Sample records for accurate quantitative description

  1. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  2. A novel approach to teach the generation of bioelectrical potentials from a descriptive and quantitative perspective.

    PubMed

    Rodriguez-Falces, Javier

    2013-12-01

    In electrophysiology studies, it is becoming increasingly common to explain experimental observations using both descriptive methods and quantitative approaches. However, some electrophysiological phenomena, such as the generation of extracellular potentials that results from the propagation of the excitation source along the muscle fiber, are difficult to describe and conceptualize. In addition, most traditional approaches aimed at describing extracellular potentials consist of complex mathematical machinery that gives no chance for physical interpretation. The aim of the present study is to present a new method to teach the formation of extracellular potentials around a muscle fiber from both a descriptive and quantitative perspective. The implementation of this method was tested through a written exam and a satisfaction survey. The new method enhanced the ability of students to visualize the generation of bioelectrical potentials. In addition, the new approach improved students' understanding of how changes in the fiber-to-electrode distance and in the shape of the excitation source are translated into changes in the extracellular potential. The survey results show that combining general principles of electrical fields with accurate graphic imagery gives students an intuitive, yet quantitative, feel for electrophysiological signals and enhances their motivation to continue their studies in the biomedical engineering field.

  3. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  4. Toward Accurate and Quantitative Comparative Metagenomics.

    PubMed

    Nayfach, Stephen; Pollard, Katherine S

    2016-08-25

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Qualitative and quantitative descriptions of glenohumeral motion.

    PubMed

    Hill, A M; Bull, A M J; Wallace, A L; Johnson, G R

    2008-02-01

    Joint modelling plays an important role in qualitative and quantitative descriptions of both normal and abnormal joints, as well as predicting outcomes of alterations to joints in orthopaedic practice and research. Contemporary efforts in modelling have focussed upon the major articulations of the lower limb. Well-constrained arthrokinematics can form the basis of manageable kinetic and dynamic mathematical predictions. In order to contain computation of shoulder complex modelling, glenohumeral joint representations in both limited and complete shoulder girdle models have undergone a generic simplification. As such, glenohumeral joint models are often based upon kinematic descriptions of inadequate degrees of freedom (DOF) for clinical purposes and applications. Qualitative descriptions of glenohumeral motion range from the parody of a hinge joint to the complex realism of a spatial joint. In developing a model, a clear idea of intention is required in order to achieve a required application. Clinical applicability of a model requires both descriptive and predictive output potentials, and as such, a high level of validation is required. Without sufficient appreciation of the clinical intention of the arthrokinematic foundation to a model, error is all too easily introduced. Mathematical description of joint motion serves to quantify all relevant clinical parameters. Commonly, both the Euler angle and helical (screw) axis methods have been applied to the glenohumeral joint, although concordance between these methods and classical anatomical appreciation of joint motion is limited, resulting in miscommunication between clinician and engineer. Compounding these inconsistencies in motion quantification is gimbal lock and sequence dependency.

  6. A quantitative description for efficient financial markets

    NASA Astrophysics Data System (ADS)

    Immonen, Eero

    2015-09-01

    In this article we develop a control system model for describing efficient financial markets. We define the efficiency of a financial market in quantitative terms by robust asymptotic price-value equality in this model. By invoking the Internal Model Principle of robust output regulation theory we then show that under No Bubble Conditions, in the proposed model, the market is efficient if and only if the following conditions hold true: (1) the traders, as a group, can identify any mispricing in asset value (even if no one single trader can do it accurately), and (2) the traders, as a group, incorporate an internal model of the value process (again, even if no one single trader knows it). This main result of the article, which deliberately avoids the requirement for investor rationality, demonstrates, in quantitative terms, that the more transparent the markets are, the more efficient they are. An extensive example is provided to illustrate the theoretical development.

  7. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and

  8. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe.

    PubMed

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-09

    Accurate quantitation of intracellular pH (pH i ) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pH i sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pH i . Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pH i , in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF 4 :Yb 3+ , Tm 3+ UCNPs were used as pH i response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pH i value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pH i related areas and development of the intracellular drug delivery systems.

  9. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe

    NASA Astrophysics Data System (ADS)

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-01

    Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems.

  10. Using Qualitative Metasummary to Synthesize Qualitative and Quantitative Descriptive Findings

    PubMed Central

    Sandelowski, Margarete; Barroso, Julie; Voils, Corrine I.

    2008-01-01

    The new imperative in the health disciplines to be more methodologically inclusive has generated a growing interest in mixed research synthesis, or the integration of qualitative and quantitative research findings. Qualitative metasummary is a quantitatively oriented aggregation of qualitative findings originally developed to accommodate the distinctive features of qualitative surveys. Yet these findings are similar in form and mode of production to the descriptive findings researchers often present in addition to the results of bivariate and multivariable analyses. Qualitative metasummary, which includes the extraction, grouping, and formatting of findings, and the calculation of frequency and intensity effect sizes, can be used to produce mixed research syntheses and to conduct a posteriori analyses of the relationship between reports and findings. PMID:17243111

  11. Accurate Energies and Orbital Description in Semi-Local Kohn-Sham DFT

    NASA Astrophysics Data System (ADS)

    Lindmaa, Alexander; Kuemmel, Stephan; Armiento, Rickard

    2015-03-01

    We present our progress on a scheme in semi-local Kohn-Sham density-functional theory (KS-DFT) for improving the orbital description while still retaining the level of accuracy of the usual semi-local exchange-correlation (xc) functionals. DFT is a widely used tool for first-principles calculations of properties of materials. A given task normally requires a balance of accuracy and computational cost, which is well achieved with semi-local DFT. However, commonly used semi-local xc functionals have important shortcomings which often can be attributed to features of the corresponding xc potential. One shortcoming is an overly delocalized representation of localized orbitals. Recently a semi-local GGA-type xc functional was constructed to address these issues, however, it has the trade-off of lower accuracy of the total energy. We discuss the source of this error in terms of a surplus energy contribution in the functional that needs to be accounted for, and offer a remedy for this issue which formally stays within KS-DFT, and, which does not harshly increase the computational effort. The end result is a scheme that combines accurate total energies (e.g., relaxed geometries) with an improved orbital description (e.g., improved band structure).

  12. From information theory to quantitative description of steric effects.

    PubMed

    Alipour, Mojtaba; Safari, Zahra

    2016-07-21

    Immense efforts have been made in the literature to apply the information theory descriptors for investigating the electronic structure theory of various systems. In the present study, the information theoretic quantities, such as Fisher information, Shannon entropy, Onicescu information energy, and Ghosh-Berkowitz-Parr entropy, have been used to present a quantitative description for one of the most widely used concepts in chemistry, namely the steric effects. Taking the experimental steric scales for the different compounds as benchmark sets, there are reasonable linear relationships between the experimental scales of the steric effects and theoretical values of steric energies calculated from information theory functionals. Perusing the results obtained from the information theoretic quantities with the two representations of electron density and shape function, the Shannon entropy has the best performance for the purpose. On the one hand, the usefulness of considering the contributions of functional groups steric energies and geometries, and on the other hand, dissecting the effects of both global and local information measures simultaneously have also been explored. Furthermore, the utility of the information functionals for the description of steric effects in several chemical transformations, such as electrophilic and nucleophilic reactions and host-guest chemistry, has been analyzed. The functionals of information theory correlate remarkably with the stability of systems and experimental scales. Overall, these findings show that the information theoretic quantities can be introduced as quantitative measures of steric effects and provide further evidences of the quality of information theory toward helping theoreticians and experimentalists to interpret different problems in real systems.

  13. Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations.

    PubMed

    Gibelli, François; Lombez, Laurent; Guillemoles, Jean-François

    2017-02-15

    In order to characterize hot carrier populations in semiconductors, photoluminescence measurement is a convenient tool, enabling us to probe the carrier thermodynamical properties in a contactless way. However, the analysis of the photoluminescence spectra is based on some assumptions which will be discussed in this work. We especially emphasize the importance of the variation of the material absorptivity that should be considered to access accurate thermodynamical properties of the carriers, especially by varying the excitation power. The proposed method enables us to obtain more accurate results of thermodynamical properties by taking into account a rigorous physical description and finds direct application in investigating hot carrier solar cells, which are an adequate concept for achieving high conversion efficiencies with a relatively simple device architecture.

  14. Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy.

    PubMed

    Doblas, Ana; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Saavedra, Genaro; Garcia-Sucerquia, Jorge

    2014-04-01

    The advantages of using a telecentric imaging system in digital holographic microscopy (DHM) to study biological specimens are highlighted. To this end, the performances of nontelecentric DHM and telecentric DHM are evaluated from the quantitative phase imaging (QPI) point of view. The evaluated stability of the microscope allows single-shot QPI in DHM by using telecentric imaging systems. Quantitative phase maps of a section of the head of the drosophila melanogaster fly and of red blood cells are obtained via single-shot DHM with no numerical postprocessing. With these maps we show that the use of telecentric DHM provides larger field of view for a given magnification and permits more accurate QPI measurements with less number of computational operations.

  15. Leadership Styles at Middle- and Early-College Programs: A Quantitative Descriptive Correlational Study

    ERIC Educational Resources Information Center

    Berksteiner, Earl J.

    2013-01-01

    The purpose of this quantitative descriptive correlational study was to determine if associations existed between middle- and early-college (MEC) principals' leadership styles, teacher motivation, and teacher satisfaction. MEC programs were programs designed to assist high school students who were not served well in a traditional setting (Middle…

  16. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNAmore » populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.« less

  17. Linking descriptive geology and quantitative machine learning through an ontology of lithological concepts

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Huber, R.; Robertson, J.; Cox, S. J. D.; Woodcock, R.

    2014-12-01

    Despite the recent explosion of quantitative geological data, geology remains a fundamentally qualitative science. Numerical data only constitute a certain part of data collection in the geosciences. In many cases, geological observations are compiled as text into reports and annotations on drill cores, thin sections or drawings of outcrops. The observations are classified into concepts such as lithology, stratigraphy, geological structure, etc. These descriptions are semantically rich and are generally supported by more quantitative observations using geochemical analyses, XRD, hyperspectral scanning, etc, but the goal is geological semantics. In practice it has been difficult to bring the different observations together due to differing perception or granularity of classification in human observation, or the partial observation of only some characteristics using quantitative sensors. In the past years many geological classification schemas have been transferred into ontologies and vocabularies, formalized using RDF and OWL, and published through SPARQL endpoints. Several lithological ontologies were compiled by stratigraphy.net and published through a SPARQL endpoint. This work is complemented by the development of a Python API to integrate this vocabulary into Python-based text mining applications. The applications for the lithological vocabulary and Python API are automated semantic tagging of geochemical data and descriptions of drill cores, machine learning of geochemical compositions that are diagnostic for lithological classifications, and text mining for lithological concepts in reports and geological literature. This combination of applications can be used to identify anomalies in databases, where composition and lithological classification do not match. It can also be used to identify lithological concepts in the literature and infer quantitative values. The resulting semantic tagging opens new possibilities for linking these diverse sources of data.

  18. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    PubMed

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Quantitative description of respiration processes in meso-eutrophic and eutrophic freshwater environments.

    PubMed

    Kiersztyn, Bartosz; Kauppinen, Elsi S; Kaliński, Tomasz; Chróst, Ryszard; Siuda, Waldemar

    2018-06-01

    We propose a modification of measurement methodology allowing the overall respiration rate (V Resp ) close to the in situ conditions; size of the labile, respirable organic matter pool (OM Resp ); and its turnover time (Tt) to be calculated. In addition to the respiration of dissolved substrates by free-living bacteria, the respiration of attached bacteria and other planktonic organisms is also taken into account. In case study we evaluated the modified, quantitative description of respiration processes in surface waters of lakes of different trophic status: mezzo-eutrophic and eutrophic. In both types of studied environments, V Resp oscillated between 1.0 μmol C l -1  h -1 and 3.0 μmol C l -1  h -1 , and the size of the OM Resp pool varied from 39.3 μM C to 828.7 μM C. Despite of higher OM Resp concentrations in eutrophic lakes, we found a lower susceptibility of OM to respiration processes in eutrophic than in meso-eutrophic lakes but similar V Resp in both types of lakes. We conclude that the proposed method allows a fast quantitative description of labile organic matter utilization by aerobic aquatic microorganisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory.

    PubMed

    Cao, Xiaofang; Rong, Chunying; Zhong, Aiguo; Lu, Tian; Liu, Shubin

    2018-01-15

    Molecular acidity is one of the important physiochemical properties of a molecular system, yet its accurate calculation and prediction are still an unresolved problem in the literature. In this work, we propose to make use of the quantities from the information-theoretic (IT) approach in density functional reactivity theory and provide an accurate description of molecular acidity from a completely new perspective. To illustrate our point, five different categories of acidic series, singly and doubly substituted benzoic acids, singly substituted benzenesulfinic acids, benzeneseleninic acids, phenols, and alkyl carboxylic acids, have been thoroughly examined. We show that using IT quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Rényi entropy, one is able to simultaneously predict experimental pKa values of these different categories of compounds. Because of the universality of the quantities employed in this work, which are all density dependent, our approach should be general and be applicable to other systems as well. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    PubMed Central

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  2. Accurate quantitation standards of glutathione via traceable sulfur measurement by inductively coupled plasma optical emission spectrometry and ion chromatography

    PubMed Central

    Rastogi, L.; Dash, K.; Arunachalam, J.

    2013-01-01

    The quantitative analysis of glutathione (GSH) is important in different fields like medicine, biology, and biotechnology. Accurate quantitative measurements of this analyte have been hampered by the lack of well characterized reference standards. The proposed procedure is intended to provide an accurate and definitive method for the quantitation of GSH for reference measurements. Measurement of the stoichiometrically existing sulfur content in purified GSH offers an approach for its quantitation and calibration through an appropriate characterized reference material (CRM) for sulfur would provide a methodology for the certification of GSH quantity, that is traceable to SI (International system of units). The inductively coupled plasma optical emission spectrometry (ICP-OES) approach negates the need for any sample digestion. The sulfur content of the purified GSH is quantitatively converted into sulfate ions by microwave-assisted UV digestion in the presence of hydrogen peroxide prior to ion chromatography (IC) measurements. The measurement of sulfur by ICP-OES and IC (as sulfate) using the “high performance” methodology could be useful for characterizing primary calibration standards and certified reference materials with low uncertainties. The relative expanded uncertainties (% U) expressed at 95% confidence interval for ICP-OES analyses varied from 0.1% to 0.3%, while in the case of IC, they were between 0.2% and 1.2%. The described methods are more suitable for characterizing primary calibration standards and certifying reference materials of GSH, than for routine measurements. PMID:29403814

  3. Accurate Virus Quantitation Using a Scanning Transmission Electron Microscopy (STEM) Detector in a Scanning Electron Microscope

    DTIC Science & Technology

    2017-06-29

    Accurate Virus Quantitation Using a Scanning Transmission Electron Microscopy (STEM) Detector in a Scanning Electron Microscope Candace D Blancett1...L Norris2, Cynthia A Rossi4 , Pamela J Glass3, Mei G Sun1,* 1 Pathology Division, United States Army Medical Research Institute of Infectious...Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland, 21702 2Biostatistics Division, United States Army Medical Research Institute of

  4. Accurate atomistic first-principles calculations of electronic stopping

    DOE PAGES

    Schleife, André; Kanai, Yosuke; Correa, Alfredo A.

    2015-01-20

    In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less

  5. A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants.

    PubMed

    Geng, Hua; Todd, Naomi M; Devlin-Mullin, Aine; Poologasundarampillai, Gowsihan; Kim, Taek Bo; Madi, Kamel; Cartmell, Sarah; Mitchell, Christopher A; Jones, Julian R; Lee, Peter D

    2016-06-01

    A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact. The correlative imaging allowed the significant volumetric shrinkage of histology sections to be quantified for the first time (~15 %). This technique demonstrated the importance of location of the histological section, demonstrating that up to a 30 % offset can be introduced. The results were used to quantitatively demonstrate the effectiveness of 3D printed titanium lattice implants.

  6. Highly Accurate Quantitative Analysis Of Enantiomeric Mixtures from Spatially Frequency Encoded 1H NMR Spectra.

    PubMed

    Plainchont, Bertrand; Pitoux, Daisy; Cyrille, Mathieu; Giraud, Nicolas

    2018-02-06

    We propose an original concept to measure accurately enantiomeric excesses on proton NMR spectra, which combines high-resolution techniques based on a spatial encoding of the sample, with the use of optically active weakly orienting solvents. We show that it is possible to simulate accurately dipolar edited spectra of enantiomers dissolved in a chiral liquid crystalline phase, and to use these simulations to calibrate integrations that can be measured on experimental data, in order to perform a quantitative chiral analysis. This approach is demonstrated on a chemical intermediate for which optical purity is an essential criterion. We find that there is a very good correlation between the experimental and calculated integration ratios extracted from G-SERF spectra, which paves the way to a general method of determination of enantiomeric excesses based on the observation of 1 H nuclei.

  7. A Novel Approach to Teach the Generation of Bioelectrical Potentials from a Descriptive and Quantitative Perspective

    ERIC Educational Resources Information Center

    Rodriguez-Falces, Javier

    2013-01-01

    In electrophysiology studies, it is becoming increasingly common to explain experimental observations using both descriptive methods and quantitative approaches. However, some electrophysiological phenomena, such as the generation of extracellular potentials that results from the propagation of the excitation source along the muscle fiber, are…

  8. Quantitative description of solid breast nodules by ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Sehgal, Chandra M.; Kangas, Sarah A.; Cary, Ted W.; Weinstein, Susan P.; Schultz, Susan M.; Arger, Peter H.; Conant, Emily F.

    2004-04-01

    Various features based on qualitative description of shape, contour, margin and echogenicity of solid breast nodules are used clinically to classify them as benign or malignant. However, there continues to be considerable overlap in the sonographic findings for the two types of lesions. This is related to the lack of precise definition of the various features as well as to the lack of agreement among observers, among other factors. The goal of this investigation is to define clinical features quantitatively and evaluate if they differ significantly in malignant and benign cases. Features based on margin sharpness and continuity, shadowing, and attenuation were defined and calculated from the images. These features were tested on digital phantoms. Following the evaluation, the features were measured on 116 breast sonograms of 58 biopsy-proven masses. Biopsy had been recommended for all of these breast lesions based on physical exams and conventional diagnostic imaging of ultrasound and/or mammography. Of the 58 masses, 20 were identified as malignant and 38 as benign histologically. Margin sharpness, margin echogenicity, and angular margin variation were significantly different for the two groups (p<0.03, two-tailed student t-test). Shadowing and attenuation of ultrasound did not show significant difference. The results of this preliminary study show that quantitative margin characteristics measured for the malignant and benign masses from the ultrasound images are different and could potentially be useful in identifying a subgroup of solid breast nodules that have low risk of being malignant.

  9. Descriptive Quantitative Analysis of Rearfoot Alignment Radiographic Parameters.

    PubMed

    Meyr, Andrew J; Wagoner, Matthew R

    2015-01-01

    Although the radiographic parameters of the transverse talocalcaneal angle (tTCA), calcaneocuboid angle (CCA), talar head uncovering (THU), calcaneal inclination angle (CIA), talar declination angle (TDA), lateral talar-first metatarsal angle (lTFA), and lateral talocalcaneal angle (lTCA) form the basis of the preoperative evaluation and procedure selection for pes planovalgus deformity, the so-called normal values of these measurements are not well-established. The objectives of the present study were to retrospectively evaluate the descriptive statistics of these radiographic parameters (tTCA, CCA, THU, CIA, TDA, lTFA, and lTCA) in a large population, and, second, to determine an objective basis for defining "normal" versus "abnormal" measurements. As a secondary outcome, the relationship of these variables to the body mass index was assessed. Anteroposterior and lateral foot radiographs from 250 consecutive patients without a history of previous foot and ankle surgery and/or trauma were evaluated. The results revealed a mean measurement of 24.12°, 13.20°, 74.32%, 16.41°, 26.64°, 8.37°, and 43.41° for the tTCA, CCA, THU, CIA, TDA, lTFA, and lTCA, respectively. These were generally in line with the reported historical normal values. Descriptive statistical analysis demonstrated that the tTCA, THU, and TDA met the standards to be considered normally distributed but that the CCA, CIA, lTFA, and lTCA demonstrated data characteristics of both parametric and nonparametric distributions. Furthermore, only the CIA (R = -0.2428) and lTCA (R = -0.2449) demonstrated substantial correlation with the body mass index. No differentiations in deformity progression were observed when the radiographic parameters were plotted against each other to lead to a quantitative basis for defining "normal" versus "abnormal" measurements. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Quantitative descriptive analysis of Italian polenta produced with different corn cultivars.

    PubMed

    Zeppa, Giuseppe; Bertolino, Marta; Rolle, Luca

    2012-01-30

    Polenta is a porridge-like dish, generally made by mixing cornmeal with salt water and stirring constantly while cooking over a low heat. It can be eaten plain, straight from the pan, or topped with various foods (cheeses, meat, sausages, fish, etc.). It is most popular in northern Italy but can also be found in Switzerland, Austria, Croatia, Argentina and other countries in Eastern Europe and South America. Despite this diffusion, there are no data concerning the sensory characteristics of this product. A research study was therefore carried out to define the lexicon for a sensory profile of polenta and relationships with corn cultivars. A lexicon with 13 sensory parameters was defined and validated before references were determined. After panel training, the sensory profiles of 12 autochthonous maize cultivars were defined. The results of this research highlighted that quantitative descriptive analysis can also be used for the sensory description of polenta, and that the defined lexicon can be used to describe the sensory qualities of polenta for both basic research, such as maize selection, and product development. Copyright © 2011 Society of Chemical Industry.

  11. QUANTITATION OF MENSTRUAL BLOOD LOSS: A RADIOACTIVE METHOD UTILIZING A COUNTING DOME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauxe, W.N.

    A description has been given of a simple, accurate tech nique for the quantitation of menstrual blood loss, involving the determination of a three- dimensional isosensitivity curve and the fashioning of a lucite dome with cover to fit these specifications. Ten normal subjects lost no more than 50 ml each per menstrual period. (auth)

  12. Restriction Site Tiling Analysis: accurate discovery and quantitative genotyping of genome-wide polymorphisms using nucleotide arrays

    PubMed Central

    2010-01-01

    High-throughput genotype data can be used to identify genes important for local adaptation in wild populations, phenotypes in lab stocks, or disease-related traits in human medicine. Here we advance microarray-based genotyping for population genomics with Restriction Site Tiling Analysis. The approach simultaneously discovers polymorphisms and provides quantitative genotype data at 10,000s of loci. It is highly accurate and free from ascertainment bias. We apply the approach to uncover genomic differentiation in the purple sea urchin. PMID:20403197

  13. Descriptive quantitative analysis of hallux abductovalgus transverse plane radiographic parameters.

    PubMed

    Meyr, Andrew J; Myers, Adam; Pontious, Jane

    2014-01-01

    Although the transverse plane radiographic parameters of the first intermetatarsal angle (IMA), hallux abductus angle (HAA), and the metatarsal-sesamoid position (MSP) form the basis of preoperative procedure selection and postoperative surgical evaluation of the hallux abductovalgus deformity, the so-called normal values of these measurements have not been well established. The objectives of the present study were to (1) evaluate the descriptive statistics of the first IMA, HAA, and MSP from a large patient population and (2) to determine an objective basis for defining "normal" versus "abnormal" measurements. Anteroposterior foot radiographs from 373 consecutive patients without a history of previous foot and ankle surgery and/or trauma were evaluated for the measurements of the first IMA, HAA, and MSP. The results revealed a mean measurement of 9.93°, 17.59°, and position 3.63 for the first IMA, HAA, and MSP, respectively. An advanced descriptive analysis demonstrated data characteristics of both parametric and nonparametric distributions. Furthermore, clear differentiations in deformity progression were appreciated when the variables were graphically depicted against each other. This could represent a quantitative basis for defining "normal" versus "abnormal" values. From the results of the present study, we have concluded that these radiographic parameters can be more conservatively reported and analyzed using nonparametric descriptive and comparative statistics within medical studies and that the combination of a first IMA, HAA, and MSP at or greater than approximately 10°, 18°, and position 4, respectively, appears to be an objective "tipping point" in terms of deformity progression and might represent an upper limit of acceptable in terms of surgical deformity correction. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  14. A unique charge-coupled device/xenon arc lamp based imaging system for the accurate detection and quantitation of multicolour fluorescence.

    PubMed

    Spibey, C A; Jackson, P; Herick, K

    2001-03-01

    In recent years the use of fluorescent dyes in biological applications has dramatically increased. The continual improvement in the capabilities of these fluorescent dyes demands increasingly sensitive detection systems that provide accurate quantitation over a wide linear dynamic range. In the field of proteomics, the detection, quantitation and identification of very low abundance proteins are of extreme importance in understanding cellular processes. Therefore, the instrumentation used to acquire an image of such samples, for spot picking and identification by mass spectrometry, must be sensitive enough to be able, not only, to maximise the sensitivity and dynamic range of the staining dyes but, as importantly, adapt to the ever changing portfolio of fluorescent dyes as they become available. Just as the available fluorescent probes are improving and evolving so are the users application requirements. Therefore, the instrumentation chosen must be flexible to address and adapt to those changing needs. As a result, a highly competitive market for the supply and production of such dyes and the instrumentation for their detection and quantitation have emerged. The instrumentation currently available is based on either laser/photomultiplier tube (PMT) scanning or lamp/charge-coupled device (CCD) based mechanisms. This review briefly discusses the advantages and disadvantages of both System types for fluorescence imaging, gives a technical overview of CCD technology and describes in detail a unique xenon/are lamp CCD based instrument, from PerkinElmer Life Sciences. The Wallac-1442 ARTHUR is unique in its ability to scan both large areas at high resolution and give accurate selectable excitation over the whole of the UV/visible range. It operates by filtering both the excitation and emission wavelengths, providing optimal and accurate measurement and quantitation of virtually any available dye and allows excellent spectral resolution between different fluorophores

  15. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    PubMed Central

    Xu, Xin; Goddard, William A.

    2004-01-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA. PMID:14981235

  16. Quantitative descriptive analysis and principal component analysis for sensory characterization of Indian milk product cham-cham.

    PubMed

    Puri, Ritika; Khamrui, Kaushik; Khetra, Yogesh; Malhotra, Ravinder; Devraja, H C

    2016-02-01

    Promising development and expansion in the market of cham-cham, a traditional Indian dairy product is expected in the coming future with the organized production of this milk product by some large dairies. The objective of this study was to document the extent of variation in sensory properties of market samples of cham-cham collected from four different locations known for their excellence in cham-cham production and to find out the attributes that govern much of variation in sensory scores of this product using quantitative descriptive analysis (QDA) and principal component analysis (PCA). QDA revealed significant (p < 0.05) difference in sensory attributes of cham-cham among the market samples. PCA identified four significant principal components that accounted for 72.4 % of the variation in the sensory data. Factor scores of each of the four principal components which primarily correspond to sweetness/shape/dryness of interior, surface appearance/surface dryness, rancid and firmness attributes specify the location of each market sample along each of the axes in 3-D graphs. These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring attributes of cham-cham that contribute most to its sensory acceptability.

  17. Accurate quantitation of D+ fetomaternal hemorrhage by flow cytometry using a novel reagent to eliminate granulocytes from analysis.

    PubMed

    Kumpel, Belinda; Hazell, Matthew; Guest, Alan; Dixey, Jonathan; Mushens, Rosey; Bishop, Debbie; Wreford-Bush, Tim; Lee, Edmond

    2014-05-01

    Quantitation of fetomaternal hemorrhage (FMH) is performed to determine the dose of prophylactic anti-D (RhIG) required to prevent D immunization of D- women. Flow cytometry (FC) is the most accurate method. However, maternal white blood cells (WBCs) can give high background by binding anti-D nonspecifically, compromising accuracy. Maternal blood samples (69) were sent for FC quantitation of FMH after positive Kleihauer-Betke test (KBT) analysis and RhIG administration. Reagents used were BRAD-3-fluorescein isothiocyanate (FITC; anti-D), AEVZ5.3-FITC (anti-varicella zoster [anti-VZ], negative control), anti-fetal hemoglobin (HbF)-FITC, blended two-color reagents, BRAD-3-FITC/anti-CD45-phycoerythrin (PE; anti-D/L), and BRAD-3-FITC/anti-CD66b-PE (anti-D/G). PE-positive WBCs were eliminated from analysis by gating. Full blood counts were performed on maternal samples and female donors. Elevated numbers of neutrophils were present in 80% of patients. Red blood cell (RBC) indices varied widely in maternal blood. D+ FMH values obtained with anti-D/L, anti-D/G, and anti-HbF-FITC were very similar (r = 0.99, p < 0.001). Correlation between KBT and anti-HbF-FITC FMH results was low (r = 0.716). Inaccurate FMH quantitation using the current method (anti-D minus anti-VZ) occurred with 71% samples having less than 15 mL of D+ FMH (RBCs) and insufficient RhIG calculated for 9%. Using two-color reagents and anti-HbF-FITC, approximately 30% patients had elevated F cells, 26% had no fetal cells, 6% had D- FMH, 26% had 4 to 15 mL of D+ FMH, and 12% patients had more than 15 mL of D+ FMH (RBCs) requiring more than 300 μg of RhIG. Without accurate quantitation of D+ FMH by FC, some women would receive inappropriate or inadequate anti-D prophylaxis. The latter may be at risk of immunization leading to hemolytic disease of the newborn. © 2013 American Association of Blood Banks.

  18. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  19. Accurate description of charged excitations in molecular solids from embedded many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Li, Jing; D'Avino, Gabriele; Duchemin, Ivan; Beljonne, David; Blase, Xavier

    2018-01-01

    We present a novel hybrid quantum/classical approach to the calculation of charged excitations in molecular solids based on the many-body Green's function G W formalism. Molecules described at the G W level are embedded into the crystalline environment modeled with an accurate classical polarizable scheme. This allows the calculation of electron addition and removal energies in the bulk and at crystal surfaces where charged excitations are probed in photoelectron experiments. By considering the paradigmatic case of pentacene and perfluoropentacene crystals, we discuss the different contributions from intermolecular interactions to electronic energy levels, distinguishing between polarization, which is accounted for combining quantum and classical polarizabilities, and crystal field effects, that can impact energy levels by up to ±0.6 eV. After introducing band dispersion, we achieve quantitative agreement (within 0.2 eV) on the ionization potential and electron affinity measured at pentacene and perfluoropentacene crystal surfaces characterized by standing molecules.

  20. A knowledge-based potential with an accurate description of local interactions improves discrimination between native and near-native protein conformations.

    PubMed

    Ferrada, Evandro; Vergara, Ismael A; Melo, Francisco

    2007-01-01

    The correct discrimination between native and near-native protein conformations is essential for achieving accurate computer-based protein structure prediction. However, this has proven to be a difficult task, since currently available physical energy functions, empirical potentials and statistical scoring functions are still limited in achieving this goal consistently. In this work, we assess and compare the ability of different full atom knowledge-based potentials to discriminate between native protein structures and near-native protein conformations generated by comparative modeling. Using a benchmark of 152 near-native protein models and their corresponding native structures that encompass several different folds, we demonstrate that the incorporation of close non-bonded pairwise atom terms improves the discriminating power of the empirical potentials. Since the direct and unbiased derivation of close non-bonded terms from current experimental data is not possible, we obtained and used those terms from the corresponding pseudo-energy functions of a non-local knowledge-based potential. It is shown that this methodology significantly improves the discrimination between native and near-native protein conformations, suggesting that a proper description of close non-bonded terms is important to achieve a more complete and accurate description of native protein conformations. Some external knowledge-based energy functions that are widely used in model assessment performed poorly, indicating that the benchmark of models and the specific discrimination task tested in this work constitutes a difficult challenge.

  1. Descriptive statistics.

    PubMed

    Nick, Todd G

    2007-01-01

    Statistics is defined by the Medical Subject Headings (MeSH) thesaurus as the science and art of collecting, summarizing, and analyzing data that are subject to random variation. The two broad categories of summarizing and analyzing data are referred to as descriptive and inferential statistics. This chapter considers the science and art of summarizing data where descriptive statistics and graphics are used to display data. In this chapter, we discuss the fundamentals of descriptive statistics, including describing qualitative and quantitative variables. For describing quantitative variables, measures of location and spread, for example the standard deviation, are presented along with graphical presentations. We also discuss distributions of statistics, for example the variance, as well as the use of transformations. The concepts in this chapter are useful for uncovering patterns within the data and for effectively presenting the results of a project.

  2. Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry.

    PubMed

    Hindle, Ralph; Noestheden, Matthew; Peru, Kerry; Headley, John

    2013-04-19

    This study details the development of a routine method for quantitative analysis of oil sands naphthenic acids, which are a complex class of compounds found naturally and as contaminants in oil sands process waters from Alberta's Athabasca region. Expanding beyond classical naphthenic acids (CnH2n-zO2), those compounds conforming to the formula CnH2n-zOx (where 2≥x≤4) were examined in commercial naphthenic acid and environmental water samples. HPLC facilitated a five-fold reduction in ion suppression when compared to the more commonly used flow injection analysis. A comparison of 39 model naphthenic acids revealed significant variability in response factors, demonstrating the necessity of using naphthenic acid mixtures for quantitation, rather than model compounds. It was also demonstrated that naphthenic acidic heterogeneity (commercial and environmental) necessitates establishing a single NA mix as the standard against which all quantitation is performed. The authors present the first ISO17025 accredited method for the analysis of naphthenic acids in water using HPLC high resolution accurate mass time-of-flight mass spectrometry. The method detection limit was 1mg/L total oxy-naphthenic acids (Sigma technical mix). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Accurate ECG diagnosis of atrial tachyarrhythmias using quantitative analysis: a prospective diagnostic and cost-effectiveness study.

    PubMed

    Krummen, David E; Patel, Mitul; Nguyen, Hong; Ho, Gordon; Kazi, Dhruv S; Clopton, Paul; Holland, Marian C; Greenberg, Scott L; Feld, Gregory K; Faddis, Mitchell N; Narayan, Sanjiv M

    2010-11-01

    Quantitative ECG Analysis. Optimal atrial tachyarrhythmia management is facilitated by accurate electrocardiogram interpretation, yet typical atrial flutter (AFl) may present without sawtooth F-waves or RR regularity, and atrial fibrillation (AF) may be difficult to separate from atypical AFl or rapid focal atrial tachycardia (AT). We analyzed whether improved diagnostic accuracy using a validated analysis tool significantly impacts costs and patient care. We performed a prospective, blinded, multicenter study using a novel quantitative computerized algorithm to identify atrial tachyarrhythmia mechanism from the surface ECG in patients referred for electrophysiology study (EPS). In 122 consecutive patients (age 60 ± 12 years) referred for EPS, 91 sustained atrial tachyarrhythmias were studied. ECGs were also interpreted by 9 physicians from 3 specialties for comparison and to allow healthcare system modeling. Diagnostic accuracy was compared to the diagnosis at EPS. A Markov model was used to estimate the impact of improved arrhythmia diagnosis. We found 13% of typical AFl ECGs had neither sawtooth flutter waves nor RR regularity, and were misdiagnosed by the majority of clinicians (0/6 correctly diagnosed by consensus visual interpretation) but correctly by quantitative analysis in 83% (5/6, P = 0.03). AF diagnosis was also improved through use of the algorithm (92%) versus visual interpretation (primary care: 76%, P < 0.01). Economically, we found that these improvements in diagnostic accuracy resulted in an average cost-savings of $1,303 and 0.007 quality-adjusted-life-years per patient. Typical AFl and AF are frequently misdiagnosed using visual criteria. Quantitative analysis improves diagnostic accuracy and results in improved healthcare costs and patient outcomes. © 2010 Wiley Periodicals, Inc.

  4. Analytical method for the accurate determination of tricothecenes in grains using LC-MS/MS: a comparison between MRM transition and MS3 quantitation.

    PubMed

    Lim, Chee Wei; Tai, Siew Hoon; Lee, Lin Min; Chan, Sheot Harn

    2012-07-01

    The current food crisis demands unambiguous determination of mycotoxin contamination in staple foods to achieve safer food for consumption. This paper describes the first accurate LC-MS/MS method developed to analyze tricothecenes in grains by applying multiple reaction monitoring (MRM) transition and MS(3) quantitation strategies in tandem. The tricothecenes are nivalenol, deoxynivalenol, deoxynivalenol-3-glucoside, fusarenon X, 3-acetyl-deoxynivalenol, 15-acetyldeoxynivalenol, diacetoxyscirpenol, and HT-2 and T-2 toxins. Acetic acid and ammonium acetate were used to convert the analytes into their respective acetate adducts and ammonium adducts under negative and positive MS polarity conditions, respectively. The mycotoxins were separated by reversed-phase LC in a 13.5-min run, ionized using electrospray ionization, and detected by tandem mass spectrometry. Analyte-specific mass-to-charge (m/z) ratios were used to perform quantitation under MRM transition and MS(3) (linear ion trap) modes. Three experiments were made for each quantitation mode and matrix in batches over 6 days for recovery studies. The matrix effect was investigated at concentration levels of 20, 40, 80, 120, 160, and 200 μg kg(-1) (n = 3) in 5 g corn flour and rice flour. Extraction with acetonitrile provided a good overall recovery range of 90-108% (n = 3) at three levels of spiking concentration of 40, 80, and 120 μg kg(-1). A quantitation limit of 2-6 μg kg(-1) was achieved by applying an MRM transition quantitation strategy. Under MS(3) mode, a quantitation limit of 4-10 μg kg(-1) was achieved. Relative standard deviations of 2-10% and 2-11% were reported for MRM transition and MS(3) quantitation, respectively. The successful utilization of MS(3) enabled accurate analyte fragmentation pattern matching and its quantitation, leading to the development of analytical methods in fields that demand both analyte specificity and fragmentation fingerprint-matching capabilities that are

  5. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.

  6. From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties.

    PubMed

    Xu, Xin; Goddard, William A

    2004-03-02

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.

  7. From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Goddard, William A., III

    2004-03-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.

  8. Quantitative descriptions of rice plant architecture and their application

    PubMed Central

    Li, Xumeng; Wang, Xiaohui; Peng, Yulin; Wei, Hailin; Zhu, Xinguang; Chang, Shuoqi; Li, Ming; Li, Tao; Huang, Huang

    2017-01-01

    Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation. PMID:28545144

  9. Quantitative descriptions of rice plant architecture and their application.

    PubMed

    Li, Xumeng; Wang, Xiaohui; Peng, Yulin; Wei, Hailin; Zhu, Xinguang; Chang, Shuoqi; Li, Ming; Li, Tao; Huang, Huang

    2017-01-01

    Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation.

  10. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging.

    PubMed

    Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia

    2015-01-01

    The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.

  11. Preferential access to genetic information from endogenous hominin ancient DNA and accurate quantitative SNP-typing via SPEX

    PubMed Central

    Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip

    2010-01-01

    The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251

  12. Method for a quantitative investigation of the frozen flow hypothesis

    PubMed

    Schock; Spillar

    2000-09-01

    We present a technique to test the frozen flow hypothesis quantitatively, using data from wave-front sensors such as those found in adaptive optics systems. Detailed treatments of the theoretical background of the method and of the error analysis are presented. Analyzing data from the 1.5-m and 3.5-m telescopes at the Starfire Optical Range, we find that the frozen flow hypothesis is an accurate description of the temporal development of atmospheric turbulence on time scales of the order of 1-10 ms but that significant deviations from the frozen flow behavior are present for longer time scales.

  13. Accurate quantitation of circulating cell-free mitochondrial DNA in plasma by droplet digital PCR.

    PubMed

    Ye, Wei; Tang, Xiaojun; Liu, Chu; Wen, Chaowei; Li, Wei; Lyu, Jianxin

    2017-04-01

    To establish a method for accurate quantitation of circulating cell-free mitochondrial DNA (ccf-mtDNA) in plasma by droplet digital PCR (ddPCR), we designed a ddPCR method to determine the copy number of ccf-mtDNA by amplifying mitochondrial ND1 (MT-ND1). To evaluate the sensitivity and specificity of the method, a recombinant pMD18-T plasmid containing MT-ND1 sequences and mtDNA-deleted (ρ 0 ) HeLa cells were used, respectively. Subsequently, different plasma samples were prepared for ddPCR to evaluate the feasibility of detecting plasma ccf-mtDNA. In the results, the ddPCR method showed high sensitivity and specificity. When the DNA was extracted from plasma prior to ddPCR, the ccf-mtDNA copy number was higher than that measured without extraction. This difference was not due to a PCR inhibitor, such as EDTA-Na 2 , an anti-coagulant in plasma, because standard EDTA-Na 2 concentration (5 mM) did not significantly inhibit ddPCR reactions. The difference might be attributable to plasma exosomal mtDNA, which was 4.21 ± 0.38 copies/μL of plasma, accounting for ∼19% of plasma ccf-mtDNA. Therefore, ddPCR can quickly and reliably detect ccf-mtDNA from plasma with a prior DNA extraction step, providing for a more accurate detection of ccf-mtDNA. The direct use of plasma as a template in ddPCR is suitable for the detection of exogenous cell-free nucleic acids within plasma, but not of nucleic acids that have a vesicle-associated form, such as exosomal mtDNA. Graphical Abstract Designs of the present work. *: Module 1, #: Module 2, &: Module 3.

  14. Water Lone Pair Delocalization in Classical and Quantum Descriptions of the Hydration of Model Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remsing, Richard C.; Duignan, Timothy T.; Baer, Marcel D.

    Understanding the nature of ionic hydration at a fundamental level has eluded scientists despite intense interest for nearly a century. In particular, the microscopic origins of the asymmetry of ion solvation thermodynamics with respect to the sign of the ionic charge remains a mystery. Here, we determine the response of accurate quantum mechanical water models to strong nanoscale solvation forces arising from excluded volumes and ionic electrostatic fields. This is compared to the predictions of two important limiting classes of classical models of water with fixed point changes, differing in their treatment of "lone-pair" electrons. Using the quantum water modelmore » as our standard of accuracy, we find that a single fixed classical treatment of lone pair electrons cannot accurately describe solvation of both apolar and cationic solutes, underlining the need for a more flexible description of local electronic effects in solvation processes. However, we explicitly show that all water models studied respond to weak long-ranged electrostatic perturbations in a manner that follows macroscopic dielectric continuum models, as would be expected. We emphasize the importance of these findings in the context of realistic ion models, using density functional theory and empirical models, and discuss the implications of our results for quantitatively accurate reduced descriptions of solvation in dielectric media.« less

  15. Quantitative Phase Microscopy for Accurate Characterization of Microlens Arrays

    NASA Astrophysics Data System (ADS)

    Grilli, Simonetta; Miccio, Lisa; Merola, Francesco; Finizio, Andrea; Paturzo, Melania; Coppola, Sara; Vespini, Veronica; Ferraro, Pietro

    Microlens arrays are of fundamental importance in a wide variety of applications in optics and photonics. This chapter deals with an accurate digital holography-based characterization of both liquid and polymeric microlenses fabricated by an innovative pyro-electrowetting process. The actuation of liquid and polymeric films is obtained through the use of pyroelectric charges generated into polar dielectric lithium niobate crystals.

  16. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  17. Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity

    NASA Astrophysics Data System (ADS)

    Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA

    2018-03-01

    The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.

  18. Descriptive approaches to landscape analysis

    Treesearch

    R. Burton Litton Jr.

    1979-01-01

    Descriptive landscape analyses include various procedures used to document visual/scenic resources. Historic and regional examples of landscape description represent desirable insight for contemporary professional inventory work. Routed and areal landscape inventories are discussed as basic tools. From them, qualitative and quantitative evaluations can be developed...

  19. Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology?

    PubMed

    Gizak, Agnieszka; Rakus, Dariusz

    2016-01-11

    Molecular and cellular biology methodology is traditionally based on the reasoning called "the mechanistic explanation". In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems' complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites), and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.

  20. A Quantitative Description of FBI Public Relations.

    ERIC Educational Resources Information Center

    Gibson, Dirk C.

    1997-01-01

    States that the Federal Bureau of Investigation (FBI) had the most successful media relations program of all government agencies from the 1930s to the 1980s. Uses quantitative analysis to show why those media efforts were successful. Identifies themes that typified the verbal component of FBI publicity and the broad spectrum of mass communication…

  1. Sequentially Simulated Outcomes: Kind Experience versus Nontransparent Description

    ERIC Educational Resources Information Center

    Hogarth, Robin M.; Soyer, Emre

    2011-01-01

    Recently, researchers have investigated differences in decision making based on description and experience. We address the issue of when experience-based judgments of probability are more accurate than are those based on description. If description is well understood ("transparent") and experience is misleading ("wicked"), it…

  2. Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy.

    PubMed

    Ievlev, Anton V; Jesse, Stephen; Cochell, Thomas J; Unocic, Raymond R; Protopopescu, Vladimir A; Kalinin, Sergei V

    2015-12-22

    Recent advances in liquid cell (scanning) transmission electron microscopy (S)TEM has enabled in situ nanoscale investigations of controlled nanocrystal growth mechanisms. Here, we experimentally and quantitatively investigated the nucleation and growth mechanisms of Pt nanostructures from an aqueous solution of K2PtCl6. Averaged statistical, network, and local approaches have been used for the data analysis and the description of both collective particles dynamics and local growth features. In particular, interaction between neighboring particles has been revealed and attributed to reduction of the platinum concentration in the vicinity of the particle boundary. The local approach for solving the inverse problem showed that particles dynamics can be simulated by a stationary diffusional model. The obtained results are important for understanding nanocrystal formation and growth processes and for optimization of synthesis conditions.

  3. Metabolite profiling of soy sauce using gas chromatography with time-of-flight mass spectrometry and analysis of correlation with quantitative descriptive analysis.

    PubMed

    Yamamoto, Shinya; Bamba, Takeshi; Sano, Atsushi; Kodama, Yukako; Imamura, Miho; Obata, Akio; Fukusaki, Eiichiro

    2012-08-01

    Soy sauces, produced from different ingredients and brewing processes, have variations in components and quality. Therefore, it is extremely important to comprehend the relationship between components and the sensory attributes of soy sauces. The current study sought to perform metabolite profiling in order to devise a method of assessing the attributes of soy sauces. Quantitative descriptive analysis (QDA) data for 24 soy sauce samples were obtained from well selected sensory panelists. Metabolite profiles primarily concerning low-molecular-weight hydrophilic components were based on gas chromatography with time-of-flightmass spectrometry (GC/TOFMS). QDA data for soy sauces were accurately predicted by projection to latent structure (PLS), with metabolite profiles serving as explanatory variables and QDA data set serving as a response variable. Moreover, analysis of correlation between matrices of metabolite profiles and QDA data indicated contributing compounds that were highly correlated with QDA data. Especially, it was indicated that sugars are important components of the tastes of soy sauces. This new approach which combines metabolite profiling with QDA is applicable to analysis of sensory attributes of food as a result of the complex interaction between its components. This approach is effective to search important compounds that contribute to the attributes. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Soft Biometrics; Human Identification Using Comparative Descriptions.

    PubMed

    Reid, Daniel A; Nixon, Mark S; Stevenage, Sarah V

    2014-06-01

    Soft biometrics are a new form of biometric identification which use physical or behavioral traits that can be naturally described by humans. Unlike other biometric approaches, this allows identification based solely on verbal descriptions, bridging the semantic gap between biometrics and human description. To permit soft biometric identification the description must be accurate, yet conventional human descriptions comprising of absolute labels and estimations are often unreliable. A novel method of obtaining human descriptions will be introduced which utilizes comparative categorical labels to describe differences between subjects. This innovative approach has been shown to address many problems associated with absolute categorical labels-most critically, the descriptions contain more objective information and have increased discriminatory capabilities. Relative measurements of the subjects' traits can be inferred from comparative human descriptions using the Elo rating system. The resulting soft biometric signatures have been demonstrated to be robust and allow accurate recognition of subjects. Relative measurements can also be obtained from other forms of human representation. This is demonstrated using a support vector machine to determine relative measurements from gait biometric signatures-allowing retrieval of subjects from video footage by using human comparisons, bridging the semantic gap.

  5. Can Raters with Reduced Job Descriptive Information Provide Accurate Position Analysis Questionnaire (PAQ) Ratings?

    ERIC Educational Resources Information Center

    Friedman, Lee; Harvey, Robert J.

    1986-01-01

    Job-naive raters provided with job descriptive information made Position Analysis Questionnaire (PAQ) ratings which were validated against ratings of job analysts who were also job content experts. None of the reduced job descriptive information conditions enabled job-naive raters to obtain either acceptable levels of convergent validity with…

  6. Rigour in quantitative research.

    PubMed

    Claydon, Leica Sarah

    2015-07-22

    This article which forms part of the research series addresses scientific rigour in quantitative research. It explores the basis and use of quantitative research and the nature of scientific rigour. It examines how the reader may determine whether quantitative research results are accurate, the questions that should be asked to determine accuracy and the checklists that may be used in this process. Quantitative research has advantages in nursing, since it can provide numerical data to help answer questions encountered in everyday practice.

  7. Method for accurate quantitation of background tissue optical properties in the presence of emission from a strong fluorescence marker

    NASA Astrophysics Data System (ADS)

    Bravo, Jaime; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.

