200 ms and 600 ms lookahead lengths compared to the PCA-based approach, and the performance gain was statistically significant.

  12. Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach.

    PubMed

    Liu, Wenyang; Sawant, Amit; Ruan, Dan

    2016-07-01

    The development of high-dimensional imaging systems in image-guided radiotherapy provides important pathways to the ultimate goal of real-time full volumetric motion monitoring. Effective motion management during radiation treatment usually requires prediction to account for system latency and extra signal/image processing time. It is challenging to predict high-dimensional respiratory motion due to the complexity of the motion pattern combined with the curse of dimensionality. Linear dimension reduction methods such as PCA have been used to construct a linear subspace from the high-dimensional data, followed by efficient predictions on the lower-dimensional subspace. In this study, we extend such rationale to a more general manifold and propose a framework for high-dimensional motion prediction with manifold learning, which allows one to learn more descriptive features compared to linear methods with comparable dimensions. Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where accurate and efficient prediction can be performed. A fixed-point iterative pre-image estimation method is used to recover the predicted value in the original state space. We evaluated and compared the proposed method with a PCA-based approach on level-set surfaces reconstructed from point clouds captured by a 3D photogrammetry system. The prediction accuracy was evaluated in terms of root-mean-squared-error. Our proposed method achieved consistent higher prediction accuracy (sub-millimeter) for both 200 ms and 600 ms lookahead lengths compared to the PCA-based approach, and the performance gain was statistically significant. PMID:27299958

  13. Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach

    NASA Astrophysics Data System (ADS)

    Liu, Wenyang; Sawant, Amit; Ruan, Dan

    2016-07-01

    The development of high-dimensional imaging systems in image-guided radiotherapy provides important pathways to the ultimate goal of real-time full volumetric motion monitoring. Effective motion management during radiation treatment usually requires prediction to account for system latency and extra signal/image processing time. It is challenging to predict high-dimensional respiratory motion due to the complexity of the motion pattern combined with the curse of dimensionality. Linear dimension reduction methods such as PCA have been used to construct a linear subspace from the high-dimensional data, followed by efficient predictions on the lower-dimensional subspace. In this study, we extend such rationale to a more general manifold and propose a framework for high-dimensional motion prediction with manifold learning, which allows one to learn more descriptive features compared to linear methods with comparable dimensions. Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where accurate and efficient prediction can be performed. A fixed-point iterative pre-image estimation method is used to recover the predicted value in the original state space. We evaluated and compared the proposed method with a PCA-based approach on level-set surfaces reconstructed from point clouds captured by a 3D photogrammetry system. The prediction accuracy was evaluated in terms of root-mean-squared-error. Our proposed method achieved consistent higher prediction accuracy (sub-millimeter) for both 200 ms and 600 ms lookahead lengths compared to the PCA-based approach, and the performance gain was statistically significant.

  14. A system for learning statistical motion patterns.

    PubMed

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction. PMID:16929731

  15. Comparison of Motion Blur Measurement Methods

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    2008-01-01

    Motion blur is a significant display property for which accurate, valid measurement methods are needed. Recent measurements of a set of eight displays by a set of six measurement devices provide an opportunity to evaluate techniques of measurement and of the analysis of those measurements.

  16. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  17. [Maintaining the proper distance for nurses working in the home].

    PubMed

    Estève, Sonia

    2016-01-01

    Health professionals must be able to respond to many different situations which require technical knowledge and self-control. Particularly when working in the patient's home, nurses must know how to maintain a proper distance to protect themselves from burnout. In this respect, the practice analysis constitutes an adapted support tool. PMID:27393988

  18. Helping Students to Find the Proper Connective: Why the Difficulty.

    ERIC Educational Resources Information Center

    Ching, Marvin K. L.

    Teachers are often baffled by the inability of a number of basic writing students to use the proper connective to show relationship between sentences or phrases for coherence. Most frustrating is the teacher's inadequacy in giving definitions or explanations beyond the student's textbook descriptions of the connectives. However, a cursory…

  19. The Semantics of Proper Names and Other Bare Nominals

    ERIC Educational Resources Information Center

    Izumi, Yu

    2012-01-01

    This research proposes a unified approach to the semantics of the so-called bare nominals, which include proper names (e.g., "Mary"), mass and plural terms (e.g., "water," "cats"), and articleless noun phrases in Japanese. I argue that bare nominals themselves are monadic predicates applicable to more than one…

  20. The Proper Place of Theory in Educational History?

    ERIC Educational Resources Information Center

    Urban, Wayne J.

    2011-01-01

    In this article, the author talks about the proper place of theory in educational history and shares his comments on the essays by Eileen Tamura, Carolyn Eick, and Roland Coloma. Eileen Tamura's positing of most educational historians as practitioners of narrative history is surely on the mark. She invites historians of education to investigate…

  1. 32 CFR 536.26 - Identification of a proper claim.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standard Form (SF) 95 (Claim for Damage, Injury, or Death). When the claim is not presented on an SF 95... 32 National Defense 3 2014-07-01 2014-07-01 false Identification of a proper claim. 536.26 Section 536.26 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND...

  2. 32 CFR 750.5 - Claims: Proper claimants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... General Provisions for Claims § 750.5 Claims: Proper claimants. (a) Damage to property cases. A claim for... each claim individually is within the Tort Claims Unit Norfolk's adjudicating authority limits, they may be processed by the Tort Claims Unit, even if the aggregate of such claims exceeds the Tort......

  3. 32 CFR 750.5 - Claims: Proper claimants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... General Provisions for Claims § 750.5 Claims: Proper claimants. (a) Damage to property cases. A claim for... each claim individually is within the Tort Claims Unit Norfolk's adjudicating authority limits, they may be processed by the Tort Claims Unit, even if the aggregate of such claims exceeds the Tort......

  4. 32 CFR 750.5 - Claims: Proper claimants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... General Provisions for Claims § 750.5 Claims: Proper claimants. (a) Damage to property cases. A claim for... each claim individually is within the Tort Claims Unit Norfolk's adjudicating authority limits, they may be processed by the Tort Claims Unit, even if the aggregate of such claims exceeds the Tort......

  5. Developing proper mealtime behaviors of the institutionalized retarded1

    PubMed Central

    O'Brien, F.; Azrin, N. H.

    1972-01-01

    The institutionalized mentally retarded display a variety of unsanitary, disruptive, and improper table manners. A program was developed that included (1) acquisition-training of a high standard of proper table manners and (2) maintenance procedures to provide continued motivation to maintain proper mealtime behaviors and decrease improper skills. Twelve retardates received acquisition training, individually, by a combination of verbal instruction, imitation, and manual guidance. The students then ate in their group dining arrangement where the staff supervisor provided continuing approval for proper manners and verbal correction and timeout for improper manners. The results were: (1) the trained retardates showed significant improvement, whereas those untrained did not; (2) the trained retardates ate as well in the institution as non-retarded customers did in a public restaurant; (3) proper eating was maintained in the group dining setting; (4) timeout was rarely needed; (5) the program was easily administered by regular staff in a regular dining setting. The rapidity, feasibility, and effectiveness of the program suggests the program as a solution to improper mealtime behaviors by the institutionalized mentally retarded. PMID:16795363

  6. Visualizing and Quantifying Oceanic Motion.

    PubMed

    Rossby, T

    2016-01-01

    Here I review the use of two highly complementary acoustical technologies for measuring currents in the ocean: acoustically tracked neutrally buoyant floats and vessel-mounted acoustic Doppler current profilers (ADCPs). The beauty of floats lies in their ability to efficiently and accurately visualize fluid motion in fronts and vortices and the dispersion caused by mesoscale eddy processes. Floats complement classical hydrography by articulating mechanisms and pathways by which waters spread out from their source region. Vessel-mounted ADCPs can profile the water column at O(1 km) horizontal resolution to depths greater than 1,000 m. These vessel-based scans capture in detail the cross-stream structure of fronts and eddies as well as the impact of bathymetry on currents. Sustained sampling along selected routes builds up valuable databases both for statistical studies of the submesoscale velocity field and for accurate estimates of fluid transport, as well as how these vary over time. PMID:26253271

  7. Visualizing and Quantifying Oceanic Motion

    NASA Astrophysics Data System (ADS)

    Rossby, T.

    2016-01-01

    Here I review the use of two highly complementary acoustical technologies for measuring currents in the ocean: acoustically tracked neutrally buoyant floats and vessel-mounted acoustic Doppler current profilers (ADCPs). The beauty of floats lies in their ability to efficiently and accurately visualize fluid motion in fronts and vortices and the dispersion caused by mesoscale eddy processes. Floats complement classical hydrography by articulating mechanisms and pathways by which waters spread out from their source region. Vessel-mounted ADCPs can profile the water column at O(1 km) horizontal resolution to depths greater than 1,000 m. These vessel-based scans capture in detail the cross-stream structure of fronts and eddies as well as the impact of bathymetry on currents. Sustained sampling along selected routes builds up valuable databases both for statistical studies of the submesoscale velocity field and for accurate estimates of fluid transport, as well as how these vary over time.

  8. SimPACE: generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: a new, highly effective slicewise motion correction.

    PubMed

    Beall, Erik B; Lowe, Mark J

    2014-11-01

    Head motion in functional MRI and resting-state MRI is a major problem. Existing methods do not robustly reflect the true level of motion artifact for in vivo fMRI data. The primary issue is that current methods assume that motion is synchronized to the volume acquisition and thus ignore intra-volume motion. This manuscript covers three sections in the use of gold-standard motion-corrupted data to pursue an intra-volume motion correction. First, we present a way to get motion corrupted data with accurately known motion at the slice acquisition level. This technique simulates important data acquisition-related motion artifacts while acquiring real BOLD MRI data. It is based on a novel motion-injection pulse sequence that introduces known motion independently for every slice: Simulated Prospective Acquisition CorrEction (SimPACE). Secondly, with data acquired using SimPACE, we evaluate several motion correction and characterization techniques, including several commonly used BOLD signal- and motion parameter-based metrics. Finally, we introduce and evaluate a novel, slice-based motion correction technique. Our novel method, SLice-Oriented MOtion COrrection (SLOMOCO) performs better than the volumetric methods and, moreover, accurately detects the motion of independent slices, in this case equivalent to the known injected motion. We demonstrate that SLOMOCO can model and correct for nearly all effects of motion in BOLD data. Also, none of the commonly used motion metrics was observed to robustly identify motion corrupted events, especially in the most realistic scenario of sudden head movement. For some popular metrics, performance was poor even when using the ideal known slice motion instead of volumetric parameters. This has negative implications for methods relying on these metrics, such as recently proposed motion correction methods such as data censoring and global signal regression.

  9. Essay on Gyroscopic Motions.

    ERIC Educational Resources Information Center

    Tea, Peter L., Jr.

    1988-01-01

    Explains gyroscopic motions to college freshman or high school seniors who have learned about centripetal acceleration and the transformations of a couple. Contains several figures showing the direction of forces and motion. (YP)

  10. moco: Fast Motion Correction for Calcium Imaging.