    2015-03-01

    Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%, respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.

  8. An accurate analytic description of neutrino oscillations in matter

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. Kh.; Niro, Viviana

    2008-12-01

    A simple closed-form analytic expression for the probability of two-flavour neutrino oscillations in a matter with an arbitrary density profile is derived. Our formula is based on a perturbative expansion and allows an easy calculation of higher order corrections. The expansion parameter is small when the density changes relatively slowly along the neutrino path and/or neutrino energy is not very close to the Mikheyev-Smirnov-Wolfenstein (MSW) resonance energy. Our approximation is not equivalent to the adiabatic approximation and actually goes beyond it. We demonstrate the validity of our results using a few model density profiles, including the PREM density profile of the Earth. It is shown that by combining the results obtained from the expansions valid below and above the MSW resonance one can obtain a very good description of neutrino oscillations in matter in the entire energy range, including the resonance region.

  9. A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California

    USGS Publications Warehouse

    Harden, J.W.

    1982-01-01

    A soil development index has been developed in order to quantitatively measure the degree of soil profile development. This index, which combines eight soil field properties with soil thickness, is designed from field descriptions of the Merced River chronosequence in central California. These eight properties are: clay films, texture plus wet consistence, rubification (color hue and chroma), structure, dry consistence, moist consistence, color value, and pH. Other properties described in the field can be added when more soils are studied. Most of the properties change systematically within the 3 m.y. age span of the Merced River chronosequence. The absence of properties on occasion does not significantly affect the index. Individual quantified field properties, as well as the integrated index, are examined and compared as functions of soil depth and age. ?? 1982.

  10. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  11. An accurate method of extracting fat droplets in liver images for quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masahiro; Kobayashi, Naoki; Komagata, Hideki; Shinoda, Kazuma; Yamaguchi, Masahiro; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2015-03-01

    The steatosis in liver pathological tissue images is a promising indicator of nonalcoholic fatty liver disease (NAFLD) and the possible risk of hepatocellular carcinoma (HCC). The resulting values are also important for ensuring the automatic and accurate classification of HCC images, because the existence of many fat droplets is likely to create errors in quantifying the morphological features used in the process. In this study we propose a method that can automatically detect, and exclude regions with many fat droplets by using the feature values of colors, shapes and the arrangement of cell nuclei. We implement the method and confirm that it can accurately detect fat droplets and quantify the fat droplet ratio of actual images. This investigation also clarifies the effective characteristics that contribute to accurate detection.

  12. Compact and Hybrid Feature Description for Building Extraction

    NASA Astrophysics Data System (ADS)

    Li, Z.; Liu, Y.; Hu, Y.; Li, P.; Ding, Y.

    2017-05-01

    Building extraction in aerial orthophotos is crucial for various applications. Currently, deep learning has been shown to be successful in addressing building extraction with high accuracy and high robustness. However, quite a large number of samples is required in training a classifier when using deep learning model. In order to realize accurate and semi-interactive labelling, the performance of feature description is crucial, as it has significant effect on the accuracy of classification. In this paper, we bring forward a compact and hybrid feature description method, in order to guarantees desirable classification accuracy of the corners on the building roof contours. The proposed descriptor is a hybrid description of an image patch constructed from 4 sets of binary intensity tests. Experiments show that benefiting from binary description and making full use of color channels, this descriptor is not only computationally frugal, but also accurate than SURF for building extraction.

  13. A Comparison of Temporal Dominance of Sensation (TDS) and Quantitative Descriptive Analysis (QDA™) to Identify Flavors in Strawberries.

    PubMed

    Oliver, Penelope; Cicerale, Sara; Pang, Edwin; Keast, Russell

    2018-04-01

    Temporal dominance of sensations (TDS) is a rapid descriptive method that offers a different magnitude of information to traditional descriptive analysis methodologies. This methodology considers the dynamic nature of eating, assessing sensory perception of foods as they change throughout the eating event. Limited research has applied the TDS methodology to strawberries and subsequently validated the results against Quantitative Descriptive Analysis (QDA™). The aim of this research is to compare the TDS methodology using an untrained consumer panel to the results obtained via QDA™ with a trained sensory panel. The trained panelists (n = 12, minimum 60 hr each panelist) were provided with six strawberry samples (three cultivars at two maturation levels) and applied QDA™ techniques to profile each strawberry sample. Untrained consumers (n = 103) were provided with six strawberry samples (three cultivars at two maturation levels) and required to use TDS methodology to assess the dominant sensations for each sample as they change over time. Results revealed moderately comparable product configurations produced via TDS in comparison to QDA™ (RV coefficient = 0.559), as well as similar application of the sweet attribute (correlation coefficient of 0.895 at first bite). The TDS methodology however was not in agreement with the QDA™ methodology regarding more complex flavor terms. These findings support the notion that the lack of training on the definition of terms, together with the limitations of the methodology to ignore all attributes other than those dominant, provide a different magnitude of information than the QDA™ methodology. A comparison of TDS to traditional descriptive analysis indicate that TDS provides additional information to QDA™ regarding the lingering component of eating. The QDA™ results however provide more precise detail regarding singular attributes. Therefore, the TDS methodology has an application in industry when it is important

  14. Recommended procedures and techniques for the petrographic description of bituminous coals

    USGS Publications Warehouse

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1982-01-01

    Modern coal petrology requires rapid and precise description of great numbers of coal core or bench samples in order to acquire the information required to understand and predict vertical and lateral variation of coal quality for correlation with coal-bed thickness, depositional environment, suitability for technological uses, etc. Procedures for coal description vary in accordance with the objectives of the description. To achieve our aim of acquiring the maximum amount of quantitative information within the shortest period of time, we have adopted a combined megascopic-microscopic procedure. Megascopic analysis is used to identify the distinctive lithologies present, and microscopic analysis is required only to describe representative examples of the mixed lithologies observed. This procedure greatly decreases the number of microscopic analyses needed for adequate description of a sample. For quantitative megascopic description of coal microlithotypes, microlithotype assemblages, and lithotypes, we use (V) for vitrite or vitrain, (E) for liptite, (I) for inertite or fusain, (M) for mineral layers or lenses other than iron sulfide, (S) for iron sulfide, and (X1), (X2), etc. for mixed lithologies. Microscopic description is expressed in terms of V representing the vitrinite maceral group, E the exinite group, I the inertinite group, and M mineral components. volume percentages are expressed as subscripts. Thus (V)20(V80E10I5M5)80 indicates a lithotype or assemblage of microlithotypes consisting of 20 vol. % vitrite and 80% of a mixed lithology having a modal maceral composition V80E10I5M5. This bulk composition can alternatively be recalculated and described as V84E8I4M4. To generate these quantitative data rapidly and accurately, we utilize an automated image analysis system (AIAS). Plots of VEIM data on easily constructed ternary diagrams provide readily comprehended illustrations of the range of modal composition of the lithologic units making up a given coal

  15. A method for three-dimensional quantitative observation of the microstructure of biological samples

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Chen, Dieyan; Ma, Wanyun; Wu, Hongxin; Ji, Liang; Sun, Jialin; Lv, Danyu; Zhang, Lu; Li, Ying; Tian, Ning; Zheng, Jinggao; Zhao, Fengying

    2009-07-01

    Contemporary biology has developed into the era of cell biology and molecular biology, and people try to study the mechanism of all kinds of biological phenomena at the microcosmic level now. Accurate description of the microstructure of biological samples is exigent need from many biomedical experiments. This paper introduces a method for 3-dimensional quantitative observation on the microstructure of vital biological samples based on two photon laser scanning microscopy (TPLSM). TPLSM is a novel kind of fluorescence microscopy, which has excellence in its low optical damage, high resolution, deep penetration depth and suitability for 3-dimensional (3D) imaging. Fluorescent stained samples were observed by TPLSM, and afterward the original shapes of them were obtained through 3D image reconstruction. The spatial distribution of all objects in samples as well as their volumes could be derived by image segmentation and mathematic calculation. Thus the 3-dimensionally and quantitatively depicted microstructure of the samples was finally derived. We applied this method to quantitative analysis of the spatial distribution of chromosomes in meiotic mouse oocytes at metaphase, and wonderful results came out last.

  16. A general method for bead-enhanced quantitation by flow cytometry

    PubMed Central

    Montes, Martin; Jaensson, Elin A.; Orozco, Aaron F.; Lewis, Dorothy E.; Corry, David B.

    2009-01-01

    Flow cytometry provides accurate relative cellular quantitation (percent abundance) of cells from diverse samples, but technical limitations of most flow cytometers preclude accurate absolute quantitation. Several quantitation standards are now commercially available which, when added to samples, permit absolute quantitation of CD4+ T cells. However, these reagents are limited by their cost, technical complexity, requirement for additional software and/or limited applicability. Moreover, few studies have validated the use of such reagents in complex biological samples, especially for quantitation of non-T cells. Here we show that addition to samples of known quantities of polystyrene fluorescence standardization beads permits accurate quantitation of CD4+ T cells from complex cell samples. This procedure, here termed single bead-enhanced cytofluorimetry (SBEC), was equally capable of enumerating eosinophils as well as subcellular fragments of apoptotic cells, moieties with very different optical and fluorescent characteristics. Relative to other proprietary products, SBEC is simple, inexpensive and requires no special software, suggesting that the method is suitable for the routine quantitation of most cells and other particles by flow cytometry. PMID:17067632

  17. Light-propagation management in coupled waveguide arrays: Quantitative experimental and theoretical assessment from band structures to functional patterns

    NASA Astrophysics Data System (ADS)

    Moison, Jean-Marie; Belabas, Nadia; Levenson, Juan Ariel; Minot, Christophe

    2012-09-01

    We assess the band structure of arrays of coupled optical waveguides both by ab initio calculations and by experiments, with an excellent quantitative agreement without any adjustable physical parameter. The band structures we obtain can deviate strongly from the expectations of the standard coupled mode theory approximation, but we describe them efficiently by a few parameters within an extended coupled mode theory. We also demonstrate that this description is in turn a firm and simple basis for accurate beam management in functional patterns of coupled waveguides, in full accordance with their design.

  18. A High Resolution/Accurate Mass (HRAM) Data-Dependent MS3 Neutral Loss Screening, Classification, and Relative Quantitation Methodology for Carbonyl Compounds in Saliva

    NASA Astrophysics Data System (ADS)

    Dator, Romel; Carrà, Andrea; Maertens, Laura; Guidolin, Valeria; Villalta, Peter W.; Balbo, Silvia

    2017-04-01

    Reactive carbonyl compounds (RCCs) are ubiquitous in the environment and are generated endogenously as a result of various physiological and pathological processes. These compounds can react with biological molecules inducing deleterious processes believed to be at the basis of their toxic effects. Several of these compounds are implicated in neurotoxic processes, aging disorders, and cancer. Therefore, a method characterizing exposures to these chemicals will provide insights into how they may influence overall health and contribute to disease pathogenesis. Here, we have developed a high resolution accurate mass (HRAM) screening strategy allowing simultaneous identification and relative quantitation of DNPH-derivatized carbonyls in human biological fluids. The screening strategy involves the diagnostic neutral loss of hydroxyl radical triggering MS3 fragmentation, which is only observed in positive ionization mode of DNPH-derivatized carbonyls. Unique fragmentation pathways were used to develop a classification scheme for characterizing known and unanticipated/unknown carbonyl compounds present in saliva. Furthermore, a relative quantitation strategy was implemented to assess variations in the levels of carbonyl compounds before and after exposure using deuterated d 3 -DNPH. This relative quantitation method was tested on human samples before and after exposure to specific amounts of alcohol. The nano-electrospray ionization (nano-ESI) in positive mode afforded excellent sensitivity with detection limits on-column in the high-attomole levels. To the best of our knowledge, this is the first report of a method using HRAM neutral loss screening of carbonyl compounds. In addition, the method allows simultaneous characterization and relative quantitation of DNPH-derivatized compounds using nano-ESI in positive mode.

  19. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Feng; Xu, Yanyan; Guo, Yuan

    2009-12-27

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG- VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarizationmore » dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm⁻¹ spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and ({25.4±1.3)%, respectively.« less

  20. A quantitative reconstruction software suite for SPECT imaging

    NASA Astrophysics Data System (ADS)

    Namías, Mauro; Jeraj, Robert

    2017-11-01

    Quantitative Single Photon Emission Tomography (SPECT) imaging allows for measurement of activity concentrations of a given radiotracer in vivo. Although SPECT has usually been perceived as non-quantitative by the medical community, the introduction of accurate CT based attenuation correction and scatter correction from hybrid SPECT/CT scanners has enabled SPECT systems to be as quantitative as Positron Emission Tomography (PET) systems. We implemented a software suite to reconstruct quantitative SPECT images from hybrid or dedicated SPECT systems with a separate CT scanner. Attenuation, scatter and collimator response corrections were included in an Ordered Subset Expectation Maximization (OSEM) algorithm. A novel scatter fraction estimation technique was introduced. The SPECT/CT system was calibrated with a cylindrical phantom and quantitative accuracy was assessed with an anthropomorphic phantom and a NEMA/IEC image quality phantom. Accurate activity measurements were achieved at an organ level. This software suite helps increasing quantitative accuracy of SPECT scanners.

  1. Compact, accurate description of diagnostic neutral beam propagation and attenuation in a high temperature plasma for charge exchange recombination spectroscopy analysis.

    PubMed

    Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S

    2008-10-01

    Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.

  2. Quantitative proteomics in the field of microbiology.

    PubMed

    Otto, Andreas; Becher, Dörte; Schmidt, Frank

    2014-03-01

    Quantitative proteomics has become an indispensable analytical tool for microbial research. Modern microbial proteomics covers a wide range of topics in basic and applied research from in vitro characterization of single organisms to unravel the physiological implications of stress/starvation to description of the proteome content of a cell at a given time. With the techniques available, ranging from classical gel-based procedures to modern MS-based quantitative techniques, including metabolic and chemical labeling, as well as label-free techniques, quantitative proteomics is today highly successful in sophisticated settings of high complexity such as host-pathogen interactions, mixed microbial communities, and microbial metaproteomics. In this review, we will focus on the vast range of techniques practically applied in current research with an introduction of the workflows used for quantitative comparisons, a description of the advantages/disadvantages of the various methods, reference to hallmark publications and presentation of applications in current microbial research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantitating Organoleptic Volatile Phenols in Smoke-Exposed Vitis vinifera Berries.

    PubMed

    Noestheden, Matthew; Thiessen, Katelyn; Dennis, Eric G; Tiet, Ben; Zandberg, Wesley F

    2017-09-27

    Accurate methods for quantitating volatile phenols (i.e., guaiacol, syringol, 4-ethylphenol, etc.) in smoke-exposed Vitis vinifera berries prior to fermentation are needed to predict the likelihood of perceptible smoke taint following vinification. Reported here is a complete, cross-validated analytical workflow to accurately quantitate free and glycosidically bound volatile phenols in smoke-exposed berries using liquid-liquid extraction, acid-mediated hydrolysis, and gas chromatography-tandem mass spectrometry. The reported workflow addresses critical gaps in existing methods for volatile phenols that impact quantitative accuracy, most notably the effect of injection port temperature and the variability in acid-mediated hydrolytic procedures currently used. Addressing these deficiencies will help the wine industry make accurate, informed decisions when producing wines from smoke-exposed berries.

  4. Quantitative descriptions of generalized arousal, an elementary function of the vertebrate brain

    PubMed Central

    Quinkert, Amy Wells; Vimal, Vivek; Weil, Zachary M.; Reeke, George N.; Schiff, Nicholas D.; Banavar, Jayanth R.; Pfaff, Donald W.

    2011-01-01

    We review a concept of the most primitive, fundamental function of the vertebrate CNS, generalized arousal (GA). Three independent lines of evidence indicate the existence of GA: statistical, genetic, and mechanistic. Here we ask, is this concept amenable to quantitative analysis? Answering in the affirmative, four quantitative approaches have proven useful: (i) factor analysis, (ii) information theory, (iii) deterministic chaos, and (iv) application of a Gaussian equation. It strikes us that, to date, not just one but at least four different quantitative approaches seem necessary for describing different aspects of scientific work on GA. PMID:21555568

  5. Transforming Verbal Counts in Reports of Qualitative Descriptive Studies Into Numbers

    PubMed Central

    Chang, YunKyung; Voils, Corrine I.; Sandelowski, Margarete; Hasselblad, Vic; Crandell, Jamie L.

    2009-01-01

    Reports of qualitative studies typically do not offer much information on the numbers of respondents linked to any one finding. This information may be especially useful in reports of basic, or minimally interpretive, qualitative descriptive studies focused on surveying a range of experiences in a target domain, and its lack may limit the ability to synthesize the results of such studies with quantitative results in systematic reviews. Accordingly, the authors illustrate strategies for deriving plausible ranges of respondents expressing a finding in a set of reports of basic qualitative descriptive studies on antiretroviral adherence and suggest how the results might be used. These strategies have limitations and are never appropriate for use with findings from interpretive qualitative studies. Yet they offer a temporary workaround for preserving and maximizing the value of information from basic qualitative descriptive studies for systematic reviews. They show also why quantitizing is never simply quantitative. PMID:19448052

  6. Initial Description of a Quantitative, Cross-Species (Chimpanzee-Human) Social Responsiveness Measure

    ERIC Educational Resources Information Center

    Marrus, Natasha; Faughn, Carley; Shuman, Jeremy; Petersen, Steve E.; Constantino, John N.; Povinelli, Daniel J.; Pruett, John R., Jr.

    2011-01-01

    Objective: Comparative studies of social responsiveness, an ability that is impaired in autism spectrum disorders, can inform our understanding of both autism and the cognitive architecture of social behavior. Because there is no existing quantitative measure of social responsiveness in chimpanzees, we generated a quantitative, cross-species…

  7. Descriptive and predictive validity of somatic attributions in patients with somatoform disorders: a systematic review of quantitative research.

    PubMed

    Douzenis, Athanassios; Seretis, Dionysis

    2013-09-01

    Research on hypochondriasis and other somatoform disorders (SFD) has provided evidence that patients with SFD tend to attribute their symptoms to organic dysfunctions or disease. However, recent studies appear to discredit this. There is no systematic evidence on whether patients with SFD predominantly rely on somatic attributions, despite calls to include somatic attributions as a positive criterion of somatic symptom disorder (SSD) in the upcoming Diagnostic and Statistical Manual of Mental Disorders (DSM-5). This study is a systematic review of quantitative studies which assess the descriptive and predictive validity of somatic attribution in SFD. The literature search was restricted to studies with patients who met the DSM-IV criteria for SFD. Somatic attribution style in SFD has acceptable descriptive but insufficient predictive validity. This confirms that the overlap between somatic and psychological attributions is often substantial. Attribution style can discriminate between SFD patients with and without comorbidity. A somatic attribution style does not qualify as a positive criterion in SSD. However, there is an urgent need for further research on causal illness perceptions in the full spectrum of medically unexplained symptoms in order to confirm this result. Given its high prevalence, research on psychological attribution style is warranted. Re-attribution does not provide a framework sophisticated enough to address the needs of patients in primary care. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Quantitative aspects of inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  9. Management Approaches to Stomal and Peristomal Complications: A Narrative Descriptive Study.

    PubMed

    Beitz, Janice M; Colwell, Janice C

    2016-01-01

    The purpose of this study was to identify optimal interventions for selected complications based on WOC nurse experts' judgment/expertise. A cross-sectional quantitative descriptive design with qualitative, narrative-type components was used for this study. Following validation rating of appropriateness of interventions and quantitative rankings of first-, second-, and third-line approaches, participants provided substantive handwritten narrative comments about listed interventions. Comments were organized and prioritized using frequency count. Narrative comments reflected the quantitative rankings of efficacy of approaches. Clinicians offered further specific suggestions regarding product use and progression of care for selected complications. Narrative analysis using descriptive quantitative frequency count supported the rankings of most preferred treatments of selected stomal and peristomal complications. Findings add to the previous research on prioritized approaches and evidence-based practice in ostomy care.

  10. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    NASA Astrophysics Data System (ADS)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  11. Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations

    PubMed Central

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Abstract Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure–property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure–property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure–property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials. PMID:28458737

  12. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    PubMed

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  13. Impact of reconstruction parameters on quantitative I-131 SPECT

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR

  14. Quantitative aspects of inductively coupled plasma mass spectrometry

    PubMed Central

    Wagner, Barbara

    2016-01-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644971

  15. Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects

    DOE PAGES

    Yuk, Simuck F.; Pitike, Krishna Chaitanya; Nakhmanson, Serge M.; ...

    2017-03-03

    Using the van der Waals density functional with C09 exchange (vdW-DF-C09), which has been applied to describing a wide range of dispersion-bound systems, we explore the physical properties of prototypical ABO 3 bulk ferroelectric oxides. Surprisingly, vdW-DF-C09 provides a superior description of experimental values for lattice constants, polarization and bulk moduli, exhibiting similar accuracy to the modified Perdew-Burke-Erzenhoff functional which was designed specifically for bulk solids (PBEsol). The relative performance of vdW-DF-C09 is strongly linked to the form of the exchange enhancement factor which, like PBEsol, tends to behave like the gradient expansion approximation for small reduced gradients. These resultsmore » suggest the general-purpose nature of the class of vdW-DF functionals, with particular consequences for predicting material functionality across dense and sparse matter regimes.« less

  16. Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects

    PubMed Central

    Yuk, Simuck F.; Pitike, Krishna Chaitanya; Nakhmanson, Serge M.; Eisenbach, Markus; Li, Ying Wai; Cooper, Valentino R.

    2017-01-01

    Using the van der Waals density functional with C09 exchange (vdW-DF-C09), which has been applied to describing a wide range of dispersion-bound systems, we explore the physical properties of prototypical ABO3 bulk ferroelectric oxides. Surprisingly, vdW-DF-C09 provides a superior description of experimental values for lattice constants, polarization and bulk moduli, exhibiting similar accuracy to the modified Perdew-Burke-Erzenhoff functional which was designed specifically for bulk solids (PBEsol). The relative performance of vdW-DF-C09 is strongly linked to the form of the exchange enhancement factor which, like PBEsol, tends to behave like the gradient expansion approximation for small reduced gradients. These results suggest the general-purpose nature of the class of vdW-DF functionals, with particular consequences for predicting material functionality across dense and sparse matter regimes. PMID:28256544

  17. [A new method of processing quantitative PCR data].

    PubMed

    Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun

    2003-05-01

    Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.

  18. Quantitative method of medication system interface evaluation.

    PubMed

    Pingenot, Alleene Anne; Shanteau, James; Pingenot, James D F

    2007-01-01

    The objective of this study was to develop a quantitative method of evaluating the user interface for medication system software. A detailed task analysis provided a description of user goals and essential activity. A structural fault analysis was used to develop a detailed description of the system interface. Nurses experienced with use of the system under evaluation provided estimates of failure rates for each point in this simplified fault tree. Means of estimated failure rates provided quantitative data for fault analysis. Authors note that, although failures of steps in the program were frequent, participants reported numerous methods of working around these failures so that overall system failure was rare. However, frequent process failure can affect the time required for processing medications, making a system inefficient. This method of interface analysis, called Software Efficiency Evaluation and Fault Identification Method, provides quantitative information with which prototypes can be compared and problems within an interface identified.

  19. Quantitative LC-MS of polymers: determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing.

    PubMed

    Gruendling, Till; Guilhaus, Michael; Barner-Kowollik, Christopher

    2008-09-15

    We report on the successful application of size exclusion chromatography (SEC) combined with electrospray ionization mass spectrometry (ESI-MS) and refractive index (RI) detection for the determination of accurate molecular weight distributions of synthetic polymers, corrected for chromatographic band broadening. The presented method makes use of the ability of ESI-MS to accurately depict the peak profiles and retention volumes of individual oligomers eluting from the SEC column, whereas quantitative information on the absolute concentration of oligomers is obtained from the RI-detector only. A sophisticated computational algorithm based on the maximum entropy principle is used to process the data gained by both detectors, yielding an accurate molecular weight distribution, corrected for chromatographic band broadening. Poly(methyl methacrylate) standards with molecular weights up to 10 kDa serve as model compounds. Molecular weight distributions (MWDs) obtained by the maximum entropy procedure are compared to MWDs, which were calculated by a conventional calibration of the SEC-retention time axis with peak retention data obtained from the mass spectrometer. Comparison showed that for the employed chromatographic system, distributions below 7 kDa were only weakly influenced by chromatographic band broadening. However, the maximum entropy algorithm could successfully correct the MWD of a 10 kDa standard for band broadening effects. Molecular weight averages were between 5 and 14% lower than the manufacturer stated data obtained by classical means of calibration. The presented method demonstrates a consistent approach for analyzing data obtained by coupling mass spectrometric detectors and concentration sensitive detectors to polymer liquid chromatography.

  20. Quantitative Graphics in Newspapers.

    ERIC Educational Resources Information Center

    Tankard, James W., Jr.

    The use of quantitative graphics in newspapers requires achieving a balance between being accurate and getting the attention of the reader. The statistical representations in newspapers are drawn by graphic designers whose key technique is fusion--the striking combination of two visual images. This technique often results in visual puns,…

  1. [Feasibility of consultation - liaison psychiatry in a large general hospital: quantitative description of services and personnel expenditure].

    PubMed

    Windhager, Elmar; Thaler, Katharina; Selberis-Vahl, Wilia Vasiliki; Friedl-Wörgetter, Petra; Windhager, Isabella; Zauner, Katharina

    2015-01-01

    The integration of psychiatric departments in general hospitals lead to an increasing demand of psychiatric consultation, which often overstrains personnel resources of short staffed psychiatric services. To provide consulting service, as it is demanded by guidelines, a multidisciplinary consulting team could be a possible solution. A retrospective descriptive analysis of all consultations made by the psychosocial consultation and liaison service at the general hospital Wels-Grieskirchen in the years 2012 and 2013. There was an increase in referrals overall of 22 % from 2012 to 2013. The largest increase was observed in the group of psychiatrists, who carried out 33.1 % of all consultations. Most consultations, 39.5 %, were done by the group of clinical psychologists, partly substituting medical attendance. Taking together both occupational groups, the expected number of consultations of at least 3 % of all admissions could be achieved. A multidisciplinary consulting team consisting of psychiatrists, psychologists, psychosomatic physicians and social workers staffed with 5.11-6.79 full-time personnel is able to provide psychosocial consultation service at a quantitative level required by international guidelines.

  2. Models in biology: ‘accurate descriptions of our pathetic thinking’

    PubMed Central

    2014-01-01

    In this essay I will sketch some ideas for how to think about models in biology. I will begin by trying to dispel the myth that quantitative modeling is somehow foreign to biology. I will then point out the distinction between forward and reverse modeling and focus thereafter on the former. Instead of going into mathematical technicalities about different varieties of models, I will focus on their logical structure, in terms of assumptions and conclusions. A model is a logical machine for deducing the latter from the former. If the model is correct, then, if you believe its assumptions, you must, as a matter of logic, also believe its conclusions. This leads to consideration of the assumptions underlying models. If these are based on fundamental physical laws, then it may be reasonable to treat the model as ‘predictive’, in the sense that it is not subject to falsification and we can rely on its conclusions. However, at the molecular level, models are more often derived from phenomenology and guesswork. In this case, the model is a test of its assumptions and must be falsifiable. I will discuss three models from this perspective, each of which yields biological insights, and this will lead to some guidelines for prospective model builders. PMID:24886484

  3. The description of a method for accurately estimating creatinine clearance in acute kidney injury.

    PubMed

    Mellas, John

    2016-05-01

    Acute kidney injury (AKI) is a common and serious condition encountered in hospitalized patients. The severity of kidney injury is defined by the RIFLE, AKIN, and KDIGO criteria which attempt to establish the degree of renal impairment. The KDIGO guidelines state that the creatinine clearance should be measured whenever possible in AKI and that the serum creatinine concentration and creatinine clearance remain the best clinical indicators of renal function. Neither the RIFLE, AKIN, nor KDIGO criteria estimate actual creatinine clearance. Furthermore there are no accepted methods for accurately estimating creatinine clearance (K) in AKI. The present study describes a unique method for estimating K in AKI using urine creatinine excretion over an established time interval (E), an estimate of creatinine production over the same time interval (P), and the estimated static glomerular filtration rate (sGFR), at time zero, utilizing the CKD-EPI formula. Using these variables estimated creatinine clearance (Ke)=E/P * sGFR. The method was tested for validity using simulated patients where actual creatinine clearance (Ka) was compared to Ke in several patients, both male and female, and of various ages, body weights, and degrees of renal impairment. These measurements were made at several serum creatinine concentrations in an attempt to determine the accuracy of this method in the non-steady state. In addition E/P and Ke was calculated in hospitalized patients, with AKI, and seen in nephrology consultation by the author. In these patients the accuracy of the method was determined by looking at the following metrics; E/P>1, E/P<1, E=P in an attempt to predict progressive azotemia, recovering azotemia, or stabilization in the level of azotemia respectively. In addition it was determined whether Ke<10 ml/min agreed with Ka and whether patients with AKI on renal replacement therapy could safely terminate dialysis if Ke was greater than 5 ml/min. In the simulated patients there

  4. Quantitative measurement and analysis for detection and treatment planning of developmental dysplasia of the hip

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Lu, Hongbing; Chen, Hanyong; Zhao, Li; Shi, Zhengxing; Liang, Zhengrong

    2009-02-01

    Developmental dysplasia of the hip is a congenital hip joint malformation affecting the proximal femurs and acetabulum that are subluxatable, dislocatable, and dislocated. Conventionally, physicians made diagnoses and treatments only based on findings from two-dimensional (2D) images by manually calculating clinic parameters. However, anatomical complexity of the disease and the limitation of current standard procedures make accurate diagnosis quite difficultly. In this study, we developed a system that provides quantitative measurement of 3D clinical indexes based on computed tomography (CT) images. To extract bone structure from surrounding tissues more accurately, the system firstly segments the bone using a knowledge-based fuzzy clustering method, which is formulated by modifying the objective function of the standard fuzzy c-means algorithm with additive adaptation penalty. The second part of the system calculates automatically the clinical indexes, which are extended from 2D to 3D for accurate description of spatial relationship between femurs and acetabulum. To evaluate the system performance, experimental study based on 22 patients with unilateral or bilateral affected hip was performed. The results of 3D acetabulum index (AI) automatically provided by the system were validated by comparison with 2D results measured by surgeons manually. The correlation between the two results was found to be 0.622 (p<0.01).

  5. Precocious quantitative cognition in monkeys.

    PubMed

    Ferrigno, Stephen; Hughes, Kelly D; Cantlon, Jessica F

    2016-02-01

    Basic quantitative abilities are thought to have an innate basis in humans partly because the ability to discriminate quantities emerges early in child development. If humans and nonhuman primates share this developmentally primitive foundation of quantitative reasoning, then this ability should be present early in development across species and should emerge earlier in monkeys than in humans because monkeys mature faster than humans. We report that monkeys spontaneously make accurate quantity choices by 1 year of age in a task that human children begin to perform only at 2.5 to 3 years of age. Additionally, we report that the quantitative sensitivity of infant monkeys is equal to that of the adult animals in their group and that rates of learning do not differ between infant and adult animals. This novel evidence of precocious quantitative reasoning in infant monkeys suggests that human quantitative reasoning shares its early developing foundation with other primates. The data further suggest that early developing components of primate quantitative reasoning are constrained by maturational factors related to genetic development as opposed to learning experience alone.

  6. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.

    PubMed

    Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert

    2014-01-15

    Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The use of cognitive task analysis to improve instructional descriptions of procedures.

    PubMed

    Clark, Richard E; Pugh, Carla M; Yates, Kenneth A; Inaba, Kenji; Green, Donald J; Sullivan, Maura E

    2012-03-01

    Surgical training relies heavily on the ability of expert surgeons to provide complete and accurate descriptions of a complex procedure. However, research from a variety of domains suggests that experts often omit critical information about the judgments, analysis, and decisions they make when solving a difficult problem or performing a complex task. In this study, we compared three methods for capturing surgeons' descriptions of how to perform the procedure for inserting a femoral artery shunt (unaided free-recall, unaided free-recall with simulation, and cognitive task analysis methods) to determine which method produced more accurate and complete results. Cognitive task analysis was approximately 70% more complete and accurate than free-recall and or free-recall during a simulation of the procedure. Ten expert trauma surgeons at a major urban trauma center were interviewed separately and asked to describe how to perform an emergency shunt procedure. Four surgeons provided an unaided free-recall description of the shunt procedure, five surgeons provided an unaided free-recall description of the procedure using visual aids and surgical instruments (simulation), and one (chosen randomly) was interviewed using cognitive task analysis (CTA) methods. An 11th vascular surgeon approved the final CTA protocol. The CTA interview with only one expert surgeon resulted in significantly greater accuracy and completeness of the descriptions compared with the unaided free-recall interviews with multiple expert surgeons. Surgeons in the unaided group omitted nearly 70% of necessary decision steps. In the free-recall group, heavy use of simulation improved surgeons' completeness when describing the steps of the procedure. CTA significantly increases the completeness and accuracy of surgeons' instructional descriptions of surgical procedures. In addition, simulation during unaided free-recall interviews may improve the completeness of interview data. Copyright © 2012 Elsevier Inc

  8. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Afshan N., E-mail: afshan.malik@kcl.ac.uk; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana

    2011-08-19

    Highlights: {yields} Mitochondrial dysfunction is central to many diseases of oxidative stress. {yields} 95% of the mitochondrial genome is duplicated in the nuclear genome. {yields} Dilution of untreated genomic DNA leads to dilution bias. {yields} Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that themore » methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as {beta}-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.« less

  9. Accurate thermoelastic tensor and acoustic velocities of NaCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcondes, Michel L., E-mail: michel@if.usp.br; Chemical Engineering and Material Science, University of Minnesota, Minneapolis, 55455; Shukla, Gaurav, E-mail: shukla@physics.umn.edu

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor bymore » using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.« less

  10. Automated selected reaction monitoring software for accurate label-free protein quantification.

    PubMed

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  11. A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images

    PubMed Central

    Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.

    1986-01-01

    The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16

  12. Accurate expansion of cylindrical paraxial waves for its straightforward implementation in electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-01-01

    The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.

  13. Langley Atmospheric Information Retrieval System (LAIRS): System description and user's guide

    NASA Technical Reports Server (NTRS)

    Boland, D. E., Jr.; Lee, T.

    1982-01-01

    This document presents the user's guide, system description, and mathematical specifications for the Langley Atmospheric Information Retrieval System (LAIRS). It also includes a description of an optimal procedure for operational use of LAIRS. The primary objective of the LAIRS Program is to make it possible to obtain accurate estimates of atmospheric pressure, density, temperature, and winds along Shuttle reentry trajectories for use in postflight data reduction.

  14. Quantitative Near-field Microscopy of Heterogeneous and Correlated Electron Oxides

    NASA Astrophysics Data System (ADS)

    McLeod, Alexander Swinton

    Scanning near-field optical microscopy (SNOM) is a novel scanning probe microscopy technique capable of circumventing the conventional diffraction limit of light, affording unparalleled optical resolution (down to 10 nanometers) even for radiation in the infrared and terahertz energy regimes, with light wavelengths exceeding 10 micrometers. However, although this technique has been developed and employed for more than a decade to a qualitatively impressive effect, researchers have lacked a practically quantitative grasp of its capabilities, and its application scope has so far remained restricted by implementations limited to ambient atmospheric conditions. The two-fold objective of this dissertation work has been to address both these shortcomings. The first half of the dissertation presents a realistic, semi-analytic, and benchmarked theoretical description of probe-sample near-field interactions that form the basis of SNOM. Owing its name to the efficient nano-focusing of light at a sharp metallic apex, the "lightning rod model" of probe-sample near-field interactions is mathematically developed from a flexible and realistic scattering formalism. Powerful and practical applications are demonstrated through the accurate prediction of spectroscopic near-field optical contrasts, as well as the "inversion" of these spectroscopic contrasts into a quantitative description of material optical properties. Thus enabled, this thesis work proceeds to present quantitative applications of infrared near-field spectroscopy to investigate nano-resolved chemical compositions in a diverse host of samples, including technologically relevant lithium ion battery materials, astrophysical planetary materials, and invaluable returned extraterrestrial samples. The second half of the dissertation presents the design, construction, and demonstration of a sophisticated low-temperature scanning near-field infrared microscope. This instrument operates in an ultra-high vacuum environment

  15. Toward Quantitative Small Animal Pinhole SPECT: Assessment of Quantitation Accuracy Prior to Image Compensations

    PubMed Central

    Chen, Chia-Lin; Wang, Yuchuan; Lee, Jason J. S.; Tsui, Benjamin M. W.

    2011-01-01

    Purpose We assessed the quantitation accuracy of small animal pinhole single photon emission computed tomography (SPECT) under the current preclinical settings, where image compensations are not routinely applied. Procedures The effects of several common image-degrading factors and imaging parameters on quantitation accuracy were evaluated using Monte-Carlo simulation methods. Typical preclinical imaging configurations were modeled, and quantitative analyses were performed based on image reconstructions without compensating for attenuation, scatter, and limited system resolution. Results Using mouse-sized phantom studies as examples, attenuation effects alone degraded quantitation accuracy by up to −18% (Tc-99m or In-111) or −41% (I-125). The inclusion of scatter effects changed the above numbers to −12% (Tc-99m or In-111) and −21% (I-125), respectively, indicating the significance of scatter in quantitative I-125 imaging. Region-of-interest (ROI) definitions have greater impacts on regional quantitation accuracy for small sphere sources as compared to attenuation and scatter effects. For the same ROI, SPECT acquisitions using pinhole apertures of different sizes could significantly affect the outcome, whereas the use of different radii-of-rotation yielded negligible differences in quantitation accuracy for the imaging configurations simulated. Conclusions We have systematically quantified the influence of several factors affecting the quantitation accuracy of small animal pinhole SPECT. In order to consistently achieve accurate quantitation within 5% of the truth, comprehensive image compensation methods are needed. PMID:19048346

  16. Description of Adsorption in Liquid Chromatography under Nonideal Conditions.

    PubMed

    Ortner, Franziska; Ruppli, Chantal; Mazzotti, Marco

    2018-05-15

    A thermodynamically consistent description of binary adsorption in reversed-phase chromatography is presented, accounting for thermodynamic nonidealities in the liquid and adsorbed phases. The investigated system involves the adsorbent Zorbax 300SB-C18, as well as phenetole and 4- tert-butylphenol as solutes and methanol and water as inert components forming the eluent. The description is based on adsorption isotherms, which are a function of the liquid-phase activities, to account for nonidealities in the liquid phase. Liquid-phase activities are calculated with a UNIQUAC model established in this work, based on experimental phase equilibrium data. The binary interaction in the adsorbed phase is described by the adsorbed solution theory, assuming an ideal (ideal adsorbed solution theory) or real (real adsorbed solution theory) adsorbed phase. Implementation of the established adsorption model in a chromatographic code achieves a quantitative description of experimental elution profiles, with feed compositions exploiting the entire miscible region, and involving a broad range of different eluent compositions (methanol/water). The quantitative agreement of the model and experimental data serves as a confirmation of the underlying physical (thermodynamic) concepts and of their applicability to a broad range of operating conditions.

  17. Generation of accurate peptide retention data for targeted and data independent quantitative LC-MS analysis: Chromatographic lessons in proteomics.

    PubMed

    Krokhin, Oleg V; Spicer, Vic

    2016-12-01

    The emergence of data-independent quantitative LC-MS/MS analysis protocols further highlights the importance of high-quality reproducible chromatographic procedures. Knowing, controlling and being able to predict the effect of multiple factors that alter peptide RP-HPLC separation selectivity is critical for successful data collection for the construction of ion libraries. Proteomic researchers have often regarded RP-HPLC as a "black box", while vast amount of research on peptide separation is readily available. In addition to obvious parameters, such as the type of ion-pairing modifier, stationary phase and column temperature, we describe the "mysterious" effects of gradient slope, column size and flow rate on peptide separation selectivity. Retention time variations due to these parameters are governed by the linear solvent strength (LSS) theory on a peptide level by the value of its slope S in the basic LSS equation-a parameter that can be accurately predicted. Thus, the application of shallower gradients, higher flow rates, or smaller columns will each increases the relative retention of peptides with higher S-values (long species with multiple positively charged groups). Simultaneous changes to these parameters that each drive shifts in separation selectivity in the same direction should be avoided. The unification of terminology represents another pressing issue in this field of applied proteomics that should be addressed to facilitate further progress. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Discovering the Quantity of Quality: Scoring "Regional Identity" for Quantitative Research

    ERIC Educational Resources Information Center

    Miller, Daniel A.

    2008-01-01

    The variationist paradigm in sociolinguistics is at a disadvantage when dealing with variables that are traditionally treated qualitatively, e.g., "identity". This study essays to level the accuracy and descriptive value of qualitative research in a quantitative setting by rendering such a variable quantitatively accessible. To this end,…

  19. Accurate phase measurements for thick spherical objects using optical quadrature microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2009-02-01

    In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.

  20. Parsimonious description for predicting high-dimensional dynamics

    PubMed Central

    Hirata, Yoshito; Takeuchi, Tomoya; Horai, Shunsuke; Suzuki, Hideyuki; Aihara, Kazuyuki

    2015-01-01

    When we observe a system, we often cannot observe all its variables and may have some of its limited measurements. Under such a circumstance, delay coordinates, vectors made of successive measurements, are useful to reconstruct the states of the whole system. Although the method of delay coordinates is theoretically supported for high-dimensional dynamical systems, practically there is a limitation because the calculation for higher-dimensional delay coordinates becomes more expensive. Here, we propose a parsimonious description of virtually infinite-dimensional delay coordinates by evaluating their distances with exponentially decaying weights. This description enables us to predict the future values of the measurements faster because we can reuse the calculated distances, and more accurately because the description naturally reduces the bias of the classical delay coordinates toward the stable directions. We demonstrate the proposed method with toy models of the atmosphere and real datasets related to renewable energy. PMID:26510518

  1. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid–Base and Ligand Binding Equilibria of Aquacobalamin

    DOE PAGES

    Johnston, Ryne C.; Zhou, Jing; Smith, Jeremy C.; ...

    2016-07-08

    In redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. Moreover, a major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co ligand binding equilibrium constants (Kon/off), pKas and reduction potentials for models of aquacobalaminmore » in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co III, Co II, and Co I species, respectively, and the second model features saturation of each vacant axial coordination site on Co II and Co I species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pK as and 2.3 log units for two log K on/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co axial ligand binding, leading to substantial errors in

  2. Behavioral Assembly Required: Particularly for Quantitative Courses

    ERIC Educational Resources Information Center

    Mazen, Abdelmagid

    2008-01-01

    This article integrates behavioral approaches into the teaching and learning of quantitative subjects with application to statistics. Focusing on the emotional component of learning, the article presents a system dynamic model that provides descriptive and prescriptive accounts of learners' anxiety. Metaphors and the metaphorizing process are…

  3. Quantitative Methods in Library and Information Science Literature: Descriptive vs. Inferential Statistics.

    ERIC Educational Resources Information Center

    Brattin, Barbara C.

    Content analysis was performed on the top six core journals for 1990 in library and information science to determine the extent of research in the field. Articles (n=186) were examined for descriptive or inferential statistics and separately for the presence of mathematical models. Results show a marked (14%) increase in research for 1990,…

  4. Quantitative imaging methods in osteoporosis.

    PubMed

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  5. Accurate determination of reference materials and natural isolates by means of quantitative (1)h NMR spectroscopy.

    PubMed

    Frank, Oliver; Kreissl, Johanna Karoline; Daschner, Andreas; Hofmann, Thomas

    2014-03-26

    A fast and precise proton nuclear magnetic resonance (qHNMR) method for the quantitative determination of low molecular weight target molecules in reference materials and natural isolates has been validated using ERETIC 2 (Electronic REference To access In vivo Concentrations) based on the PULCON (PULse length based CONcentration determination) methodology and compared to the gravimetric results. Using an Avance III NMR spectrometer (400 MHz) equipped with a broad band observe (BBO) probe, the qHNMR method was validated by determining its linearity, range, precision, and accuracy as well as robustness and limit of quantitation. The linearity of the method was assessed by measuring samples of l-tyrosine, caffeine, or benzoic acid in a concentration range between 0.3 and 16.5 mmol/L (r(2) ≥ 0.99), whereas the interday and intraday precisions were found to be ≤2%. The recovery of a range of reference compounds was ≥98.5%, thus demonstrating the qHNMR method as a precise tool for the rapid quantitation (~15 min) of food-related target compounds in reference materials and natural isolates such as nucleotides, polyphenols, or cyclic peptides.

  6. QUESP and QUEST revisited - fast and accurate quantitative CEST experiments.

    PubMed

    Zaiss, Moritz; Angelovski, Goran; Demetriou, Eleni; McMahon, Michael T; Golay, Xavier; Scheffler, Klaus

    2018-03-01

    Chemical exchange saturation transfer (CEST) NMR or MRI experiments allow detection of low concentrated molecules with enhanced sensitivity via their proton exchange with the abundant water pool. Be it endogenous metabolites or exogenous contrast agents, an exact quantification of the actual exchange rate is required to design optimal pulse sequences and/or specific sensitive agents. Refined analytical expressions allow deeper insight and improvement of accuracy for common quantification techniques. The accuracy of standard quantification methodologies, such as quantification of exchange rate using varying saturation power or varying saturation time, is improved especially for the case of nonequilibrium initial conditions and weak labeling conditions, meaning the saturation amplitude is smaller than the exchange rate (γB 1  < k). The improved analytical 'quantification of exchange rate using varying saturation power/time' (QUESP/QUEST) equations allow for more accurate exchange rate determination, and provide clear insights on the general principles to execute the experiments and to perform numerical evaluation. The proposed methodology was evaluated on the large-shift regime of paramagnetic chemical-exchange-saturation-transfer agents using simulated data and data of the paramagnetic Eu(III) complex of DOTA-tetraglycineamide. The refined formulas yield improved exchange rate estimation. General convergence intervals of the methods that would apply for smaller shift agents are also discussed. Magn Reson Med 79:1708-1721, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Quantitative Analysis of Radar Returns from Insects

    NASA Technical Reports Server (NTRS)

    Riley, J. R.

    1979-01-01

    When a number of flying insects is low enough to permit their resolution as individual radar targets, quantitative estimates of their aerial density are developed. Accurate measurements of heading distribution using a rotating polarization radar to enhance the wingbeat frequency method of identification are presented.

  8. Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.

    PubMed

    Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L

    2017-10-01

    The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic

  9. Quantitative and descriptive comparison of four acoustic analysis systems: vowel measurements.

    PubMed

    Burris, Carlyn; Vorperian, Houri K; Fourakis, Marios; Kent, Ray D; Bolt, Daniel M

    2014-02-01

    This study examines accuracy and comparability of 4 trademarked acoustic analysis software packages (AASPs): Praat, WaveSurfer, TF32, and CSL by using synthesized and natural vowels. Features of AASPs are also described. Synthesized and natural vowels were analyzed using each of the AASP's default settings to secure 9 acoustic measures: fundamental frequency (F0), formant frequencies (F1-F4), and formant bandwidths (B1-B4). The discrepancy between the software measured values and the input values (synthesized, previously reported, and manual measurements) was used to assess comparability and accuracy. Basic AASP features are described. Results indicate that Praat, WaveSurfer, and TF32 generate accurate and comparable F0 and F1-F4 data for synthesized vowels and adult male natural vowels. Results varied by vowel for women and children, with some serious errors. Bandwidth measurements by AASPs were highly inaccurate as compared with manual measurements and published data on formant bandwidths. Values of F0 and F1-F4 are generally consistent and fairly accurate for adult vowels and for some child vowels using the default settings in Praat, WaveSurfer, and TF32. Manipulation of default settings yields improved output values in TF32 and CSL. Caution is recommended especially before accepting F1-F4 results for children and B1-B4 results for all speakers.

  10. Quantitative Literacy: Geosciences and Beyond

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; McCallum, W. G.

    2002-12-01

    Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.

  11. pyQms enables universal and accurate quantification of mass spectrometry data.