    PubMed

    Dubbs, Alexander; Guevara, James; Yuste, Rafael

    2016-01-01

    Motion correction is the first step in a pipeline of algorithms to analyze calcium imaging videos and extract biologically relevant information, for example the network structure of the neurons therein. Fast motion correction is especially critical for closed-loop activity triggered stimulation experiments, where accurate detection and targeting of specific cells in necessary. We introduce a novel motion-correction algorithm which uses a Fourier-transform approach, and a combination of judicious downsampling and the accelerated computation of many L 2 norms using dynamic programming and two-dimensional, fft-accelerated convolutions, to enhance its efficiency. Its accuracy is comparable to that of established community-used algorithms, and it is more stable to large translational motions. It is programmed in Java and is compatible with ImageJ. PMID:26909035

  11. moco: Fast Motion Correction for Calcium Imaging

    PubMed Central

    Dubbs, Alexander; Guevara, James; Yuste, Rafael

    2016-01-01

    Motion correction is the first step in a pipeline of algorithms to analyze calcium imaging videos and extract biologically relevant information, for example the network structure of the neurons therein. Fast motion correction is especially critical for closed-loop activity triggered stimulation experiments, where accurate detection and targeting of specific cells in necessary. We introduce a novel motion-correction algorithm which uses a Fourier-transform approach, and a combination of judicious downsampling and the accelerated computation of many L2 norms using dynamic programming and two-dimensional, fft-accelerated convolutions, to enhance its efficiency. Its accuracy is comparable to that of established community-used algorithms, and it is more stable to large translational motions. It is programmed in Java and is compatible with ImageJ. PMID:26909035

  12. moco: Fast Motion Correction for Calcium Imaging.

    PubMed

    Dubbs, Alexander; Guevara, James; Yuste, Rafael

    2016-01-01

    Motion correction is the first step in a pipeline of algorithms to analyze calcium imaging videos and extract biologically relevant information, for example the network structure of the neurons therein. Fast motion correction is especially critical for closed-loop activity triggered stimulation experiments, where accurate detection and targeting of specific cells in necessary. We introduce a novel motion-correction algorithm which uses a Fourier-transform approach, and a combination of judicious downsampling and the accelerated computation of many L 2 norms using dynamic programming and two-dimensional, fft-accelerated convolutions, to enhance its efficiency. Its accuracy is comparable to that of established community-used algorithms, and it is more stable to large translational motions. It is programmed in Java and is compatible with ImageJ.

  13. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  14. SPLASH: Accurate OH maser positions

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew; Gomez, Jose F.; Jones, Paul; Cunningham, Maria; Green, James; Dawson, Joanne; Ellingsen, Simon; Breen, Shari; Imai, Hiroshi; Lowe, Vicki; Jones, Courtney

    2013-10-01

    The hydroxyl (OH) 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. In this proposal, we request ATCA time to follow up OH maser candidates. This will give us accurate (~10") positions of the masers, which can be compared to other maser positions from HOPS, MMB and MALT-45 and will provide full polarisation measurements towards a sample of OH masers that have not been observed in MAGMO.

  15. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  16. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  17. Proper definition and evolution of generalized transverse momentum dependent distributions

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Idilbi, Ahmad; Kanazawa, Koichi; Lorcé, Cédric; Metz, Andreas; Pasquini, Barbara; Schlegel, Marc

    2016-08-01

    We consider one of the most fundamental sets of hadronic matrix elements, namely the generalized transverse momentum dependent distributions (GTMDs), and argue that their existing definitions lack proper evolution properties. By exploiting the similarity of GTMDs with the much better understood transverse momentum distributions, we argue that the existing definitions of GTMDs have to include an additional dependence on soft gluon radiation in order to render them properly defined. With this, we manage to obtain the evolution kernel of all (un)polarized quark and gluon GTMDs, which turns out to be spin independent. As a byproduct, all large logarithms can be resummed up to next-to-next-to-leading-logarithmic accuracy with the currently known perturbative ingredients.

  18. proper versus improper mixtures: Toward a quaternionic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Masillo, F.; Scolarici, G.; Sozzo, S.

    2009-07-01

    The density operators obtained by taking partial traces represent improper mixtures of subsystems of a compound physical system because the coefficients in the convex sums expressing them never bear the ignorance interpretation. Assigning states to these subsystems is consequently problematic in standard quantum mechanics (subentity problem). In the semantic realism interpretation of quantum mechanics, it is instead proposed to consider improper mixtures true nonpure states conceptually distinct from proper mixtures. Based on this proposal, we show that proper and improper mixtures can be represented by different density operators in the quaternionic formulation of quantum mechanics and can hence be distinguished even from a mathematical standpoint. We provide a simple example related to the quantum theory of measurement.

  19. Public bioethics and public engagement: the politics of "proper talk".

    PubMed

    Moore, Alfred

    2010-03-01

    This article uses notions of "public talk" and "regulation as facilitation" to develop an account of public bioethics in the UK as a form of scientific governance, drawing on document analysis and expert interviews. First, this article will show the "ethical" problematization of scientific governance in the UK through the emergence of the Human Genetics Commission (HGC), Nuffield Council on Bioethics (NCB), and Human Fertilisation and Embryology Authority (HFEA). Second, it will argue that an "ethical" model has emerged alongside and partially displaced a "technical" model of expertise in scientific governance. The article will introduce the notion of "proper talk," a set of techniques for facilitating ethical debate, characterized by the active elicitation of public engagement and the inclusion of emotions and subjectivity. The article then questions whether the authority to categorize publics and identify "proper" ethical positions reintroduces problems of expertise in a new form.

  20. LCD motion blur: modeling, analysis, and algorithm.

    PubMed

    Chan, Stanley H; Nguyen, Truong Q

    2011-08-01

    Liquid crystal display (LCD) devices are well known for their slow responses due to the physical limitations of liquid crystals. Therefore, fast moving objects in a scene are often perceived as blurred. This effect is known as the LCD motion blur. In order to reduce LCD motion blur, an accurate LCD model and an efficient deblurring algorithm are needed. However, existing LCD motion blur models are insufficient to reflect the limitation of human-eye-tracking system. Also, the spatiotemporal equivalence in LCD motion blur models has not been proven directly in the discrete 2-D spatial domain, although it is widely used. There are three main contributions of this paper: modeling, analysis, and algorithm. First, a comprehensive LCD motion blur model is presented, in which human-eye-tracking limits are taken into consideration. Second, a complete analysis of spatiotemporal equivalence is provided and verified using real video sequences. Third, an LCD motion blur reduction algorithm is proposed. The proposed algorithm solves an l(1)-norm regularized least-squares minimization problem using a subgradient projection method. Numerical results show that the proposed algorithm gives higher peak SNR, lower temporal error, and lower spatial error than motion-compensated inverse filtering and Lucy-Richardson deconvolution algorithm, which are two state-of-the-art LCD deblurring algorithms. PMID:21292596

  1. Hessian and graviton propagator of the proper vertex

    NASA Astrophysics Data System (ADS)

    Chaharsough Shirazi, Atousa; Engle, Jonathan; Vilensky, Ilya

    2016-10-01

    The proper spin-foam vertex amplitude is obtained from the EPRL vertex by projecting out all but a single gravitational sector, in order to achieve correct semi-classical behavior. In this paper we calculate the gravitational two-point function predicted by the proper spin-foam vertex to lowest order in the vertex expansion. We find the same answer as in the EPRL case in the ‘continuum spectrum’ limit, so that the theory is consistent with the predictions of linearized gravity in the regime of small curvature. The method for calculating the two-point function is similar to that used in prior works: we cast it in terms of an action integral and use stationary phase methods. Thus, the calculation of the Hessian matrix plays a key role. Once the Hessian is calculated, it is used not only to calculate the two-point function, but also to calculate the coefficient appearing in the semi-classical limit of the proper vertex amplitude itself. This coefficient is the effective discrete ‘measure factor’ encoded in the spin-foam model. Through a non-trivial cancellation of different factors, we find that this coefficient is the same as the coefficient in front of the term in the asymptotics of the EPRL vertex corresponding to the selected gravitational sector.

  2. Limited-memory adaptive snapshot selection for proper orthogonal decomposition

    SciTech Connect

    Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill; Chand, Kyle

    2015-04-02

    Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory bounding the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.

  3. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    estimate of the age of the universe. In order to do this, you need an unambiguous, absolute distance to another galaxy. We are pleased that the NSF's VLBA has for the first time determined such a distance, and thus provided the calibration standard astronomers have always sought in their quest for accurate distances beyond the Milky Way," said Morris Aizenman, Executive Officer of the National Science Foundation's (NSF) Division of Astronomical Sciences. "For astronomers, this measurement is the golden meter stick in the glass case," Aizenman added. The international team of astronomers used the VLBA to measure directly the motion of gas orbiting what is generally agreed to be a supermassive black hole at the heart of NGC 4258. The orbiting gas forms a warped disk, nearly two light-years in diameter, surrounding the black hole. The gas in the disk includes water vapor, which, in parts of the disk, acts as a natural amplifier of microwave radio emission. The regions that amplify radio emission are called masers, and work in a manner similar to the way a laser amplifies light emission. Determining the distance to NGC 4258 required measuring motions of extremely small shifts in position of these masers as they rotate around the black hole. This is equivalent to measuring an angle one ten-thousandth the width of a human hair held at arm's length. "The VLBA is the only instrument in the world that could do this," said Moran. "This work is the culmination of a 20-year effort at the Harvard Smithsonian Center for Astrophysics to measure distances to cosmic masers," said Irwin Shapiro, Director of that institution. Collection of the data for the NGC 4258 project was begun in 1994 and was part of Herrnstein's Ph.D dissertation at Harvard University. Previous observations with the VLBA allowed the scientists to measure the speed at which the gas is orbiting the black hole, some 39 million times more massive than the Sun. They did this by observing the amount of change in the

  4. Multisensory Self-Motion Compensation During Object Trajectory Judgments

    PubMed Central

    Dokka, Kalpana; MacNeilage, Paul R.; DeAngelis, Gregory C.; Angelaki, Dora E.

    2015-01-01

    Judging object trajectory during self-motion is a fundamental ability for mobile organisms interacting with their environment. This fundamental ability requires the nervous system to compensate for the visual consequences of self-motion in order to make accurate judgments, but the mechanisms of this compensation are poorly understood. We comprehensively examined both the accuracy and precision of observers' ability to judge object trajectory in the world when self-motion was defined by vestibular, visual, or combined visual–vestibular cues. Without decision feedback, subjects demonstrated no compensation for self-motion that was defined solely by vestibular cues, partial compensation (47%) for visually defined self-motion, and significantly greater compensation (58%) during combined visual–vestibular self-motion. With decision feedback, subjects learned to accurately judge object trajectory in the world, and this generalized to novel self-motion speeds. Across conditions, greater compensation for self-motion was associated with decreased precision of object trajectory judgments, indicating that self-motion compensation comes at the cost of reduced discriminability. Our findings suggest that the brain can flexibly represent object trajectory relative to either the observer or the world, but a world-centered representation comes at the cost of decreased precision due to the inclusion of noisy self-motion signals. PMID:24062317

  5. Measures and Relative Motions of Some Mostly F. G. W. Struve Doubles

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.

    2012-04-01

    Measures of 59 pairs of double stars with long observational histories using "lucky imaging" techniques are reported. Relative motions of 59 pairs are investigated using histories of observation, scatter plots of relative motion, ordinary least-squares (OLS) and total proper motion analyses performed in "R," an open source programming language. A scatter plot of the coefficient of determinations derived from the OLS y|epoch and OLS x|epoch clearly separates common proper motion pairs from optical pairs and what are termed "long-period binary candidates." Differences in proper motion separate optical pairs from long-term binary candidates. An Appendix is provided that details how to use known rectilinear pairs as calibration pairs for the program REDUC.