    PubMed

    Leufken, Johannes; Niehues, Anna; Sarin, L Peter; Wessel, Florian; Hippler, Michael; Leidel, Sebastian A; Fufezan, Christian

    2017-10-01

    Quantitative mass spectrometry (MS) is a key technique in many research areas (1), including proteomics, metabolomics, glycomics, and lipidomics. Because all of the corresponding molecules can be described by chemical formulas, universal quantification tools are highly desirable. Here, we present pyQms, an open-source software for accurate quantification of all types of molecules measurable by MS. pyQms uses isotope pattern matching that offers an accurate quality assessment of all quantifications and the ability to directly incorporate mass spectrometer accuracy. pyQms is, due to its universal design, applicable to every research field, labeling strategy, and acquisition technique. This opens ultimate flexibility for researchers to design experiments employing innovative and hitherto unexplored labeling strategies. Importantly, pyQms performs very well to accurately quantify partially labeled proteomes in large scale and high throughput, the most challenging task for a quantification algorithm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Funnel metadynamics as accurate binding free-energy method

    PubMed Central

    Limongelli, Vittorio; Bonomi, Massimiliano; Parrinello, Michele

    2013-01-01

    A detailed description of the events ruling ligand/protein interaction and an accurate estimation of the drug affinity to its target is of great help in speeding drug discovery strategies. We have developed a metadynamics-based approach, named funnel metadynamics, that allows the ligand to enhance the sampling of the target binding sites and its solvated states. This method leads to an efficient characterization of the binding free-energy surface and an accurate calculation of the absolute protein–ligand binding free energy. We illustrate our protocol in two systems, benzamidine/trypsin and SC-558/cyclooxygenase 2. In both cases, the X-ray conformation has been found as the lowest free-energy pose, and the computed protein–ligand binding free energy in good agreement with experiments. Furthermore, funnel metadynamics unveils important information about the binding process, such as the presence of alternative binding modes and the role of waters. The results achieved at an affordable computational cost make funnel metadynamics a valuable method for drug discovery and for dealing with a variety of problems in chemistry, physics, and material science. PMID:23553839

  13. A new algebraic turbulence model for accurate description of airfoil flows

    NASA Astrophysics Data System (ADS)

    Xiao, Meng-Juan; She, Zhen-Su

    2017-11-01

    We report a new algebraic turbulence model (SED-SL) based on the SED theory, a symmetry-based approach to quantifying wall turbulence. The model specifies a multi-layer profile of a stress length (SL) function in both the streamwise and wall-normal directions, which thus define the eddy viscosity in the RANS equation (e.g. a zero-equation model). After a successful simulation of flat plate flow (APS meeting, 2016), we report here further applications of the model to the flow around airfoil, with significant improvement of the prediction accuracy of the lift (CL) and drag (CD) coefficients compared to other popular models (e.g. BL, SA, etc.). Two airfoils, namely RAE2822 airfoil and NACA0012 airfoil, are computed for over 50 cases. The results are compared to experimental data from AGARD report, which shows deviations of CL bounded within 2%, and CD within 2 counts (10-4) for RAE2822 and 6 counts for NACA0012 respectively (under a systematic adjustment of the flow conditions). In all these calculations, only one parameter (proportional to the Karmen constant) shows slight variation with Mach number. The most remarkable outcome is, for the first time, the accurate prediction of the drag coefficient. The other interesting outcome is the physical interpretation of the multi-layer parameters: they specify the corresponding multi-layer structure of turbulent boundary layer; when used together with simulation data, the SED-SL enables one to extract physical information from empirical data, and to understand the variation of the turbulent boundary layer.

  14. A Quantitative Study Identifying Political Strategies Used by Principals of Dual Language Programs

    ERIC Educational Resources Information Center

    Girard, Guadalupe

    2017-01-01

    Purpose. The purpose of this quantitative study was to identify the external and internal political strategies used by principals that allow them to successfully navigate the political environment surrounding dual language programs. Methodology. This quantitative study used descriptive research to collect, analyze, and report data that identified…

  15. Sensory descriptive quantitative analysis of unpasteurized and pasteurized juçara pulp (Euterpe edulis) during long-term storage

    PubMed Central

    da Silva, Paula Porrelli Moreira; Casemiro, Renata Cristina; Zillo, Rafaela Rebessi; de Camargo, Adriano Costa; Prospero, Evanilda Teresinha Perissinotto; Spoto, Marta Helena Fillet

    2014-01-01

    This study evaluated the effect of pasteurization followed by storage under different conditions on the sensory attributes of frozen juçara pulp using quantitative descriptive analysis (QDA). Pasteurization of packed frozen pulp was performed by its immersion in stainless steel tank containing water (80°C) for 5 min, followed by storage under refrigerated and frozen conditions. A trained sensory panel evaluated the samples (6°C) on day 1, 15, 30, 45, 60, 75, and 90. Sensory attributes were separated as follows: appearance (foamy, heterogeneous, purple, brown, oily, and creamy), aroma (sweet and fermented), taste (astringent, bitter, and sweet), and texture (oily and consistent), and compared to a reference material. In general, unpasteurized frozen pulp showed the highest score for foamy appearance, and pasteurized samples showed highest scores to creamy appearance. Pasteurized samples remained stable regarding brown color development while unpasteurized counterparts presented increase. Color is an important attribute related to the product identity. All attributes related to taste and texture remained constant during storage for all samples. Pasteurization followed by storage under frozen conditions has shown to be the best conservation method as samples submitted to such process received the best sensory evaluation, described as foamy, slightly heterogeneous, slightly bitter, and slightly astringent. PMID:25473489

  16. Sensory descriptive quantitative analysis of unpasteurized and pasteurized juçara pulp (Euterpe edulis) during long-term storage.

    PubMed

    da Silva, Paula Porrelli Moreira; Casemiro, Renata Cristina; Zillo, Rafaela Rebessi; de Camargo, Adriano Costa; Prospero, Evanilda Teresinha Perissinotto; Spoto, Marta Helena Fillet

    2014-07-01

    This study evaluated the effect of pasteurization followed by storage under different conditions on the sensory attributes of frozen juçara pulp using quantitative descriptive analysis (QDA). Pasteurization of packed frozen pulp was performed by its immersion in stainless steel tank containing water (80°C) for 5 min, followed by storage under refrigerated and frozen conditions. A trained sensory panel evaluated the samples (6°C) on day 1, 15, 30, 45, 60, 75, and 90. Sensory attributes were separated as follows: appearance (foamy, heterogeneous, purple, brown, oily, and creamy), aroma (sweet and fermented), taste (astringent, bitter, and sweet), and texture (oily and consistent), and compared to a reference material. In general, unpasteurized frozen pulp showed the highest score for foamy appearance, and pasteurized samples showed highest scores to creamy appearance. Pasteurized samples remained stable regarding brown color development while unpasteurized counterparts presented increase. Color is an important attribute related to the product identity. All attributes related to taste and texture remained constant during storage for all samples. Pasteurization followed by storage under frozen conditions has shown to be the best conservation method as samples submitted to such process received the best sensory evaluation, described as foamy, slightly heterogeneous, slightly bitter, and slightly astringent.

  17. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering.

    PubMed

    Luo, Zhi; Marson, Domenico; Ong, Quy K; Loiudice, Anna; Kohlbrecher, Joachim; Radulescu, Aurel; Krause-Heuer, Anwen; Darwish, Tamim; Balog, Sandor; Buonsanti, Raffaella; Svergun, Dmitri I; Posocco, Paola; Stellacci, Francesco

    2018-04-09

    The ligand shell (LS) determines a number of nanoparticles' properties. Nanoparticles' cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random). Here we show that quantitative description of the LS' morphology of monodisperse nanoparticles can be obtained using small-angle neutron scattering (SANS), measured at multiple contrasts, achieved by either ligand or solvent deuteration. Three-dimensional models of the nanoparticles' core and LS are generated using an ab initio reconstruction method. Characteristic length scales extracted from the models are compared with simulations. We also characterize the evolution of the LS upon thermal annealing, and investigate the LS morphology of mixed-ligand copper and silver nanoparticles as well as gold nanoparticles coated with ternary mixtures. Our results suggest that SANS combined with multiphase modeling is a versatile approach for the characterization of nanoparticles' LS.

  18. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data.

    PubMed

    Artico, Sinara; Nardeli, Sarah M; Brilhante, Osmundo; Grossi-de-Sa, Maria Fátima; Alves-Ferreira, Marcio

    2010-03-21

    Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1alpha5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhbetaTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in

  19. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data

    PubMed Central

    2010-01-01

    Background Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. Results By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. Conclusion We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene

  20. Quantitative Phase Imaging in a Volume Holographic Microscope

    NASA Astrophysics Data System (ADS)

    Waller, Laura; Luo, Yuan; Barbastathis, George

    2010-04-01

    We demonstrate a method for quantitative phase imaging in a Volume Holographic Microscope (VHM) from a single exposure, describe the properties of the system and show experimental results. The VHM system uses a multiplexed volume hologram (VH) to laterally separate images from different focal planes. This 3D intensity information is then used to solve the transport of intensity (TIE) equation and recover phase quantitatively. We discuss the modifications to the technique that were made in order to give accurate results.

  1. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins

    NASA Astrophysics Data System (ADS)

    Kong, Dezhao; Liu, Liqiang; Song, Shanshan; Suryoprabowo, Steven; Li, Aike; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2016-02-01

    A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg-1, and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg-1, respectively. The quantitative results were obtained using a hand-held strip scan reader, with the calculated limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.04-0.17, 0.06-49, 0.15-0.22, 0.056-0.49 and 0.53-1.05 μg kg-1, respectively. The analytical results of spiked samples were in accordance with the accurate content in the simultaneous detection analysis. This newly developed ICA strip assay is suitable for the on-site detection and rapid initial screening of mycotoxins in cereal samples, facilitating both semi-quantitative and quantitative determination.A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg-1, and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg-1, respectively. The quantitative results were obtained using a hand-held strip scan

  2. Dissemination of evidence in paediatric emergency medicine: a quantitative descriptive evaluation of a 16-week social media promotion.

    PubMed

    Gates, Allison; Featherstone, Robin; Shave, Kassi; Scott, Shannon D; Hartling, Lisa

    2018-06-06

    TRanslating Emergency Knowledge for Kids (TREKK) and Cochrane Child Health collaborate to develop knowledge products on paediatric emergency medicine topics. Via a targeted social media promotion, we aimed to increase user interaction with the TREKK and Cochrane Child Health Twitter accounts and the uptake of TREKK Bottom Line Recommendations (BLRs) and Cochrane systematic reviews (SRs). Quantitative descriptive evaluation. We undertook this study and collected data via the internet. Our target users included online healthcare providers and health consumers. For 16 weeks, we used Twitter accounts (@TREKKca and @Cochrane_Child) and the Cochrane Child Health blog to promote 6 TREKK BLRs and 16 related Cochrane SRs. We published 1 blog post and 98 image-based tweets per week. The primary outcome was user interaction with @TREKKca and @Cochrane_Child. Secondary outcomes were visits to TREKK's website and the Cochrane Child Health blog, clicks to and views of the TREKK BLRs, and Altmetric scores and downloads of Cochrane SRs. Followers to @TREKKca and @Cochrane_Child increased by 24% and 15%, respectively. Monthly users of TREKK's website increased by 29%. Clicks to the TREKK BLRs increased by 22%. The BLRs accrued 59% more views compared with the baseline period. The 16 blog posts accrued 28% more views compared with the 8 previous months when no new posts were published. The Altmetric scores for the Cochrane SRs increased by ≥10 points each. The mean number of full text downloads for the promotion period was higher for nine and lower for seven SRs compared with the 16-week average for the previous year (mean difference (SD), +4.0 (22.0%)). There was increased traffic to TREKK knowledge products and Cochrane SRs during the social media promotion. Quantitative evidence supports blogging and tweeting as dissemination strategies for evidence-based knowledge products. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All

  3. Dissemination of evidence in paediatric emergency medicine: a quantitative descriptive evaluation of a 16-week social media promotion

    PubMed Central

    Featherstone, Robin; Shave, Kassi; Scott, Shannon D; Hartling, Lisa

    2018-01-01

    Objectives TRanslating Emergency Knowledge for Kids (TREKK) and Cochrane Child Health collaborate to develop knowledge products on paediatric emergency medicine topics. Via a targeted social media promotion, we aimed to increase user interaction with the TREKK and Cochrane Child Health Twitter accounts and the uptake of TREKK Bottom Line Recommendations (BLRs) and Cochrane systematic reviews (SRs). Design Quantitative descriptive evaluation. Setting We undertook this study and collected data via the internet. Participants Our target users included online healthcare providers and health consumers. Intervention For 16 weeks, we used Twitter accounts (@TREKKca and @Cochrane_Child) and the Cochrane Child Health blog to promote 6 TREKK BLRs and 16 related Cochrane SRs. We published 1 blog post and 98 image-based tweets per week. Primary and secondary outcome measures The primary outcome was user interaction with @TREKKca and @Cochrane_Child. Secondary outcomes were visits to TREKK’s website and the Cochrane Child Health blog, clicks to and views of the TREKK BLRs, and Altmetric scores and downloads of Cochrane SRs. Results Followers to @TREKKca and @Cochrane_Child increased by 24% and 15%, respectively. Monthly users of TREKK’s website increased by 29%. Clicks to the TREKK BLRs increased by 22%. The BLRs accrued 59% more views compared with the baseline period. The 16 blog posts accrued 28% more views compared with the 8 previous months when no new posts were published. The Altmetric scores for the Cochrane SRs increased by ≥10 points each. The mean number of full text downloads for the promotion period was higher for nine and lower for seven SRs compared with the 16-week average for the previous year (mean difference (SD), +4.0 (22.0%)). Conclusions There was increased traffic to TREKK knowledge products and Cochrane SRs during the social media promotion. Quantitative evidence supports blogging and tweeting as dissemination strategies for evidence-based knowledge

  4. The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions

    PubMed Central

    2012-01-01

    Background It is well known that the deterministic dynamics of biochemical reaction networks can be more easily studied if timescale separation conditions are invoked (the quasi-steady-state assumption). In this case the deterministic dynamics of a large network of elementary reactions are well described by the dynamics of a smaller network of effective reactions. Each of the latter represents a group of elementary reactions in the large network and has associated with it an effective macroscopic rate law. A popular method to achieve model reduction in the presence of intrinsic noise consists of using the effective macroscopic rate laws to heuristically deduce effective probabilities for the effective reactions which then enables simulation via the stochastic simulation algorithm (SSA). The validity of this heuristic SSA method is a priori doubtful because the reaction probabilities for the SSA have only been rigorously derived from microscopic physics arguments for elementary reactions. Results We here obtain, by rigorous means and in closed-form, a reduced linear Langevin equation description of the stochastic dynamics of monostable biochemical networks in conditions characterized by small intrinsic noise and timescale separation. The slow-scale linear noise approximation (ssLNA), as the new method is called, is used to calculate the intrinsic noise statistics of enzyme and gene networks. The results agree very well with SSA simulations of the non-reduced network of elementary reactions. In contrast the conventional heuristic SSA is shown to overestimate the size of noise for Michaelis-Menten kinetics, considerably under-estimate the size of noise for Hill-type kinetics and in some cases even miss the prediction of noise-induced oscillations. Conclusions A new general method, the ssLNA, is derived and shown to correctly describe the statistics of intrinsic noise about the macroscopic concentrations under timescale separation conditions. The ssLNA provides a

  5. Using an Educational Electronic Documentation System to Help Nursing Students Accurately Identify Nursing Diagnoses

    ERIC Educational Resources Information Center

    Pobocik, Tamara J.

    2013-01-01

    The use of technology and electronic medical records in healthcare has exponentially increased. This quantitative research project used a pretest/posttest design, and reviewed how an educational electronic documentation system helped nursing students to identify the accurate related to statement of the nursing diagnosis for the patient in the case…

  6. Ultra-fast quantitative imaging using ptychographic iterative engine based digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Aihui; Tian, Xiaolin; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-01-01

    As a lensfree imaging technique, ptychographic iterative engine (PIE) method can provide both quantitative sample amplitude and phase distributions avoiding aberration. However, it requires field of view (FoV) scanning often relying on mechanical translation, which not only slows down measuring speed, but also introduces mechanical errors decreasing both resolution and accuracy in retrieved information. In order to achieve high-accurate quantitative imaging with fast speed, digital micromirror device (DMD) is adopted in PIE for large FoV scanning controlled by on/off state coding by DMD. Measurements were implemented using biological samples as well as USAF resolution target, proving high resolution in quantitative imaging using the proposed system. Considering its fast and accurate imaging capability, it is believed the DMD based PIE technique provides a potential solution for medical observation and measurements.

  7. Highly accurate quantitative spectroscopy of massive stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Nieva, María-Fernanda; Przybilla, Norbert

    2017-11-01

    Achieving high accuracy and precision in stellar parameter and chemical composition determinations is challenging in massive star spectroscopy. On one hand, the target selection for an unbiased sample build-up is complicated by several types of peculiarities that can occur in individual objects. On the other hand, composite spectra are often not recognized as such even at medium-high spectral resolution and typical signal-to-noise ratios, despite multiplicity among massive stars is widespread. In particular, surveys that produce large amounts of automatically reduced data are prone to oversight of details that turn hazardous for the analysis with techniques that have been developed for a set of standard assumptions applicable to a spectrum of a single star. Much larger systematic errors than anticipated may therefore result because of the unrecognized true nature of the investigated objects, or much smaller sample sizes of objects for the analysis than initially planned, if recognized. More factors to be taken care of are the multiple steps from the choice of instrument over the details of the data reduction chain to the choice of modelling code, input data, analysis technique and the selection of the spectral lines to be analyzed. Only when avoiding all the possible pitfalls, a precise and accurate characterization of the stars in terms of fundamental parameters and chemical fingerprints can be achieved that form the basis for further investigations regarding e.g. stellar structure and evolution or the chemical evolution of the Galaxy. The scope of the present work is to provide the massive star and also other astrophysical communities with criteria to evaluate the quality of spectroscopic investigations of massive stars before interpreting them in a broader context. The discussion is guided by our experiences made in the course of over a decade of studies of massive star spectroscopy ranging from the simplest single objects to multiple systems.

  8. Quantitative prediction of phase transformations in silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Liangchi; Basak, Animesh

    2013-08-01

    This paper establishes the first quantitative relationship between the phases transformed in silicon and the shape characteristics of nanoindentation curves. Based on an integrated analysis using TEM and unit cell properties of phases, the volumes of the phases emerged in a nanoindentation are formulated as a function of pop-out size and depth of nanoindentation impression. This simple formula enables a fast, accurate and quantitative prediction of the phases in a nanoindentation cycle, which has been impossible before.

  9. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome

    DTIC Science & Technology

    2017-01-10

    benchmarks of conformational sampling methods and their all-atom force fields plus solvent descriptions to accurately model structural transitions on a...atom simulations of proteins is the replacement of explicit water interactions with a continuum description of treating implicitly the bulk physical... structure was reported by Amarasinghe and coworkers (Leung et al., 2015) of the Ebola nucleoprotein NP in complex with a 28-residue peptide extracted

  10. Detection and quantitation of trace phenolphthalein (in pharmaceutical preparations and in forensic exhibits) by liquid chromatography-tandem mass spectrometry, a sensitive and accurate method.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2013-01-01

    Phenolphthalein, an acid-base indicator and laxative, is important as a constituent of widely used weight-reducing multicomponent food formulations. Phenolphthalein is an useful reagent in forensic science for the identification of blood stains of suspected victims and for apprehending erring officials accepting bribes in graft or trap cases. The pink-colored alkaline hand washes originating from the phenolphthalein-smeared notes can easily be determined spectrophotometrically. But in many cases, colored solution turns colorless with time, which renders the genuineness of bribe cases doubtful to the judiciary. No method is known till now for the detection and identification of phenolphthalein in colorless forensic exhibits with positive proof. Liquid chromatography-tandem mass spectrometry had been found to be most sensitive, accurate method capable of detection and quantitation of trace phenolphthalein in commercial formulations and colorless forensic exhibits with positive proof. The detection limit of phenolphthalein was found to be 1.66 pg/L or ng/mL, and the calibration curve shows good linearity (r(2) = 0.9974). © 2012 American Academy of Forensic Sciences.

  11. Creating Body Shapes From Verbal Descriptions by Linking Similarity Spaces.

    PubMed

    Hill, Matthew Q; Streuber, Stephan; Hahn, Carina A; Black, Michael J; O'Toole, Alice J

    2016-11-01

    Brief verbal descriptions of people's bodies (e.g., "curvy," "long-legged") can elicit vivid mental images. The ease with which these mental images are created belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and showed that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body-shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2,094 bodies. This relationship allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape that captures perceptually salient global and local body features. © The Author(s) 2016.

  12. Three-Dimensional Photography for Quantitative Assessment of Penile Volume-Loss Deformities in Peyronie's Disease.

    PubMed

    Margolin, Ezra J; Mlynarczyk, Carrie M; Mulhall, John P; Stember, Doron S; Stahl, Peter J

    2017-06-01

    Non-curvature penile deformities are prevalent and bothersome manifestations of Peyronie's disease (PD), but the quantitative metrics that are currently used to describe these deformities are inadequate and non-standardized, presenting a barrier to clinical research and patient care. To introduce erect penile volume (EPV) and percentage of erect penile volume loss (percent EPVL) as novel metrics that provide detailed quantitative information about non-curvature penile deformities and to study the feasibility and reliability of three-dimensional (3D) photography for measurement of quantitative penile parameters. We constructed seven penis models simulating deformities found in PD. The 3D photographs of each model were captured in triplicate by four observers using a 3D camera. Computer software was used to generate automated measurements of EPV, percent EPVL, penile length, minimum circumference, maximum circumference, and angle of curvature. The automated measurements were statistically compared with measurements obtained using water-displacement experiments, a tape measure, and a goniometer. Accuracy of 3D photography for average measurements of all parameters compared with manual measurements; inter-test, intra-observer, and inter-observer reliabilities of EPV and percent EPVL measurements as assessed by the intraclass correlation coefficient. The 3D images were captured in a median of 52 seconds (interquartile range = 45-61). On average, 3D photography was accurate to within 0.3% for measurement of penile length. It overestimated maximum and minimum circumferences by averages of 4.2% and 1.6%, respectively; overestimated EPV by an average of 7.1%; and underestimated percent EPVL by an average of 1.9%. All inter-test, inter-observer, and intra-observer intraclass correlation coefficients for EPV and percent EPVL measurements were greater than 0.75, reflective of excellent methodologic reliability. By providing highly descriptive and reliable measurements of

  13. A microscopic description of black hole evaporation via holography

    DOE PAGES

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    2016-07-19

    Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.

  14. A microscopic description of black hole evaporation via holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.

  15. High precision analytical description of the allowed β spectrum shape

    NASA Astrophysics Data System (ADS)

    Hayen, Leendert; Severijns, Nathal; Bodek, Kazimierz; Rozpedzik, Dagmara; Mougeot, Xavier

    2018-01-01

    A fully analytical description of the allowed β spectrum shape is given in view of ongoing and planned measurements. Its study forms an invaluable tool in the search for physics beyond the standard electroweak model and the weak magnetism recoil term. Contributions stemming from finite size corrections, mass effects, and radiative corrections are reviewed. Particular focus is placed on atomic and chemical effects, where the existing description is extended and analytically provided. The effects of QCD-induced recoil terms are discussed, and cross-checks were performed for different theoretical formalisms. Special attention was given to a comparison of the treatment of nuclear structure effects in different formalisms. Corrections were derived for both Fermi and Gamow-Teller transitions, and methods of analytical evaluation thoroughly discussed. In its integrated form, calculated f values were in agreement with the most precise numerical results within the aimed for precision. The need for an accurate evaluation of weak magnetism contributions was stressed, and the possible significance of the oft-neglected induced pseudoscalar interaction was noted. Together with improved atomic corrections, an analytical description was presented of the allowed β spectrum shape accurate to a few parts in 10-4 down to 1 keV for low to medium Z nuclei, thereby extending the work by previous authors by nearly an order of magnitude.

  16. Nonexperimental Quantitative Research and Its Role in Guiding Instruction

    ERIC Educational Resources Information Center

    Cook, Bryan G.; Cook, Lysandra

    2008-01-01

    Different research designs answer different questions. Educators cannot use nonexperimental quantitative research designs, such as descriptive surveys and correlational research, to determine definitively that an intervention causes improved student outcomes and is an evidence-based practice. However, such research can (a) inform educators about a…

  17. A NOVEL TECHNIQUE FOR QUANTITATIVE ESTIMATION OF UPTAKE OF DIESEL EXHAUST PARTICLES BY LUNG CELLS

    EPA Science Inventory

    While airborne particulates like diesel exhaust particulates (DEP) exert significant toxicological effects on lungs, quantitative estimation of accumulation of DEP inside lung cells has not been reported due to a lack of an accurate and quantitative technique for this purpose. I...

  18. Quantitative measures for redox signaling.

    PubMed

    Pillay, Ché S; Eagling, Beatrice D; Driscoll, Scott R E; Rohwer, Johann M

    2016-07-01

    Redox signaling is now recognized as an important regulatory mechanism for a number of cellular processes including the antioxidant response, phosphokinase signal transduction and redox metabolism. While there has been considerable progress in identifying the cellular machinery involved in redox signaling, quantitative measures of redox signals have been lacking, limiting efforts aimed at understanding and comparing redox signaling under normoxic and pathogenic conditions. Here we have outlined some of the accepted principles for redox signaling, including the description of hydrogen peroxide as a signaling molecule and the role of kinetics in conferring specificity to these signaling events. Based on these principles, we then develop a working definition for redox signaling and review a number of quantitative methods that have been employed to describe signaling in other systems. Using computational modeling and published data, we show how time- and concentration- dependent analyses, in particular, could be used to quantitatively describe redox signaling and therefore provide important insights into the functional organization of redox networks. Finally, we consider some of the key challenges with implementing these methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Beyond CCT: The spectral index system as a tool for the objective, quantitative characterization of lamps

    NASA Astrophysics Data System (ADS)

    Galadí-Enríquez, D.

    2018-02-01

    Correlated color temperature (CCT) is a semi-quantitative system that roughly describes the spectra of lamps. This parameter gives the temperature (measured in kelvins) of the black body that would show the hue more similar to that of the light emitted by the lamp. Modern lamps for indoor and outdoor lighting display many spectral energy distributions, most of them extremely different to those of black bodies, what makes CCT to be far from a perfect descriptor from the physical point of view. The spectral index system presented in this work provides an accurate, objective, quantitative procedure to characterize the spectral properties of lamps, with just a few numbers. The system is an adaptation to lighting technology of the classical procedures of multi-band astronomical photometry with wide and intermediate-band filters. We describe the basic concepts and we apply the system to a representative set of lamps of many kinds. The results lead to interesting, sometimes surprising conclusions. The spectral index system is extremely easy to implement from the spectral data that are routinely measured at laboratories. Thus, including this kind of computations in the standard protocols for the certification of lamps will be really straightforward, and will enrich the technical description of lighting devices.

  20. A study into the educational needs of children's hospice doctors: a descriptive quantitative and qualitative survey.

    PubMed

    Amery, Justin; Lapwood, Susie

    2004-12-01

    To identify and explore the educational needs of children's hospice doctors in England. A descriptive quantitative and qualitative survey. Children's hospices in England. All children's hospice doctors (n =55) in England were approached, and 35 (65%) consented. A questionnaire designed to survey doctors' self-assessed educational competencies (confidence and perceived need for training) in subject areas derived from analysis of existing children's palliative care literature. Educational diaries used prospectively in practice to identify areas of unmet educational need. Self-perceived confidence and usefulness scores for each subject area. An analysis of support, education and training needs deriving from educational diaries and one-to-one interviews. Confidence and usefulness scores suggest that respondents would most value support, education and training in the management of emergencies, symptoms and physical disease. Educational diary analysis revealed that respondents would most value support, education and training in communication skills, team-working skills, and personal coping strategies. There is a disparity between educational needs as derived from self-rated competencies and from educational diary keeping; suggesting that children's hospice doctors may not be fully aware of their own educational, support and training needs. Self-rated competencies emphasise the value of education in craft or clinical skills; whereas personal diary keeping emphasises the value of education in intrapersonal and interpersonal skills such as communication, team-working and personal coping skills. The current curricula and educational resources need to acknowledge that interpersonal and intrapersonal competencies are as important as clinical competencies. While the study looks particularly at the educational needs of children's hospice doctors, readers may feel that the findings are of relevance to all specialities and disciplines.

  1. A Fuzzy Description Logic with Automatic Object Membership Measurement

    NASA Astrophysics Data System (ADS)

    Cai, Yi; Leung, Ho-Fung

    In this paper, we propose a fuzzy description logic named f om -DL by combining the classical view in cognitive psychology and fuzzy set theory. A formal mechanism used to determine object memberships automatically in concepts is also proposed, which is lacked in previous work fuzzy description logics. In this mechanism, object membership is based on the defining properties of concept definition and properties in object description. Moreover, while previous works cannot express the qualitative measurements of an object possessing a property, we introduce two kinds of properties named N-property and L-property, which are quantitative measurements and qualitative measurements of an object possessing a property respectively. The subsumption and implication of concepts and properties are also explored in our work. We believe that it is useful to the Semantic Web community for reasoning the fuzzy membership of objects for concepts in fuzzy ontologies.

  2. Quantitative, spectrally-resolved intraoperative fluorescence imaging

    PubMed Central

    Valdés, Pablo A.; Leblond, Frederic; Jacobs, Valerie L.; Wilson, Brian C.; Paulsen, Keith D.; Roberts, David W.

    2012-01-01

    Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the first time. Moreover, we present images from human surgery which detect residual tumor not evident with state-of-the-art vFI. The wide-field qFI technique has broad implications for intraoperative surgical guidance because it provides near real-time quantitative assessment of multiple fluorescent biomarkers across the operative field. PMID:23152935

  3. The Rényi divergence enables accurate and precise cluster analysis for localisation microscopy.

    PubMed

    Staszowska, Adela D; Fox-Roberts, Patrick; Hirvonen, Liisa M; Peddie, Christopher J; Collinson, Lucy M; Jones, Gareth E; Cox, Susan

    2018-06-01

    Clustering analysis is a key technique for quantitatively characterising structures in localisation microscopy images. To build up accurate information about biological structures, it is critical that the quantification is both accurate (close to the ground truth) and precise (has small scatter and is reproducible). Here we describe how the Rényi divergence can be used for cluster radius measurements in localisation microscopy data. We demonstrate that the Rényi divergence can operate with high levels of background and provides results which are more accurate than Ripley's functions, Voronoi tesselation or DBSCAN. Data supporting this research will be made accessible via a web link. Software codes developed for this work can be accessed via http://coxphysics.com/Renyi_divergence_software.zip. Implemented in C ++. Correspondence and requests for materials can be also addressed to the corresponding author. adela.staszowska@gmail.com or susan.cox@kcl.ac.uk. Supplementary data are available at Bioinformatics online.

  4. Descriptive Drinking Norms: For Whom Does Reference Group Matter?*

    PubMed Central

    Larimer, Mary E.; Neighbors, Clayton; LaBrie, Joseph W.; Atkins, David C.; Lewis, Melissa A.; Lee, Christine M.; Kilmer, Jason R.; Kaysen, Debra L.; Pedersen, Eric r.; Montoya, Heidi; Hodge, Kimberley; Desai, Sruti; Hummer, Justin F.; Walter, Theresa

    2011-01-01

    Objective: Perceived descriptive drinking norms often differ from actual norms and are positively related to personal consumption. However, it is not clear how normative perceptions vary with specificity of the reference group. Are drinking norms more accurate and more closely related to drinking behavior as reference group specificity increases? Do these relationships vary as a function of participant demographics? The present study examined the relationship between perceived descriptive norms and drinking behavior by ethnicity (Asian or White), sex, and fraternity/sorority status. Method: Participants were 2,699 (58% female) White (75%) or Asian (25%) undergraduates from two universities who reported their own alcohol use and perceived descriptive norms for eight reference groups: "typical student"; same sex, ethnicity, or fraternity/sorority status; and all combinations of these three factors. Results: Participants generally reported the highest perceived norms for the most distal reference group (typical student), with perceptions becoming more accurate as individuals' similarity to the reference group increased. Despite increased accuracy, participants perceived that all reference groups drank more than was actually the case. Across specific subgroups (fraternity/sorority members and men) different patterns emerged. Fraternity/sorority members reliably reported higher estimates of drinking for reference groups that included fraternity/ sorority status, and, to a lesser extent, men reported higher estimates for reference groups that included men. Conclusions: The results suggest that interventions targeting normative misperceptions may need to provide feedback based on participant demography or group membership. Although reference group-specific feedback may be important for some subgroups, typical student feedback provides the largest normative discrepancy for the majority of students. PMID:21906510

  5. Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging.

    PubMed

    Wang, Peng; Zhang, Cheng; Liu, Hong-Wen; Xiong, Mengyi; Yin, Sheng-Yan; Yang, Yue; Hu, Xiao-Xiao; Yin, Xia; Zhang, Xiao-Bing; Tan, Weihong

    2017-12-01

    Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.

  6. Self-descriptions on LinkedIn: Recruitment or friendship identity?

    PubMed

    Garcia, Danilo; Cloninger, Kevin M; Granjard, Alexandre; Molander-Söderholm, Kristian; Amato, Clara; Sikström, Sverker

    2018-04-26

    We used quantitative semantics to find clusters of words in LinkedIn users' self-descriptions to an employer or a friend. Some of these clusters discriminated between worker and friend conditions (e.g., flexible vs. caring) and between LinkedIn users with high and low education (e.g., analytical vs. messy). © 2018 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  7. Descriptive and numeric estimation of risk for psychotic disorders among affected individuals and relatives: Implications for clinical practice

    PubMed Central

    Austin, Jehannine C.; Hippman, Catriona; Honer, William G.

    2013-01-01

    Studies show that individuals with psychotic illnesses and their families want information about psychosis risks for other relatives. However, deriving accurate numeric probabilities for psychosis risk is challenging, and people have difficulty interpreting probabilistic information, thus some have suggested that clinicians should use risk descriptors, such as ‘moderate’ or ‘quite high’, rather than numbers. Little is known about how individuals with psychosis and their family members use quantitative and qualitative descriptors of risk in the specific context of chance for an individual to develop psychosis. We explored numeric and descriptive estimations of psychosis risk among individuals with psychotic disorders and unaffected first-degree relatives. In an online survey, respondents numerically and descriptively estimated risk for an individual to develop psychosis in scenarios where they had: A) no affected family members; and B) an affected sibling. 219 affected individuals and 211 first-degree relatives participated. Affected individuals estimated significantly higher risks than relatives. Participants attributed all descriptors between “very low” and “very high” to probabilities of 1%, 10%, 25% and 50%+. For a given numeric probability, different risk descriptors were attributed in different scenarios. Clinically, brief interventions around risk (using either probabilities or descriptors alone) are vulnerable to miscommunication and potentially profoundly negative consequences –interventions around risk are best suited to in-depth discussion. PMID:22421074

  8. Descriptive and numeric estimation of risk for psychotic disorders among affected individuals and relatives: implications for clinical practice.

    PubMed

    Austin, Jehannine C; Hippman, Catriona; Honer, William G

    2012-03-30

    Studies show that individuals with psychotic illnesses and their families want information about psychosis risks for other relatives. However, deriving accurate numeric probabilities for psychosis risk is challenging, and people have difficulty interpreting probabilistic information; thus, some have suggested that clinicians should use risk descriptors, such as "moderate" or "quite high", rather than numbers. Little is known about how individuals with psychosis and their family members use quantitative and qualitative descriptors of risk in the specific context of chance for an individual to develop psychosis. We explored numeric and descriptive estimations of psychosis risk among individuals with psychotic disorders and unaffected first-degree relatives. In an online survey, respondents numerically and descriptively estimated risk for an individual to develop psychosis in scenarios where they had: A) no affected family members; and B) an affected sibling. Participants comprised 219 affected individuals and 211 first-degree relatives participated. Affected individuals estimated significantly higher risks than relatives. Participants attributed all descriptors between "very low" and "very high" to probabilities of 1%, 10%, 25% and 50%+. For a given numeric probability, different risk descriptors were attributed in different scenarios. Clinically, brief interventions around risk (using either probabilities or descriptors alone) are vulnerable to miscommunication and potentially negative consequences-interventions around risk are best suited to in-depth discussion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Tandem mass spectrometry measurement of the collision products of carbamate anions derived from CO2 capture sorbents: paving the way for accurate quantitation.

    PubMed

    Jackson, Phil; Fisher, Keith J; Attalla, Moetaz Ibrahim

    2011-08-01

    The reaction between CO(2) and aqueous amines to produce a charged carbamate product plays a crucial role in post-combustion capture chemistry when primary and secondary amines are used. In this paper, we report the low energy negative-ion CID results for several anionic carbamates derived from primary and secondary amines commonly used as post-combustion capture solvents. The study was performed using the modern equivalent of a triple quadrupole instrument equipped with a T-wave collision cell. Deuterium labeling of 2-aminoethanol (1,1,2,2,-d(4)-2-aminoethanol) and computations at the M06-2X/6-311++G(d,p) level were used to confirm the identity of the fragmentation products for 2-hydroxyethylcarbamate (derived from 2-aminoethanol), in particular the ions CN(-), NCO(-) and facile neutral losses of CO(2) and water; there is precedent for the latter in condensed phase isocyanate chemistry. The fragmentations of 2-hydroxyethylcarbamate were generalized for carbamate anions derived from other capture amines, including ethylenediamine, diethanolamine, and piperazine. We also report unequivocal evidence for the existence of carbamate anions derived from sterically hindered amines (Tris(2-hydroxymethyl)aminomethane and 2-methyl-2-aminopropanol). For the suite of carbamates investigated, diagnostic losses include the decarboxylation product (-CO(2), 44 mass units), loss of 46 mass units and the fragments NCO(-) (m/z 42) and CN(-) (m/z 26). We also report low energy CID results for the dicarbamate dianion ((-)O(2)CNHC(2)H(4)NHCO(2)(-)) commonly encountered in CO(2) capture solution utilizing ethylenediamine. Finally, we demonstrate a promising ion chromatography-MS based procedure for the separation and quantitation of aqueous anionic carbamates, which is based on the reported CID findings. The availability of accurate quantitation methods for ionic CO(2) capture products could lead to dynamic operational tuning of CO(2) capture-plants and, thus, cost-savings via real

  10. Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network

    NASA Astrophysics Data System (ADS)

    Wee, Chong-Yaw; Yap, Pew-Thian; Brownyke, Jeffery N.; Potter, Guy G.; Steffens, David C.; Welsh-Bohmer, Kathleen; Wang, Lihong; Shen, Dinggang

    Mild cognitive impairment (MCI), often a prodromal phase of Alzheimer's disease (AD), is frequently considered to be a good target for early diagnosis and therapeutic interventions of AD. Recent emergence of reliable network characterization techniques have made understanding neurological disorders at a whole brain connectivity level possible. Accordingly, we propose a network-based multivariate classification algorithm, using a collection of measures derived from white-matter (WM) connectivity networks, to accurately identify MCI patients from normal controls. An enriched description of WM connections, utilizing six physiological parameters, i.e., fiber penetration count, fractional anisotropy (FA), mean diffusivity (MD), and principal diffusivities (λ 1, λ 2, λ 3), results in six connectivity networks for each subject to account for the connection topology and the biophysical properties of the connections. Upon parcellating the brain into 90 regions-of-interest (ROIs), the average statistics of each ROI in relation to the remaining ROIs are extracted as features for classification. These features are then sieved to select the most discriminant subset of features for building an MCI classifier via support vector machines (SVMs). Cross-validation results indicate better diagnostic power of the proposed enriched WM connection description than simple description with any single physiological parameter.

  11. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI.

    PubMed

    Adler, Sophie; Lorio, Sara; Jacques, Thomas S; Benova, Barbora; Gunny, Roxana; Cross, J Helen; Baldeweg, Torsten; Carmichael, David W

    2017-01-01

    Focal cortical dysplasias (FCDs) are a range of malformations of cortical development each with specific histopathological features. Conventional radiological assessment of standard structural MRI is useful for the localization of lesions but is unable to accurately predict the histopathological features. Quantitative MRI offers the possibility to probe tissue biophysical properties in vivo and may bridge the gap between radiological assessment and ex-vivo histology. This review will cover histological, genetic and radiological features of FCD following the ILAE classification and will explain how quantitative voxel- and surface-based techniques can characterise these features. We will provide an overview of the quantitative MRI measures available, their link with biophysical properties and finally the potential application of quantitative MRI to the problem of FCD subtyping. Future research linking quantitative MRI to FCD histological properties should improve clinical protocols, allow better characterisation of lesions in vivo and tailored surgical planning to the individual.

  12. Initial description of a quantitative, cross-species (chimpanzee-human) social responsiveness measure

    PubMed Central

    Marrus, Natasha; Faughn, Carley; Shuman, Jeremy; Petersen, Steve; Constantino, John; Povinelli, Daniel; Pruett, John R.

    2011-01-01

    Objective Comparative studies of social responsiveness, an ability that is impaired in autistic spectrum disorders, can inform our understanding of both autism and the cognitive architecture of social behavior. Because there is no existing quantitative measure of social responsiveness in chimpanzees, we generated a quantitative, cross-species (human-chimpanzee) social responsiveness measure. Method We translated the Social Responsiveness Scale (SRS), an instrument that quantifies human social responsiveness, into an analogous instrument for chimpanzees. We then retranslated this "Chimp SRS" into a human "Cross-Species SRS" (XSRS). We evaluated three groups of chimpanzees (n=29) with the Chimp SRS and typical and autistic spectrum disorder (ASD) human children (n=20) with the XSRS. Results The Chimp SRS demonstrated strong inter-rater reliability at the three sites (ranges for individual ICCs: .534–.866 and mean ICCs: .851–.970). As has been observed in humans, exploratory principal components analysis of Chimp SRS scores supports a single factor underlying chimpanzee social responsiveness. Human subjects' XSRS scores were fully concordant with their SRS scores (r=.976, p=.001) and distinguished appropriately between typical and ASD subjects. One chimpanzee known for inappropriate social behavior displayed a significantly higher score than all other chimpanzees at its site, demonstrating the scale's ability to detect impaired social responsiveness in chimpanzees. Conclusion Our initial cross-species social responsiveness scale proved reliable and discriminated differences in social responsiveness across (in a relative sense) and within (in a more objectively quantifiable manner) humans and chimpanzees. PMID:21515200

  13. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K -edge XANES data

    NASA Astrophysics Data System (ADS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D. D.

    2005-11-01

    Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K -edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K -edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.

  14. Application of the Rangeland Hydrology and Erosion Model to Ecological Site Descriptions and Management

    USDA-ARS?s Scientific Manuscript database

    The utility of Ecological Site Descriptions (ESDs) and State-and-Transition Models (STMs) concepts in guiding rangeland management hinges on their ability to accurately describe and predict community dynamics and the associated consequences. For many rangeland ecosystems, plant community dynamics ar...

  15. Description and quantitative analysis of the dentition of the southern thorny skate Amblyraja doellojuradoi.

    PubMed

    Delpiani, G; Spath, M C; Deli Antoni, M; Delpiani, M

    2017-06-01

    A description of the tooth morphology of 234 jaws from the southern thorny skate Amblyraja doellojuradoi in the south-west Atlantic Ocean is given. Seven rows of teeth were selected and length and width of each tooth in these rows were measured. It was found that functional series corresponds to the third teeth and the average width and length of these teeth were compared among jaws, maturity stages, sexes and rows. Generalized linear models were used to determine the subset of measures that most contribute to explain the variability between groups. It was observed that males have longer teeth than females, but the teeth of females are wider. These differences are attributed to reproductive behaviour, in which males bite females to hold them during copulation. This study provides a description of the teeth of A. doellojuradoi, supplying a valuable tool for identification of species. In addition, the establishment of the main variations observed in the dentition, improves the understanding of the species' biology. © 2017 The Fisheries Society of the British Isles.

  16. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-01

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ɛ(r) is close to one everywhere inside the protein. The Gaussian widths σi of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σi. A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by

  17. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.

    PubMed

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by

  18. Taxonomy of Macromotettixoides with the description of a new species (Tetrigidae, Metrodorinae)

    PubMed Central

    Zha, Ling-Sheng; Yu, Feng-Ming; Boonmee, Saranyaphat; Eungwanichayapant, Prapassorn D.; Wen, Ting-Chi

    2017-01-01

    Abstract Descriptions of the flying organs and generic characteristics of the genus Macromotettixoides Zheng, Wei & Jiang are currently imprecise. Macromotettixoides is reviewed and compared with allied genera. A re-description is undertaken and a determination key is provided to Macromotettixoides. Macromotettixoides parvula Zha & Wen, sp. n. from the Guizhou Karst Region, China, is described and illustrated with photographs. Observations on the ecology and habits of the new species are recorded. Four current species of Hyboella Hancock are transferred to Macromotettixoides. Variations of the flying organs and tegminal sinus in the Tetrigidae are discussed, which will help to describe them accurately. PMID:28228664

  19. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement

    PubMed Central

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-01-01

    Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139

  20. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  1. Quantitative self-assembly prediction yields targeted nanomedicines

    NASA Astrophysics Data System (ADS)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  2. Quantitative fluorescence tomography using a trimodality system: in vivo validation

    PubMed Central

    Lin, Yuting; Barber, William C.; Iwanczyk, Jan S.; Roeck, Werner W.; Nalcioglu, Orhan; Gulsen, Gultekin

    2010-01-01

    A fully integrated trimodality fluorescence, diffuse optical, and x-ray computed tomography (FT∕DOT∕XCT) system for small animal imaging is reported in this work. The main purpose of this system is to obtain quantitatively accurate fluorescence concentration images using a multimodality approach. XCT offers anatomical information, while DOT provides the necessary background optical property map to improve FT image accuracy. The quantitative accuracy of this trimodality system is demonstrated in vivo. In particular, we show that a 2-mm-diam fluorescence inclusion located 8 mm deep in a nude mouse can only be localized when functional a priori information from DOT is available. However, the error in the recovered fluorophore concentration is nearly 87%. On the other hand, the fluorophore concentration can be accurately recovered within 2% error when both DOT functional and XCT structural a priori information are utilized together to guide and constrain the FT reconstruction algorithm. PMID:20799770

  3. Assessment of and standardization for quantitative nondestructive test

    NASA Technical Reports Server (NTRS)

    Neuschaefer, R. W.; Beal, J. B.

    1972-01-01

    Present capabilities and limitations of nondestructive testing (NDT) as applied to aerospace structures during design, development, production, and operational phases are assessed. It will help determine what useful structural quantitative and qualitative data may be provided from raw materials to vehicle refurbishment. This assessment considers metal alloys systems and bonded composites presently applied in active NASA programs or strong contenders for future use. Quantitative and qualitative data has been summarized from recent literature, and in-house information, and presented along with a description of those structures or standards where the information was obtained. Examples, in tabular form, of NDT technique capabilities and limitations have been provided. NDT techniques discussed and assessed were radiography, ultrasonics, penetrants, thermal, acoustic, and electromagnetic. Quantitative data is sparse; therefore, obtaining statistically reliable flaw detection data must be strongly emphasized. The new requirements for reusable space vehicles have resulted in highly efficient design concepts operating in severe environments. This increases the need for quantitative NDT evaluation of selected structural components, the end item structure, and during refurbishment operations.

  4. Machine Learning of Accurate Energy-Conserving Molecular Force Fields

    NASA Astrophysics Data System (ADS)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel; Poltavsky, Igor; Schütt, Kristof; Müller, Klaus-Robert; GDML Collaboration

    Efficient and accurate access to the Born-Oppenheimer potential energy surface (PES) is essential for long time scale molecular dynamics (MD) simulations. Using conservation of energy - a fundamental property of closed classical and quantum mechanical systems - we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio MD trajectories (AIMD). The GDML implementation is able to reproduce global potential-energy surfaces of intermediate-size molecules with an accuracy of 0.3 kcal/mol for energies and 1 kcal/mol/Å for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, malonaldehyde, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative MD simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  5. The accurate assessment of small-angle X-ray scattering data

    DOE PAGES

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; ...

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  6. [Reconstituting evaluation methods based on both qualitative and quantitative paradigms].

    PubMed

    Miyata, Hiroaki; Okubo, Suguru; Yoshie, Satoru; Kai, Ichiro

    2011-01-01

    Debate about the relationship between quantitative and qualitative paradigms is often muddled and confusing and the clutter of terms and arguments has resulted in the concepts becoming obscure and unrecognizable. In this study we conducted content analysis regarding evaluation methods of qualitative healthcare research. We extracted descriptions on four types of evaluation paradigm (validity/credibility, reliability/credibility, objectivity/confirmability, and generalizability/transferability), and classified them into subcategories. In quantitative research, there has been many evaluation methods based on qualitative paradigms, and vice versa. Thus, it might not be useful to consider evaluation methods of qualitative paradigm are isolated from those of quantitative methods. Choosing practical evaluation methods based on the situation and prior conditions of each study is an important approach for researchers.

  7. Genomic Quantitative Genetics to Study Evolution in the Wild.

    PubMed

    Gienapp, Phillip; Fior, Simone; Guillaume, Frédéric; Lasky, Jesse R; Sork, Victoria L; Csilléry, Katalin

    2017-12-01

    Quantitative genetic theory provides a means of estimating the evolutionary potential of natural populations. However, this approach was previously only feasible in systems where the genetic relatedness between individuals could be inferred from pedigrees or experimental crosses. The genomic revolution opened up the possibility of obtaining the realized proportion of genome shared among individuals in natural populations of virtually any species, which could promise (more) accurate estimates of quantitative genetic parameters in virtually any species. Such a 'genomic' quantitative genetics approach relies on fewer assumptions, offers a greater methodological flexibility, and is thus expected to greatly enhance our understanding of evolution in natural populations, for example, in the context of adaptation to environmental change, eco-evolutionary dynamics, and biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Investigating the Validity of Two Widely Used Quantitative Text Tools

    ERIC Educational Resources Information Center

    Cunningham, James W.; Hiebert, Elfrieda H.; Mesmer, Heidi Anne

    2018-01-01

    In recent years, readability formulas have gained new prominence as a basis for selecting texts for learning and assessment. Variables that quantitative tools count (e.g., word frequency, sentence length) provide valid measures of text complexity insofar as they accurately predict representative and high-quality criteria. The longstanding…

  9. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

    PubMed Central

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong

    2015-01-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586

  10. HGVS Recommendations for the Description of Sequence Variants: 2016 Update.

    PubMed

    den Dunnen, Johan T; Dalgleish, Raymond; Maglott, Donna R; Hart, Reece K; Greenblatt, Marc S; McGowan-Jordan, Jean; Roux, Anne-Francoise; Smith, Timothy; Antonarakis, Stylianos E; Taschner, Peter E M

    2016-06-01

    The consistent and unambiguous description of sequence variants is essential to report and exchange information on the analysis of a genome. In particular, DNA diagnostics critically depends on accurate and standardized description and sharing of the variants detected. The sequence variant nomenclature system proposed in 2000 by the Human Genome Variation Society has been widely adopted and has developed into an internationally accepted standard. The recommendations are currently commissioned through a Sequence Variant Description Working Group (SVD-WG) operating under the auspices of three international organizations: the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organization (HUGO). Requests for modifications and extensions go through the SVD-WG following a standard procedure including a community consultation step. Version numbers are assigned to the nomenclature system to allow users to specify the version used in their variant descriptions. Here, we present the current recommendations, HGVS version 15.11, and briefly summarize the changes that were made since the 2000 publication. Most focus has been on removing inconsistencies and tightening definitions allowing automatic data processing. An extensive version of the recommendations is available online, at http://www.HGVS.org/varnomen. © 2016 WILEY PERIODICALS, INC.

  11. Accurate and efficient spin integration for particle accelerators

    DOE PAGES

    Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; ...

    2015-02-01

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations.We evaluate their performance and accuracy in quantitative detail for individual elements as well as formore » the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.« less

  12. Quantitative characterization of surface topography using spectral analysis

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Junge, Till; Pastewka, Lars

    2017-03-01

    Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal and electrical) contact conductance. Recent analytical models and simulations enable quantitative prediction of these properties from knowledge of the power spectral density (PSD) of the surface topography. The utility of the PSD is that it contains statistical information that is unbiased by the particular scan size and pixel resolution chosen by the researcher. In this article, we first review the mathematical definition of the PSD, including the one- and two-dimensional cases, and common variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at the smallest scales, and computing upper/lower bounds on functional properties obtained from models. We accompany our discussion with virtual measurements on computer-generated surfaces. This discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface topography—however, this potential can only be achieved through the accurate, quantitative reconstruction of the PSDs of real-world surfaces.

  13. Initial description of a quantitative, cross-species (chimpanzee-human) social responsiveness measure.

    PubMed

    Marrus, Natasha; Faughn, Carley; Shuman, Jeremy; Petersen, Steve E; Constantino, John N; Povinelli, Daniel J; Pruett, John R

    2011-05-01

    Comparative studies of social responsiveness, an ability that is impaired in autism spectrum disorders, can inform our understanding of both autism and the cognitive architecture of social behavior. Because there is no existing quantitative measure of social responsiveness in chimpanzees, we generated a quantitative, cross-species (human-chimpanzee) social responsiveness measure. We translated the Social Responsiveness Scale (SRS), an instrument that quantifies human social responsiveness, into an analogous instrument for chimpanzees. We then retranslated this "Chimpanzee SRS" into a human "Cross-Species SRS" (XSRS). We evaluated three groups of chimpanzees (n = 29) with the Chimpanzee SRS and typical and human children with autism spectrum disorder (ASD; n = 20) with the XSRS. The Chimpanzee SRS demonstrated strong interrater reliability at the three sites (ranges for individual ICCs: 0.534 to 0.866; mean ICCs: 0.851 to 0.970). As has been observed in human beings, exploratory principal components analysis of Chimpanzee SRS scores supports a single factor underlying chimpanzee social responsiveness. Human subjects' XSRS scores were fully concordant with their SRS scores (r = 0.976, p = .001) and distinguished appropriately between typical and ASD subjects. One chimpanzee known for inappropriate social behavior displayed a significantly higher score than all other chimpanzees at its site, demonstrating the scale's ability to detect impaired social responsiveness in chimpanzees. Our initial cross-species social responsiveness scale proved reliable and discriminated differences in social responsiveness across (in a relative sense) and within (in a more objectively quantifiable manner) human beings and chimpanzees. Copyright © 2011 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. A pairwise maximum entropy model accurately describes resting-state human brain networks

    PubMed Central

    Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki

    2013-01-01

    The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks. PMID:23340410

  15. Utility of high-resolution accurate MS to eliminate interferences in the bioanalysis of ribavirin and its phosphate metabolites.

    PubMed

    Wei, Cong; Grace, James E; Zvyaga, Tatyana A; Drexler, Dieter M

    2012-08-01

    The polar nucleoside drug ribavirin (RBV) combined with IFN-α is a front-line treatment for chronic hepatitis C virus infection. RBV acts as a prodrug and exerts its broad antiviral activity primarily through its active phosphorylated metabolite ribavirin 5´-triphosphate (RTP), and also possibly through ribavirin 5´-monophosphate (RMP). To study RBV transport, diffusion, metabolic clearance and its impact on drug-metabolizing enzymes, a LC-MS method is needed to simultaneously quantify RBV and its phosphorylated metabolites (RTP, ribavirin 5´-diphosphate and RMP). In a recombinant human UGT1A1 assay, the assay buffer components uridine and its phosphorylated derivatives are isobaric with RBV and its phosphorylated metabolites, leading to significant interference when analyzed by LC-MS with the nominal mass resolution mode. Presented here is a LC-MS method employing LC coupled with full-scan high-resolution accurate MS analysis for the simultaneous quantitative determination of RBV, RMP, ribavirin 5´-diphosphate and RTP by differentiating RBV and its phosphorylated metabolites from uridine and its phosphorylated derivatives by accurate mass, thus avoiding interference. The developed LC-high-resolution accurate MS method allows for quantitation of RBV and its phosphorylated metabolites, eliminating the interferences from uridine and its phosphorylated derivatives in recombinant human UGT1A1 assays.

  16. Strengthening Student Engagement with Quantitative Subjects in a Business Faculty

    ERIC Educational Resources Information Center

    Warwick, Jon; Howard, Anna

    2014-01-01

    This paper reflects on the results of research undertaken at a large UK university relating to the teaching of quantitative subjects within a Business Faculty. It builds on a simple model of student engagement and, through the description of three case studies, describes research undertaken and developments implemented to strengthen aspects of the…

  17. Equations for description of nonlinear standing waves in constant-cross-sectioned resonators.

    PubMed

    Bednarik, Michal; Cervenka, Milan

    2014-03-01

    This work is focused on investigation of applicability of two widely used model equations for description of nonlinear standing waves in constant-cross-sectioned resonators. The investigation is based on the comparison of numerical solutions of these model equations with solutions of more accurate model equations whose validity has been verified experimentally in a number of published papers.

  18. Improved Detection System Description and New Method for Accurate Calibration of Micro-Channel Plate Based Instruments and Its Use in the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Gliese, U.; Avanov, L. A.; Barrie, A. C.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Gershman, D. J.; Dorelli, J. C.; hide

    2015-01-01

    system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. More precise calibration is highly desirable as the instruments will produce higher quality raw data that will require less post-acquisition data correction using results from in-flight pitch angle distribution measurements and ground calibration measurements. The detection system description and the fundamental concepts of this new calibration method, named threshold scan, will be presented. It will be shown how to derive all the individual detection system parameters and how to choose the optimum detection system operating point. This new method has been successfully applied to achieve a highly accurate calibration of the DESs and DISs of the MMS mission. The practical application of the method will be presented together with the achieved calibration results and their significance. Finally, it will be shown that, with further detailed modeling, this method can be extended for use in flight to achieve and maintain a highly accurate detection system calibration across a large number of instruments during the mission.

  19. Variety of geologic silhouette shapes distinguishable by multiple rotations method of quantitative shape analysis text

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, D.G.; Parks, J.M.

    1984-04-01

    Silhouette shapes are two-dimensional projections of three-dimensional objects such as sand grains, gravel, and fossils. Within-the-margin markings such as chamber boundaries, sutures, or ribs are ignored. Comparisons between populations of objects from similar and differential origins (i.e., environments, species or genera, growth series, etc) is aided by quantifying the shapes. The Multiple Rotations Method (MRM) uses a variation of ''eigenshapes'', which is capable of distinguishing most of the subtle variations that the ''trained eye'' can detect. With a video-digitizer and microcomputer, MRM is fast, more accurate, and more objective than the human eye. The resulting shape descriptors comprise 5 ormore » 6 numbers per object that can be stored and retrieved to compare with similar descriptions of other objects. The original-shape outlines can be reconstituted sufficiently for gross recognition from these few numerical descriptors. Thus, a semi-automated data-retrieval system becomes feasible, with silhouette-shape descriptions as one of several recognition criteria. MRM consists of four ''rotations'': rotation about a center to a comparable orientation; a principal-components rotation to reduce the many original shape descriptors to a few; a VARIMAX orthogonal-factor rotation to achieve simple structure; and a rotation to achieve factor scores on individual objects. A variety of subtly different shapes includes sand grains from several locations, ages, and environments, and fossils of several types. This variety illustrates the feasibility of quantitative comparisons by MRM.« less

  20. A quantitative systems physiology model of renal function and blood pressure regulation: Model description.

    PubMed

    Hallow, K M; Gebremichael, Y

    2017-06-01

    Renal function plays a central role in cardiovascular, kidney, and multiple other diseases, and many existing and novel therapies act through renal mechanisms. Even with decades of accumulated knowledge of renal physiology, pathophysiology, and pharmacology, the dynamics of renal function remain difficult to understand and predict, often resulting in unexpected or counterintuitive therapy responses. Quantitative systems pharmacology modeling of renal function integrates this accumulated knowledge into a quantitative framework, allowing evaluation of competing hypotheses, identification of knowledge gaps, and generation of new experimentally testable hypotheses. Here we present a model of renal physiology and control mechanisms involved in maintaining sodium and water homeostasis. This model represents the core renal physiological processes involved in many research questions in drug development. The model runs in R and the code is made available. In a companion article, we present a case study using the model to explore mechanisms and pharmacology of salt-sensitive hypertension. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  1. Effects of a Training Package to Improve the Accuracy of Descriptive Analysis Data Recording

    ERIC Educational Resources Information Center

    Mayer, Kimberly L.; DiGennaro Reed, Florence D.

    2013-01-01

    Functional behavior assessment is an important precursor to developing interventions to address a problem behavior. Descriptive analysis, a type of functional behavior assessment, is effective in informing intervention design only if the gathered data accurately capture relevant events and behaviors. We investigated a training procedure to improve…

  2. Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging.

    PubMed

    Clemis, Elizabeth J; Smith, Derek S; Camenzind, Alexander G; Danell, Ryan M; Parker, Carol E; Borchers, Christoph H

    2012-04-17

    MALDI imaging allows the creation of a "molecular image" of a tissue slice. This image is reconstructed from the ion abundances in spectra obtained while rastering the laser over the tissue. These images can then be correlated with tissue histology to detect potential biomarkers of, for example, aberrant cell types. MALDI, however, is known to have problems with ion suppression, making it difficult to correlate measured ion abundance with concentration. It would be advantageous to have a method which could provide more accurate protein concentration measurements, particularly for screening applications or for precise comparisons between samples. In this paper, we report the development of a novel MALDI imaging method for the localization and accurate quantitation of proteins in tissues. This method involves optimization of in situ tryptic digestion, followed by reproducible and uniform deposition of an isotopically labeled standard peptide from a target protein onto the tissue, using an aerosol-generating device. Data is acquired by MALDI multiple reaction monitoring (MRM) mass spectrometry (MS), and accurate peptide quantitation is determined from the ratio of MRM transitions for the endogenous unlabeled proteolytic peptides to the corresponding transitions from the applied isotopically labeled standard peptides. In a parallel experiment, the quantity of the labeled peptide applied to the tissue was determined using a standard curve generated from MALDI time-of-flight (TOF) MS data. This external calibration curve was then used to determine the quantity of endogenous peptide in a given area. All standard curves generate by this method had coefficients of determination greater than 0.97. These proof-of-concept experiments using MALDI MRM-based imaging show the feasibility for the precise and accurate quantitation of tissue protein concentrations over 2 orders of magnitude, while maintaining the spatial localization information for the proteins.

  3. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  4. Multi-ethnic high school students' perceptions of nursing in the USA and Israel: a descriptive quantitative study.

    PubMed

    Degazon, Cynthia E; Ben Natan, Merav; Shaw, Holly K; Ehrenfeld, Mally

    2015-01-01

    In order to target new recruits or future generation of ethnic minority nurses about their potential fit in nursing, it is necessary to understand their perceptions of the profession. Successful recruitment of high school students into nursing in part requires congruency between perceptions of an ideal career and perceptions of nursing as a career. The purposes of this study were to compare ethnic minority high school students in the USA and in Israel on their perceptions of nursing as a career, and to understand how those perceptions compare to their perceptions of an ideal career. A descriptive quantitative design was employed to study a sample of 330 ethnic minority high school students from the USA and from Israel. The Mann-Whitney U procedure was used to compare the groups' perceptions; a two-sided Wilcoxon Signed-Ranks test was used to determine the differences between their perceptions of an ideal career and of nursing as a career. The USA students had more positive perceptions of nursing as a career than did the Israeli students. Both groups of students did not perceive nursing as an ideal career: They perceived nurses as hard workers, performing arduous tasks and busy work, not academically challenged, with limited opportunity for leadership and autonomy, and earning less money than they would want in an ideal career. Caring for others was a highly valued attribute for an ideal career and for nursing as a career. A minority career development plan that underscores the positive attributes of nursing should be designed in both the USA and in Israel for ethnic minority high school students. The plan should effectively communicate nursing as a caring profession that is academically rigorous and intellectually challenging with available leadership opportunities in institutions and society. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. How directions of route descriptions influence orientation specificity: the contribution of spatial abilities.

    PubMed

    Meneghetti, Chiara; Muffato, Veronica; Varotto, Diego; De Beni, Rossana

    2017-03-01

    Previous studies found mental representations of route descriptions north-up oriented when egocentric experience (given by the protagonist's initial view) was congruent with the global reference system. This study examines: (a) the development and maintenance of representations derived from descriptions when the egocentric and global reference systems are congruent or incongruent; and (b) how spatial abilities modulate these representations. Sixty participants (in two groups of 30) heard route descriptions of a protagonist's moves starting from the bottom of a layout and headed mainly northwards (SN description) in one group, and headed south from the top (NS description, the egocentric view facing in the opposite direction to the canonical north) in the other. Description recall was tested with map drawing (after hearing the description a first and second time; i.e. Time 1 and 2) and South-North (SN) or North-South (NS) pointing tasks; and spatial objective tasks were administered. The results showed that: (a) the drawings were more rotated in NS than in SN descriptions, and performed better at Time 2 than at Time 1 for both types of description; SN pointing was more accurate than NS pointing for the SN description, while SN and NS pointing accuracy did not differ for the NS description; (b) spatial (rotation) abilities were related to recall accuracy for both types of description, but were more so for the NS ones. Overall, our results showed that the way in which spatial information is conveyed (with/without congruence between the egocentric and global reference systems) and spatial abilities influence the development and maintenance of mental representations.

  6. Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.

    2014-03-01

    Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.

  7. Quantitative analysis to guide orphan drug development.

    PubMed

    Lesko, L J

    2012-08-01

    The development of orphan drugs for rare diseases has made impressive strides in the past 10 years. There has been a surge in orphan drug designations, but new drug approvals have not kept up. This article presents a three-pronged hierarchical strategy for quantitative analysis of data at the descriptive, mechanistic, and systems levels of the biological system that could represent a standardized and rational approach to orphan drug development. Examples are provided to illustrate the concept.

  8. Water immersion facility general description, spacecraft design division, crew station branch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Water Immersion Facility provides an accurate, safe, neutral buoyancy simulation of zero gravity conditions for development of equipment and procedures, and the training of crews. A detailed description is given of some of the following systems: (1) water tank and support equipment; (2) communications systems; (3) environmental control and liquid cooled garment system (EcS/LCG); (4) closed circuit television system; and (5) medical support system.

  9. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  10. Quantitation of specific binding ratio in 123I-FP-CIT SPECT: accurate processing strategy for cerebral ventricular enlargement with use of 3D-striatal digital brain phantom.

    PubMed

    Furuta, Akihiro; Onishi, Hideo; Amijima, Hizuru

    2018-06-01

    This study aimed to evaluate the effect of ventricular enlargement on the specific binding ratio (SBR) and to validate the cerebrospinal fluid (CSF)-Mask algorithm for quantitative SBR assessment of 123 I-FP-CIT single-photon emission computed tomography (SPECT) images with the use of a 3D-striatum digital brain (SDB) phantom. Ventricular enlargement was simulated by three-dimensional extensions in a 3D-SDB phantom comprising segments representing the striatum, ventricle, brain parenchyma, and skull bone. The Evans Index (EI) was measured in 3D-SDB phantom images of an enlarged ventricle. Projection data sets were generated from the 3D-SDB phantoms with blurring, scatter, and attenuation. Images were reconstructed using the ordered subset expectation maximization (OSEM) algorithm and corrected for attenuation, scatter, and resolution recovery. We bundled DaTView (Southampton method) with the CSF-Mask processing software for SBR. We assessed SBR with the use of various coefficients (f factor) of the CSF-Mask. Specific binding ratios of 1, 2, 3, 4, and 5 corresponded to SDB phantom simulations with true values. Measured SBRs > 50% that were underestimated with EI increased compared with the true SBR and this trend was outstanding at low SBR. The CSF-Mask improved 20% underestimates and brought the measured SBR closer to the true values at an f factor of 1.0 despite an increase in EI. We connected the linear regression function (y = - 3.53x + 1.95; r = 0.95) with the EI and f factor using root-mean-square error. Processing with CSF-Mask generates accurate quantitative SBR from dopamine transporter SPECT images of patients with ventricular enlargement.

  11. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based onmore » marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  12. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on markermore » correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  13. Preparing Tomorrow's Administrators: A Quantitative Correlation Study of the Relationship between Emotional Intelligence and Effective Leadership Practices

    ERIC Educational Resources Information Center

    May-Vollmar, Kelly

    2017-01-01

    Purpose: The purpose of this quantitative correlation study was to identify whether there is a relationship between emotional intelligence and effective leadership practices, specifically with school administrators in Southern California K-12 public schools. Methods: This study was conducted using a quantitative descriptive design, correlation…

  14. Quantitative interpretation of the magnetic susceptibility frequency dependence

    NASA Astrophysics Data System (ADS)

    Ustra, Andrea; Mendonça, Carlos A.; Leite, Aruã; Jovane, Luigi; Trindade, Ricardo I. F.

    2018-05-01

    Low-field mass-specific magnetic susceptibility (MS) measurements using multifrequency alternating fields are commonly used to evaluate concentration of ferrimagnetic particles in the transition of superparamagnetic (SP) to stable single domain (SSD). In classical palaeomagnetic analyses, this measurement serves as a preliminary assessment of rock samples providing rapid, non-destructive, economical and easy information of magnetic properties. The SP-SSD transition is relevant in environmental studies because it has been associated with several geological and biogeochemical processes affecting magnetic mineralogy. MS is a complex function of mineral-type and grain-size distribution, as well as measuring parameters such as external field magnitude and frequency. In this work, we propose a new technique to obtain quantitative information on grain-size variations of magnetic particles in the SP-SSD transition by inverting frequency-dependent susceptibility. We introduce a descriptive parameter named as `limiting frequency effect' that provides an accurate estimation of MS loss with frequency. Numerical simulations show the methodology capability in providing data fitting and model parameters in many practical situations. Real-data applications with magnetite nanoparticles and core samples from sediments of Poggio le Guaine section of Umbria-Marche Basin (Italy) provide additional information not clearly recognized when interpreting cruder MS data. Caution is needed when interpreting frequency dependence in terms of single relaxation processes, which are not universally applicable and depend upon the nature of magnetic mineral in the material. Nevertheless, the proposed technique is a promising tool for SP-SSD content analyses.

  15. Theory of bi-molecular association dynamics in 2D for accurate model and experimental parameterization of binding rates

    PubMed Central

    Yogurtcu, Osman N.; Johnson, Margaret E.

    2015-01-01

    The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute

  16. A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies.

    PubMed

    Korolev, Kirill S; Xavier, João B; Nelson, David R; Foster, Kevin R

    2011-10-01

    It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut microbe Escherichia coli and the opportunistic pathogen Pseudomonas aeruginosa, and show that spatiogenetic patterns in colony biofilms of both species are accurately described by an extension of the one-dimensional stepping-stone model. We use one empirical measure, genetic diversity at the colony periphery, to parameterize our models and show that we can then accurately predict another key variable: the degree of short-range cell migration along an edge. Moreover, the model allows us to estimate other key parameters, including effective population size (density) at the expansion frontier. While our experimental system is a simplification of natural microbial community, we argue that it constitutes proof of principle that the spatial models of population genetics can quantitatively capture organismal evolution.

  17. The Quantitative Preparation of Future Geoscience Graduate Students

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Hancock, G. S.

    2006-12-01

    Modern geoscience is a highly quantitative science. In February, a small group of faculty and graduate students from across the country met to discuss the quantitative preparation of geoscience majors for graduate school. The group included ten faculty supervising graduate students in quantitative areas spanning the earth, atmosphere, and ocean sciences; five current graduate students in these areas; and five faculty teaching undergraduate students in the spectrum of institutions preparing students for graduate work. Discussion focused in four key ares: Are incoming graduate students adequately prepared for the quantitative aspects of graduate geoscience programs? What are the essential quantitative skills are that are required for success in graduate school? What are perceived as the important courses to prepare students for the quantitative aspects of graduate school? What programs/resources would be valuable in helping faculty/departments improve the quantitative preparation of students? The participants concluded that strengthening the quantitative preparation of undergraduate geoscience majors would increase their opportunities in graduate school. While specifics differed amongst disciplines, a special importance was placed on developing the ability to use quantitative skills to solve geoscience problems. This requires the ability to pose problems so they can be addressed quantitatively, understand the relationship between quantitative concepts and physical representations, visualize mathematics, test the reasonableness of quantitative results, creatively move forward from existing models/techniques/approaches, and move between quantitative and verbal descriptions. A list of important quantitative competencies desirable in incoming graduate students includes mechanical skills in basic mathematics, functions, multi-variate analysis, statistics and calculus, as well as skills in logical analysis and the ability to learn independently in quantitative ways

  18. Spotsizer: High-throughput quantitative analysis of microbial growth.

    PubMed

    Bischof, Leanne; Převorovský, Martin; Rallis, Charalampos; Jeffares, Daniel C; Arzhaeva, Yulia; Bähler, Jürg

    2016-10-01

    Microbial colony growth can serve as a useful readout in assays for studying complex genetic interactions or the effects of chemical compounds. Although computational tools for acquiring quantitative measurements of microbial colonies have been developed, their utility can be compromised by inflexible input image requirements, non-trivial installation procedures, or complicated operation. Here, we present the Spotsizer software tool for automated colony size measurements in images of robotically arrayed microbial colonies. Spotsizer features a convenient graphical user interface (GUI), has both single-image and batch-processing capabilities, and works with multiple input image formats and different colony grid types. We demonstrate how Spotsizer can be used for high-throughput quantitative analysis of fission yeast growth. The user-friendly Spotsizer tool provides rapid, accurate, and robust quantitative analyses of microbial growth in a high-throughput format. Spotsizer is freely available at https://data.csiro.au/dap/landingpage?pid=csiro:15330 under a proprietary CSIRO license.

  19. Quantitative Pedagogy: A Digital Two Player Game to Examine Communicative Competence.

    PubMed

    Lopez-Rosenfeld, Matías; Carrillo, Facundo; Garbulsky, Gerry; Fernandez Slezak, Diego; Sigman, Mariano

    2015-01-01

    Inner concepts are much richer than the words that describe them. Our general objective is to inquire what are the best procedures to communicate conceptual knowledge. We construct a simplified and controlled setup emulating important variables of pedagogy amenable to quantitative analysis. To this aim, we designed a game inspired in Chinese Whispers, to investigate which attributes of a description affect its capacity to faithfully convey an image. This is a two player game: an emitter and a receiver. The emitter was shown a simple geometric figure and was asked to describe it in words. He was informed that this description would be passed to the receiver who had to replicate the drawing from this description. We capitalized on vast data obtained from an android app to quantify the effect of different aspects of a description on communication precision. We show that descriptions more effectively communicate an image when they are coherent and when they are procedural. Instead, the creativity, the use of metaphors and the use of mathematical concepts do not affect its fidelity.

  20. Quantitative Pedagogy: A Digital Two Player Game to Examine Communicative Competence

    PubMed Central

    Lopez-Rosenfeld, Matías; Carrillo, Facundo; Garbulsky, Gerry; Fernandez Slezak, Diego; Sigman, Mariano

    2015-01-01

    Inner concepts are much richer than the words that describe them. Our general objective is to inquire what are the best procedures to communicate conceptual knowledge. We construct a simplified and controlled setup emulating important variables of pedagogy amenable to quantitative analysis. To this aim, we designed a game inspired in Chinese Whispers, to investigate which attributes of a description affect its capacity to faithfully convey an image. This is a two player game: an emitter and a receiver. The emitter was shown a simple geometric figure and was asked to describe it in words. He was informed that this description would be passed to the receiver who had to replicate the drawing from this description. We capitalized on vast data obtained from an android app to quantify the effect of different aspects of a description on communication precision. We show that descriptions more effectively communicate an image when they are coherent and when they are procedural. Instead, the creativity, the use of metaphors and the use of mathematical concepts do not affect its fidelity. PMID:26554833

  1. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex

    PubMed Central

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-01-01

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured—qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection. PMID:21733902

  2. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex.

    PubMed

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-02-07

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured--qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection.

  3. Descriptions and identifications of strangers by youth and adult eyewitnesses.

    PubMed

    Pozzulo, Joanna D; Warren, Kelly L

    2003-04-01

    Two studies varying target gender and mode of target exposure were conducted to compare the quantity, nature, and accuracy of free recall person descriptions provided by youths and adults. In addition, the relation among age, identification accuracy, and number of descriptors reported was considered. Youths (10-14 years) reported fewer descriptors than adults. Exterior facial descriptors (e.g., hair items) were predominant and accurately reported by youths and adults. Accuracy was consistently problematic for youths when reporting body descriptors (e.g., height, weight) and interior facial features. Youths reported a similar number of descriptors when making accurate versus inaccurate identification decisions. This pattern also was consistent for adults. With target-absent lineups, the difference in the number of descriptors reported between adults and youths was greater when making a false positive versus correct rejection.

  4. Accurate FRET Measurements within Single Diffusing Biomolecules Using Alternating-Laser Excitation

    PubMed Central

    Lee, Nam Ki; Kapanidis, Achillefs N.; Wang, You; Michalet, Xavier; Mukhopadhyay, Jayanta; Ebright, Richard H.; Weiss, Shimon

    2005-01-01

    Fluorescence resonance energy transfer (FRET) between a donor (D) and an acceptor (A) at the single-molecule level currently provides qualitative information about distance, and quantitative information about kinetics of distance changes. Here, we used the sorting ability of confocal microscopy equipped with alternating-laser excitation (ALEX) to measure accurate FRET efficiencies and distances from single molecules, using corrections that account for cross-talk terms that contaminate the FRET-induced signal, and for differences in the detection efficiency and quantum yield of the probes. ALEX yields accurate FRET independent of instrumental factors, such as excitation intensity or detector alignment. Using DNA fragments, we showed that ALEX-based distances agree well with predictions from a cylindrical model of DNA; ALEX-based distances fit better to theory than distances obtained at the ensemble level. Distance measurements within transcription complexes agreed well with ensemble-FRET measurements, and with structural models based on ensemble-FRET and x-ray crystallography. ALEX can benefit structural analysis of biomolecules, especially when such molecules are inaccessible to conventional structural methods due to heterogeneity or transient nature. PMID:15653725

  5. Stroke onset time estimation from multispectral quantitative magnetic resonance imaging in a rat model of focal permanent cerebral ischemia.

    PubMed

    McGarry, Bryony L; Rogers, Harriet J; Knight, Michael J; Jokivarsi, Kimmo T; Sierra, Alejandra; Gröhn, Olli Hj; Kauppinen, Risto A

    2016-08-01

    Quantitative T2 relaxation magnetic resonance imaging allows estimation of stroke onset time. We aimed to examine the accuracy of quantitative T1 and quantitative T2 relaxation times alone and in combination to provide estimates of stroke onset time in a rat model of permanent focal cerebral ischemia and map the spatial distribution of elevated quantitative T1 and quantitative T2 to assess tissue status. Permanent middle cerebral artery occlusion was induced in Wistar rats. Animals were scanned at 9.4T for quantitative T1, quantitative T2, and Trace of Diffusion Tensor (Dav) up to 4 h post-middle cerebral artery occlusion. Time courses of differentials of quantitative T1 and quantitative T2 in ischemic and non-ischemic contralateral brain tissue (ΔT1, ΔT2) and volumes of tissue with elevated T1 and T2 relaxation times (f1, f2) were determined. TTC staining was used to highlight permanent ischemic damage. ΔT1, ΔT2, f1, f2, and the volume of tissue with both elevated quantitative T1 and quantitative T2 (V(Overlap)) increased with time post-middle cerebral artery occlusion allowing stroke onset time to be estimated. V(Overlap) provided the most accurate estimate with an uncertainty of ±25 min. At all times-points regions with elevated relaxation times were smaller than areas with Dav defined ischemia. Stroke onset time can be determined by quantitative T1 and quantitative T2 relaxation times and tissue volumes. Combining quantitative T1 and quantitative T2 provides the most accurate estimate and potentially identifies irreversibly damaged brain tissue. © 2016 World Stroke Organization.

  6. An accurate metric for the spacetime around rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Pappas, George

    2017-04-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parametrized metric, I.e. a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work, we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parametrized by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parametrization of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a three-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  7. Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.

    PubMed

    Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre

    2017-10-01

    We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.

  8. Increasing Literacy in Quantitative Methods: The Key to the Future of Canadian Psychology

    PubMed Central

    Counsell, Alyssa; Cribbie, Robert A.; Harlow, Lisa. L.

    2016-01-01

    Quantitative methods (QM) dominate empirical research in psychology. Unfortunately most researchers in psychology receive inadequate training in QM. This creates a challenge for researchers who require advanced statistical methods to appropriately analyze their data. Many of the recent concerns about research quality, replicability, and reporting practices are directly tied to the problematic use of QM. As such, improving quantitative literacy in psychology is an important step towards eliminating these concerns. The current paper will include two main sections that discuss quantitative challenges and opportunities. The first section discusses training and resources for students and presents descriptive results on the number of quantitative courses required and available to graduate students in Canadian psychology departments. In the second section, we discuss ways of improving quantitative literacy for faculty, researchers, and clinicians. This includes a strong focus on the importance of collaboration. The paper concludes with practical recommendations for improving quantitative skills and literacy for students and researchers in Canada. PMID:28042199

  9. Increasing Literacy in Quantitative Methods: The Key to the Future of Canadian Psychology.

    PubMed

    Counsell, Alyssa; Cribbie, Robert A; Harlow, Lisa L

    2016-08-01

    Quantitative methods (QM) dominate empirical research in psychology. Unfortunately most researchers in psychology receive inadequate training in QM. This creates a challenge for researchers who require advanced statistical methods to appropriately analyze their data. Many of the recent concerns about research quality, replicability, and reporting practices are directly tied to the problematic use of QM. As such, improving quantitative literacy in psychology is an important step towards eliminating these concerns. The current paper will include two main sections that discuss quantitative challenges and opportunities. The first section discusses training and resources for students and presents descriptive results on the number of quantitative courses required and available to graduate students in Canadian psychology departments. In the second section, we discuss ways of improving quantitative literacy for faculty, researchers, and clinicians. This includes a strong focus on the importance of collaboration. The paper concludes with practical recommendations for improving quantitative skills and literacy for students and researchers in Canada.

  10. Aretaeus of Cappadocia and the first description of diabetes.

    PubMed

    Laios, Konstantinos; Karamanou, Marianna; Saridaki, Zenia; Androutsos, George

    2012-01-01

    The name Aretaeus of Cappadocia has been linked with diabetes more than that of any other physician of antiquity, his texts forming a sophisticated synthesis of the previous knowledge on this disease copiously supplemented by his own observations. Gifted with a unique faculty for observing pathologic phenomena, he was able to elaborate upon earlier texts enriching them with his own original findings and numerous thoughtful reflections. Among the many diseases he dealt with, Aretaeus has bequeathed to us an outstandingly vivid and accurate description of diabetes.

  11. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    PubMed

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.

  12. Quantitative study of Xanthosoma violaceum leaf surfaces using RIMAPS and variogram techniques.

    PubMed

    Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M

    2006-08-01

    Two new imaging techniques (rotated image with maximum averaged power spectrum (RIMAPS) and variogram) are presented for the study and description of leaf surfaces. Xanthosoma violaceum was analyzed to illustrate the characteristics of both techniques. Both techniques produce a quantitative description of leaf surface topography. RIMAPS combines digitized images rotation with Fourier transform, and it is used to detect patterns orientation and characteristics of surface topography. Variogram relates the mathematical variance of a surface with the area of the sample window observed. It gives the typical scale lengths of the surface patterns. RIMAPS detects the morphological variations of the surface topography pattern between fresh and dried (herbarium) samples of the leaf. The variogram method finds the characteristic dimensions of the leaf microstructure, i.e., cell length, papillae diameter, etc., showing that there are not significant differences between dry and fresh samples. The results obtained show the robustness of RIMAPS and variogram analyses to detect, distinguish, and characterize leaf surfaces, as well as give scale lengths. Both techniques are tools for the biologist to study variations of the leaf surface when different patterns are present. The use of RIMAPS and variogram opens a wide spectrum of possibilities by providing a systematic, quantitative description of the leaf surface topography.

  13. Towards First Principles-Based Prediction of Highly Accurate Electrochemical Pourbaix Diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Zhenhua; Chan, Maria K. Y.; Zhao, Zhi-Jian

    2015-08-13

    Electrochemical potential/pH (Pourbaix) diagrams underpin many aqueous electrochemical processes and are central to the identification of stable phases of metals for processes ranging from electrocatalysis to corrosion. Even though standard DFT calculations are potentially powerful tools for the prediction of such diagrams, inherent errors in the description of transition metal (hydroxy)oxides, together with neglect of van der Waals interactions, have limited the reliability of such predictions for even the simplest pure metal bulk compounds, and corresponding predictions for more complex alloy or surface structures are even more challenging. In the present work, through synergistic use of a Hubbard U correction,more » a state-of-the-art dispersion correction, and a water-based bulk reference state for the calculations, these errors are systematically corrected. The approach describes the weak binding that occurs between hydroxyl-containing functional groups in certain compounds in Pourbaix diagrams, corrects for self-interaction errors in transition metal compounds, and reduces residual errors on oxygen atoms by preserving a consistent oxidation state between the reference state, water, and the relevant bulk phases. The strong performance is illustrated on a series of bulk transition metal (Mn, Fe, Co and Ni) hydroxides, oxyhydroxides, binary, and ternary oxides, where the corresponding thermodynamics of redox and (de)hydration are described with standard errors of 0.04 eV per (reaction) formula unit. The approach further preserves accurate descriptions of the overall thermodynamics of electrochemically-relevant bulk reactions, such as water formation, which is an essential condition for facilitating accurate analysis of reaction energies for electrochemical processes on surfaces. The overall generality and transferability of the scheme suggests that it may find useful application in the construction of a broad array of electrochemical phase diagrams, including

  14. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    PubMed

    Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  15. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues

    PubMed Central

    Shin, Andrew; Namiri, Nikan K.; Bajwa, Neha; St. John, Maie; Taylor, Zachary D.; Grundfest, Warren; Saddik, George N.

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research. PMID:29373598

  16. Technical description of endoscopic ultrasonography with fine-needle aspiration for the staging of lung cancer.

    PubMed

    Kramer, Henk; van Putten, John W G; Douma, W Rob; Smidt, Alie A; van Dullemen, Hendrik M; Groen, Harry J M

    2005-02-01

    Endoscopic ultrasonography (EUS) is a novel method for staging of the mediastinum in lung cancer patients. The recent development of linear scanners enables safe and accurate fine-needle aspiration (FNA) of mediastinal and upper abdominal structures under real-time ultrasound guidance. However, various methods and equipment for mediastinal EUS-FNA are being used throughout the world, and a detailed description of the procedures is lacking. A thorough description of linear EUS-FNA is needed. A step-by-step description of the linear EUS-FNA procedure as performed in our hospital will be provided. Ultrasonographic landmarks will be shown on images. The procedure will be related to published literature, with a systematic literature search. EUS-FNA is an outpatient procedure under conscious sedation. The typical linear EUS-FNA procedure starts with examination of the retroperitoneal area. After this, systematic scanning of the mediastinum is performed at intervals of 1-2cm. Abnormalities are noted, and FNA of the abnormalities can be performed. Specimens are assessed for cellularity on-site. The entire procedure takes 45-60 min. EUS-FNA is minimally invasive, accurate, and fast. Anatomical areas can be reached that are inaccessible for cervical mediastinoscopy. EUS-FNA is useful for the staging of lung cancer or the assessment and diagnosis of abnormalities in the posterior mediastinum.

  17. Estimating background-subtracted fluorescence transients in calcium imaging experiments: a quantitative approach.

    PubMed

    Joucla, Sébastien; Franconville, Romain; Pippow, Andreas; Kloppenburg, Peter; Pouzat, Christophe

    2013-08-01

    Calcium imaging has become a routine technique in neuroscience for subcellular to network level investigations. The fast progresses in the development of new indicators and imaging techniques call for dedicated reliable analysis methods. In particular, efficient and quantitative background fluorescence subtraction routines would be beneficial to most of the calcium imaging research field. A background-subtracted fluorescence transients estimation method that does not require any independent background measurement is therefore developed. This method is based on a fluorescence model fitted to single-trial data using a classical nonlinear regression approach. The model includes an appropriate probabilistic description of the acquisition system's noise leading to accurate confidence intervals on all quantities of interest (background fluorescence, normalized background-subtracted fluorescence time course) when background fluorescence is homogeneous. An automatic procedure detecting background inhomogeneities inside the region of interest is also developed and is shown to be efficient on simulated data. The implementation and performances of the proposed method on experimental recordings from the mouse hypothalamus are presented in details. This method, which applies to both single-cell and bulk-stained tissues recordings, should help improving the statistical comparison of fluorescence calcium signals between experiments and studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    EPA Science Inventory

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  19. Descriptive and Experimental Analyses of Potential Precursors to Problem Behavior

    PubMed Central

    Borrero, Carrie S.W; Borrero, John C

    2008-01-01

    We conducted descriptive observations of severe problem behavior for 2 individuals with autism to identify precursors to problem behavior. Several comparative probability analyses were conducted in addition to lag-sequential analyses using the descriptive data. Results of the descriptive analyses showed that the probability of the potential precursor was greater given problem behavior compared to the unconditional probability of the potential precursor. Results of the lag-sequential analyses showed a marked increase in the probability of a potential precursor in the 1-s intervals immediately preceding an instance of problem behavior, and that the probability of problem behavior was highest in the 1-s intervals immediately following an instance of the precursor. We then conducted separate functional analyses of problem behavior and the precursor to identify respective operant functions. Results of the functional analyses showed that both problem behavior and the precursor served the same operant functions. These results replicate prior experimental analyses on the relation between problem behavior and precursors and extend prior research by illustrating a quantitative method to identify precursors to more severe problem behavior. PMID:18468281

  20. Quantitative Imaging with a Mobile Phone Microscope

    PubMed Central

    Skandarajah, Arunan; Reber, Clay D.; Switz, Neil A.; Fletcher, Daniel A.

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone–based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications. PMID:24824072

  1. Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics

    NASA Astrophysics Data System (ADS)

    Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.

    2011-11-01

    High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.

  2. Quantitation and detection of vanadium in biologic and pollution materials

    NASA Technical Reports Server (NTRS)

    Gordon, W. A.

    1974-01-01

    A review is presented of special considerations and methodology for determining vanadium in biological and air pollution materials. In addition to descriptions of specific analysis procedures, general sections are included on quantitation of analysis procedures, sample preparation, blanks, and methods of detection of vanadium. Most of the information presented is applicable to the determination of other trace elements in addition to vanadium.

  3. Facile and quantitative electrochemical detection of yeast cell apoptosis

    NASA Astrophysics Data System (ADS)

    Yue, Qiulin; Xiong, Shiquan; Cai, Dongqing; Wu, Zhengyan; Zhang, Xin

    2014-03-01

    An electrochemical method based on square wave anodic stripping voltammetry (SWASV) was developed to detect the apoptosis of yeast cells conveniently and quantitatively through the high affinity between Cu2+ and phosphatidylserine (PS) translocated from the inner to the outer plasma membrane of the apoptotic cells. The combination of negatively charged PS and Cu2+ could decrease the electrochemical response of Cu2+ on the electrode. The results showed that the apoptotic rates of cells could be detected quantitatively through the variations of peak currents of Cu2+ by SWASV, and agreed well with those obtained through traditional flow cytometry detection. This work thus may provide a novel, simple, immediate and accurate detection method for cell apoptosis.

  4. Accurate and general treatment of electrostatic interaction in Hamiltonian adaptive resolution simulations

    NASA Astrophysics Data System (ADS)

    Heidari, M.; Cortes-Huerto, R.; Donadio, D.; Potestio, R.

    2016-10-01

    In adaptive resolution simulations the same system is concurrently modeled with different resolution in different subdomains of the simulation box, thereby enabling an accurate description in a small but relevant region, while the rest is treated with a computationally parsimonious model. In this framework, electrostatic interaction, whose accurate treatment is a crucial aspect in the realistic modeling of soft matter and biological systems, represents a particularly acute problem due to the intrinsic long-range nature of Coulomb potential. In the present work we propose and validate the usage of a short-range modification of Coulomb potential, the Damped shifted force (DSF) model, in the context of the Hamiltonian adaptive resolution simulation (H-AdResS) scheme. This approach, which is here validated on bulk water, ensures a reliable reproduction of the structural and dynamical properties of the liquid, and enables a seamless embedding in the H-AdResS framework. The resulting dual-resolution setup is implemented in the LAMMPS simulation package, and its customized version employed in the present work is made publicly available.

  5. A multi-subject evaluation of uncertainty in anatomical landmark location on shoulder kinematic description.

    PubMed

    Langenderfer, Joseph E; Rullkoetter, Paul J; Mell, Amy G; Laz, Peter J

    2009-04-01

    An accurate assessment of shoulder kinematics is useful for understanding healthy normal and pathological mechanics. Small variability in identifying and locating anatomical landmarks (ALs) has potential to affect reported shoulder kinematics. The objectives of this study were to quantify the effect of landmark location variability on scapular and humeral kinematic descriptions for multiple subjects using probabilistic analysis methods, and to evaluate the consistency in results across multiple subjects. Data from 11 healthy subjects performing humeral elevation in the scapular plane were used to calculate Euler angles describing humeral and scapular kinematics. Probabilistic analyses were performed for each subject to simulate uncertainty in the locations of 13 upper-extremity ALs. For standard deviations of 4 mm in landmark location, the analysis predicted Euler angle envelopes between the 1 and 99 percentile bounds of up to 16.6 degrees . While absolute kinematics varied with the subject, the average 1-99% kinematic ranges for the motion were consistent across subjects and sensitivity factors showed no statistically significant differences between subjects. The description of humeral kinematics was most sensitive to the location of landmarks on the thorax, while landmarks on the scapula had the greatest effect on the description of scapular elevation. The findings of this study can provide a better understanding of kinematic variability, which can aid in making accurate clinical diagnoses and refining kinematic measurement techniques.

  6. Quantitative description of yttrium aluminate ceramic composition by means of Er+3 microluminescence spectrum

    NASA Astrophysics Data System (ADS)

    Videla, F. A.; Tejerina, M. R.; Moreira-Osorio, L.; Conconi, M. S.; Orzi, D. J. O.; Flores, T.; Ponce, L. V.; Bilmes, G. M.; Torchia, G. A.

    2018-05-01

    The composition of erbium-doped yttrium aluminate ceramics was analyzed by means of confocal luminescence spectroscopy, EDX, and X-ray diffraction. A well-defined linear correlation was found between a proposed estimator computed from the luminescence spectrum and the proportion of ceramic phases coexisting in different samples. This result shows the feasibility of using erbium luminescence spectroscopy to perform a quantitative determination of different phases of yttrium aluminates within a micrometric region in nanograined ceramics.

  7. Characteristics of quantitative nursing research from 1990 to 2010.

    PubMed

    Yarcheski, Adela; Mahon, Noreen E

    2013-12-01

    To assess author credentials of quantitative research in nursing, the composition of the research teams, and the disciplinary focus of the theories tested. Nursing Research, Western Journal of Nursing Research, and Journal of Advanced Nursing were selected for this descriptive study; 1990, 1995, 2000, 2005, and 2010 were included. The final sample consisted of 484 quantitative research articles. From 1990 to 2010, there was an increase in first authors holding doctoral degrees, research from other countries, and funding. Solo authorship decreased; multi-authorship and multidisciplinary teams increased. Theories tested were mostly from psychology; the testing of nursing theory was modest. Multidisciplinary research far outdistanced interdisciplinary research. Quantitative nursing research can be characterized as multidisciplinary (distinct theories from different disciplines) rather than discipline-specific to nursing. Interdisciplinary (theories synthesized from different disciplines) research has been conducted minimally. This study provides information about the growth of the scientific knowledge base of nursing, which has implications for practice. © 2013 Sigma Theta Tau International.

  8. Correction for isotopic interferences between analyte and internal standard in quantitative mass spectrometry by a nonlinear calibration function.

    PubMed

    Rule, Geoffrey S; Clark, Zlatuse D; Yue, Bingfang; Rockwood, Alan L

    2013-04-16

    Stable isotope-labeled internal standards are of great utility in providing accurate quantitation in mass spectrometry (MS). An implicit assumption has been that there is no "cross talk" between signals of the internal standard and the target analyte. In some cases, however, naturally occurring isotopes of the analyte do contribute to the signal of the internal standard. This phenomenon becomes more pronounced for isotopically rich compounds, such as those containing sulfur, chlorine, or bromine, higher molecular weight compounds, and those at high analyte/internal standard concentration ratio. This can create nonlinear calibration behavior that may bias quantitative results. Here, we propose the use of a nonlinear but more accurate fitting of data for these situations that incorporates one or two constants determined experimentally for each analyte/internal standard combination and an adjustable calibration parameter. This fitting provides more accurate quantitation in MS-based assays where contributions from analyte to stable labeled internal standard signal exist. It can also correct for the reverse situation where an analyte is present in the internal standard as an impurity. The practical utility of this approach is described, and by using experimental data, the approach is compared to alternative fits.

  9. A comparison of manual and quantitative elbow strength testing.

    PubMed

    Shahgholi, Leili; Bengtson, Keith A; Bishop, Allen T; Shin, Alexander Y; Spinner, Robert J; Basford, Jeffrey R; Kaufman, Kenton R

    2012-10-01

    The aim of this study was to compare the clinical ratings of elbow strength obtained by skilled clinicians with objective strength measurement obtained through quantitative testing. A retrospective comparison of subject clinical records with quantitative strength testing results in a motion analysis laboratory was conducted. A total of 110 individuals between the ages of 8 and 65 yrs with traumatic brachial plexus injuries were identified. Patients underwent manual muscle strength testing as assessed on the 5-point British Medical Research Council Scale (5/5, normal; 0/5, absent) and quantitative elbow flexion and extension strength measurements. A total of 92 subjects had elbow flexion testing. Half of the subjects clinically assessed as having normal (5/5) elbow flexion strength on manual muscle testing exhibited less than 42% of their age-expected strength on quantitative testing. Eighty-four subjects had elbow extension strength testing. Similarly, half of those displaying normal elbow extension strength on manual muscle testing were found to have less than 62% of their age-expected values on quantitative testing. Significant differences between manual muscle testing and quantitative findings were not detected for the lesser (0-4) strength grades. Manual muscle testing, even when performed by experienced clinicians, may be more misleading than expected for subjects graded as having normal (5/5) strength. Manual muscle testing estimates for the lesser strength grades (1-4/5) seem reasonably accurate.