  6. Space station rotational equations of motion

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Carroll, S. N.

    1985-01-01

    Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station.

  7. Taxonomic and thematic organisation of proper name conceptual knowledge.

    PubMed

    Crutch, Sebastian J; Warrington, Elizabeth K

    2011-01-01

    We report the investigation of the organisation of proper names in two aphasic patients (NBC and FBI). The performance of both patients on spoken word to written word matching tasks was inconsistent, affected by presentation rate and semantic relatedness of the competing responses, all hallmarks of a refractory semantic access dysphasia. In a series of experiments we explored the semantic relatedness effects within their proper name vocabulary, including brand names and person names. First we demonstrated the interaction between very fine grain organisation and personal experience, with one patient with a special interest in the cinema demonstrating higher error rates when identifying the names of actors working in a similar film genre (e.g., action movies: Arnold Schwarzenegger, Bruce Willis, Sylvester Stallone, Mel Gibson) than those working in different genres (e.g., Arnold Schwarzenegger, Gregory Peck, Robin Williams, Gene Kelly). Second we compared directly two potential principles of semantic organisation - taxonomic and thematic. Furthermore we considered these principles of organisation in the context of the individuals' personal knowledge base. We selected topics matching the interests and experience of each patient, namely cinema and literature (NBC) and naval history (FBI). The stimulus items were arranged in taxonomic arrays (e.g., Jane Austen, Emily Bronte, Agatha Christie), thematic arrays (e.g., Jane Austen, Pride and Prejudice, Mr Darcy), and unrelated arrays (e.g., Jane Austen, Wuthering Heights, Hercule Poirot). We documented that different patterns of taxonomic and thematic organisation were constrained by whether the individual has limited knowledge, moderate knowledge or detailed knowledge of a particular vocabulary. It is suggested that moderate proper name knowledge is primarily organised by taxonomy whereas extensive experience results in a more detailed knowledge base in which theme is a powerful organising principle.

  8. Adaptive prediction of respiratory motion for motion compensation radiotherapy

    NASA Astrophysics Data System (ADS)

    Ren, Qing; Nishioka, Seiko; Shirato, Hiroki; Berbeco, Ross I.

    2007-11-01

    One potential application of image-guided radiotherapy is to track the target motion in real time, then deliver adaptive treatment to a dynamic target by dMLC tracking or respiratory gating. However, the existence of a finite time delay (or a system latency) between the image acquisition and the response of the treatment system to a change in tumour position implies that some kind of predictive ability should be included in the real-time dynamic target treatment. If diagnostic x-ray imaging is used for the tracking, the dose given over a whole image-guided radiotherapy course can be significant. Therefore, the x-ray beam used for motion tracking should be triggered at a relatively slow pulse frequency, and an interpolation between predictions can be used to provide a fast tracking rate. This study evaluates the performance of an autoregressive-moving average (ARMA) model based prediction algorithm for reducing tumour localization error due to system latency and slow imaging rate. For this study, we use 3D motion data from ten lung tumour cases where the peak-to-peak motion is greater than 8 mm. Some strongly irregular traces with variation in amplitude and phase were included. To evaluate the prediction accuracy, the standard deviations between predicted and actual motion position are computed for three system latencies (0.1, 0.2 and 0.4 s) at several imaging rates (1.25-10 Hz), and compared against the situation of no prediction. The simulation results indicate that the implementation of the prediction algorithm in real-time target tracking can improve the localization precision for all latencies and imaging rates evaluated. From a common initial setting of model parameters, the predictor can quickly provide an accurate prediction of the position after collecting 20 initial data points. In this retrospective analysis, we calculate the standard deviation of the predicted position from the twentieth position data to the end of the session at 0.1 s interval. For both

  9. Preventing medication errors with nimodipine by compounding proper dosage forms.

    PubMed

    McElhiney, Linda F

    2013-01-01

    Pharmacists can play an active role in preventing tragic medication errors by using United States Pharmacopeia standards, as well as other compounding guidelines, by using due diligence, and by following written standard operating procedures. Nimodipine is shown within this article as an example of the importance of proper dosing of a drug because, since the approval of nimodipine capsules in 1988, the U.S. Food and Drug Administration has identified 31 cases of medication errors associated with its use. Pharmacists can compound nimodipine oral suspension and prepare the doses in oral syringes for the nursing and medical staff.

  10. [Positioning of registered clinical laboratories in proper health care].

    PubMed

    Nakatani, Takeshi

    2003-09-01

    "Proper Health Care" is deemed to mean "Patient-conscious Health Care". On this basis, we have four tasks to achieve. They are: improvement in testing precision (quality control), heightened sense of medical ethics, satisfying the needs of medical institutions to outsource laboratory tests, and increased contribution to community health care. We are certainly aware that these tasks cannot be achieved overnight, however, we are determined to do our very best to reach our goal through day-to-day efforts in providing our customers with consistent and reliable services.

  11. Performance Characterization of Watson Ahumada Motion Detector Using Random Dot Rotary Motion Stimuli

    PubMed Central

    Jain, Siddharth

    2009-01-01

    The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display. Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d) cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs. When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode≈2 s). These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon. PMID:19225571

  12. Accurate Runout Measurement for HDD Spinning Motors and Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Bi, Chao; Lin, Song

    As hard disk drive (HDD) areal density increases, its track width becomes smaller and smaller and so is non-repeatable runout. HDD industry needs more accurate and better resolution runout measurements of spinning spindle motors and media platters in both axial and radial directions. This paper introduces a new system how to precisely measure the runout of HDD spinning disks and motors through synchronously acquiring the rotor position signal and the displacements in axial or radial directions. In order to minimize the synchronizing error between the rotor position and the displacement signal, a high resolution counter is adopted instead of the conventional phase-lock loop method. With Laser Doppler Vibrometer and proper signal processing, the proposed runout system can precisely measure the runout of the HDD spinning disks and motors with 1 nm resolution and 0.2% accuracy with a proper sampling rate. It can provide an effective and accurate means to measure the runout of high areal density HDDs, in particular the next generation HDDs, such as, pattern media HDDs and HAMR HDDs.

  13. Magnetic Photon Splitting: Computations of Proper-Time Rates and Spectra

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Harding, Alice K.

    1997-06-01

    The splitting of photons γ --> γγ in the presence of an intense magnetic field has recently found astrophysical applications in polar cap models of γ-ray pulsars and in ``magnetar'' (i.e., neutron stars with extremely high fields) scenarios for soft gamma repeaters. Numerical computation of the polarization-dependent rates of this third-order QED process for arbitrary field strengths and energies below pair creation threshold is difficult; thus, early analyses focused on analytic developments and simpler asymptotic forms. The recent astrophysical interest spurred the use of the S-matrix approach by Mentzel, Berg, and Wunner to determine splitting rates. In this paper, we present numerical computations of a full proper-time expression for the rate of splitting that was obtained by Stoneham and is exact up to the pair creation threshold. While the numerical results derived here are in accord with the earlier asymptotic forms that are due to Adler, our computed rates still differ by as much as a factor of 3 from the S-matrix reevaluation of Wilke and Wunner, reflecting the extreme difficulty of generating accurate S-matrix numerics for fields below about 4.4 × 1013 G. We find that our proper-time rates appear to be very accurate and exceed Adler's asymptotic specializations significantly only for photon energies just below pair threshold and for supercritical fields, but always by less than a factor of ~2.6. We also provide a useful analytic series expansion for the scattering amplitude valid at low energies.

  14. Maintaining the proper connection between the centrioles and the pericentriolar matrix requires Drosophila centrosomin.

    PubMed

    Lucas, Eliana P; Raff, Jordan W

    2007-08-27

    Centrosomes consist of two centrioles surrounded by an amorphous pericentriolar matrix (PCM), but it is unknown how centrioles and PCM are connected. We show that the centrioles in Drosophila embryos that lack the centrosomal protein Centrosomin (Cnn) can recruit PCM components but cannot maintain a proper attachment to the PCM. As a result, the centrioles "rocket" around in the embryo and often lose their connection to the nucleus in interphase and to the spindle poles in mitosis. This leads to severe mitotic defects in embryos and to errors in centriole segregation in somatic cells. The Cnn-related protein CDK5RAP2 is linked to microcephaly in humans, but cnn mutant brains are of normal size, and we observe only subtle defects in the asymmetric divisions of mutant neuroblasts. We conclude that Cnn maintains the proper connection between the centrioles and the PCM; this connection is required for accurate centriole segregation in somatic cells but is not essential for the asymmetric division of neuroblasts. PMID:17709428

  15. Time-resolved proper orthogonal decomposition of liquid jet dynamics

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Soteriou, Marios C.

    2009-11-01

    New insight into the mechanism of liquid jet in crossflow atomization is provided by an analysis technique based on proper orthogonal decomposition and spectral analysis. Data are provided in the form of high-speed videos of the jet near field from experiments over a broad range of injection conditions. For each condition, proper orthogonal modes (POMs) are generated and ordered by intensity variation relative to the time average. The feasibility of jet dynamics reduction by truncation of the POM series to the first few modes is then examined as a function of crossflow velocity for laminar and turbulent liquid injection. At conditions where the jet breaks up into large chunks of liquid, the superposition of specific orthogonal modes is observed to track long waves traveling along the liquid column. The temporal coefficients of these modes can be described as a bandpass spectrum that shifts toward higher frequencies as the crossflow velocity is increased. The dynamic correlation of these modes is quantified by their cross-power spectrum density. Based on the frequency and wavelength extracted from the videos, the observed traveling waves are linked to the linearly fastest growing wave of Kelvin-Helmholtz instability. The gas boundary layer thickness at the gas-liquid shear layer emerges at the end of this study as the dominant length scale of jet dynamics at moderate Weber numbers.

  16. Gentle Nearest Neighbors Boosting over Proper Scoring Rules.

    PubMed

    Nock, Richard; Ali, Wafa Bel Haj; D'Ambrosio, Roberto; Nielsen, Frank; Barlaud, Michel

    2015-01-01

    Tailoring nearest neighbors algorithms to boosting is an important problem. Recent papers study an approach, UNN, which provably minimizes particular convex surrogates under weak assumptions. However, numerical issues make it necessary to experimentally tweak parts of the UNN algorithm, at the possible expense of the algorithm's convergence and performance. In this paper, we propose a lightweight Newton-Raphson alternative optimizing proper scoring rules from a very broad set, and establish formal convergence rates under the boosting framework that compete with those known for UNN. To the best of our knowledge, no such boosting-compliant convergence rates were previously known in the popular Gentle Adaboost's lineage. We provide experiments on a dozen domains, including Caltech and SUN computer vision databases, comparing our approach to major families including support vector machines, (Ada)boosting and stochastic gradient descent. They support three major conclusions: (i) GNNB significantly outperforms UNN, in terms of convergence rate and quality of the outputs, (ii) GNNB performs on par with or better than computationally intensive large margin approaches, (iii) on large domains that rule out those latter approaches for computational reasons, GNNB provides a simple and competitive contender to stochastic gradient descent. Experiments include a divide-and-conquer improvement of GNNB exploiting the link with proper scoring rules optimization. PMID:26353210

  17. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  18. High-Precision Proper Motion Measurements of the Stars in the Field of SN 1572 with WFC3/UVIS

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar

    2011-10-01

    We propose to refine the space-velocity measurements of the stars in the central region of SNR 1572, one of the historical Galactic Type Ia supernova remnants. A single-orbit visit with the WFC3/UVIS would allow, in combination with the previous ACS/WFC images obtained in 2003-2005, an astrometric precision of less than 0.05 mas, almost one order of magnitude better than our previous result. Precise knowledge of the kinematics of all of the stars in the region is crucial for determining which one might be the surviving binary companion of the supernova. A precise reconstruction of the parameters of the binary system that gave rise to the supernova would then be possible, complementing the existing observations both from the ground and with the HST, which span the last fourteen years.