  10. Quantitative Oxygenation Venography from MRI Phase

    PubMed Central

    Fan, Audrey P.; Bilgic, Berkin; Gagnon, Louis; Witzel, Thomas; Bhat, Himanshu; Rosen, Bruce R.; Adalsteinsson, Elfar

    2014-01-01

    Purpose To demonstrate acquisition and processing methods for quantitative oxygenation venograms that map in vivo oxygen saturation (SvO2) along cerebral venous vasculature. Methods Regularized quantitative susceptibility mapping (QSM) is used to reconstruct susceptibility values and estimate SvO2 in veins. QSM with ℓ1 and ℓ2 regularization are compared in numerical simulations of vessel structures with known magnetic susceptibility. Dual-echo, flow-compensated phase images are collected in three healthy volunteers to create QSM images. Bright veins in the susceptibility maps are vectorized and used to form a three-dimensional vascular mesh, or venogram, along which to display SvO2 values from QSM. Results Quantitative oxygenation venograms that map SvO2 along brain vessels of arbitrary orientation and geometry are shown in vivo. SvO2 values in major cerebral veins lie within the normal physiological range reported by 15O positron emission tomography. SvO2 from QSM is consistent with previous MR susceptometry methods for vessel segments oriented parallel to the main magnetic field. In vessel simulations, ℓ1 regularization results in less than 10% SvO2 absolute error across all vessel tilt orientations and provides more accurate SvO2 estimation than ℓ2 regularization. Conclusion The proposed analysis of susceptibility images enables reliable mapping of quantitative SvO2 along venograms and may facilitate clinical use of venous oxygenation imaging. PMID:24006229

  11. Accurate collision-induced line-coupling parameters for the fundamental band of CO in He - Close coupling and coupled states scattering calculations

    NASA Technical Reports Server (NTRS)

    Green, Sheldon; Boissoles, J.; Boulet, C.

    1988-01-01

    The first accurate theoretical values for off-diagonal (i.e., line-coupling) pressure-broadening cross sections are presented. Calculations were done for CO perturbed by He at thermal collision energies using an accurate ab initio potential energy surface. Converged close coupling, i.e., numerically exact values, were obtained for coupling to the R(0) and R(2) lines. These were used to test the coupled states (CS) and infinite order sudden (IOS) approximate scattering methods. CS was found to be of quantitative accuracy (a few percent) and has been used to obtain coupling values for lines to R(10). IOS values are less accurate, but, owing to their simplicity, may nonetheless prove useful as has been recently demonstrated.

  12. Detection and quantitation of Kaposi's sarcoma-associated herpesvirus (KSHV) by a single competitive-quantitative polymerase chain reaction.

    PubMed

    Curreli, Francesca; Robles, Monica A; Friedman-Kien, Alvin E; Flore, Ornella

    2003-02-01

    Kaposi's sarcoma-associated herpesvirus is a novel herpesvirus linked to AIDS-related neoplasms. Currently it is difficult to evaluate the number of virions in viral preparation or in samples obtained from patients with Kaposi's sarcoma (KS), since no protocol for determining the plaque forming units of KSHV exists. We constructed a fragment of a different size than the target viral DNA to carry out a competitive-quantitative PCR. Both fragment and viral DNA were added to a single PCR reaction to compete for the same set of primers. By knowing the amount of the competitor added to the reaction, we could determine the number of viral DNA molecules. We used this assay successfully to detect and quantify KSHV genomes from KS skin biopsies and pleural effusion lymphoma, and from different viral preparations. To date, this is the most convenient and economic method that allows an accurate and fast viral detection/quantitation with a single PCR.

  13. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Wang, Bo; Wu, Dafang; Lubineau, Gilles

    2014-07-01

    Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost.

  14. Implementing online quantitative support modules in an intermediate-level course

    NASA Astrophysics Data System (ADS)

    Daly, J.

    2011-12-01

    While instructors typically anticipate that students in introductory geology courses enter a class with a wide range of quantitative ability, we often overlook the fact that this may also be true in upper-level courses. Some students are drawn to the subject and experience success in early courses with an emphasis on descriptive geology, then experience frustration and disappointment in mid- and upper-level courses that are more quantitative. To bolster student confidence in quantitative skills and enhance their performance in an upper-level course, I implemented several modules from The Math You Need (TMYN) online resource with a 200-level geomorphology class. Student facility with basic quantitative skills (rearranging equations, manipulating units, and graphing) was assessed with an online pre- and post-test. During the semester, modules were assigned to complement existing course activities (for example, the module on manipulating units was assigned prior to a lab on measurement of channel area and water velocity, then calculation of discharge). The implementation was designed to be a concise review of relevant skills for students with higher confidence in their quantitative abilities, and to provide a self-paced opportunity for students with less quantitative facility to build skills. This course already includes a strong emphasis on quantitative data collection, analysis, and presentation; in the past, student performance in the course has been strongly influenced by their individual quantitative ability. I anticipate that giving students the opportunity to improve mastery of fundamental quantitative skills will improve their performance on higher-stakes assignments and exams, and will enhance their sense of accomplishment in the course.

  15. Magnetic Resonance Imaging of Intracranial Hypotension: Diagnostic Value of Combined Qualitative Signs and Quantitative Metrics.

    PubMed

    Aslan, Kerim; Gunbey, Hediye Pinar; Tomak, Leman; Ozmen, Zafer; Incesu, Lutfi

    The aim of this study was to investigate whether the use of combination quantitative metrics (mamillopontine distance [MPD], pontomesencephalic angle, and mesencephalon anterior-posterior/medial-lateral diameter ratios) with qualitative signs (dural enhancement, subdural collections/hematoma, venous engorgement, pituitary gland enlargements, and tonsillar herniations) provides a more accurate diagnosis of intracranial hypotension (IH). The quantitative metrics and qualitative signs of 34 patients and 34 control subjects were assessed by 2 independent observers. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of quantitative metrics and qualitative signs, and for the diagnosis of IH, optimum cutoff values of quantitative metrics were found with ROC analysis. Combined ROC curve was measured for the quantitative metrics, and qualitative signs combinations in determining diagnostic accuracy and sensitivity, specificity, and positive and negative predictive values were found, and the best model combination was formed. Whereas MPD and pontomesencephalic angle were significantly lower in patients with IH when compared with the control group (P < 0.001), mesencephalon anterior-posterior/medial-lateral diameter ratio was significantly higher (P < 0.001). For qualitative signs, the highest individual distinctive power was dural enhancement with area under the ROC curve (AUC) of 0.838. For quantitative metrics, the highest individual distinctive power was MPD with AUC of 0.947. The best accuracy in the diagnosis of IH was obtained by combination of dural enhancement, venous engorgement, and MPD with an AUC of 1.00. This study showed that the combined use of dural enhancement, venous engorgement, and MPD had diagnostic accuracy of 100 % for the diagnosis of IH. Therefore, a more accurate IH diagnosis can be provided with combination of quantitative metrics with qualitative signs.

  16. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    USGS Publications Warehouse

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  17. Semiconductor color-center structure and excitation spectra: Equation-of-motion coupled-cluster description of vacancy and transition-metal defect photoluminescence

    NASA Astrophysics Data System (ADS)

    Lutz, Jesse J.; Duan, Xiaofeng F.; Burggraf, Larry W.

    2018-03-01

    Valence excitation spectra are computed for deep-center silicon-vacancy defects in 3C, 4H, and 6H silicon carbide (SiC), and comparisons are made with literature photoluminescence measurements. Optimizations of nuclear geometries surrounding the defect centers are performed within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substituted chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement for all cases considered.

  18. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    PubMed

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  19. A behavioral-level HDL description of SFQ logic circuits for quantitative performance analysis of large-scale SFQ digital systems

    NASA Astrophysics Data System (ADS)

    Matsuzaki, F.; Yoshikawa, N.; Tanaka, M.; Fujimaki, A.; Takai, Y.

    2003-10-01

    Recently many single flux quantum (SFQ) logic circuits containing several thousands of Josephson junctions have been designed successfully by using digital domain simulation based on the hard ware description language (HDL). In the present HDL-based design of SFQ circuits, a structure-level HDL description has been used, where circuits are made up of basic gate cells. However, in order to analyze large-scale SFQ digital systems, such as a microprocessor, more higher-level circuit abstraction is necessary to reduce the circuit simulation time. In this paper we have investigated the way to describe functionality of the large-scale SFQ digital circuits by a behavior-level HDL description. In this method, the functionality and the timing of the circuit block is defined directly by describing their behavior by the HDL. Using this method, we can dramatically reduce the simulation time of large-scale SFQ digital circuits.

  20. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourmoghaddas, Amir, E-mail: apour@ottawaheart.ca; Wells, R. Glenn

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but theirmore » level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c

  1. Voice Identification: Levels-of-Processing and the Relationship between Prior Description Accuracy and Recognition Accuracy.

    ERIC Educational Resources Information Center

    Walter, Todd J.

    A study examined whether a person's ability to accurately identify a voice is influenced by factors similar to those proposed by the Supreme Court for eyewitness identification accuracy. In particular, the Supreme Court has suggested that a person's prior description accuracy of a suspect, degree of attention to a suspect, and confidence in…

  2. TPS as an Effective Technique to Enhance the Students' Achievement on Writing Descriptive Text

    ERIC Educational Resources Information Center

    Sumarsih, M. Pd.; Sanjaya, Dedi

    2013-01-01

    Students' achievement in writing descriptive text is very low, in this study Think Pair Share (TPS) is applied to solve the problem. Action research is conducted for the result. Additionally, qualitative and quantitative techniques are applied in this research. The subject of this research is grade VIII in Junior High School in Indonesia. From…

  3. Liquid chromatography-mass spectrometry-based quantitative proteomics.

    PubMed

    Linscheid, Michael W; Ahrends, Robert; Pieper, Stefan; Kühn, Andreas

    2009-01-01

    During the last decades, molecular sciences revolutionized biomedical research and gave rise to the biotechnology industry. During the next decades, the application of the quantitative sciences--informatics, physics, chemistry, and engineering--to biomedical research brings about the next revolution that will improve human healthcare and certainly create new technologies, since there is no doubt that small changes can have great effects. It is not a question of "yes" or "no," but of "how much," to make best use of the medical options we will have. In this context, the development of accurate analytical methods must be considered a cornerstone, since the understanding of biological processes will be impossible without information about the minute changes induced in cells by interactions of cell constituents with all sorts of endogenous and exogenous influences and disturbances. The first quantitative techniques, which were developed, allowed monitoring relative changes only, but they clearly showed the significance of the information obtained. The recent advent of techniques claiming to quantify proteins and peptides not only relative to each other, but also in an absolute fashion, promised another quantum leap, since knowing the absolute amount will allow comparing even unrelated species and the definition of parameters will permit to model biological systems much more accurate than before. To bring these promises to life, several approaches are under development at this point in time and this review is focused on those developments.

  4. Accurate Estimate of Some Propagation Characteristics for the First Higher Order Mode in Graded Index Fiber with Simple Analytic Chebyshev Method

    NASA Astrophysics Data System (ADS)

    Dutta, Ivy; Chowdhury, Anirban Roy; Kumbhakar, Dharmadas

    2013-03-01

    Using Chebyshev power series approach, accurate description for the first higher order (LP11) mode of graded index fibers having three different profile shape functions are presented in this paper and applied to predict their propagation characteristics. These characteristics include fractional power guided through the core, excitation efficiency and Petermann I and II spot sizes with their approximate analytic formulations. We have shown that where two and three Chebyshev points in LP11 mode approximation present fairly accurate results, the values based on our calculations involving four Chebyshev points match excellently with available exact numerical results.

  5. Tomosynthesis can facilitate accurate measurement of joint space width under the condition of the oblique incidence of X-rays in patients with rheumatoid arthritis.

    PubMed

    Ono, Yohei; Kashihara, Rina; Yasojima, Nobutoshi; Kasahara, Hideki; Shimizu, Yuka; Tamura, Kenichi; Tsutsumi, Kaori; Sutherland, Kenneth; Koike, Takao; Kamishima, Tamotsu

    2016-06-01

    Accurate evaluation of joint space width (JSW) is important in the assessment of rheumatoid arthritis (RA). In clinical radiography of bilateral hands, the oblique incidence of X-rays is unavoidable, which may cause perceptional or measurement error of JSW. The objective of this study was to examine whether tomosynthesis, a recently developed modality, can facilitate a more accurate evaluation of JSW than radiography under the condition of oblique incidence of X-rays. We investigated quantitative errors derived from the oblique incidence of X-rays by imaging phantoms simulating various finger joint spaces using radiographs and tomosynthesis images. We then compared the qualitative results of the modified total Sharp score of a total of 320 joints from 20 patients with RA between these modalities. A quantitative error was prominent when the location of the phantom was shifted along the JSW direction. Modified total Sharp scores of tomosynthesis images were significantly higher than those of radiography, that is to say JSW was regarded as narrower in tomosynthesis than in radiography when finger joints were located where the oblique incidence of X-rays is expected in the JSW direction. Tomosynthesis can facilitate accurate evaluation of JSW in finger joints of patients with RA, even with oblique incidence of X-rays. Accurate evaluation of JSW is necessary for the management of patients with RA. Through phantom and clinical studies, we demonstrate that tomosynthesis may achieve more accurate evaluation of JSW.

  6. Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment.

    PubMed

    Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Cook, Joanne L; Stott, Ian P; Pelan, Eddie G

    2018-06-01

    Despite the considerable advances of molecular-thermodynamic theory of micelle growth, agreement between theory and experiment has been achieved only in isolated cases. A general theory that can provide self-consistent quantitative description of the growth of wormlike micelles in mixed surfactant solutions, including the experimentally observed high peaks in viscosity and aggregation number, is still missing. As a step toward the creation of such theory, here we consider the simplest system - nonionic wormlike surfactant micelles from polyoxyethylene alkyl ethers, C i E j . Our goal is to construct a molecular-thermodynamic model that is in agreement with the available experimental data. For this goal, we systematized data for the micelle mean mass aggregation number, from which the micelle growth parameter was determined at various temperatures. None of the available models can give a quantitative description of these data. We constructed a new model, which is based on theoretical expressions for the interfacial-tension, headgroup-steric and chain-conformation components of micelle free energy, along with appropriate expressions for the parameters of the model, including their temperature and curvature dependencies. Special attention was paid to the surfactant chain-conformation free energy, for which a new more general formula was derived. As a result, relatively simple theoretical expressions are obtained. All parameters that enter these expressions are known, which facilitates the theoretical modeling of micelle growth for various nonionic surfactants in excellent agreement with the experiment. The constructed model can serve as a basis that can be further upgraded to obtain quantitative description of micelle growth in more complicated systems, including binary and ternary mixtures of nonionic, ionic and zwitterionic surfactants, which determines the viscosity and stability of various formulations in personal-care and house-hold detergency. Copyright © 2018

  7. Communication—Quantitative Voltammetric Analysis of High Concentration Actinides in Molten Salts

    DOE PAGES

    Hoyt, Nathaniel C.; Willit, James L.; Williamson, Mark A.

    2017-01-18

    Previous electroanalytical studies have shown that cyclic voltammetry can provide accurate quantitative measurements of actinide concentrations at low weight loadings in molten salts. However, above 2 wt%, the techniques were found to underpredict the concentrations of the reactant species. Here this work will demonstrate that much of the discrepancy is caused by uncompensated resistance and cylindrical diffusion. An improved electroanalytical approach has therefore been developed using the results of digital simulations to take these effects into account. This approach allows for accurate electroanalytical predictions across the full range of weight loadings expected to be encountered in operational nuclear fuel processingmore » equipment.« less

  8. Communication—Quantitative Voltammetric Analysis of High Concentration Actinides in Molten Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, Nathaniel C.; Willit, James L.; Williamson, Mark A.

    Previous electroanalytical studies have shown that cyclic voltammetry can provide accurate quantitative measurements of actinide concentrations at low weight loadings in molten salts. However, above 2 wt%, the techniques were found to underpredict the concentrations of the reactant species. Here this work will demonstrate that much of the discrepancy is caused by uncompensated resistance and cylindrical diffusion. An improved electroanalytical approach has therefore been developed using the results of digital simulations to take these effects into account. This approach allows for accurate electroanalytical predictions across the full range of weight loadings expected to be encountered in operational nuclear fuel processingmore » equipment.« less

  9. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    NASA Astrophysics Data System (ADS)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  10. Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data.

    PubMed

    Gutierrez-Navarro, Omar; Campos-Delgado, Daniel U; Arce-Santana, Edgar R; Maitland, Kristen C; Cheng, Shuna; Jabbour, Joey; Malik, Bilal; Cuenca, Rodrigo; Jo, Javier A

    2014-05-19

    Multispectral fluorescence lifetime imaging (m-FLIM) can potentially allow identifying the endogenous fluorophores present in biological tissue. Quantitative description of such data requires estimating the number of components in the sample, their characteristic fluorescent decays, and their relative contributions or abundances. Unfortunately, this inverse problem usually requires prior knowledge about the data, which is seldom available in biomedical applications. This work presents a new methodology to estimate the number of potential endogenous fluorophores present in biological tissue samples from time-domain m-FLIM data. Furthermore, a completely blind linear unmixing algorithm is proposed. The method was validated using both synthetic and experimental m-FLIM data. The experimental m-FLIM data include in-vivo measurements from healthy and cancerous hamster cheek-pouch epithelial tissue, and ex-vivo measurements from human coronary atherosclerotic plaques. The analysis of m-FLIM data from in-vivo hamster oral mucosa identified healthy from precancerous lesions, based on the relative concentration of their characteristic fluorophores. The algorithm also provided a better description of atherosclerotic plaques in term of their endogenous fluorophores. These results demonstrate the potential of this methodology to provide quantitative description of tissue biochemical composition.

  11. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    PubMed

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples. © 2016 Elsevier Inc. All rights reserved.

  12. Application of the accurate mass and time tag approach in studies of the human blood lipidome

    PubMed Central

    Ding, Jie; Sorensen, Christina M.; Jaitly, Navdeep; Jiang, Hongliang; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Metz, Thomas O.

    2008-01-01

    We report a preliminary demonstration of the accurate mass and time (AMT) tag approach for lipidomics. Initial data-dependent LC-MS/MS analyses of human plasma, erythrocyte, and lymphocyte lipids were performed in order to identify lipid molecular species in conjunction with complementary accurate mass and isotopic distribution information. Identified lipids were used to populate initial lipid AMT tag databases containing 250 and 45 entries for those species detected in positive and negative electrospray ionization (ESI) modes, respectively. The positive ESI database was then utilized to identify human plasma, erythrocyte, and lymphocyte lipids in high-throughput LC-MS analyses based on the AMT tag approach. We were able to define the lipid profiles of human plasma, erythrocytes, and lymphocytes based on qualitative and quantitative differences in lipid abundance. PMID:18502191

  13. Quantitative and Sensitive Detection of Chloramphenicol by Surface-Enhanced Raman Scattering

    PubMed Central

    Ding, Yufeng; Yin, Hongjun; Meng, Qingyun; Zhao, Yongmei; Liu, Luo; Wu, Zhenglong; Xu, Haijun

    2017-01-01

    We used surface-enhanced Raman scattering (SERS) for the quantitative and sensitive detection of chloramphenicol (CAP). Using 30 nm colloidal Au nanoparticles (NPs), a low detection limit for CAP of 10−8 M was obtained. The characteristic Raman peak of CAP centered at 1344 cm−1 was used for the rapid quantitative detection of CAP in three different types of CAP eye drops, and the accuracy of the measurement result was verified by high-performance liquid chromatography (HPLC). The experimental results reveal that the SERS technique based on colloidal Au NPs is accurate and sensitive, and can be used for the rapid detection of various antibiotics. PMID:29261161

  14. An autoanalyzer test for the quantitation of platelet-associated IgG

    NASA Technical Reports Server (NTRS)

    Levitan, Nathan; Teno, Richard A.; Szymanski, Irma O.

    1986-01-01

    A new quantitative antiglobulin consumption (QAC) test for the measurement of platelet-associated IgG is described. In this test washed platelets are incubated with anti-IgG at a final dilution of 1:2 million. The unneutralized fraction of anti-IgG remaining in solution is then measured with an Autoanalyzer and soluble IgG is used for calibration. The dose-response curves depicting the percent neutralization of anti-IgG by platelets and by soluble IgG were compared in detail and found to be nearly identical, indicating that platelet-associated IgG can be accurately quantitated by this method. The mean IgG values were 2287 molecules/platelet for normal adults and 38,112 molecules/platelet for ITP patients. The Autoanalyzer QAC test is a sensitive and reproducible assay for the quantitation of platelet-associated IgG.

  15. A Quantitative Exploration of the Relationship between Patient Health and Electronic Personal Health Records

    ERIC Educational Resources Information Center

    Hines, Denise Williams

    2009-01-01

    The use of electronic personal health records is becoming increasingly more popular as healthcare providers, healthcare and government leaders, and patients are seeking ways to improve healthcare quality and to decrease costs (Abrahamsen, 2007). This quantitative, descriptive correlational study examined the relationship between the degree of…

  16. Comparison of rapid descriptive sensory methodologies: Free-Choice Profiling, Flash Profile and modified Flash Profile.

    PubMed

    Liu, Jing; Bredie, Wender L P; Sherman, Emma; Harbertson, James F; Heymann, Hildegarde

    2018-04-01

    Rapid sensory methods have been developed as alternatives to traditional sensory descriptive analysis methods. Among them, Free-Choice Profiling (FCP) and Flash Profile (FP) are two that have been known for many years. The objectives of this work were to compare the rating-based FCP and ranking-based FP method; to evaluate the impact of adding adjustments to FP approach; to investigate the influence of the number of assessors on the outcome of modified FP. To achieve these aims, a conventional descriptive analysis (DA), FCP, FP and a modified version of FP were carried out. Red wines made by different grape maturity and ethanol concentration were used for sensory testing. This study showed that DA provided a more detailed and accurate information on products through a quantitative measure of the intensity of sensory attributes than FCP and FP. However, the panel hours for conducting DA were higher than that for rapid methods, and FP was even able to separate the samples to a higher degree than DA. When comparing FCP and FP, this study showed that the ranking-based FP provided a clearer separation of samples than rating-based FCP, but the latter was an easier task for most assessors. When restricting assessors on their use of attributes in FP, the sample space became clearer and the ranking task was simplified. The FP protocol with restricted attribute sets seems to be a promising approach for efficient screening of sensory properties in wine. When increasing the number of assessors from 10 to 20 for conducting the modified FP, the outcome tended to be slightly more stable, however, one should consider the degree of panel training when deciding the optimal number of assessors for conducting FP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Fluorescence-based Western blotting for quantitation of protein biomarkers in clinical samples.

    PubMed

    Zellner, Maria; Babeluk, Rita; Diestinger, Michael; Pirchegger, Petra; Skeledzic, Senada; Oehler, Rudolf

    2008-09-01

    Since most high throughput techniques used in biomarker discovery are very time and cost intensive, highly specific and quantitative analytical alternative application methods are needed for the routine analysis. Conventional Western blotting allows detection of specific proteins to the level of single isotypes while its quantitative accuracy is rather limited. We report a novel and improved quantitative Western blotting method. The use of fluorescently labelled secondary antibodies strongly extends the dynamic range of the quantitation and improves the correlation with the protein amount (r=0.997). By an additional fluorescent staining of all proteins immediately after their transfer to the blot membrane, it is possible to visualise simultaneously the antibody binding and the total protein profile. This allows for an accurate correction for protein load. Applying this normalisation it could be demonstrated that fluorescence-based Western blotting is able to reproduce a quantitative analysis of two specific proteins in blood platelet samples from 44 subjects with different diseases as initially conducted by 2D-DIGE. These results show that the proposed fluorescence-based Western blotting is an adequate application technique for biomarker quantitation and suggest possibilities of employment that go far beyond.

  18. Performance Evaluation and Quantitative Accuracy of Multipinhole NanoSPECT/CT Scanner for Theranostic Lu-177 Imaging

    NASA Astrophysics Data System (ADS)

    Gupta, Arun; Kim, Kyeong Yun; Hwang, Donghwi; Lee, Min Sun; Lee, Dong Soo; Lee, Jae Sung

    2018-06-01

    SPECT plays important role in peptide receptor targeted radionuclide therapy using theranostic radionuclides such as Lu-177 for the treatment of various cancers. However, SPECT studies must be quantitatively accurate because the reliable assessment of tumor uptake and tumor-to-normal tissue ratios can only be performed using quantitatively accurate images. Hence, it is important to evaluate performance parameters and quantitative accuracy of preclinical SPECT systems for therapeutic radioisotopes before conducting pre- and post-therapy SPECT imaging or dosimetry studies. In this study, we evaluated system performance and quantitative accuracy of NanoSPECT/CT scanner for Lu-177 imaging using point source and uniform phantom studies. We measured recovery coefficient, uniformity, spatial resolution, system sensitivity and calibration factor for mouse whole body standard aperture. We also performed the experiments using Tc-99m to compare the results with that of Lu-177. We found that the recovery coefficient of more than 70% for Lu-177 at the optimum noise level when nine iterations were used. The spatial resolutions of Lu-177 with and without adding uniform background was comparable to that of Tc-99m in axial, radial and tangential directions. System sensitivity measured for Lu-177 was almost three times less than that of Tc-99m.

  19. PBPK Models, BBDR Models, and Virtual Tissues: How Will They Contribute to the Use of Toxicity Pathways in Risk Assessment?

    EPA Science Inventory

    Accuracy in risk assessment, which is desirable in order to ensure protection of the public health while avoiding over-regulation of economically-important substances, requires quantitatively accurate, in vivo descriptions of dose-response and time-course behaviors. This level of...

  20. Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryos.

    PubMed

    Trivedi, Vikas; Choi, Harry M T; Fraser, Scott E; Pierce, Niles A

    2018-01-08

    For decades, in situ hybridization methods have been essential tools for studies of vertebrate development and disease, as they enable qualitative analyses of mRNA expression in an anatomical context. Quantitative mRNA analyses typically sacrifice the anatomy, relying on embryo microdissection, dissociation, cell sorting and/or homogenization. Here, we eliminate the trade-off between quantitation and anatomical context, using quantitative in situ hybridization chain reaction (qHCR) to perform accurate and precise relative quantitation of mRNA expression with subcellular resolution within whole-mount vertebrate embryos. Gene expression can be queried in two directions: read-out from anatomical space to expression space reveals co-expression relationships in selected regions of the specimen; conversely, read-in from multidimensional expression space to anatomical space reveals those anatomical locations in which selected gene co-expression relationships occur. As we demonstrate by examining gene circuits underlying somitogenesis, quantitative read-out and read-in analyses provide the strengths of flow cytometry expression analyses, but by preserving subcellular anatomical context, they enable bi-directional queries that open a new era for in situ hybridization. © 2018. Published by The Company of Biologists Ltd.

  1. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    PubMed

    Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  2. Magnetoresistive biosensors for quantitative proteomics

    NASA Astrophysics Data System (ADS)

    Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.

    2017-08-01

    Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.

  3. A simplified and accurate detection of the genetically modified wheat MON71800 with one calibrator plasmid.

    PubMed

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Park, Sunghoon; Shin, Min-Ki; Moon, Gui Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2015-06-01

    With the increasing number of genetically modified (GM) events, unauthorized GMO releases into the food market have increased dramatically, and many countries have developed detection tools for them. This study described the qualitative and quantitative detection methods of unauthorized the GM wheat MON71800 with a reference plasmid (pGEM-M71800). The wheat acetyl-CoA carboxylase (acc) gene was used as the endogenous gene. The plasmid pGEM-M71800, which contains both the acc gene and the event-specific target MON71800, was constructed as a positive control for the qualitative and quantitative analyses. The limit of detection in the qualitative PCR assay was approximately 10 copies. In the quantitative PCR assay, the standard deviation and relative standard deviation repeatability values ranged from 0.06 to 0.25 and from 0.23% to 1.12%, respectively. This study supplies a powerful and very simple but accurate detection strategy for unauthorized GM wheat MON71800 that utilizes a single calibrator plasmid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Development of a standardized job description for healthcare managers of metabolic syndrome management programs in Korean community health centers.

    PubMed

    Lee, Youngjin; Choo, Jina; Cho, Jeonghyun; Kim, So-Nam; Lee, Hye-Eun; Yoon, Seok-Jun; Seomun, GyeongAe

    2014-03-01

    This study aimed to develop a job description for healthcare managers of metabolic syndrome management programs using task analysis. Exploratory research was performed by using the Developing a Curriculum method, the Intervention Wheel model, and focus group discussions. Subsequently, we conducted a survey of 215 healthcare workers from 25 community health centers to verify that the job description we created was accurate. We defined the role of healthcare managers. Next, we elucidated the tasks of healthcare managers and performed needs analysis to examine the frequency, importance, and difficulty of each of their duties. Finally, we verified that our job description was accurate. Based on the 8 duties, 30 tasks, and 44 task elements assigned to healthcare managers, we found that the healthcare managers functioned both as team coordinators responsible for providing multidisciplinary health services and nurse specialists providing health promotion services. In terms of importance and difficulty of tasks performed by the healthcare managers, which were measured using a determinant coefficient, the highest-ranked task was planning social marketing (15.4), while the lowest-ranked task was managing human resources (9.9). A job description for healthcare managers may provide basic data essential for the development of a job training program for healthcare managers working in community health promotion programs. Copyright © 2014. Published by Elsevier B.V.

  5. A Quantitative Features Analysis of Recommended No- and Low-Cost Preschool E-Books

    ERIC Educational Resources Information Center

    Parette, Howard P.; Blum, Craig; Luthin, Katie

    2015-01-01

    In recent years, recommended e-books have drawn increasing attention from early childhood education professionals. This study applied a quantitative descriptive features analysis of cost (n = 70) and no-cost (n = 60) e-books recommended by the Texas Computer Education Association. While t tests revealed no statistically significant differences…

  6. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  7. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE PAGES

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...

    2016-12-15

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  8. Quantitative prediction of drug side effects based on drug-related features.

    PubMed

    Niu, Yanqing; Zhang, Wen

    2017-09-01

    Unexpected side effects of drugs are great concern in the drug development, and the identification of side effects is an important task. Recently, machine learning methods are proposed to predict the presence or absence of interested side effects for drugs, but it is difficult to make the accurate prediction for all of them. In this paper, we transform side effect profiles of drugs as their quantitative scores, by summing up their side effects with weights. The quantitative scores may measure the dangers of drugs, and thus help to compare the risk of different drugs. Here, we attempt to predict quantitative scores of drugs, namely the quantitative prediction. Specifically, we explore a variety of drug-related features and evaluate their discriminative powers for the quantitative prediction. Then, we consider several feature combination strategies (direct combination, average scoring ensemble combination) to integrate three informative features: chemical substructures, targets, and treatment indications. Finally, the average scoring ensemble model which produces the better performances is used as the final quantitative prediction model. Since weights for side effects are empirical values, we randomly generate different weights in the simulation experiments. The experimental results show that the quantitative method is robust to different weights, and produces satisfying results. Although other state-of-the-art methods cannot make the quantitative prediction directly, the prediction results can be transformed as the quantitative scores. By indirect comparison, the proposed method produces much better results than benchmark methods in the quantitative prediction. In conclusion, the proposed method is promising for the quantitative prediction of side effects, which may work cooperatively with existing state-of-the-art methods to reveal dangers of drugs.

  9. Qualified nurses' perceptions of nursing graduates' abilities vary according to specific demographic and clinical characteristics. A descriptive quantitative study.

    PubMed

    Missen, Karen; McKenna, Lisa; Beauchamp, Alison; Larkins, Jo-Ann

    2016-10-01

    Evidence from the literature and anecdotally from clinical settings suggests that newly graduated nurses are not fully prepared to be independent practitioners in healthcare settings. The aim of this study was to explore perceptions of qualified nurses in relation to the practice readiness of newly registered nursing graduates and determine whether these views differ according to specific demographic characteristics, clinical settings, and geographical locations. A descriptive quantitative design was used. An online survey tool was used to assess how qualified nurses (n=201) in Victoria, Australia, rated newly graduated nurses' abilities on 51 individual clinical skills/competencies in eight key skill areas. A composite score was calculated for each skill area and a comparative analysis was undertaken on the various cohorts of participants according to their demographic and clinical characteristics using one-way ANOVA and post hoc tests. Newly graduated nurses were found to be lacking competence in two key skill areas and were rated as performing adequately in the remaining six skill areas assessed. Significant differences (p≤0.05) in performance were found according to the age of the nurse, number of years registered, the educational setting in which they undertook their nurse education, their role, and the clinical area in which they worked. There were no significant differences according to whether the nurse worked in the private or public healthcare sector. Few differences were found between nurses working in a metropolitan vs. regional/rural healthcare setting. This is the first study to quantify the scale of this problem. Our findings serve as a reference for both nurse education providers and healthcare settings in better preparing nursing graduates to be competent, safe practitioners in all clinical areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Quantitative SIMS Imaging of Agar-Based Microbial Communities.

    PubMed

    Dunham, Sage J B; Ellis, Joseph F; Baig, Nameera F; Morales-Soto, Nydia; Cao, Tianyuan; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2018-05-01

    After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.

  11. Analytical Validation of a Highly Quantitative, Sensitive, Accurate, and Reproducible Assay (HERmark) for the Measurement of HER2 Total Protein and HER2 Homodimers in FFPE Breast Cancer Tumor Specimens.

    PubMed

    Larson, Jeffrey S; Goodman, Laurie J; Tan, Yuping; Defazio-Eli, Lisa; Paquet, Agnes C; Cook, Jennifer W; Rivera, Amber; Frankson, Kristi; Bose, Jolly; Chen, Lili; Cheung, Judy; Shi, Yining; Irwin, Sarah; Kiss, Linda D B; Huang, Weidong; Utter, Shannon; Sherwood, Thomas; Bates, Michael; Weidler, Jodi; Parry, Gordon; Winslow, John; Petropoulos, Christos J; Whitcomb, Jeannette M

    2010-06-28

    We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7-10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH).

  12. Two schemes for quantitative photoacoustic tomography based on Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yubin; Yuan, Zhen, E-mail: zhenyuan@umac.mo

    Purpose: The aim of this study was to develop novel methods for photoacoustically determining the optical absorption coefficient of biological tissues using Monte Carlo (MC) simulation. Methods: In this study, the authors propose two quantitative photoacoustic tomography (PAT) methods for mapping the optical absorption coefficient. The reconstruction methods combine conventional PAT with MC simulation in a novel way to determine the optical absorption coefficient of biological tissues or organs. Specifically, the authors’ two schemes were theoretically and experimentally examined using simulations, tissue-mimicking phantoms, ex vivo, and in vivo tests. In particular, the authors explored these methods using several objects withmore » different absorption contrasts embedded in turbid media and by using high-absorption media when the diffusion approximation was not effective at describing the photon transport. Results: The simulations and experimental tests showed that the reconstructions were quantitatively accurate in terms of the locations, sizes, and optical properties of the targets. The positions of the recovered targets were accessed by the property profiles, where the authors discovered that the off center error was less than 0.1 mm for the circular target. Meanwhile, the sizes and quantitative optical properties of the targets were quantified by estimating the full width half maximum of the optical absorption property. Interestingly, for the reconstructed sizes, the authors discovered that the errors ranged from 0 for relatively small-size targets to 26% for relatively large-size targets whereas for the recovered optical properties, the errors ranged from 0% to 12.5% for different cases. Conclusions: The authors found that their methods can quantitatively reconstruct absorbing objects of different sizes and optical contrasts even when the diffusion approximation is unable to accurately describe the photon propagation in biological tissues. In particular

  13. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jianwei; Remsing, Richard C.; Zhang, Yubo

    2016-06-13

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and vanmore » der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.« less

  14. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional.

    PubMed

    Sun, Jianwei; Remsing, Richard C; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L; Perdew, John P

    2016-09-01

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.

  15. Qualitative Methods Can Enrich Quantitative Research on Occupational Stress: An Example from One Occupational Group

    ERIC Educational Resources Information Center

    Schonfeld, Irvin Sam; Farrell, Edwin

    2010-01-01

    The chapter examines the ways in which qualitative and quantitative methods support each other in research on occupational stress. Qualitative methods include eliciting from workers unconstrained descriptions of work experiences, careful first-hand observations of the workplace, and participant-observers describing "from the inside" a…

  16. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  17. UNiquant, a program for quantitative proteomics analysis using stable isotope labeling.

    PubMed

    Huang, Xin; Tolmachev, Aleksey V; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A; Smith, Richard D; Chan, Wing C; Hinrichs, Steven H; Fu, Kai; Ding, Shi-Jian

    2011-03-04

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for postmeasurement normalization of peptide ratios, which is required by the other programs.

  18. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    PubMed Central

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven H.; Fu, Kai; Ding, Shi-Jian

    2011-01-01

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for post-measurement normalization of peptide ratios, which is required by the other programs. PMID:21158445

  19. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    PubMed

    Zhu, Jie; Feng, Xiaolu; Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  20. Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif

    PubMed Central

    Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs. PMID:23990889

  1. Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification.

    PubMed

    Jaffe, Jacob D; Keshishian, Hasmik; Chang, Betty; Addona, Theresa A; Gillette, Michael A; Carr, Steven A

    2008-10-01

    Verification of candidate biomarker proteins in blood is typically done using multiple reaction monitoring (MRM) of peptides by LC-MS/MS on triple quadrupole MS systems. MRM assay development for each protein requires significant time and cost, much of which is likely to be of little value if the candidate biomarker is below the detection limit in blood or a false positive in the original discovery data. Here we present a new technology, accurate inclusion mass screening (AIMS), designed to provide a bridge from unbiased discovery to MS-based targeted assay development. Masses on the software inclusion list are monitored in each scan on the Orbitrap MS system, and MS/MS spectra for sequence confirmation are acquired only when a peptide from the list is detected with both the correct accurate mass and charge state. The AIMS experiment confirms that a given peptide (and thus the protein from which it is derived) is present in the plasma. Throughput of the method is sufficient to qualify up to a hundred proteins/week. The sensitivity of AIMS is similar to MRM on a triple quadrupole MS system using optimized sample preparation methods (low tens of ng/ml in plasma), and MS/MS data from the AIMS experiments on the Orbitrap can be directly used to configure MRM assays. The method was shown to be at least 4-fold more efficient at detecting peptides of interest than undirected LC-MS/MS experiments using the same instrumentation, and relative quantitation information can be obtained by AIMS in case versus control experiments. Detection by AIMS ensures that a quantitative MRM-based assay can be configured for that protein. The method has the potential to qualify large number of biomarker candidates based on their detection in plasma prior to committing to the time- and resource-intensive steps of establishing a quantitative assay.

  2. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng

    Quantitative gene expression analysis in intact single cells can be achieved using single molecule- based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple FISH sub-probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific binding of sub-probes and tissue autofluorescence, limiting its accuracy. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on blinking frequencies of photoswitchable dyes. This fluctuation localization imaging-based FISH (fliFISH) uses blinking frequency patterns, emitted frommore » a transcript bound to multiple sub-probes, which are distinct from blinking patterns emitted from partial or nonspecifically bound sub-probes and autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2, and their ratio (Nkx2-2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct blinking frequency patterns, laying the foundation for reliable single-cell transcriptomics.« less

  3. Quantitative Live-Cell Confocal Imaging of 3D Spheroids in a High-Throughput Format.

    PubMed

    Leary, Elizabeth; Rhee, Claire; Wilks, Benjamin T; Morgan, Jeffrey R

    2018-06-01

    Accurately predicting the human response to new compounds is critical to a wide variety of industries. Standard screening pipelines (including both in vitro and in vivo models) often lack predictive power. Three-dimensional (3D) culture systems of human cells, a more physiologically relevant platform, could provide a high-throughput, automated means to test the efficacy and/or toxicity of novel substances. However, the challenge of obtaining high-magnification, confocal z stacks of 3D spheroids and understanding their respective quantitative limitations must be overcome first. To address this challenge, we developed a method to form spheroids of reproducible size at precise spatial locations across a 96-well plate. Spheroids of variable radii were labeled with four different fluorescent dyes and imaged with a high-throughput confocal microscope. 3D renderings of the spheroid had a complex bowl-like appearance. We systematically analyzed these confocal z stacks to determine the depth of imaging and the effect of spheroid size and dyes on quantitation. Furthermore, we have shown that this loss of fluorescence can be addressed through the use of ratio imaging. Overall, understanding both the limitations of confocal imaging and the tools to correct for these limits is critical for developing accurate quantitative assays using 3D spheroids.

  4. Quantitative Peptidomics with Five-plex Reductive Methylation labels

    NASA Astrophysics Data System (ADS)

    Tashima, Alexandre K.; Fricker, Lloyd D.

    2017-12-01

    Quantitative peptidomics and proteomics often use chemical tags to covalently modify peptides with reagents that differ in the number of stable isotopes, allowing for quantitation of the relative peptide levels in the original sample based on the peak height of each isotopic form. Different chemical reagents have been used as tags for quantitative peptidomics and proteomics, and all have strengths and weaknesses. One of the simplest approaches uses formaldehyde and sodium cyanoborohydride to methylate amines, converting primary and secondary amines into tertiary amines. Up to five different isotopic forms can be generated, depending on the isotopic forms of formaldehyde and cyanoborohydride reagents, allowing for five-plex quantitation. However, the mass difference between each of these forms is only 1 Da per methyl group incorporated into the peptide, and for many peptides there is substantial overlap from the natural abundance of 13C and other isotopes. In this study, we calculated the contribution from the natural isotopes for 26 native peptides and derived equations to correct the peak intensities. These equations were applied to data from a study using human embryonic kidney HEK293T cells in which five replicates were treated with 100 nM vinblastine for 3 h and compared with five replicates of cells treated with control medium. The correction equations brought the replicates to the expected 1:1 ratios and revealed significant decreases in levels of 21 peptides upon vinblastine treatment. These equations enable accurate quantitation of small changes in peptide levels using the reductive methylation labeling approach. [Figure not available: see fulltext.

  5. Quantitative Peptidomics with Five-plex Reductive Methylation labels

    NASA Astrophysics Data System (ADS)

    Tashima, Alexandre K.; Fricker, Lloyd D.

    2018-05-01

    Quantitative peptidomics and proteomics often use chemical tags to covalently modify peptides with reagents that differ in the number of stable isotopes, allowing for quantitation of the relative peptide levels in the original sample based on the peak height of each isotopic form. Different chemical reagents have been used as tags for quantitative peptidomics and proteomics, and all have strengths and weaknesses. One of the simplest approaches uses formaldehyde and sodium cyanoborohydride to methylate amines, converting primary and secondary amines into tertiary amines. Up to five different isotopic forms can be generated, depending on the isotopic forms of formaldehyde and cyanoborohydride reagents, allowing for five-plex quantitation. However, the mass difference between each of these forms is only 1 Da per methyl group incorporated into the peptide, and for many peptides there is substantial overlap from the natural abundance of 13C and other isotopes. In this study, we calculated the contribution from the natural isotopes for 26 native peptides and derived equations to correct the peak intensities. These equations were applied to data from a study using human embryonic kidney HEK293T cells in which five replicates were treated with 100 nM vinblastine for 3 h and compared with five replicates of cells treated with control medium. The correction equations brought the replicates to the expected 1:1 ratios and revealed significant decreases in levels of 21 peptides upon vinblastine treatment. These equations enable accurate quantitation of small changes in peptide levels using the reductive methylation labeling approach. [Figure not available: see fulltext.

  6. 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence in meningioma: qualitative and quantitative measurements in vivo.

    PubMed

    Valdes, Pablo A; Bekelis, Kimon; Harris, Brent T; Wilson, Brian C; Leblond, Frederic; Kim, Anthony; Simmons, Nathan E; Erkmen, Kadir; Paulsen, Keith D; Roberts, David W

    2014-03-01

    The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intraoperative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (cPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher cPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature.

  7. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements In Vivo

    PubMed Central

    Valdes, Pablo A.; Bekelis, Kimon; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Kim, Anthony; Simmons, Nathan E.; Erkmen, Kadir; Paulsen, Keith D.; Roberts, David W.

    2014-01-01

    BACKGROUND The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. OBJECTIVE To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. METHODS ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intra-operative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. RESULTS Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (CPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher CPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. CONCLUSION ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature. PMID:23887194

  8. Competency-Based Education: A Quantitative Study of the U.S. Air Force Noncommissioned Officer Academy

    ERIC Educational Resources Information Center

    Houser, Bonnie L.

    2017-01-01

    There are relatively few empirical studies that examine whether using a competency-based education (CBE) approach results in increased student learning or achievement when compared to traditional education approaches. This study uses a quantitative research methodology, a nonexperimental comparative descriptive research design, and a two-group…

  9. Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data

    PubMed Central

    2017-01-01

    Mapping gene expression as a quantitative trait using whole genome-sequencing and transcriptome analysis allows to discover the functional consequences of genetic variation. We developed a novel method and ultra-fast software Findr for higly accurate causal inference between gene expression traits using cis-regulatory DNA variations as causal anchors, which improves current methods by taking into consideration hidden confounders and weak regulations. Findr outperformed existing methods on the DREAM5 Systems Genetics challenge and on the prediction of microRNA and transcription factor targets in human lymphoblastoid cells, while being nearly a million times faster. Findr is publicly available at https://github.com/lingfeiwang/findr. PMID:28821014

  10. Reference charts for young stands — a quantitative methodology for assessing tree performance

    Treesearch

    Lance A. Vickers; David R. Larsen; Benjamin O. Knapp; John M. Kabrick; Daniel C. Dey

    2017-01-01

    Reference charts have long been used in the medical field for quantitative clinical assessment of juvenile development by plotting distribution quantiles for a selected attribute (e.g., height) against age for specified peer populations.We propose that early stand dynamics is an area of study that could benefit from the descriptions and analyses offered by similar...

  11. Recommended procedures and methodology of coal description

    USGS Publications Warehouse

    Chao, E.C.; Minkin, J.A.; Thompson, C.L.

    1983-01-01

    This document is the result of a workshop on coal description held for the Branch of Coal Resources of the U.S. Geological Survey in March 1982. It has been prepared to aid and encourage the field-oriented coal scientist to participate directly in petrographic coal-description activities. The objectives and past and current practices of coal description vary widely. These are briefly reviewed and illustrated with examples. Sampling approaches and techniques for collecting columnar samples of fresh coal are also discussed. The recommended procedures and methodology emphasize the fact that obtaining a good megascopic description of a coal bed is much better done in the laboratory with a binocular microscope and under good lighting conditions after the samples have been cut and quickly prepared. For better observation and cross-checking using a petrographic microscope for identification purposes, an in-place polishing procedure (requiring less than 2 min) is routinely used. Methods for using both the petrographic microscope and an automated image analysis system are also included for geologists who have access to such instruments. To describe the material characteristics of a coal bed in terms of microlithotypes or lithotypes, a new nomenclature of (V), (E), (1), (M). (S). (X1). (X2) and so on is used. The microscopic description of the modal composition of a megascopically observed lithologic type is expressed in terms of (VEIM); subscripts are used to denote the volume percentage of each constituent present. To describe a coal-bed profile, semiquantitative data (without microscopic study) and quantitative data (with microscopic study) are presented in ready-to-understand form. The average total composition of any thickness interval or of the entire coal bed can be plotted on a triangular diagram having V, E, and I+ M +S as the apices. The modal composition of any mixed lithologies such as (X1), (X2), and so on can also be plotted on such a triangular ternary diagram

  12. Distinguishing Features and Similarities Between Descriptive Phenomenological and Qualitative Description Research.

    PubMed

    Willis, Danny G; Sullivan-Bolyai, Susan; Knafl, Kathleen; Cohen, Marlene Z

    2016-09-01

    Scholars who research phenomena of concern to the discipline of nursing are challenged with making wise choices about different qualitative research approaches. Ultimately, they want to choose an approach that is best suited to answer their research questions. Such choices are predicated on having made distinctions between qualitative methodology, methods, and analytic frames. In this article, we distinguish two qualitative research approaches widely used for descriptive studies: descriptive phenomenological and qualitative description. Providing a clear basis that highlights the distinguishing features and similarities between descriptive phenomenological and qualitative description research will help students and researchers make more informed choices in deciding upon the most appropriate methodology in qualitative research. We orient the reader to distinguishing features and similarities associated with each approach and the kinds of research questions descriptive phenomenological and qualitative description research address. © The Author(s) 2016.

  13. Application of the weighted-density approximation to the accurate description of electron-positron correlation effects in materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Saniz, Rolando; Barbiellini, Bernardo; Bansil, Arun; Partoens, Bart

    2017-08-01

    We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the framework of the weighted-density approximation (WDA). The WDA can correctly describe electron-positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability of (semi-)local approximations is limited. We analyze the WDA in detail and show that the electrons which cannot screen external charges efficiently, such as the core electrons, cannot be treated accurately via the pair correlation of the homogeneous electron gas. We discuss how this problem can be addressed by reducing the screening in the homogeneous electron gas by adding terms depending on the gradient of the electron density. Further improvements are obtained when core electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a semiempirical WDA-based approach in which a sum rule is imposed to reproduce the experimental lifetimes.

  14. NEW TARGET AND CONTROL ASSAYS FOR QUANTITATIVE POLYMERASE CHAIN REACTION (QPCR) ANALYSIS OF ENTEROCOCCI IN WATER

    EPA Science Inventory

    Enterococci are frequently monitored in water samples as indicators of fecal pollution. Attention is now shifting from culture based methods for enumerating these organisms to more rapid molecular methods such as QPCR. Accurate quantitative analyses by this method requires highly...

  15. Quantitative description of ion transport via plasma membrane of yeast and small cells.

    PubMed

    Volkov, Vadim

    2015-01-01

    Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.

  16. Quantitative description of ion transport via plasma membrane of yeast and small cells

    PubMed Central

    Volkov, Vadim

    2015-01-01

    Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions. PMID:26113853

  17. Quantitative analysis of periodontal pathogens by ELISA and real-time polymerase chain reaction.

    PubMed

    Hamlet, Stephen M

    2010-01-01

    The development of analytical methods enabling the accurate identification and enumeration of bacterial species colonizing the oral cavity has led to the identification of a small number of bacterial pathogens that are major factors in the etiology of periodontal disease. Further, these methods also underpin more recent epidemiological analyses of the impact of periodontal disease on general health. Given the complex milieu of over 700 species of microorganisms known to exist within the complex biofilms found in the oral cavity, the identification and enumeration of oral periodontopathogens has not been an easy task. In recent years however, some of the intrinsic limitations of the more traditional microbiological analyses previously used have been overcome with the advent of immunological and molecular analytical methods. Of the plethora of methodologies reported in the literature, the enzyme-linked immunosorbent assay (ELISA), which combines the specificity of antibody with the sensitivity of simple enzyme assays and the polymerase chain reaction (PCR), has been widely utilized in both laboratory and clinical applications. Although conventional PCR does not allow quantitation of the target organism, real-time PCR (rtPCR) has the ability to detect amplicons as they accumulate in "real time" allowing subsequent quantitation. These methods enable the accurate quantitation of as few as 10(2) (using rtPCR) to 10(4) (using ELISA) periodontopathogens in dental plaque samples.

  18. Reporting and Interpreting Quantitative Research Findings: What Gets Reported and Recommendations for the Field

    ERIC Educational Resources Information Center

    Larson-Hall, Jenifer; Plonsky, Luke

    2015-01-01

    This paper presents a set of guidelines for reporting on five types of quantitative data issues: (1) Descriptive statistics, (2) Effect sizes and confidence intervals, (3) Instrument reliability, (4) Visual displays of data, and (5) Raw data. Our recommendations are derived mainly from various professional sources related to L2 research but…

  19. Effects of biases in domain wall network evolution. II. Quantitative analysis

    NASA Astrophysics Data System (ADS)

    Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.

    2018-04-01

    Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.

  20. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection.

    PubMed

    Pilet-Nayel, Marie-Laure; Moury, Benoît; Caffier, Valérie; Montarry, Josselin; Kerlan, Marie-Claire; Fournet, Sylvain; Durel, Charles-Eric; Delourme, Régine

    2017-01-01

    Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  1. A Quantitative Study of the Effectiveness of Teacher Recruitment Strategies in a Rural Midwestern State

    ERIC Educational Resources Information Center

    Kane, Rose Etta

    2010-01-01

    A problem in American education is that rural schools have difficulty recruiting licensed teachers. Teacher shortages in mathematics, science, foreign language, and special education are more acute in rural areas. The purpose of this quantitative descriptive survey study was to examine specific recruiting strategies and newly hired licensed…

  2. Comparison of salivary collection and processing methods for quantitative HHV-8 detection.

    PubMed

    Speicher, D J; Johnson, N W

    2014-10-01

    Saliva is a proved diagnostic fluid for the qualitative detection of infectious agents, but the accuracy of viral load determinations is unknown. Stabilising fluids impede nucleic acid degradation, compared with collection onto ice and then freezing, and we have shown that the DNA Genotek P-021 prototype kit (P-021) can produce high-quality DNA after 14 months of storage at room temperature. Here we evaluate the quantitative capability of 10 collection/processing methods. Unstimulated whole mouth fluid was spiked with a mixture of HHV-8 cloned constructs, 10-fold serial dilutions were produced, and samples were extracted and then examined with quantitative PCR (qPCR). Calibration curves were compared by linear regression and qPCR dynamics. All methods extracted with commercial spin columns produced linear calibration curves with large dynamic range and gave accurate viral loads. Ethanol precipitation of the P-021 does not produce a linear standard curve, and virus is lost in the cell pellet. DNA extractions from the P-021 using commercial spin columns produced linear standard curves with wide dynamic range and excellent limit of detection. When extracted with spin columns, the P-021 enables accurate viral loads down to 23 copies μl(-1) DNA. The quantitative and long-term storage capability of this system makes it ideal for study of salivary DNA viruses in resource-poor settings. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Quantitative analysis of benzodiazepines in vitreous humor by high-performance liquid chromatography

    PubMed Central

    Bazmi, Elham; Behnoush, Behnam; Akhgari, Maryam; Bahmanabadi, Leila

    2016-01-01

    Objective: Benzodiazepines are frequently screened drugs in emergency toxicology, drugs of abuse testing, and in forensic cases. As the variations of benzodiazepines concentrations in biological samples during bleeding, postmortem changes, and redistribution could be biasing forensic medicine examinations, hence selecting a suitable sample and a validated accurate method is essential for the quantitative analysis of these main drug categories. The aim of this study was to develop a valid method for the determination of four benzodiazepines (flurazepam, lorazepam, alprazolam, and diazepam) in vitreous humor using liquid–liquid extraction and high-performance liquid chromatography. Methods: Sample preparation was carried out using liquid–liquid extraction with n-hexane: ethyl acetate and subsequent detection by high-performance liquid chromatography method coupled to diode array detector. This method was applied to quantify benzodiazepines in 21 authentic vitreous humor samples. Linear curve for each drug was obtained within the range of 30–3000 ng/mL with coefficient of correlation higher than 0.99. Results: The limit of detection and quantitation were 30 and 100 ng/mL respectively for four drugs. The method showed an appropriate intra- and inter-day precision (coefficient of variation < 10%). Benzodiazepines recoveries were estimated to be over 80%. The method showed high selectivity; no additional peak due to interfering substances in samples was observed. Conclusion: The present method was selective, sensitive, accurate, and precise for the quantitative analysis of benzodiazepines in vitreous humor samples in forensic toxicology laboratory. PMID:27635251

  4. CDMBE: A Case Description Model Based on Evidence

    PubMed Central

    Zhu, Jianlin; Yang, Xiaoping; Zhou, Jing

    2015-01-01

    By combining the advantages of argument map and Bayesian network, a case description model based on evidence (CDMBE), which is suitable to continental law system, is proposed to describe the criminal cases. The logic of the model adopts the credibility logical reason and gets evidence-based reasoning quantitatively based on evidences. In order to consist with practical inference rules, five types of relationship and a set of rules are defined to calculate the credibility of assumptions based on the credibility and supportability of the related evidences. Experiments show that the model can get users' ideas into a figure and the results calculated from CDMBE are in line with those from Bayesian model. PMID:26421006

  5. Analytical Validation of a Highly Quantitative, Sensitive, Accurate, and Reproducible Assay (HERmark®) for the Measurement of HER2 Total Protein and HER2 Homodimers in FFPE Breast Cancer Tumor Specimens

    PubMed Central

    Larson, Jeffrey S.; Goodman, Laurie J.; Tan, Yuping; Defazio-Eli, Lisa; Paquet, Agnes C.; Cook, Jennifer W.; Rivera, Amber; Frankson, Kristi; Bose, Jolly; Chen, Lili; Cheung, Judy; Shi, Yining; Irwin, Sarah; Kiss, Linda D. B.; Huang, Weidong; Utter, Shannon; Sherwood, Thomas; Bates, Michael; Weidler, Jodi; Parry, Gordon; Winslow, John; Petropoulos, Christos J.; Whitcomb, Jeannette M.

    2010-01-01

    We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7–10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH). PMID:21151530

  6. Quantitative Description of Medical Student Interest in Neurology and Psychiatry.

    PubMed

    Ramos, Raddy L; Cuoco, Joshua A; Guercio, Erik; Levitan, Thomas

    2016-07-01

    Given the well-documented shortage of physicians in primary care and several other specialties, quantitative understanding of residency application and matching data among osteopathic and allopathic medical students has implications for predicting trends in the physician workforce. To estimate medical student interest in neurology and psychiatry based on numbers of applicants and matches to neurology and psychiatry osteopathic and allopathic residency programs. Also, to gauge students' previous academic experience with brain and cognitive sciences. The number of available postgraduate year 1 positions, applicants, and matches from graduating years 2011 through 2015 were collected from the National Matching Services Inc and the American Association of Colleges of Osteopathic Medicine for osteopathic programs and the National Resident Matching Program and the Association of American Medical Colleges for allopathic programs. To determine and compare osteopathic and allopathic medical students' interest in neurology and psychiatry, the number of positions, applicants, and matches were analyzed considering the number of total osteopathic and allopathic graduates in the given year using 2-tailed χ2 analyses with Yates correction. In addition, osteopathic and allopathic medical schools' websites were reviewed to determine whether neurology and psychiatry rotations were required. Osteopathic medical students' reported undergraduate majors were also gathered. Compared with allopathic medical students, osteopathic medical students had significantly greater interest (as measured by applicants) in neurology (χ21=11.85, P<.001) and psychiatry (χ21=39.07, P<.001), and an equal proportion of osteopathic and allopathic medical students matched in neurology and psychiatry residency programs. Approximately 6% of osteopathic vs nearly 85% of allopathic medical schools had required neurology rotations. Nearly 10% of osteopathic applicants and matriculants had undergraduate

  7. Quantitative Large-Scale Three-Dimensional Imaging of Human Kidney Biopsies: A Bridge to Precision Medicine in Kidney Disease.

    PubMed

    Winfree, Seth; Dagher, Pierre C; Dunn, Kenneth W; Eadon, Michael T; Ferkowicz, Michael; Barwinska, Daria; Kelly, Katherine J; Sutton, Timothy A; El-Achkar, Tarek M

    2018-06-05

    Kidney biopsy remains the gold standard for uncovering the pathogenesis of acute and chronic kidney diseases. However, the ability to perform high resolution, quantitative, molecular and cellular interrogation of this precious tissue is still at a developing stage compared to other fields such as oncology. Here, we discuss recent advances in performing large-scale, three-dimensional (3D), multi-fluorescence imaging of kidney biopsies and quantitative analysis referred to as 3D tissue cytometry. This approach allows the accurate measurement of specific cell types and their spatial distribution in a thick section spanning the entire length of the biopsy. By uncovering specific disease signatures, including rare occurrences, and linking them to the biology in situ, this approach will enhance our understanding of disease pathogenesis. Furthermore, by providing accurate quantitation of cellular events, 3D cytometry may improve the accuracy of prognosticating the clinical course and response to therapy. Therefore, large-scale 3D imaging and cytometry of kidney biopsy is poised to become a bridge towards personalized medicine for patients with kidney disease. © 2018 S. Karger AG, Basel.

  8. Sample normalization methods in quantitative metabolomics.

    PubMed

    Wu, Yiman; Li, Liang

    2016-01-22

    To reveal metabolomic changes caused by a biological event in quantitative metabolomics, it is critical to use an analytical tool that can perform accurate and precise quantification to examine the true concentration differences of individual metabolites found in different samples. A number of steps are involved in metabolomic analysis including pre-analytical work (e.g., sample collection and storage), analytical work (e.g., sample analysis) and data analysis (e.g., feature extraction and quantification). Each one of them can influence the quantitative results significantly and thus should be performed with great care. Among them, the total sample amount or concentration of metabolites can be significantly different from one sample to another. Thus, it is critical to reduce or eliminate the effect of total sample amount variation on quantification of individual metabolites. In this review, we describe the importance of sample normalization in the analytical workflow with a focus on mass spectrometry (MS)-based platforms, discuss a number of methods recently reported in the literature and comment on their applicability in real world metabolomics applications. Sample normalization has been sometimes ignored in metabolomics, partially due to the lack of a convenient means of performing sample normalization. We show that several methods are now available and sample normalization should be performed in quantitative metabolomics where the analyzed samples have significant variations in total sample amounts. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labuda, Aleksander; Proksch, Roger

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement.more » The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.« less

  10. A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data

    PubMed Central

    Chen, Yi-Hau

    2017-01-01

    Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https

  11. A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data.

    PubMed

    Lai, En-Yu; Chen, Yi-Hau; Wu, Kun-Pin

    2017-06-01

    Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https

  12. Quantitative characterization of the spatial distribution of particles in materials: Application to materials processing

    NASA Technical Reports Server (NTRS)

    Parse, Joseph B.; Wert, J. A.

    1991-01-01

    Inhomogeneities in the spatial distribution of second phase particles in engineering materials are known to affect certain mechanical properties. Progress in this area has been hampered by the lack of a convenient method for quantitative description of the spatial distribution of the second phase. This study intends to develop a broadly applicable method for the quantitative analysis and description of the spatial distribution of second phase particles. The method was designed to operate on a desktop computer. The Dirichlet tessellation technique (geometrical method for dividing an area containing an array of points into a set of polygons uniquely associated with the individual particles) was selected as the basis of an analysis technique implemented on a PC. This technique is being applied to the production of Al sheet by PM processing methods; vacuum hot pressing, forging, and rolling. The effect of varying hot working parameters on the spatial distribution of aluminum oxide particles in consolidated sheet is being studied. Changes in distributions of properties such as through-thickness near-neighbor distance correlate with hot-working reduction.

  13. Nursing students' evaluation of a new feedback and reflection tool for use in high-fidelity simulation - Formative assessment of clinical skills. A descriptive quantitative research design.

    PubMed

    Solheim, Elisabeth; Plathe, Hilde Syvertsen; Eide, Hilde

    2017-11-01

    Clinical skills training is an important part of nurses' education programmes. Clinical skills are complex. A common understanding of what characterizes clinical skills and learning outcomes needs to be established. The aim of the study was to develop and evaluate a new reflection and feedback tool for formative assessment. The study has a descriptive quantitative design. 129 students participated who were at the end of the first year of a Bachelor degree in nursing. After highfidelity simulation, data were collected using a questionnaire with 19 closed-ended and 2 open-ended questions. The tool stimulated peer assessment, and enabled students to be more thorough in what to assess as an observer in clinical skills. The tool provided a structure for selfassessment and made visible items that are important to be aware of in clinical skills. This article adds to simulation literature and provides a tool that is useful in enhancing peer learning, which is essential for nurses in practice. The tool has potential for enabling students to learn about reflection and developing skills for guiding others in practice after they have graduated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Optimal dimensionality reduction of complex dynamics: the chess game as diffusion on a free-energy landscape.

    PubMed

    Krivov, Sergei V

    2011-07-01

    Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game--the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.

  15. Optimal dimensionality reduction of complex dynamics: The chess game as diffusion on a free-energy landscape

    NASA Astrophysics Data System (ADS)

    Krivov, Sergei V.

    2011-07-01

    Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game—the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.

  16. Interpretable Decision Sets: A Joint Framework for Description and Prediction

    PubMed Central

    Lakkaraju, Himabindu; Bach, Stephen H.; Jure, Leskovec

    2016-01-01

    One of the most important obstacles to deploying predictive models is the fact that humans do not understand and trust them. Knowing which variables are important in a model’s prediction and how they are combined can be very powerful in helping people understand and trust automatic decision making systems. Here we propose interpretable decision sets, a framework for building predictive models that are highly accurate, yet also highly interpretable. Decision sets are sets of independent if-then rules. Because each rule can be applied independently, decision sets are simple, concise, and easily interpretable. We formalize decision set learning through an objective function that simultaneously optimizes accuracy and interpretability of the rules. In particular, our approach learns short, accurate, and non-overlapping rules that cover the whole feature space and pay attention to small but important classes. Moreover, we prove that our objective is a non-monotone submodular function, which we efficiently optimize to find a near-optimal set of rules. Experiments show that interpretable decision sets are as accurate at classification as state-of-the-art machine learning techniques. They are also three times smaller on average than rule-based models learned by other methods. Finally, results of a user study show that people are able to answer multiple-choice questions about the decision boundaries of interpretable decision sets and write descriptions of classes based on them faster and more accurately than with other rule-based models that were designed for interpretability. Overall, our framework provides a new approach to interpretable machine learning that balances accuracy, interpretability, and computational efficiency. PMID:27853627

  17. Accurate Arabic Script Language/Dialect Classification

    DTIC Science & Technology

    2014-01-01

    Army Research Laboratory Accurate Arabic Script Language/Dialect Classification by Stephen C. Tratz ARL-TR-6761 January 2014 Approved for public...1197 ARL-TR-6761 January 2014 Accurate Arabic Script Language/Dialect Classification Stephen C. Tratz Computational and Information Sciences...Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 January 2014 Final Accurate Arabic Script Language/Dialect Classification

  18. Accurate object tracking system by integrating texture and depth cues

    NASA Astrophysics Data System (ADS)

    Chen, Ju-Chin; Lin, Yu-Hang

    2016-03-01

    A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.

  19. A New Approach for the Quantitative Evaluation of Drawings in Children with Learning Disabilities

    ERIC Educational Resources Information Center

    Galli, Manuela; Vimercati, Sara Laura; Stella, Giacomo; Caiazzo, Giorgia; Norveti, Federica; Onnis, Francesca; Rigoldi, Chiara; Albertini, Giorgio

    2011-01-01

    A new method for a quantitative and objective description of drawing and for the quantification of drawing ability in children with learning disabilities (LD) is hereby presented. Twenty-four normally developing children (N) (age 10.6 [plus or minus] 0.5) and 18 children with learning disabilities (LD) (age 10.3 [plus or minus] 2.4) took part to…

  20. Phase calibration target for quantitative phase imaging with ptychography.

    PubMed

    Godden, T M; Muñiz-Piniella, A; Claverley, J D; Yacoot, A; Humphry, M J

    2016-04-04

    Quantitative phase imaging (QPI) utilizes refractive index and thickness variations that lead to optical phase shifts. This gives contrast to images of transparent objects. In quantitative biology, phase images are used to accurately segment cells and calculate properties such as dry mass, volume and proliferation rate. The fidelity of the measured phase shifts is of critical importance in this field. However to date, there has been no standardized method for characterizing the performance of phase imaging systems. Consequently, there is an increasing need for protocols to test the performance of phase imaging systems using well-defined phase calibration and resolution targets. In this work, we present a candidate for a standardized phase resolution target, and measurement protocol for the determination of the transfer of spatial frequencies, and sensitivity of a phase imaging system. The target has been carefully designed to contain well-defined depth variations over a broadband range of spatial frequencies. In order to demonstrate the utility of the target, we measure quantitative phase images on a ptychographic microscope, and compare the measured optical phase shifts with Atomic Force Microscopy (AFM) topography maps and surface profile measurements from coherence scanning interferometry. The results show that ptychography has fully quantitative nanometer sensitivity in optical path differences over a broadband range of spatial frequencies for feature sizes ranging from micrometers to hundreds of micrometers.

  1. End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging.

    PubMed

    Cai, Chuangjian; Deng, Kexin; Ma, Cheng; Luo, Jianwen

    2018-06-15

    An end-to-end deep neural network, ResU-net, is developed for quantitative photoacoustic imaging. A residual learning framework is used to facilitate optimization and to gain better accuracy from considerably increased network depth. The contracting and expanding paths enable ResU-net to extract comprehensive context information from multispectral initial pressure images and, subsequently, to infer a quantitative image of chromophore concentration or oxygen saturation (sO 2 ). According to our numerical experiments, the estimations of sO 2 and indocyanine green concentration are accurate and robust against variations in both optical property and object geometry. An extremely short reconstruction time of 22 ms is achieved.

  2. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE PAGES

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng; ...

    2017-10-04

    Here, quantitative gene expression analysis in intact single cells can be achieved using single molecule-based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple oligonucleotide probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific probe binding and tissue autofluorescence, especially when only a small number of probes can be fitted to the target transcript. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on on-off duty cycles of photoswitchable dyes.more » This fluctuation localization imaging-based FISH (fliFISH) uses on-time fractions (measured over a series of exposures) collected from transcripts bound to as low as 8 probes, which are distinct from on-time fractions collected from nonspecifically bound probes or autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2 and their ratio ( Nkx2- 2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.« less

  3. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng

    Here, quantitative gene expression analysis in intact single cells can be achieved using single molecule-based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple oligonucleotide probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific probe binding and tissue autofluorescence, especially when only a small number of probes can be fitted to the target transcript. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on on-off duty cycles of photoswitchable dyes.more » This fluctuation localization imaging-based FISH (fliFISH) uses on-time fractions (measured over a series of exposures) collected from transcripts bound to as low as 8 probes, which are distinct from on-time fractions collected from nonspecifically bound probes or autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2 and their ratio ( Nkx2- 2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.« less

  4. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less

  5. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  6. RECENT ADVANCES IN QUANTITATIVE NEUROPROTEOMICS

    PubMed Central

    Craft, George E; Chen, Anshu; Nairn, Angus C

    2014-01-01

    The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to

  7. Recent advances in quantitative neuroproteomics.

    PubMed

    Craft, George E; Chen, Anshu; Nairn, Angus C

    2013-06-15

    The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed

  8. The attentional drift-diffusion model extends to simple purchasing decisions.

    PubMed

    Krajbich, Ian; Lu, Dingchao; Camerer, Colin; Rangel, Antonio

    2012-01-01

    How do we make simple purchasing decisions (e.g., whether or not to buy a product at a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM) can provide accurate quantitative descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model also provides a reasonably accurate quantitative description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices. This suggests that a similar computational process is used to make binary choices, trinary choices, and simple purchasing decisions.

  9. The Attentional Drift-Diffusion Model Extends to Simple Purchasing Decisions

    PubMed Central

    Krajbich, Ian; Lu, Dingchao; Camerer, Colin; Rangel, Antonio

    2012-01-01

    How do we make simple purchasing decisions (e.g., whether or not to buy a product at a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM) can provide accurate quantitative descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model also provides a reasonably accurate quantitative description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices. This suggests that a similar computational process is used to make binary choices, trinary choices, and simple purchasing decisions. PMID:22707945

  10. Generalized PSF modeling for optimized quantitation in PET imaging.

    PubMed

    Ashrafinia, Saeed; Mohy-Ud-Din, Hassan; Karakatsanis, Nicolas A; Jha, Abhinav K; Casey, Michael E; Kadrmas, Dan J; Rahmim, Arman

    2017-06-21

    Point-spread function (PSF) modeling offers the ability to account for resolution degrading phenomena within the PET image generation framework. PSF modeling improves resolution and enhances contrast, but at the same time significantly alters image noise properties and induces edge overshoot effect. Thus, studying the effect of PSF modeling on quantitation task performance can be very important. Frameworks explored in the past involved a dichotomy of PSF versus no-PSF modeling. By contrast, the present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET images, while incorporating a wide spectrum of PSF models, including those that under- and over-estimate the true PSF, for the potential of enhanced quantitation of SUVs. The developed framework first analytically models the true PSF, considering a range of resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration and scattering) as present in data acquisitions with modern commercial PET systems. In the context of oncologic liver FDG PET imaging, we generated 200 noisy datasets per image-set (with clinically realistic noise levels) using an XCAT anthropomorphic phantom with liver tumours of varying sizes. These were subsequently reconstructed using the OS-EM algorithm with varying PSF modelled kernels. We focused on quantitation of both SUV mean and SUV max , including assessment of contrast recovery coefficients, as well as noise-bias characteristics (including both image roughness and coefficient of-variability), for different tumours/iterations/PSF kernels. It was observed that overestimated PSF yielded more accurate contrast recovery for a range of tumours, and typically improved quantitative performance. For a clinically reasonable number of iterations, edge enhancement due to PSF modeling (especially due to over-estimated PSF) was in fact seen to lower SUV mean bias in small tumours. Overall, the results indicate that exactly matched PSF

  11. Accurate wavelengths for X-ray spectroscopy and the NIST hydrogen-like ion database

    NASA Astrophysics Data System (ADS)

    Kotochigova, S. A.; Kirby, K. P.; Brickhouse, N. S.; Mohr, P. J.; Tupitsyn, I. I.

    2005-06-01

    We have developed an ab initio multi-configuration Dirac-Fock-Sturm method for the precise calculation of X-ray emission spectra, including energies, transition wavelengths and transition probabilities. The calculations are based on non-orthogonal basis sets, generated by solving the Dirac-Fock and Dirac-Fock-Sturm equations. Inclusion of Sturm functions into the basis set provides an efficient description of correlation effects in highly charged ions and fast convergence of the configuration interaction procedure. A second part of our study is devoted to developing a theoretical procedure and creating an interactive database to generate energies and transition frequencies for hydrogen-like ions. This procedure is highly accurate and based on current knowledge of the relevant theory, which includes relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  12. Adipose tissue MRI for quantitative measurement of central obesity.

    PubMed

    Poonawalla, Aziz H; Sjoberg, Brett P; Rehm, Jennifer L; Hernando, Diego; Hines, Catherine D; Irarrazaval, Pablo; Reeder, Scott B

    2013-03-01

    To validate adipose tissue magnetic resonance imaging (atMRI) for rapid, quantitative volumetry of visceral adipose tissue (VAT) and total adipose tissue (TAT). Data were acquired on normal adults and clinically overweight girls with Institutional Review Board (IRB) approval/parental consent using sagittal 6-echo 3D-spoiled gradient-echo (SPGR) (26-sec single-breath-hold) at 3T. Fat-fraction images were reconstructed with quantitative corrections, permitting measurement of a physiologically based fat-fraction threshold in normals to identify adipose tissue, for automated measurement of TAT, and semiautomated measurement of VAT. TAT accuracy was validated using oil phantoms and in vivo TAT/VAT measurements validated with manual segmentation. Group comparisons were performed between normals and overweight girls using TAT, VAT, VAT-TAT-ratio (VTR), body-mass-index (BMI), waist circumference, and waist-hip-ratio (WHR). Oil phantom measurements were highly accurate (<3% error). The measured adipose fat-fraction threshold was 96% ± 2%. VAT and TAT correlated strongly with manual segmentation (normals r(2) ≥ 0.96, overweight girls r(2) ≥ 0.99). VAT segmentation required 30 ± 11 minutes/subject (14 ± 5 sec/slice) using atMRI, versus 216 ± 73 minutes/subject (99 ± 31 sec/slice) manually. Group discrimination was significant using WHR (P < 0.001) and VTR (P = 0.004). The atMRI technique permits rapid, accurate measurements of TAT, VAT, and VTR. Copyright © 2012 Wiley Periodicals, Inc.

  13. Digital PCR Quantitation of Muscle Mitochondrial DNA: Age, Fiber Type, and Mutation-Induced Changes.

    PubMed

    Herbst, Allen; Widjaja, Kevin; Nguy, Beatrice; Lushaj, Entela B; Moore, Timothy M; Hevener, Andrea L; McKenzie, Debbie; Aiken, Judd M; Wanagat, Jonathan

    2017-10-01

    Definitive quantitation of mitochondrial DNA (mtDNA) and mtDNA deletion mutation abundances would help clarify the role of mtDNA instability in aging. To more accurately quantify mtDNA, we applied the emerging technique of digital polymerase chain reaction to individual muscle fibers and muscle homogenates from aged rodents. Individual fiber mtDNA content correlated with fiber type and decreased with age. We adapted a digital polymerase chain reaction deletion assay that was accurate in mixing experiments to a mutation frequency of 0.03% and quantitated an age-induced increase in deletion frequency from rat muscle homogenates. Importantly, the deletion frequency measured in muscle homogenates strongly correlated with electron transport chain-deficient fiber abundance determined by histochemical analyses. These data clarify the temporal accumulation of mtDNA deletions that lead to electron chain-deficient fibers, a process culminating in muscle fiber loss. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Influence of Pre-Analytical Factors on Thymus- and Activation-Regulated Chemokine Quantitation in Plasma

    PubMed Central

    Zhao, Xuemei; Delgado, Liliana; Weiner, Russell; Laterza, Omar F.

    2015-01-01

    Thymus- and activation-regulated chemokine (TARC) in serum/plasma associates with the disease activity of atopic dermatitis (AD), and is a promising tool for assessing the response to the treatment of the disease. TARC also exists within platelets, with elevated levels detectable in AD patients. We examined the effects of pre-analytical factors on the quantitation of TARC in human EDTA plasma. TARC levels in platelet-free plasma were significantly lower than those in platelet-containing plasma. After freeze-thaw, TARC levels increased in platelet-containing plasma, but remained unchanged in platelet-free plasma, suggesting TARC was released from the platelets during the freeze-thaw process. In contrast, TARC levels were stable in serum independent of freeze-thaw. These findings underscore the importance of pre-analytical factors to TARC quantitation. Plasma TARC levels should be measured in platelet-free plasma for accurate quantitation. Pre-analytical factors influence the quantitation, interpretation, and implementation of circulating TARC as a biomarker for the development of AD therapeutics. PMID:28936246

  15. Lung Sliding Identification Is Less Accurate in the Left Hemithorax.

    PubMed

    Piette, Eric; Daoust, Raoul; Lambert, Jean; Denault, André

    2017-02-01

    The aim of our study was to compare the accuracy of lung sliding identification for the left and right hemithoraxes, using prerecorded short US sequences, in a group of physicians with mixed clinical and US training. A total of 140 US sequences of a complete respiratory cycle were recorded in the operating room. Each sequence was divided in two, yielding 140 sequences of present lung sliding and 140 sequences of absent lung sliding. Of these 280 sequences, 40 were randomly repeated to assess intraobserver variability, for a total of 320 sequences. Descriptive data, the mean accuracy of each participant, as well as the rate of correct answers for each of the original 280 sequences were tabulated and compared for different subgroups of clinical and US training. A video with examples of present and absent lung sliding and a lung pulse was shown before testing. Two sessions were planned to facilitate the participation of 75 clinicians. In the first group, the rate of accurate lung sliding identification was lower in the left hemithorax than in the right (67.0% [interquartile range (IQR), 43.0-83.0] versus 80.0% [IQR, 57.0-95.0]; P < .001). In the second group, the rate of accurate lung sliding identification was also lower in the left hemithorax than in the right (76.3% [IQR, 42.9-90.9] versus 88.7% [IQR, 63.1-96.9]; P = .001). Mean accuracy rates were 67.5% (95% confidence interval, 65.7-69.4) in the first group and 73.1% (95% confidence interval, 70.7-75.5) in the second (P < .001). Lung sliding identification seems less accurate in the left hemithorax when using a short US examination. This study was done on recorded US sequences and should be repeated in a live clinical situation to confirm our results. © 2016 by the American Institute of Ultrasound in Medicine.

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  17. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  18. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  19. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  20. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate... indispensable in examinations conducted within the Department of Veterans Affairs. Muscle atrophy must also be...

  1. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  2. Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction.

    PubMed

    Dalaudier, F; Kan, V; Gurvich, A S

    2001-02-20

    We describe refractive and chromatic effects, both regular and random, that occur during star occultations by the Earth's atmosphere. The scintillation that results from random density fluctuations, as well as the consequences of regular chromatic refraction, is qualitatively described. The resultant chromatic scintillation will produce random features on the Global Ozone Monitoring by Occultation of Stars (GOMOS) spectrometer, with an amplitude comparable with that of some of the real absorbing features that result from atmospheric constituents. A correction method that is based on the use of fast photometer signals is described, and its efficiency is discussed. We give a qualitative (although accurate) description of the phenomena, including numerical values when needed. Geometrical optics and the phase-screen approximation are used to keep the description simple.

  3. Accurate Quantitation and Analysis of Nitrofuran Metabolites, Chloramphenicol, and Florfenicol in Seafood by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry: Method Validation and Regulatory Samples.

    PubMed

    Aldeek, Fadi; Hsieh, Kevin C; Ugochukwu, Obiadada N; Gerard, Ghislain; Hammack, Walter

    2018-05-23

    We developed and validated a method for the extraction, identification, and quantitation of four nitrofuran metabolites, 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), semicarbazide (SC), and 1-aminohydantoin (AHD), as well as chloramphenicol and florfenicol in a variety of seafood commodities. Samples were extracted by liquid-liquid extraction techniques, analyzed by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and quantitated using commercially sourced, derivatized nitrofuran metabolites, with their isotopically labeled internal standards in-solvent. We obtained recoveries of 90-100% at various fortification levels. The limit of detection (LOD) was set at 0.25 ng/g for AMOZ and AOZ, 1 ng/g for AHD and SC, and 0.1 ng/g for the phenicols. Various extraction methods, standard stability, derivatization efficiency, and improvements to conventional quantitation techniques were also investigated. We successfully applied this method to the identification and quantitation of nitrofuran metabolites and phenicols in 102 imported seafood products. Our results revealed that four of the samples contained residues from banned veterinary drugs.

  4. Analyses and descriptions of geochemical samples from the Rich Mountain Roadless Area, Fannin and Gilmer counties, Georgia

    USGS Publications Warehouse

    Sears, C.M.; Foose, M.P.; Day, G.W.; Ericksen, M.S.

    1983-01-01

    Semi-quantitative spectrographic analyses for 31 elements on rock, soil, fine-grained stream sediment, bulk stream sediment, and panned stream sediment samples collected in the Rich Mountain Roadless Area, Fannin and Gilmer Counties, Georgia, are reported here. Atomic absorption analyses for gold and fluorometric analyses for uranium are also reported. Brief descriptions of all rock samples analyzed are included.

  5. Inverse methods for 3D quantitative optical coherence elasticity imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wijesinghe, Philip; Hugenberg, Nicholas; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.

    2017-02-01

    In elastography, quantitative elastograms are desirable as they are system and operator independent. Such quantification also facilitates more accurate diagnosis, longitudinal studies and studies performed across multiple sites. In optical elastography (compression, surface-wave or shear-wave), quantitative elastograms are typically obtained by assuming some form of homogeneity. This simplifies data processing at the expense of smearing sharp transitions in elastic properties, and/or introducing artifacts in these regions. Recently, we proposed an inverse problem-based approach to compression OCE that does not assume homogeneity, and overcomes the drawbacks described above. In this approach, the difference between the measured and predicted displacement field is minimized by seeking the optimal distribution of elastic parameters. The predicted displacements and recovered elastic parameters together satisfy the constraint of the equations of equilibrium. This approach, which has been applied in two spatial dimensions assuming plane strain, has yielded accurate material property distributions. Here, we describe the extension of the inverse problem approach to three dimensions. In addition to the advantage of visualizing elastic properties in three dimensions, this extension eliminates the plane strain assumption and is therefore closer to the true physical state. It does, however, incur greater computational costs. We address this challenge through a modified adjoint problem, spatially adaptive grid resolution, and three-dimensional decomposition techniques. Through these techniques the inverse problem is solved on a typical desktop machine within a wall clock time of 20 hours. We present the details of the method and quantitative elasticity images of phantoms and tissue samples.

  6. Identification of Novel Tumor-Associated Cell Surface Sialoglycoproteins in Human Glioblastoma Tumors Using Quantitative Proteomics

    PubMed Central

    Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A.; Natesan, Sridaran; Ferrara, Pascual; August, Paul

    2014-01-01

    Glioblastoma multiform (GBM) remains clinical indication with significant “unmet medical need”. Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells. PMID:25360666

  7. Identification of novel tumor-associated cell surface sialoglycoproteins in human glioblastoma tumors using quantitative proteomics.

    PubMed

    Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A; Natesan, Sridaran; Ferrara, Pascual; August, Paul

    2014-01-01

    Glioblastoma multiform (GBM) remains clinical indication with significant "unmet medical need". Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.

  8. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood

    NASA Astrophysics Data System (ADS)

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-09-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis.

  9. Quantitation of valve regurgitation severity by three-dimensional vena contracta area is superior to flow convergence method of quantitation on transesophageal echocardiography.

    PubMed

    Abudiab, Muaz M; Chao, Chieh-Ju; Liu, Shuang; Naqvi, Tasneem Z

    2017-07-01

    Quantitation of regurgitation severity using the proximal isovelocity acceleration (PISA) method to calculate effective regurgitant orifice (ERO) area has limitations. Measurement of three-dimensional (3D) vena contracta area (VCA) accurately grades mitral regurgitation (MR) severity on transthoracic echocardiography (TTE). We evaluated 3D VCA quantitation of regurgitant jet severity using 3D transesophageal echocardiography (TEE) in 110 native mitral, aortic, and tricuspid valves and six prosthetic valves in patients with at least mild valvular regurgitation. The ASE-recommended integrative method comprising semiquantitative and quantitative assessment of valvular regurgitation was used as a reference method, including ERO area by 2D PISA for assigning severity of regurgitation grade. Mean age was 62.2±14.4 years; 3D VCA quantitation was feasible in 91% regurgitant valves compared to 78% by the PISA method. When both methods were feasible and in the presence of a single regurgitant jet, 3D VCA and 2D PISA were similar in differentiating assigned severity (ANOVAP<.001). In valves with multiple jets, however, 3D VCA had a better correlation to assigned severity (ANOVAP<.0001). The agreement of 2D PISA and 3D VCA with the integrative method was 47% and 58% for moderate and 65% and 88% for severe regurgitation, respectively. Measurement of 3D VCA by TEE is superior to the 2D PISA method in determination of regurgitation severity in multiple native and prosthetic valves. © 2017, Wiley Periodicals, Inc.

  10. Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1

    PubMed Central

    Chen, Ming; Wu, Si; Lu, Haidong D.; Roe, Anna W.

    2013-01-01

    Interpreting population responses in the primary visual cortex (V1) remains a challenge especially with the advent of techniques measuring activations of large cortical areas simultaneously with high precision. For successful interpretation, a quantitatively precise model prediction is of great importance. In this study, we investigate how accurate a spatiotemporal filter (STF) model predicts average response profiles to coherently drifting random dot motion obtained by optical imaging of intrinsic signals in V1 of anesthetized macaques. We establish that orientation difference maps, obtained by subtracting orthogonal axis-of-motion, invert with increasing drift speeds, consistent with the motion streak effect. Consistent with perception, the speed at which the map inverts (the critical speed) depends on cortical eccentricity and systematically increases from foveal to parafoveal. We report that critical speeds and response maps to drifting motion are excellently reproduced by the STF model. Our study thus suggests that the STF model is quantitatively accurate enough to be used as a first model of choice for interpreting responses obtained with intrinsic imaging methods in V1. We show further that this good quantitative correspondence opens the possibility to infer otherwise not easily accessible population receptive field properties from responses to complex stimuli, such as drifting random dot motions. PMID:23197457

  11. Capturing Accurate and Useful Information on Medication-Related Telenursing Triage Calls.

    PubMed

    Lake, R; Li, L; Baysari, M; Byrne, M; Robinson, M; Westbrook, J I

    2016-01-01

    Registered nurses providing telenursing triage and advice services record information on the medication related calls they handle. However the quality and consistency of these data were rarely examined. Our aim was to examine medication related calls made to the healthdirect advice service in November 2014, to assess their basic characteristics and how the data entry format influenced information collected and data consistency. Registered nurses selected the patient question type from a range of categories, and entered the medications involved in a free text field. Medication names were manually extracted from the free text fields. We also compared the selected patient question type with the free text description of the call, in order to gauge data consistency. Results showed that nurses provided patients with advice on medication-related queries in a timely matter (the median call duration of 9 minutes). From 1835 calls, we were able to identify and classify 2156 medications into 384 generic names. However, in 204 cases (11.2% of calls) no medication name was entered. A further 308 (15.0%) of the medication names entered were not identifiable. When we compared the selected patient question with the free text description of calls, we found that these were consistent in 63.27% of cases. Telenursing and triage advice services provide a valuable resource to the public with quick and easily accessible advice. To support nurses provide quality services and record accurate information about the queries, appropriate data entry format and design would be beneficial.

  12. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  13. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    PubMed

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  14. Real-Time and Accurate Identification of Single Oligonucleotide Photoisomers via an Aerolysin Nanopore.

    PubMed

    Hu, Zheng-Li; Li, Zi-Yuan; Ying, Yi-Lun; Zhang, Junji; Cao, Chan; Long, Yi-Tao; Tian, He

    2018-04-03

    Identification of the configuration for the photoresponsive oligonucleotide plays an important role in the ingenious design of DNA nanomolecules and nanodevices. Due to the limited resolution and sensitivity of present methods, it remains a challenge to determine the accurate configuration of photoresponsive oligonucleotides, much less a precise description of their photoconversion process. Here, we used an aerolysin (AeL) nanopore-based confined space for real-time determination and quantification of the absolute cis/ trans configuration of each azobenzene-modified oligonucleotide (Azo-ODN) with a single molecule resolution. The two completely separated current distributions with narrow peak widths at half height (<0.62 pA) are assigned to cis/ trans-Azo-ODN isomers, respectively. Due to the high current sensitivity, each isomer of Azo-ODN could be undoubtedly identified, which gives the accurate photostationary conversion values of 82.7% for trans-to- cis under UV irradiation and 82.5% for cis-to- trans under vis irradiation. Further real-time kinetic evaluation reveals that the photoresponsive rate constants of Azo-ODN from trans-to- cis and cis-to -trans are 0.43 and 0.20 min -1 , respectively. This study will promote the sophisticated design of photoresponsive ODN to achieve an efficient and applicable photocontrollable process.

  15. On the accurate analysis of vibroacoustics in head insert gradient coils.

    PubMed

    Winkler, Simone A; Alejski, Andrew; Wade, Trevor; McKenzie, Charles A; Rutt, Brian K

    2017-10-01

    To accurately analyze vibroacoustics in MR head gradient coils. A detailed theoretical model for gradient coil vibroacoustics, including the first description and modeling of Lorentz damping, is introduced and implemented in a multiphysics software package. Numerical finite-element method simulations were used to establish a highly accurate vibroacoustic model in head gradient coils in detail, including the newly introduced Lorentz damping effect. Vibroacoustic coupling was examined through an additional modal analysis. Thorough experimental studies were used to validate simulations. Average experimental sound pressure levels (SPLs) and accelerations over the 0-3000 Hz frequency range were 97.6 dB, 98.7 dB, and 95.4 dB, as well as 20.6 g, 8.7 g, and 15.6 g for the X-, Y-, and Z-gradients, respectively. A reasonable agreement between simulations and measurements was achieved. Vibroacoustic coupling showed a coupled resonance at 2300 Hz for the Z-gradient that is responsible for a sharp peak and the highest SPL value in the acoustic spectrum. We have developed and used more realistic multiphysics simulation methods to gain novel insights into the underlying concepts for vibroacoustics in head gradient coils, which will permit improved analyses of existing gradient coils and novel SPL reduction strategies for future gradient coil designs. Magn Reson Med 78:1635-1645, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Description and Application of a Mathematical Method for the Analysis of Harmony

    PubMed Central

    Zuo, Qiting; Jin, Runfang; Ma, Junxia

    2015-01-01

    Harmony issues are widespread in human society and nature. To analyze these issues, harmony theory has been proposed as the main theoretical approach for the study of interpersonal relationships and relationships between humans and nature. Therefore, it is of great importance to study harmony theory. After briefly introducing the basic concepts of harmony theory, this paper expounds the five elements that are essential for the quantitative description of harmony issues in water resources management: harmony participant, harmony objective, harmony regulation, harmony factor, and harmony action. A basic mathematical equation for the harmony degree, that is, a quantitative expression of harmony issues, is introduced in the paper: HD = ai − bj, where a is the uniform degree, b is the difference degree, i is the harmony coefficient, and j is the disharmony coefficient. This paper also discusses harmony assessment and harmony regulation and introduces some application examples. PMID:26167535

  17. Machine learning of accurate energy-conserving molecular force fields.

    PubMed

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E; Poltavsky, Igor; Schütt, Kristof T; Müller, Klaus-Robert

    2017-05-01

    Using conservation of energy-a fundamental property of closed classical and quantum mechanical systems-we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol -1 for energies and 1 kcal mol -1 Å̊ -1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  18. Machine learning of accurate energy-conserving molecular force fields

    PubMed Central

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  19. Terminal Area Productivity Airport Wind Analysis and Chicago O'Hare Model Description

    NASA Technical Reports Server (NTRS)

    Hemm, Robert; Shapiro, Gerald

    1998-01-01

    This paper describes two results from a continuing effort to provide accurate cost-benefit analyses of the NASA Terminal Area Productivity (TAP) program technologies. Previous tasks have developed airport capacity and delay models and completed preliminary cost benefit estimates for TAP technologies at 10 U.S. airports. This task covers two improvements to the capacity and delay models. The first improvement is the completion of a detailed model set for the Chicago O'Hare (ORD) airport. Previous analyses used a more general model to estimate the benefits for ORD. This paper contains a description of the model details with results corresponding to current conditions. The second improvement is the development of specific wind speed and direction criteria for use in the delay models to predict when the Aircraft Vortex Spacing System (AVOSS) will allow use of reduced landing separations. This paper includes a description of the criteria and an estimate of AVOSS utility for 10 airports based on analysis of 35 years of weather data.

  20. Safety First: A Quantitative Study on Teachers' Perceptions of School Climate in Rural Louisiana Schools

    ERIC Educational Resources Information Center

    Brumfield-Sanders, Tongia M.

    2017-01-01

    The purpose of this descriptive quantitative study was to explore the perceptions of school safety among middle and high school teachers in rural Louisiana. In order to achieve this objective, a specific research question was formulated pertaining to teacher perceptions. The Safe Communities Safe Schools (SCSS) survey was used to assess teachers'…

  1. Correcting false positive medium-chain acyl-CoA dehydrogenase deficiency results from newborn screening; synthesis, purification, and standardization of branched-chain C8 acylcarnitines for use in their selective and accurate absolute quantitation by UHPLC-MS/MS.

    PubMed

    Minkler, Paul E; Stoll, Maria S K; Ingalls, Stephen T; Hoppel, Charles L

    2017-04-01

    While selectively quantifying acylcarnitines in thousands of patient samples using UHPLC-MS/MS, we have occasionally observed unidentified branched-chain C8 acylcarnitines. Such observations are not possible using tandem MS methods, which generate pseudo-quantitative acylcarnitine "profiles". Since these "profiles" select for mass alone, they cannot distinguish authentic signal from isobaric and isomeric interferences. For example, some of the samples containing branched-chain C8 acylcarnitines were, in fact, expanded newborn screening false positive "profiles" for medium-chain acyl-CoA dehydrogenase deficiency (MCADD). Using our fast, highly selective, and quantitatively accurate UHPLC-MS/MS acylcarnitine determination method, we corrected the false positive tandem MS results and reported the sample results as normal for octanoylcarnitine (the marker for MCADD). From instances such as these, we decided to further investigate the presence of branched-chain C8 acylcarnitines in patient samples. To accomplish this, we synthesized and chromatographically characterized several branched-chain C8 acylcarnitines (in addition to valproylcarnitine): 2-methylheptanoylcarnitine, 6-methylheptanoylcarnitine, 2,2-dimethylhexanoylcarnitine, 3,3-dimethylhexanoylcarnitine, 3,5-dimethylhexanoylcarnitine, 2-ethylhexanoylcarnitine, and 2,4,4-trimethylpentanoylcarnitine. We then compared their behavior with branched-chain C8 acylcarnitines observed in patient samples and demonstrated our ability to chromographically resolve, and thus distinguish, octanoylcarnitine from branched-chain C8 acylcarnitines, correcting false positive MCADD results from expanded newborn screening. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.

    PubMed

    Shen, Xiaomeng; Hu, Qiang; Li, Jun; Wang, Jianmin; Qu, Jun

    2015-10-02

    Comprehensive and accurate evaluation of data quality and false-positive biomarker discovery is critical to direct the method development/optimization for quantitative proteomics, which nonetheless remains challenging largely due to the high complexity and unique features of proteomic data. Here we describe an experimental null (EN) method to address this need. Because the method experimentally measures the null distribution (either technical or biological replicates) using the same proteomic samples, the same procedures and the same batch as the case-vs-contol experiment, it correctly reflects the collective effects of technical variability (e.g., variation/bias in sample preparation, LC-MS analysis, and data processing) and project-specific features (e.g., characteristics of the proteome and biological variation) on the performances of quantitative analysis. To show a proof of concept, we employed the EN method to assess the quantitative accuracy and precision and the ability to quantify subtle ratio changes between groups using different experimental and data-processing approaches and in various cellular and tissue proteomes. It was found that choices of quantitative features, sample size, experimental design, data-processing strategies, and quality of chromatographic separation can profoundly affect quantitative precision and accuracy of label-free quantification. The EN method was also demonstrated as a practical tool to determine the optimal experimental parameters and rational ratio cutoff for reliable protein quantification in specific proteomic experiments, for example, to identify the necessary number of technical/biological replicates per group that affords sufficient power for discovery. Furthermore, we assessed the ability of EN method to estimate levels of false-positives in the discovery of altered proteins, using two concocted sample sets mimicking proteomic profiling using technical and biological replicates, respectively, where the true

  3. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    NASA Astrophysics Data System (ADS)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  4. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    PubMed

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    in the OVX group from week 3. The MVD values of the OVX group decreased significantly compared with those of the control group only at week 12 (p=0.023). A weak positive correlation of E max and a strong positive correlation of K trans with MVD were found. Compared with semi-quantitative DCE-MRI, the quantitative DCE-MRI parameter K trans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.

  5. Rotorcraft control system design for uncertain vehicle dynamics using quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1994-01-01

    Quantitative Feedback Theory describes a frequency-domain technique for the design of multi-input, multi-output control systems which must meet time or frequency domain performance criteria when specified uncertainty exists in the linear description of the vehicle dynamics. This theory is applied to the design of the longitudinal flight control system for a linear model of the BO-105C rotorcraft. Uncertainty in the vehicle model is due to the variation in the vehicle dynamics over a range of airspeeds from 0-100 kts. For purposes of exposition, the vehicle description contains no rotor or actuator dynamics. The design example indicates the manner in which significant uncertainty exists in the vehicle model. The advantage of using a sequential loop closure technique to reduce the cost of feedback is demonstrated by example.