  19. A BRIGHT RADIO HH OBJECT WITH LARGE PROPER MOTIONS IN THE MASSIVE STAR-FORMING REGION W75N

    SciTech Connect

    Carrasco-Gonzalez, Carlos; Anglada, Guillem; Rodriguez, Luis F.; Torrelles, Jose M.; Gonzalez-Martin, Omaira

    2010-06-15

    We analyze radio continuum and line observations from the archives of the Very Large Array (VLA), as well as X-ray observations from the Chandra archive of the region of massive star formation W75N. Five radio continuum sources are detected: VLA 1, VLA 2, VLA 3, Bc, and VLA 4. VLA 3 appears to be a radio jet; we detect J = 1-0, v = 0 SiO emission toward it, probably tracing the inner parts of a molecular outflow. The radio continuum source Bc, previously believed to be tracing an independent star, is found to exhibit important changes in total flux density, morphology, and position. These results suggest that source Bc is actually a radio Herbig-Haro object, one of the brightest known, powered by the VLA 3 jet source. VLA 4 is a new radio continuum component, located a few arcsec to the south of the group of previously known radio sources. Strong and broad (1,1) and (2,2) ammonia emission is detected from the region containing the radio sources VLA 1, VLA 2, and VLA 3. Finally, the 2-10 keV emission seen in the Chandra/ACIS image shows two regions that could be the termination shocks of the outflows from the multiple sources observed in W75N.

  20. A Survey of Proper-Motion Stars. XIV. Spectroscopic Binaries among Metal-poor Field Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Carney, Bruce W.; Latham, David W.; Laird, John B.; Grant, Catherine E.; Morse, Jon A.

    2001-12-01

    We summarize the results from a program of monitoring the radial velocities of 10 metal-poor, high-velocity field stars whose colors are 0.01 to 0.13 mag bluer than main-sequence turnoffs of comparable-metallicity globular clusters. Two of the candidate halo blue stragglers (BD +72 94 and BD +40 1166) show no signs of velocity variability, one (HD 84937) shows only weak signs of variability, one (BD +25 1981) appears to be a very long-period binary, and six (BD -12 2669, HD 97916, HD 106516, BD +51 1817, G66-30, and G202-65) are single-lined spectroscopic binaries, with periods ranging from 167 to 844 days. Velocity coverage for the four candidates without orbital solutions ranges from 15.9 to 19.0 years. The orbital eccentricities are all low, e<0.30 and =0.11. Five of the six binary orbits have very low eccentricities, with =0.07. We have reanalyzed the velocity data from Preston & Sneden and have derived orbital solutions similar to theirs for 10 of the spectroscopic binaries among their ``blue metal-poor'' stars with [Fe/H]<=-0.6. We confirm their conclusion that the binary frequency is high; we find 47+/-10% if we include only the definite binaries with [Fe/H]<=-0.6. Our orbital solutions for the seven binaries with periods longer than 20 days all have low eccentricities, with e<=0.26 and =0.11. These orbital characteristics are very similar to the Ba II, CH, subgiant CH, and dwarf carbon stars, suggesting that mass transfer has been involved in their formation. Of the five binary stars in our program with published abundances of lithium, all have been found to be deficient (and one in beryllium as well). In contrast, two of the three apparently single stars have published lithium abundances and show no deficiency. The mass functions for the six binaries in our program and seven similar systems studied by Preston & Sneden are consistent with their unseen companions all being white dwarfs with M~0.55 Msolar and random orbital inclinations. Taking all of our observations and those of others together, we argue that the results are consistent with all field blue stragglers being binary systems with long periods and low eccentricities, the primary stars being deficient in lithium and the secondary stars being normal-mass white dwarfs. All these properties are suggestive of a blue-straggler formation model that involves mass transfer. For six of the 13 stars in the two programs for which s-process elemental abundances are available, no signs of enhancement are discernible, suggesting that the donor star was a first-ascent red giant. For the star with the longest orbital period (1307 days), CS 22956-028, s-process abundance enhancements have been reported. This star may be a precursor to the subgiant CH class, as suggested by Luck & Bond. Some of the results presented here used observations made with the Multiple Mirror Telescope, a joint facility of the Smithsonian Institution and the University of Arizona.

  1. Flexible synthesis of video frames based on motion hints.

    PubMed

    Naman, Aous Thabit; Taubman, David

    2014-09-01

    In this paper, we propose the use of "motion hints" to produce interframe predictions. A motion hint is a loose and global description of motion that can be communicated using metadata; it describes a continuous and invertible motion model over multiple frames, spatially overlapping other motion hints. A motion hint provides a reasonably accurate description of motion but only a loose description of where it is applicable; it is the task of the client to identify the exact locations where this motion model is applicable. The focus of this paper is a probabilistic multiscale approach to identifying these locations of applicability; the method is robust to noise, quantization, and contrast changes. The proposed approach employs the Laplacian pyramid; it generates motion hint probabilities from observations at each scale of the pyramid. These probabilities are then combined across the scales of the pyramid starting from the coarsest scale. The computational cost of the approach is reasonable, and only the neighborhood of a pixel is employed to determine a motion hint probability, which makes parallel implementation feasible. This paper also elaborates on how motion hint probabilities are exploited in generating interframe predictions. The scheme of this paper is applicable to closed-loop prediction, but it is more useful in open-loop prediction scenarios, such as using prediction in conjunction with remote browsing of surveillance footage, communicated by a JPEG2000 Interactive Protocol (JPIP) server. We show that the interframe predictions obtained using the proposed approach are good both visually and in terms of PSNR. PMID:24968173

  2. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  3. Obtaining anisotropic velocity data for proper depth seismic imaging

    SciTech Connect

    Egerev, Sergey; Yushin, Victor; Ovchinnikov, Oleg; Dubinsky, Vladimir; Patterson, Doug

    2012-05-24

    The paper deals with the problem of obtaining anisotropic velocity data due to continuous acoustic impedance-based measurements while scanning in the axial direction along the walls of the borehole. Diagrams of full conductivity of the piezoceramic transducer were used to derive anisotropy parameters of the rock sample. The measurements are aimed to support accurate depth imaging of seismic data. Understanding these common anisotropy effects is important when interpreting data where it is present.

  4. Proper estimation of hydrological parameters from flood forecasting aspects

    NASA Astrophysics Data System (ADS)

    Miyamoto, Mamoru; Matsumoto, Kazuhiro; Tsuda, Morimasa; Yamakage, Yuzuru; Iwami, Yoichi; Yanami, Hitoshi; Anai, Hirokazu

    2016-04-01

    The hydrological parameters of a flood forecasting model are normally calibrated based on an entire hydrograph of past flood events by means of an error assessment function such as mean square error and relative error. However, the specific parts of a hydrograph, i.e., maximum discharge and rising parts, are particularly important for practical flood forecasting in the sense that underestimation may lead to a more dangerous situation due to delay in flood prevention and evacuation activities. We conducted numerical experiments to find the most proper parameter set for practical flood forecasting without underestimation in order to develop an error assessment method for calibration appropriate for flood forecasting. A distributed hydrological model developed in Public Works Research Institute (PWRI) in Japan was applied to fifteen past floods in the Gokase River basin of 1,820km2 in Japan. The model with gridded two-layer tanks for the entire target river basin included hydrological parameters, such as hydraulic conductivity, surface roughness and runoff coefficient, which were set according to land-use and soil-type distributions. Global data sets, e.g., Global Map and Digital Soil Map of the World (DSMW), were employed as input data for elevation, land use and soil type. The values of fourteen types of parameters were evenly sampled with 10,001 patterns of parameter sets determined by the Latin Hypercube Sampling within the search range of each parameter. Although the best reproduced case showed a high Nash-Sutcliffe Efficiency of 0.9 for all flood events, the maximum discharge was underestimated in many flood cases. Therefore, two conditions, which were non-underestimation in the maximum discharge and rising parts of a hydrograph, were added in calibration as the flood forecasting aptitudes. The cases with non-underestimation in the maximum discharge and rising parts of the hydrograph also showed a high Nash-Sutcliffe Efficiency of 0.9 except two flood cases

  5. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. Motion compensator for holographic motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  11. Seeing blur: 'motion sharpening' without motion.

    PubMed Central

    Georgeson, Mark A; Hammett, Stephen T

    2002-01-01

    It is widely supposed that things tend to look blurred when they are moving fast. Previous work has shown that this is true for sharp edges but, paradoxically, blurred edges look sharper when they are moving than when stationary. This is 'motion sharpening'. We show that blurred edges also look up to 50% sharper when they are presented briefly (8-24 ms) than at longer durations (100-500 ms) without motion. This argues strongly against high-level models of sharpening based specifically on compensation for motion blur. It also argues against a recent, low-level, linear filter model that requires motion to produce sharpening. No linear filter model can explain our finding that sharpening was similar for sinusoidal and non-sinusoidal gratings, since linear filters can never distort sine waves. We also conclude that the idea of a 'default' assumption of sharpness is not supported by experimental evidence. A possible source of sharpening is a nonlinearity in the contrast response of early visual mechanisms to fast or transient temporal changes, perhaps based on the magnocellular (M-cell) pathway. Our finding that sharpening is not diminished at low contrast sets strong constraints on the nature of the nonlinearity. PMID:12137571

  12. [Quality evaluation for pharmaceutical products and medical supplies: proper use].

    PubMed

    Miyamoto, Etsuko

    2014-01-01

      In the proper use of medicine, the quality of medical supplies is an important factor. Use of generic products not only reduces drug costs for the patient, but also offers substantial advantages for governments in reducing medical expenses. When evaluation of the quality of generic products is centered on tablets, products with qualities that are unstable over time may be encountered. Some dosage forms require suitable pharmaceutical tests, processes, and apparatuses, such as those for evaluating orally disintegrating tablets or cutaneous preparations. For example, although simple test equipment has been proposed for patches, a unified method is required. The pharmacist plays an important role in choosing high-quality generic products; however, a substantial amount of information needs to be made available to the public in order to achieve that goal.

  13. Preschoolers' knowledge about the appearance of proper names.

    PubMed

    Stewart, Kathryn Maycumber; Pasnak, Robert

    2010-10-01

    Preschoolers' knowledge of the appearance of proper names was tested in three experiments with 25 boys and 22 girls from low-income families. Children from a Head Start program, whose parents signed a permission letter, participated. Their ages ranged from 3 yr. 6 mo. to 5 yr. 6 mo. (M = 52.2 mo., SD = 4.9). When shown consonant-vowel-consonant trigrams such as Rit or baF or dEg with various capitalization patterns, the children showed a tendency to recognize that CVC trigrams with the first letter capitalized or all letters capitalized were the ones most likely to represent a person's name. When their own names were substituted, which typically contained more than three letters, their performance was markedly better. Children also had a strong tendency to consider trigrams of Latin letters as more likely to be a person's name than trigrams of non-Latin characters (e.g., Sanskrit). PMID:21162446

  14. Social inequalities in health: a proper concern of epidemiology.

    PubMed

    Marmot, Michael; Bell, Ruth

    2016-04-01

    Social inequalities are a proper concern of epidemiology. Epidemiological thinking and modes of analysis are central, but epidemiological research is one among many areas of study that provide the evidence for understanding the causes of social inequalities in health and what can be done to reduce them. Understanding the causes of health inequalities requires insights from social, behavioral and biological sciences, and a chain of reasoning that examines how the accumulation of positive and negative influences over the life course leads to health inequalities in adult life. Evidence that the social gradient in health can be reduced should make us optimistic that reducing health inequalities is a realistic goal for all societies. PMID:27084546

  15. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  16. Object motion analysis study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.

  17. Measuring mandibular motions

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Rositano, S.; Taylor, R. C.

    1977-01-01

    Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.

  18. Motion through Syntactic Frames

    ERIC Educational Resources Information Center

    Feist, Michele I.

    2010-01-01

    The introduction of (Talmy, 1985), (Talmy, 1985) and (Talmy, 2000) typology sparked significant interest in linguistic relativity in the arena of motion language. Through careful analysis of the conflation patterns evident in the language of motion events, Talmy noted that one class of languages, V-languages, tends to encode path along with the…

  19. Making Sense of Motion

    ERIC Educational Resources Information Center

    King, Kenneth

    2005-01-01

    When watching a small child with a toy car, it is seen that interest in motion comes early. Children often suggest speed through sounds such as "RRRrrrRRRooooommMMMmmmm" as the toy car is made to speed up, slow down, or accelerate through a turn. Older children start to consider force and motion studies in more detail, and experiences in school…

  20. Aristotle, Motion, and Rhetoric.

    ERIC Educational Resources Information Center

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of nature,…

  1. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  2. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  3. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  4. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  5. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Motions; disposition of motions. 60-30.8 Section 60-30.8 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Prehearing Procedures § 60-30.8 Motions; disposition of motions. (a) Motions....

  6. Predictability of the Earth's polar motion

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1984-01-01

    A comprehensive, experimental study of the predictability of the polar motion using a homogeneous BIH (Bureau International de l'Heure) data set is presented. Based on knowledge of the physics of the annual and the Chandler wobbles, the numerical model for the polar motion is constructed by allowing the wobble periods to vary. Using an optimum base length of 6 years for prediction, this floating-period model, equipped with a non-linear least-squares estimator, is found to yield polar motion predictions accurate from 0.012 to 0.024 inches depending on the prediction length up to one year, corresponding to a predictability of 91-83%. This represents a considerable improvement over the conventional fixed-period predictor, which does not respond to variations in the apparent wobble periods. The superiority of the floating-period predictor to other predictors based on critically different numerical models is also demonstrated.

  7. Brownian motion goes ballistic

    NASA Astrophysics Data System (ADS)

    Florin, Ernst-Ludwig

    2012-02-01

    It is the randomness that is considered the hallmark of Brownian motion, but already in Einstein's seminal 1905 paper on Brownian motion it is implied that this randomness must break down at short time scales when the inertia of the particle kicks in. As a result, the particle's trajectories should lose its randomness and become smooth. The characteristic time scale for this transition is given by the ratio of the particle's mass to its viscous drag coefficient. For a 1 μm glass particle in water and at room temperature, this timescale is on the order of 100 ns. Early calculations, however, neglected the inertia of the liquid surrounding the particle which induces a transition from random diffusive to non-diffusive Brownian motion already at much larger timescales. In this first non-diffusive regime, particles of the same size but with different densities still move at almost the same rate as a result of hydrodynamic correlations. To observe Brownian motion that is dominated by the inertia of the particle, i.e. ballistic motion, one has to observe the particle at significantly shorter time scales on the order of nanoseconds. Due to the lack of sufficiently fast and precise detectors, such experiments were so far not possible on individual particles. I will describe how we were able to observe the transition from hydrodynamically dominated Brownian motion to ballistic Brownian motion in a liquid. I will compare our data with current theories for Brownian motion on fast timescales that take into account the inertia of both the liquid and the particle. The newly gained ability to measure the fast Brownian motion of an individual particle paves the way for detailed studies of confined Brownian motion and Brownian motion in heterogeneous media. [4pt] [1] Einstein, A. "Uber die von der molekularkinetischen Theorie der W"arme geforderte Bewegung von in ruhenden Fl"ussigkeiten suspendierten Teilchen. Ann. Phys. 322, 549--560 (1905). [0pt] [2] Lukic, B., S. Jeney, C

  8. Stochastic ground motion simulation

    USGS Publications Warehouse

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  9. On the importance of having accurate data for astrophysical modelling

    NASA Astrophysics Data System (ADS)

    Lique, Francois

    2016-06-01

    The Herschel telescope and the ALMA and NOEMA interferometers have opened new windows of observation for wavelengths ranging from far infrared to sub-millimeter with spatial and spectral resolutions previously unmatched. To make the most of these observations, an accurate knowledge of the physical and chemical processes occurring in the interstellar and circumstellar media is essential.In this presentation, I will discuss what are the current needs of astrophysics in terms of molecular data and I will show that accurate molecular data are crucial for the proper determination of the physical conditions in molecular clouds.First, I will focus on collisional excitation studies that are needed for molecular lines modelling beyond the Local Thermodynamic Equilibrium (LTE) approach. In particular, I will show how new collisional data for the HCN and HNC isomers, two tracers of star forming conditions, have allowed solving the problem of their respective abundance in cold molecular clouds. I will also present the last collisional data that have been computed in order to analyse new highly resolved observations provided by the ALMA interferometer.Then, I will present the calculation of accurate rate constants for the F+H2 → HF+H and Cl+H2 ↔ HCl+H reactions, which have allowed a more accurate determination of the physical conditions in diffuse molecular clouds. I will also present the recent work on the ortho-para-H2 conversion due to hydrogen exchange that allow more accurate determination of the ortho-to-para-H2 ratio in the universe and that imply a significant revision of the cooling mechanism in astrophysical media.

  10. Robotics-based Synthesis of Human Motion

    PubMed Central

    Khatib, O.; Demircan, E.; De Sapio, V.; Sentis, L.; Besier, T.; Delp, S.

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods. PMID:19665552

  11. Robotics-based synthesis of human motion.

    PubMed

    Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods. PMID:19665552

  12. On the proper formulation of Maxwellian electrodynamics for continuum mechanics

    NASA Astrophysics Data System (ADS)

    Weile, Daniel S.; Hopkins, David A.; Gazonas, George A.; Powers, Brian M.

    2014-05-01

    Despite the importance of electromagnetomechanical physics to processes ranging from piezoelectricity to the dynamics of electron beams, confusion abounds in the continuum mechanics literature as to how Maxwell's equations of electrodynamics should be formulated in the material frame of continuum mechanics. Current formulations in the literature conflict as to the manner in which the authors define fields, derive constitutive relations, and interpret contradictory formulations. The difficulties persist even when the phenomena described are electrostatic. This paper will demonstrate that the perplexity arises from two sources: a misunderstanding of the limitations of material frame descriptions, and the failure to appreciate the centrality of relativity theory to the formulation of electrodynamic equations in the vicinity of mechanical motion. Two new formulations of Maxwell's equations are provided that avoid the paradoxes of earlier formulations and thus describe the physics clearly and without self-contradiction.

  13. Accurate Prediction of Hyperfine Coupling Constants in Muoniated and Hydrogenated Ethyl Radicals: Ab Initio Path Integral Simulation Study with Density Functional Theory Method.

    PubMed

    Yamada, Kenta; Kawashima, Yukio; Tachikawa, Masanori

    2014-05-13

    We performed ab initio path integral molecular dynamics (PIMD) simulations with a density functional theory (DFT) method to accurately predict hyperfine coupling constants (HFCCs) in the ethyl radical (CβH3-CαH2) and its Mu-substituted (muoniated) compound (CβH2Mu-CαH2). The substitution of a Mu atom, an ultralight isotope of the H atom, with larger nuclear quantum effect is expected to strongly affect the nature of the ethyl radical. The static conventional DFT calculations of CβH3-CαH2 find that the elongation of one Cβ-H bond causes a change in the shape of potential energy curve along the rotational angle via the imbalance of attractive and repulsive interactions between the methyl and methylene groups. Investigation of the methyl-group behavior including the nuclear quantum and thermal effects shows that an unbalanced CβH2Mu group with the elongated Cβ-Mu bond rotates around the Cβ-Cα bond in a muoniated ethyl radical, quite differently from the CβH3 group with the three equivalent Cβ-H bonds in the ethyl radical. These rotations couple with other molecular motions such as the methylene-group rocking motion (inversion), leading to difficulties in reproducing the corresponding barrier heights. Our PIMD simulations successfully predict the barrier heights to be close to the experimental values and provide a significant improvement in muon and proton HFCCs given by the static conventional DFT method. Further investigation reveals that the Cβ-Mu/H stretching motion, methyl-group rotation, methylene-group rocking motion, and HFCC values deeply intertwine with each other. Because these motions are different between the radicals, a proper description of the structural fluctuations reflecting the nuclear quantum and thermal effects is vital to evaluate HFCC values in theory to be comparable to the experimental ones. Accordingly, a fundamental difference in HFCC between the radicals arises from their intrinsic molecular motions at a finite temperature, in

  14. Motion sickness in migraine sufferers.

    PubMed

    Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D

    2005-12-01

    Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.

  15. Orbital Motions in Binary Protostellar Systems

    NASA Astrophysics Data System (ADS)

    Rodríguez, L. F.

    2004-08-01

    Using high-resolution ( ˜ 0to z @. hss ''1), multi-epoch Very Large Array observations, we have detected orbital motions in several low-luminosity protobinary systems in the Taurus and ρ Ophiuchus molecular complexes. The masses obtained from Kepler's third law are of the order of 0.5 to 2 M⊙, as expected for such low-mass protostars. The relatively large bolometric luminosities of these young systems corroborates the notion that protostars obtain most of their luminosity from accretion and not from nuclear reactions. In addition, in one of the sources studied (a multiple system in Taurus), a low-mass young star has shown a drastic change in its orbit after a close approach with another component of the system, presumed to be a double star. The large proper motion achieved by this low mass protostar (20 km s-1), suggests an ejection from the system.

  16. Near fault broadband ground motion simulation with empirical Green's functions: the Upper Rhine Graben case study

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Sergio; Hok, Sébastian; Causse, Mathieu; Festa, Gaetano; Lancieri, Maria

    2016-04-01

    A fundamental stage in seismic hazard assessment is the prediction of realistic ground motion for potential future earthquakes. To do so, one of the steps is to make an estimation of the expected ground motion level and this is commonly done by the use of ground motion prediction equations (GMPEs). Nevertheless GMPEs do not represent the whole variety of source processes and this can lead to incorrect estimates for some specific case studies, such as in the near-fault range because of the lack of records of large earthquakes at short distances. In such cases, ground motion simulations can be a valid tool to complement prediction equations for scenario studies, provided that both source and propagation are accurately described and uncertainties properly addressed. Such simulations, usually referred to as "blind", require the generation of a population of ground motion records that represent the natural variability of the source process for the target earthquake scenario. In this study we performed simulations using the empirical Green's function technique, which consists in using records of small earthquakes as the medium transfer function provided the availability of small earthquakes located close to the target fault and recorded at the target site. The main advantage of this technique is that it does not require a detailed knowledge of the propagation medium, which is not always possible, but requires availability of high quality records of small earthquakes in the target area. We couple this empirical approach with a k-2 kinematic source model, which naturally let us to introduce high frequency in the source description. Here we present an application of our technique to the Upper Rhine Graben. This is an active seismic region with a moderate rate of seismicity and for which it is interesting to provide ground motion estimation in the vicinity of the faults to be compared with estimations traditionally provided by GMPEs in a seismic hazard evaluation study. We

  17. Motion of multiple helical vortices

    NASA Astrophysics Data System (ADS)

    Velasco Fuentes, Oscar

    2015-11-01

    In 1912 Joukowsky deduced that in an unbounded ideal fluid a set of helical vortices--when these are equal, coaxial and symmetrically arranged--would translate and rotate steadily while the vortices preserve their form and relative position. Each vortex is an infinite tube whose cross-section is circular (with radius a) and whose centerline is a helix of pitch L and radius R. The motion is thus determined by three non-dimensional parameters only: the number of vortices N, the vortex radius α = a / R and the vortex pitch τ = L / 2 πR . Here, we express the linear and angular velocities of the vortices as the sum of the mutually induced velocities found by Okulov (2004) and the self-induced velocities found by Velasco Fuentes (2015). We verified that our results are accurate over the whole range of values of the vortices' pitch and radius by numerically computing the vortex motion with two smoothed versions of the Biot-Savart law. It was found that the translation velocity U grows with the number of vortices (N) but decreases as the vortices' radius and pitch (a and τ, respectively) increase; in contrast, the rotation velocity Ω grows with N and a but has a local minimum around τ = 1 for fixed values of N and a.

  18. VizieR Online Data Catalog: Motion Verified Red Stars (MoVeRS) (Theissen+, 2016)

    NASA Astrophysics Data System (ADS)

    Theissen, C. A.; West, A. A.; Dhital, S.

    2015-09-01

    We present a photometric catalog of 8,735,004 proper motion selected low-mass stars (KML-spectral types) within the Sloan Digital Sky Survey (SDSS) footprint, from the combined SDSS-DR10, Two-Micron All-Sky Survey (2MASS) Point Source Catalog (PSC), and Wide-field Infrared Survey Explorer (WISE) AllWISE catalog. Stars were selected using r-i, i-z, r-z, z-J, and z-W1 colors, and SDSS, WISE, and 2MASS astrometry was combined to compute proper motions. The resulting 3,518,150 stars were augmented with proper motions for 5,216,854 earlier type stars from the combined SDSS and United States Naval Observatory B1.0 catalog (USNO-B). We used SDSS+USNO-B proper motions to determine the best criteria for selecting a clean sample of stars. Only stars whose proper motions were greater than their 2-sigma uncertainty were included. Our Motion Verified Red Stars (MoVeRS) catalog is available through SDSS CasJobs and VizieR. (2 data files).

  19. Proper migration and axon outgrowth of zebrafish cranial motoneuron subpopulations require the cell adhesion molecule MDGA2A

    PubMed Central

    Ingold, Esther; vom Berg-Maurer, Colette M.; Burckhardt, Christoph J.; Lehnherr, André; Rieder, Philip; Keller, Philip J.; Stelzer, Ernst H.; Greber, Urs F.; Neuhauss, Stephan C. F.; Gesemann, Matthias

    2015-01-01

    ABSTRACT The formation of functional neuronal circuits relies on accurate migration and proper axonal outgrowth of neuronal precursors. On the route to their targets migrating cells and growing axons depend on both, directional information from neurotropic cues and adhesive interactions mediated via extracellular matrix molecules or neighbouring cells. The inactivation of guidance cues or the interference with cell adhesion can cause severe defects in neuronal migration and axon guidance. In this study we have analyzed the function of the MAM domain containing glycosylphosphatidylinositol anchor 2A (MDGA2A) protein in zebrafish cranial motoneuron development. MDGA2A is prominently expressed in distinct clusters of cranial motoneurons, especially in the ones of the trigeminal and facial nerves. Analyses of MDGA2A knockdown embryos by light sheet and confocal microscopy revealed impaired migration and aberrant axonal outgrowth of these neurons; suggesting that adhesive interactions mediated by MDGA2A are required for the proper arrangement and outgrowth of cranial motoneuron subtypes. PMID:25572423

  20. Motion coherence affects human perception and pursuit similarly

    NASA Technical Reports Server (NTRS)

    Beutter, B. R.; Stone, L. S.

    2000-01-01

    Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion

  1. Visualizing motion in video

    NASA Astrophysics Data System (ADS)

    Brown, Lisa M.; Crayne, Susan

    2000-05-01

    In this paper, we present a visualization system and method for measuring, inspecting and analyzing motion in video. Starting from a simple motion video, the system creates a still image representation which we call a digital strobe photograph. Similar to visualization techniques used in conventional film photography to capture high-speed motion using strobe lamps or very fast shutters, and to capture time-lapse motion where the shutter is left open, this methodology creates a single image showing the motion of one or a small number of objects over time. Based on digital background subtraction, we assume that the background is stationary or at most slowing changing and that the camera position is fixed. The method is capable of displaying the motion based on a parameter indicating the time step between successive movements. It can also overcome problems of visualizing movement that is obscured by previous movements. The method is used in an educational software tool for children to measure and analyze various motions. Examples are given using simple physical objects such as balls and pendulums, astronomical events such as the path of the stars around the north pole at night, or the different types of locomotion used by snakes.

  2. Deblurring for spatial and temporal varying motion with optical computing

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Xue, Dongfeng; Hui, Zhao

    2016-05-01

    A way to estimate and remove spatially and temporally varying motion blur is proposed, which is based on an optical computing system. The translation and rotation motion can be independently estimated from the joint transform correlator (JTC) system without iterative optimization. The inspiration comes from the fact that the JTC system is immune to rotation motion in a Cartesian coordinate system. The work scheme of the JTC system is designed to keep switching between the Cartesian coordinate system and polar coordinate system in different time intervals with the ping-pang handover. In the ping interval, the JTC system works in the Cartesian coordinate system to obtain a translation motion vector with optical computing speed. In the pang interval, the JTC system works in the polar coordinate system. The rotation motion is transformed to the translation motion through coordinate transformation. Then the rotation motion vector can also be obtained from JTC instantaneously. To deal with continuous spatially variant motion blur, submotion vectors based on the projective motion path blur model are proposed. The submotion vectors model is more effective and accurate at modeling spatially variant motion blur than conventional methods. The simulation and real experiment results demonstrate its overall effectiveness.

  3. The perception of linear self-motion

    NASA Astrophysics Data System (ADS)

    Durgin, Frank H.; Fox, Laura F.; Schaffer, Evan; Whitaker, Rabi

    2005-03-01

    VR lends itself to the study of intersensory calibration in self-motion perception. However, proper calibration of visual and locomotor self-motion in VR is made complicated by the compression of perceived distance and by unfamiliar modes of locomotion. Although adaptation is fairly rapid with exposure to novel sensorimotor correlations, here it is shown that good initial calibration is found when both (1) the virtual environment is richly structured in near space and (2) locomotion is on solid ground. Previously it had been observed that correct visual speeds seem too slow when walking on a treadmill. Several principles may be involved, including inhibitory sensory prediction, distance compression, and missing peripheral flow in the reduced FOV. However, though a richly-structured near-space environment provides higher rates of peripheral flow, its presence does not improve calibration when walking on a treadmill. Conversely, walking on solid ground still shows relatively poor calibration in an empty (though well-textured) virtual hallway. Because walking on solid ground incorporates well-calibrated mechanisms that can assess speed of self-motion independent of vision, these observations suggest that near space may have been better calibrated in the HMD. Near-space obstacle avoidance systems may also be involved. Order effects in the data from the treadmill experiment indicate that recalibration of self-motion perception occurred during the experiment.

  4. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  5. Generalized compliant motion primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor)

    1994-01-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  6. Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

    NASA Technical Reports Server (NTRS)

    Lucia, David J.; Beran, Philip S.; Silva, Walter A.

    2003-01-01

    This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.

  7. Proper design hikes gas-lift system efficiency

    SciTech Connect

    Tsai, T.C.

    1986-06-30

    Proper design of gas-lift pumping systems, used for pumping corrosive or erosive fluids, involves the correct selection of submergence ratio, flow regime, pipe diameter, and physical properties of the fluid. Correlations for maximum lifting efficiency on a friction-free basis vs. submergence ratio have been developed based on experimental data. The Oshinowo and Charles flow map for vertical upward flow has been chosen for determining the two-phase flow regimes. For large-diameter gas-lifting systems, the effects of fluid physical properties on the maximum lifting efficiency become diminished. Gas-lift pumping systems are widely used in the process industry as well as in oil and gas production. In an ethylene dichloride/vinyl chloride monomer (EDC/VCM) plant, quench column bottoms are recirculated back to the column by gas lift of the EDC/VCM stream from the EDC pyrolysis furnace. Gas lift is utilized instead of pumps to alleviate the plugging and erosion problems caused by the presence of coke/tar particulates. Other process applications include those where pumps suffer severe corrosion from the fluids pumped.

  8. Protecting subjects and fostering research. Striking the proper balance.

    PubMed

    Hirschfeld, R M; Winslade, W; Krause, T L

    1997-02-01

    Bonnie reminds us of the heritage and limitations of human subjects research. He points out that over the years, the protection of human subjects in research has enjoyed progress, experienced false starts, and endured inflated expectations. Both he and Elliott call attention to the fact that IRB review rarely probes how researchers propose to deal with impairments to subjects' decision-making capacities. We agree to IRBs should be encouraged to rethink their roles. But, as Bonnie argues, this requires a systematic review of the roles and functions of IRB rather than ad hoc adjustments by individual institutional IRBs. His proposal that IRBs should be encouraged to be more vigilant and through in their monitoring of research is sound, especially if the subjects are vulnerable or the research is risky. A strength of Bonnie's review is that it suggests both specific ways to test competency and a range of options for IRBs to ensure that vulnerable subjects are protected from overzealous or overreaching researchers. His historical review and normative proposals are objective, balanced, and thoughtful. Elliott's critique seems to single out psychiatric research with depressed patients as a special problem area. Although his title emphasizes severely depressed patients, he sometimes appears to neglect the fact that depression ranges across a spectrum from mild to severe. Elliott's point is well taken that severely depressed patients who are clearly incompetent should not, unless proper safeguards are provided, be enrolled in research. But his analysis falters because his position does not in the end respect personal autonomy.

  9. Dynamics of hydrophobic organic contaminants in the Baltic proper pelagial

    SciTech Connect

    Axelman, J.; Broman, D.; Naef, C.; Pettersen, H.

    1995-12-31

    Hydrophobic organic contaminants occur in different forms in natural water. Apart from being truly dissolved in water they partition into dissolved organic carbon (DOC) and particles of different sizes including pelagic bacteria, phytoplankton and zooplankton. The distribution between the different forms is dependent on carbon turnover rates in and transport between the different compartments and on the physical and chemical properties of the compound in focus. The water phase, the DOC-phase and two particle size fractions, 0.2--2pm and 2--20 pm representing the base of the pelagic food web, were analyzed for their content of PCBs and PAHs during summer and winter conditions in the open sea in the Baltic proper. New methods for separating truly dissolved from DOC-bound compounds have been developed using a high capacity perfusion adsorbent and large scale gas sparging. The small particle size fraction was sampled using high volume tangential flow filtration. The possibility to separate between these four different compartments has given a more detailed picture of the short term dynamics of hydrophobic organic compounds in the important base of the pelagial food web.

  10. Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules

    PubMed Central

    Smyth, Jeremy T.; Schoborg, Todd A.; Bergman, Zane J.; Riggs, Blake; Rusan, Nasser M.

    2015-01-01

    Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species. PMID:26289801

  11. Proper ubiquitination effect on the fertilisation outcome post-ICSI.

    PubMed

    Eskandari-Shahraki, M; Tavalaee, M; Deemeh, M R; Jelodar, Gh A; Nasr-Esfahani, M H

    2013-06-01

    Ubiquitin is an 8.5-kDa protein that tags outlived proteins for degradation by the proteasome. It also marks defective spermatozoa during epididymal passage and has been proposed as a biomarker of sperm quality. This study evaluates the relationship between sperm ubiquitination, protamine deficiency, semen parameters and fertilisation rate in infertile individuals undergoing the intracytoplasmic sperm insemination (ICSI) procedure. Semen samples from 73 ICSI candidates were collected and analysed according to World Health Organization criteria. A portion of each sample was evaluated for sperm ubiquitination using the sperm ubiquitin tag immunoassay (SUTI) with flow cytometry, and protamine deficiency by chromomycin A3 (CMA3) staining. In addition, the relationship between the fertilisation rate and sperm ubiquitination was calculated in ICSI candidates. The intensity of ubiquitination showed a significant negative correlation with sperm concentration (r = -0.255, P = 0.032) and a positive correlation with fertilisation rate (r = 0.384, P = 0.013) post-ICSI. No correlation was observed between protamine deficiency and the percentage of ubiquitination or ubiquitination intensity. The results of this study suggest that sperm ubiquitination prior to capacitation may be considered as a marker of defective spermatozoon. Spermatozoa that undergo proper ubiquitination may have a higher chance for fertilisation, because they are made redundant by the ubiquitin-proteasome pathway in the epididymis compared to hypo-ubiquitinated spermatozoa.

  12. Training waste generators: The first responder in proper waste management

    SciTech Connect

    Jones, E.

    1989-01-01

    Dealing with waste effectively requires a cradle to grave'' approach to waste management. The first step in that chain of custody is the waste generator. The waste generator plays the key role in the correct identification, packaging, and disposal of waste. The Technical Resources and Training Section at the Oak Ridge National Laboratory (ORNL) has developed several short training programs for waste generators. This training presents a consistent approach to proper handling of waste within the ORNL waste management system. This training has been developed for generators of solid low-level radioactive waste, hazardous and mixed waste, and transuranic waste. In addition to the above, a Waste Minimization training program has been developed for use by all organizations at ORNL who generate any type of hazardous waste. These training programs represent a combined effort of the training staff and the technical staff to assure that all ORNL staff accept their responsibility for handling all types of radioactive and hazardous wastes correctly from its generation to its disposal. 4 refs.

  13. Can we properly model the neutron monitor count rate?

    NASA Astrophysics Data System (ADS)

    Gil, Agnieszka; Usoskin, Ilya G.; Kovaltsov, Gennady A.; Mishev, Alexander L.; Corti, Claudio; Bindi, Veronica

    2015-09-01

    Neutron monitors provide continuous measurements of secondary nucleonic particles produced in the atmosphere by the primary cosmic rays and form the main tool to study the heliospheric modulation of cosmic rays. In order to study cosmic rays using the world network of neutron monitor and needs to be able to model the neutron monitor count rate. Earlier it was difficult because of the poorly known yield function, which has been essentially revisited recently. We have presented a verification of the new yield function of the standard neutron monitor (NM) using a recently released data on the direct in situ measurements of the galactic cosmic rays energy spectrum during 2006-2009 (the period of the record high cosmic ray flux) by Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics spaceborne spectrometer, and on NM latitude surveys performed during the period of 1994-2007, including periods of high solar activity. We found a very good agreement between the measured count rates of sea level NMs and the modeled ones in very different conditions: from low to high solar activity and from polar to tropical regions. This implies that the count rate of a sea level neutron monitor can be properly modeled in all conditions, using the new yield function.

  14. Proteoglycans support proper granule formation in pancreatic acinar cells.

    PubMed

    Aroso, Miguel; Agricola, Brigitte; Hacker, Christian; Schrader, Michael

    2015-10-01

    Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. The molecular mechanisms of their biogenesis and the sorting of zymogens are still incompletely understood. Here, we investigated the role of proteoglycans in granule formation and secretion of zymogens in pancreatic AR42J cells, an acinar model system. Cupromeronic Blue cytochemistry and biochemical studies revealed an association of proteoglycans primarily with the granule membrane. Removal of proteoglycans by carbonate treatment led to a loss of membrane curvature indicating a supportive role in the maintenance of membrane shape and stability. Chemical inhibition of proteoglycan synthesis impaired the formation of normal electron-dense granules in AR42J cells and resulted in the formation of unusually small granule structures. These structures still contained the zymogen carboxypeptidase, a cargo molecule of secretory granules, but migrated to lighter fractions after density gradient centrifugation. Furthermore, the basal secretion of amylase was increased in AR42J cells after inhibitor treatment. In addition, irregular-shaped granules appeared in pancreatic lobules. We conclude that the assembly of a proteoglycan scaffold at the ZG membrane is supporting efficient packaging of zymogens and the proper formation of stimulus-competent storage granules in acinar cells of the pancreas.

  15. Achieving the Proper Balance Between Crew and Public Safety

    NASA Technical Reports Server (NTRS)

    Gowan, John; Rosati, Paul; Silvestri, Ray; Stahl, Ben; Wilde, Paul

    2011-01-01

    A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. Historical examples and lessons learned from both the Space Shuttle and Constellation Programs will be presented. Using these examples as context, the paper will discuss some operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the FAA and Air Force organizations that oversee public safety will also be summarized. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.

  16. Proper Orthogonal Decomposition in Optimal Control of Fluids

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.

  17. Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules.

    PubMed

    Smyth, Jeremy T; Schoborg, Todd A; Bergman, Zane J; Riggs, Blake; Rusan, Nasser M

    2015-08-01

    Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species. PMID:26289801

  18. Soluble adenylyl cyclase is essential for proper lysosomal acidification.

    PubMed

    Rahman, Nawreen; Ramos-Espiritu, Lavoisier; Milner, Teresa A; Buck, Jochen; Levin, Lonny R

    2016-10-01

    Lysosomes, the degradative organelles of the endocytic and autophagic pathways, function at an acidic pH. Lysosomes are acidified by the proton-pumping vacuolar ATPase (V-ATPase), but the molecular processes that set the organelle's pH are not completely understood. In particular, pH-sensitive signaling enzymes that can regulate lysosomal acidification in steady-state physiological conditions have yet to be identified. Soluble adenylyl cyclase (sAC) is a widely expressed source of cAMP that serves as a physiological pH sensor in cells. For example, in proton-secreting epithelial cells, sAC is responsible for pH-dependent translocation of V-ATPase to the luminal surface. Here we show genetically and pharmacologically that sAC is also essential for lysosomal acidification. In the absence of sAC, V-ATPase does not properly localize to lysosomes, lysosomes fail to fully acidify, lysosomal degradative capacity is diminished, and autophagolysosomes accumulate. PMID:27670898

  19. Motion compensated SLAM for image guided surgery.

    PubMed

    Mountney, Peter; Yang, Guang-Zhong

    2010-01-01

    The effectiveness and clinical benefits of image guided surgery are well established for procedures where there is manageable tissue motion. In minimally invasive cardiac, gastrointestinal, or abdominal surgery, large scale tissue deformation prohibits accurate registration and fusion of pre- and intraoperative data. Vision based techniques such as structure from motion and simultaneous localization and mapping are capable of recovering 3D structure and laparoscope motion. Current research in the area generally assumes the environment is static, which is difficult to satisfy in most surgical procedures. In this paper, a novel framework for simultaneous online estimation of laparoscopic camera motion and tissue deformation in a dynamic environment is proposed. The method only relies on images captured by the laparoscope to sequentially and incrementally generate a dynamic 3D map of tissue motion that can be co-registered with pre-operative data. The theoretical contribution of this paper is validated with both simulated and ex vivo data. The practical application of the technique is further demonstrated on in vivo procedures. PMID:20879352

  20. Radiologic evaluation of hand and wrist motion.

    PubMed

    Bond, J R; Berquist, T H

    1991-02-01

    Abnormal motion due to instability at the carpus and distal radioulnar joint can be difficult to diagnose clinically, and radiologic evaluation can be very helpful. The anatomy and kinematics are complex, and a directed approach is necessary to detect the findings that may be subtle and transient. Plain radiographic evaluation of the distal radioulnar joint is very sensitive to slight variations in patient position, and CT is more accurate when pain or cast immobilization make positioning difficult or when there is associated distal radial deformity. Static carpal instability patterns are present on routine radiographs where examination of the lateral view provides the key to diagnosis. The relations between the longitudinal axes of the radius, lunate, capitate, and scaphoid form the basis for classification of these instabilities. In dynamic carpal instability, routine radiographs are normal. The instability is demonstrated only with positional change or manipulation. Motion views can be very helpful, although direct observation of wrist motion on videotape fluoroscopy is the key to the diagnosis of dynamic instability. MR imaging motion studies provide better soft tissue definition and may show subtle changes in the triangular-fibrocartilage-associated distal radioulnar instability, as well as periarticular tendon subluxation about the wrist. The clinical role of MR imaging in the evaluation of wrist motion has yet to be clearly defined.

  1. Proper orthogonal decomposition analysis of vortex shedding behind a rotating circular cylinder

    NASA Astrophysics Data System (ADS)

    Sham Dol, Sharul

    2016-03-01

    Turbulence studies were made in the wake of a rotating circular cylinder in a uniform free stream with the objective of describing the patterns of the vortex shedding up to suppression of the periodic vortex street at high velocity ratios, λ. The results obtained in the present study establish that shedding of Kármán vortices in a rotating circular cylinder-generated wake is modified by rotation of the cylinder. Alternate vortex shedding is highly visible when λ < 2.0 although the strength of the separated shear layers differ due to the rotation of the cylinder. The spectral density in the wakes indicate significant changes at λ = 2.0. The results indicate that the rotation of the cylinder causes significant disruption in the structure of the flow. Alternate vortex shedding is weak, distorted and close to being suppressed at λ = 2.0. It is clear that flow asymmetries will weaken vortex shedding, and when the asymmetries are significant enough, total suppression of a periodic street occurs. Particular attention was paid to the decomposition of the flow using Proper Orthogonal Decomposition (POD). By analyzing this decomposition with the help of Particle Image Velocimetry (PIV )data, it was found that large scales contribute to the coherent motion. Vorticity structures in the modes become increasingly irregular with downstream distance, suggesting turbulent interactions are occurring at the more downstream locations, especially when the cylinder rotates.

  2. Improving dry carbon nanotube actuators by chemical modifications, material hybridization, and proper engineering

    NASA Astrophysics Data System (ADS)

    Biso, Maurizio; Ansaldo, Alberto; Ricci, Davide

    2013-04-01

    Low voltage, dry electrochemical actuators can be prepared by using a gel made of carbon nanotubes and ionic liquid.1 Their performance can be significantly improved by combining physical and chemical modifications with a proper engineering. We demonstrated that multi walled carbon nanotubes can be effectively used for actuators preparation;2 we achieved interesting performance improvements by chemically cross linking carbon nanotubes using both aromatic and aliphatic diamines;3 we introduced a novel hybrid material, made by in-situ chemical polymerization of pyrrole on carbon nanotubes, that further boosts actuation by taking advantage of the peculiar properties of both materials in terms of maximum strain and conductivity;4 we investigated the influence of actuator thickness showing that the generated strain at high frequency is strongly enhanced when thickness is reduced. To overcome limitations set by bimorphs, we designed a novel actuator in which a metal spring, embedded in the solid electrolyte of a bimorph device, is used as a non-actuating counter plate resulting in a three electrode device capable of both linear and bending motion. Finally, we propose a way to model actuators performance in terms of purely material-dependent parameters instead of geometry-dependent ones.5

  3. Projectile Motion with Mathematica.

    ERIC Educational Resources Information Center

    de Alwis, Tilak

    2000-01-01

    Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)

  4. Motional EMF demonstration experiment

    NASA Astrophysics Data System (ADS)

    Kingman, Robert; Popescu, Sabin

    2001-03-01

    A simple quantitative motional emf experiment. The induced voltage is recorded in this computer-based experiment as a coil is moved through the field of a permanent magnet. Results compare closely with predicted values.

  5. Vision and Motion Pictures.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1998-01-01

    Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)

  6. A Projectile Motion Bullseye.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  7. Dizziness and Motion Sickness

    MedlinePlus

    ... special tests of eye motion after warm or cold water or air is used to stimulate the ... Get enough fluids Treat infections, including ear infections, colds, flu, sinus congestion, and other respiratory infections If ...

  8. Molecular Motion Machine

    ERIC Educational Resources Information Center

    Shourd, Melvin L.

    1977-01-01

    Describes the construction of an inexpensive apparatus which utilizes the oscillatory motion of 60 cycle AC current in conjunction with an electromagnetic to illustrate various principles and processes in geology. (SL)

  9. Toying with Motion.

    ERIC Educational Resources Information Center

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  10. Testing new submersible pumps for proper sizing and reduced costs

    SciTech Connect

    O'Toole, W.P.; O'Brien, J.B.

    1986-01-01

    This paper describes an ongoing program to improve overall submersible pump performance by Thums Long Beach Company, acting as Contractor of the City of Long Beach, Operator of the Long Beach Unit. Thums Long Beach Company currently operates 700 submersible pump installations located on four man-made islands and one land fill pier location. The program began with spot testing of submersible pumps for Thums' use. It has evolved to 100 percent pump testing and the stipulation that only pumps with newly manufactured parts are acceptable. The primary goals of this program are to increase well production and lower lifting costs. Critical to these goals is increasing the average length of run by using accurate pump performance data to design equipment and by rejecting defective pumps before they are run. Increased production is realized from better designs. Lower lifting costs result from utilizing higher efficiency pumps and a reduced frequency of pulling submersible equipment.

  11. Testing new submersible pumps for proper sizing and reduced costs

    SciTech Connect

    O'Toole, W.P.; O'Brien, J.B.

    1989-02-01

    This paper describes an ongoing program to improve overall submersible pump performance by Thums Long Beach Co., acting as contractor for the City of Long Beach, operator of the Long Beach Unit. Thums Long Beach Co. currently operates 700 submersible pump installations located on four manmade islands and one landfill pier location. The program began with spot testing of submersible pumps for Thums' use. It has evolved to 100% pump testing and the stipulation that only pumps with newly manufactured parts are acceptable. The primary goals of this program are to increase well production and to lower lifting costs. Critical to these goals is increasing the average length of run by using accurate pump-performance data to design equipment and by rejecting defective pumps before they are run. Increased production is realized from better designs. Lower lifting costs result from using more efficient pumps and a reduced frequency of pulling submersible equipment.

  12. Sensing human hand motions for controlling dexterous robots

    NASA Technical Reports Server (NTRS)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  13. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  14. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  15. Proposed proper Engle-Pereira-Rovelli-Livine vertex amplitude

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan

    2013-04-01

    As established in a prior work of the author, the linear simplicity constraints used in the construction of the so-called “new” spin-foam models mix three of the five sectors of Plebanski theory as well as two dynamical orientations, and this is the reason for multiple terms in the asymptotics of the Engle-Pereira-Rovelli-Livine vertex amplitude as calculated by Barrett et al. Specifically, the term equal to the usual exponential of i times the Regge action corresponds to configurations either in sector (II+) with positive orientation or sector (II-) with negative orientation. The presence of the other terms beyond this cause problems in the semiclassical limit of the spin-foam model when considering multiple 4-simplices due to the fact that the different terms for different 4-simplices mix in the semiclassical limit, leading in general to a non-Regge action and hence non-Regge and nongravitational configurations persisting in the semiclassical limit. To correct this problem, we propose to modify the vertex so its asymptotics include only the one term of the form eiSRegge. To do this, an explicit classical discrete condition is derived that isolates the desired gravitational sector corresponding to this one term. This condition is quantized and used to modify the vertex amplitude, yielding what we call the “proper Engle-Pereira-Rovelli-Livine vertex amplitude.” This vertex still depends only on standard SU(2) spin-network data on the boundary, is SU(2) gauge-invariant, and is linear in the boundary state, as required. In addition, the asymptotics now consist in the single desired term of the form eiSRegge, and all degenerate configurations are exponentially suppressed. A natural generalization to the Lorentzian signature is also presented.

  16. Achieving the Proper Balance between Crew & Public Safety

    NASA Astrophysics Data System (ADS)

    Wilde, P.; Gowan, J.; Silvestri, R.; Stahl, B.; Rosati, P.

    2012-01-01

    A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Crewed vehicle perspectives from the Federal Aviation Administration and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.

  17. Information Superiority generated through proper application of Geoinformatics

    NASA Astrophysics Data System (ADS)

    Teichmann, F.

    2012-04-01

    Information Superiority generated through proper application of Geoinformatics Information management and especially geoscience information delivery is a very delicate task. If it is carried out successfully, geoscientific data will provide the main foundation of Information Superiority. However, improper implementation of geodata generation, assimilation, distribution or storage will not only waste valuable resources like manpower or money, but could also give rise to crucial deficiency in knowledge and might lead to potentially extremely harmful disasters or wrong decisions. Comprehensive Approach, Effect Based Operations and Network Enabled Capabilities are the current buzz terms in the security regime. However, they also apply to various interdisciplinary tasks like catastrophe relief missions, civil task operations or even in day to day business operations where geo-science data is used. Based on experience in the application of geoscience data for defence applications the following procedure or tool box for generating geodata should lead to the desired information superiority: 1. Understand and analyse the mission, the task and the environment for which the geodata is needed 2. Carry out a Information Exchange Requirement between the user or customer and the geodata provider 3. Implementation of current interoperability standards and a coherent metadata structure 4. Execute innovative data generation, data provision, data assimilation and data storage 5. Apply a cost-effective and reasonable data life cycle 6. Implement IT security by focusing of the three pillar concepts Integrity, Availability and Confidentiality of the critical data 7. Draft and execute a service level agreement or a memorandum of understanding between the involved parties 8. Execute a Continuous Improvement Cycle These ideas from the IT world should be transferred into the geoscience community and applied in a wide set of scenarios. A standardized approach of how to generate, provide

  18. Achieving the Proper Balance Between Crew and Public Safety

    NASA Technical Reports Server (NTRS)

    Gowan, John; Silvestri, Ray; Stahl, Ben; Rosati, Paul; Wilde, Paul

    2011-01-01

    A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the Federal Aviation Administration (FAA) and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.

  19. Constructive Perception of Self-Motion

    PubMed Central

    Holly, Jan E.; McCollum, Gin

    2013-01-01

    This review focusses attention on a ragged edge of our knowledge of self-motion perception, where understanding ends but there are experimental results to indicate that present approaches to analysis are inadequate. Although self-motion perception displays processes of "top-down" construction, it is typically analyzed as if it is nothing more than a deformation of the stimulus, using a "bottom-up" and input/output approach beginning with the transduction of the stimulus. Analysis often focusses on the extent to which passive transduction of the movement stimulus is accurate. Some perceptual processes that deform or transform the stimulus arise from the way known properties of sensory receptors contribute to perceptual accuracy or inaccuracy. However, further constructive processes in self-motion perception that involve discrete transformations are not well understood. We introduce constructive perception with a linguistic example which displays familiar discrete properties, then look closely at self-motion perception. Examples of self-motion perception begin with cases in which constructive processes transform particular properties of the stimulus. These transformations allow the nervous system to compose whole percepts of movement; that is, self-motion perception acts at a whole-movement level of analysis, rather than passively transducing individual cues. These whole-movement percepts may be paradoxical. In addition, a single stimulus may give rise to multiple perceptions. After reviewing self-motion perception studies, we discuss research methods for delineating principles of the constructed perception of self-motion. The habit of viewing self-motion illusions only as continuous deformations of the stimulus may be blinding the field to other perceptual phenomena, including those best characterized using the mathematics of discrete transformations or mathematical relationships relating sensory modalities in novel, sometimes discrete ways. Analysis of experiments

  20. Quantifying Exact Motions Along Lineaments on Europa

    NASA Technical Reports Server (NTRS)

    Vetter, J. C.; Kattenhorn, S. A.

    2005-01-01

    Evaluating the precise motions along lineaments on the surface of Jupiter's icy moon, Europa, is a valuable tool for interpreting the development and history of lineaments of various morphologies. Such morphologies include strike-slip faults, dilational bands, ridges, and convergence zones. However, the exact mode of origin and kinematic behavior of these various lineaments are not obvious based on morphology alone. In fact, the apparent motions implied by displaced crosscut features can provide misleading indications of true motions along lineaments. Identifying the precise motions (combinations of sliding and opening/closing) is critical to the accurate characterization and interpretation of each of these lineament types. Lineaments of interest (i.e., those having displaced relatively older features in some manner) are identified on Galileo spacecraft images and measurements are made of the total offset, the separation, and relative orientations of crosscut features with respect to the lineament of interest. Specifically, by using these measured quantities and a series of trigonometric equations, the precise motions (i.e., dilation, convergence, strike-slip, or a combination of strike-slip and dilation or convergence) can be determined. These measurements are, however, limited by the resolution of the available images. This study focuses on motion analysis techniques for Europan lineaments and the precise characterization of fault-orthogonal and/or strike-slip motion along lineaments of varying morphologies. We highlight potential pitfalls of cursory analyses of motion indicators. For example, lineaments with obvious lateral offsets have typically been identified simply as strike-slip faults. This assumption may actually be incorrect, as fault-orthogonal motions may contribute to apparent lateral displacements (offsets or separations). Also, variability in the amount of fault motion along the trace length should theoretically be identifiable using the outlined