  6. Optimization of homonuclear 2D NMR for fast quantitative analysis: application to tropine-nortropine mixtures.

    PubMed

    Giraudeau, Patrick; Guignard, Nadia; Hillion, Emilie; Baguet, Evelyne; Akoka, Serge

    2007-03-12

    Quantitative analysis by (1)H NMR is often hampered by heavily overlapping signals that may occur for complex mixtures, especially those containing similar compounds. Bidimensional homonuclear NMR spectroscopy can overcome this difficulty. A thorough review of acquisition and post-processing parameters was carried out to obtain accurate and precise, quantitative 2D J-resolved and DQF-COSY spectra in a much reduced time, thus limiting the spectrometer instabilities in the course of time. The number of t(1) increments was reduced as much as possible, and standard deviation was improved by optimization of spectral width, number of transients, phase cycling and apodization function. Localized polynomial baseline corrections were applied to the relevant chemical shift areas. Our method was applied to tropine-nortropine mixtures. Quantitative J-resolved spectra were obtained in less than 3 min and quantitative DQF-COSY spectra in 12 min, with an accuracy of 3% for J-spectroscopy and 2% for DQF-COSY, and a standard deviation smaller than 1%.

  7. Natural bacterial communities serve as quantitative geochemical biosensors.

    PubMed

    Smith, Mark B; Rocha, Andrea M; Smillie, Chris S; Olesen, Scott W; Paradis, Charles; Wu, Liyou; Campbell, James H; Fortney, Julian L; Mehlhorn, Tonia L; Lowe, Kenneth A; Earles, Jennifer E; Phillips, Jana; Techtmann, Steve M; Joyner, Dominique C; Elias, Dwayne A; Bailey, Kathryn L; Hurt, Richard A; Preheim, Sarah P; Sanders, Matthew C; Yang, Joy; Mueller, Marcella A; Brooks, Scott; Watson, David B; Zhang, Ping; He, Zhili; Dubinsky, Eric A; Adams, Paul D; Arkin, Adam P; Fields, Matthew W; Zhou, Jizhong; Alm, Eric J; Hazen, Terry C

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts. Copyright © 2015 Smith et al.

  8. Natural bacterial communities serve as quantitative geochemical biosensors

    DOE PAGES

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; ...

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination,more » even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.« less

  9. Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model.

    PubMed

    Deng, Yong; Luo, Zhaoyang; Jiang, Xu; Xie, Wenhao; Luo, Qingming

    2015-07-01

    We propose a method based on a decoupled fluorescence Monte Carlo model for constructing fluorescence Jacobians to enable accurate quantification of fluorescence targets within turbid media. The effectiveness of the proposed method is validated using two cylindrical phantoms enclosing fluorescent targets within homogeneous and heterogeneous background media. The results demonstrate that our method can recover relative concentrations of the fluorescent targets with higher accuracy than the perturbation fluorescence Monte Carlo method. This suggests that our method is suitable for quantitative fluorescence diffuse optical tomography, especially for in vivo imaging of fluorophore targets for diagnosis of different diseases and abnormalities.

  10. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    DOE PAGES

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-20

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C 6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C 8 and C 10 between small molecules. We findmore » that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C 8 and 7% for C 10. As a result, inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.« less

  11. Global Quantitative Modeling of Chromatin Factor Interactions

    PubMed Central

    Zhou, Jian; Troyanskaya, Olga G.

    2014-01-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  12. Separation and quantitation of polyethylene glycols 400 and 3350 from human urine by high-performance liquid chromatography.

    PubMed

    Ryan, C M; Yarmush, M L; Tompkins, R G

    1992-04-01

    Polyethylene glycol 3350 (PEG 3350) is useful as an orally administered probe to measure in vivo intestinal permeability to macromolecules. Previous methods to detect polyethylene glycol (PEG) excreted in the urine have been hampered by inherent inaccuracies associated with liquid-liquid extraction and turbidimetric analysis. For accurate quantitation by previous methods, radioactive labels were required. This paper describes a method to separate and quantitate PEG 3350 and PEG 400 in human urine that is independent of radioactive labels and is accurate in clinical practice. The method uses sized regenerated cellulose membranes and mixed ion-exchange resin for sample preparation and high-performance liquid chromatography with refractive index detection for analysis. The 24-h excretion for normal individuals after an oral dose of 40 g of PEG 3350 and 5 g of PEG 400 was 0.12 +/- 0.04% of the original dose of PEG 3350 and 26.3 +/- 5.1% of the original dose of PEG 400.

  13. Accurate simulations of helium pick-up experiments using a rejection-free Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Dutra, Matthew; Hinde, Robert

    2018-04-01

    In this paper, we present Monte Carlo simulations of helium droplet pick-up experiments with the intention of developing a robust and accurate theoretical approach for interpreting experimental helium droplet calorimetry data. Our approach is capable of capturing the evaporative behavior of helium droplets following dopant acquisition, allowing for a more realistic description of the pick-up process. Furthermore, we circumvent the traditional assumption of bulk helium behavior by utilizing density functional calculations of the size-dependent helium droplet chemical potential. The results of this new Monte Carlo technique are compared to commonly used Poisson pick-up statistics for simulations that reflect a broad range of experimental parameters. We conclude by offering an assessment of both of these theoretical approaches in the context of our observed results.

  14. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.

    PubMed

    Cully, Tanya R; Edwards, Joshua N; Murphy, Robyn M; Launikonis, Bradley S

    2016-06-01

    Current methods do not allow a quantitative description of Ca(2+) movements across the tubular (t-) system membrane without isolating the membranes from their native skeletal muscle fibre. Here we present a fluorescence-based method that allows determination of the t-system [Ca(2+) ] transients and derivation of t-system Ca(2+) fluxes in mechanically skinned skeletal muscle fibres. Differences in t-system Ca(2+) -handling properties between fast- and slow-twitch fibres from rat muscle are resolved for the first time using this new technique. The method can be used to study Ca(2+) handling of the t-system and allows direct comparisons of t-system Ca(2+) transients and Ca(2+) fluxes between groups of fibres and fibres from different strains of animals. The tubular (t-) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca(2+) gradient and exchanges Ca(2+) between the extracellular and intracellular environments. Little is known of the Ca(2+) -handling properties of the t-system as the small Ca(2+) fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t-system-trapped rhod-5N inside skinned fibres from rat and [Ca(2+) ]t-sys , allowing confocal measurements of Ca(2+) -dependent changes in rhod-5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca(2+) ] transients in the t-system ([Ca(2+) ]t-sys (t)). Furthermore, t-system Ca(2+) -buffering power was determined so that t-system Ca(2+) fluxes could be derived from [Ca(2+) ]t-sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca(2+) induced a robust store-operated Ca(2+) entry (SOCE) in fast- and slow-twitch fibres, reducing [Ca(2+) ]t-sys to < 0.1 mm. The rapid activation of SOCE upon Ca(2+) release was consistent with the presence of STIM1L in both fibre types. Abruptly introducing internal solutions with 1 mm Mg(2+) and [Ca(2

  15. A quantitative description of tubular system Ca2+ handling in fast‐ and slow‐twitch muscle fibres

    PubMed Central

    Cully, Tanya R.; Edwards, Joshua N.; Murphy, Robyn M.

    2016-01-01

    Key points Current methods do not allow a quantitative description of Ca2+ movements across the tubular (t‐) system membrane without isolating the membranes from their native skeletal muscle fibre.Here we present a fluorescence‐based method that allows determination of the t‐system [Ca2+] transients and derivation of t‐system Ca2+ fluxes in mechanically skinned skeletal muscle fibres. Differences in t‐system Ca2+‐handling properties between fast‐ and slow‐twitch fibres from rat muscle are resolved for the first time using this new technique.The method can be used to study Ca2+ handling of the t‐system and allows direct comparisons of t‐system Ca2+ transients and Ca2+ fluxes between groups of fibres and fibres from different strains of animals. Abstract The tubular (t‐) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca2+ gradient and exchanges Ca2+ between the extracellular and intracellular environments. Little is known of the Ca2+‐handling properties of the t‐system as the small Ca2+ fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t‐system‐trapped rhod‐5N inside skinned fibres from rat and [Ca2+]t‐sys, allowing confocal measurements of Ca2+‐dependent changes in rhod‐5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca2+] transients in the t‐system ([Ca2+]t‐sys (t)). Furthermore, t‐system Ca2+‐buffering power was determined so that t‐system Ca2+ fluxes could be derived from [Ca2+]t‐sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca2+ induced a robust store‐operated Ca2+ entry (SOCE) in fast‐ and slow‐twitch fibres, reducing [Ca2+]t‐sys to < 0.1 mm. The rapid activation of SOCE upon Ca2+ release was consistent with the presence of STIM1L in both fibre types. Abruptly introducing internal solutions with 1

  16. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    PubMed Central

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from

  17. Reproducible computational biology experiments with SED-ML--the Simulation Experiment Description Markup Language.

    PubMed

    Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas

    2011-12-15

    The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research

  18. Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1992-01-01

    The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.

  19. Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes.

    PubMed

    Spalenza, Veronica; Girolami, Flavia; Bevilacqua, Claudia; Riondato, Fulvio; Rasero, Roberto; Nebbia, Carlo; Sacchi, Paola; Martin, Patrice

    2011-09-01

    Gene expression studies in blood cells, particularly lymphocytes, are useful for monitoring potential exposure to toxicants or environmental pollutants in humans and livestock species. Quantitative PCR is the method of choice for obtaining accurate quantification of mRNA transcripts although variations in the amount of starting material, enzymatic efficiency, and the presence of inhibitors can lead to evaluation errors. As a result, normalization of data is of crucial importance. The most common approach is the use of endogenous reference genes as an internal control, whose expression should ideally not vary among individuals and under different experimental conditions. The accurate selection of reference genes is therefore an important step in interpreting quantitative PCR studies. Since no systematic investigation in bovine lymphocytes has been performed, the aim of the present study was to assess the expression stability of seven candidate reference genes in circulating lymphocytes collected from 15 dairy cows. Following the characterization by flow cytometric analysis of the cell populations obtained from blood through a density gradient procedure, three popular softwares were used to evaluate the gene expression data. The results showed that two genes are sufficient for normalization of quantitative PCR studies in cattle lymphocytes and that YWAHZ, S24 and PPIA are the most stable genes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Predicted osteotomy planes are accurate when using patient-specific instrumentation for total knee arthroplasty in cadavers: a descriptive analysis.

    PubMed

    Kievit, A J; Dobbe, J G G; Streekstra, G J; Blankevoort, L; Schafroth, M U

    2018-06-01

    Malalignment of implants is a major source of failure during total knee arthroplasty. To achieve more accurate 3D planning and execution of the osteotomy cuts during surgery, the Signature (Biomet, Warsaw) patient-specific instrumentation (PSI) was used to produce pin guides for the positioning of the osteotomy blocks by means of computer-aided manufacture based on CT scan images. The research question of this study is: what is the transfer accuracy of osteotomy planes predicted by the Signature PSI system for preoperative 3D planning and intraoperative block-guided pin placement to perform total knee arthroplasty procedures? The transfer accuracy achieved by using the Signature PSI system was evaluated by comparing the osteotomy planes predicted preoperatively with the osteotomy planes seen intraoperatively in human cadaveric legs. Outcomes were measured in terms of translational and rotational errors (varus, valgus, flexion, extension and axial rotation) for both tibia and femur osteotomies. Average translational errors between the osteotomy planes predicted using the Signature system and the actual osteotomy planes achieved was 0.8 mm (± 0.5 mm) for the tibia and 0.7 mm (± 4.0 mm) for the femur. Average rotational errors in relation to predicted and achieved osteotomy planes were 0.1° (± 1.2°) of varus and 0.4° (± 1.7°) of anterior slope (extension) for the tibia, and 2.8° (± 2.0°) of varus and 0.9° (± 2.7°) of flexion and 1.4° (± 2.2°) of external rotation for the femur. The similarity between osteotomy planes predicted using the Signature system and osteotomy planes actually achieved was excellent for the tibia although some discrepancies were seen for the femur. The use of 3D system techniques in TKA surgery can provide accurate intraoperative guidance, especially for patients with deformed bone, tailored to individual patients and ensure better placement of the implant.

  1. A Novel ImageJ Macro for Automated Cell Death Quantitation in the Retina

    PubMed Central

    Maidana, Daniel E.; Tsoka, Pavlina; Tian, Bo; Dib, Bernard; Matsumoto, Hidetaka; Kataoka, Keiko; Lin, Haijiang; Miller, Joan W.; Vavvas, Demetrios G.

    2015-01-01

    Purpose TUNEL assay is widely used to evaluate cell death. Quantification of TUNEL-positive (TUNEL+) cells in tissue sections is usually performed manually, ideally by two masked observers. This process is time consuming, prone to measurement errors, and not entirely reproducible. In this paper, we describe an automated quantification approach to address these difficulties. Methods We developed an ImageJ macro to quantitate cell death by TUNEL assay in retinal cross-section images. The script was coded using IJ1 programming language. To validate this tool, we selected a dataset of TUNEL assay digital images, calculated layer area and cell count manually (done by two observers), and compared measurements between observers and macro results. Results The automated macro segmented outer nuclear layer (ONL) and inner nuclear layer (INL) successfully. Automated TUNEL+ cell counts were in-between counts of inexperienced and experienced observers. The intraobserver coefficient of variation (COV) ranged from 13.09% to 25.20%. The COV between both observers was 51.11 ± 25.83% for the ONL and 56.07 ± 24.03% for the INL. Comparing observers' results with macro results, COV was 23.37 ± 15.97% for the ONL and 23.44 ± 18.56% for the INL. Conclusions We developed and validated an ImageJ macro that can be used as an accurate and precise quantitative tool for retina researchers to achieve repeatable, unbiased, fast, and accurate cell death quantitation. We believe that this standardized measurement tool could be advantageous to compare results across different research groups, as it is freely available as open source. PMID:26469755

  2. Quantitative Decision Support Requires Quantitative User Guidance

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2009-12-01

    Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output

  3. Hardware description languages

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.

    1994-01-01

    Hardware description languages are special purpose programming languages. They are primarily used to specify the behavior of digital systems and are rapidly replacing traditional digital system design techniques. This is because they allow the designer to concentrate on how the system should operate rather than on implementation details. Hardware description languages allow a digital system to be described with a wide range of abstraction, and they support top down design techniques. A key feature of any hardware description language environment is its ability to simulate the modeled system. The two most important hardware description languages are Verilog and VHDL. Verilog has been the dominant language for the design of application specific integrated circuits (ASIC's). However, VHDL is rapidly gaining in popularity.

  4. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  5. Analysis of ribosomal RNA stability in dead cells of wine yeast by quantitative PCR.

    PubMed

    Sunyer-Figueres, Merce; Wang, Chunxiao; Mas, Albert

    2018-04-02

    During wine production, some yeasts enter a Viable But Not Culturable (VBNC) state, which may influence the quality and stability of the final wine through remnant metabolic activity or by resuscitation. Culture-independent techniques are used for obtaining an accurate estimation of the number of live cells, and quantitative PCR could be the most accurate technique. As a marker of cell viability, rRNA was evaluated by analyzing its stability in dead cells. The species-specific stability of rRNA was tested in Saccharomyces cerevisiae, as well as in three species of non-Saccharomyces yeast (Hanseniaspora uvarum, Torulaspora delbrueckii and Starmerella bacillaris). High temperature and antimicrobial dimethyl dicarbonate (DMDC) treatments were efficient in lysing the yeast cells. rRNA gene and rRNA (as cDNA) were analyzed over 48 h after cell lysis by quantitative PCR. The results confirmed the stability of rRNA for 48 h after the cell lysis treatments. To sum up, rRNA may not be a good marker of cell viability in the wine yeasts that were tested. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Affinity Proteomics for Fast, Sensitive, Quantitative Analysis of Proteins in Plasma.

    PubMed

    O'Grady, John P; Meyer, Kevin W; Poe, Derrick N

    2017-01-01

    The improving efficacy of many biological therapeutics and identification of low-level biomarkers are driving the analytical proteomics community to deal with extremely high levels of sample complexity relative to their analytes. Many protein quantitation and biomarker validation procedures utilize an immunoaffinity enrichment step to purify the sample and maximize the sensitivity of the corresponding liquid chromatography tandem mass spectrometry measurements. In order to generate surrogate peptides with better mass spectrometric properties, protein enrichment is followed by a proteolytic cleavage step. This is often a time-consuming multistep process. Presented here is a workflow which enables rapid protein enrichment and proteolytic cleavage to be performed in a single, easy-to-use reactor. Using this strategy Klotho, a low-abundance biomarker found in plasma, can be accurately quantitated using a protocol that takes under 5 h from start to finish.

  7. Histological Image Processing Features Induce a Quantitative Characterization of Chronic Tumor Hypoxia

    PubMed Central

    Grabocka, Elda; Bar-Sagi, Dafna; Mishra, Bud

    2016-01-01

    Hypoxia in tumors signifies resistance to therapy. Despite a wealth of tumor histology data, including anti-pimonidazole staining, no current methods use these data to induce a quantitative characterization of chronic tumor hypoxia in time and space. We use image-processing algorithms to develop a set of candidate image features that can formulate just such a quantitative description of xenographed colorectal chronic tumor hypoxia. Two features in particular give low-variance measures of chronic hypoxia near a vessel: intensity sampling that extends radially away from approximated blood vessel centroids, and multithresholding to segment tumor tissue into normal, hypoxic, and necrotic regions. From these features we derive a spatiotemporal logical expression whose truth value depends on its predicate clauses that are grounded in this histological evidence. As an alternative to the spatiotemporal logical formulation, we also propose a way to formulate a linear regression function that uses all of the image features to learn what chronic hypoxia looks like, and then gives a quantitative similarity score once it is trained on a set of histology images. PMID:27093539

  8. Selecting the most appropriate inferential statistical test for your quantitative research study.

    PubMed

    Bettany-Saltikov, Josette; Whittaker, Victoria Jane

    2014-06-01

    To discuss the issues and processes relating to the selection of the most appropriate statistical test. A review of the basic research concepts together with a number of clinical scenarios is used to illustrate this. Quantitative nursing research generally features the use of empirical data which necessitates the selection of both descriptive and statistical tests. Different types of research questions can be answered by different types of research designs, which in turn need to be matched to a specific statistical test(s). Discursive paper. This paper discusses the issues relating to the selection of the most appropriate statistical test and makes some recommendations as to how these might be dealt with. When conducting empirical quantitative studies, a number of key issues need to be considered. Considerations for selecting the most appropriate statistical tests are discussed and flow charts provided to facilitate this process. When nursing clinicians and researchers conduct quantitative research studies, it is crucial that the most appropriate statistical test is selected to enable valid conclusions to be made. © 2013 John Wiley & Sons Ltd.

  9. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    PubMed

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  10. The Development, Description and Appraisal of an Emergent Multimethod Research Design to Study Workforce Changes in Integrated Care Interventions.

    PubMed

    Busetto, Loraine; Luijkx, Katrien; Calciolari, Stefano; González-Ortiz, Laura G; Vrijhoef, Hubertus J M

    2017-03-08

    In this paper, we provide a detailed and explicit description of the processes and decisions underlying and shaping the emergent multimethod research design of our study on workforce changes in integrated chronic care. The study was originally planned as mixed method research consisting of a preliminary literature review and quantitative check of these findings via a Delphi panel. However, when the findings of the literature review were not appropriate for quantitative confirmation, we chose to continue our qualitative exploration of the topic via qualitative questionnaires and secondary analysis of two best practice case reports. The resulting research design is schematically described as an emergent and interactive multimethod design with multiphase combination timing. In doing so, we provide other researchers with a set of theory- and experience-based options to develop their own multimethod research and provide an example for more detailed and structured reporting of emergent designs. We argue that the terminology developed for the description of mixed methods designs should also be used for multimethod designs such as the one presented here.

  11. The Development, Description and Appraisal of an Emergent Multimethod Research Design to Study Workforce Changes in Integrated Care Interventions

    PubMed Central

    Luijkx, Katrien; Calciolari, Stefano; González-Ortiz, Laura G.

    2017-01-01

    Introduction: In this paper, we provide a detailed and explicit description of the processes and decisions underlying and shaping the emergent multimethod research design of our study on workforce changes in integrated chronic care. Theory and methods: The study was originally planned as mixed method research consisting of a preliminary literature review and quantitative check of these findings via a Delphi panel. However, when the findings of the literature review were not appropriate for quantitative confirmation, we chose to continue our qualitative exploration of the topic via qualitative questionnaires and secondary analysis of two best practice case reports. Results: The resulting research design is schematically described as an emergent and interactive multimethod design with multiphase combination timing. In doing so, we provide other researchers with a set of theory- and experience-based options to develop their own multimethod research and provide an example for more detailed and structured reporting of emergent designs. Conclusion and discussion: We argue that the terminology developed for the description of mixed methods designs should also be used for multimethod designs such as the one presented here. PMID:29042843

  12. Quantitative determination and validation of octreotide acetate using 1 H-NMR spectroscopy with internal standard method.

    PubMed

    Yu, Chen; Zhang, Qian; Xu, Peng-Yao; Bai, Yin; Shen, Wen-Bin; Di, Bin; Su, Meng-Xiang

    2018-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a well-established technique in quantitative analysis. We presented a validated 1 H-qNMR method for assay of octreotide acetate, a kind of cyclic octopeptide. Deuterium oxide was used to remove the undesired exchangeable peaks, which was referred to as proton exchange, in order to make the quantitative signals isolated in the crowded spectrum of the peptide and ensure precise quantitative analysis. Gemcitabine hydrochloride was chosen as the suitable internal standard. Experimental conditions, including relaxation delay time, the numbers of scans, and pulse angle, were optimized first. Then method validation was carried out in terms of selectivity, stability, linearity, precision, and robustness. The assay result was compared with that by means of high performance liquid chromatography, which is provided by Chinese Pharmacopoeia. The statistical F test, Student's t test, and nonparametric test at 95% confidence level indicate that there was no significant difference between these two methods. qNMR is a simple and accurate quantitative tool with no need for specific corresponding reference standards. It has the potential of the quantitative analysis of other peptide drugs and standardization of the corresponding reference standards. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Sexing chick mRNA: A protocol based on quantitative real-time polymerase chain reaction.

    PubMed

    Wan, Z; Lu, Y; Rui, L; Yu, X; Li, Z

    2017-03-01

    The accurate identification of sex in birds is important for research on avian sex determination and differentiation. Polymerase chain reaction (PCR)-based methods have been widely applied for the molecular sexing of birds. However, these methods have used genomic DNA. Here, we present the first sexing protocol for chick mRNA based on real-time quantitative PCR. We demonstrate that this method can accurately determine sex using mRNA from chick gonads and other tissues, such as heart, liver, spleen, lung, and muscle. The strategy of this protocol also may be suitable for other species in which sex is determined by the inheritance of sex chromosomes (ZZ male and ZW female). © 2016 Poultry Science Association Inc.

  14. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range

    NASA Astrophysics Data System (ADS)

    Gloor, Guy J.; Jackson, George; Blas, Felipe J.; del Río, Elvira Martín; de Miguel, Enrique

    2004-12-01

    formation, and network structures) are examined separately. The surface tension of the associating fluid is found to be bounded between the nonassociating and fully associated limits (both of which correspond to equivalent nonassociating systems). The temperature dependence of the surface tension is found to depend strongly on the balance between the strength and range of the association, and on the particular association scheme. In the case of a system with a strong but very localized association interaction, the surface tension exhibits the characteristic "s shaped" behavior with temperature observed in fluids such as water and alkanols. The various types of curves observed in real substances can be reproduced by the theory. It is very gratifying that a DFT based on SAFT-VR free energy can provide an accurate quantitative description of the surface tension of both the model and experimental systems.

  15. Quantitative determination of dimethylaminoethanol in cosmetic formulations by nuclear magnetic resonance spectroscopy.

    PubMed

    Batista, Ivani Aparecida Soares de Andrade; Gonçalves, Maria Inês de Almeida; Singh, Anil Kumar; Hackmann, Erika Rosa Maria Kedor; Santoro, Maria Inês Rocha Miritello

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopic method was validated for the quantitative determination of dimethylaminoethanol (DMAE) in cosmetic formulations. The linearity in the range from 0.5000 to 1.5000 g (DMAE salt/mass maleic acid) presents a correlation coefficient > 0.99 for all DMAE salts. The repeatability (intraday), expressed as relative standard deviation, ranged from 1.08 to 1.44% for samples and 1.31 to 1.88% for raw materials. The detection limit and quantitation limit were 0.0017 and 0.0051 g for DMAE, 0.0018 and 0.0054 g for DMAE bitartrate, and 0.0023 and 0.0071 g for DMAE acetamidobenzoate, respectively. The proposed method is simple, precise, and accurate and can be used in the quality control of raw materials and cosmetic gels containing these compounds as active substances.

  16. Quantitative operando visualization of the energy band depth profile in solar cells.

    PubMed

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-13

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  17. Quantitative biology: where modern biology meets physical sciences.

    PubMed

    Shekhar, Shashank; Zhu, Lian; Mazutis, Linas; Sgro, Allyson E; Fai, Thomas G; Podolski, Marija

    2014-11-05

    Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines. © 2014 Shekhar, Zhu, Mazutis, Sgro, Fai, and Podolski. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method.

    PubMed

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13 C NMR spectrometry (irm- 13 C NMR) provides the complete 13 C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13 C natural abundance values (50‰), irm- 13 C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13 C NMR. Until now, the conventional strategy to determine the position-specific abundance x i relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13 C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13 C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1 H NMR pulse sequence (named DWET) with a 13 C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T 1 , which forms a serious limitation for irm- 13 C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T 1 variations. Their performance is evaluated on the determination of the 13 C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm- 13 C NMR since it is now possible to perform

  19. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    NASA Astrophysics Data System (ADS)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high

  20. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    NASA Astrophysics Data System (ADS)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  1. First-year success in a nursing baccalaureate plan of study: A descriptive research study.

    PubMed

    Ott, Vivian; Thomas, Jessica A; Fernando, Harshini

    2018-08-01

    Predicting students' aptitude for post-secondary success remains a widely studied topic. This descriptive study explored demographic variables contributing to success in quantitative courses required by the nursing degree plan. Identification of an "at risk" student profile may inform interventions with which to support attainment of an academic degree. The purpose of this study was to examine the associations between demographic characteristics and successful completion of baccalaureate nursing courses thought to enhance quantitative reasoning skills: first-year math, first-year chemistry, and second-year pathopharmacology nursing. This retrospective analysis accessed 4521 academic records of students who took these three courses at a United States university sometime between Fall 2008 and Fall 2015. De-identified student data included course grades, gender, full-time study, income, marital status, first generation, secondary school (also known as high school) location, dual credit, and high school and university grade point averages. Descriptive statistical analysis was conducted to describe the important features of the data. Of the 4521 records, 2556 undergraduates (57%) passed the courses in which they were enrolled. Among successful students, females outnumbered males (66%), ages ranged from 20 to 24 years, 86% were classified as low income, 54% fit the designation of first generation, and 12% earned dual credit (university credit during secondary school). Our data demonstrate a positive relationship between dual credit and success, with the strongest correlation (0.62) noted for students in pathopharmacology. In the baccalaureate-nursing plan of study, courses thought to enhance students' quantitative reasoning skills remain difficult for some to successfully complete. We conclude that the more successful students tend to be older, have a higher income, and a higher high school grade point average, while those less successful are directly out of high

  2. Obtaining Accurate Probabilities Using Classifier Calibration

    ERIC Educational Resources Information Center

    Pakdaman Naeini, Mahdi

    2016-01-01

    Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…

  3. Bodies obliged and unbound: differentiated response tendencies for injunctive and descriptive social norms.

    PubMed

    Jacobson, Ryan P; Mortensen, Chad R; Cialdini, Robert B

    2011-03-01

    The authors suggest that injunctive and descriptive social norms engage different psychological response tendencies when made selectively salient. On the basis of suggestions derived from the focus theory of normative conduct and from consideration of the norms' functions in social life, the authors hypothesized that the 2 norms would be cognitively associated with different goals, would lead individuals to focus on different aspects of self, and would stimulate different levels of conflict over conformity decisions. Additionally, a unique role for effortful self-regulation was hypothesized for each type of norm-used as a means to resist conformity to descriptive norms but as a means to facilitate conformity for injunctive norms. Four experiments supported these hypotheses. Experiment 1 demonstrated differences in the norms' associations to the goals of making accurate/efficient decisions and gaining/maintaining social approval. Experiment 2 provided evidence that injunctive norms lead to a more interpersonally oriented form of self-awareness and to a greater feeling of conflict about conformity decisions than descriptive norms. In the final 2 experiments, conducted in the lab (Experiment 3) and in a naturalistic environment (Experiment 4), self-regulatory depletion decreased conformity to an injunctive norm (Experiments 3 and 4) and increased conformity to a descriptive norm (Experiment 4)-even though the norms advocated identical behaviors. By illustrating differentiated response tendencies for each type of social norm, this research provides new and converging support for the focus theory of normative conduct. (c) 2011 APA, all rights reserved

  4. Quantitative analyses for elucidating mechanisms of cell fate commitment in the mouse blastocyst

    NASA Astrophysics Data System (ADS)

    Saiz, Néstor; Kang, Minjung; Puliafito, Alberto; Schrode, Nadine; Xenopoulos, Panagiotis; Lou, Xinghua; Di Talia, Stefano; Hadjantonakis, Anna-Katerina

    2015-03-01

    In recent years we have witnessed a shift from qualitative image analysis towards higher resolution, quantitative analyses of imaging data in developmental biology. This shift has been fueled by technological advances in both imaging and analysis software. We have recently developed a tool for accurate, semi-automated nuclear segmentation of imaging data from early mouse embryos and embryonic stem cells. We have applied this software to the study of the first lineage decisions that take place during mouse development and established analysis pipelines for both static and time-lapse imaging experiments. In this paper we summarize the conclusions from these studies to illustrate how quantitative, single-cell level analysis of imaging data can unveil biological processes that cannot be revealed by traditional qualitative studies.

  5. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  6. Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster

    DOE PAGES

    Sonnett, Matthew; Yeung, Eyan; Wuhr, Martin

    2018-03-09

    We present that quantitative analysis of proteomes across multiple time points, organelles, and perturbations is essential for understanding both fundamental biology and disease states. The development of isobaric tags (e.g. TMT) have enabled the simultaneous measurement of peptide abundances across several different conditions. These multiplexed approaches are promising in principle because of advantages in throughput and measurement quality. However, in practice existing multiplexing approaches suffer from key limitations. In its simple implementation (TMT-MS2), measurements are distorted by chemical noise leading to poor measurement accuracy. The current state-of-the-art (TMT-MS3) addresses this, but requires specialized quadrupole-iontrap-Orbitrap instrumentation. The complement reporter ion approachmore » (TMTc) produces high accuracy measurements and is compatible with many more instruments, like quadrupole-Orbitraps. However, the required deconvolution of the TMTc cluster leads to poor measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2-isolation step into the deconvolution algorithm. The resulting measurements are comparable in precision to TMT-MS3/MS2. The improved duty cycle, and lower filtering requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2. At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k proteins in a 5-plex sample. At the same time the median coefficient of variation improves from 13% to 4%. Furthermore, TMTc+ advances quantitative proteomics by enabling accurate, sensitive, and precise multiplexed experiments on more commonly used instruments.« less

  7. Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnett, Matthew; Yeung, Eyan; Wuhr, Martin

    We present that quantitative analysis of proteomes across multiple time points, organelles, and perturbations is essential for understanding both fundamental biology and disease states. The development of isobaric tags (e.g. TMT) have enabled the simultaneous measurement of peptide abundances across several different conditions. These multiplexed approaches are promising in principle because of advantages in throughput and measurement quality. However, in practice existing multiplexing approaches suffer from key limitations. In its simple implementation (TMT-MS2), measurements are distorted by chemical noise leading to poor measurement accuracy. The current state-of-the-art (TMT-MS3) addresses this, but requires specialized quadrupole-iontrap-Orbitrap instrumentation. The complement reporter ion approachmore » (TMTc) produces high accuracy measurements and is compatible with many more instruments, like quadrupole-Orbitraps. However, the required deconvolution of the TMTc cluster leads to poor measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2-isolation step into the deconvolution algorithm. The resulting measurements are comparable in precision to TMT-MS3/MS2. The improved duty cycle, and lower filtering requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2. At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k proteins in a 5-plex sample. At the same time the median coefficient of variation improves from 13% to 4%. Furthermore, TMTc+ advances quantitative proteomics by enabling accurate, sensitive, and precise multiplexed experiments on more commonly used instruments.« less

  8. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    DOE PAGES

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; ...

    2017-10-17

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less

  9. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less

  10. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2018-01-01

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details of electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF&RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.

  11. Quantitation of hepatitis B virus DNA in plasma using a sensitive cost-effective "in-house" real-time PCR assay.

    PubMed

    Daniel, Hubert Darius J; Fletcher, John G; Chandy, George M; Abraham, Priya

    2009-01-01

    Sensitive nucleic acid testing for the detection and accurate quantitation of hepatitis B virus (HBV) is necessary to reduce transmission through blood and blood products and for monitoring patients on antiviral therapy. The aim of this study is to standardize an "in-house" real-time HBV polymerase chain reaction (PCR) for accurate quantitation and screening of HBV. The "in-house" real-time assay was compared with a commercial assay using 30 chronically infected individuals and 70 blood donors who are negative for hepatitis B surface antigen, hepatitis C virus (HCV) antibody and human immunodeficiency virus (HIV) antibody. Further, 30 HBV-genotyped samples were tested to evaluate the "in-house" assay's capacity to detect genotypes prevalent among individuals attending this tertiary care hospital. The lower limit of detection of this "in-house" HBV real-time PCR was assessed against the WHO international standard and found to be 50 IU/mL. The interassay and intra-assay coefficient of variation (CV) of this "in-house" assay ranged from 1.4% to 9.4% and 0.0% to 2.3%, respectively. Virus loads as estimated with this "in-house" HBV real-time assay correlated well with the commercial artus HBV RG PCR assay ( r = 0.95, P < 0.0001). This assay can be used for the detection and accurate quantitation of HBV viral loads in plasma samples. This assay can be employed for the screening of blood donations and can potentially be adapted to a multiplex format for simultaneous detection of HBV, HIV and HCV to reduce the cost of testing in blood banks.

  12. Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L'vov, Victor A.; Taras Shevchenko National University, Kyiv 01601; Kosogor, Anna, E-mail: annakosogor@gmail.com

    2016-01-07

    A simple thermodynamic theory is proposed for the quantitative description of giant magnetocaloric effect observed in metamagnetic shape memory alloys. Both the conventional magnetocaloric effect at the Curie temperature and the inverse magnetocaloric effect at the transition from the ferromagnetic austenite to a weakly magnetic martensite are considered. These effects are evaluated from the Landau-type free energy expression involving exchange interactions in a system of a two magnetic sublattices. The findings of the thermodynamic theory agree with first-principles calculations and experimental results from Ni-Mn-In-Co and Ni-Mn-Sn alloys, respectively.

  13. TOPICA: an accurate and efficient numerical tool for analysis and design of ICRF antennas

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.; Vecchi, G.; Kyrytsya, V.

    2006-07-01

    The demand for a predictive tool to help in designing ion-cyclotron radio frequency (ICRF) antenna systems for today's fusion experiments has driven the development of codes such as ICANT, RANT3D, and the early development of TOPICA (TOrino Polytechnic Ion Cyclotron Antenna) code. This paper describes the substantive evolution of TOPICA formulation and implementation that presently allow it to handle the actual geometry of ICRF antennas (with curved, solid straps, a general-shape housing, Faraday screen, etc) as well as an accurate plasma description, accounting for density and temperature profiles and finite Larmor radius effects. The antenna is assumed to be housed in a recess-like enclosure. Both goals have been attained by formally separating the problem into two parts: the vacuum region around the antenna and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow formulating of a set of two coupled integral equations for the unknown equivalent (current) sources; then the equations are reduced to a linear system by a method of moments solution scheme employing 2D finite elements defined over a 3D non-planar surface triangular-cell mesh. In the vacuum region calculations are done in the spatial (configuration) domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus permitting a description of the plasma by a surface impedance matrix. Owing to this approach, any plasma model can be used in principle, and at present the FELICE code has been employed. The natural outcomes of TOPICA are the induced currents on the conductors (antenna, housing, etc) and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. The theoretical model and its TOPICA

  14. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    PubMed

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  15. Quantitative perceptual differences among over-the-counter vaginal products using a standardized methodology: implications for microbicide development☆

    PubMed Central

    Mahan, Ellen D.; Morrow, Kathleen M.; Hayes, John E.

    2015-01-01

    Background Increasing prevalence of HIV infection among women worldwide has motivated the development of female-initiated prevention methods, including gel-based microbicides. User acceptability is vital for microbicide success; however, varying cultural vaginal practices indicate multiple formulations must be developed to appeal to different populations. Perceptual attributes of microbicides have been identified as primary drivers of acceptability; however, previous studies do not allow for direct comparison of these qualities between multiple formulations. Study Design Six vaginal products were analyzed ex vivo using descriptive analysis. Perceptual attributes of samples were identified by trained participants (n=10) and rated quantitatively using scales based on a panel-developed lexicon. Data were analyzed using two-way ANOVAs for each attribute; product differences were assessed via Tukey’s honestly significant difference test. Results Significant differences were found between products for multiple attributes. Patterns were also seen for attributes across intended product usage (i.e., contraceptive, moisturizer or lubricant). For example, Options© Gynol II® (Caldwell Consumer Health, LLC) was significantly stickier and grainier than other products. Conclusions Descriptive analysis, a quantitative approach that is based on consensus lexicon usage among participants, successfully quantified perceptual differences among vaginal products. Since perceptual attributes of products can be directly compared quantitatively, this study represents a novel approach that could be used to inform rational design of microbicides. PMID:21757061

  16. Quantitative perceptual differences among over-the-counter vaginal products using a standardized methodology: implications for microbicide development.

    PubMed

    Mahan, Ellen D; Morrow, Kathleen M; Hayes, John E

    2011-08-01

    Increasing prevalence of HIV infection among women worldwide has motivated the development of female-initiated prevention methods, including gel-based microbicides. User acceptability is vital for microbicide success; however, varying cultural vaginal practices indicate multiple formulations must be developed to appeal to different populations. Perceptual attributes of microbicides have been identified as primary drivers of acceptability; however, previous studies do not allow for direct comparison of these qualities between multiple formulations. Six vaginal products were analyzed ex vivo using descriptive analysis. Perceptual attributes of samples were identified by trained participants (n=10) and rated quantitatively using scales based on a panel-developed lexicon. Data were analyzed using two-way ANOVAs for each attribute; product differences were assessed via Tukey's honestly significant difference test. Significant differences were found between products for multiple attributes. Patterns were also seen for attributes across intended product usage (i.e., contraceptive, moisturizer or lubricant). For example, Options© Gynol II® (Caldwell Consumer Health, LLC) was significantly stickier and grainier than other products. Descriptive analysis, a quantitative approach that is based on consensus lexicon usage among participants, successfully quantified perceptual differences among vaginal products. Since perceptual attributes of products can be directly compared quantitatively, this study represents a novel approach that could be used to inform rational design of microbicides. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. QUANTITATIVE TEMPLATE FOR SUBTYPING PRIMARY PROGRESSIVE APHASIA

    PubMed Central

    Mesulam, Marsel; Wieneke, Christina; Rogalski, Emily; Cobia, Derin; Thompson, Cynthia; Weintraub, Sandra

    2009-01-01

    Objective To provide a quantitative algorithm for classifying primary progressive aphasia (PPA) into agrammatic (PPA-G), semantic (PPA-S) and logopenic (PPA-L) variants, each of which is known to have a different probability of association with Alzheimer’s disease (AD) versus frontotemporal lobar degeneration (FTLD). Design Prospectively and consecutively enrolled 16 PPA patients tested with neuropsychological instruments and magnetic resonance imaging (MRI). Setting University medical center. Participants PPA patients recruited nationally in the USA as part of a longitudinal study. Results A two-dimensional template, reflecting performance on tests of syntax (Northwestern Anagram Test) and lexical semantics (Peabody Picture Vocabulary Test), classified all 16 patients in concordance with a clinical diagnosis that had been made prior to the administration of the quantitative tests. All three subtypes had distinctly asymmetrical atrophy of the left perisylvian language network. Each subtype also had distinctive peak atrophy sites. Only PPA-G had peak atrophy in the IFG (Broca’s area), only PPA-S had peak atrophy in the anterior temporal lobe, and only PPA-L had peak atrophy in area 37. Conclusions Once an accurate root diagnosis of PPA is made, subtyping can be quantitatively guided using a two-dimensional template based on orthogonal tasks of grammatical competence and word comprehension. Although the choice of tasks and precise cut-off levels may evolve in time, this set of 16 patients demonstrates the feasibility of using a simple algorithm for clinico-anatomical classification in PPA. Prospective studies will show whether this suptyping can improve the clinical prediction of underlying neuropathology. PMID:20008661

  18. A quantitative characterization of the yeast heterotrimeric G protein cycle

    PubMed Central

    Yi, Tau-Mu; Kitano, Hiroaki; Simon, Melvin I.

    2003-01-01

    The yeast mating response is one of the best understood heterotrimeric G protein signaling pathways. Yet, most descriptions of this system have been qualitative. We have quantitatively characterized the heterotrimeric G protein cycle in yeast based on direct in vivo measurements. We used fluorescence resonance energy transfer to monitor the association state of cyan fluorescent protein (CFP)-Gα and Gβγ-yellow fluorescent protein (YFP), and we found that receptor-mediated G protein activation produced a loss of fluorescence resonance energy transfer. Quantitative time course and dose–response data were obtained for both wild-type and mutant cells possessing an altered pheromone response. These results paint a quantitative portrait of how regulators such as Sst2p and the C-terminal tail of α-factor receptor modulate the kinetics and sensitivity of G protein signaling. We have explored critical features of the dynamics including the rapid rise and subsequent decline of active G proteins during the early response, and the relationship between the G protein activation dose–response curve and the downstream dose–response curves for cell-cycle arrest and transcriptional induction. Fitting the data to a mathematical model produced estimates of the in vivo rates of heterotrimeric G protein activation and deactivation in yeast. PMID:12960402

  19. Accurate formula for dissipative interaction in frequency modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazuhiro; Matsushige, Kazumi; Yamada, Hirofumi

    2014-12-08

    Much interest has recently focused on the viscosity of nano-confined liquids. Frequency modulation atomic force microscopy (FM-AFM) is a powerful technique that can detect variations in the conservative and dissipative forces between a nanometer-scale tip and a sample surface. We now present an accurate formula to convert the dissipation power of the cantilever measured during the experiment to damping of the tip-sample system. We demonstrated the conversion of the dissipation power versus tip-sample separation curve measured using a colloidal probe cantilever on a mica surface in water to the damping curve, which showed a good agreement with the theoretical curve.more » Moreover, we obtained the damping curve from the dissipation power curve measured on the hydration layers on the mica surface using a nanometer-scale tip, demonstrating that the formula allows us to quantitatively measure the viscosity of a nano-confined liquid using FM-AFM.« less

  20. High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics

    PubMed Central

    2015-01-01

    Multiplex isobaric tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ)) are a valuable tool for high-throughput mass spectrometry based quantitative proteomics. We have developed our own multiplex isobaric tags, DiLeu, that feature quantitative performance on par with commercial offerings but can be readily synthesized in-house as a cost-effective alternative. In this work, we achieve a 3-fold increase in the multiplexing capacity of the DiLeu reagent without increasing structural complexity by exploiting mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter group. The inclusion of eight new reporter isotopologues that differ in mass from the existing four reporters by intervals of 6 mDa yields a 12-plex isobaric set that preserves the synthetic simplicity and quantitative performance of the original implementation. We show that the new reporter variants can be baseline-resolved in high-resolution higher-energy C-trap dissociation (HCD) spectra, and we demonstrate accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces cerevisiae lysate digest via high-resolution nano liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer. PMID:25405479

  1. Multi-laboratory comparison of quantitative PCR assays for detection and quantification of Fusarium virguliforme from soybean roots and soil

    USDA-ARS?s Scientific Manuscript database

    Accurate identification and quantification of Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, within root tissue and soil are important tasks. Several quantitative PCR (qPCR) assays have been developed but there are no reports comparing their use in sensitive and specific...

  2. Quantitative genetics

    USDA-ARS?s Scientific Manuscript database

    The majority of economically important traits targeted for cotton improvement are quantitatively inherited. In this chapter, the current state of cotton quantitative genetics is described and separated into four components. These components include: 1) traditional quantitative inheritance analysis, ...

  3. The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: clinical applications in the cardiovascular diseases.

    PubMed

    Gianazza, Erica; Tremoli, Elena; Banfi, Cristina

    2014-12-01

    Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.

  4. A settling curve modeling method for quantitative description of the dispersion stability of carbon nanotubes in aquatic environments.

    PubMed

    Zhou, Lixia; Zhu, Dunxue; Zhang, Shujuan; Pan, Bingcai

    2015-03-01

    Understanding the aggregation and deposition behavior of carbon nanotubes (CNTs) is of great significance in terms of their fate and transport in the environment. Attachment efficiency is a widely used index for well-dispersed CNT solutions. However, in natural waters, CNTs are usually heterogeneous in particle size. The attachment efficiency method is not applicable to such systems. Describing the dispersion stability of CNTs in natural aquatic systems is still a challenge. In this work, a settling curve modeling (SCM) method was developed for the description of the aggregation and deposition behavior of CNTs in aqueous solutions. The effects of water chemistry (natural organic matter, pH, and ionic strength) on the aggregation and deposition behavior of pristine and surface-functionalized multi-walled carbon nanotubes (MWCNTs) were systematically studied to evaluate the reliability of the SCM method. The results showed that, as compared to particle size and optical density, the centrifugal sedimentation rate constant (ks) from the settling curve profile is a practical, useful and reliable index for the description of heterogeneous CNT suspensions. The SCM method was successfully applied to MWCNT in three natural waters. The constituents in water, especially organic matter, determine the dispersion stability of MWCNTs in natural water bodies. Copyright © 2015. Published by Elsevier B.V.

  5. Radiomics biomarkers for accurate tumor progression prediction of oropharyngeal cancer

    NASA Astrophysics Data System (ADS)

    Hadjiiski, Lubomir; Chan, Heang-Ping; Cha, Kenny H.; Srinivasan, Ashok; Wei, Jun; Zhou, Chuan; Prince, Mark; Papagerakis, Silvana

    2017-03-01

    Accurate tumor progression prediction for oropharyngeal cancers is crucial for identifying patients who would best be treated with optimized treatment and therefore minimize the risk of under- or over-treatment. An objective decision support system that can merge the available radiomics, histopathologic and molecular biomarkers in a predictive model based on statistical outcomes of previous cases and machine learning may assist clinicians in making more accurate assessment of oropharyngeal tumor progression. In this study, we evaluated the feasibility of developing individual and combined predictive models based on quantitative image analysis from radiomics, histopathology and molecular biomarkers for oropharyngeal tumor progression prediction. With IRB approval, 31, 84, and 127 patients with head and neck CT (CT-HN), tumor tissue microarrays (TMAs) and molecular biomarker expressions, respectively, were collected. For 8 of the patients all 3 types of biomarkers were available and they were sequestered in a test set. The CT-HN lesions were automatically segmented using our level sets based method. Morphological, texture and molecular based features were extracted from CT-HN and TMA images, and selected features were merged by a neural network. The classification accuracy was quantified using the area under the ROC curve (AUC). Test AUCs of 0.87, 0.74, and 0.71 were obtained with the individual predictive models based on radiomics, histopathologic, and molecular features, respectively. Combining the radiomics and molecular models increased the test AUC to 0.90. Combining all 3 models increased the test AUC further to 0.94. This preliminary study demonstrates that the individual domains of biomarkers are useful and the integrated multi-domain approach is most promising for tumor progression prediction.

  6. Preservice Elementary Teachers Increase Descriptive Science Vocabulary by Making Descriptive Adjective Object Boxes

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Crisafulli, Sherry; DeCare, Heather; DeLeo, Tonya; Eastman, Keri; Farrell, Liz; Geblein, Jennifer; Gioia, Chelsea; Joyce, Ashley; Killian, Kali; Knoop, Kelly; LaRocca, Alison; Meyer, Katie; Miller, Julianne; Roth, Vicki; Throo, Julie; Van Arsdale, Jim; Walker, Malissa

    2007-01-01

    Descriptive vocabulary is needed for communication and mental processing of science observations. Elementary preservice teachers in a science methods class at a mid-sized public college in central New York State increased their descriptive vocabularies through a course assignment of making a descriptive adjective object box. This teaching material…

  7. A mathematical function for the description of nutrient-response curve

    PubMed Central

    Ahmadi, Hamed

    2017-01-01

    Several mathematical equations have been proposed to modeling nutrient-response curve for animal and human justified on the goodness of fit and/or on the biological mechanism. In this paper, a functional form of a generalized quantitative model based on Rayleigh distribution principle for description of nutrient-response phenomena is derived. The three parameters governing the curve a) has biological interpretation, b) may be used to calculate reliable estimates of nutrient response relationships, and c) provide the basis for deriving relationships between nutrient and physiological responses. The new function was successfully applied to fit the nutritional data obtained from 6 experiments including a wide range of nutrients and responses. An evaluation and comparison were also done based simulated data sets to check the suitability of new model and four-parameter logistic model for describing nutrient responses. This study indicates the usefulness and wide applicability of the new introduced, simple and flexible model when applied as a quantitative approach to characterizing nutrient-response curve. This new mathematical way to describe nutritional-response data, with some useful biological interpretations, has potential to be used as an alternative approach in modeling nutritional responses curve to estimate nutrient efficiency and requirements. PMID:29161271

  8. Statistical genetics and evolution of quantitative traits

    NASA Astrophysics Data System (ADS)

    Neher, Richard A.; Shraiman, Boris I.

    2011-10-01

    The distribution and heritability of many traits depends on numerous loci in the genome. In general, the astronomical number of possible genotypes makes the system with large numbers of loci difficult to describe. Multilocus evolution, however, greatly simplifies in the limit of weak selection and frequent recombination. In this limit, populations rapidly reach quasilinkage equilibrium (QLE) in which the dynamics of the full genotype distribution, including correlations between alleles at different loci, can be parametrized by the allele frequencies. This review provides a simplified exposition of the concept and mathematics of QLE which is central to the statistical description of genotypes in sexual populations. Key results of quantitative genetics such as the generalized Fisher’s “fundamental theorem,” along with Wright’s adaptive landscape, are shown to emerge within QLE from the dynamics of the genotype distribution. This is followed by a discussion under what circumstances QLE is applicable, and what the breakdown of QLE implies for the population structure and the dynamics of selection. Understanding the fundamental aspects of multilocus evolution obtained through simplified models may be helpful in providing conceptual and computational tools to address the challenges arising in the studies of complex quantitative phenotypes of practical interest.

  9. A Deeper Look at How Teachers Say What They Say: A Quantitative Modality Analysis of Teacher-to-Teacher Talk

    ERIC Educational Resources Information Center

    Kosko, Karl W.; Herbst, Patricio

    2012-01-01

    Analysis of teacher-to-teacher talk provides researchers with useful information regarding the teaching profession and teachers' perspectives. This article provides a description of a method, with accompanying example, examining teacher-to-teacher talk by incorporating semantic modality and examining trends of its usage in a quantitative manner.…

  10. Exploring a new quantitative image marker to assess benefit of chemotherapy to ovarian cancer patients

    NASA Astrophysics Data System (ADS)

    Mirniaharikandehei, Seyedehnafiseh; Patil, Omkar; Aghaei, Faranak; Wang, Yunzhi; Zheng, Bin

    2017-03-01

    Accurately assessing the potential benefit of chemotherapy to cancer patients is an important prerequisite to developing precision medicine in cancer treatment. The previous study has shown that total psoas area (TPA) measured on preoperative cross-section CT image might be a good image marker to predict long-term outcome of pancreatic cancer patients after surgery. However, accurate and automated segmentation of TPA from the CT image is difficult due to the fuzzy boundary or connection of TPA to other muscle areas. In this study, we developed a new interactive computer-aided detection (ICAD) scheme aiming to segment TPA from the abdominal CT images more accurately and assess the feasibility of using this new quantitative image marker to predict the benefit of ovarian cancer patients receiving Bevacizumab-based chemotherapy. ICAD scheme was applied to identify a CT image slice of interest, which is located at the level of L3 (vertebral spines). The cross-sections of the right and left TPA are segmented using a set of adaptively adjusted boundary conditions. TPA is then quantitatively measured. In addition, recent studies have investigated that muscle radiation attenuation which reflects fat deposition in the tissue might be a good image feature for predicting the survival rate of cancer patients. The scheme and TPA measurement task were applied to a large national clinical trial database involving 1,247 ovarian cancer patients. By comparing with manual segmentation results, we found that ICAD scheme could yield higher accuracy and consistency for this task. Using a new ICAD scheme can provide clinical researchers a useful tool to more efficiently and accurately extract TPA as well as muscle radiation attenuation as new image makers, and allow them to investigate the discriminatory power of it to predict progression-free survival and/or overall survival of the cancer patients before and after taking chemotherapy.

  11. BEYOND ELLIPSE(S): ACCURATELY MODELING THE ISOPHOTAL STRUCTURE OF GALAXIES WITH ISOFIT AND CMODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciambur, B. C., E-mail: bciambur@swin.edu.au

    2015-09-10

    This work introduces a new fitting formalism for isophotes that enables more accurate modeling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter that defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar coordinate to the “eccentric anomaly.” This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial,more » cross-like features in residual images are completely removed. The formalism has been implemented into the Image Reduction and Analysis Facility tasks Ellipse and Bmodel to create the new tasks “Isofit,” and “Cmodel.” The new tools are demonstrated here with application to five galaxies, chosen to be representative case-studies for several areas where this technique makes it possible to gain new scientific insight. Specifically: properly quantifying boxy/disky isophotes via the fourth harmonic order in edge-on galaxies, quantifying X-shaped/peanut bulges, higher-order Fourier moments for modeling bars in disks, and complex isophote shapes. Higher order (n > 4) harmonics now become meaningful and may correlate with structural properties, as boxyness/diskyness is known to do. This work also illustrates how the accurate construction, and subtraction, of a model from a galaxy image facilitates the identification and recovery of over-lapping sources such as globular clusters and the optical counterparts of X-ray sources.« less

  12. Comparative analysis of quantitative methodologies for Vibrionaceae biofilms.

    PubMed

    Chavez-Dozal, Alba A; Nourabadi, Neda; Erken, Martina; McDougald, Diane; Nishiguchi, Michele K

    2016-11-01

    Multiple symbiotic and free-living Vibrio spp. grow as a form of microbial community known as a biofilm. In the laboratory, methods to quantify Vibrio biofilm mass include crystal violet staining, direct colony-forming unit (CFU) counting, dry biofilm cell mass measurement, and observation of development of wrinkled colonies. Another approach for bacterial biofilms also involves the use of tetrazolium (XTT) assays (used widely in studies of fungi) that are an appropriate measure of metabolic activity and vitality of cells within the biofilm matrix. This study systematically tested five techniques, among which the XTT assay and wrinkled colony measurement provided the most reproducible, accurate, and efficient methods for the quantitative estimation of Vibrionaceae biofilms.

  13. Demonstration of a viable quantitative theory for interplanetary type II radio bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, J. M., E-mail: jschmidt@physics.usyd.edu.au; Cairns, Iver H.

    Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME andmore » plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 10{sup 6} and ≈ 10{sup 3}, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth’s magnetosphere and drive space weather events.« less

  14. Demonstration of a viable quantitative theory for interplanetary type II radio bursts

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.

    2016-03-01

    Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME and plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 106 and ≈ 103, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth's magnetosphere and drive space weather events.

  15. Effects of grain species and cultivar, thermal processing, and enzymatic hydrolysis on gluten quantitation.

    PubMed

    Pahlavan, Autusa; Sharma, Girdhari M; Pereira, Marion; Williams, Kristina M

    2016-10-01

    Gluten from wheat, rye, and barley can trigger IgE-mediated allergy or Celiac disease in sensitive individuals. Gluten-free labeled foods are available as a safe alternative. Immunoassays such as the enzyme-linked immunosorbent assay (ELISA) are commonly used to quantify gluten in foods. However, various non-assay related factors can affect gluten quantitation. The effect of gluten-containing grain cultivars, thermal processing, and enzymatic hydrolysis on gluten quantitation by various ELISA kits was evaluated. The ELISA kits exhibited variations in gluten quantitation depending on the gluten-containing grain and their cultivars. Acceptable gluten recoveries were obtained in 200mg/kg wheat, rye, and barley-spiked corn flour thermally processed at various conditions. However, depending on the enzyme, gluten grain source, and ELISA kit used, measured gluten content was significantly reduced in corn flour spiked with 200mg/kg hydrolyzed wheat, rye, and barley flour. Thus, the gluten grain source and processing conditions should be considered for accurate gluten analysis. Published by Elsevier Ltd.

  16. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Cores: Towards a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.

  17. Quantitative and Comprehensive Decomposition of the Ion Atmosphere around Nucleic Acids

    PubMed Central

    Bai, Yu; Greenfeld, Max; Travers, Kevin; Chu, Vincent B.; Lipfert, Jan; Doniach, Sebastian; Herschlag, Daniel

    2011-01-01

    The ion atmosphere around nucleic acids critically affects biological and physical processes such as chromosome packing, RNA folding, and molecular recognition. However, the dynamic nature of the ion atmosphere renders it difficult to characterize. The basic thermodynamic description of this atmosphere, a full accounting of the type and number of associated ions, has remained elusive. Here we provide the first complete accounting of the ion atmosphere, using buffer equilibration and atomic emission spectroscopy (BE-AES) to accurately quantitate the cation association and anion depletion. We have examined the influence of ion size and charge on ion occupancy around simple, well-defined DNA molecules. The relative affinity of monovalent and divalent cations correlates inversely with their size. Divalent cations associate preferentially over monovalent cations; e.g., with Na+ in four-fold excess of Mg2+ (20 vs. 5 mM), the ion atmosphere nevertheless has three-fold more Mg2+ than Na+. Further, the dicationic polyamine putrescine2+ does not compete effectively for association relative to divalent metal ions, presumably because of its lower charge density. These and other BE-AES results can be used to evaluate and guide the improvement of electrostatic treatments. As a first step, we compare the BE-AES results to predictions from the widely-used nonlinear Poisson Boltzmann (NLPB) theory and assess the applicability and precision of this theory. In the future, BE-AES in conjunction with improved theoretical models, can be applied to complex binding and folding equilibria of nucleic acids and their complexes, to parse the electrostatic contribution from the overall thermodynamics of important biological processes. PMID:17990882

  18. Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis.

    PubMed

    Däumer, Martin; Kaiser, Rolf; Klein, Rolf; Lengauer, Thomas; Thiele, Bernhard; Thielen, Alexander

    2011-05-13

    Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4) variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS) detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage. Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno[coreceptor]. Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno[coreceptor] (10%), and defining a minority cutoff of 5%, the results were concordant in all but one isolate. The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.

  19. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women.

    PubMed

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C; Joseph, Gabby B; Yap, Samuel P; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M

    2012-07-01

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 ± 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. Fat infiltration of muscle commonly occurs in many metabolic and neuromuscular diseases. • Image-based semi-quantitative classifications for assessing fat infiltration are not well validated. • Quantitative MRI techniques provide an accurate assessment of muscle fat.

  20. Quantitative phylogenetic assessment of microbial communities in diverse environments.

    PubMed

    von Mering, C; Hugenholtz, P; Raes, J; Tringe, S G; Doerks, T; Jensen, L J; Ward, N; Bork, P

    2007-02-23

    The taxonomic composition of environmental communities is an important indicator of their ecology and function. We used a set of protein-coding marker genes, extracted from large-scale environmental shotgun sequencing data, to provide a more direct, quantitative, and accurate picture of community composition than that provided by traditional ribosomal RNA-based approaches depending on the polymerase chain reaction. Mapping marker genes from four diverse environmental data sets onto a reference species phylogeny shows that certain communities evolve faster than others. The method also enables determination of preferred habitats for entire microbial clades and provides evidence that such habitat preferences are often remarkably stable over time.

  1. Quantitative operando visualization of the energy band depth profile in solar cells

    PubMed Central

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  2. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.

    PubMed

    Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2017-05-02

    As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.

  3. Quantitative tomographic measurements of opaque multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less

  4. Glycan reductive isotope labeling for quantitative glycomics.

    PubMed

    Xia, Baoyun; Feasley, Christa L; Sachdev, Goverdhan P; Smith, David F; Cummings, Richard D

    2009-04-15

    Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [(12)C(6)]aniline and [(13)C(6)]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.

  5. Quantitative confirmation of diffusion-limited oxidation theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, K.T.; Clough, R.L.

    1990-01-01

    Diffusion-limited (heterogeneous) oxidation effects are often important for studies of polymer degradation. Such effects are common in polymers subjected to ionizing radiation at relatively high dose rate. To better understand the underlying oxidation processes and to aid in the planning of accelerated aging studies, it would be desirable to be able to monitor and quantitatively understand these effects. In this paper, we briefly review a theoretical diffusion approach which derives model profiles for oxygen surrounded sheets of material by combining oxygen permeation rates with kinetically based oxygen consumption expressions. The theory leads to a simple governing expression involving the oxygenmore » consumption and permeation rates together with two model parameters {alpha} and {beta}. To test the theory, gamma-initiated oxidation of a sheet of commercially formulated EPDM rubber was performed under conditions which led to diffusion-limited oxidation. Profile shapes from the theoretical treatments are shown to accurately fit experimentally derived oxidation profiles. In addition, direct measurements on the same EPDM material of the oxygen consumption and permeation rates, together with values of {alpha} and {beta} derived from the fitting procedure, allow us to quantitatively confirm for the first time the governing theoretical relationship. 17 refs., 3 figs.« less

  6. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  7. Brain electromagnetic activity and lightning: potentially congruent scale-invariant quantitative properties

    PubMed Central

    Persinger, Michael A.

    2012-01-01

    The space-time characteristics of the axonal action potential are remarkably similar to the scaled equivalents of lightning. The energy and current densities from these transients within their respective volumes or cross-sectional areas are the same order of magnitude. Length–velocity ratios and temporal durations are nearly identical. There are similar chemical consequences such as the production of nitric oxide. Careful, quantitative examination of the characteristics of lightning may reveal analogous features of the action potential that could lead to a more accurate understanding of these powerful correlates of neurocognitive processes. PMID:22615688

  8. Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands.

    PubMed

    He, Wei; Kularatne, Sumith A; Kalli, Kimberly R; Prendergast, Franklyn G; Amato, Robert J; Klee, George G; Hartmann, Lynn C; Low, Philip S

    2008-10-15

    Quantitation of circulating tumor cells (CTCs) can provide information on the stage of a malignancy, onset of disease progression and response to therapy. In an effort to more accurately quantitate CTCs, we have synthesized fluorescent conjugates of 2 high-affinity tumor-specific ligands (folate-AlexaFluor 488 and DUPA-FITC) that bind tumor cells >20-fold more efficiently than fluorescent antibodies. Here we determine whether these tumor-specific dyes can be exploited for quantitation of CTCs in peripheral blood samples from cancer patients. A CTC-enriched fraction was isolated from the peripheral blood of ovarian and prostate cancer patients by an optimized density gradient centrifugation protocol and labeled with the aforementioned fluorescent ligands. CTCs were then quantitated by flow cytometry. CTCs were detected in 18 of 20 ovarian cancer patients (mean 222 CTCs/ml; median 15 CTCs/ml; maximum 3,118 CTCs/ml), whereas CTC numbers in 16 gender-matched normal volunteers were negligible (mean 0.4 CTCs/ml; median 0.3 CTCs/ml; maximum 1.5 CTCs/ml; p < 0.001, chi(2)). CTCs were also detected in 10 of 13 prostate cancer patients (mean 26 CTCs/ml, median 14 CTCs/ml, maximum 94 CTCs/ml) but not in 18 gender-matched healthy donors (mean 0.8 CTCs/ml, median 1, maximum 3 CTC/ml; p < 0.0026, chi(2)). Tumor-specific fluorescent antibodies were much less efficient in quantitating CTCs because of their lower CTC labeling efficiency. Use of tumor-specific fluorescent ligands to label CTCs in peripheral blood can provide a simple, accurate and sensitive method for determining the number of cancer cells circulating in the bloodstream.

  9. Feasibility study for image guided kidney surgery: assessment of required intraoperative surface for accurate image to physical space registrations

    NASA Astrophysics Data System (ADS)

    Benincasa, Anne B.; Clements, Logan W.; Herrell, S. Duke; Chang, Sam S.; Cookson, Michael S.; Galloway, Robert L.

    2006-03-01

    Currently, the removal of kidney tumor masses uses only direct or laparoscopic visualizations, resulting in prolonged procedure and recovery times and reduced clear margin. Applying current image guided surgery (IGS) techniques, as those used in liver cases, to kidney resections (nephrectomies) presents a number of complications. Most notably is the limited field of view of the intraoperative kidney surface, which constrains the ability to obtain a surface delineation that is geometrically descriptive enough to drive a surface-based registration. Two different phantom orientations were used to model the laparoscopic and traditional partial nephrectomy views. For the laparoscopic view, fiducial point sets were compiled from a CT image volume using anatomical features such as the renal artery and vein. For the traditional view, markers attached to the phantom set-up were used for fiducials and targets. The fiducial points were used to perform a point-based registration, which then served as a guide for the surface-based registration. Laser range scanner (LRS) obtained surfaces were registered to each phantom surface using a rigid iterative closest point algorithm. Subsets of each phantom's LRS surface were used in a robustness test to determine the predictability of their registrations to transform the entire surface. Results from both orientations suggest that about half of the kidney's surface needs to be obtained intraoperatively for accurate registrations between the image surface and the LRS surface, suggesting the obtained kidney surfaces were geometrically descriptive enough to perform accurate registrations. This preliminary work paves the way for further development of kidney IGS systems.

  10. Tuition Reductions: A Quantitative Analysis of the Prevalence, Circumstances and Outcomes of an Emerging Pricing Strategy in Higher Education

    ERIC Educational Resources Information Center

    Kottich, Sarah

    2017-01-01

    This study analyzed tuition reductions in the private not-for-profit sector of higher education, utilizing a quantitative descriptive and correlational approach with secondary data analysis. It resulted in a listing of 45 institutions with verified tuition reductions from 2007 to 2017, more than previously thought. It found that the…

  11. Quantitation of the phosphoproteome using the library-assisted extracted ion chromatogram (LAXIC) strategy.

    PubMed

    Arrington, Justine V; Xue, Liang; Tao, W Andy

    2014-01-01

    Phosphorylation is a key posttranslational modification that regulates many signaling pathways, but quantifying changes in phosphorylation between samples can be challenging due to its low stoichiometry within cells. We have introduced a mass spectrometry-based label-free quantitation strategy termed LAXIC for the analysis of the phosphoproteome. This method uses a spiked-in synthetic peptide library designed to elute across the entire chromatogram for local normalization of phosphopeptides within complex samples. Normalization of phosphopeptides by library peptides that co-elute within a small time frame accounts for fluctuating ion suppression effects, allowing more accurate quantitation even when LC-MS performance varies. Here we explain the premise of LAXIC, the design of a suitable peptide library, and how the LAXIC algorithm can be implemented with software developed in-house.

  12. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.

    PubMed

    Zhao, Wei; Vernekohl, Don; Han, Fei; Han, Bin; Peng, Hao; Yang, Yong; Xing, Lei; Min, James K

    2018-04-21

    Many clinical applications depend critically on the accurate differentiation and classification of different types of materials in patient anatomy. This work introduces a unified framework for accurate nonlinear material decomposition and applies it, for the first time, in the concept of triple-energy CT (TECT) for enhanced material differentiation and classification as well as dual-energy CT (DECT). We express polychromatic projection into a linear combination of line integrals of material-selective images. The material decomposition is then turned into a problem of minimizing the least-squares difference between measured and estimated CT projections. The optimization problem is solved iteratively by updating the line integrals. The proposed technique is evaluated by using several numerical phantom measurements under different scanning protocols. The triple-energy data acquisition is implemented at the scales of micro-CT and clinical CT imaging with commercial "TwinBeam" dual-source DECT configuration and a fast kV switching DECT configuration. Material decomposition and quantitative comparison with a photon counting detector and with the presence of a bow-tie filter are also performed. The proposed method provides quantitative material- and energy-selective images examining realistic configurations for both DECT and TECT measurements. Compared to the polychromatic kV CT images, virtual monochromatic images show superior image quality. For the mouse phantom, quantitative measurements show that the differences between gadodiamide and iodine concentrations obtained using TECT and idealized photon counting CT (PCCT) are smaller than 8 and 1 mg/mL, respectively. TECT outperforms DECT for multicontrast CT imaging and is robust with respect to spectrum estimation. For the thorax phantom, the differences between the concentrations of the contrast map and the corresponding true reference values are smaller than 7 mg/mL for all of the realistic configurations. A unified

  13. Theoretical and Empirical Descriptions of Thermospheric Density

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.; Qian, L.

    2004-12-01

    The longest-term and most accurate overall description the density of the upper thermosphere is provided by analysis of change in the ephemeris of Earth-orbiting satellites. Empirical models of the thermosphere developed in part from these measurements can do a reasonable job of describing thermospheric properties on a climatological basis, but the promise of first-principles global general circulation models of the coupled thermosphere/ionosphere system is that a true high-resolution, predictive capability may ultimately be developed for thermospheric density. However, several issues are encountered when attempting to tune such models so that they accurately represent absolute densities as a function of altitude, and their changes on solar-rotational and solar-cycle time scales. Among these are the crucial ones of getting the heating rates (from both solar and auroral sources) right, getting the cooling rates right, and establishing the appropriate boundary conditions. However, there are several ancillary issues as well, such as the problem of registering a pressure-coordinate model onto an altitude scale, and dealing with possible departures from hydrostatic equilibrium in empirical models. Thus, tuning a theoretical model to match empirical climatology may be difficult, even in the absence of high temporal or spatial variation of the energy sources. We will discuss some of the challenges involved, and show comparisons of simulations using the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) to empirical model estimates of neutral thermosphere density and temperature. We will also show some recent simulations using measured solar irradiance from the TIMED/SEE instrument as input to the TIE-GCM.

  14. Ecological Change, Sliding Baselines and the Importance of Historical Data: Lessons from Combing Observational and Quantitative Data on a Temperate Reef Over 70 Years

    PubMed Central

    Gatti, Giulia; Bianchi, Carlo Nike; Parravicini, Valeriano; Rovere, Alessio; Peirano, Andrea; Montefalcone, Monica; Massa, Francesco; Morri, Carla

    2015-01-01

    Understanding the effects of environmental change on ecosystems requires the identification of baselines that may act as reference conditions. However, the continuous change of these references challenges our ability to define the true natural status of ecosystems. The so-called sliding baseline syndrome can be overcome through the analysis of quantitative time series, which are, however, extremely rare. Here we show how combining historical quantitative data with descriptive ‘naturalistic’ information arranged in a chronological chain allows highlighting long-term trends and can be used to inform present conservation schemes. We analysed the long-term change of a coralligenous reef, a marine habitat endemic to the Mediterranean Sea. The coralligenous assemblages of Mesco Reef (Ligurian Sea, NW Mediterranean) have been studied, although discontinuously, since 1937 thus making available both detailed descriptive information and scanty quantitative data: while the former was useful to understand the natural history of the ecosystem, the analysis of the latter was of paramount importance to provide a formal measure of change over time. Epibenthic assemblages remained comparatively stable until the 1990s, when species replacement, invasion by alien algae, and biotic homogenisation occurred within few years, leading to a new and completely different ecosystem state. The shift experienced by the coralligenous assemblages of Mesco Reef was probably induced by a combination of seawater warming and local human pressures, the latter mainly resulting in increased water turbidity; in turn, cumulative stress may have favoured the establishment of alien species. This study showed that the combined analysis of quantitative and descriptive historical data represent a precious knowledge to understand ecosystem trends over time and provide help to identify baselines for ecological management. PMID:25714413

  15. Quantitative 1H NMR: Development and Potential of an Analytical Method – an Update

    PubMed Central

    Pauli, Guido F.; Gödecke, Tanja; Jaki, Birgit U.; Lankin, David C.

    2012-01-01

    Covering the literature from mid-2004 until the end of 2011, this review continues a previous literature overview on quantitative 1H NMR (qHNMR) methodology and its applications in the analysis of natural products (NPs). Among the foremost advantages of qHNMR is its accurate function with external calibration, the lack of any requirement for identical reference materials, a high precision and accuracy when properly validated, and an ability to quantitate multiple analytes simultaneously. As a result of the inclusion of over 170 new references, this updated review summarizes a wealth of detailed experiential evidence and newly developed methodology that supports qHNMR as a valuable and unbiased analytical tool for natural product and other areas of research. PMID:22482996

  16. Density-Functional Theory description of transport in the single-electron transistor

    NASA Astrophysics Data System (ADS)

    Zawadzki, Krissia; Oliveira, Luiz N.

    The Kondo effect governs the low-temperature transport properties of the single electron transistor (SET), a quantum dot bridging two electron gases. In the weak coupling limit, for odd dot occupation, the gate-potential profile of the conductance approaches a step, known as the Kondo plateau. The plateau and other SET properties being well understood on the basis of the Anderson model, more realistic (i. e., DFT) descriptions of the device are now desired. This poses a challenge, since the SET is strongly correlated. DFT computations that reproduce the conductance plateau have been reported, e. g., by, which rely on the exact functional provided by the Bethe-Ansatz solution for the Anderson model. Here, sticking to DFT tradition, we employ a functional derived from a homogeneous system: the parametrization of the Lieb-Wu solution for the Hubbard model due to. Our computations reproduce the plateau and yield other results in accurate agreement with the exact diagonalization of the Anderson Hamiltonian. The prospects for extensions to realistic descriptions of two-dimensional nanostructured devices will be discussed. Luiz N. Oliveira thanks CNPq (312658/2013-3) and Krissia Zawadzki thanks CNPq (140703/2014-4) for financial support.

  17. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.

    PubMed

    Liu, Kehui; Zhang, Jiyang; Fu, Bin; Xie, Hongwei; Wang, Yingchun; Qian, Xiaohong

    2014-07-01

    Precise protein quantification is essential in comparative proteomics. Currently, quantification bias is inevitable when using proteotypic peptide-based quantitative proteomics strategy for the differences in peptides measurability. To improve quantification accuracy, we proposed an "empirical rule for linearly correlated peptide selection (ERLPS)" in quantitative proteomics in our previous work. However, a systematic evaluation on general application of ERLPS in quantitative proteomics under diverse experimental conditions needs to be conducted. In this study, the practice workflow of ERLPS was explicitly illustrated; different experimental variables, such as, different MS systems, sample complexities, sample preparations, elution gradients, matrix effects, loading amounts, and other factors were comprehensively investigated to evaluate the applicability, reproducibility, and transferability of ERPLS. The results demonstrated that ERLPS was highly reproducible and transferable within appropriate loading amounts and linearly correlated response peptides should be selected for each specific experiment. ERLPS was used to proteome samples from yeast to mouse and human, and in quantitative methods from label-free to O18/O16-labeled and SILAC analysis, and enabled accurate measurements for all proteotypic peptide-based quantitative proteomics over a large dynamic range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterization of 3-Dimensional PET Systems for Accurate Quantification of Myocardial Blood Flow.

    PubMed

    Renaud, Jennifer M; Yip, Kathy; Guimond, Jean; Trottier, Mikaël; Pibarot, Philippe; Turcotte, Eric; Maguire, Conor; Lalonde, Lucille; Gulenchyn, Karen; Farncombe, Troy; Wisenberg, Gerald; Moody, Jonathan; Lee, Benjamin; Port, Steven C; Turkington, Timothy G; Beanlands, Rob S; deKemp, Robert A

    2017-01-01

    Three-dimensional (3D) mode imaging is the current standard for PET/CT systems. Dynamic imaging for quantification of myocardial blood flow with short-lived tracers, such as 82 Rb-chloride, requires accuracy to be maintained over a wide range of isotope activities and scanner counting rates. We proposed new performance standard measurements to characterize the dynamic range of PET systems for accurate quantitative imaging. 82 Rb or 13 N-ammonia (1,100-3,000 MBq) was injected into the heart wall insert of an anthropomorphic torso phantom. A decaying isotope scan was obtained over 5 half-lives on 9 different 3D PET/CT systems and 1 3D/2-dimensional PET-only system. Dynamic images (28 × 15 s) were reconstructed using iterative algorithms with all corrections enabled. Dynamic range was defined as the maximum activity in the myocardial wall with less than 10% bias, from which corresponding dead-time, counting rates, and/or injected activity limits were established for each scanner. Scatter correction residual bias was estimated as the maximum cavity blood-to-myocardium activity ratio. Image quality was assessed via the coefficient of variation measuring nonuniformity of the left ventricular myocardium activity distribution. Maximum recommended injected activity/body weight, peak dead-time correction factor, counting rates, and residual scatter bias for accurate cardiac myocardial blood flow imaging were 3-14 MBq/kg, 1.5-4.0, 22-64 Mcps singles and 4-14 Mcps prompt coincidence counting rates, and 2%-10% on the investigated scanners. Nonuniformity of the myocardial activity distribution varied from 3% to 16%. Accurate dynamic imaging is possible on the 10 3D PET systems if the maximum injected MBq/kg values are respected to limit peak dead-time losses during the bolus first-pass transit. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  19. Multimedia content description framework

    NASA Technical Reports Server (NTRS)

    Bergman, Lawrence David (Inventor); Mohan, Rakesh (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor); Kim, Michelle Yoonk Yung (Inventor)

    2003-01-01

    A framework is provided for describing multimedia content and a system in which a plurality of multimedia storage devices employing the content description methods of the present invention can interoperate. In accordance with one form of the present invention, the content description framework is a description scheme (DS) for describing streams or aggregations of multimedia objects, which may comprise audio, images, video, text, time series, and various other modalities. This description scheme can accommodate an essentially limitless number of descriptors in terms of features, semantics or metadata, and facilitate content-based search, index, and retrieval, among other capabilities, for both streamed or aggregated multimedia objects.

  20. Guidelines for reporting quantitative mass spectrometry based experiments in proteomics.

    PubMed

    Martínez-Bartolomé, Salvador; Deutsch, Eric W; Binz, Pierre-Alain; Jones, Andrew R; Eisenacher, Martin; Mayer, Gerhard; Campos, Alex; Canals, Francesc; Bech-Serra, Joan-Josep; Carrascal, Montserrat; Gay, Marina; Paradela, Alberto; Navajas, Rosana; Marcilla, Miguel; Hernáez, María Luisa; Gutiérrez-Blázquez, María Dolores; Velarde, Luis Felipe Clemente; Aloria, Kerman; Beaskoetxea, Jabier; Medina-Aunon, J Alberto; Albar, Juan P

    2013-12-16

    Mass spectrometry is already a well-established protein identification tool and recent methodological and technological developments have also made possible the extraction of quantitative data of protein abundance in large-scale studies. Several strategies for absolute and relative quantitative proteomics and the statistical assessment of quantifications are possible, each having specific measurements and therefore, different data analysis workflows. The guidelines for Mass Spectrometry Quantification allow the description of a wide range of quantitative approaches, including labeled and label-free techniques and also targeted approaches such as Selected Reaction Monitoring (SRM). The HUPO Proteomics Standards Initiative (HUPO-PSI) has invested considerable efforts to improve the standardization of proteomics data handling, representation and sharing through the development of data standards, reporting guidelines, controlled vocabularies and tooling. In this manuscript, we describe a key output from the HUPO-PSI-namely the MIAPE Quant guidelines, which have developed in parallel with the corresponding data exchange format mzQuantML [1]. The MIAPE Quant guidelines describe the HUPO-PSI proposal concerning the minimum information to be reported when a quantitative data set, derived from mass spectrometry (MS), is submitted to a database or as supplementary information to a journal. The guidelines have been developed with input from a broad spectrum of stakeholders in the proteomics field to represent a true consensus view of the most important data types and metadata, required for a quantitative experiment to be analyzed critically or a data analysis pipeline to be reproduced. It is anticipated that they will influence or be directly adopted as part of journal guidelines for publication and by public proteomics databases and thus may have an impact on proteomics laboratories across the world. This article is part of a Special Issue entitled: Standardization and

  1. Streamlined system for purifying and quantifying a diverse library of compounds and the effect of compound concentration measurements on the accurate interpretation of biological assay results.

    PubMed

    Popa-Burke, Ioana G; Issakova, Olga; Arroway, James D; Bernasconi, Paul; Chen, Min; Coudurier, Louis; Galasinski, Scott; Jadhav, Ajit P; Janzen, William P; Lagasca, Dennis; Liu, Darren; Lewis, Roderic S; Mohney, Robert P; Sepetov, Nikolai; Sparkman, Darren A; Hodge, C Nicholas

    2004-12-15

    As part of an overall systems approach to generating highly accurate screening data across large numbers of compounds and biological targets, we have developed and implemented streamlined methods for purifying and quantitating compounds at various stages of the screening process, coupled with automated "traditional" storage methods (DMSO, -20 degrees C). Specifically, all of the compounds in our druglike library are purified by LC/MS/UV and are then controlled for identity and concentration in their respective DMSO stock solutions by chemiluminescent nitrogen detection (CLND)/evaporative light scattering detection (ELSD) and MS/UV. In addition, the compound-buffer solutions used in the various biological assays are quantitated by LC/UV/CLND to determine the concentration of compound actually present during screening. Our results show that LC/UV/CLND/ELSD/MS is a widely applicable method that can be used to purify, quantitate, and identify most small organic molecules from compound libraries. The LC/UV/CLND technique is a simple and sensitive method that can be easily and cost-effectively employed to rapidly determine the concentrations of even small amounts of any N-containing compound in aqueous solution. We present data to establish error limits for concentration determination that are well within the overall variability of the screening process. This study demonstrates that there is a significant difference between the predicted amount of soluble compound from stock DMSO solutions following dilution into assay buffer and the actual amount present in assay buffer solutions, even at the low concentrations employed for the assays. We also demonstrate that knowledge of the concentrations of compounds to which the biological target is exposed is critical for accurate potency determinations. Accurate potency values are in turn particularly important for drug discovery, for understanding structure-activity relationships, and for building useful empirical models of

  2. Multicenter Evaluation of a Commercial Cytomegalovirus Quantitative Standard: Effects of Commutability on Interlaboratory Concordance

    PubMed Central

    Shahbazian, M. D.; Valsamakis, A.; Boonyaratanakornkit, J.; Cook, L.; Pang, X. L.; Preiksaitis, J. K.; Schönbrunner, E. R.; Caliendo, A. M.

    2013-01-01

    Commutability of quantitative reference materials has proven important for reliable and accurate results in clinical chemistry. As international reference standards and commercially produced calibration material have become available to address the variability of viral load assays, the degree to which such materials are commutable and the effect of commutability on assay concordance have been questioned. To investigate this, 60 archived clinical plasma samples, which previously tested positive for cytomegalovirus (CMV), were retested by five different laboratories, each using a different quantitative CMV PCR assay. Results from each laboratory were calibrated both with lab-specific quantitative CMV standards (“lab standards”) and with common, commercially available standards (“CMV panel”). Pairwise analyses among laboratories were performed using mean results from each clinical sample, calibrated first with lab standards and then with the CMV panel. Commutability of the CMV panel was determined based on difference plots for each laboratory pair showing plotted values of standards that were within the 95% prediction intervals for the clinical specimens. Commutability was demonstrated for 6 of 10 laboratory pairs using the CMV panel. In half of these pairs, use of the CMV panel improved quantitative agreement compared to use of lab standards. Two of four laboratory pairs for which the CMV panel was noncommutable showed reduced quantitative agreement when that panel was used as a common calibrator. Commutability of calibration material varies across different quantitative PCR methods. Use of a common, commutable quantitative standard can improve agreement across different assays; use of a noncommutable calibrator can reduce agreement among laboratories. PMID:24025907

  3. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods

    PubMed Central

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-01-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  4. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods.

    PubMed

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-04-07

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  5. Diagnosis of breast cancer biopsies using quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Kandel, Mikhail E.; Han, Kevin; Luo, Zelun; Macias, Virgilia; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2015-03-01

    The standard practice in the histopathology of breast cancers is to examine a hematoxylin and eosin (H&E) stained tissue biopsy under a microscope. The pathologist looks at certain morphological features, visible under the stain, to diagnose whether a tumor is benign or malignant. This determination is made based on qualitative inspection making it subject to investigator bias. Furthermore, since this method requires a microscopic examination by the pathologist it suffers from low throughput. A quantitative, label-free and high throughput method for detection of these morphological features from images of tissue biopsies is, hence, highly desirable as it would assist the pathologist in making a quicker and more accurate diagnosis of cancers. We present here preliminary results showing the potential of using quantitative phase imaging for breast cancer screening and help with differential diagnosis. We generated optical path length maps of unstained breast tissue biopsies using Spatial Light Interference Microscopy (SLIM). As a first step towards diagnosis based on quantitative phase imaging, we carried out a qualitative evaluation of the imaging resolution and contrast of our label-free phase images. These images were shown to two pathologists who marked the tumors present in tissue as either benign or malignant. This diagnosis was then compared against the diagnosis of the two pathologists on H&E stained tissue images and the number of agreements were counted. In our experiment, the agreement between SLIM and H&E based diagnosis was measured to be 88%. Our preliminary results demonstrate the potential and promise of SLIM for a push in the future towards quantitative, label-free and high throughput diagnosis.

  6. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  7. Quantitative and qualitative 5-aminolevulinic acid–induced protoporphyrin IX fluorescence in skull base meningiomas

    PubMed Central

    Bekelis, Kimon; Valdés, Pablo A.; Erkmen, Kadir; Leblond, Frederic; Kim, Anthony; Wilson, Brian C.; Harris, Brent T.; Paulsen, Keith D.; Roberts, David W.

    2011-01-01

    Object Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. Methods A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board–approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. Results The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological

  8. Petermann I and II spot size: Accurate semi analytical description involving Nelder-Mead method of nonlinear unconstrained optimization and three parameter fundamental modal field

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal

    2013-01-01

    A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.

  9. Quantitative template for subtyping primary progressive aphasia.

    PubMed

    Mesulam, Marsel; Wieneke, Christina; Rogalski, Emily; Cobia, Derin; Thompson, Cynthia; Weintraub, Sandra

    2009-12-01

    The syndrome of primary progressive aphasia (PPA) is diagnosed when a gradual failure of word usage or comprehension emerges as the principal feature of a neurodegenerative disease. To provide a quantitative algorithm for classifying PPA into agrammatic (PPA-G), semantic (PPA-S), and logopenic (PPA-L) variants, each of which is known to have a different probability of association with Alzheimer disease vs frontotemporal lobar degeneration. Prospective study. University medical center. Sixteen consecutively enrolled patients with PPA who underwent neuropsychological testing and magnetic resonance imaging recruited nationally in the United States as part of a longitudinal study. A 2-dimensional template that reflects performance on tests of syntax (Northwestern Anagram Test) and lexical semantics (Peabody Picture Vocabulary Test-Fourth Edition) classified all 16 patients in concordance with a clinical diagnosis that had been made before the administration of quantitative tests. All 3 PPA subtypes had distinctly asymmetrical atrophy of the left perisylvian language network. Each subtype also had distinctive peak atrophy sites: PPA-G in the inferior frontal gyrus (Broca area), PPA-S in the anterior temporal lobe, and PPA-L in Brodmann area 37. Once an accurate root diagnosis of PPA is made, subtyping can be quantitatively guided using a 2-dimensional template based on orthogonal tasks of grammatical competence and word comprehension. Although the choice of tasks and the precise cutoff levels may need to be adjusted to fit linguistic and educational backgrounds, these 16 patients demonstrate the feasibility of using a simple algorithm for clinicoanatomical classification in PPA. Prospective studies will show whether this subtyping can improve clinical prediction of the underlying neuropathologic condition.

  10. The Quantitative Reasoning for College Science (QuaRCS) Assessment: Emerging Themes from 5 Years of Data

    NASA Astrophysics Data System (ADS)

    Follette, Katherine; Dokter, Erin; Buxner, Sanlyn

    2018-01-01

    The Quantitative Reasoning for College Science (QuaRCS) Assessment is a validated assessment instrument that was designed to measure changes in students' quantitative reasoning skills, attitudes toward mathematics, and ability to accurately assess their own quantitative abilities. It has been administered to more than 5,000 students at a variety of institutions at the start and end of a semester of general education college science instruction. I will begin by briefly summarizing our published work surrounding validation of the instrument and identification of underlying attitudinal factors (composite variables identified via factor analysis) that predict 50% of the variation in students' scores on the assessment. I will then discuss more recent unpublished work, including: (1) Development and validation of an abbreviated version of the assessment (The QuaRCS Light), which results in marked improvements in students' ability to maintain a high effort level throughout the assessment and has broad implications for quantitative reasoning assessments in general, and (2) Our efforts to revise the attitudinal portion of the assessment to better assess math anxiety level, another key factor in student performance on numerical assessments.

  11. Renal geology (quantitative renal stone analysis) by 'Fourier transform infrared spectroscopy'.

    PubMed

    Singh, Iqbal

    2008-01-01

    To prospectively determine the precise stone composition (quantitative analysis) by using infrared spectroscopy in patients with urinary stone disease presenting to our clinic. To determine an ideal method for stone analysis suitable for use in a clinical setting. After routine and a detailed metabolic workup of all patients of urolithiasis, stone samples of 50 patients of urolithiasis satisfying the entry criteria were subjected to the Fourier transform infrared spectroscopic analysis after adequate sample homogenization at a single testing center. Calcium oxalate monohydrate and dihydrate stone mixture was most commonly encountered in 35 (71%) followed by calcium phosphate, carbonate apatite, magnesium ammonium hexahydrate and xanthine stones. Fourier transform infrared spectroscopy allows an accurate, reliable quantitative method of stone analysis. It also helps in maintaining a computerized large reference library. Knowledge of precise stone composition may allow the institution of appropriate prophylactic therapy despite the absence of any detectable metabolic abnormalities. This may prevent and or delay stone recurrence.

  12. Profitable capitation requires accurate costing.

    PubMed

    West, D A; Hicks, L L; Balas, E A; West, T D

    1996-01-01

    In the name of costing accuracy, nurses are asked to track inventory use on per treatment basis when more significant costs, such as general overhead and nursing salaries, are usually allocated to patients or treatments on an average cost basis. Accurate treatment costing and financial viability require analysis of all resources actually consumed in treatment delivery, including nursing services and inventory. More precise costing information enables more profitable decisions as is demonstrated by comparing the ratio-of-cost-to-treatment method (aggregate costing) with alternative activity-based costing methods (ABC). Nurses must participate in this costing process to assure that capitation bids are based upon accurate costs rather than simple averages.

  13. Quantitative Metabolome Analysis Based on Chromatographic Peak Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.

    PubMed

    Huan, Tao; Li, Liang

    2015-07-21

    Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use.

  14. Absolute quantitation of isoforms of post-translationally modified proteins in transgenic organism.

    PubMed

    Li, Yaojun; Shu, Yiwei; Peng, Changchao; Zhu, Lin; Guo, Guangyu; Li, Ning

    2012-08-01

    Post-translational modification isoforms of a protein are known to play versatile biological functions in diverse cellular processes. To measure the molar amount of each post-translational modification isoform (P(isf)) of a target protein present in the total protein extract using mass spectrometry, a quantitative proteomic protocol, absolute quantitation of isoforms of post-translationally modified proteins (AQUIP), was developed. A recombinant ERF110 gene overexpression transgenic Arabidopsis plant was used as the model organism for demonstration of the proof of concept. Both Ser-62-independent (14)N-coded synthetic peptide standards and (15)N-coded ERF110 protein standard isolated from the heavy nitrogen-labeled transgenic plants were employed simultaneously to determine the concentration of all isoforms (T(isf)) of ERF110 in the whole plant cell lysate, whereas a pair of Ser-62-dependent synthetic peptide standards were used to quantitate the Ser-62 phosphosite occupancy (R(aqu)). The P(isf) was finally determined by integrating the two empirically measured variables using the following equation: P(isf) = T(isf) · R(aqu). The absolute amount of Ser-62-phosphorylated isoform of ERF110 determined using AQUIP was substantiated with a stable isotope labeling in Arabidopsis-based relative and accurate quantitative proteomic approach. The biological role of the Ser-62-phosphorylated isoform was demonstrated in transgenic plants.

  15. High performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) for the qualitative and quantitative analysis of Calendula officinalis-advantages and limitations.

    PubMed

    Loescher, Christine M; Morton, David W; Razic, Slavica; Agatonovic-Kustrin, Snezana

    2014-09-01

    Chromatography techniques such as HPTLC and HPLC are commonly used to produce a chemical fingerprint of a plant to allow identification and quantify the main constituents within the plant. The aims of this study were to compare HPTLC and HPLC, for qualitative and quantitative analysis of the major constituents of Calendula officinalis and to investigate the effect of different extraction techniques on the C. officinalis extract composition from different parts of the plant. The results found HPTLC to be effective for qualitative analysis, however, HPLC was found to be more accurate for quantitative analysis. A combination of the two methods may be useful in a quality control setting as it would allow rapid qualitative analysis of herbal material while maintaining accurate quantification of extract composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping.

    PubMed

    Lee, Wan-Ping; Stromberg, Michael P; Ward, Alistair; Stewart, Chip; Garrison, Erik P; Marth, Gabor T

    2014-01-01

    MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome) in the 1000 Genomes Project. To provide highly accurate alignments, MOSAIK employs a hash clustering strategy coupled with the Smith-Waterman algorithm. This method is well-suited to capture mismatches as well as short insertions and deletions. To support the growing interest in larger structural variant (SV) discovery, MOSAIK provides explicit support for handling known-sequence SVs, e.g. mobile element insertions (MEIs) as well as generating outputs tailored to aid in SV discovery. All variant discovery benefits from an accurate description of the read placement confidence. To this end, MOSAIK uses a neural-network based training scheme to provide well-calibrated mapping quality scores, demonstrated by a correlation coefficient between MOSAIK assigned and actual mapping qualities greater than 0.98. In order to ensure that studies of any genome are supported, a training pipeline is provided to ensure optimal mapping quality scores for the genome under investigation. MOSAIK is multi-threaded, open source, and incorporated into our command and pipeline launcher system GKNO (http://gkno.me).

  17. MOSAIK: A Hash-Based Algorithm for Accurate Next-Generation Sequencing Short-Read Mapping

    PubMed Central

    Lee, Wan-Ping; Stromberg, Michael P.; Ward, Alistair; Stewart, Chip; Garrison, Erik P.; Marth, Gabor T.

    2014-01-01

    MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome) in the 1000 Genomes Project. To provide highly accurate alignments, MOSAIK employs a hash clustering strategy coupled with the Smith-Waterman algorithm. This method is well-suited to capture mismatches as well as short insertions and deletions. To support the growing interest in larger structural variant (SV) discovery, MOSAIK provides explicit support for handling known-sequence SVs, e.g. mobile element insertions (MEIs) as well as generating outputs tailored to aid in SV discovery. All variant discovery benefits from an accurate description of the read placement confidence. To this end, MOSAIK uses a neural-network based training scheme to provide well-calibrated mapping quality scores, demonstrated by a correlation coefficient between MOSAIK assigned and actual mapping qualities greater than 0.98. In order to ensure that studies of any genome are supported, a training pipeline is provided to ensure optimal mapping quality scores for the genome under investigation. MOSAIK is multi-threaded, open source, and incorporated into our command and pipeline launcher system GKNO (http://gkno.me). PMID:24599324

  18. Student nurse-educators' construction of teacher identity from a self-evaluation perspective: A quantitative case study.

    PubMed

    Mukumbang, Ferdinand C; Alindekane, Leka Marcel

    2017-04-01

    The aim of this study was to explore the teacher identity formation dynamics of student nurse-educators about the subject matter, pedagogy and didactics. A case study using descriptive quantitative design was employed. Using a cross-sectional approach, data were collected in 2014 using a self-administered questionnaire. Participants were asked to self-evaluate their teaching competencies on the nursing subject matter, pedagogical expertise and didactical expertise. Using descriptive analysis we determined the central tendencies of the constructs. The descriptive analysis revealed a very small variance (0.0011) and standard deviation (0.04) among the means of the three constructs, which indicates a fair balance in the contribution of the subject matter, pedagogy and didactics towards teacher identity formation. Nursing student-educators can achieve a balanced combination of subject matter expert, pedagogical expert and didactical expert combination during the formation of their teacher identity. This could be indicative of how effective the training programme is in helping the students achieve a balanced teacher identity.

  19. Quantitative methods used in Australian health promotion research: a review of publications from 1992-2002.

    PubMed

    Smith, Ben J; Zehle, Katharina; Bauman, Adrian E; Chau, Josephine; Hawkshaw, Barbara; Frost, Steven; Thomas, Margaret

    2006-04-01

    This study examined the use of quantitative methods in Australian health promotion research in order to identify methodological trends and priorities for strengthening the evidence base for health promotion. Australian health promotion articles were identified by hand searching publications from 1992-2002 in six journals: Health Promotion Journal of Australia, Australian and New Zealand journal of Public Health, Health Promotion International, Health Education Research, Health Education and Behavior and the American Journal of Health Promotion. The study designs and statistical methods used in articles presenting quantitative research were recorded. 591 (57.7%) of the 1,025 articles used quantitative methods. Cross-sectional designs were used in the majority (54.3%) of studies with pre- and post-test (14.6%) and post-test only (9.5%) the next most common designs. Bivariate statistical methods were used in 45.9% of papers, multivariate methods in 27.1% and simple numbers and proportions in 25.4%. Few studies used higher-level statistical techniques. While most studies used quantitative methods, the majority were descriptive in nature. The study designs and statistical methods used provided limited scope for demonstrating intervention effects or understanding the determinants of change.

  20. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    PubMed

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-02-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences.