Science.gov

Sample records for accurate quantitative measurement

  1. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and

  2. Accurate measurement of circulating mitochondrial DNA content from human blood samples using real-time quantitative PCR.

    PubMed

    Ajaz, Saima; Czajka, Anna; Malik, Afshan

    2015-01-01

    We describe a protocol to accurately measure the amount of human mitochondrial DNA (MtDNA) in peripheral blood samples which can be modified to quantify MtDNA from other body fluids, human cells, and tissues. This protocol is based on the use of real-time quantitative PCR (qPCR) to quantify the amount of MtDNA relative to nuclear DNA (designated the Mt/N ratio). In the last decade, there have been increasing numbers of studies describing altered MtDNA or Mt/N in circulation in common nongenetic diseases where mitochondrial dysfunction may play a role (for review see Malik and Czajka, Mitochondrion 13:481-492, 2013). These studies are distinct from those looking at genetic mitochondrial disease and are attempting to identify acquired changes in circulating MtDNA content as an indicator of mitochondrial function. However, the methodology being used is not always specific and reproducible. As more than 95 % of the human mitochondrial genome is duplicated in the human nuclear genome, it is important to avoid co-amplification of nuclear pseudogenes. Furthermore, template preparation protocols can also affect the results because of the size and structural differences between the mitochondrial and nuclear genomes. Here we describe how to (1) prepare DNA from blood samples; (2) pretreat the DNA to prevent dilution bias; (3) prepare dilution standards for absolute quantification using the unique primers human mitochondrial genome forward primer (hMitoF3) and human mitochondrial genome reverse primer(hMitoR3) for the mitochondrial genome, and human nuclear genome forward primer (hB2MF1) and human nuclear genome reverse primer (hB2MR1) primers for the human nuclear genome; (4) carry out qPCR for either relative or absolute quantification from test samples; (5) analyze qPCR data; and (6) calculate the sample size to adequately power studies. The protocol presented here is suitable for high-throughput use.

  3. Toward Accurate and Quantitative Comparative Metagenomics.

    PubMed

    Nayfach, Stephen; Pollard, Katherine S

    2016-08-25

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  4. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  5. Simultaneous measurement in mass and mass/mass mode for accurate qualitative and quantitative screening analysis of pharmaceuticals in river water.

    PubMed

    Martínez Bueno, M J; Ulaszewska, Maria M; Gomez, M J; Hernando, M D; Fernández-Alba, A R

    2012-09-21

    A new approach for the analysis of pharmaceuticals (target and non-target) in water by LC-QTOF-MS is described in this work. The study has been designed to assess the performance of the simultaneous quantitative screening of target compounds, and the qualitative analysis of non-target analytes, in just one run. The features of accurate mass full scan mass spectrometry together with high MS/MS spectral acquisition rates - by means of information dependent acquisition (IDA) - have demonstrated their potential application in this work. Applying this analytical strategy, an identification procedure is presented based on library searching for compounds which were not included a priori in the analytical method as target compounds, thus allowing their characterization by data processing of accurate mass measurements in MS and MS/MS mode. The non-target compounds identified in river water samples were ketorolac, trazodone, fluconazole, metformin and venlafaxine. Simultaneously, this strategy allowed for the identification of other compounds which were not included in the library by screening the highest intensity peaks detected in the samples and by analysis of the full scan TOF-MS, isotope pattern and MS/MS spectra - the example of loratadine (histaminergic) is described. The group of drugs of abuse selected as target compounds for evaluation included analgesics, opioids and psychostimulants. Satisfactory results regarding sensitivity and linearity of the developed method were obtained. Limits of detection for the selected target compounds were from 0.003 to 0.01 μg/L and 0.01 to 0.5 μg/L, in MS and MS/MS mode, respectively - by direct sample injection of 100 μL.

  6. Groundtruth approach to accurate quantitation of fluorescence microarrays

    SciTech Connect

    Mascio-Kegelmeyer, L; Tomascik-Cheeseman, L; Burnett, M S; van Hummelen, P; Wyrobek, A J

    2000-12-01

    To more accurately measure fluorescent signals from microarrays, we calibrated our acquisition and analysis systems by using groundtruth samples comprised of known quantities of red and green gene-specific DNA probes hybridized to cDNA targets. We imaged the slides with a full-field, white light CCD imager and analyzed them with our custom analysis software. Here we compare, for multiple genes, results obtained with and without preprocessing (alignment, color crosstalk compensation, dark field subtraction, and integration time). We also evaluate the accuracy of various image processing and analysis techniques (background subtraction, segmentation, quantitation and normalization). This methodology calibrates and validates our system for accurate quantitative measurement of microarrays. Specifically, we show that preprocessing the images produces results significantly closer to the known ground-truth for these samples.

  7. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  8. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  11. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  12. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. Accurate documentation and wound measurement.

    PubMed

    Hampton, Sylvie

    This article, part 4 in a series on wound management, addresses the sometimes routine yet crucial task of documentation. Clear and accurate records of a wound enable its progress to be determined so the appropriate treatment can be applied. Thorough records mean any practitioner picking up a patient's notes will know when the wound was last checked, how it looked and what dressing and/or treatment was applied, ensuring continuity of care. Documenting every assessment also has legal implications, demonstrating due consideration and care of the patient and the rationale for any treatment carried out. Part 5 in the series discusses wound dressing characteristics and selection.

  15. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    To understand different aspects of life at the molecular level, one would think that ideally all components of specific processes should be individually isolated and studied in details. Reductionist approaches, i.e., studying one biological event at a one-gene or one-protein-at-a-time basis, indeed have made significant contributions to our understanding of many basic facts of biology. However, these individual “building blocks” can not be visualized as a comprehensive “model” of the life of cells, tissues, and organisms, without using more integrative approaches.1,2 For example, the emerging field of “systems biology” aims to quantify all of the components of a biological system to assess their interactions and to integrate diverse types of information obtainable from this system into models that could explain and predict behaviors.3-6 Recent breakthroughs in genomics, proteomics, and bioinformatics are making this daunting task a reality.7-14 Proteomics, the systematic study of the entire complement of proteins expressed by an organism, tissue, or cell under a specific set of conditions at a specific time (i.e., the proteome), has become an essential enabling component of systems biology. While the genome of an organism may be considered static over short timescales, the expression of that genome as the actual gene products (i.e., mRNAs and proteins) is a dynamic event that is constantly changing due to the influence of environmental and physiological conditions. Exclusive monitoring of the transcriptomes can be carried out using high-throughput cDNA microarray analysis,15-17 however the measured mRNA levels do not necessarily correlate strongly with the corresponding abundances of proteins,18-20 The actual amount of functional proteins can be altered significantly and become independent of mRNA levels as a result of post-translational modifications (PTMs),21 alternative splicing,22,23 and protein turnover.24,25 Moreover, the functions of expressed

  16. Challenges in accurate quantitation of lysophosphatidic acids in human biofluids

    PubMed Central

    Onorato, Joelle M.; Shipkova, Petia; Minnich, Anne; Aubry, Anne-Françoise; Easter, John; Tymiak, Adrienne

    2014-01-01

    Lysophosphatidic acids (LPAs) are biologically active signaling molecules involved in the regulation of many cellular processes and have been implicated as potential mediators of fibroblast recruitment to the pulmonary airspace, pointing to possible involvement of LPA in the pathology of pulmonary fibrosis. LPAs have been measured in various biological matrices and many challenges involved with their analyses have been documented. However, little published information is available describing LPA levels in human bronchoalveolar lavage fluid (BALF). We therefore conducted detailed investigations into the effects of extensive sample handling and sample preparation conditions on LPA levels in human BALF. Further, targeted lipid profiling of human BALF and plasma identified the most abundant lysophospholipids likely to interfere with LPA measurements. We present the findings from these investigations, highlighting the importance of well-controlled sample handling for the accurate quantitation of LPA. Further, we show that chromatographic separation of individual LPA species from their corresponding lysophospholipid species is critical to avoid reporting artificially elevated levels. The optimized sample preparation and LC/MS/MS method was qualified using a stable isotope-labeled LPA as a surrogate calibrant and used to determine LPA levels in human BALF and plasma from a Phase 0 clinical study comparing idiopathic pulmonary fibrosis patients to healthy controls. PMID:24872406

  17. A gel-free MS-based quantitative proteomic approach accurately measures cytochrome P450 protein concentrations in human liver microsomes.

    PubMed

    Wang, Michael Zhuo; Wu, Judy Qiju; Dennison, Jennifer B; Bridges, Arlene S; Hall, Stephen D; Kornbluth, Sally; Tidwell, Richard R; Smith, Philip C; Voyksner, Robert D; Paine, Mary F; Hall, James Edwin

    2008-10-01

    The human cytochrome P450 (P450) superfamily consists of membrane-bound proteins that metabolize a myriad of xenobiotics and endogenous compounds. Quantification of P450 expression in various tissues under normal and induced conditions has an important role in drug safety and efficacy. Conventional immunoquantification methods have poor dynamic range, low throughput, and a limited number of specific antibodies. Recent advances in MS-based quantitative proteomics enable absolute protein quantification in a complex biological mixture. We have developed a gel-free MS-based protein quantification strategy to quantify CYP3A enzymes in human liver microsomes (HLM). Recombinant protein-derived proteotypic peptides and synthetic stable isotope-labeled proteotypic peptides were used as calibration standards and internal standards, respectively. The lower limit of quantification was approximately 20 fmol P450. In two separate panels of HLM examined (n = 11 and n = 22), CYP3A, CYP3A4 and CYP3A5 concentrations were determined reproducibly (CV or=0.87) and marker activities (r(2)>or=0.88), including testosterone 6beta-hydroxylation (CYP3A), midazolam 1'-hydroxylation (CYP3A), itraconazole 6-hydroxylation (CYP3A4) and CYP3A5-mediated vincristine M1 formation (CYP3A5). Taken together, our MS-based method provides a specific, sensitive and reliable means of P450 protein quantification and should facilitate P450 characterization during drug development, especially when specific substrates and/or antibodies are unavailable.

  18. Modified chemiluminescent NO analyzer accurately measures NOX

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1978-01-01

    Installation of molybdenum nitric oxide (NO)-to-higher oxides of nitrogen (NOx) converter in chemiluminescent gas analyzer and use of air purge allow accurate measurements of NOx in exhaust gases containing as much as thirty percent carbon monoxide (CO). Measurements using conventional analyzer are highly inaccurate for NOx if as little as five percent CO is present. In modified analyzer, molybdenum has high tolerance to CO, and air purge substantially quenches NOx destruction. In test, modified chemiluminescent analyzer accurately measured NO and NOx concentrations for over 4 months with no denegration in performance.

  19. Preparation and accurate measurement of pure ozone.

    PubMed

    Janssen, Christof; Simone, Daniela; Guinet, Mickaël

    2011-03-01

    Preparation of high purity ozone as well as precise and accurate measurement of its pressure are metrological requirements that are difficult to meet due to ozone decomposition occurring in pressure sensors. The most stable and precise transducer heads are heated and, therefore, prone to accelerated ozone decomposition, limiting measurement accuracy and compromising purity. Here, we describe a vacuum system and a method for ozone production, suitable to accurately determine the pressure of pure ozone by avoiding the problem of decomposition. We use an inert gas in a particularly designed buffer volume and can thus achieve high measurement accuracy and negligible degradation of ozone with purities of 99.8% or better. The high degree of purity is ensured by comprehensive compositional analyses of ozone samples. The method may also be applied to other reactive gases. PMID:21456766

  20. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2016-07-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  1. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  2. Active contour approach for accurate quantitative airway analysis

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Slabaugh, Greg G.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2008-03-01

    Chronic airway disease causes structural changes in the lungs including peribronchial thickening and airway dilatation. Multi-detector computed tomography (CT) yields detailed near-isotropic images of the lungs, and thus the potential to obtain quantitative measurements of lumen diameter and airway wall thickness. Such measurements would allow standardized assessment, and physicians to diagnose and locate airway abnormalities, adapt treatment, and monitor progress over time. However, due to the sheer number of airways per patient, systematic analysis is infeasible in routine clinical practice without automation. We have developed an automated and real-time method based on active contours to estimate both airway lumen and wall dimensions; the method does not require manual contour initialization but only a starting point on the targeted airway. While the lumen contour segmentation is purely region-based, the estimation of the outer diameter considers the inner wall segmentation as well as local intensity variation, in order anticipate the presence of nearby arteries and exclude them. These properties make the method more robust than the Full-Width Half Maximum (FWHM) approach. Results are demonstrated on a phantom dataset with known dimensions and on a human dataset where the automated measurements are compared against two human operators. The average error on the phantom measurements was 0.10mm and 0.14mm for inner and outer diameters, showing sub-voxel accuracy. Similarly, the mean variation from the average manual measurement was 0.14mm and 0.18mm for inner and outer diameters respectively.

  3. Fast and Accurate Detection of Multiple Quantitative Trait Loci

    PubMed Central

    Nettelblad, Carl; Holmgren, Sverker

    2013-01-01

    Abstract We present a new computational scheme that enables efficient and reliable quantitative trait loci (QTL) scans for experimental populations. Using a standard brute-force exhaustive search effectively prohibits accurate QTL scans involving more than two loci to be performed in practice, at least if permutation testing is used to determine significance. Some more elaborate global optimization approaches, for example, DIRECT have been adopted earlier to QTL search problems. Dramatic speedups have been reported for high-dimensional scans. However, since a heuristic termination criterion must be used in these types of algorithms, the accuracy of the optimization process cannot be guaranteed. Indeed, earlier results show that a small bias in the significance thresholds is sometimes introduced. Our new optimization scheme, PruneDIRECT, is based on an analysis leading to a computable (Lipschitz) bound on the slope of a transformed objective function. The bound is derived for both infinite- and finite-size populations. Introducing a Lipschitz bound in DIRECT leads to an algorithm related to classical Lipschitz optimization. Regions in the search space can be permanently excluded (pruned) during the optimization process. Heuristic termination criteria can thus be avoided. Hence, PruneDIRECT has a well-defined error bound and can in practice be guaranteed to be equivalent to a corresponding exhaustive search. We present simulation results that show that for simultaneous mapping of three QTLS using permutation testing, PruneDIRECT is typically more than 50 times faster than exhaustive search. The speedup is higher for stronger QTL. This could be used to quickly detect strong candidate eQTL networks. PMID:23919387

  4. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  5. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  6. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  7. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  8. Technological Basis and Scientific Returns for Absolutely Accurate Measurements

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Anderson, J.

    2011-12-01

    The 2006 NRC Decadal Survey fostered a new appreciation for societal objectives as a driving motivation for Earth science. Many high-priority societal objectives are dependent on predictions of weather and climate. These predictions are based on numerical models, which derive from approximate representations of well-founded physics and chemistry on space and timescales appropriate to global and regional prediction. These laws of chemistry and physics in turn have a well-defined quantitative relationship with physical measurement units, provided these measurement units are linked to international measurement standards that are the foundation of contemporary measurement science and standards for engineering and commerce. Without this linkage, measurements have an ambiguous relationship to scientific principles that introduces avoidable uncertainty in analyses, predictions, and improved understanding of the Earth system. Since the improvement of climate and weather prediction is fundamentally dependent on the improvement of the representation of physical processes, measurement systems that reduce the ambiguity between physical truth and observations represent an essential component of a national strategy for understanding and living with the Earth system. This paper examines the technological basis and potential science returns of sensors that make measurements that are quantitatively tied on-orbit to international measurement standards, and thus testable to systematic errors. This measurement strategy provides several distinct benefits. First, because of the quantitative relationship between these international measurement standards and fundamental physical constants, measurements of this type accurately capture the true physical and chemical behavior of the climate system and are not subject to adjustment due to excluded measurement physics or instrumental artifacts. In addition, such measurements can be reproduced by scientists anywhere in the world, at any time

  9. Accurate scoring of non-uniform sampling schemes for quantitative NMR

    PubMed Central

    Aoto, Phillip C.; Fenwick, R. Bryn; Kroon, Gerard J. A.; Wright, Peter E.

    2014-01-01

    Non-uniform sampling (NUS) in NMR spectroscopy is a recognized and powerful tool to minimize acquisition time. Recent advances in reconstruction methodologies are paving the way for the use of NUS in quantitative applications, where accurate measurement of peak intensities is crucial. The presence or absence of NUS artifacts in reconstructed spectra ultimately determines the success of NUS in quantitative NMR. The quality of reconstructed spectra from NUS acquired data is dependent upon the quality of the sampling scheme. Here we demonstrate that the best performing sampling schemes make up a very small percentage of the total randomly generated schemes. A scoring method is found to accurately predict the quantitative similarity between reconstructed NUS spectra and those of fully sampled spectra. We present an easy-to-use protocol to batch generate and rank optimal Poisson-gap NUS schedules for use with 2D NMR with minimized noise and accurate signal reproduction, without the need for the creation of synthetic spectra. PMID:25063954

  10. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  11. Modified algesimeter provides accurate depth measurements

    NASA Technical Reports Server (NTRS)

    Turner, D. P.

    1966-01-01

    Algesimeter which incorporates a standard sensory needle with a sensitive micrometer, measures needle point depth penetration in pain tolerance research. This algesimeter provides an inexpensive, precise instrument with assured validity of recordings in those biomedical areas with a requirement for repeated pain detection or ascertaining pain sensitivity.

  12. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  13. EMR Gage Would Measure Coal Thickness Accurately

    NASA Technical Reports Server (NTRS)

    King, J. D.; Rollwitz, W. L.

    1982-01-01

    Laboratory tests indicate electron magnetic resonance (EMR) would be effective in measuring thickness of coal overlying rock substrate. In prototype dual-frequency EMR system, Sample is irradiated by two radio frequencies. Signals are mixed, producing sum and difference output frequencies that are detected by receiver. Magnetic field is varied to scan resonant spot through sample. In system designed for field use, electromagnet is U-shaped, so that sample can be adjacent to, rather than inside the probe. Same coil is used for transmitting and receiving.

  14. Quantitation and accurate mass analysis of pesticides in vegetables by LC/TOF-MS.

    PubMed

    Ferrer, Imma; Thurman, E Michael; Fernández-Alba, Amadeo R

    2005-05-01

    A quantitative method consisting of solvent extraction followed by liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) analysis was developed for the identification and quantitation of three chloronicotinyl pesticides (imidacloprid, acetamiprid, thiacloprid) commonly used on salad vegetables. Accurate mass measurements within 3 ppm error were obtained for all the pesticides studied in various vegetable matrixes (cucumber, tomato, lettuce, pepper), which allowed an unequivocal identification of the target pesticides. Calibration curves covering 2 orders of magnitude were linear over the concentration range studied, thus showing the quantitative ability of TOF-MS as a monitoring tool for pesticides in vegetables. Matrix effects were also evaluated using matrix-matched standards showing no significant interferences between matrixes and clean extracts. Intraday reproducibility was 2-3% relative standard deviation (RSD) and interday values were 5% RSD. The precision (standard deviation) of the mass measurements was evaluated and it was less than 0.23 mDa between days. Detection limits of the chloronicotinyl insecticides in salad vegetables ranged from 0.002 to 0.01 mg/kg. These concentrations are equal to or better than the EU directives for controlled pesticides in vegetables showing that LC/TOF-MS analysis is a powerful tool for identification of pesticides in vegetables. Robustness and applicability of the method was validated for the analysis of market vegetable samples. Concentrations found in these samples were in the range of 0.02-0.17 mg/kg of vegetable. PMID:15859598

  15. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  16. Quantitative measurements in capsule endoscopy.

    PubMed

    Keuchel, M; Kurniawan, N; Baltes, P; Bandorski, D; Koulaouzidis, A

    2015-10-01

    This review summarizes several approaches for quantitative measurement in capsule endoscopy. Video capsule endoscopy (VCE) typically provides wireless imaging of small bowel. Currently, a variety of quantitative measurements are implemented in commercially available hardware/software. The majority is proprietary and hence undisclosed algorithms. Measurement of amount of luminal contamination allows calculating scores from whole VCE studies. Other scores express the severity of small bowel lesions in Crohn׳s disease or the degree of villous atrophy in celiac disease. Image processing with numerous algorithms of textural and color feature extraction is further in the research focuses for automated image analysis. These tools aim to select single images with relevant lesions as blood, ulcers, polyps and tumors or to omit images showing only luminal contamination. Analysis of motility pattern, size measurement and determination of capsule localization are additional topics. Non-visual wireless capsules transmitting data acquired with specific sensors from the gastrointestinal (GI) tract are available for clinical routine. This includes pH measurement in the esophagus for the diagnosis of acid gastro-esophageal reflux. A wireless motility capsule provides GI motility analysis on the basis of pH, pressure, and temperature measurement. Electromagnetically tracking of another motility capsule allows visualization of motility. However, measurement of substances by GI capsules is of great interest but still at an early stage of development. PMID:26299419

  17. Quantitative measures for redox signaling.

    PubMed

    Pillay, Ché S; Eagling, Beatrice D; Driscoll, Scott R E; Rohwer, Johann M

    2016-07-01

    Redox signaling is now recognized as an important regulatory mechanism for a number of cellular processes including the antioxidant response, phosphokinase signal transduction and redox metabolism. While there has been considerable progress in identifying the cellular machinery involved in redox signaling, quantitative measures of redox signals have been lacking, limiting efforts aimed at understanding and comparing redox signaling under normoxic and pathogenic conditions. Here we have outlined some of the accepted principles for redox signaling, including the description of hydrogen peroxide as a signaling molecule and the role of kinetics in conferring specificity to these signaling events. Based on these principles, we then develop a working definition for redox signaling and review a number of quantitative methods that have been employed to describe signaling in other systems. Using computational modeling and published data, we show how time- and concentration- dependent analyses, in particular, could be used to quantitatively describe redox signaling and therefore provide important insights into the functional organization of redox networks. Finally, we consider some of the key challenges with implementing these methods. PMID:27151506

  18. Quantitative tomographic measurements of opaque multiphase flows

    SciTech Connect

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  19. Quantitative Species Measurements In Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Pilgrim, Jeffrey S.; Silver, Joel A.; Piltch, Nancy D.

    2003-01-01

    The capability of models and theories to accurately predict and describe the behavior of low gravity flames can only be verified by quantitative measurements. Although video imaging, simple temperature measurements, and velocimetry methods have provided useful information in many cases, there is still a need for quantitative species measurements. Over the past decade, we have been developing high sensitivity optical absorption techniques to permit in situ, non-intrusive, absolute concentration measurements for both major and minor flames species using diode lasers. This work has helped to establish wavelength modulation spectroscopy (WMS) as an important method for species detection within the restrictions of microgravity-based measurements. More recently, in collaboration with Prof. Dahm at the University of Michigan, a new methodology combining computed flame libraries with a single experimental measurement has allowed us to determine the concentration profiles for all species in a flame. This method, termed ITAC (Iterative Temperature with Assumed Chemistry) was demonstrated for a simple laminar nonpremixed methane-air flame at both 1-g and at 0-g in a vortex ring flame. In this paper, we report additional normal and microgravity experiments which further confirm the usefulness of this approach. We also present the development of a new type of laser. This is an external cavity diode laser (ECDL) which has the unique capability of high frequency modulation as well as a very wide tuning range. This will permit the detection of multiple species with one laser while using WMS detection.

  20. Accurately measuring MPI broadcasts in a computational grid

    SciTech Connect

    Karonis N T; de Supinski, B R

    1999-05-06

    An MPI library's implementation of broadcast communication can significantly affect the performance of applications built with that library. In order to choose between similar implementations or to evaluate available libraries, accurate measurements of broadcast performance are required. As we demonstrate, existing methods for measuring broadcast performance are either inaccurate or inadequate. Fortunately, we have designed an accurate method for measuring broadcast performance, even in a challenging grid environment. Measuring broadcast performance is not easy. Simply sending one broadcast after another allows them to proceed through the network concurrently, thus resulting in inaccurate per broadcast timings. Existing methods either fail to eliminate this pipelining effect or eliminate it by introducing overheads that are as difficult to measure as the performance of the broadcast itself. This problem becomes even more challenging in grid environments. Latencies a long different links can vary significantly. Thus, an algorithm's performance is difficult to predict from it's communication pattern. Even when accurate pre-diction is possible, the pattern is often unknown. Our method introduces a measurable overhead to eliminate the pipelining effect, regardless of variations in link latencies. choose between different available implementations. Also, accurate and complete measurements could guide use of a given implementation to improve application performance. These choices will become even more important as grid-enabled MPI libraries [6, 7] become more common since bad choices are likely to cost significantly more in grid environments. In short, the distributed processing community needs accurate, succinct and complete measurements of collective communications performance. Since successive collective communications can often proceed concurrently, accurately measuring them is difficult. Some benchmarks use knowledge of the communication algorithm to predict the

  1. Quantitative measurements of inventory control.

    PubMed

    Noel, M W

    1984-11-01

    The use of quantitative measurements for improving inventory management efficiency in hospital pharmacy is reviewed. Proper management of the pharmacy inventory affects the financial operation of the entire hospital. Problems associated with maintaining inadequate or excessive inventory investment are discussed, and the use of inventory valuation and turnover rate for assessing inventory control efficiency is described. Frequency of order placement has an important effect on inventory turnover, carrying costs, and ordering costs. Use of the ABC system of inventory classification for identifying products constituting the majority of inventory dollar investment is outlined, and the economic order value concept is explained. With increasing regulations aimed at controlling hospital costs, pharmacy managers must seek every possible means to improve efficiency. Reducing the amount of money obligated to inventory can substantially improve the financial position of the hospital without requiring a reduction in personnel or quality of service.

  2. Measurement of Fracture Geometry for Accurate Computation of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Chae, B.; Ichikawa, Y.; Kim, Y.

    2003-12-01

    Fluid flow in rock mass is controlled by geometry of fractures which is mainly characterized by roughness, aperture and orientation. Fracture roughness and aperture was observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wavelength of laser is 488nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The system improves resolution in the light axis (namely z) direction because of the confocal optics. The sampling is managed in a spacing 2.5 μ m along x and y directions. The highest measurement resolution of z direction is 0.05 μ m, which is the more accurate than other methods. For the roughness measurements, core specimens of coarse and fine grained granites were provided. Measurements were performed along three scan lines on each fracture surface. The measured data were represented as 2-D and 3-D digital images showing detailed features of roughness. Spectral analyses by the fast Fourier transform (FFT) were performed to characterize on the roughness data quantitatively and to identify influential frequency of roughness. The FFT results showed that components of low frequencies were dominant in the fracture roughness. This study also verifies that spectral analysis is a good approach to understand complicate characteristics of fracture roughness. For the aperture measurements, digital images of the aperture were acquired under applying five stages of uniaxial normal stresses. This method can characterize the response of aperture directly using the same specimen. Results of measurements show that reduction values of aperture are different at each part due to rough geometry of fracture walls. Laboratory permeability tests were also conducted to evaluate changes of hydraulic conductivities related to aperture variation due to different stress levels. The results showed non-uniform reduction of hydraulic conductivity under increase of the normal stress and different values of

  3. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  4. Quantitative thermal diffusivity measurements of composites

    NASA Technical Reports Server (NTRS)

    Heath, D. M.; Winfree, W. P.; Heyman, J. S.; Miller, W. E.; Welch, C. S.

    1986-01-01

    A remote radiometric technique for making quantitative thermal diffusivity measurements is described. The technique was designed to make assessments of the structural integrity of large composite parts, such as wings, and can be performed at field sites. In the measurement technique, a CO2 laser beam is scanned using two orthogonal servo-controlled deflecting mirrors. An infrared imager, whose scanning mirrors oscillate in the vertical and the horizontal directions, is used as the detector. The analysis technique used to extract the diffusivity from these images is based on a thin infinite plate assumption, which requires waiting a given period of time for the temperature to equilibrate throughout the thickness of the sample. The technique is shown to be accurate to within two percent for values of the order of those for composite diffusivities, and to be insensitive to convection losses.

  5. Multimodal Quantitative Phase Imaging with Digital Holographic Microscopy Accurately Assesses Intestinal Inflammation and Epithelial Wound Healing.

    PubMed

    Lenz, Philipp; Brückner, Markus; Ketelhut, Steffi; Heidemann, Jan; Kemper, Björn; Bettenworth, Dominik

    2016-01-01

    The incidence of inflammatory bowel disease, i.e., Crohn's disease and Ulcerative colitis, has significantly increased over the last decade. The etiology of IBD remains unknown and current therapeutic strategies are based on the unspecific suppression of the immune system. The development of treatments that specifically target intestinal inflammation and epithelial wound healing could significantly improve management of IBD, however this requires accurate detection of inflammatory changes. Currently, potential drug candidates are usually evaluated using animal models in vivo or with cell culture based techniques in vitro. Histological examination usually requires the cells or tissues of interest to be stained, which may alter the sample characteristics and furthermore, the interpretation of findings can vary by investigator expertise. Digital holographic microscopy (DHM), based on the detection of optical path length delay, allows stain-free quantitative phase contrast imaging. This allows the results to be directly correlated with absolute biophysical parameters. We demonstrate how measurement of changes in tissue density with DHM, based on refractive index measurement, can quantify inflammatory alterations, without staining, in different layers of colonic tissue specimens from mice and humans with colitis. Additionally, we demonstrate continuous multimodal label-free monitoring of epithelial wound healing in vitro, possible using DHM through the simple automated determination of the wounded area and simultaneous determination of morphological parameters such as dry mass and layer thickness of migrating cells. In conclusion, DHM represents a valuable, novel and quantitative tool for the assessment of intestinal inflammation with absolute values for parameters possible, simplified quantification of epithelial wound healing in vitro and therefore has high potential for translational diagnostic use. PMID:27685659

  6. Accurate Insertion Loss Measurements of the Juno Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Chen, Jacqueline; Hodges, Richard; Demas, John

    2010-01-01

    This paper describes two independent methods for estimating the insertion loss of patch array antennas that were developed for the Juno Microwave Radiometer instrument. One method is based principally on pattern measurements while the other method is based solely on network analyzer measurements. The methods are accurate to within 0.1 dB for the measured antennas and show good agreement (to within 0.1dB) of separate radiometric measurements.

  7. FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads

    PubMed Central

    Zhang, Gong; Fedyunin, Ivan; Kirchner, Sebastian; Xiao, Chuanle; Valleriani, Angelo; Ignatova, Zoya

    2012-01-01

    The most crucial step in data processing from high-throughput sequencing applications is the accurate and sensitive alignment of the sequencing reads to reference genomes or transcriptomes. The accurate detection of insertions and deletions (indels) and errors introduced by the sequencing platform or by misreading of modified nucleotides is essential for the quantitative processing of the RNA-based sequencing (RNA-Seq) datasets and for the identification of genetic variations and modification patterns. We developed a new, fast and accurate algorithm for nucleic acid sequence analysis, FANSe, with adjustable mismatch allowance settings and ability to handle indels to accurately and quantitatively map millions of reads to small or large reference genomes. It is a seed-based algorithm which uses the whole read information for mapping and high sensitivity and low ambiguity are achieved by using short and non-overlapping reads. Furthermore, FANSe uses hotspot score to prioritize the processing of highly possible matches and implements modified Smith–Watermann refinement with reduced scoring matrix to accelerate the calculation without compromising its sensitivity. The FANSe algorithm stably processes datasets from various sequencing platforms, masked or unmasked and small or large genomes. It shows a remarkable coverage of low-abundance mRNAs which is important for quantitative processing of RNA-Seq datasets. PMID:22379138

  8. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  9. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  10. Instrument accurately measures small temperature changes on test surface

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Miller, H. B.

    1966-01-01

    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material.

  11. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  12. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  13. Toward more accurate loss tangent measurements in reentrant cavities

    SciTech Connect

    Moyer, R. D.

    1980-05-01

    Karpova has described an absolute method for measurement of dielectric properties of a solid in a coaxial reentrant cavity. His cavity resonance equation yields very accurate results for dielectric constants. However, he presented only approximate expressions for the loss tangent. This report presents more exact expressions for that quantity and summarizes some experimental results.

  14. A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants.

    PubMed

    Geng, Hua; Todd, Naomi M; Devlin-Mullin, Aine; Poologasundarampillai, Gowsihan; Kim, Taek Bo; Madi, Kamel; Cartmell, Sarah; Mitchell, Christopher A; Jones, Julian R; Lee, Peter D

    2016-06-01

    A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact. The correlative imaging allowed the significant volumetric shrinkage of histology sections to be quantified for the first time (~15 %). This technique demonstrated the importance of location of the histological section, demonstrating that up to a 30 % offset can be introduced. The results were used to quantitatively demonstrate the effectiveness of 3D printed titanium lattice implants.

  15. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, G.; Horton, K.A.; Elias, T.; Garbeil, H.; Mouginis-Mark, P. J.; Sutton, A.J.; Harris, A.J.L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Ki??lauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s-1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements. ?? Springer-Verlag 2006.

  16. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  17. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra.

  18. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect

    Haugh, M. J.

    2011-07-28

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  19. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  20. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.

    PubMed

    Gallien, Sebastien; Domon, Bruno

    2014-08-01

    High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

  1. Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles.

    PubMed

    Hitchman, Richard B; Siaterli, Evangelia A; Nixon, Clare P; King, Linda A

    2007-03-01

    We describe the use of quantitative PCR (QPCR) to titer recombinant baculoviruses. Custom primers and probe were designed to gp64 and used to calculate a standard curve of QPCR derived titers from dilutions of a previously titrated baculovirus stock. Each dilution was titrated by both plaque assay and QPCR, producing a consistent and reproducible inverse relationship between C(T) and plaque forming units per milliliter. No significant difference was observed between titers produced by QPCR and plaque assay for 12 recombinant viruses, confirming the validity of this technique as a rapid and accurate method of baculovirus titration.

  2. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  3. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  4. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  5. A method for accurate temperature measurement using infrared thermal camera.

    PubMed

    Tokunaga, Tomoharu; Narushima, Takashi; Yonezawa, Tetsu; Sudo, Takayuki; Okubo, Shuichi; Komatsubara, Shigeyuki; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2012-08-01

    The temperature distribution on a centre-holed thin foil of molybdenum, used as a sample and heated using a sample-heating holder for electron microscopy, was measured using an infrared thermal camera. The temperature on the heated foil area located near the heating stage of the heating holder is almost equal to the temperature on the heating stage. However, during the measurement of the temperature at the edge of the hole of the foil located farthest from the heating stage, a drop in temperature should be taken into consideration; however, so far, no method has been developed to locally measure the temperature distribution on the heated sample. In this study, a method for the accurate measurement of temperature distribution on heated samples for electron microscopy is discussed.

  6. Accurate measurements of dynamics and reproducibility in small genetic networks

    PubMed Central

    Dubuis, Julien O; Samanta, Reba; Gregor, Thomas

    2013-01-01

    Quantification of gene expression has become a central tool for understanding genetic networks. In many systems, the only viable way to measure protein levels is by immunofluorescence, which is notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that careful identification and control of experimental error allows for highly accurate gene expression measurements. We generated antibodies in different host species, allowing for simultaneous staining of four Drosophila gap genes in individual embryos. Careful error analysis of hundreds of expression profiles reveals that less than ∼20% of the observed embryo-to-embryo fluctuations stem from experimental error. These measurements make it possible to extract not only very accurate mean gene expression profiles but also their naturally occurring fluctuations of biological origin and corresponding cross-correlations. We use this analysis to extract gap gene profile dynamics with ∼1 min accuracy. The combination of these new measurements and analysis techniques reveals a twofold increase in profile reproducibility owing to a collective network dynamics that relays positional accuracy from the maternal gradients to the pair-rule genes. PMID:23340845

  7. Accurate Runout Measurement for HDD Spinning Motors and Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Bi, Chao; Lin, Song

    As hard disk drive (HDD) areal density increases, its track width becomes smaller and smaller and so is non-repeatable runout. HDD industry needs more accurate and better resolution runout measurements of spinning spindle motors and media platters in both axial and radial directions. This paper introduces a new system how to precisely measure the runout of HDD spinning disks and motors through synchronously acquiring the rotor position signal and the displacements in axial or radial directions. In order to minimize the synchronizing error between the rotor position and the displacement signal, a high resolution counter is adopted instead of the conventional phase-lock loop method. With Laser Doppler Vibrometer and proper signal processing, the proposed runout system can precisely measure the runout of the HDD spinning disks and motors with 1 nm resolution and 0.2% accuracy with a proper sampling rate. It can provide an effective and accurate means to measure the runout of high areal density HDDs, in particular the next generation HDDs, such as, pattern media HDDs and HAMR HDDs.

  8. Development and Measurement of Preschoolers' Quantitative Knowledge

    ERIC Educational Resources Information Center

    Geary, David C.

    2015-01-01

    The collection of studies in this special issue make an important contribution to our understanding and measurement of the core cognitive and noncognitive factors that influence children's emerging quantitative competencies. The studies also illustrate how the field has matured, from a time when the quantitative competencies of infants and young…

  9. Quantitative spectroscopy of hot stars: accurate atomic data applied on a large scale as driver of recent breakthroughs

    NASA Astrophysics Data System (ADS)

    Przybilla, Norbert; Schaffenroth, Veronika; Nieva, Maria-Fernanda

    2015-08-01

    OB-type stars present hotbeds for non-LTE physics because of their strong radiation fields that drive the atmospheric plasma out of local thermodynamic equilibrium. We report on recent breakthroughs in the quantitative analysis of the optical and UV-spectra of OB-type stars that were facilitated by application of accurate and precise atomic data on a large scale. An astophysicist's dream has come true, by bringing observed and model spectra into close match over wide parts of the observed wavelength ranges. This facilitates tight observational constraints to be derived from OB-type stars for wide applications in astrophysics. However, despite the progress made, many details of the modelling may be improved further. We discuss atomic data needs in terms of laboratory measurements and also ab-initio calculations. Particular emphasis is given to quantitative spectroscopy in the near-IR, which will be in focus in the era of the upcoming extremely large telescopes.

  10. Precise and accurate isotopic measurements using multiple-collector ICPMS

    NASA Astrophysics Data System (ADS)

    Albarède, F.; Telouk, Philippe; Blichert-Toft, Janne; Boyet, Maud; Agranier, Arnaud; Nelson, Bruce

    2004-06-01

    New techniques of isotopic measurements by a new generation of mass spectrometers equipped with an inductively-coupled-plasma source, a magnetic mass filter, and multiple collection (MC-ICPMS) are quickly developing. These techniques are valuable because of (1) the ability of ICP sources to ionize virtually every element in the periodic table, and (2) the large sample throughout. However, because of the complex trajectories of multiple ion beams produced in the plasma source whether from the same or different elements, the acquisition of precise and accurate isotopic data with this type of instrument still requires a good understanding of instrumental fractionation processes, both mass-dependent and mass-independent. Although physical processes responsible for the instrumental mass bias are still to be understood more fully, we here present a theoretical framework that allows for most of the analytical limitations to high precision and accuracy to be overcome. After a presentation of unifying phenomenological theory for mass-dependent fractionation in mass spectrometers, we show how this theory accounts for the techniques of standard bracketing and of isotopic normalization by a ratio of either the same or a different element, such as the use of Tl to correct mass bias on Pb. Accuracy is discussed with reference to the concept of cup efficiencies. Although these can be simply calibrated by analyzing standards, we derive a straightforward, very general method to calculate accurate isotopic ratios from dynamic measurements. In this study, we successfully applied the dynamic method to Nd and Pb as examples. We confirm that the assumption of identical mass bias for neighboring elements (notably Pb and Tl, and Yb and Lu) is both unnecessary and incorrect. We further discuss the dangers of straightforward standard-sample bracketing when chemical purification of the element to be analyzed is imperfect. Pooling runs to improve precision is acceptable provided the pooled

  11. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2016-08-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  12. Accurate quantitation of MHC-bound peptides by application of isotopically labeled peptide MHC complexes.

    PubMed

    Hassan, Chopie; Kester, Michel G D; Oudgenoeg, Gideon; de Ru, Arnoud H; Janssen, George M C; Drijfhout, Jan W; Spaapen, Robbert M; Jiménez, Connie R; Heemskerk, Mirjam H M; Falkenburg, J H Frederik; van Veelen, Peter A

    2014-09-23

    Knowledge of the accurate copy number of HLA class I presented ligands is important in fundamental and clinical immunology. Currently, the best copy number determinations are based on mass spectrometry, employing single reaction monitoring (SRM) in combination with a known amount of isotopically labeled peptide. The major drawback of this approach is that the losses during sample pretreatment, i.e. immunopurification and filtration steps, are not well defined and must, therefore, be estimated. In addition, such losses can vary for individual peptides. Therefore, we developed a new approach in which isotopically labeled peptide-MHC monomers (hpMHC) are prepared and added directly after cell lysis, i.e. before the usual sample processing. Using this approach, all losses during sample processing can be accounted for and allows accurate determination of specific MHC class I-presented ligands. Our study pinpoints the immunopurification step as the origin of the rather extreme losses during sample pretreatment and offers a solution to account for these losses. Obviously, this has important implications for accurate HLA-ligand quantitation. The strategy presented here can be used to obtain a reliable view of epitope copy number and thus allows improvement of vaccine design and strategies for immunotherapy.

  13. Accurate frequency noise measurement of free-running lasers.

    PubMed

    Schiemangk, Max; Spiessberger, Stefan; Wicht, Andreas; Erbert, Götz; Tränkle, Günther; Peters, Achim

    2014-10-20

    We present a simple method to accurately measure the frequency noise power spectrum of lasers. It relies on creating the beat note between two lasers, capturing the corresponding signal in the time domain, and appropriately postprocessing the data to derive the frequency noise power spectrum. In contrast to methods already established, it does not require stabilization of the laser to an optical reference, i.e., a second laser, to an optical cavity or to an atomic transition. It further omits a frequency discriminator and hence avoids bandwidth limitation and nonlinearity effects common to high-resolution frequency discriminators.

  14. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  15. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  16. Accurate measurement of RF exposure from emerging wireless communication systems

    NASA Astrophysics Data System (ADS)

    Letertre, Thierry; Monebhurrun, Vikass; Toffano, Zeno

    2013-04-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  17. Quantitative Measurement of Oxygen in Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in both microgravity combustion research and as a sensor on-board Spacelab as either an air quality monitor or as part of a fire detection system. In our prior microgravity work, an eight line-of-sight fiber optic system measured

  18. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  19. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  20. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  1. An approach for the accurate measurement of social morality levels.

    PubMed

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the "5∶1 rewards-to-punishment rule," which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials.

  2. An Approach for the Accurate Measurement of Social Morality Levels

    PubMed Central

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the “5∶1 rewards-to-punishment rule,” which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials. PMID:24312189

  3. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  4. Accurate measurement of liquid transport through nanoscale conduits

    PubMed Central

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  5. Slim hole MWD tool accurately measures downhole annular pressure

    SciTech Connect

    Burban, B.; Delahaye, T. )

    1994-02-14

    Measurement-while-drilling of downhole pressure accurately determines annular pressure losses from circulation and drillstring rotation and helps monitor swab and surge pressures during tripping. In early 1993, two slim-hole wells (3.4 in. and 3 in. diameter) were drilled with continuous real-time electromagnetic wave transmission of downhole temperature and annular pressure. The data were obtained during all stages of the drilling operation and proved useful for operations personnel. The use of real-time measurements demonstrated the characteristic hydraulic effects of pressure surges induced by drillstring rotation in the small slim-hole annulus under field conditions. The interest in this information is not restricted to the slim-hole geometry. Monitoring or estimating downhole pressure is a key element for drilling operations. Except in special cases, no real-time measurements of downhole annular pressure during drilling and tripping have been used on an operational basis. The hydraulic effects are significant in conventional-geometry wells (3 1/2-in. drill pipe in a 6-in. hole). This paper describes the tool and the results from the field test.

  6. Accurate measurement of liquid transport through nanoscale conduits

    NASA Astrophysics Data System (ADS)

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-04-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems.

  7. Accurate measurement of liquid transport through nanoscale conduits.

    PubMed

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  8. Accurate phase measurements for thick spherical objects using optical quadrature microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2009-02-01

    In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.

  9. New simple method for fast and accurate measurement of volumes

    NASA Astrophysics Data System (ADS)

    Frattolillo, Antonio

    2006-04-01

    A new simple method is presented, which allows us to measure in just a few minutes but with reasonable accuracy (less than 1%) the volume confined inside a generic enclosure, regardless of the complexity of its shape. The technique proposed also allows us to measure the volume of any portion of a complex manifold, including, for instance, pipes and pipe fittings, valves, gauge heads, and so on, without disassembling the manifold at all. To this purpose an airtight variable volume is used, whose volume adjustment can be precisely measured; it has an overall capacity larger than that of the unknown volume. Such a variable volume is initially filled with a suitable test gas (for instance, air) at a known pressure, as carefully measured by means of a high precision capacitive gauge. By opening a valve, the test gas is allowed to expand into the previously evacuated unknown volume. A feedback control loop reacts to the resulting finite pressure drop, thus contracting the variable volume until the pressure exactly retrieves its initial value. The overall reduction of the variable volume achieved at the end of this process gives a direct measurement of the unknown volume, and definitively gets rid of the problem of dead spaces. The method proposed actually does not require the test gas to be rigorously held at a constant temperature, thus resulting in a huge simplification as compared to complex arrangements commonly used in metrology (gas expansion method), which can grant extremely accurate measurement but requires rather expensive equipments and results in time consuming methods, being therefore impractical in most applications. A simple theoretical analysis of the thermodynamic cycle and the results of experimental tests are described, which demonstrate that, in spite of its simplicity, the method provides a measurement accuracy within 0.5%. The system requires just a few minutes to complete a single measurement, and is ready immediately at the end of the process. The

  10. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  11. Uncertainty Quantification for Quantitative Imaging Holdup Measurements

    SciTech Connect

    Bevill, Aaron M; Bledsoe, Keith C

    2016-01-01

    In nuclear fuel cycle safeguards, special nuclear material "held up" in pipes, ducts, and glove boxes causes significant uncertainty in material-unaccounted-for estimates. Quantitative imaging is a proposed non-destructive assay technique with potential to estimate the holdup mass more accurately and reliably than current techniques. However, uncertainty analysis for quantitative imaging remains a significant challenge. In this work we demonstrate an analysis approach for data acquired with a fast-neutron coded aperture imager. The work includes a calibrated forward model of the imager. Cross-validation indicates that the forward model predicts the imager data typically within 23%; further improvements are forthcoming. A new algorithm based on the chi-squared goodness-of-fit metric then uses the forward model to calculate a holdup confidence interval. The new algorithm removes geometry approximations that previous methods require, making it a more reliable uncertainty estimator.

  12. Accurate blood flow measurements: are artificial tracers necessary?

    PubMed

    Poelma, Christian; Kloosterman, Astrid; Hierck, Beerend P; Westerweel, Jerry

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  13. A novel technique for highly accurate gas exchange measurements

    NASA Astrophysics Data System (ADS)

    Kalkenings, R. K.; Jähne, B. J.

    2003-04-01

    The Heidelberg Aeolotron is a circular wind-wave facility for investigating air-sea gas exchange. In this contribution a novel technique for measuring highly accurate transfer velocities k of mass transfer will be presented. Traditionally, in mass balance techniques the constant of decay for gas concentrations over time is measured. The major drawback of this concept is the long time constant. At low wind speeds and a water height greater than 1 m the period of observation has to be several days. In a gas-tight facility such as the Aeolotron, the transfer velocity k can be computed from the concentration in the water body and the change of concentration in the gas space. Owing to this fact, transfer velocities are gained while greatly reducing the measuring times to less than one hour. The transfer velocity k of a tracer can be parameterized as k=1/β \\cdot u_* \\cdot Sc^n, with the Schmidt Number Sc, shear velocity u_* and the dimensionless transfer resistance β. The Schmidt Number exponent n can be derived from simultaneous measurements of different tracers. Since these tracers are of different Schmidt number, the shear velocity is not needed. To allow for Schmidt numbers spanning a hole decade, in our experiments He, H_2, N_2O and F12 are used. The relative accuracy of measuring the transfer velocity was improved to less than 2%. In 9 consecutive experiments conducted at a wind speed of 6.2 m/s, the deviation of the Schmidt number exponent was found to be just under 0.02. This high accuracy will allow precisely determining the transition of the Schmidt number exponent from n=2/3 to n=0.5 from a flat to wavy water surface. In order to quantify gas exchange not only the wind speed is important. Surfactants have a pronounced effect on the wave field and lead to a drastic reduction in the transfer velocity. In the Aeolotron measurements were conducted with a variety of measuring devices, ranging from an imaging slope gauge (ISG) to thermal techniques with IR

  14. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  15. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  16. Accurate MTF measurement in digital radiography using noise response

    PubMed Central

    Kuhls-Gilcrist, Andrew; Jain, Amit; Bednarek, Daniel R.; Hoffmann, Kenneth R.; Rudin, Stephen

    2010-01-01

    an average of 20%. Deviations of the experimental results largely followed the trend seen in the simulation results, suggesting that differences between the two methods could be explained as resulting from the inherent inaccuracies of the edge-response measurement technique used in this study. Aliasing of the correlated noise component was shown to have a minimal effect on the measured MTF for the three detectors studied. Systems with significant aliasing of the correlated noise component (e.g., a-Se based detectors) would likely require a more sophisticated fitting scheme to provide accurate results. Conclusions: Results indicate that the noise-response method, a simple technique, can be used to accurately measure the MTF of digital x-ray detectors, while alleviating the problems and inaccuracies associated with use of precision test objects, such as a slit or an edge. PMID:20229882

  17. On Measuring Quantitative Interpretations of Reasonable Doubt

    ERIC Educational Resources Information Center

    Dhami, Mandeep K.

    2008-01-01

    Beyond reasonable doubt represents a probability value that acts as the criterion for conviction in criminal trials. I introduce the membership function (MF) method as a new tool for measuring quantitative interpretations of reasonable doubt. Experiment 1 demonstrated that three different methods (i.e., direct rating, decision theory based, and…

  18. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  19. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  20. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement

    NASA Astrophysics Data System (ADS)

    Dong, J. W.; Wang, B.; Gao, C.; Wang, L. J.

    2016-09-01

    An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The system achieves a high measurement accuracy of 0.2 ps with a 0.1 ps measurement resolution and a large dynamic range up to 50 km as well as no dead zone.

  1. Quantitative shearography in axisymmetric gas temperature measurements

    NASA Astrophysics Data System (ADS)

    VanDerWege, Brad A.; O'Brien, Christopher J.; Hochgreb, Simone

    1999-06-01

    This paper describes the use of shearing interferometry (shearography) for the quantitative measurement of gas temperatures in axisymmetric systems in which vibration and shock are substantial, and measurement time is limited. The setup and principle of operation of the interferometer are described, as well as Fourier-transform-based fringe pattern analysis, Abel transform, and sensitivity of the phase lead to temperature calculation. A helium jet and a Bunsen burner flame are shown as verification of the diagnostic. The accuracy of the measured temperature profile is shown to be limited by the Abel transform and is critically dependent on the reference temperature used.

  2. Quantitative current measurements using scanning magnetoresistance microscopy.

    PubMed

    Takezaki, Taiichi; Sueoka, Kazuhisa

    2008-08-01

    We have demonstrated the capability of scanning magnetoresistance microscope (SMRM) to be used for quantitative current measurements. The SMRM is a magnetic microscope that is based on an atomic force microscope (AFM) and simultaneously measures the localized surface magnetic field distribution and surface topography. The proposed SMRM employs an in-house built AFM cantilever equipped with a miniaturized magnetoresistive (MR) sensor as a magnetic field sensor. In this study, a spin-valve type MR sensor with a width of 1 microm was used to measure the magnetic field distribution induced by a current carrying wire with a width of 5 microm and a spacing of 1.6 microm at room temperature and under ambient conditions. Simultaneous imaging of the magnetic field distribution and the topography was successfully performed in the DC current ranging from 500 microA to 8 mA. The characterized SV sensor, which has a linear response to magnetic fields, offers the quantitative analysis of a magnetic field and current. The measured magnetic field strength was in good agreement with the result simulated using Biot-Savart's law. PMID:18599218

  3. Accurate and precise measurement of selenium by instrumental neutron activation analysis.

    PubMed

    Kim, In Jung; Watson, Russell P; Lindstrom, Richard M

    2011-05-01

    An accurate and precise measurement of selenium in Standard Reference Material (SRM) 3149, a primary calibration standard for the quantitative determination of selenium, has been accomplished by instrumental neutron activation analysis (INAA) in order to resolve a question arising during the certification process of the standard. Each limiting factor of the uncertainty in the activation analysis, including the sample preparation, irradiation, and γ-ray spectrometry steps, has been carefully monitored to minimize the uncertainty in the determined mass fraction. Neutron and γ-ray self-shielding within the elemental selenium INAA standards contributed most significantly to the uncertainty of the measurement. An empirical model compensating for neutron self-shielding and reducing the self-shielding uncertainty was successfully applied to these selenium standards. The mass fraction of selenium in the new lot of SRM 3149 was determined with a relative standard uncertainty of 0.6%.

  4. How accurately can suborbital experiments measure the CMB?

    SciTech Connect

    Oliveira-Costa, Angelica de; Tegmark, Max; Devlin, Mark J.; Page, Lyman; Miller, Amber D.; Netterfield, C. Barth; Xu Yongzhong

    2005-02-15

    Great efforts are currently being channeled into ground- and balloon-based CMB experiments, mainly to explore polarization and anisotropy on small angular scales. To optimize instrumental design and assess experimental prospects, it is important to understand in detail the atmosphere-related systematic errors that limit the science achievable with new instruments. As a step in this direction, we spatially compare the 648 square degree ground- and balloon-based QMASK map with the atmosphere-free WMAP map, finding beautiful agreement on all angular scales where both are sensitive. Although much work remains on quantifying atmospheric effects on CMB experiments, this is a reassuring quantitative assessment of the power of the state-of-the-art fast-Fourier-transform- and matrix-based mapmaking techniques that have been used for QMASK and virtually all subsequent experiments.

  5. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  6. Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions

    SciTech Connect

    Trabert, E

    2009-02-19

    A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

  7. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.

  8. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown. PMID:26767640

  9. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  10. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  11. Magnetic field models of nine CP stars from "accurate" measurements

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2013-01-01

    The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.

  12. An accurate method of extracting fat droplets in liver images for quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masahiro; Kobayashi, Naoki; Komagata, Hideki; Shinoda, Kazuma; Yamaguchi, Masahiro; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2015-03-01

    The steatosis in liver pathological tissue images is a promising indicator of nonalcoholic fatty liver disease (NAFLD) and the possible risk of hepatocellular carcinoma (HCC). The resulting values are also important for ensuring the automatic and accurate classification of HCC images, because the existence of many fat droplets is likely to create errors in quantifying the morphological features used in the process. In this study we propose a method that can automatically detect, and exclude regions with many fat droplets by using the feature values of colors, shapes and the arrangement of cell nuclei. We implement the method and confirm that it can accurately detect fat droplets and quantify the fat droplet ratio of actual images. This investigation also clarifies the effective characteristics that contribute to accurate detection.

  13. An accurate and simple method for measurement of paw edema.

    PubMed

    Fereidoni, M; Ahmadiani, A; Semnanian, S; Javan, M

    2000-01-01

    Several methods for measuring inflammation are available that rely on the parameters changing during inflammation. The most commonly used methods estimate the volume of edema formed. In this study, we present a novel method for measuring the volume of pathologically or artificially induced edema. In this model, a liquid column is placed on a balance. When an object is immersed, the liquid applies a force F to attempt its expulsion. Physically, F is the weight (W) of the volume of liquid displaced by that part of the object inserted into the liquid. A balance is used to measure this force (F=W).Therefore, the partial or entire volume of any object, for example, the inflamed hind paw of a rat, can be calculated thus, using the specific gravity of the immersion liquid, at equilibrium mass/specific gravity=volume (V). The extent of edema at time t (measured as V) will be V(t)-V(o). This method is easy to use, materials are of low cost and readily available. It is important that the rat paw (or any object whose volume is being measured) is kept from contacting the wall of the column containing the fluid whilst the value on the balance is read.

  14. On the tip calibration for accurate modulus measurement by contact resonance atomic force microscopy.

    PubMed

    Passeri, D; Rossi, M; Vlassak, J J

    2013-05-01

    Accurate quantitative elastic modulus measurements using contact resonance atomic force microscopy require the calibration of geometrical and mechanical properties of the tip as well as the choice of a suitable model for describing the cantilever-tip-sample system. In this work, we demonstrate with both simulations and experiments that the choice of the model influences the results of the calibration. Neglecting lateral force results in the underestimation of the tip indentation modulus and in the overestimation of the tip-sample contact radius. We propose a new approach to the calibration and data analysis, where lateral forces and cantilever inclination are neglected (which simplifies the calculations) and the tip parameters are assumed as fictitious.

  15. Measuring Fisher information accurately in correlated neural populations.

    PubMed

    Kanitscheider, Ingmar; Coen-Cagli, Ruben; Kohn, Adam; Pouget, Alexandre

    2015-06-01

    Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively.

  16. Highly Accurate Photogrammetric Measurements of the Planck Reflectors

    NASA Astrophysics Data System (ADS)

    Amiri Parian, J.; Gruen, Armin; Cozzani, Alessandro

    2006-06-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000000 and 1:400000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  17. Air toxics being measured more accurately, controlled more effectively

    SciTech Connect

    1995-04-01

    In response to the directives of the Clean Air Act Amendments, Argonne National Laboratory is developing new or improved pollutant control technologies for industries that burn fossil fuels. This research continues Argonne`s traditional support for the US DOE Flue Gas Cleanup Program. Research is underway to measure process emissions and identify new and improved control measures. Argonne`s emission control research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing to pilot-scale field tests of several technologies. Whenever appropriate, the work has emphasized integrated or combined control systems as the best approach to technologies that offer low cost and good operating characteristics.

  18. Inflation model building with an accurate measure of e -folding

    NASA Astrophysics Data System (ADS)

    Chongchitnan, Sirichai

    2016-08-01

    It has become standard practice to take the logarithmic growth of the scale factor as a measure of the amount of inflation, despite the well-known fact that this is only an approximation for the true amount of inflation required to solve the horizon and flatness problems. The aim of this work is to show how this approximation can be completely avoided using an alternative framework for inflation model building. We show that using the inverse Hubble radius, H =a H , as the key dynamical parameter, the correct number of e -folding arises naturally as a measure of inflation. As an application, we present an interesting model in which the entire inflationary dynamics can be solved analytically and exactly, and, in special cases, reduces to the familiar class of power-law models.

  19. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  20. ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD

    SciTech Connect

    Kurzeja, R.

    2009-09-09

    Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

  1. Mobil unit provides fast and accurate Btu measurements

    SciTech Connect

    Lansing, J. )

    1991-05-01

    Southern California Gas Co. (SoCalGas) provides service to more than four million customers in a 23,000-plus square mile area. Some 95% of these customers fall under the residential category and the remaining customers are industrial and commercial. To ensure Btu value received from the supplier and delivered to the user is accounted for properly, SoCalGas has divided its service area into 47 districts according to the gas Btu content. The company obtains the information by collecting approximately 200 sample cylinders each week from field monitoring points and transporting them to one of four laboratories for analysis. For collecting the information from each lab site, SoCalGas uses a computerized Gas Quality Measurement System (GQMS) that utilizes a Hewlett-Packard 1000 computer. Information on all the gas sample analysis is transmitted each day to the company's measurement office. About two- thirds of the lab work is performed in Los Angeles and the remaining at three satellite laboratories. Sample points are strategically located to monitor gas entering each district. By measuring gas volumes at these key points, a volume- weighted average can be determined and the customers' monthly bills then can be adjusted for gas energy content by this volume-weighted four-week average. The engineering department uses sample-cylinder analysis data to establish and maintain correct Btu boundaries. However, the time it takes for this information to be processed makes it difficult for engineering to process the data.

  2. Blood-Pressure Measuring System Gives Accurate Graphic Output

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.

  3. Accurate measurement of intestinal transit in the rat

    SciTech Connect

    Miller, M.S.; Galligan, J.J.; Burks, T.F.

    1981-11-01

    A new method for quantifying intestinal transit was evaluated by comparison with two other popular techniques. The distribution of radiochromium (51Cr) throughout the small intestine of rats previously treated with saline (1.0 ml/kg s.c.), capsaicin (10 mg/kg s.c.), hexamethonium (20 mg/kg i.p.), D-ala2-met-enkephalinamide (1.0 microgram i.c.v.), or neostigmine (0.1 mg/kg i.p.) was quantified by (1) measuring the most distal intestinal segment reached by chromium, (2) calculating the slope produced by linear regression analysis on cumulative percent chromium that had passed through each segment, and (3) determining the geometric center of the distribution of chromium throughout the small intestine. It was concluded that the geometric center methods for quantifying intestinal transit provides the most sensitive and reliable measure of intestinal transit. Less sensitive techniques often fail to detect important effects of drugs on intestinal transit.

  4. Quantitative measurement of cerebral acetylcholinesterase using.

    PubMed

    Blomqvist, G; Tavitian, B; Pappata, S; Crouzel, C; Jobert, A; Doignon, I; Di Giamberardino, L

    2001-02-01

    [11C]physostigmine, an acetylcholinesterase inhibitor, has been shown to be a promising positron emission tomography ligand to quantify the cerebral concentration of the enzyme in animals and humans in vivo. Here, a quantitative and noninvasive method to measure the regional acetylcholinesterase concentration in the brain is presented. The method is based on the observation that the ratio between regions rich in acetylcholinesterase and white matter, a region almost entirely deprived of this enzyme, was found to become approximately constant after 20 to 30 minutes, suggesting that at late time points the uptake mainly contains information about the distribution volume. Taking the white matter as the reference region, a simplified reference tissue model, with effectively one reversible tissue compartment and three parameters, was found to give a good description of the data in baboons. One of these parameters, the ratio between the total distribution volumes in the target and reference regions, showed a satisfactory correlation with the acetylcholinesterase concentration measured postmortem in two baboon brains. Eight healthy male subjects were also analyzed and the regional enzyme concentrations obtained again showed a good correlation with the known acetylcholinesterase concentrations measured in postmortem studies of human brain.

  5. Quantitative measurement of oxygen in microgravity combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1995-01-01

    This research combines two innovations in an experimental system which should result in a new capability for quantitative, nonintrusive measurement of major combustion species. Using a newly available vertical cavity surface-emitting diode laser (VCSEL) and an improved spatial scanning method, we plan to measure the temporal and spatial profiles of the concentrations and temperatures of molecular oxygen in a candle flame and in a solid fuel (cellulose sheet) system. The required sensitivity for detecting oxygen is achieved by the use of high frequency wavelength modulation spectroscopy (WMS). Measurements will be performed in the NASA Lewis 2.2-second Drop Tower Facility. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size, and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in microgravity combustion research. We will also demonstrate diode lasers' potential usefulness for compact, intrinsically-safe monitoring sensors aboard spacecraft. Such sensors could be used to monitor any of the major cabin gases as well as important pollutants.

  6. Accurate on line measurements of low fluences of charged particles

    NASA Astrophysics Data System (ADS)

    Palla, L.; Czelusniak, C.; Taccetti, F.; Carraresi, L.; Castelli, L.; Fedi, M. E.; Giuntini, L.; Maurenzig, P. R.; Sottili, L.; Taccetti, N.

    2015-03-01

    Ion beams supplied by the 3MV Tandem accelerator of LABEC laboratory (INFN-Firenze), have been used to study the feasibility of irradiating materials with ion fluences reproducible to about 1%. Test measurements have been made with 7.5 MeV 7Li2+ beams of different intensities. The fluence control is based on counting ions contained in short bursts generated by chopping the continuous beam with an electrostatic deflector followed by a couple of adjustable slits. Ions are counted by means of a micro-channel plate (MCP) detecting the electrons emitted from a thin layer of Al inserted along the beam path in between the pulse defining slits and the target. Calibration of the MCP electron detector is obtained by comparison with the response of a Si detector.

  7. Quantitative Measurements of X-ray Intensity

    SciTech Connect

    Haugh, M. J., Schneider, M.

    2011-09-01

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  8. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  9. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  10. A Quantitative Measure of Memory Reference Regularity

    SciTech Connect

    Mohan, T; de Supinski, B R; McKee, S A; Mueller, F; Yoo, A

    2001-10-01

    The memory performance of applications on existing architectures depends significantly on hardware features like prefetching and caching that exploit the locality of the memory accesses. The principle of locality has guided the design of many key micro-architectural features, including cache hierarchies, TLBs, and branch predictors. Quantitative measures of spatial and temporal locality have been useful for predicting the performance of memory hierarchy components. Unfortunately, the concept of locality is constrained to capturing memory access patterns characterized by proximity, while sophisticated memory systems are capable of exploiting other predictable access patterns. Here, we define the concepts of spatial and temporal regularity, and introduce a measure of spatial access regularity to quantify some of this predictability in access patterns. We present an efficient online algorithm to dynamically determine the spatial access regularity in an application's memory references, and demonstrate its use on a set of regular and irregular codes. We find that the use of our algorithm, with its associated overhead of trace generation, slows typical applications by a factor of 50-200, which is at least an order of magnitude better than traditional full trace generation approaches. Our approach can be applied to the characterization of program access patterns and in the implementation of sophisticated, software-assisted prefetching mechanisms, and its inherently parallel nature makes it well suited for use with multi-threaded programs.

  11. Quantitative measurement of resist outgassing during exposure

    NASA Astrophysics Data System (ADS)

    Maxim, Nicolae; Houle, Frances A.; Huijbregtse, Jeroen; Deline, Vaughn R.; Truong, Hoa; van Schaik, Willem

    2009-03-01

    Determination of both the identity and quantity of species desorbing from photoresists during exposure at any wavelength - 248nm, 193nm and EUV - has proved to be very challenging, adding considerable uncertainty to the evaluation of risks posed by specific photoresists to exposure tool optics. Measurements using a variety of techniques for gas detection and solid film analysis have been reported but analytical results have not in general been easy to compare or even in apparent agreement, in part due to difficulties in establishing absolute calibrations. In this work we describe two measurement methods that can be used for any exposure wavelength, and show that they provide self-consistent quantitative outgassing data for 2 all-organic and 2 Si-containing 193 nm resists. The first method, based upon gas collection, uses two primary chromatographic techniques. Organic products containing C, S and Si are determined by collection of vapors emitted during exposure in a cold trap and analysis by Gas Chromatography-Flame Ionization Detector-Pulsed Flame Photometric Detector-Mass Spectrometry (GC-FID-PFPD-MS). Inorganic products such as SO2 are identified by adsorbent bed with analysis by Gas Particle-Ion Chromatography (GP-IC). The calibration procedure used provides reasonable accuracy without exhaustive effort. The second method analyzes the elemental concentrations in resist films before and after exposure by secondary ion mass spectrometry technique (SIMS), which requires only knowledge of the resist compositions to be quantitative. The extent of outgassing of C and S determined by the two methods is in good agreement for all 4 resists, especially when taking their fundamentally different characters into account. Overall, the gas collection techniques yielded systematically lower outgassing numbers than did SIMS, and the origins of the spread in values, which likely bracket the true values, as well as detection limits will be discussed. The data for Si were found to

  12. A quantitative measure for protein conformational heterogeneity

    PubMed Central

    Lyle, Nicholas; Das, Rahul K.; Pappu, Rohit V.

    2013-01-01

    Conformational heterogeneity is a defining characteristic of proteins. Intrinsically disordered proteins (IDPs) and denatured state ensembles are extreme manifestations of this heterogeneity. Inferences regarding globule versus coil formation can be drawn from analysis of polymeric properties such as average size, shape, and density fluctuations. Here we introduce a new parameter to quantify the degree of conformational heterogeneity within an ensemble to complement polymeric descriptors. The design of this parameter is guided by the need to distinguish between systems that couple their unfolding-folding transitions with coil-to-globule transitions and those systems that undergo coil-to-globule transitions with no evidence of acquiring a homogeneous ensemble of conformations upon collapse. The approach is as follows: Each conformation in an ensemble is converted into a conformational vector where the elements are inter-residue distances. Similarity between pairs of conformations is quantified using the projection between the corresponding conformational vectors. An ensemble of conformations yields a distribution of pairwise projections, which is converted into a distribution of pairwise conformational dissimilarities. The first moment of this dissimilarity distribution is normalized against the first moment of the distribution obtained by comparing conformations from the ensemble of interest to conformations drawn from a Flory random coil model. The latter sets an upper bound on conformational heterogeneity thus ensuring that the proposed measure for intra-ensemble heterogeneity is properly calibrated and can be used to compare ensembles for different sequences and across different temperatures. The new measure of conformational heterogeneity will be useful in quantitative studies of coupled folding and binding of IDPs and in de novo sequence design efforts that are geared toward controlling the degree of heterogeneity in unbound forms of IDPs. PMID:24089719

  13. Restriction Site Tiling Analysis: accurate discovery and quantitative genotyping of genome-wide polymorphisms using nucleotide arrays

    PubMed Central

    2010-01-01

    High-throughput genotype data can be used to identify genes important for local adaptation in wild populations, phenotypes in lab stocks, or disease-related traits in human medicine. Here we advance microarray-based genotyping for population genomics with Restriction Site Tiling Analysis. The approach simultaneously discovers polymorphisms and provides quantitative genotype data at 10,000s of loci. It is highly accurate and free from ascertainment bias. We apply the approach to uncover genomic differentiation in the purple sea urchin. PMID:20403197

  14. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.

    PubMed

    Lee, Han B; Schwab, Tanya L; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L; Cervera, Roberto Lopez; McNulty, Melissa S; Bostwick, Hannah S; Clark, Karl J

    2016-06-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  15. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.

    PubMed

    Lee, Han B; Schwab, Tanya L; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L; Cervera, Roberto Lopez; McNulty, Melissa S; Bostwick, Hannah S; Clark, Karl J

    2016-06-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  16. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping

    PubMed Central

    Lee, Han B.; Schwab, Tanya L.; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L.; Cervera, Roberto Lopez; McNulty, Melissa S.; Bostwick, Hannah S.; Clark, Karl J.

    2016-01-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98–100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  17. Quantitative measurement of nanomechanical properties in composite materials

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    results significantly, and new, power-law body of revolution models of the probe tip geometry have been applied. Due to the low yield strength of polymers compared with other engineering materials, elastic-plastic contact is considered to better represent the epoxy surface response and was used to acquire more accurate quantitative measurements. Visco-elastic contact response was introduced in the boundary condition of the AFAM cantilever vibration model, due to the creep nature of epoxy, to determine time-dependent effects. These methods have direct impact on the quantitative measurement capabilities of near-filler interphase regions in polymers and composites and the long-term influence of environmental conditions on composites. In addition, quantitative AFAM scans were made on distal surfaces of human bicuspids and molars, to determine the microstructural and spatial variation in nanomechanical properties of the enamel biocomposite. Single point AFAM measurements were performed on individual enamel prism and sheath locations to determine spatial elastic modulus. Mechanical property variation of enamel is associated to the differences in the mineral to organic content and the apatite crystal orientations within the enamel microstructure. Also, variation in the elastic modulus of the enamel ultrastructure was observed in measurements at the outer enamel versus near the dentine enamel junction (DEJ).

  18. Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Hao; Lee, Mon-Juan; Lee, Wei

    2016-08-01

    Liquid crystal (LC)-based biosensing is generally limited by the lack of accurate quantitative strategies. This study exploits the unique electric capacitance properties of LCs to establish quantitative assay methods for bovine serum albumin (BSA) biomolecules. By measuring the voltage-dependent electric capacitance of LCs under an alternating-current field with increasing amplitude, positive correlations were derived between the BSA concentration and the electric capacitance parameters of LCs. This study demonstrates that quantitative analysis can be achieved in LC-based biosensing through electric capacitance measurements extensively employed in LCD research and development.

  19. Accurate determination of human serum transferrin isoforms: Exploring metal-specific isotope dilution analysis as a quantitative proteomic tool.

    PubMed

    Busto, M Estela del Castillo; Montes-Bayón, Maria; Sanz-Medel, Alfredo

    2006-12-15

    Carbohydrate-deficient transferrin (CDT) measurements are considered a reliable marker for chronic alcohol consumption, and its use is becoming extensive in forensic medicine. However, CDT is not a single molecular entity but refers to a group of sialic acid-deficient transferrin isoforms from mono- to trisialotransferrin. Thus, the development of methods to analyze accurately and precisely individual transferrin isoforms in biological fluids such as serum is of increasing importance. The present work illustrates the use of ICPMS isotope dilution analysis for the quantification of transferrin isoforms once saturated with iron and separated by anion exchange chromatography (Mono Q 5/50) using a mobile phase consisting of a gradient of ammonium acetate (0-250 mM) in 25 mM Tris-acetic acid (pH 6.5). Species-specific and species-unspecific spikes have been explored. In the first part of the study, the use of postcolumn addition of a solution of 200 ng mL(-1) isotopically enriched iron (57Fe, 95%) in 25 mM sodium citrate/citric acid (pH 4) permitted the quantification of individual sialoforms of transferrin (from S2 to S5) in human serum samples of healthy individuals as well as alcoholic patients. Second, the species-specific spike method was performed by synthesizing an isotopically enriched standard of saturated transferrin (saturated with 57Fe). The characterization of the spike was performed by postcolumn reverse isotope dilution analysis (this is, by postcolumn addition of a solution of 200 ng mL(-1) natural iron in sodium citrate/citric acid of pH 4). Also, the stability of the transferrin spike was tested during one week with negligible species transformation. Finally, the enriched transferrin was used to quantify the individual isoforms in the same serum samples obtaining results comparative to those of postcolumn isotope dilution and to those previously published in the literature, demonstrating the suitability of both strategies for quantitative transferrin

  20. Guidance to Achieve Accurate Aggregate Quantitation in Biopharmaceuticals by SV-AUC.

    PubMed

    Arthur, Kelly K; Kendrick, Brent S; Gabrielson, John P

    2015-01-01

    The levels and types of aggregates present in protein biopharmaceuticals must be assessed during all stages of product development, manufacturing, and storage of the finished product. Routine monitoring of aggregate levels in biopharmaceuticals is typically achieved by size exclusion chromatography (SEC) due to its high precision, speed, robustness, and simplicity to operate. However, SEC is error prone and requires careful method development to ensure accuracy of reported aggregate levels. Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an orthogonal technique that can be used to measure protein aggregation without many of the potential inaccuracies of SEC. In this chapter, we discuss applications of SV-AUC during biopharmaceutical development and how characteristics of the technique make it better suited for some applications than others. We then discuss the elements of a comprehensive analytical control strategy for SV-AUC. Successful implementation of these analytical control elements ensures that SV-AUC provides continued value over the long time frames necessary to bring biopharmaceuticals to market.

  1. An improved method for accurate and rapid measurement of flight performance in Drosophila.

    PubMed

    Babcock, Daniel T; Ganetzky, Barry

    2014-01-01

    Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens. PMID:24561810

  2. A Global Approach to Accurate and Automatic Quantitative Analysis of NMR Spectra by Complex Least-Squares Curve Fitting

    NASA Astrophysics Data System (ADS)

    Martin, Y. L.

    The performance of quantitative analysis of 1D NMR spectra depends greatly on the choice of the NMR signal model. Complex least-squares analysis is well suited for optimizing the quantitative determination of spectra containing a limited number of signals (<30) obtained under satisfactory conditions of signal-to-noise ratio (>20). From a general point of view it is concluded, on the basis of mathematical considerations and numerical simulations, that, in the absence of truncation of the free-induction decay, complex least-squares curve fitting either in the time or in the frequency domain and linear-prediction methods are in fact nearly equivalent and give identical results. However, in the situation considered, complex least-squares analysis in the frequency domain is more flexible since it enables the quality of convergence to be appraised at every resonance position. An efficient data-processing strategy has been developed which makes use of an approximate conjugate-gradient algorithm. All spectral parameters (frequency, damping factors, amplitudes, phases, initial delay associated with intensity, and phase parameters of a baseline correction) are simultaneously managed in an integrated approach which is fully automatable. The behavior of the error as a function of the signal-to-noise ratio is theoretically estimated, and the influence of apodization is discussed. The least-squares curve fitting is theoretically proved to be the most accurate approach for quantitative analysis of 1D NMR data acquired with reasonable signal-to-noise ratio. The method enables complex spectral residuals to be sorted out. These residuals, which can be cumulated thanks to the possibility of correcting for frequency shifts and phase errors, extract systematic components, such as isotopic satellite lines, and characterize the shape and the intensity of the spectral distortion with respect to the Lorentzian model. This distortion is shown to be nearly independent of the chemical species

  3. Quantitative Method of Measuring Metastatic Activity

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  4. Quantitative measurement of feline colonic transit

    SciTech Connect

    Krevsky, B.; Somers, M.B.; Maurer, A.H.; Malmud, L.S.; Knight, L.C.; Fisher, R.S.

    1988-10-01

    Colonic transit scintigraphy, a method for quantitatively evaluating the movement of the fecal stream in vivo, was employed to evaluate colonic transit in the cat. Scintigraphy was performed in duplicate in five cats and repeated four times in one cat. After instillation of an 111In marker into the cecum through a surgically implanted silicone cecostomy tube, colonic movement of the instillate was quantitated for 24 h using gamma scintigraphy. Antegrade and retrograde motion of radionuclide was observed. The cecum and ascending colon emptied rapidly, with a half-emptying time of 1.68 +/- 0.56 h (mean +/- SE). After 24 h, 25.1 +/- 5.2% of the activity remained in the transverse colon. The progression of the geometric center was initially rapid, followed later by a delayed phase. Geometric center reproducibility was found to be high when analyzed using simple linear regression (slope = 0.92; r = 0.73; P less than 0.01). Atropine (0.1 mg/kg im) was found to delay cecum and ascending colon emptying and delay progression of the geometric center. These results demonstrate both 1) the ability of colonic transit scintigraphy to detect changes in transit induced by pharmacological manipulation and 2) the fact that muscarinic blockade inhibits antegrade transit of the fecal stream. We conclude that feline colonic transit may be studied in a quantitative and reproducible manner with colonic transit scintigraphy.

  5. Quantitative transverse flow measurement using OCT speckle decorrelation analysis

    PubMed Central

    Liu, Xuan; Huang, Yong; Ramella-Roman, Jessica C.; Mathews, Scott A.; Kang, Jin U.

    2014-01-01

    We propose an inter-Ascan speckle decorrelation based method that can quantitatively assess blood flow normal to the direction of the OCT imaging beam. To validate this method, we performed a systematic study using both phantom and in vivo animal models. Results show that our speckle analysis method can accurately extract transverse flow speed with high spatial and temporal resolution. PMID:23455305

  6. Simple, fast, and accurate methodology for quantitative analysis using Fourier transform infrared spectroscopy, with bio-hybrid fuel cell examples.

    PubMed

    Mackie, David M; Jahnke, Justin P; Benyamin, Marcus S; Sumner, James J

    2016-01-01

    The standard methodologies for quantitative analysis (QA) of mixtures using Fourier transform infrared (FTIR) instruments have evolved until they are now more complicated than necessary for many users' purposes. We present a simpler methodology, suitable for widespread adoption of FTIR QA as a standard laboratory technique across disciplines by occasional users.•Algorithm is straightforward and intuitive, yet it is also fast, accurate, and robust.•Relies on component spectra, minimization of errors, and local adaptive mesh refinement.•Tested successfully on real mixtures of up to nine components. We show that our methodology is robust to challenging experimental conditions such as similar substances, component percentages differing by three orders of magnitude, and imperfect (noisy) spectra. As examples, we analyze biological, chemical, and physical aspects of bio-hybrid fuel cells.

  7. Simple, fast, and accurate methodology for quantitative analysis using Fourier transform infrared spectroscopy, with bio-hybrid fuel cell examples

    PubMed Central

    Mackie, David M.; Jahnke, Justin P.; Benyamin, Marcus S.; Sumner, James J.

    2016-01-01

    The standard methodologies for quantitative analysis (QA) of mixtures using Fourier transform infrared (FTIR) instruments have evolved until they are now more complicated than necessary for many users’ purposes. We present a simpler methodology, suitable for widespread adoption of FTIR QA as a standard laboratory technique across disciplines by occasional users.•Algorithm is straightforward and intuitive, yet it is also fast, accurate, and robust.•Relies on component spectra, minimization of errors, and local adaptive mesh refinement.•Tested successfully on real mixtures of up to nine components. We show that our methodology is robust to challenging experimental conditions such as similar substances, component percentages differing by three orders of magnitude, and imperfect (noisy) spectra. As examples, we analyze biological, chemical, and physical aspects of bio-hybrid fuel cells. PMID:26977411

  8. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    SciTech Connect

    Labuda, Aleksander; Proksch, Roger

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  9. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Proksch, Roger

    2015-06-01

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  10. Preferential access to genetic information from endogenous hominin ancient DNA and accurate quantitative SNP-typing via SPEX

    PubMed Central

    Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip

    2010-01-01

    The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251

  11. Accurate measurement of the relative abundance of different DNA species in complex DNA mixtures.

    PubMed

    Jeong, Sangkyun; Yu, Hyunjoo; Pfeifer, Karl

    2012-06-01

    A molecular tool that can compare the abundances of different DNA sequences is necessary for comparing intergenic or interspecific gene expression. We devised and verified such a tool using a quantitative competitive polymerase chain reaction approach. For this approach, we adapted a competitor array, an artificially made plasmid DNA in which all the competitor templates for the target DNAs are arranged with a defined ratio, and melting analysis for allele quantitation for accurate quantitation of the fractional ratios of competitively amplified DNAs. Assays on two sets of DNA mixtures with explicitly known compositional structures of the test sequences were performed. The resultant average relative errors of 0.059 and 0.021 emphasize the highly accurate nature of this method. Furthermore, the method's capability of obtaining biological data is demonstrated by the fact that it can illustrate the tissue-specific quantitative expression signatures of the three housekeeping genes G6pdx, Ubc, and Rps27 by using the forms of the relative abundances of their transcripts, and the differential preferences of Igf2 enhancers for each of the multiple Igf2 promoters for the transcription.

  12. Accurate Measurement of the Relative Abundance of Different DNA Species in Complex DNA Mixtures

    PubMed Central

    Jeong, Sangkyun; Yu, Hyunjoo; Pfeifer, Karl

    2012-01-01

    A molecular tool that can compare the abundances of different DNA sequences is necessary for comparing intergenic or interspecific gene expression. We devised and verified such a tool using a quantitative competitive polymerase chain reaction approach. For this approach, we adapted a competitor array, an artificially made plasmid DNA in which all the competitor templates for the target DNAs are arranged with a defined ratio, and melting analysis for allele quantitation for accurate quantitation of the fractional ratios of competitively amplified DNAs. Assays on two sets of DNA mixtures with explicitly known compositional structures of the test sequences were performed. The resultant average relative errors of 0.059 and 0.021 emphasize the highly accurate nature of this method. Furthermore, the method's capability of obtaining biological data is demonstrated by the fact that it can illustrate the tissue-specific quantitative expression signatures of the three housekeeping genes G6pdx, Ubc, and Rps27 by using the forms of the relative abundances of their transcripts, and the differential preferences of Igf2 enhancers for each of the multiple Igf2 promoters for the transcription. PMID:22334570

  13. A quantitatively accurate theory of stable crack growth in single phase ductile metal alloys under the influence of cyclic loading

    NASA Astrophysics Data System (ADS)

    Huffman, Peter oel

    Although fatigue has been a well studied phenomenon over the past century and a half, there has yet to be found a quantitative link between fatigue crack growth rates and materials properties. This work serves to establish that link, in the case of well behaved, single phase, ductile metals. The primary mechanisms of fatigue crack growth are identified in general terms, followed by a description of the dependence of the stress intensity factor range on those mechanisms. A method is presented for calculating the crack growth rate for an ideal, linear elastic, non-brittle material, which is assumed to be similar to the crack growth rate for a real material at very small crack growth rate values. The threshold stress intensity factor is discussed as a consequence of "crack tip healing". Residual stresses are accounted for in the form of an approximated residual stress intensity factor. The results of these calculations are compared to data available in the literature. It is concluded that this work presents a new way to consider crack growth with respect to cyclic loading which is quantitatively accurate, and introduces a new way to consider fracture mechanics with respect to the relatively small, cyclic loads, normally associated with fatigue.

  14. Wavelet prism decomposition analysis applied to CARS spectroscopy: a tool for accurate and quantitative extraction of resonant vibrational responses.

    PubMed

    Kan, Yelena; Lensu, Lasse; Hehl, Gregor; Volkmer, Andreas; Vartiainen, Erik M

    2016-05-30

    We propose an approach, based on wavelet prism decomposition analysis, for correcting experimental artefacts in a coherent anti-Stokes Raman scattering (CARS) spectrum. This method allows estimating and eliminating a slowly varying modulation error function in the measured normalized CARS spectrum and yields a corrected CARS line-shape. The main advantage of the approach is that the spectral phase and amplitude corrections are avoided in the retrieved Raman line-shape spectrum, thus significantly simplifying the quantitative reconstruction of the sample's Raman response from a normalized CARS spectrum in the presence of experimental artefacts. Moreover, the approach obviates the need for assumptions about the modulation error distribution and the chemical composition of the specimens under study. The method is quantitatively validated on normalized CARS spectra recorded for equimolar aqueous solutions of D-fructose, D-glucose, and their disaccharide combination sucrose. PMID:27410113

  15. Wavelet prism decomposition analysis applied to CARS spectroscopy: a tool for accurate and quantitative extraction of resonant vibrational responses.

    PubMed

    Kan, Yelena; Lensu, Lasse; Hehl, Gregor; Volkmer, Andreas; Vartiainen, Erik M

    2016-05-30

    We propose an approach, based on wavelet prism decomposition analysis, for correcting experimental artefacts in a coherent anti-Stokes Raman scattering (CARS) spectrum. This method allows estimating and eliminating a slowly varying modulation error function in the measured normalized CARS spectrum and yields a corrected CARS line-shape. The main advantage of the approach is that the spectral phase and amplitude corrections are avoided in the retrieved Raman line-shape spectrum, thus significantly simplifying the quantitative reconstruction of the sample's Raman response from a normalized CARS spectrum in the presence of experimental artefacts. Moreover, the approach obviates the need for assumptions about the modulation error distribution and the chemical composition of the specimens under study. The method is quantitatively validated on normalized CARS spectra recorded for equimolar aqueous solutions of D-fructose, D-glucose, and their disaccharide combination sucrose.

  16. Highly accurate SNR measurement using the covariance of two SEM images with the identical view.

    PubMed

    Oho, Eisaku; Suzuki, Kazuhiko

    2012-01-01

    Quality of an SEM image is strongly influenced by the extent of noise. As a well-known method in the field of SEM, the covariance is applied to measure the signal-to-noise ratio (SNR). This method has potential ability for highly accurate measurement of the SNR, which is hardly known until now. If the precautions discussed in this article are adopted, that method can demonstrate its real ability. These precautions are strongly related to "proper acquisition of two images with the identical view," "alignment of an aperture diaphragm," "reduction of charging phenomena," "elimination of particular noises," and "accurate focusing," As necessary, characteristics in SEM signal and noise are investigated from a few standpoints. When using the maximum performance of this measurement, SNR of many SEM images obtained in a variety of the SEM operating conditions and specimens can be measured accurately.

  17. Quantitative blood flux measurement using MUSIC

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Qin, Jia; Wang, Ruikang K.

    2014-03-01

    In this paper, we propose a method to quantify red blood cell (RBC) flow through capillary loops and microvessels using optical microangiography (OMAG). Current existing methods of capillary flow quantification either require a very long scanning time (~few minutes) or a large acquisition number per location (+100 scans per location) to form a highresolution spectral estimation. We utilize a model-based super-resolution spectral estimation technique based on principle of orthogonality to quantify moving RBCs within a voxel. The scanning protocol required for our method is very similar to 3D ultrahigh sensitive OMAG that requires few scans per location (8) and can be performed in few seconds that makes it applicable for in vivo experiments. This method is analogous to power Doppler in ultrasonography and estimates the number of red blood cells passing through the beam as opposed to the velocity of the particles. The technique is tested both qualitatively and quantitatively by using OMAG to image microcirculation within mouse ear flap in vivo.

  18. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  19. Quantitative shape measurements of distal volcanic ash

    NASA Astrophysics Data System (ADS)

    Riley, Colleen M.; Rose, William I.; Bluth, Gregg J. S.

    2003-10-01

    Large-scale volcanic eruptions produce fine ash (<200 μm) which has a long atmospheric residence time (1 hour or more) and can be transported great distances from the volcanic source, thus, becoming a hazard to aircraft and public health. Ash particles have irregular shapes, so data on particle shape, size, and terminal velocities are needed to understand how the irregular-shaped particles affect transport processes and radiative transfer measurements. In this study, a methodology was developed to characterize particle shapes, sizes, and terminal velocities for three ash samples of different compositions. The shape and size of 2500 particles from (1) distal fallout (˜100 km) of the 14 October 1974 Fuego eruption (basaltic), (2) the secondary maxima (˜250 km) of the 18 August 1992 Spurr eruption (andesitic), and (3) the Miocene Ash Hollow member, Nebraska (rhyolitic) were measured using image analysis techniques. Samples were sorted into 10 to 19 terminal velocity groups (0.6-59.0 cm/s) using an air elutriation device. Grain-size distributions for the samples were measured using laser diffraction. Aspect ratio, feret diameter, and perimeter measurements were found to be the most useful descriptors of how particle shape affects terminal velocity. These measurement values show particle shape differs greatly from a sphere (commonly used in models and algorithms). The diameters of ash particles were 10-120% larger than ideal spheres at the same terminal velocity, indicating that irregular particle shape greatly increases drag. Gas-adsorption derived surface areas are 1 to 2 orders of magnitude higher than calculated surface areas based on measured dimensions and simple geometry, indicating that particle shapes are highly irregular. Correction factors for surface area were derived from the ash sample measurements so that surface areas calculated by assuming spherical particle shapes can be corrected to reflect more realistic values.

  20. Quantitative Measures of Mineral Supply Risk

    NASA Astrophysics Data System (ADS)

    Long, K. R.

    2009-12-01

    Almost all metals and many non-metallic minerals are traded internationally. An advantage of global mineral markets is that minerals can be obtained from the globally lowest-cost source. For example, one rare-earth element (REE) mine in China, Bayan Obo, is able to supply most of world demand for rare earth elements at a cost significantly less than its main competitors. Concentration of global supplies at a single mine raises significant political risks, illustrated by China’s recent decision to prohibit the export of some REEs and severely limit the export of others. The expected loss of REE supplies will have a significant impact on the cost and production of important national defense technologies and on alternative energy programs. Hybrid vehicles and wind-turbine generators, for example, require REEs for magnets and batteries. Compact fluorescent light bulbs use REE-based phosphors. These recent events raise the general issue of how to measure the degree of supply risk for internationally sourced minerals. Two factors, concentration of supply and political risk, must first be addressed. Concentration of supply can be measured with standard economic tools for measuring industry concentration, using countries rather than firms as the unit of analysis. There are many measures of political risk available. That of the OECD is a measure of a country’s commitment to rule-of-law and enforcement of contracts, as well as political stability. Combining these measures provides a comparative view of mineral supply risk across commodities and identifies several minerals other than REEs that could suddenly become less available. Combined with an assessment of the impact of a reduction in supply, decision makers can use these measures to prioritize risk reduction efforts.

  1. Quantitative Measurement of the Digital Divide

    NASA Astrophysics Data System (ADS)

    Cottrell, Roger

    2007-04-01

    Bandwidth and the Internet infrastructure are the life-blood of the world's knowledge economy, but they are often scarcest where most needed. Measuring the numbers of users of the Internet infrastructure is not easy in developing countries because many people share accounts, use corporate and academic networks, or visit the rapidly growing number of cyber cafes, telecentres and business services. Also measuring the number of users does not take into account the level of use. One valuable indicator for measuring the Internet infrastructure is the international Internet performance of a country or region. One of the major aims of the PingER project is to provide an historical archive of extensive, publicly accessible, up-to-date, measurements, analyses and reports of multiple Internet performance indicators (such as delay, loss, throughput, reachability, and jitter) between sites, countries and regions of the world. This talk will briefly describe the PingER project and then compare and contrast the Internet performance and its trends within and between countries and regions of the world. By means of extensive case studies it will also identify which regions need the greatest attention, together with their major issues and possible approaches to reducing the divide.

  2. Quantitative Species Measurements in Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.; Wood, William R.; Chen, Shin-Juh; Dahm, Werner J. A.; Piltch, Nancy D.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in complicated turbulent reacting flows. The elegant simplicity of the flame-vortex interaction permits the study of these complex interactions under relatively controllable experimental configurations, in contrast to direct measurements in turbulent flames. The ability to measure and model the fundamental phenomena that occur in a turbulent flame, but with time and spatial scales which are amenable to our diagnostics, permits significant improvements in the understanding of turbulent combustion under both normal and reduced gravity conditions. In this paper, we report absolute mole fraction measurements of methane in a reacting vortex ring. These microgravity experiments are performed in the 2.2-sec drop tower at NASA Glenn Research Center. In collaboration with Drs. Chen and Dahm at the University of Michigan, measured methane absorbances are incorporated into a new model from which the temperature and concentrations of all major gases in the flame can be determined at all positions and times in the development of the vortex ring. This is the first demonstration of the ITAC (Iterative Temperature with Assumed Chemistry) approach, and the results of these computations and analyses are presented in a companion paper by Dahm and Chen at this Workshop. We believe that the ITAC approach will become a powerful tool in understanding a wide variety of combustion flames under both equilibrium and non-equilibrium conditions.

  3. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  4. Development and evaluation of a liquid chromatography-mass spectrometry method for rapid, accurate quantitation of malondialdehyde in human plasma.

    PubMed

    Sobsey, Constance A; Han, Jun; Lin, Karen; Swardfager, Walter; Levitt, Anthony; Borchers, Christoph H

    2016-09-01

    Malondialdhyde (MDA) is a commonly used marker of lipid peroxidation in oxidative stress. To provide a sensitive analytical method that is compatible with high throughput, we developed a multiple reaction monitoring-mass spectrometry (MRM-MS) approach using 3-nitrophenylhydrazine chemical derivatization, isotope-labeling, and liquid chromatography (LC) with electrospray ionization (ESI)-tandem mass spectrometry assay to accurately quantify MDA in human plasma. A stable isotope-labeled internal standard was used to compensate for ESI matrix effects. The assay is linear (R(2)=0.9999) over a 20,000-fold concentration range with a lower limit of quantitation of 30fmol (on-column). Intra- and inter-run coefficients of variation (CVs) were <2% and ∼10% respectively. The derivative was stable for >36h at 5°C. Standards spiked into plasma had recoveries of 92-98%. When compared to a common LC-UV method, the LC-MS method found near-identical MDA concentrations. A pilot project to quantify MDA in patient plasma samples (n=26) in a study of major depressive disorder with winter-type seasonal pattern (MDD-s) confirmed known associations between MDA concentrations and obesity (p<0.02). The LC-MS method provides high sensitivity and high reproducibility for quantifying MDA in human plasma. The simple sample preparation and rapid analysis time (5x faster than LC-UV) offers high throughput for large-scale clinical applications. PMID:27437618

  5. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  6. Quantitative Measurements of Autobiographical Memory Content

    PubMed Central

    Mainetti, Matteo; Ascoli, Giorgio A.

    2012-01-01

    Autobiographical memory (AM), subjective recollection of past experiences, is fundamental in everyday life. Nevertheless, characterization of the spontaneous occurrence of AM, as well as of the number and types of recollected details, remains limited. The CRAM (Cue-Recalled Autobiographical Memory) test (http://cramtest.info) adapts and combines the cue-word method with an assessment that collects counts of details recalled from different life periods. The SPAM (Spontaneous Probability of Autobiographical Memories) protocol samples introspection during everyday activity, recording memory duration and frequency. These measures provide detailed, naturalistic accounts of AM content and frequency, quantifying essential dimensions of recollection. AM content (∼20 details/recollection) decreased with the age of the episode, but less drastically than the probability of reporting remote compared to recent memories. AM retrieval was frequent (∼20/hour), each memory lasting ∼30 seconds. Testable hypotheses of the specific content retrieved in a fixed time from given life periods are presented. PMID:23028629

  7. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  8. Toward Accurate Measurement of Participation: Rethinking the Conceptualization and Operationalization of Participatory Evaluation

    ERIC Educational Resources Information Center

    Daigneault, Pierre-Marc; Jacob, Steve

    2009-01-01

    While participatory evaluation (PE) constitutes an important trend in the field of evaluation, its ontology has not been systematically analyzed. As a result, the concept of PE is ambiguous and inadequately theorized. Furthermore, no existing instrument accurately measures stakeholder participation. First, this article attempts to overcome these…

  9. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  10. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  11. Particle Image Velocimetry Measurements in an Anatomically-Accurate Scaled Model of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Krane, Michael; Richter, Joseph; Craven, Brent

    2013-11-01

    The mammalian nose is a multi-purpose organ that houses a convoluted airway labyrinth responsible for respiratory air conditioning, filtering of environmental contaminants, and chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of respiratory airflow and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture an anatomically-accurate transparent model for stereoscopic particle image velocimetry (SPIV) measurements. Challenges in the design and manufacture of an index-matched anatomical model are addressed. PIV measurements are presented, which are used to validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal airflow. Supported by the National Science Foundation.

  12. Defining allowable physical property variations for high accurate measurements on polymer parts

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Sonne, M. R.; Madruga, D. G.; De Chiffre, L.; Hattel, J. H.

    2016-06-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which is a challenge in today`s production and metrology environments. The residual deformations in polymer products at room temperature after injection molding are important when micrometer accuracy needs to be achieved. Numerical modelling can give a valuable insight to what is happening in the polymer during cooling down after injection molding. In order to obtain accurate simulations, accurate inputs to the model are crucial. In reality however, the material and physical properties will have some variations. Although these variations may be small, they can act as a source of uncertainty for the measurement. In this paper, we investigated how big the variation in material and physical properties are allowed in order to reach the 5 μm target on the uncertainty.

  13. Radiometer for accurate (+ or - 1%) measurement of solar irradiance equal to 10,000 solar constants

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.

    1981-01-01

    The 10,000 solar constant radiometer was developed for the accurate (+ or - 1%) measurement of the irradiance produced in the image formed by a parabolic reflector or by a multiple mirror solar installation. This radiometer is water cooled, weighs about 1 kg, and is 5 cm (2 in.) in diameter by 10 cm (4 in.) long. A sting is provided for mounting the radiometer in the solar installation capable of measuring irradiances as high as 20,000 solar constants, the instrument is self calibrating. Its accuracy depends on the accurate determination of the cavity aperture, and absorptivity of the cavity, and accurate electrical measurements. The spectral response is flat over the entire spectrum from far UV to far IR. The radiometer responds to a measurement within 99.7% of the final value within 8 s. During a measurement of the 10,000 solar constant irradiance, the temperature rise of the water is about 20 C. The radiometer has perfect cosine response up to 60 deg off the radiometer axis.

  14. Measurement Invariance: A Foundational Principle for Quantitative Theory Building

    ERIC Educational Resources Information Center

    Nimon, Kim; Reio, Thomas G., Jr.

    2011-01-01

    This article describes why measurement invariance is a critical issue to quantitative theory building within the field of human resource development. Readers will learn what measurement invariance is and how to test for its presence using techniques that are accessible to applied researchers. Using data from a LibQUAL+[TM] study of user…

  15. Quantitative and Qualitative Measures of Student Learning at University Level

    ERIC Educational Resources Information Center

    Hay, David B.; Wells, Harvey; Kinchin, Ian M.

    2008-01-01

    This paper reports the use of quantitative and qualitative measures of university student learning during teaching in psychiatry. Concept mapping, pre-and post test scores and performance in written assignments were used to measure the quality of change in personal understanding and to show the ways that the knowledge-targets of the course were…

  16. The calibration of video cameras for quantitative measurements

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.; Shortis, Mark R.

    1993-01-01

    Several different recent applications of velocimetry at Langley Research Center are described in order to show the need for video camera calibration for quantitative measurements. Problems peculiar to video sensing are discussed, including synchronization and timing, targeting, and lighting. The extension of the measurements to include radiometric estimates is addressed.

  17. Practical do-it-yourself device for accurate volume measurement of breast.

    PubMed

    Tezel, E; Numanoğlu, A

    2000-03-01

    A simple and accurate method of measuring differences in breast volume based on Archimedes' principle is described. In this method, a plastic container is placed on the breast of the patient who is lying in supine position. While the breast occupies part of the container, the remaining part is filled with water and the volume is measured. This method allows the measurement of the volume differences of asymmetric breasts and also helps the surgeon to estimate the size of the prosthesis to be used in augmentation mammaplasty. PMID:10724264

  18. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  19. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    SciTech Connect

    Heinrich, Martin; Kluska, Sven; Binder, Sebastian; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given on how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.

  20. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  1. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation. PMID:27517769

  2. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard

    NASA Astrophysics Data System (ADS)

    Wallace, W. C.; Ghafur, O.; Khurmi, C.; Sainadh U, Satya; Calvert, J. E.; Laban, D. E.; Pullen, M. G.; Bartschat, K.; Grum-Grzhimailo, A. N.; Wells, D.; Quiney, H. M.; Tong, X. M.; Litvinyuk, I. V.; Sang, R. T.; Kielpinski, D.

    2016-07-01

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  3. Are External Knee Load and EMG Measures Accurate Indicators of Internal Knee Contact Forces during Gait?

    PubMed Central

    Meyer, Andrew J.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Colwell, Clifford W.; Fregly, Benjamin J.

    2013-01-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle EMG signals) would be clinically valuable. This study quantifies how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. PMID:23280647

  4. Accurate Determination of Torsion and Pure Bending Moment for Viscoelastic Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Che; Ko, Chih-Chin; Shiau, Li-Ming

    Measurements of time-dependent material properties in the context of linear viscoelasticity, at a given frequency and temperature, require accurate determination of both loading and deformation that are subjected to the testing materials. A pendulum-type viscoelastic spectroscopy is developed to experimentally measure loss tangent and the magnitude of dynamic modulus of solid materials. The mechanical system of the device is based on the behavior of the cantilever beam, and torsion and pure bending moment are generated from the interaction between a permanent magnet and the Helmholtz coils. The strength of the magnetic interactions may be determined with a material with known mechanical properties, such as aluminum 6061T4 alloy. The sensitivity of the torque measurement is on the order of one micro N-m level. With the high accurate torque measurement and deformation detection from a laser-based displacement measurement system, viscoelastic properties of materials can be experimentally measured in different frequency regimes. Sinusoidal driving signals are adopted for measuring complex modulus in the sub-resonant regime, and dc bias driving for creep tests in the low frequency limit. At structural resonant frequencies, the full-width-at-half-maximum (FWHM) method or Lorentzian curve fitting method is adopted to extract material properties. The completion of determining material properties in the wide frequency spectrum may help to identify the deformation mechanisms of the material and to create better models for simulation work.

  5. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    PubMed

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  6. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  7. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  8. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    SciTech Connect

    Malik, Afshan N.; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana; Laftah, Abas; Cunningham, Phil

    2011-08-19

    Highlights: {yields} Mitochondrial dysfunction is central to many diseases of oxidative stress. {yields} 95% of the mitochondrial genome is duplicated in the nuclear genome. {yields} Dilution of untreated genomic DNA leads to dilution bias. {yields} Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as {beta}-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.

  9. A more accurate method for measurement of tuberculocidal activity of disinfectants.

    PubMed Central

    Ascenzi, J M; Ezzell, R J; Wendt, T M

    1987-01-01

    The current Association of Official Analytical Chemists method for testing tuberculocidal activity of disinfectants has been shown to be inaccurate and to have a high degree of variability. An alternate test method is proposed which is more accurate, more precise, and quantitative. A suspension of Mycobacterium bovis BCG was exposed to a variety of disinfectant chemicals and a kill curve was constructed from quantitative data. Data are presented that show the discrepancy between current claims, determined by the Association of Official Analytical Chemists method, of selected commercially available products and claims generated by the proposed method. The effects of different recovery media were examined. The data indicated that Mycobacteria 7H11 and Middlebrook 7H10 agars were equal in recovery of the different chemically treated cells, with Lowenstein-Jensen agar having approximately the same recovery rate but requiring incubation for up to 3 weeks longer for countability. The kill curves generated for several different chemicals were reproducible, as indicated by the standard deviations of the slopes and intercepts of the linear regression curves. PMID:3314707

  10. Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy.

    PubMed

    Bernard, Simon; Grimal, Quentin; Laugier, Pascal

    2013-02-01

    Resonant ultrasound spectroscopy (RUS) allows to accurately characterize the complete set of elastic constants of an anisotropic material from a set of measured mechanical resonant frequencies of a specimen. This method does not suffer from the drawbacks and limitations of the conventional sound velocity approach, but has been reported to fail to measure bone because of its strong viscoelastic damping. In this study, we take advantage of recent developments of RUS to overcome this limitation. The frequency response of a human cortical bone specimen (about 5 × 7 × 7 mm(3)) was measured between 100 and 280 kHz. Despite an important overlapping of the resonant peaks 20 resonant frequencies could be retrieved by using a dedicated signal processing method. The experimental frequencies were progressively matched to the frequencies predicted by a model of the sample whose elastic constants were adjusted. The determined diagonal elastic constants were in good agreement with concurrent sound velocity measurements performed in the principal directions of the specimen. This study demonstrates that RUS is suitable for an accurate measurement of cortical bone anisotropic elasticity. In particular, precision of measured Young and shear moduli is about 0.5%.

  11. Accurate measurement of spatial noise portraits of photosensors of digital cameras

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Kulakov, M. N.; Starikov, R. S.

    2016-08-01

    Method of measurement of accurate portraits of light and dark spatial noise of photosensors is described. The method consists of four steps: creation of spatially homogeneous illumination; shooting light and dark frames; digital processing and filtering. Unlike standard technique, this method uses iterative creation of spatially homogeneous illumination by display, compensation of photosensor dark spatial noise portrait and improved procedure of elimination of dark temporal noise. Portraits of light and dark spatial noise of photosensors of a scientific digital camera were found. Characteristics of the measured portraits were compared with values of photo response and dark signal non-uniformities of camera's photosensor.

  12. Material interactions with the low earth orbital environment Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, J. T.; Leger, L. J.

    1985-01-01

    Interactions between spacecraft surfaces and atomic oxygen within the low earth orbital (LEO) environment have been observed and measured during Space Shuttle flights over the past 3 yr. The results of these experiments have demonstrated that interaction rates for many materials proposed for spacecraft applications are high and that protective coatings must be developed to enable long-lived operation of spacecraft structures in the LEO environment. A flight experiment discussed herein uses the Space Shuttle as an orbiting exposure laboratory to obtain accurate reaction rate measurements for materials typically used in spacecraft construction. An ion-neutral mass spectrometer, installed in the Orbiter cargo bay, will measure diurnal ambient oxygen densities while material samples are exposed at low altitude (222 km) to the orbital environment. From in situ atomic oxygen density information and postflight material recession measurements, accurate reaction rates can be derived to update the Space Station materials interaction data base. Additionally, gases evolved from a limited number of material surfaces subjected to direct oxygen impingement will be identified using the mass spectrometer. These measurements will aid in mechanistic definitions of chemical reactions which cause atom-surface interactions and in validating results of upcoming degradation studies conducted in ground-based neutral beam laboratories.

  13. Accurate time-of-flight measurement of particle based on ECL-TTL Timer

    NASA Astrophysics Data System (ADS)

    Li, Deping; Liu, Jianguo; Huang, Shuhua; Gui, Huaqiao; Cheng, Yin; Wang, Jie; Lu, Yihuai

    2014-11-01

    Because of its aerodynamic diameter of the aerosol particles are stranded in different parts of different human respiratory system, thus affecting human health. Therefore, how to continue to effectively monitor the aerosol particles become increasingly concerned about. Use flight time of aerosol particle beam spectroscopy of atmospheric aerosol particle size distribution is the typical method for monitoring atmospheric aerosol particle size and particle concentration measurement , and it is the key point to accurate measurement of aerosol particle size spectra that measurement of aerosol particle flight time. In order to achieve accurate measurements of aerosol particles in time-of-flight, this paper design an ECL-TTL high-speed timer with ECL counter and TTL counter. The high-speed timer includes a clock generation, high-speed timer and the control module. Clock Generation Module using a crystal plus multiplier design ideas, take advantage of the stability of the crystal to provide a stable 500MHz clock signal is high counter. High count module design using ECL and TTL counter mix design, timing accuracy while effectively maintaining , expanding the timing range, and simplifies circuit design . High-speed counter control module controls high-speed counter start, stop and reset timely based on aerosol particles time-of-flight, is a key part of the high-speed counting. The high-speed counting resolution of 4ns, the full scale of 4096ns, has been successfully applied Aerodynamic Particle Sizer, to meet the precise measurement of aerosol particles time-of-flight.

  14. Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms

  15. No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Suchyta, E.; Huff, E. M.; Aleksić, J.; Melchior, P.; Jouvel, S.; MacCrann, N.; Ross, A. J.; Crocce, M.; Gaztanaga, E.; Honscheid, K.; Leistedt, B.; Peiris, H. V.; Rykoff, E. S.; Sheldon, E.; Abbott, T.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Percival, W. J.; Reil, K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Zhang, Y.; DES Collaboration

    2016-03-01

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of detectable stars or galaxies. We have implemented our proposal in BALROG, software which embeds fake objects in real imaging to accurately characterize measurement biases. We demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the Landy-Szalay estimator suppresses the effects of variable survey selection by at least two orders of magnitude. With this correction, our measured angular clustering is found to be in excellent agreement with that of a matched sample from much deeper, higher resolution space-based Cosmological Evolution Survey (COSMOS) imaging; over angular scales of 0.004° < θ < 0.2°, we find a best-fitting scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending measurements' statistical reach in a variety of upcoming imaging surveys.

  16. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    DOE PAGES

    Suchyta, E.

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases.more » We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.« less

  17. Quantitative Measurement of Trans-Fats by Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Walker, Edward B.; Davies, Don R.; Campbell, Mike

    2007-01-01

    Trans-fat is a general term, which is mainly used to describe the various trans geometric isomers present in unsaturated fatty acids. Various techniques are now used for a quantitative measurement of the amount of trans-fats present in foods and cooking oil.

  18. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra

    USGS Publications Warehouse

    Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.

    1971-01-01

    Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.

  19. A new carrier gas type for accurate measurement of N2O by GC-ECD

    NASA Astrophysics Data System (ADS)

    Wang, Yinghong; Wang, Yuesi; Ling, Hong

    2010-11-01

    The accurate measurement of concentration is the basis for determining emission sources and sinks of nitrous oxide (N2O). The detection of N2O showed that the presence of carbon dioxide (CO2) biased the N2O response when pure nitrogen (N2) was used as a carrier gas for gas chromatography (GC) equipped with an electron capture detector (GC-ECD). In this study, laboratory experiments were carried out to explore how the presence of CO2 interferes with the accurate determination of N2O. The aims were to address the extent of the influence to try and explain the underlying mechanism, and to uncover technical options for solving the problem. Three GC carrier gases are discussed: pure nitrogen (DN); a mixture of argon and methane (AM); and a high concentration CO2, which was introduced into the ECD cell with a low flow rate based on DN (DN-CO2). The results show that when DN was used, the existence of CO2 in the ECD cell greatly enhanced the response of N2O, which increased with CO2 content and remained constant when the content reached a limit. Comparisons between the three methods show that the DN method is defective for the accurate determination of N2O. The bias is caused by different electron capture mechanisms of CO2 and N2O and depends heavily on the detector temperature. New GC carrier gas types with make-up gases that can remove the CO2-induced influence, such as the DN-CO2 and DN-CH4 methods reported in this paper, are recommended for the accurate measurement of N2O.

  20. Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system

    NASA Astrophysics Data System (ADS)

    Kennedy, Catherine A.; Stancescu, Maria; Marriott, Robert A.; White, Mary Anne

    2007-02-01

    A commercial instrument for determination of heat capacities of solids from ca. 400 K to 0.4 K, the physical property measurement system from Quantum Design, has been used to determine the heat capacities of a standard samples (sapphire [single crystal] and copper). We extend previous tests of the PPMS in three important ways: to temperatures as low as 0.4 K; to samples with poor thermal conductivity; to compare uncertainty with accuracy. We find that the accuracy of heat capacity determinations can be within 1% for 5 K < T < 300 K and 5% for 0.7 K < T < 5 K. Careful attention should be paid to the relative uncertainty for each data point, as determined from multiple measurements. While we have found that it is possible in some circumstances to obtain excellent results by measurement of samples that contribute more than ca. 1/3 to the total heat capacity, there is no "ideal" sample mass and sample geometry also is an important consideration. In fact, our studies of pressed pellets of zirconium tungstate, a poor thermal conductor, show that several samples of different masses should be determined for the highest degree of certainty.

  1. Analytical method for the accurate determination of tricothecenes in grains using LC-MS/MS: a comparison between MRM transition and MS3 quantitation.

    PubMed

    Lim, Chee Wei; Tai, Siew Hoon; Lee, Lin Min; Chan, Sheot Harn

    2012-07-01

    The current food crisis demands unambiguous determination of mycotoxin contamination in staple foods to achieve safer food for consumption. This paper describes the first accurate LC-MS/MS method developed to analyze tricothecenes in grains by applying multiple reaction monitoring (MRM) transition and MS(3) quantitation strategies in tandem. The tricothecenes are nivalenol, deoxynivalenol, deoxynivalenol-3-glucoside, fusarenon X, 3-acetyl-deoxynivalenol, 15-acetyldeoxynivalenol, diacetoxyscirpenol, and HT-2 and T-2 toxins. Acetic acid and ammonium acetate were used to convert the analytes into their respective acetate adducts and ammonium adducts under negative and positive MS polarity conditions, respectively. The mycotoxins were separated by reversed-phase LC in a 13.5-min run, ionized using electrospray ionization, and detected by tandem mass spectrometry. Analyte-specific mass-to-charge (m/z) ratios were used to perform quantitation under MRM transition and MS(3) (linear ion trap) modes. Three experiments were made for each quantitation mode and matrix in batches over 6 days for recovery studies. The matrix effect was investigated at concentration levels of 20, 40, 80, 120, 160, and 200 μg kg(-1) (n = 3) in 5 g corn flour and rice flour. Extraction with acetonitrile provided a good overall recovery range of 90-108% (n = 3) at three levels of spiking concentration of 40, 80, and 120 μg kg(-1). A quantitation limit of 2-6 μg kg(-1) was achieved by applying an MRM transition quantitation strategy. Under MS(3) mode, a quantitation limit of 4-10 μg kg(-1) was achieved. Relative standard deviations of 2-10% and 2-11% were reported for MRM transition and MS(3) quantitation, respectively. The successful utilization of MS(3) enabled accurate analyte fragmentation pattern matching and its quantitation, leading to the development of analytical methods in fields that demand both analyte specificity and fragmentation fingerprint-matching capabilities that are

  2. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  3. The road towards accurate optical width measurements at the industrial level

    NASA Astrophysics Data System (ADS)

    Bodermann, Bernd; Köning, Rainer; Bergmann, Detlef; Buhr, Egbert; Hässler-Grohne, Wolfgang; Flügge, Jens; Bosse, Harald

    2013-04-01

    Optical vision systems require both unidirectional and bidirectional measurements for the calibrations and the verification of the tool performance to enable accurate measurements traceable to the SI unit Metre. However, for bidirectional measurements up to now the national metrology institutes are unable to provide internationally recognized calibrations of suitable standards. Furthermore often users are not aware of the specific difficulties of these measurements. In this paper the current status and limitations of bidirectional optical measurements at the industrial level are summarised and compared to state-of-the-art optical linewidth measurements performed at PTB on measurement objects of semiconductor industry. It turns out, that for optical widths measurements at an uncertainty level below 1 μm edge localisation schemes are required, which are based on tool and sample dependent threshold values, which usually need to be determined by a rigorous simulation of the microscopic image. Furthermore the calibration samples and structures must have a sufficient quality, e. g. high edge angle and low edge roughness and the structure materials and their material parameters have to be known. The experience obtained within the accreditation process of industrial labs for width calibrations shows that, in order to be able to achieve a desired measurement uncertainties of about 100 nm, the imaging system needs to have a monochromatic Koehler illumination, numerical aperture larger than 0.5, a magnification greater than 50x and the ability to control the deviation of the focus position to better than 100 nm.

  4. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    PubMed

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p < 0.001). With calcified cartilage included, the correlation was ρ = 0.85 (p < 0.001). The mean cartilage SOS (1,636 m/s) was in agreement with the literature. However, SOS and the other properties of cartilage lacked any statistically significant correlation. Interpretation - OCT can give an accurate measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  5. A general way for quantitative magnetic measurement by transmitted electrons

    PubMed Central

    Song, Dongsheng; Li, Gen; Cai, Jianwang; Zhu, Jing

    2016-01-01

    EMCD (electron magnetic circular dichroism) technique opens a new door to explore magnetic properties by transmitted electrons. The recently developed site-specific EMCD technique makes it possible to obtain rich magnetic information from the Fe atoms sited at nonequivalent crystallographic planes in NiFe2O4, however it is based on a critical demand for the crystallographic structure of the testing sample. Here, we have further improved and tested the method for quantitative site-specific magnetic measurement applicable for more complex crystallographic structure by using the effective dynamical diffraction effects (general routine for selecting proper diffraction conditions, making use of the asymmetry of dynamical diffraction for design of experimental geometry and quantitative measurement, etc), and taken yttrium iron garnet (Y3Fe5O12, YIG) with more complex crystallographic structure as an example to demonstrate its applicability. As a result, the intrinsic magnetic circular dichroism signals, spin and orbital magnetic moment of iron with site-specific are quantitatively determined. The method will further promote the development of quantitative magnetic measurement with high spatial resolution by transmitted electrons. PMID:26726959

  6. A general way for quantitative magnetic measurement by transmitted electrons.

    PubMed

    Song, Dongsheng; Li, Gen; Cai, Jianwang; Zhu, Jing

    2016-01-01

    EMCD (electron magnetic circular dichroism) technique opens a new door to explore magnetic properties by transmitted electrons. The recently developed site-specific EMCD technique makes it possible to obtain rich magnetic information from the Fe atoms sited at nonequivalent crystallographic planes in NiFe2O4, however it is based on a critical demand for the crystallographic structure of the testing sample. Here, we have further improved and tested the method for quantitative site-specific magnetic measurement applicable for more complex crystallographic structure by using the effective dynamical diffraction effects (general routine for selecting proper diffraction conditions, making use of the asymmetry of dynamical diffraction for design of experimental geometry and quantitative measurement, etc), and taken yttrium iron garnet (Y3Fe5O12, YIG) with more complex crystallographic structure as an example to demonstrate its applicability. As a result, the intrinsic magnetic circular dichroism signals, spin and orbital magnetic moment of iron with site-specific are quantitatively determined. The method will further promote the development of quantitative magnetic measurement with high spatial resolution by transmitted electrons.

  7. Quantitative Absorption Cytometry for Measuring Red Blood Cell Hemoglobin Mass and Volume

    PubMed Central

    Schonbrun, Ethan; Malka, Roy; Di Caprio, Giuseppe; Schaak, Diane; Higgins, John M.

    2015-01-01

    We present an optical system, called the quantitative absorption cytometer (QAC), to measure the volume and hemoglobin mass of red blood cells flowing through a microfluidic channel. In contrast to clinical hematology analyzers, where cells are sphered in order for both volume and hemoglobin to be measured accurately, the QAC measures cells in their normal physiological shape. Human red blood cells are suspended in a refractive index-matching absorbing buffer, driven through a microfluidic channel, and imaged using a transmission light microscope onto a color camera. A red and a blue LED illuminate cells and images at each color are used to independently retrieve cell volume and hemoglobin mass. This system shows good agreement with red blood cell indices retrieved by a clinical hematology analyzer and in fact measures a smaller coefficient of variation of hemoglobin concentration. In addition to cell indices, the QAC returns height and mass maps of each measured cell. These quantitative images are valuable for analyzing the detailed morphology of individual cells as well as statistical outliers found in the data. We also measured red blood cells in hypertonic and hypotonic buffers to quantify the correlation between volume and hemoglobin mass under osmotic stress. Because this method is invariant to cell shape, even extremely nonspherical cells in hypertonic buffers can be measured accurately. PMID:24677669

  8. Accurate measurements of the collision stopping powers for 5 to 30 MeV electrons

    NASA Astrophysics Data System (ADS)

    MacPherson, Miller Shawn

    Accurate knowledge of electron stopping powers is crucial for accurate radiation dosimetry and radiation transport calculations. Current values for stopping powers are based on a theoretical model, with estimated uncertainties of 0.5-1% (1σ) for electron energies greater than 100 keV. This work presents the first measurements of electron collision stopping powers capable of testing the theoretical values within these stated uncertainties. A large NaI spectrometer was used to measure the change in electron energy when an absorbing disk of known thickness was placed in an electron beam. Monte Carlo simulations of the experiment were performed to account for the effects of surrounding materials. Energy differences between the calculated and measured spectra were used to determine corrections to the soft collision component of the theoretical stopping powers employed by the Monte Carlo simulations. Four different elemental materials were studied: Be, Al, Cu, and Ta. This provided a wide range of atomic numbers and densities over which to test the theory. In addition, stopping powers were measured for graphite (both standard and pyrolytic), A-150 tissue equivalent plastic, C-552 air equivalent plastic, and water. The incident electron energies ranged from 5 to 30 MeV. Generally, the measured stopping powers agree with the theoretical values within the experimental uncertainties, which range from 0.4% to 0.7% (1σ). Aluminum, however, exhibits a 0.7% discrepancy at higher electron energies. Furthermore, these measurements have established that the grain density stopping power is appropriate for graphite, contrary to the recommendations of ICRU Report 37. This removes a 0.2% uncertainty in air kerma calibrations, and impacts on dosimetric quantities determined via graphite calorimetry, such as ɛG for Fricke dosimetry and (W/ e)air for ion chamber measurements.

  9. Highly accurate isotope measurements of surface material on planetary objects in situ

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Neuland, Maike; Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2013-04-01

    Studies of isotope variations in solar system objects are of particular interest and importance. Highly accurate isotope measurements provide insight into geochemical processes, constrain the time of formation of planetary material (crystallization ages) and can be robust tracers of pre-solar events and processes. A detailed understanding of the chronology of the early solar system and dating of planetary materials require precise and accurate measurements of isotope ratios, e.g. lead, and abundance of trace element. However, such measurements are extremely challenging and until now, they never have been attempted in space research. Our group designed a highly miniaturized and self-optimizing laser ablation time-of-flight mass spectrometer for space flight for sensitive and accurate measurements of the elemental and isotopic composition of extraterrestrial materials in situ. Current studies were performed by using UV radiation for ablation and ionization of sample material. High spatial resolution is achieved by focusing the laser beam to about Ø 20μm onto the sample surface. The instrument supports a dynamic range of at least 8 orders of magnitude and a mass resolution m/Δm of up to 800—900, measured at iron peak. We developed a measurement procedure, which will be discussed in detail, that allows for the first time to measure with the instrument the isotope distribution of elements, e.g. Ti, Pb, etc., with a measurement accuracy and precision in the per mill and sub per mill level, which is comparable to well-known and accepted measurement techniques, such as TIMS, SIMS and LA-ICP-MS. The present instrument performance offers together with the measurement procedure in situ measurements of 207Pb/206Pb ages with the accuracy for age in the range of tens of millions of years. Furthermore, and in contrast to other space instrumentation, our instrument can measure all elements present in the sample above 10 ppb concentration, which offers versatile applications

  10. Radial artery blood pressure measurement in neonates: an accurate and convenient technique in clinical practice.

    PubMed

    Gevers, M; van Genderingen, H R; Lafeber, H N; Hack, W W

    1995-01-01

    To achieve accurate blood pressure measurement through radial artery catheters in infants, we previously developed an experimental high-fidelity catheter-manometer system (CMS). As this system lacks facilities for flushing and for blood sampling, we aimed to further develop this technique in order to make the system suitable for clinical practice. In addition, we aimed to develop methods to automate processing of the pressure wave forms. The high-fidelity system to be improved consisted of a 24 Gauge catheter, a threeway stopcock and a tip-manometer. We inserted this system in the catheter-manometer system as routinely used i.e. the remaining end of the stopcock was connected to the fluid-filled CMS as used routinely. This combined system became clinically applicable, since blood samples could be obtained and flushing could be performed. The measurement chain was completed by application of a modified physiological monitor and a computerized method to analyze pressure wave forms. In this manner accurate beat-to-beat pressure parameters were obtained. This technique was applied to 25 neonates admitted for intensive care and requiring arterial access. Gestational age of these infants ranged from 25-40 (median 29) weeks and birth weight ranges from 500-3375 (median 1060) grams. In all infants the technique was found to be convenient and the high-fidelity blood pressure measurements were performed without any problems. The advantage of the present system is the potential for both correct intermittent recordings of arterial wave forms in close relation to clinical condition and for the establishment of accurate radial artery beat-to-beat pressure values in clinical practice.

  11. Accurate Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative Humidity.

    PubMed

    Rovelli, Grazia; Miles, Rachael E H; Reid, Jonathan P; Clegg, Simon L

    2016-06-30

    Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations that account for both the heat and mass transport governing the droplet evaporation kinetics, these measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e., the variations with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water activity (from >0.99 to, in principle, <0.05) on time scales of <10 s for droplets containing involatile or volatile solutes. The approach is benchmarked for binary and ternary inorganic solution aerosols with typical uncertainties in water activity of <±0.2% at water activities >0.9 and ∼±1% below 80% RH, and maximum uncertainties in diameter growth factor of ±0.7%. For all of the inorganic systems examined, the time-dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1). PMID:27285052

  12. Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias.

    PubMed

    Malik, Afshan N; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana; Laftah, Abas; Cunningham, Phil

    2011-08-19

    Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as β-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a "dilution bias" when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.

  13. Accurate Young's modulus measurement based on Rayleigh wave velocity and empirical Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Li, Mingxia; Feng, Zhihua

    2016-07-01

    This paper presents a method for Young's modulus measurement based on Rayleigh wave speed. The error in Poisson's ratio has weak influence on the measurement of Young's modulus based on Rayleigh wave speed, and Poisson's ratio minimally varies in a certain material; thus, we can accurately estimate Young's modulus with surface wave speed and a rough Poisson's ratio. We numerically analysed three methods using Rayleigh, longitudinal, and transversal wave speed, respectively, and the error in Poisson's ratio shows the least influence on the result in the method involving Rayleigh wave speed. An experiment was performed and has proved the feasibility of this method. Device for speed measuring could be small, and no sample pretreatment is needed. Hence, developing a portable instrument based on this method is possible. This method makes a good compromise between usability and precision.

  14. Metabolic remodeling of the human red blood cell membrane measured by quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Park, YongKeun; Best, Catherine; Auth, Thorsten; Gov, Nir S.; Safran, Samuel; Popescu, Gabriel

    2011-02-01

    We have quantitatively and systemically measured the morphologies and dynamics of fluctuations in human RBC membranes using a full-field laser interferometry technique that accurately measures dynamic membrane fluctuations. We present conclusive evidence that the presence of adenosine 5'-triphosphate (ATP) facilitates nonequilibrium dynamic fluctuations in the RBC membrane and that these fluctuations are highly correlated with specific regions in the biconcave shape of RBCs. Spatial analysis reveals that these nonequilibrium membrane fluctuations are enhanced at the scale of the spectrin mesh size. Our results indicate the presence of dynamic remodeling in the RBC membrane cortex powered by ATP, which results in nonequilibrium membrane fluctuations.

  15. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    PubMed Central

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  16. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement.

    PubMed

    Xiao, Suzhi; Tao, Wei; Zhao, Hui

    2016-01-01

    In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement. PMID:27136553

  17. Object strength--an accurate measure for small objects that is insensitive to partial volume effects.

    PubMed

    Tofts, P S; Silver, N C; Barker, G J; Gass, A

    2005-07-01

    There are currently four problems in characterising small nonuniform lesions or other objects in Magnetic Resonance images where partial volume effects are significant. Object size is over- or under-estimated; boundaries are often not reproducible; mean object value cannot be measured; and fuzzy borders cannot be accommodated. A new measure, Object Strength, is proposed. This is the sum of all abnormal intensities, above a uniform background value. For a uniform object, this is simply the product of the increase in intensity and the size of the object. Biologically, this could be at least as relevant as existing measures of size or mean intensity. We hypothesise that Object Strength will perform better than traditional area measurements in characterising small objects. In a pilot study, the reproducibility of object strength measurements was investigated using MR images of small multiple sclerosis (MS) lesions. In addition, accuracy was investigated using artificial lesions of known volume (0.3-6.2 ml) and realistic appearance. Reproducibility approached that of area measurements (in 33/90 lesion reports the difference between repeats was less than for area measurements). Total lesion volume was accurate to 0.2%. In conclusion, Object Strength has potential for improved characterisation of small lesions and objects in imaging and possibly spectroscopy.

  18. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  19. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  20. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  1. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Utku, Cuneyt; Tarkocin, Yalcin; LeVine, David M.

    2010-01-01

    This report describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz that is at the center of the L-Sand radiometric protected frequency spectrum. Aquarius will be sensing the sea surface salinity from space in this band. The objective of the project is to refine the model function for the dielectric constant as a function of salinity and temperature so that remote sensing measurements can be made with the accuracy needed to meet the measurement goals (0.2 psu) of the Aquarius mission. The measurements were made, using a microwave cavity operated in the transmission configuration. The cavity's temperature was accurately regulated to 0.02 C by immersing it in a temperature controlled bath of distilled water and ethanol glycol. Seawater had been purchased from Ocean Scientific International Limited (OS1L) at salinities of 30, 35 and 38 psu. Measurements of these seawater samples were then made over a range of temperatures, from l0 C to 35 C in 5 C intervals. Repeated measurements were made at each temperature and salinity, Mean values and standard deviations were then computed. Total error budgets indicated that the real and imaginary parts of the dielectric constant had a relative accuracy of about l%.

  2. A New Test Rig for Accurate Nonparametric Measurement and Characterization of Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Montecucco, Andrea; Buckle, James; Siviter, Jonathan; Knox, Andrew R.

    2013-07-01

    Thermoelectric generators (TEGs) are increasingly employed in large-scale applications, therefore accurate performance data are necessary to permit precise designs and simulations. However, there is still no standardized method to test the electrical and thermal performance of TEGs. This paper presents an innovative test system to assess device performance in the "real world." The fixture allows the hot temperature to be increased up to 800°C with minimal thermal losses and thermal shock; the clamping load can be adjusted up to 5 kN, and the temperatures are sensed by thermocouples placed directly on the TEG's surfaces. A computer program controls all the instruments in order to minimize errors and to aid accurate measurement and test repeatability. The test rig can measure four TEGs simultaneously, each one individually controlled and heated by a maximum electrical power of 2 kW. This allows testing of the effects of series and parallel connection of TEGs under mismatched conditions, e.g., dimensions, clamping force, temperature, etc. The test rig can be employed both as a performance evaluator and as a quality control unit, due to the ability to provide nonparametric testing of four TEGs concurrently. It can also be used to rapidly characterize devices of different dimensions at the same time.

  3. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    PubMed

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  4. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    NASA Astrophysics Data System (ADS)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  5. Apparatus for accurate density measurements of fluids based on a magnetic suspension balance

    NASA Astrophysics Data System (ADS)

    Gong, Maoqiong; Li, Huiya; Guo, Hao; Dong, Xueqiang; Wu, J. F.

    2012-06-01

    A new apparatus for accurate pressure, density and temperature (p, ρ, T) measurements over wide ranges of (p, ρ, T) (90 K to 290 K; 0 MPa to 3 MPa; 0 kg/m3 to 2000 kg/m3) is described. This apparatus is based on a magnetic suspension balance which applies the Archimedes' buoyancy principle. In order to verify the new apparatus, comprehensive (p, ρ, T) measurements on pure nitrogen were carried out. The maximum relative standard uncertainty is 0.09% in density. The maximum standard uncertainty in temperature is 5 mK, and that in pressure is 250 Pa for 1.5 MPa and 390 Pa for 3MPa full scale range respectively. The experimental data were compared with selected literature data and good agreements were found.

  6. Home Circadian Phase Assessments with Measures of Compliance Yield Accurate Dim Light Melatonin Onsets

    PubMed Central

    Burgess, Helen J.; Wyatt, James K.; Park, Margaret; Fogg, Louis F.

    2015-01-01

    Study Objectives: There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Design: Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Setting: Laboratory or participants' homes. Participants: Thirty-five healthy adults, age 21–62 y. Interventions: N/A. Measurements and Results: Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for < 9 min of the required 8.5 h. Most participants collected every saliva sample within 5 min of the scheduled time. Ninety-two percent of home DLMOs were not affected by light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P < 0.001). Conclusions: Participants were reasonably compliant to the home phase assessment procedures. The good agreement between the home and laboratory dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Clinical Trial Registration: Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. Citation: Burgess HJ, Wyatt JK, Park M, Fogg LF. Home circadian phase assessments with measures of compliance yield accurate dim light melatonin onsets. SLEEP 2015;38(6):889–897

  7. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  8. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  9. Quantitative measurement of sheet resistance by evanescent microwave probe

    SciTech Connect

    Wang Zhengyu; Kelly, Michael A.; Shen Zhixun; Shao Lin; Chu, W.-K.; Edwards, Hal

    2005-04-11

    Quantitative measurement of microwave sheet resistance by a novel type of near-field microwave microscope -Evanescent Microwave Probe (EMP) - has been demonstrated. The data cover a wide range of sheet resistance from the metal limit to the insulator limit. Both finite element analysis (FEA) and a simple coaxial ring model have been shown to fit the data well. The demonstration of sheet resistance measurement with high spatial resolution in the GHz range shows the potential of EMP for semiconductor metrology applications. The data also reveal issues related to the large penetration depth, allowing substrate properties to affect the signal.

  10. Induced Dual-Nanospray: A Novel Internal Calibration Method for Convenient and Accurate Mass Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yafeng; Zhang, Ning; Zhou, Yueming; Wang, Jianing; Zhang, Yiming; Wang, Jiyun; Xiong, Caiqiao; Chen, Suming; Nie, Zongxiu

    2013-09-01

    Accurate mass information is of great importance in the determination of unknown compounds. An effective and easy-to-control internal mass calibration method will dramatically benefit accurate mass measurement. Here we reported a simple induced dual-nanospray internal calibration device which has the following three advantages: (1) the two sprayers are in the same alternating current field; thus both reference ions and sample ions can be simultaneously generated and recorded. (2) It is very simple and can be easily assembled. Just two metal tubes, two nanosprayers, and an alternating current power supply are included. (3) With the low-flow-rate character and the versatility of nanoESI, this calibration method is capable of calibrating various samples, even untreated complex samples such as urine and other biological samples with small sample volumes. The calibration errors are around 1 ppm in positive ion mode and 3 ppm in negative ion mode with good repeatability. This new internal calibration method opens up new possibilities in the determination of unknown compounds, and it has great potential for the broad applications in biological and chemical analysis.

  11. Accurate label-free reaction kinetics determination using initial rate heat measurements.

    PubMed

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity.

  12. Accurate label-free reaction kinetics determination using initial rate heat measurements

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  13. Measuring nonlinear oscillations using a very accurate and low-cost linear optical position transducer

    NASA Astrophysics Data System (ADS)

    Donoso, Guillermo; Ladera, Celso L.

    2016-09-01

    An accurate linear optical displacement transducer of about 0.2 mm resolution over a range of ∼40 mm is presented. This device consists of a stack of thin cellulose acetate strips, each strip longitudinally slid ∼0.5 mm over the precedent one so that one end of the stack becomes a stepped wedge of constant step. A narrowed light beam from a white LED orthogonally incident crosses the wedge at a known point, the transmitted intensity being detected with a phototransistor whose emitter is connected to a diode. We present the interesting analytical proof that the voltage across the diode is linearly dependent upon the ordinate of the point where the light beam falls on the wedge, as well as the experimental validation of such a theoretical proof. Applications to nonlinear oscillations are then presented—including the interesting case of a body moving under dry friction, and the more advanced case of an oscillator in a quartic energy potential—whose time-varying positions were accurately measured with our transducer. Our sensing device can resolve the dynamics of an object attached to it with great accuracy and precision at a cost considerably less than that of a linear neutral density wedge. The technique used to assemble the wedge of acetate strips is described.

  14. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  15. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin

    PubMed Central

    Doud, Michael B.; Bloom, Jesse D.

    2016-01-01

    Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin—including the stalk epitopes targeted by broadly neutralizing antibodies—have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution. PMID:27271655

  16. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1).

  17. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin.

    PubMed

    Doud, Michael B; Bloom, Jesse D

    2016-01-01

    Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin-including the stalk epitopes targeted by broadly neutralizing antibodies-have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution. PMID:27271655

  18. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1). PMID:23498117

  19. Accurate measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  20. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  1. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  2. New insights for accurate chemically specific measurements of slow diffusing molecules.

    PubMed

    Hou, Jianbo; Madsen, Louis A

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using (2)H(2)O and obtain expected results, but we observe crippling artifacts when measuring (1)H-glycerol diffusion with the same experimental parameters. A mathematical analysis of (2)H(2)O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration. PMID:23406112

  3. New insights for accurate chemically specific measurements of slow diffusing molecules

    NASA Astrophysics Data System (ADS)

    Hou, Jianbo; Madsen, Louis A.

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using 2H2O and obtain expected results, but we observe crippling artifacts when measuring 1H-glycerol diffusion with the same experimental parameters. A mathematical analysis of 2H2O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration.

  4. Accurate measurement of intraarterial pressure through radial artery catheters in neonates.

    PubMed

    Hack, W W; Westerhof, N; Leenhoven, T; Okken, A

    1990-07-01

    A technique is described for accurate measurement of intraarterial pressure through radial artery catheters in neonates. The technique, which can be used for short-term monitoring, uses cannulation of the radial artery with a 24-gauge Teflon catheter, connected by a Luer-Lok fitting to a three-way stopcock and a high-fidelity tip transducer. In vitro studies showed that the system is linear and the frequency response is flat (+/- 3 dB) up to 50 Hz. The technique permits gathering of high-quality pressure data and can be used in the area of neonatal clinical research for short-term monitoring. It needs to be developed further before routine application in clinical practice can be recommended.

  5. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    SciTech Connect

    Spiridonov, Maxim; Toebaert, David

    2006-09-10

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes,and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator(typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  6. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    NASA Astrophysics Data System (ADS)

    Spiridonov, Maxim; Toebaert, David

    2006-09-01

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes, and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator (typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  7. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  8. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  9. Quantitative size measurement of features viewed through a video endoscope

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Vipul; Poret, Jay C.; Suter, Joseph J.; Ravich, William J.; Giannini, Judith A.

    1994-07-01

    Quantitative size measurements of gastrointestinal tract lesions (i.e., ulcers and polyps) viewed during endoscopy are helpful in assessing the rate of healing or growth. We report a novel technique for quantitatively measuring the two-dimensional size of a feature viewed remotely via a video imager. Our instrument's small size makes it a suitable candidate for use in endoscopes. Computing the size of a feature displayed on a two-dimensional video monitor necessitates measuring the distance between the imager and the surface under observation because an undistorted video image preserves the angular content of a scene. We have developed a prototype ranging system that exploits the tendency of light emerging from the tip of an optical fiber to diverge. Our device uses two fibers with different divergence characteristics. The separation between the imaging sensor and the viewed surface is determined by inspecting the relative sizes of the spots cast by each of the fibers. Our device, which measures distances between 2 and 8 cm, is sufficiently small to be accommodated in an endoscope's accessory channel.

  10. A quantitative method for measuring the quality of history matches

    SciTech Connect

    Shaw, T.S.; Knapp, R.M.

    1997-08-01

    History matching can be an efficient tool for reservoir characterization. A {open_quotes}good{close_quotes} history matching job can generate reliable reservoir parameters. However, reservoir engineers are often frustrated when they try to select a {open_quotes}better{close_quotes} match from a series of history matching runs. Without a quantitative measurement, it is always difficult to tell the difference between a {open_quotes}good{close_quotes} and a {open_quotes}better{close_quotes} matches. For this reason, we need a quantitative method for testing the quality of matches. This paper presents a method for such a purpose. The method uses three statistical indices to (1) test shape conformity, (2) examine bias errors, and (3) measure magnitude of deviation. The shape conformity test insures that the shape of a simulated curve matches that of a historical curve. Examining bias errors assures that model reservoir parameters have been calibrated to that of a real reservoir. Measuring the magnitude of deviation assures that the difference between the model and the real reservoir parameters is minimized. The method was first tested on a hypothetical model and then applied to published field studies. The results showed that the method can efficiently measure the quality of matches. It also showed that the method can serve as a diagnostic tool for calibrating reservoir parameters during history matching.

  11. Ultrasound attenuation as a quantitative measure of fracture healing

    NASA Astrophysics Data System (ADS)

    Gheduzzi, Sabina; Humphrey, Victor F.; Dodd, Simon P.; Cunningham, James L.; Miles, Anthony W.

    2004-10-01

    The monitoring of fracture healing still relies upon the judgment of callus formation and on the manual assessment of the stiffness of the fracture. A diagnostic tool capable of quantitatively measuring healing progression of a fracture would allow the fine-tuning of the treatment regime. Ultrasound attenuation measurements were adopted as a possible method of assessing the healing process in human long bones. The method involves exciting ultrasonic waves at 200 kHz in the bone and measuring the reradiation along the bone and across the fracture zone. Seven cadaveric femora were tested in vitro in intact form and after creating a transverse fracture by sawing through the cortex. The effects of five different fracture types were investigated. A partial fracture, corresponding to a 50% cut through the cortex, a closed fracture, and fractures of widths varying between 1, 2, and 4 mm were investigated. The introduction of a fracture was found to produce a dramatic effect on the amplitude of the signal. Ultrasound attenuation was found to be sensitive to the presence of a fracture, even when the fracture was well reduced. It would therefore appear feasible to adopt attenuation across a fracture as a quantitative measurement of fracture healing.

  12. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided. PMID:26099201

  13. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  14. Quantitatively Measuring In situ Flows using a Self-Contained Underwater Velocimetry Apparatus (SCUVA)

    PubMed Central

    Katija, Kakani; Colin, Sean P.; Costello, John H.; Dabiri, John O.

    2011-01-01

    The ability to directly measure velocity fields in a fluid environment is necessary to provide empirical data for studies in fields as diverse as oceanography, ecology, biology, and fluid mechanics. Field measurements introduce practical challenges such as environmental conditions, animal availability, and the need for field-compatible measurement techniques. To avoid these challenges, scientists typically use controlled laboratory environments to study animal-fluid interactions. However, it is reasonable to question whether one can extrapolate natural behavior (i.e., that which occurs in the field) from laboratory measurements. Therefore, in situ quantitative flow measurements are needed to accurately describe animal swimming in their natural environment. We designed a self-contained, portable device that operates independent of any connection to the surface, and can provide quantitative measurements of the flow field surrounding an animal. This apparatus, a self-contained underwater velocimetry apparatus (SCUVA), can be operated by a single scuba diver in depths up to 40 m. Due to the added complexity inherent of field conditions, additional considerations and preparation are required when compared to laboratory measurements. These considerations include, but are not limited to, operator motion, predicting position of swimming targets, available natural suspended particulate, and orientation of SCUVA relative to the flow of interest. The following protocol is intended to address these common field challenges and to maximize measurement success. PMID:22064442

  15. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  16. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy.

    PubMed

    Baalousha, M; Prasad, A; Lead, J R

    2014-05-01

    Microscopy techniques are indispensable to the nanoanalytical toolbox and can provide accurate information on the number size distribution and number concentration of nanoparticles (NPs) at low concentrations (ca. ppt to ppb range) and small sizes (ca. <20 nm). However, the high capabilities of microscopy techniques are limited by the traditional sample preparation based on drying a small volume of suspension of NPs on a microscopy substrate. This method is limited by low recovery of NPs (ca. <10%), formation of aggregates during the drying process, and thus, the complete misrepresentation of the NP suspensions under consideration. This paper presents a validated quantitative sampling technique for atomic force microscopy (AFM) that overcomes the above-mentioned shortcomings and allows full recovery and representativeness of the NPs under consideration by forcing the NPs into the substrate via ultracentrifugation and strongly attaches the NPs to the substrate by surface functionalization of the substrate or by adding cations to the NP suspension. The high efficiency of the analysis is demonstrated by the uniformity of the NP distribution on the substrate (that is low variability between the number of NPs counted on different images on different areas of the substrate), the high recovery of the NPs up to 71%) and the good correlation (R > 0.95) between the mass and number concentrations. Therefore, for the first time, we developed a validated quantitative sampling technique that enables the use of the full capabilities of microscopy tools to quantitatively and accurately determine the number size distribution and number concentration of NPs at environmentally relevant low concentrations (i.e. 0.34-100 ppb). This approach is of high environmental relevance and can be applied widely in environmental nanoscience and nanotoxicology for (i) measuring the number concentration dose in nanotoxicological studies and (ii) accurately measuring the number size distribution of

  17. Infectious titres of sheep scrapie and bovine spongiform encephalopathy agents cannot be accurately predicted from quantitative laboratory test results.

    PubMed

    González, Lorenzo; Thorne, Leigh; Jeffrey, Martin; Martin, Stuart; Spiropoulos, John; Beck, Katy E; Lockey, Richard W; Vickery, Christopher M; Holder, Thomas; Terry, Linda

    2012-11-01

    It is widely accepted that abnormal forms of the prion protein (PrP) are the best surrogate marker for the infectious agent of prion diseases and, in practice, the detection of such disease-associated (PrP(d)) and/or protease-resistant (PrP(res)) forms of PrP is the cornerstone of diagnosis and surveillance of the transmissible spongiform encephalopathies (TSEs). Nevertheless, some studies question the consistent association between infectivity and abnormal PrP detection. To address this discrepancy, 11 brain samples of sheep affected with natural scrapie or experimental bovine spongiform encephalopathy were selected on the basis of the magnitude and predominant types of PrP(d) accumulation, as shown by immunohistochemical (IHC) examination; contra-lateral hemi-brain samples were inoculated at three different dilutions into transgenic mice overexpressing ovine PrP and were also subjected to quantitative analysis by three biochemical tests (BCTs). Six samples gave 'low' infectious titres (10⁶·⁵ to 10⁶·⁷ LD₅₀ g⁻¹) and five gave 'high titres' (10⁸·¹ to ≥ 10⁸·⁷ LD₅₀ g⁻¹) and, with the exception of the Western blot analysis, those two groups tended to correspond with samples with lower PrP(d)/PrP(res) results by IHC/BCTs. However, no statistical association could be confirmed due to high individual sample variability. It is concluded that although detection of abnormal forms of PrP by laboratory methods remains useful to confirm TSE infection, infectivity titres cannot be predicted from quantitative test results, at least for the TSE sources and host PRNP genotypes used in this study. Furthermore, the near inverse correlation between infectious titres and Western blot results (high protease pre-treatment) argues for a dissociation between infectivity and PrP(res).

  18. Maximum Mass of Strange Stars and Pulsars with the Most Accurately Measured Masses

    NASA Astrophysics Data System (ADS)

    Vartanyan, Yu. L.; Grigoryan, A. K.; Shahinyan, H. A.

    2015-06-01

    Strange quark matter (SQM) is studied using a bag model in which the transition to the SQM state takes place at energy densities of no more than twice the density in atomic nuclei. Thus, low mass neutron stars with a configuration consisting of SQM form a single family on a plot of the mass M of equilibrium superdense configurations as a function of central energy density ρ c (the M(ρ c ) curve). The bag model considered here depends on three constants: the vacuum pressure B, the quark-gluon interaction constant α c , and the strange quark mass m s . Sets of values of these constants are determined, which if used in the equation of state for SQM yield a maximal mass M max of the equilibrium quark configurations which exceeds the recently accurately determined mass of 2.01 M ⊙ for the binary radio pulsar PSR J0348+0432. The mass, radius, total baryon number, and red shift from the surface of the strange star are calculated for these configurations as a function of central energy density ρ c . The values of these integrated parameters are also calculated for each series with M max > 2.01 M ⊙ for superdense configurations with masses of 2.01, 1.97, and 1.44 solar masses, which have been determined with great accuracy from observations. It turns out that, according to the resulting equations of state, all of the three pulsars with the most accurately measured masses, may be possible candidate strange stars.

  19. Advanced quantitative measurement methodology in physics education research

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    parts. The first part involves the comparison between item response theory (IRT) and classical test theory (CTT). The two theories both provide test item statistics for educational inferences and decisions. The two theories are both applied to Force Concept Inventory data obtained from students enrolled in The Ohio State University. Effort was made to examine the similarity and difference between the two theories, and the possible explanation to the difference. The study suggests that item response theory is more sensitive to the context and conceptual features of the test items than classical test theory. The IRT parameters provide a better measure than CTT parameters for the educational audience to investigate item features. The second part of the dissertation is on the measure of association for binary data. In quantitative assessment, binary data is often encountered because of its simplicity. The current popular measures of association fail under some extremely unbalanced conditions. However, the occurrence of these conditions is not rare in educational data. Two popular association measures, the Pearson's correlation and the tetrachoric correlation are examined. A new method, model based association is introduced, and an educational testing constraint is discussed. The existing popular methods are compared with the model based association measure with and without the constraint. Connections between the value of association and the context and conceptual features of questions are discussed in detail. Results show that all the methods have their advantages and disadvantages. Special attention to the test and data conditions is necessary. The last part of the dissertation is focused on exploratory factor analysis (EFA). The theoretical advantages of EFA are discussed. Typical misunderstanding and misusage of EFA are explored. The EFA is performed on Lawson's Classroom Test of Scientific Reasoning (LCTSR), a widely used assessment on scientific reasoning skills. The

  20. CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

    SciTech Connect

    Haugh, M J; Charest, M R; Ross, P W; Lee, J J; Schneider, M B; Palmer, N E; Teruya, A T

    2012-02-16

    National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

  1. Accurate, in vivo NIR measurement of skeletal muscle oxygenation through fat

    NASA Astrophysics Data System (ADS)

    Jin, Chunguang; Zou, Fengmei; Ellerby, Gwenn E. C.; Scott, Peter; Peshlov, Boyan; Soller, Babs R.

    2010-02-01

    Noninvasive near infrared (NIR) spectroscopic measurement of muscle oxygenation requires the penetration of light through overlying skin and fat layers. We have previously demonstrated a dual-light source design and orthogonalization algorithm that corrects for inference from skin absorption and fat scattering. To achieve accurate muscle oxygen saturation (SmO2) measurement, one must select the appropriate source-detector distance (SD) to completely penetrate the fat layer. Methods: Six healthy subjects were supine for 15min to normalize tissue oxygenation across the body. NIR spectra were collected from the calf, shoulder, lower and upper thigh muscles with long SD distances of 30mm, 35mm, 40mm and 45mm. Spectral preprocessing with the short SD (3mm) spectrum preceded SmO2 calculation with a Taylor series expansion method. Three-way ANOVA was used to compare SmO2 values over varying fat thickness, subjects and SD distances. Results: Overlying fat layers varied in thickness from 4.9mm to 19.6mm across all subjects. SmO2 measured at the four locations were comparable for each subject (p=0.133), regardless of fat thickness and SD distance. SmO2 (mean+/-std dev) measured at calf, shoulder, low and high thigh were 62+/-3%, 59+/-8%, 61+/-2%, 61+/-4% respectively for SD distance of 30mm. In these subjects no significant influence of SD was observed (p=0.948). Conclusions: The results indicate that for our sensor design a 30mm SD is sufficient to penetrate through a 19mm fat layer and that orthogonalization with short SD effectively removed spectral interference from fat to result in a reproducible determination of SmO2.

  2. Accurate measurement of interferometer group delay using field-compensated scanning white light interferometer.

    PubMed

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2010-10-10

    Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interferometer calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region.

  3. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  4. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, B.; Hut, R.; Van De Giesen, N.

    2012-12-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the $150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  5. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system.

    PubMed

    Koubar, Khodor; Bekaert, Virgile; Brasse, David; Laquerriere, Patrice

    2015-06-01

    Bone mineral density plays an important role in the determination of bone strength and fracture risks. Consequently, it is very important to obtain accurate bone mineral density measurements. The microcomputerized tomography system provides 3D information about the architectural properties of bone. Quantitative analysis accuracy is decreased by the presence of artefacts in the reconstructed images, mainly due to beam hardening artefacts (such as cupping artefacts). In this paper, we introduced a new beam hardening correction method based on a postreconstruction technique performed with the use of off-line water and bone linearization curves experimentally calculated aiming to take into account the nonhomogeneity in the scanned animal. In order to evaluate the mass correction rate, calibration line has been carried out to convert the reconstructed linear attenuation coefficient into bone masses. The presented correction method was then applied on a multimaterial cylindrical phantom and on mouse skeleton images. Mass correction rate up to 18% between uncorrected and corrected images were obtained as well as a remarkable improvement of a calculated mouse femur mass has been noticed. Results were also compared to those obtained when using the simple water linearization technique which does not take into account the nonhomogeneity in the object.

  6. A particle-tracking approach for accurate material derivative measurements with tomographic PIV

    NASA Astrophysics Data System (ADS)

    Novara, Matteo; Scarano, Fulvio

    2013-08-01

    The evaluation of the instantaneous 3D pressure field from tomographic PIV data relies on the accurate estimate of the fluid velocity material derivative, i.e., the velocity time rate of change following a given fluid element. To date, techniques that reconstruct the fluid parcel trajectory from a time sequence of 3D velocity fields obtained with Tomo-PIV have already been introduced. However, an accurate evaluation of the fluid element acceleration requires trajectory reconstruction over a relatively long observation time, which reduces random errors. On the other hand, simple integration and finite difference techniques suffer from increasing truncation errors when complex trajectories need to be reconstructed over a long time interval. In principle, particle-tracking velocimetry techniques (3D-PTV) enable the accurate reconstruction of single particle trajectories over a long observation time. Nevertheless, PTV can be reliably performed only at limited particle image number density due to errors caused by overlapping particles. The particle image density can be substantially increased by use of tomographic PIV. In the present study, a technique to combine the higher information density of tomographic PIV and the accurate trajectory reconstruction of PTV is proposed (Tomo-3D-PTV). The particle-tracking algorithm is applied to the tracers detected in the 3D domain obtained by tomographic reconstruction. The 3D particle information is highly sparse and intersection of trajectories is virtually impossible. As a result, ambiguities in the particle path identification over subsequent recordings are easily avoided. Polynomial fitting functions are introduced that describe the particle position in time with sequences based on several recordings, leading to the reduction in truncation errors for complex trajectories. Moreover, the polynomial regression approach provides a reduction in the random errors due to the particle position measurement. Finally, the acceleration

  7. A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels.

    PubMed

    Bachir, Alexia I; Kolin, David L; Heinze, Katrin G; Hebert, Benedict; Wiseman, Paul W

    2008-06-14

    Fluctuation-based fluorescence correlation techniques are widely used to study dynamics of fluorophore labeled biomolecules in cells. Semiconductor quantum dots (QDs) have been developed as bright and photostable fluorescent probes for various biological applications. However, the fluorescence intermittency of QDs, commonly referred to as "blinking", is believed to complicate quantitative correlation spectroscopy measurements of transport properties, as it is an additional source of fluctuations that contribute on a wide range of time scales. The QD blinking fluctuations obey power-law distributions so there is no single characteristic fluctuation time for this phenomenon. Consequently, it is highly challenging to separate fluorescence blinking fluctuations from those due to transport dynamics. Here, we quantify the bias introduced by QD blinking in transport measurements made using fluctuation methods. Using computer simulated image time series of diffusing point emitters with set "on" and "off" time emission characteristics, we show that blinking results in a systematic overestimation of the diffusion coefficients measured with correlation analysis when a simple diffusion model is used to fit the time correlation decays. The relative error depends on the inherent blinking power-law statistics, the sampling rate relative to the characteristic diffusion time and blinking times, and the total number of images in the time series. This systematic error can be significant; moreover, it can often go unnoticed in common transport model fits of experimental data. We propose an alternative fitting model that incorporates blinking and improves the accuracy of the recovered diffusion coefficients. We also show how to completely eliminate the bias by applying k-space image correlation spectroscopy, which completely separates the diffusion and blinking dynamics, and allows the simultaneous recovery of accurate diffusion coefficients and QD blinking probability distribution

  8. Validation of Reference Genes for Accurate Normalization of Gene Expression in Lilium davidii var. unicolor for Real Time Quantitative PCR

    PubMed Central

    Zhang, Jing; Teixeira da Silva, Jaime A.; Wang, ChunXia; Sun, HongMei

    2015-01-01

    Lilium is an important commercial market flower bulb. qRT-PCR is an extremely important technique to track gene expression levels. The requirement of suitable reference genes for normalization has become increasingly significant and exigent. The expression of internal control genes in living organisms varies considerably under different experimental conditions. For economically important Lilium, only a limited number of reference genes applied in qRT-PCR have been reported to date. In this study, the expression stability of 12 candidate genes including α-TUB, β-TUB, ACT, eIF, GAPDH, UBQ, UBC, 18S, 60S, AP4, FP, and RH2, in a diverse set of 29 samples representing different developmental processes, three stress treatments (cold, heat, and salt) and different organs, has been evaluated. For different organs, the combination of ACT, GAPDH, and UBQ is appropriate whereas ACT together with AP4, or ACT along with GAPDH is suitable for normalization of leaves and scales at different developmental stages, respectively. In leaves, scales and roots under stress treatments, FP, ACT and AP4, respectively showed the most stable expression. This study provides a guide for the selection of a reference gene under different experimental conditions, and will benefit future research on more accurate gene expression studies in a wide variety of Lilium genotypes. PMID:26509446

  9. Validation of Reference Genes for Accurate Normalization of Gene Expression in Lilium davidii var. unicolor for Real Time Quantitative PCR.

    PubMed

    Li, XueYan; Cheng, JinYun; Zhang, Jing; Teixeira da Silva, Jaime A; Wang, ChunXia; Sun, HongMei

    2015-01-01

    Lilium is an important commercial market flower bulb. qRT-PCR is an extremely important technique to track gene expression levels. The requirement of suitable reference genes for normalization has become increasingly significant and exigent. The expression of internal control genes in living organisms varies considerably under different experimental conditions. For economically important Lilium, only a limited number of reference genes applied in qRT-PCR have been reported to date. In this study, the expression stability of 12 candidate genes including α-TUB, β-TUB, ACT, eIF, GAPDH, UBQ, UBC, 18S, 60S, AP4, FP, and RH2, in a diverse set of 29 samples representing different developmental processes, three stress treatments (cold, heat, and salt) and different organs, has been evaluated. For different organs, the combination of ACT, GAPDH, and UBQ is appropriate whereas ACT together with AP4, or ACT along with GAPDH is suitable for normalization of leaves and scales at different developmental stages, respectively. In leaves, scales and roots under stress treatments, FP, ACT and AP4, respectively showed the most stable expression. This study provides a guide for the selection of a reference gene under different experimental conditions, and will benefit future research on more accurate gene expression studies in a wide variety of Lilium genotypes. PMID:26509446

  10. Application of an Effective Statistical Technique for an Accurate and Powerful Mining of Quantitative Trait Loci for Rice Aroma Trait.

    PubMed

    Golestan Hashemi, Farahnaz Sadat; Rafii, Mohd Y; Ismail, Mohd Razi; Mohamed, Mahmud Tengku Muda; Rahim, Harun A; Latif, Mohammad Abdul; Aslani, Farzad

    2015-01-01

    When a phenotype of interest is associated with an external/internal covariate, covariate inclusion in quantitative trait loci (QTL) analyses can diminish residual variation and subsequently enhance the ability of QTL detection. In the in vitro synthesis of 2-acetyl-1-pyrroline (2AP), the main fragrance compound in rice, the thermal processing during the Maillard-type reaction between proline and carbohydrate reduction produces a roasted, popcorn-like aroma. Hence, for the first time, we included the proline amino acid, an important precursor of 2AP, as a covariate in our QTL mapping analyses to precisely explore the genetic factors affecting natural variation for rice scent. Consequently, two QTLs were traced on chromosomes 4 and 8. They explained from 20% to 49% of the total aroma phenotypic variance. Additionally, by saturating the interval harboring the major QTL using gene-based primers, a putative allele of fgr (major genetic determinant of fragrance) was mapped in the QTL on the 8th chromosome in the interval RM223-SCU015RM (1.63 cM). These loci supported previous studies of different accessions. Such QTLs can be widely used by breeders in crop improvement programs and for further fine mapping. Moreover, no previous studies and findings were found on simultaneous assessment of the relationship among 2AP, proline and fragrance QTLs. Therefore, our findings can help further our understanding of the metabolomic and genetic basis of 2AP biosynthesis in aromatic rice. PMID:26061689

  11. How Accurate is Your Sclerostin Measurement? Comparison Between Three Commercially Available Sclerostin ELISA Kits.

    PubMed

    Piec, Isabelle; Washbourne, Christopher; Tang, Jonathan; Fisher, Emily; Greeves, Julie; Jackson, Sarah; Fraser, William D

    2016-06-01

    Sclerostin, bone formation antagonist is in the spotlight as a potential biomarker for diseases presenting with associated bone disorders such as chronic kidney disease (CDK-MBD). Accurate measurement of sclerostin is therefore important. Several immunoassays are available to measure sclerostin in serum and plasma. We compared the performance of three commercial ELISA kits. We measured sclerostin concentrations in serum and EDTA plasma obtained from healthy young (18-26 years) human subjects using kits from Biomedica, TECOmedical and from R&D Systems. The circulating sclerostin concentrations were systematically higher when measured with the Biomedica assay (serum: 35.5 ± 1.1 pmol/L; EDTA: 39.4 ± 2.0 pmol/L; mean ± SD) as compared with TECOmedical (serum: 21.8 ± 0.7 pmol/L; EDTA: 27.2 ± 1.3 pmol/L) and R&D Systems (serum: 7.6 ± 0.3 pmol/L; EDTA: 30.9 ± 1.5 pmol/L). We found a good correlation between the assay for EDTA plasma (r > 0.6; p < 0.001) while in serum, only measurements obtained using TECOmedical and R&D Systems assays correlated significantly (r = 0.78; p < 0.001). There was no correlation between matrices results when using the Biomedica kit (r = 0.20). The variability in values generated from Biomedica, R&D Systems and TECOmedical assays raises questions regarding the accuracy and specificity of the assays. Direct comparison of studies using different kits is not possible and great care should be given to measurement of sclerostin, with traceability of reagents. Standardization with appropriate material is required before different sclerostin assays can be introduced in clinical practice. PMID:26749312

  12. How Accurate is Your Sclerostin Measurement? Comparison Between Three Commercially Available Sclerostin ELISA Kits.

    PubMed

    Piec, Isabelle; Washbourne, Christopher; Tang, Jonathan; Fisher, Emily; Greeves, Julie; Jackson, Sarah; Fraser, William D

    2016-06-01

    Sclerostin, bone formation antagonist is in the spotlight as a potential biomarker for diseases presenting with associated bone disorders such as chronic kidney disease (CDK-MBD). Accurate measurement of sclerostin is therefore important. Several immunoassays are available to measure sclerostin in serum and plasma. We compared the performance of three commercial ELISA kits. We measured sclerostin concentrations in serum and EDTA plasma obtained from healthy young (18-26 years) human subjects using kits from Biomedica, TECOmedical and from R&D Systems. The circulating sclerostin concentrations were systematically higher when measured with the Biomedica assay (serum: 35.5 ± 1.1 pmol/L; EDTA: 39.4 ± 2.0 pmol/L; mean ± SD) as compared with TECOmedical (serum: 21.8 ± 0.7 pmol/L; EDTA: 27.2 ± 1.3 pmol/L) and R&D Systems (serum: 7.6 ± 0.3 pmol/L; EDTA: 30.9 ± 1.5 pmol/L). We found a good correlation between the assay for EDTA plasma (r > 0.6; p < 0.001) while in serum, only measurements obtained using TECOmedical and R&D Systems assays correlated significantly (r = 0.78; p < 0.001). There was no correlation between matrices results when using the Biomedica kit (r = 0.20). The variability in values generated from Biomedica, R&D Systems and TECOmedical assays raises questions regarding the accuracy and specificity of the assays. Direct comparison of studies using different kits is not possible and great care should be given to measurement of sclerostin, with traceability of reagents. Standardization with appropriate material is required before different sclerostin assays can be introduced in clinical practice.

  13. Accurate and precise Pb isotope ratio measurements in environmental samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik J.; Kober, Bernd; Dolgopolova, Alla; Gallagher, Kerry; Spiro, Baruch; Le Roux, Gaël; Mason, Thomas F. D.; Kylander, Malin; Coles, Barry J.

    2004-04-01

    Analytical protocols for accurate and precise Pb isotope ratio determinations in peat, lichen, vegetable, chimney dust, and ore-bearing granites using MC-ICP-MS and their application to environmental studies are presented. Acid dissolution of various matrix types was achieved using high temperature/high pressure microwave and hot plate digestion procedures. The digests were passed through a column packed with EiChrom Sr-resin employing only hydrochloric acid and one column passage. This simplified column chemistry allowed high sample throughput. Typically, internal precisions for approximately 30 ng Pb were below 100 ppm (+/-2[sigma]) on all Pb ratios in all matrices. Thallium was employed to correct for mass discrimination effects and the achieved accuracy was below 80 ppm for all ratios. This involved an optimization procedure for the 205Tl/203Tl ratio using least square fits relative to certified NIST-SRM 981 Pb values. The long-term reproducibility (+/-2[sigma]) for the NIST-SRM 981 Pb standard over a 5-month period (35 measurements) was better than 350 ppm for all ratios. Selected ore-bearing granites were measured with TIMS and MC-ICP-MS and showed good correlation (e.g., r=0.999 for 206Pb/207Pb ratios, slope=0.996, n=13). Mass bias and signal intensities of Tl spiked into natural (after matrix separation) and in synthetic samples did not differ significantly, indicating that any residual components of the complex peat and lichen matrix did not influence mass bias correction. Environmental samples with very different matrices were analyzed during two different studies: (i) lichens, vegetables, and chimney dust around a Cu smelter in the Urals, and (ii) peat samples from an ombrotrophic bog in the Faroe Islands. The presented procedure for sample preparation, mass spectrometry, and data processing tools resulted in accurate and precise Pb isotope data that allowed the reliable differentiation and identification of Pb sources with variations as small as 0

  14. Experimental investigation of saturated polarization spectroscopy for quantitative concentration measurements.

    PubMed

    Reichardt, T A; Giancola, W C; Lucht, R P

    2000-04-20

    Polarization-spectroscopy (PS) line shapes and signal intensities are measured in well-characterized hydrogen-air flames operated over a wide range of equivalence ratios. We use both low (perturbative) and high (saturating) pump beam intensities in the counterpropagating pump-probe geometry. The effects of saturation on the line-center signal intensity and the resonance linewidth are investigated. The PS signal intensities are used to measure relative OH number densities in a series of near-adiabatic flames at equivalence ratios (phi) ranging from 0.5 to 1.5. The use of saturating pump intensities minimizes the effect of pump beam absorption, providing more accurate number density measurements. When calibrated to the calculated OH concentration in the phi = 0.6 flame, the saturated PS number density measurements probing the P(1)(2) transition are in excellent agreement with OH absorption measurements, equilibrium calculations of OH number density, and previous saturated degenerate four-wave mixing OH number density measurements. PMID:18345100

  15. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  16. An accurate mass and radius measurement for an ultracool white dwarf

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Bergeron, P.; Copperwheat, C. M.; Dhillon, V. S.; Bento, J.; Littlefair, S. P.; Schreiber, M. R.

    2012-11-01

    Studies of cool white dwarfs in the solar neighbourhood have placed a limit on the age of the Galactic disc of 8-9 billion years. However, determining their cooling ages requires the knowledge of their effective temperatures, masses, radii and atmospheric composition. So far, these parameters could only be inferred for a small number of ultracool white dwarfs for which an accurate distance is known, by fitting their spectral energy distributions in conjunction with a theoretical mass-radius relation. However, the mass-radius relation remains largely untested, and the derived cooling ages are hence model dependent. Here we report direct measurements of the mass and radius of an ultracool white dwarf in the double-lined eclipsing binary SDSS J013851.54-001621.6. We find MWD = 0.529 ± 0.010 M⊙ and RWD = 0.0131 ± 0.0003 R⊙. Our measurements are consistent with the mass-radius relation and we determine a robust cooling age of 9.5 billion years for the 3570 K white dwarf. We find that the mass and radius of the low-mass companion star, Msec = 0.132 ± 0.003 M⊙ and Rsec = 0.165 ± 0.001 R⊙, are in agreement with evolutionary models. We also find evidence that this >9.5 Gyr old M5 star is still active, far beyond the activity lifetime for a star of its spectral type. This is likely caused by the high tidally enforced rotation rate of the star. The companion star is close to filling its Roche lobe and the system will evolve into a cataclysmic variable in only 70 Myr. Our direct measurements demonstrate that this system can be used to calibrate ultracool white dwarf atmospheric models.

  17. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    NASA Technical Reports Server (NTRS)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  18. Quantitative wound healing measurement and monitoring system based on an innovative 3D imaging system

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Yang, Arthur; Yin, Gongjie; Wen, James

    2011-03-01

    In this paper, we report a novel three-dimensional (3D) wound imaging system (hardware and software) under development at Technest Inc. System design is aimed to perform accurate 3D measurement and modeling of a wound and track its healing status over time. Accurate measurement and tracking of wound healing enables physicians to assess, document, improve, and individualize the treatment plan given to each wound patient. In current wound care practices, physicians often visually inspect or roughly measure the wound to evaluate the healing status. This is not an optimal practice since human vision lacks precision and consistency. In addition, quantifying slow or subtle changes through perception is very difficult. As a result, an instrument that quantifies both skin color and geometric shape variations would be particularly useful in helping clinicians to assess healing status and judge the effect of hyperemia, hematoma, local inflammation, secondary infection, and tissue necrosis. Once fully developed, our 3D imaging system will have several unique advantages over traditional methods for monitoring wound care: (a) Non-contact measurement; (b) Fast and easy to use; (c) up to 50 micron measurement accuracy; (d) 2D/3D Quantitative measurements;(e) A handheld device; and (f) Reasonable cost (< $1,000).

  19. Quantitative viscoelastic parameters measured by harmonic motion imaging.

    PubMed

    Vappou, Jonathan; Maleke, Caroline; Konofagou, Elisa E

    2009-06-01

    Quantifying the mechanical properties of soft tissues remains a challenging objective in the field of elasticity imaging. In this work, we propose an ultrasound-based method for quantitatively estimating viscoelastic properties, using the amplitude-modulated harmonic motion imaging (HMI) technique. In HMI, an oscillating acoustic radiation force is generated inside the medium by using focused ultrasound and the resulting displacements are measured using an imaging transducer. The proposed approach is a two-step method that uses both the properties of the propagating shear wave and the phase shift between the applied stress and the measured strain in order to infer to the shear storage (G') and shear loss modulus (G''), which refer to the underlying tissue elasticity and viscosity, respectively. The proposed method was first evaluated on numerical phantoms generated by finite-element simulations, where a very good agreement was found between the input and the measured values of G' and G''. Experiments were then performed on three soft tissue-mimicking gel phantoms. HMI measurements were compared to rotational rheometry (dynamic mechanical analysis), and very good agreement was found at the only overlapping frequency (10 Hz) in the estimate of the shear storage modulus G' (14% relative error, averaged p-value of 0.34), whereas poorer agreement was found in G'' (55% relative error, averaged p-value of 0.0007), most likely due to the significantly lower values of G'' of the gel phantoms, posing thus a greater challenge in the sensitivity of the method. Nevertheless, this work proposes an original model-independent ultrasound-based elasticity imaging method that allows for direct, quantitative estimation of tissue viscoelastic properties, together with a validation against mechanical testing.

  20. Evaluation of Faecalibacterium 16S rDNA genetic markers for accurate identification of swine faecal waste by quantitative PCR.

    PubMed

    Duan, Chuanren; Cui, Yamin; Zhao, Yi; Zhai, Jun; Zhang, Baoyun; Zhang, Kun; Sun, Da; Chen, Hang

    2016-10-01

    A genetic marker within the 16S rRNA gene of Faecalibacterium was identified for use in a quantitative PCR (qPCR) assay to detect swine faecal contamination in water. A total of 146,038 bacterial sequences were obtained using 454 pyrosequencing. By comparative bioinformatics analysis of Faecalibacterium sequences with those of numerous swine and other animal species, swine-specific Faecalibacterium 16S rRNA gene sequences were identified and Polymerase Chain Okabe (PCR) primer sets designed and tested against faecal DNA samples from swine and non-swine sources. Two PCR primer sets, PFB-1 and PFB-2, showed the highest specificity to swine faecal waste and had no cross-reaction with other animal samples. PFB-1 and PFB-2 amplified 16S rRNA gene sequences from 50 samples of swine with positive ratios of 86 and 90%, respectively. We compared swine-specific Faecalibacterium qPCR assays for the purpose of quantifying the newly identified markers. The quantification limits (LOQs) of PFB-1 and PFB-2 markers in environmental water were 6.5 and 2.9 copies per 100 ml, respectively. Of the swine-associated assays tested, PFB-2 was more sensitive in detecting the swine faecal waste and quantifying the microbial load. Furthermore, the microbial abundance and diversity of the microbiomes of swine and other animal faeces were estimated using operational taxonomic units (OTUs). The species specificity was demonstrated for the microbial populations present in various animal faeces. PMID:27353369

  1. Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  2. Produced water toxicity tests accurately measure the produced water toxicity in marine environments?

    SciTech Connect

    Douglas, W.S.; Veil, J.A.

    1996-10-01

    U.S. Environmental Protection Agency (EPA) Region VI has issued a general permit for offshore oil and gas discharges to the Gulf of Mexico that places numerical limits on whole effluent toxicity (WEI) for produced water. Recently proposed EPA general permits for other produced water discharges in Regions VI and X also include enforceable numerical limits on WET. Clearly, the industry will be conducting extensive produced water WET testing. Unfortunately, the WET test may not accurately measure the toxicity of the chemical constituents of produced water. Rather the mortality of test organisms may be attributable to (1) the high salinity of produced water, which causes salinity shock to the organisms, or (2) an ionic imbalance caused by excesses or deficiencies of one or more of seawater`s essential ions in the test chambers. Both of these effects are likely to be mitigated in actual offshore discharge settings, where the receiving water will be seawater and substantial dilution will be probable. Thus, the additional salinity of produced water will be rapidly assimilated, and the proper marine ionic balance will be quickly restored. Regulatory authorities should be aware of these factors when interpreting WET test results.

  3. Accurate measurement of refraction and dispersion of a solid by a double-layer interferometer.

    PubMed

    Nassif, A Y

    1997-02-01

    A silica plate of plane-parallel faces is inserted into one gap of a double-layer interferometer that transmits white light to a prism spectrograph in order to produce elliptic rings of equal chromatic order (RECO's). The silica plate is rotated and the expanding RECO's are counted at their center while this center is coincident with a standard wavelength. An analytic formula that relates the fringe count to the rotated angle enables the refractive index of the rotated plate to be accurately determined for different wavelengths. The results are fitted to a single-term Sellmeier dispersion function to find the peak wavelength of the ultraviolet absorption band and the atomic number density for such a transition. The variation of either the dispersion coefficient or the group-velocity factor with wavelength is determined from either the displacement of the RECO center across the visible spectrum if one of the double-layer interferometer's mirrors is displaced parallel to itself or from measurements on the RECO diameters. PMID:18250738

  4. Quantitative phase measurement for wafer-level optics

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Huang, Lei; Zuo, Chao

    2015-07-01

    Wafer-level-optics now is widely used in smart phone camera, mobile video conferencing or in medical equipment that require tiny cameras. Extracting quantitative phase information has received increased interest in order to quantify the quality of manufactured wafer-level-optics, detect defective devices before packaging, and provide feedback for manufacturing process control, all at the wafer-level for high-throughput microfabrication. We demonstrate two phase imaging methods, digital holographic microscopy (DHM) and Transport-of-Intensity Equation (TIE) to measure the phase of the wafer-level lenses. DHM is a laser-based interferometric method based on interference of two wavefronts. It can perform a phase measurement in a single shot. While a minimum of two measurements of the spatial intensity of the optical wave in closely spaced planes perpendicular to the direction of propagation are needed to do the direct phase retrieval by solving a second-order differential equation, i.e., with a non-iterative deterministic algorithm from intensity measurements using the Transport-of-Intensity Equation (TIE). But TIE is a non-interferometric method, thus can be applied to partial-coherence light. We demonstrated the capability and disability for the two phase measurement methods for wafer-level optics inspection.

  5. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer.

    PubMed

    Arsac, L M; Belli, A; Lacour, J R

    1996-01-01

    A friction loaded cycle ergometer was instrumented with a strain gauge and an incremental encoder to obtain accurate measurement of human mechanical work output during the acceleration phase of a cycling sprint. This device was used to characterise muscle function in a group of 15 well-trained male subjects, asked to perform six short maximal sprints on the cycle against a constant friction load. Friction loads were successively set at 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75 N.kg-1 body mass. Since the sprints were performed from a standing start, and since the acceleration was not restricted, the greatest attention was paid to the measurement of the acceleration balancing load due to flywheel inertia. Instantaneous pedalling velocity (v) and power output (P) were calculated each 5 ms and then averaged over each downstroke period so that each pedal downstroke provided a combination of v, force and P. Since an 8-s acceleration phase was composed of about 21 to 34 pedal downstrokes, this many v-P combinations were obtained amounting to 137-180 v-P combinations for all six friction loads in one individual, over the widest functional range of pedalling velocities (17-214 rpm). Thus, the individual's muscle function was characterised by the v-P relationships obtained during the six acceleration phases of the six sprints. An important finding of the present study was a strong linear relationship between individual optimal velocity (vopt) and individual maximal power output (Pmax) (n = 15, r = 0.95, P < 0.001) which has never been observed before. Since vopt has been demonstrated to be related to human fibre type composition both vopt, Pmax and their inter-relationship could represent a major feature in characterising muscle function in maximal unrestricted exercise. It is suggested that the present method is well suited to such analyses.

  6. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid–Base and Ligand Binding Equilibria of Aquacobalamin

    DOE PAGES

    Johnston, Ryne C.; Zhou, Jing; Smith, Jeremy C.; Parks, Jerry M.

    2016-07-08

    In redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. Moreover, a major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co ligand binding equilibrium constants (Kon/off), pKas and reduction potentials for models of aquacobalaminmore » in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for CoIII, CoII, and CoI species, respectively, and the second model features saturation of each vacant axial coordination site on CoII and CoI species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co axial ligand binding, leading to substantial errors in predicted

  7. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid-Base and Ligand Binding Equilibria of Aquacobalamin.

    PubMed

    Johnston, Ryne C; Zhou, Jing; Smith, Jeremy C; Parks, Jerry M

    2016-08-01

    Redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. A major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co-ligand binding equilibrium constants (Kon/off), pKas, and reduction potentials for models of aquacobalamin in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co(III), Co(II), and Co(I) species, respectively, and the second model features saturation of each vacant axial coordination site on Co(II) and Co(I) species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co-axial ligand binding, leading to substantial errors in predicted pKas and

  8. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid-Base and Ligand Binding Equilibria of Aquacobalamin.

    PubMed

    Johnston, Ryne C; Zhou, Jing; Smith, Jeremy C; Parks, Jerry M

    2016-08-01

    Redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. A major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co-ligand binding equilibrium constants (Kon/off), pKas, and reduction potentials for models of aquacobalamin in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co(III), Co(II), and Co(I) species, respectively, and the second model features saturation of each vacant axial coordination site on Co(II) and Co(I) species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co-axial ligand binding, leading to substantial errors in predicted pKas and

  9. MELIFT - A new device for accurate measurements in a snow rich environment

    NASA Astrophysics Data System (ADS)

    Dorninger, M.

    2012-04-01

    A deep snow pack, remote locations, no external power supply and very low temperatures are often the main ingredients when it comes to the deployment of meteorological stations in mountainous terrain. The accurate position of the sensor related to the snow surface is normally not known. A new device called METLIFT overcomes the problems. WMO recommends a height between 1.2 m and 2 m above ground level for the measurement of air temperature and humidity. The height above ground level is specified to take care of the possible strong vertical temperature and humidity gradients at the lowest layers in the atmosphere. Especially in snow rich and remote locations it may be hardly possible to follow this advice. Therefore most of the meteorological stations in mountainous terrain are situated at mountain tops where strong winds will blow off the snow or in valleys where a daily inspection of the sensors is possible. In other unpopulated mountainous areas, e.g. basins, plateaus, the distance of the sensor to the snow surface is not known or the sensor will be snow-covered. A new device was developed to guarantee the sensor height above surface within the WMO limits in harsh and remote environments. An ultrasonic snow height sensor measures the distance to the snow surface. If it exceeds certain limits due to snow accumulation or snow melt the lift adapts its height accordingly. The prototype of METLIFT has been installed in Lower Austria at an altitude of 1000m. The lift is 6 m high and can pull out for another 4 m. Sensor arms are mounted every meter to allow the connection of additional sensors or to measure a profile of a certain parameter of the lowest 5 m above surface. Sensors can be added easily since cable wiring is provided to each sensor arm. Horizontal winds are measured at 7 m height above surface. METLIFT is independent of external power supply. Three lead gel accumulators recharged by three solar panels provide the energy necessary for the sensors, the data

  10. Quantitative measurement of outgas products from EUV photoresists

    NASA Astrophysics Data System (ADS)

    Tarrio, C.; Benner, B. A.; Vest, R. E.; Grantham, S.; Hill, S. B.; Lucatorto, T. B.; Hendricks, J. H.; Abbott, P.; Denbeaux, G.; Mbanaso, C.; Antohe, A.; Orvek, K.; Choi, K.-W.

    2008-03-01

    The photon-stimulated emission of organic molecules from the photoresist during exposure is a serious problem for extreme-ultraviolet lithography (EUVL) because the adsorption of the outgassing products on the EUV optics can lead to carbonization and subsequent reflectivity loss. In order to accurately quantify the total amount of outgassing for a given resist during an exposure, we have constructed a compact, portable chamber that is instrumented with a spinning rotor gauge and a capacitance diaphragm gauge that, unlike the more commonly used ionization gauge or quadrupole mass spectrometer, provides a direct and accurate measurement of the total pressure that is largely independent of the composition of the outgas products. We have also developed a method to perform compositional analysis on the outgas products and, more generally, on any contaminants that might be present in the stepper vacuum. The method involves collecting the vacuum contaminants in a trap cooled to liquid-nitrogen temperature. Once collected, the products from the trap are transferred to a system for analysis with gas chromatography with mass spectrometry. We will describe the workings of the instruments in detail as well as results of initial tests.

  11. Quantitative measures of healthy aging and biological age

    PubMed Central

    Kim, Sangkyu; Jazwinski, S. Michal

    2015-01-01

    Numerous genetic and non-genetic factors contribute to aging. To facilitate the study of these factors, various descriptors of biological aging, including ‘successful aging’ and ‘frailty’, have been put forth as integrative functional measures of aging. A separate but related quantitative approach is the ‘frailty index’, which has been operationalized and frequently used. Various frailty indices have been constructed. Although based on different numbers and types of health variables, frailty indices possess several common properties that make them useful across different studies. We have been using a frailty index termed FI34 based on 34 health variables. Like other frailty indices, FI34 increases non-linearly with advancing age and is a better indicator of biological aging than chronological age. FI34 has a substantial genetic basis. Using FI34, we found elevated levels of resting metabolic rate linked to declining health in nonagenarians. Using FI34 as a quantitative phenotype, we have also found a genomic region on chromosome 12 that is associated with healthy aging and longevity. PMID:26005669

  12. Quantitative fluorescent speckle microscopy (QFSM) to measure actin dynamics.

    PubMed

    Mendoza, Michelle C; Besson, Sebastien; Danuser, Gaudenz

    2012-10-01

    Quantitative fluorescent speckle microscopy (QFSM) is a live-cell imaging method to analyze the dynamics of macromolecular assemblies with high spatial and temporal resolution. Its greatest successes were in the analysis of actin filament and adhesion dynamics in the context of cell migration and microtubule dynamics in interphase and the meiotic/mitotic spindle. Here, focus is on the former application to illustrate the procedures of FSM imaging and the computational image processing that extracts quantitative information from these experiments. QFSM is advantageous over other methods because it measures the movement and turnover kinetics of the actin filament (F-actin) network in living cells across the entire field of view. Experiments begin with the microinjection of fluorophore-labeled actin into cells, which generate a low ratio of fluorescently labeled to endogenously unlabeled actin monomers. Spinning disk confocal or wide-field imaging then visualizes fluorophore clusters (two to eight actin monomers) within the assembled F-actin network as speckles. QFSM software identifies and computationally tracks and utilizes the location, appearance, and disappearance of speckles to derive network flows and maps of the rate of filament assembly and disassembly. PMID:23042526

  13. Quantitative measurement and analysis for detection and treatment planning of developmental dysplasia of the hip

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Lu, Hongbing; Chen, Hanyong; Zhao, Li; Shi, Zhengxing; Liang, Zhengrong

    2009-02-01

    Developmental dysplasia of the hip is a congenital hip joint malformation affecting the proximal femurs and acetabulum that are subluxatable, dislocatable, and dislocated. Conventionally, physicians made diagnoses and treatments only based on findings from two-dimensional (2D) images by manually calculating clinic parameters. However, anatomical complexity of the disease and the limitation of current standard procedures make accurate diagnosis quite difficultly. In this study, we developed a system that provides quantitative measurement of 3D clinical indexes based on computed tomography (CT) images. To extract bone structure from surrounding tissues more accurately, the system firstly segments the bone using a knowledge-based fuzzy clustering method, which is formulated by modifying the objective function of the standard fuzzy c-means algorithm with additive adaptation penalty. The second part of the system calculates automatically the clinical indexes, which are extended from 2D to 3D for accurate description of spatial relationship between femurs and acetabulum. To evaluate the system performance, experimental study based on 22 patients with unilateral or bilateral affected hip was performed. The results of 3D acetabulum index (AI) automatically provided by the system were validated by comparison with 2D results measured by surgeons manually. The correlation between the two results was found to be 0.622 (p<0.01).

  14. A new direct absorption measurement for high precision and accurate measurement of water vapor in the UT/LS

    NASA Astrophysics Data System (ADS)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Anderson, J.

    2011-12-01

    Highly accurate and precise water vapor measurements in the upper troposphere and lower stratosphere are critical to understanding the climate feedbacks of water vapor and clouds in that region. However, the continued disagreement among water vapor measurements (~1 - 2 ppmv) are too large to constrain the role of different hydration and dehydration mechanisms operating in the UT/LS, with model validation dependent upon which dataset is chosen. In response to these issues, we present a new instrument for measurement of water vapor in the UT/LS that was flown during the April 2011 MACPEX mission out of Houston, TX. The dual axis instrument combines the heritage and validated accuracy of the Harvard Lyman-alpha instrument with a newly designed direct IR absorption instrument, the Harvard Herriott Hygrometer (HHH). The Lyman-alpha detection axis has flown aboard NASA's WB-57 and ER2 aircraft since 1994, and provides a requisite link between the new HHH instrument and the long history of Harvard water vapor measurements. The instrument utilizes the highly sensitive Lyman-alpha photo-fragment fluorescence detection method; its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. The Harvard Herriott Hygrometer employs a fiber coupled near-IR laser with state-of-the-art electronics to measure water vapor via direct absorption in a spherical Herriott cell of 10 cm length. The instrument demonstrated in-flight precision of 0.1 ppmv (1-sec, 1-sigma) at mixing ratios as low as 5 ppmv with accuracies of 10% based on careful laboratory calibrations and in-flight performance. We present a description of the measurement technique along with our methodology for calibration and details of the measurement uncertainties. The simultaneous utilization of radically different measurement techniques in a single duct in the new Harvard Water Vapor (HWV) instrument allows for the constraint of systematic errors inherent in each technique

  15. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique.

    PubMed

    Huang, Y S; Huang, Y P; Huang, K N; Young, M S

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  16. A novel semi-quantitative method for measuring tissue bleeding.

    PubMed

    Vukcevic, G; Volarevic, V; Raicevic, S; Tanaskovic, I; Milicic, B; Vulovic, T; Arsenijevic, S

    2014-03-01

    In this study, we describe a new semi-quantitative method for measuring the extent of bleeding in pathohistological tissue samples. To test our novel method, we recruited 120 female patients in their first trimester of pregnancy and divided them into three groups of 40. Group I was the control group, in which no dilation was applied. Group II was an experimental group, in which dilation was performed using classical mechanical dilators. Group III was also an experimental group, in which dilation was performed using a hydraulic dilator. Tissue samples were taken from the patients' cervical canals using a Novak's probe via energetic single-step curettage prior to any dilation in Group I and after dilation in Groups II and III. After the tissue samples were prepared, light microscopy was used to obtain microphotographs at 100x magnification. The surfaces affected by bleeding were measured in the microphotographs using the Autodesk AutoCAD 2009 program and its "polylines" function. The lines were used to mark the area around the entire sample (marked A) and to create "polyline" areas around each bleeding area on the sample (marked B). The percentage of the total area affected by bleeding was calculated using the formula: N = Bt x 100 / At where N is the percentage (%) of the tissue sample surface affected by bleeding, At (A total) is the sum of the surfaces of all of the tissue samples and Bt (B total) is the sum of all the surfaces affected by bleeding in all of the tissue samples. This novel semi-quantitative method utilizes the Autodesk AutoCAD 2009 program, which is simple to use and widely available, thereby offering a new, objective and precise approach to estimate the extent of bleeding in tissue samples. PMID:24190861

  17. A novel semi-quantitative method for measuring tissue bleeding.

    PubMed

    Vukcevic, G; Volarevic, V; Raicevic, S; Tanaskovic, I; Milicic, B; Vulovic, T; Arsenijevic, S

    2014-03-01

    In this study, we describe a new semi-quantitative method for measuring the extent of bleeding in pathohistological tissue samples. To test our novel method, we recruited 120 female patients in their first trimester of pregnancy and divided them into three groups of 40. Group I was the control group, in which no dilation was applied. Group II was an experimental group, in which dilation was performed using classical mechanical dilators. Group III was also an experimental group, in which dilation was performed using a hydraulic dilator. Tissue samples were taken from the patients' cervical canals using a Novak's probe via energetic single-step curettage prior to any dilation in Group I and after dilation in Groups II and III. After the tissue samples were prepared, light microscopy was used to obtain microphotographs at 100x magnification. The surfaces affected by bleeding were measured in the microphotographs using the Autodesk AutoCAD 2009 program and its "polylines" function. The lines were used to mark the area around the entire sample (marked A) and to create "polyline" areas around each bleeding area on the sample (marked B). The percentage of the total area affected by bleeding was calculated using the formula: N = Bt x 100 / At where N is the percentage (%) of the tissue sample surface affected by bleeding, At (A total) is the sum of the surfaces of all of the tissue samples and Bt (B total) is the sum of all the surfaces affected by bleeding in all of the tissue samples. This novel semi-quantitative method utilizes the Autodesk AutoCAD 2009 program, which is simple to use and widely available, thereby offering a new, objective and precise approach to estimate the extent of bleeding in tissue samples.

  18. A Quantitative Measure of Handwriting Dysfluency for Assessing Tardive Dyskinesia

    PubMed Central

    Caligiuri, Michael P.; Teulings, Hans-Leo; Dean, Charles E.; Lohr, James B.

    2015-01-01

    Tardive dyskinesia (TD) is movement disorder commonly associated with chronic exposure to antidopaminergic medications which may be in some cases disfiguring and socially disabling. The consensus from a growing body of research on the incidence and prevalence of TD in the modern era of antipsychotics indicates that this disorder has not disappeared continues to challenge the effective management of psychotic symptoms in patients with schizophrenia. A fundamental component in an effective strategy for managing TD is its reliable and accurate assessment. In the present study, we examined the clinical utility of a brief handwriting dysfluency measure for quantifying TD. Digitized samples of handwritten circles and loops were obtained from 62 psychosis patients with or without TD and from 50 healthy subjects. Two measures of dysfluent pen movements were extracted from each vertical pen stroke, including normalized jerk and the number of acceleration peaks. TD patients exhibited significantly higher dysfluency scores than non-TD patients and controls. Severity of handwriting movement dysfluency was correlated with AIMS severity ratings for some tasks. The procedure yielded high degrees of test-retest reliability. These results suggest that measures of handwriting movement dysfluency may be particularly useful for objectively evaluating the efficacy of pharmacotherapeutic strategies for treating TD. PMID:25679121

  19. A quantitative measure of handwriting dysfluency for assessing tardive dyskinesia.

    PubMed

    Caligiuri, Michael P; Teulings, Hans-Leo; Dean, Charles E; Lohr, James B

    2015-04-01

    Tardive dyskinesia (TD) is a movement disorder commonly associated with chronic exposure to antidopaminergic medications, which may be in some cases disfiguring and socially disabling. The consensus from a growing body of research on the incidence and prevalence of TD in the modern era of antipsychotics indicates that this disorder has not disappeared continues to challenge the effective management of psychotic symptoms in patients with schizophrenia. A fundamental component in an effective strategy for managing TD is its reliable and accurate assessment. In the present study, we examined the clinical utility of a brief handwriting dysfluency measure for quantifying TD. Digitized samples of handwritten circles and loops were obtained from 62 psychosis patients with or without TD and from 50 healthy subjects. Two measures of dysfluent pen movements were extracted from each vertical pen stroke, including normalized jerk and the number of acceleration peaks. Tardive dyskinesia patients exhibited significantly higher dysfluency scores than non-TD patients and controls. Severity of handwriting movement dysfluency was correlated with Abnormal Involuntary Movement Scale severity ratings for some tasks. The procedure yielded high degrees of test-retest reliability. These results suggest that measures of handwriting movement dysfluency may be particularly useful for objectively evaluating the efficacy of pharmacotherapeutic strategies for treating TD.

  20. Quantitative measurements of cerebral blood flow in volume imaging PET scanners

    SciTech Connect

    Smith, R.J.; Shao, L.; Freifelder, R.; Karp, J.S.; Ragland, J.D.

    1995-08-01

    Quantitative measurements of Cerebral Blood Flow (CBF) are performed in a volume imaging PET Scanner by means of moderate activity infusions. In equilibrium infusions, activations are measured by scanning over 10 minutes with 16 minute activations. Typical measured whole brain CBF values are 37{+-}8 ml/min/100g, close to the value of 42 ml/min/100g reported by other groups using this method. For ramped infusions, scanning over 4 minutes with 5 minute activations results in whole brain CBFs of 49 {+-} 9 ml/min/100g, close to the Kety and Schmidt value of 50 ml/min/100g. Both equilibrium and ramped infusion methods have been used to study face and word memory in human subjects. Both methods were able to detect significant activations in regions implicated in human memory. The authors conclude that precise quantitation of regional CBF is achieved using both methods, and that ramped infusions also provide accurate measures of CBF. In addition a simplified protocol for ramped infusion studies has been developed. In this method the whole brain tissue time activity curve generated from dynamic scanning is replaced by an appropriately scaled camera coincidence countrate curve. The resulting whole brain CBF values are only 7% different from the dynamic scan and fit results. Regional CBFs (rCBF) may then be generated from the summed image (4.25 minutes) using a count density vs flow lookup table.

  1. Noninvasive, quantitative respirator fit testing through dynamic pressure measurement.

    PubMed

    Carpenter, D R; Willeke, K

    1988-10-01

    A new method has been invented for the noninvasive and quantitative determination of fit for a respirator. The test takes a few seconds and requires less expensive instrumentation than presently used for invasive testing. In this test, the breath is held at a negative pressure for a few seconds, and the leak-induced pressure decay inside the respirator cavity is monitored. A dynamic pressure sensor is attached to a modified cartridge of an air-purifying respirator or built into the respirator body or into the air supply line of an air-supplied respirator. The method is noninvasive in that the modified cartridge can be mounted onto any air-purifying respirator. The pressure decay during testing quantifies the airflow entered through the leak site. An equation has been determined which gives the air leakage as a function of pressure decay slope, respirator volume and the pressure differential during actual wear--all of which are determined by the dynamic pressure sensor. Thus, the ratio of air inhaled through the filters or via the air supply line to the leak rate is a measure of respirator fit, independent of aerosol deposition in the lung and aerosol distribution in the respirator cavity as found for quantitative fit testing with aerosols. The new method is shown to be independent of leak and sensor locations. The concentration and distribution of aerosols entered through the leak site is dependent only on the physical dimensions of the leak site and the air velocity in it, which can be determined independently.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3189157

  2. Quantitative Proton Magnetic Resonance Techniques for Measuring Fat

    PubMed Central

    Harry, Houchun; Kan, Hermien E.

    2014-01-01

    Accurate, precise, and reliable techniques for quantifying body and organ fat distributions are important tools in physiology research. They are critically needed in studies of obesity and diseases involving excess fat accumulation. Proton magnetic resonance methods address this need by providing an array of relaxometry-based (T1, T2) and chemical-shift-based approaches. These techniques can generate informative visualizations of regional and whole-body fat distributions, yield measurements of fat volumes within specific body depots, and quantify fat accumulation in abdominal organs and muscles. MR methods are commonly used to investigate the role of fat in nutrition and metabolism, to measure the efficacy of short and long-term dietary and exercise interventions, to study the implications of fat in organ steatosis and muscular dystrophies, and to elucidate pathophysiological mechanisms in the context of obesity and its comorbidities. The purpose of this review is to provide a summary of mainstream MR strategies for fat quantification. The article will succinctly describe the principles that differentiate water and fat proton signals, summarize advantages and limitations of various techniques, and offer a few illustrative examples. The article will also highlight recent efforts in MR of brown adipose tissue and conclude by briefly discussing some future research directions. PMID:24123229

  3. The quantitative measurement of consciousness during epileptic seizures.

    PubMed

    Nani, Andrea; Cavanna, Andrea E

    2014-01-01

    The assessment of consciousness is a fundamental element in the classification of epileptic seizures. It is, therefore, of great importance for clinical practice to develop instruments that enable an accurate and reliable measurement of the alteration of consciousness during seizures. Over the last few years, three psychometric scales have been specifically proposed to measure ictal consciousness: the Ictal Consciousness Inventory (ICI), the Consciousness Seizure Scale (CSS), and the Responsiveness in Epilepsy Scale--versions I and II (RES-I and RES-II). The ICI is a self-report psychometric instrument which retrospectively assesses ictal consciousness along the dimensions of the level/arousal and contents/awareness. The CSS has been used by clinicians to quantify the impairment of consciousness in order to establish correlations with the brain mechanisms underlying alterations of consciousness during temporal lobe seizures. The most recently developed observer-rated instrument is the RES-I, which has been used to assess responsiveness during epileptic seizures in patients undergoing video-EEG. The implementation of standardized psychometric tools for the assessment of ictal consciousness can complement clinical observations and contribute to improve accuracy in seizure classification.

  4. Use of quantitative shape-activity relationships to model the photoinduced toxicity of polycyclic aromatic hydrocarbons: Electron density shape features accurately predict toxicity

    SciTech Connect

    Mezey, P.G.; Zimpel, Z.; Warburton, P.; Walker, P.D.; Irvine, D.G.; Huang, X.D.; Dixon, D.G.; Greenberg, B.M.

    1998-07-01

    The quantitative shape-activity relationship (QShAR) methodology, based on accurate three-dimensional electron densities and detailed shape analysis methods, has been applied to a Lemna gibba photoinduced toxicity data set of 16 polycyclic aromatic hydrocarbon (PAH) molecules. In the first phase of the studies, a shape fragment QShAR database of PAHs was developed. The results provide a very good match to toxicity based on a combination of the local shape features of single rings in comparison to the central ring of anthracene and a more global shape feature involving larger molecular fragments. The local shape feature appears as a descriptor of the susceptibility of PAHs to photomodification and the global shape feature is probably related to photosensitization activity.

  5. Quantitative Measures for Evaluation of Ultrasound Therapies of the Prostate

    NASA Astrophysics Data System (ADS)

    Kobelevskiy, Ilya; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv

    2010-03-01

    Development of non-invasive techniques for prostate cancer treatment requires implementation of quantitative measures for evaluation of the treatment results. In this paper. we introduce measures that estimate spatial targeting accuracy and potential thermal damage to the structures surrounding the prostate. The measures were developed for the technique of treating prostate cancer with a transurethral ultrasound heating applicators guided by active MR temperature feedback. Variations of ultrasound element length and related MR imaging parameters such as MR slice thickness and update time were investigated by performing numerical simulations of the treatment on a database of ten patient prostate geometries segmented from clinical MR images. Susceptibility of each parameter configuration to uncertainty in MR temperature measurements was studied by adding noise to the temperature measurements. Gaussian noise with zero mean and standard deviation of 0, 1, 3 and 5° C was used to model different levels of uncertainty in MR temperature measurements. Results of simulations for each parameter configuration were averaged over the database of the ten prostate patient geometries studied. Results have shown that for update time of 5 seconds both 3- and 5-mm elements achieve appropriate performance for temperature uncertainty up to 3° C, while temperature uncertainty of 5° C leads to noticeable reduction in spatial accuracy and increased risk of damaging rectal wall. Ten-mm elements lacked spatial accuracy and had higher risk of damaging rectal wall compared to 3- and 5-mm elements, but were less sensitive to the level of temperature uncertainty. The effect of changing update time was studied for 5-mm elements. Simulations showed that update time had minor effects on all aspects of treatment for temperature uncertainty of 0° C and 1° C, while temperature uncertainties of 3° C and 5° C led to reduced spatial accuracy, increased potential damage to the rectal wall, and

  6. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    NASA Astrophysics Data System (ADS)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  7. A Framework for Mixing Methods in Quantitative Measurement Development, Validation, and Revision: A Case Study

    ERIC Educational Resources Information Center

    Luyt, Russell

    2012-01-01

    A framework for quantitative measurement development, validation, and revision that incorporates both qualitative and quantitative methods is introduced. It extends and adapts Adcock and Collier's work, and thus, facilitates understanding of quantitative measurement development, validation, and revision as an integrated and cyclical set of…

  8. Quantitative Measurement of Protein Relocalization in Live Cells

    PubMed Central

    Bush, Alan; Colman-Lerner, Alejandro

    2013-01-01

    Microscope cytometry provides a powerful means to study signaling in live cells. Here we present a quantitative method to measure protein relocalization over time, which reports the absolute fraction of a tagged protein in each compartment. Using this method, we studied an essential step in the early propagation of the pheromone signal in Saccharomyces cerevisiae: recruitment to the membrane of the scaffold Ste5 by activated Gβγ dimers. We found that the dose response of Ste5 recruitment is graded (EC50 = 0.44 ± 0.08 nM, Hill coefficient = 0.8 ± 0.1). Then, we determined the effective dissociation constant (Kde) between Ste5 and membrane sites during the first few minutes when the negative feedback from the MAPK Fus3 is first activated. Kde changed during the first minutes from a high affinity of <0.65 nM to a steady-state value of 17 ± 9 nM. During the same period, the total number of binding sites decreased slightly, from 1940 ± 150 to 1400 ± 200. This work shows how careful quantification of a protein relocalization dynamic can give insight into the regulation mechanisms of a biological system. PMID:23442923

  9. Quantitative MRI Measures in SIV-Infected Macaque Brains.

    PubMed

    Zhang, Xiaodong; Li, Chunxia

    2013-01-01

    Multiple MRI modalities including Diffusion Tensor Imaging (DTI), perfusion MRI, in vivo MR Spectroscopy (MRS), volumetric MRI, contrast-enhanced MRI, and functional MRI have demonstrated abnormalities of the structural and functional integrity as well as neurochemical alterations of the HIV-infected central nervous system (CNS). MRI has been proposed as a robust imaging approach for the characterization of the stage of progression in HIV infection. However, the interpretation of the MRI findings of HIV patients is complicated by the fact that these clinical studies cannot readily be controlled. Simian immunodeficiency virus (SIV) infected macaques exhibit neuropathological symptoms similar to those of HIV patients, and are an important model for studying the course of CNS infection, cognitive impairment, and neuropathology of HIV disease as well as treatment efficacy. MRI of non-human primates (NHPs) is of limited benefit on most clinical scanners operating at or below 1.5 Tesla because this low field strength does not produce high-quality images of the relatively small NHP brain. Contemporary high field MRI (3T or more) for clinical use provides impressive sensitivity for magnetic resonance signal detection and is now accessible in many imaging centers and hospitals, facilitating the use of various MRI techniques in NHP studies. In this article, several high field MRI techniques and applications in macaque models of neuroAIDS are reviewed and the relation between quantitative MRI measures and blood T-cell alterations is discussed. PMID:24244892

  10. Quantitative Laughter Detection, Measurement, and Classification-A Critical Survey.

    PubMed

    Cosentino, Sarah; Sessa, Salvatore; Takanishi, Atsuo

    2016-01-01

    The study of human nonverbal social behaviors has taken a more quantitative and computational approach in recent years due to the development of smart interfaces and virtual agents or robots able to interact socially. One of the most interesting nonverbal social behaviors, producing a characteristic vocal signal, is laughing. Laughter is produced in several different situations: in response to external physical, cognitive, or emotional stimuli; to negotiate social interactions; and also, pathologically, as a consequence of neural damage. For this reason, laughter has attracted researchers from many disciplines. A consequence of this multidisciplinarity is the absence of a holistic vision of this complex behavior: the methods of analysis and classification of laughter, as well as the terminology used, are heterogeneous; the findings sometimes contradictory and poorly documented. This survey aims at collecting and presenting objective measurement methods and results from a variety of different studies in different fields, to contribute to build a unified model and taxonomy of laughter. This could be successfully used for advances in several fields, from artificial intelligence and human-robot interaction to medicine and psychiatry. PMID:26887012

  11. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor.

    PubMed

    Hu, Wei; Zhao, Zhangyan; Wang, Yunfeng; Zhang, Haiying; Lin, Fujiang

    2014-03-01

    The designed sensor enables accurate reconstruction of chest-wall movement caused by cardiopulmonary activities, and the algorithm enables estimation of respiration, heartbeat rate, and some indicators of heart rate variability (HRV). In particular, quadrature receiver and arctangent demodulation with calibration are introduced for high linearity representation of chest displacement; 24-bit ADCs with oversampling are adopted for radar baseband acquisition to achieve a high signal resolution; continuous-wavelet filter and ensemble empirical mode decomposition (EEMD) based algorithm are applied for cardio/pulmonary signal recovery and separation so that accurate beat-to-beat interval can be acquired in time domain for HRV analysis. In addition, the wireless sensor is realized and integrated on a printed circuit board compactly. The developed sensor system is successfully tested on both simulated target and human subjects. In simulated target experiments, the baseband signal-to-noise ratio (SNR) is 73.27 dB, high enough for heartbeat detection. The demodulated signal has 0.35% mean squared error, indicating high demodulation linearity. In human subject experiments, the relative error of extracted beat-to-beat intervals ranges from 2.53% to 4.83% compared with electrocardiography (ECG) R-R peak intervals. The sensor provides an accurate analysis for heart rate with the accuracy of 100% for p = 2% and higher than 97% for p = 1%. PMID:24235293

  12. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor.

    PubMed

    Hu, Wei; Zhao, Zhangyan; Wang, Yunfeng; Zhang, Haiying; Lin, Fujiang

    2014-03-01

    The designed sensor enables accurate reconstruction of chest-wall movement caused by cardiopulmonary activities, and the algorithm enables estimation of respiration, heartbeat rate, and some indicators of heart rate variability (HRV). In particular, quadrature receiver and arctangent demodulation with calibration are introduced for high linearity representation of chest displacement; 24-bit ADCs with oversampling are adopted for radar baseband acquisition to achieve a high signal resolution; continuous-wavelet filter and ensemble empirical mode decomposition (EEMD) based algorithm are applied for cardio/pulmonary signal recovery and separation so that accurate beat-to-beat interval can be acquired in time domain for HRV analysis. In addition, the wireless sensor is realized and integrated on a printed circuit board compactly. The developed sensor system is successfully tested on both simulated target and human subjects. In simulated target experiments, the baseband signal-to-noise ratio (SNR) is 73.27 dB, high enough for heartbeat detection. The demodulated signal has 0.35% mean squared error, indicating high demodulation linearity. In human subject experiments, the relative error of extracted beat-to-beat intervals ranges from 2.53% to 4.83% compared with electrocardiography (ECG) R-R peak intervals. The sensor provides an accurate analysis for heart rate with the accuracy of 100% for p = 2% and higher than 97% for p = 1%.

  13. Quantitative zone-axis convergent-beam electron diffraction (CBED) studies of metals. II. Debye-Waller-factor measurements.

    PubMed

    Saunders; Fox; Midgley

    1999-05-01

    Quantitative CBED techniques, such as the ZAPMATCH zone-axis pattern-matching method [Bird & Saunders (1992). Ultramicroscopy, 45, 241-251], have been applied with great success to the accurate refinement of low-order structure factors. The major limitation on the accuracy of the structure-factor measurements is uncertainty in the Debye-Waller factors describing the temperature-dependent atomic vibrations. While X-ray and neutron diffraction tech-niques are both capable of accurate measurements of Debye-Waller factors, the frequent use of liquid-nitrogen-cooled samples in CBED experiments means that previous measurements are rarely available at the temperatures required. This has prompted attempts to determine Debye-Waller factors from electron diffraction data obtained under experimental conditions that match those used for the quantitative CBED work. In this paper, the possibility of extracting accurate Debye-Waller factors from the low-order reflections of a zone-axis CBED pattern is investigated. In this way, the Debye-Waller factors and structure factors could be obtained from the same data set. With this new approach, it is shown that errors lower than +/-0.02 Å(2) can be obtained for the measurement of Debye-Waller factors from room- and liquid-nitrogen-temperature nickel and copper <110> zone-axis data. The results obtained are compared with previous measurements and theoretical predictions. PMID:10926691

  14. A device for rapid and quantitative measurement of cardiac myocyte contractility

    NASA Astrophysics Data System (ADS)

    Gaitas, Angelo; Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-03-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l-1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.

  15. A device for rapid and quantitative measurement of cardiac myocyte contractility

    PubMed Central

    Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-01-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l−1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions. PMID:25832250

  16. Quantitative and Morphological Measures May Predict Growth and Mortality During Prenatal Growth in Japanese Quails

    PubMed Central

    Arora, Kashmiri L.; Vatsalya, Vatsalya

    2014-01-01

    Growth pattern and mortality rate during the embryonic phase of avian species are difficult to recognize and predict. Determination of such measures and associated events may enhance our understanding of characteristics involved in the growth and hatching process. Furthermore, some quantitative measures could validate morphological determinants during the embryonic phase and predict the course of normal growth and alterations. Our aim was to characterize quantitative growth of embryos and to establish baseline embryonic standards for use in comparative and pathological research during the prenatal life of Japanese quail. Day 10 was a landmark timeline for initiation of extensive anatomical changes in growth and transformation. Wet and dry weights were positively correlated with each other and inversely correlated with water content (p = 0.05). Following d10, the water content decreased progressively, whereas, dry and wet weights increased with increasing age. Velocity of growth in wet and dry weights was evident starting d6, spiked at d11 and d15 and then declined before hatching on d16. Organic and inorganic contents of embryos were positively associated with age. Progressive increase in the organic to inorganic ratio with age was evident after d5, spiked on d9, d13 and d16. Accurate determinations of prenatal growth processes could serve as valuable tools in identifying morphological developments and characterization of prenatal growth and mortality, thus enhancing the reproductive efficiency of the breeding colony and the postnatal robustness of the offspring. PMID:25285101

  17. Quantitative electrochemical measurements using in situ ec-S/TEM devices.

    PubMed

    Unocic, Raymond R; Sacci, Robert L; Brown, Gilbert M; Veith, Gabriel M; Dudney, Nancy J; More, Karren L; Walden, Franklin S; Gardiner, Daniel S; Damiano, John; Nackashi, David P

    2014-04-01

    Insight into dynamic electrochemical processes can be obtained with in situ electrochemical-scanning/transmission electron microscopy (ec-S/TEM), a technique that utilizes microfluidic electrochemical cells to characterize electrochemical processes with S/TEM imaging, diffraction, or spectroscopy. The microfluidic electrochemical cell is composed of microfabricated devices with glassy carbon and platinum microband electrodes in a three-electrode cell configuration. To establish the validity of this method for quantitative in situ electrochemistry research, cyclic voltammetry (CV), choronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) were performed using a standard one electron transfer redox couple [Fe(CN)6]3-/4--based electrolyte. Established relationships of the electrode geometry and microfluidic conditions were fitted with CV and chronoamperometic measurements of analyte diffusion coefficients and were found to agree with well-accepted values that are on the order of 10-5 cm2/s. Influence of the electron beam on electrochemical measurements was found to be negligible during CV scans where the current profile varied only within a few nA with the electron beam on and off, which is well within the hysteresis between multiple CV scans. The combination of experimental results provides a validation that quantitative electrochemistry experiments can be performed with these small-scale microfluidic electrochemical cells provided that accurate geometrical electrode configurations, diffusion boundary layers, and microfluidic conditions are accounted for.

  18. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  19. A Fabry-Perot interferometer for accurate measurement of temporal changes in stellar Doppler shift

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. S.; Smith, P. H.; Frecker, J. E.; Merline, W. J.; Perry, M. L.

    1986-01-01

    The scrambling of incident light by an optical filter, and the stability obtainable through wavelength calibration by means of a tilt-tunable Fabry-Perot etalon, allow the accurate observation of Doppler shift changes in stellar absorption lines. Distinct, widely spaced monochromatic images of the entrance aperture are formed in the focal plane of the camera through a sampling of about 350 points on the profile of the stellar spectrum by successive orders of interferometric transmission through the etalon. Changes in Doppler shift modify the relative intensities of these images, in proportion to the slope of the spectral profile at each point sampled.

  20. Bone morphometry and mineral density measurement using quantitative computed tomography

    SciTech Connect

    Jacobson, D.R.

    1991-01-01

    Application of computed tomography (CT) to the study of bone structure and density was explored and developed. A review of bone mineral densitometry (BMD) methodology and general principles of quantitative CT (QCT) are presented. A method for QCT of the spine was developed using a flexible tissue equivalent reference placed adjacent to the patient. A methodology for the development and production of tissue equivalent materials is also presented. Patient equivalent phantoms were used to characterize the method, and phantom studies were performed at five clinical sites. A protocol is defined for measuring the inside diameter of the lumbar pedicular canal. Data generated from this study has proven invaluable in the planning for lumbar fusion surgery when screws are to be used for immobilization. Pedicular canal data from 33 patients is presented. QCT was also used to quantify several parameters of the femoral shaft for use in hip replacement surgical planning. Parameters studied include inside diameter, BMD, endosteal BMD and proximal shaft morphology. The structure and trabecular BMD of the proximal femur was extensively studied using QCT. A large variation was found in the fat content of marrow within the proximal femur, and phantom studies were performed to quantify the effect of fat on trabecular QCT BMD. Cadaveric trabecular bone samples with marrow were analyzed physically to determine water, fat, non-fat soft tissue, and ash content. Multiple thin-slice CT studies were performed on cadaveric femurs. A structural model of the proximal femur was developed in which the structural support is provided primarily by trabecular bone. This model may have profound implications in the study of femoral fractures and prosthetic hardware design.

  1. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    PubMed Central

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-01-01

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739

  2. Accurate radiocarbon age estimation using "early" measurements: a new approach to reconstructing the Paleolithic absolute chronology

    NASA Astrophysics Data System (ADS)

    Omori, Takayuki; Sano, Katsuhiro; Yoneda, Minoru

    2014-05-01

    This paper presents new correction approaches for "early" radiocarbon ages to reconstruct the Paleolithic absolute chronology. In order to discuss time-space distribution about the replacement of archaic humans, including Neanderthals in Europe, by the modern humans, a massive data, which covers a wide-area, would be needed. Today, some radiocarbon databases focused on the Paleolithic have been published and used for chronological studies. From a viewpoint of current analytical technology, however, the any database have unreliable results that make interpretation of radiocarbon dates difficult. Most of these unreliable ages had been published in the early days of radiocarbon analysis. In recent years, new analytical methods to determine highly-accurate dates have been developed. Ultrafiltration and ABOx-SC methods, as new sample pretreatments for bone and charcoal respectively, have attracted attention because they could remove imperceptible contaminates and derive reliable accurately ages. In order to evaluate the reliability of "early" data, we investigated the differences and variabilities of radiocarbon ages on different pretreatments, and attempted to develop correction functions for the assessment of the reliability. It can be expected that reliability of the corrected age is increased and the age applied to chronological research together with recent ages. Here, we introduce the methodological frameworks and archaeological applications.

  3. Qualitative and quantitative comparative analyses of 3D lidar landslide displacement field measurements

    NASA Astrophysics Data System (ADS)

    Haugen, Benjamin D.

    Landslide ground surface displacements vary at all spatial scales and are an essential component of kinematic and hazards analyses. Unfortunately, survey-based displacement measurements require personnel to enter unsafe terrain and have limited spatial resolution. And while recent advancements in LiDAR technology provide the ability remotely measure 3D landslide displacements at high spatial resolution, no single method is widely accepted. A series of qualitative metrics for comparing 3D landslide displacement field measurement methods were developed. The metrics were then applied to nine existing LiDAR techniques, and the top-ranking methods --Iterative Closest Point (ICP) matching and 3D Particle Image Velocimetry (3DPIV) -- were quantitatively compared using synthetic displacement and control survey data from a slow-moving translational landslide in north-central Colorado. 3DPIV was shown to be the most accurate and reliable point cloud-based 3D landslide displacement field measurement method, and the viability of LiDAR-based techniques for measuring 3D motion on landslides was demonstrated.

  4. Autonomous Instrumentation for Fast, Continuous and Accurate Isotopic Measurements of Water Vapor (δ18O, δ 2H, H2O) in the Field

    NASA Astrophysics Data System (ADS)

    Liem, J. S.; Dong, F.; Owano, T. G.; Baer, D. S.

    2010-12-01

    Stable isotopes of water vapor are powerful tracers to investigate the hydrological cycle and ecological processes. Therefore, continuous, in-situ and accurate measurements of δ18O and δ2H are critical to advance the understanding of water-cycle dynamics worldwide. Furthermore, the combination of meteorological techniques and high-frequency isotopic water measurements can provide detailed time-resolved information on the eco-physiological performance of plants and enable improved understanding of water fluxes at ecosystem scales. In this work, we present recent development and field deployment of a novel Water Vapor Isotope Measurement System (WVIMS) capable of simultaneous in situ measurements of δ18O and δ2H and water mixing ratio (H2O) with high precision, accuracy and speed (up to 10 Hz measurement rate). The WVIMS consists of an Analyzer (Water Vapor Isotope Analyzer), based on cavity enhanced laser absorption spectroscopy, and a Standard Source (Water Vapor Isotope Standard Source), based on quantitative evaporation of a liquid water standard (with known isotopic content), and operates in a dual-inlet configuration. The WVIMS automatically controls the entire sample and data collection, data analysis and calibration process to allow for continuous, autonomous unattended long-term operation. The WVIMS has been demonstrated for accurate (i.e. fully calibrated) measurements ranging from 500 ppmv (typical of arctic environments) to over 30,000 ppmv (typical of tropical environments) in air. Dual-inlet operation, which involves regular calibration with isotopic water vapor reference standards, essentially eliminates measurement drift, ensures data reliability, and allows operation over an extremely wide ambient temperature range (5-45C). This presentation will include recent measurements recorded using the WVIMS in plant growth chambers and in arctic environments. The availability of this new instrumentation provides new opportunities for detailed continuous

  5. Accurate and easy-to-use assessment of contiguous DNA methylation sites based on proportion competitive quantitative-PCR and lateral flow nucleic acid biosensor.

    PubMed

    Xu, Wentao; Cheng, Nan; Huang, Kunlun; Lin, Yuehe; Wang, Chenguang; Xu, Yuancong; Zhu, Longjiao; Du, Dan; Luo, Yunbo

    2016-06-15

    Many types of diagnostic technologies have been reported for DNA methylation, but they require a standard curve for quantification or only show moderate accuracy. Moreover, most technologies have difficulty providing information on the level of methylation at specific contiguous multi-sites, not to mention easy-to-use detection to eliminate labor-intensive procedures. We have addressed these limitations and report here a cascade strategy that combines proportion competitive quantitative PCR (PCQ-PCR) and lateral flow nucleic acid biosensor (LFNAB), resulting in accurate and easy-to-use assessment. The P16 gene with specific multi-methylated sites, a well-studied tumor suppressor gene, was used as the target DNA sequence model. First, PCQ-PCR provided amplification products with an accurate proportion of multi-methylated sites following the principle of proportionality, and double-labeled duplex DNA was synthesized. Then, a LFNAB strategy was further employed for amplified signal detection via immune affinity recognition, and the exact level of site-specific methylation could be determined by the relative intensity of the test line and internal reference line. This combination resulted in all recoveries being greater than 94%, which are pretty satisfactory recoveries in DNA methylation assessment. Moreover, the developed cascades show significantly high usability as a simple, sensitive, and low-cost tool. Therefore, as a universal platform for sensing systems for the detection of contiguous multi-sites of DNA methylation without external standards and expensive instrumentation, this PCQ-PCR-LFNAB cascade method shows great promise for the point-of-care diagnosis of cancer risk and therapeutics.

  6. Accurate, quantitative assays for the hydrolysis of soluble type I, II, and III /sup 3/H-acetylated collagens by bacterial and tissue collagenases

    SciTech Connect

    Mallya, S.K.; Mookhtiar, K.A.; Van Wart, H.E.

    1986-11-01

    Accurate and quantitative assays for the hydrolysis of soluble /sup 3/H-acetylated rat tendon type I, bovine cartilage type II, and human amnion type III collagens by both bacterial and tissue collagenases have been developed. The assays are carried out at any temperature in the 1-30/sup 0/C range in a single reaction tube and the progress of the reaction is monitored by withdrawing aliquots as a function of time, quenching with 1,10-phenanthroline, and quantitation of the concentration of hydrolysis fragments. The latter is achieved by selective denaturation of these fragments by incubation under conditions described in the previous paper of this issue. The assays give percentages of hydrolysis of all three collagen types by neutrophil collagenase that agree well with the results of gel electrophoresis experiments. The initial rates of hydrolysis of all three collagens are proportional to the concentration of both neutrophil or Clostridial collagenases over a 10-fold range of enzyme concentrations. All three assays can be carried out at collagen concentrations that range from 0.06 to 2 mg/ml and give linear double reciprocal plots for both tissue and bacterial collagenases that can be used to evaluate the kinetic parameters K/sub m/ and k/sub cat/ or V/sub max/. The assay developed for the hydrolysis of rat type I collagen by neutrophil collagenase is shown to be more sensitive by at least one order of magnitude than comparable assays that use rat type I collagen fibrils or gels as substrate.

  7. Establishing traceability of photometric absorbance values for accurate measurements of the haemoglobin concentration in blood

    NASA Astrophysics Data System (ADS)

    Witt, K.; Wolf, H. U.; Heuck, C.; Kammel, M.; Kummrow, A.; Neukammer, J.

    2013-10-01

    Haemoglobin concentration in blood is one of the most frequently measured analytes in laboratory medicine. Reference and routine methods for the determination of the haemoglobin concentration in blood are based on the conversion of haeme, haemoglobin and haemiglobin species into uniform end products. The total haemoglobin concentration in blood is measured using the absorbance of the reaction products. Traceable absorbance measurement values on the highest metrological level are a prerequisite for the calibration and evaluation of procedures with respect to their suitability for routine measurements and their potential as reference measurement procedures. For this purpose, we describe a procedure to establish traceability of spectral absorbance measurements for the haemiglobincyanide (HiCN) method and for the alkaline haematin detergent (AHD) method. The latter is characterized by a higher stability of the reaction product. In addition, the toxic hazard of cyanide, which binds to the iron ion of the haem group and thus inhibits the oxygen transport, is avoided. Traceability is established at different wavelengths by applying total least-squares analysis to derive the conventional quantity values for the absorbance from the measured values. Extrapolation and interpolation are applied to get access to the spectral regions required to characterize the Q-absorption bands of the HiCN and AHD methods, respectively. For absorbance values between 0.3 and 1.8, the contributions of absorbance measurements to the total expanded uncertainties (95% level of confidence) of absorbance measurements range from 1% to 0.4%.

  8. A More Accurate Measurement of the {sup 28}Si Lattice Parameter

    SciTech Connect

    Massa, E. Sasso, C. P.; Mana, G.; Palmisano, C.

    2015-09-15

    In 2011, a discrepancy between the values of the Planck constant measured by counting Si atoms and by comparing mechanical and electrical powers prompted a review, among others, of the measurement of the spacing of {sup 28}Si (220) lattice planes, either to confirm the measured value and its uncertainty or to identify errors. This exercise confirmed the result of the previous measurement and yields the additional value d{sub 220} = 192 014 711.98(34) am having a reduced uncertainty.

  9. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi

    2012-11-01

    Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.

  10. Archimedes Revisited: A Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2005-01-01

    A little-known method of measuring the volume of small objects based on Archimedes' principle is described, which involves suspending an object in a water-filled container placed on electronic scales. The suspension technique is a variation on the hydrostatic weighing technique used for measuring volume. The suspension method was compared with two…

  11. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... an accuracy reading of ±2 percent or better; (3) If the meter measures steam flowing at less than 100,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±4 percent or better; (4) If...

  12. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... an accuracy reading of ±2 percent or better; (3) If the meter measures steam flowing at less than 100,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±4 percent or better; (4) If...

  13. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... an accuracy reading of ±2 percent or better; (3) If the meter measures steam flowing at less than 100,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±4 percent or better; (4) If...

  14. Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy.

    PubMed Central

    Picard, F; Buffeteau, T; Desbat, B; Auger, M; Pézolet, M

    1999-01-01

    Quantitative orientation measurements by attenuated total reflectance (ATR) infrared spectroscopy require the accurate knowledge of the dichroic ratio and of the mean-square electric fields along the three axes of the ATR crystal. In this paper, polarized ATR spectra of single supported bilayers of the phospholipid dimyristoylphosphatidic acid covered by either air or water have been recorded and the dichroic ratio of the bands due to the methylene stretching vibrations has been calculated. The mean-square electric field amplitudes were calculated using three formalisms, namely the Harrick thin film approximation, the two-phase approximation, and the thickness- and absorption-dependent one. The results show that for dry bilayers, the acyl chain tilt angle varies with the formalism used, while no significant variations are observed for the hydrated bilayers. To test the validity of the different formalisms, s- and p-polarized ATR spectra of a 40-A lipid layer were simulated for different acyl chain tilt angles. The results show that the thickness- and absorption-dependent formalism using the mean values of the electric fields over the film thickness gives the most accurate values of acyl chain tilt angle in dry lipid films. However, for lipid monolayers or bilayers, the tilt angle can be determined with an acceptable accuracy using the Harrick thin film approximation. Finally, this study shows clearly that the uncertainty on the determination of the tilt angle comes mostly from the experimental error on the dichroic ratio and from the knowledge of the refractive index. PMID:9876167

  15. Measurement of lentiviral vector titre and copy number by cross-species duplex quantitative PCR.

    PubMed

    Christodoulou, I; Patsali, P; Stephanou, C; Antoniou, M; Kleanthous, M; Lederer, C W

    2016-01-01

    Lentiviruses are the vectors of choice for many preclinical studies and clinical applications of gene therapy. Accurate measurement of biological vector titre before treatment is a prerequisite for vector dosing, and the calculation of vector integration sites per cell after treatment is as critical to the characterisation of modified cell products as it is to long-term follow-up and the assessment of risk and therapeutic efficiency in patients. These analyses are typically based on quantitative real-time PCR (qPCR), but as yet compromise accuracy and comparability between laboratories and experimental systems, the former by using separate simplex reactions for the detection of endogene and lentiviral sequences and the latter by designing different PCR assays for analyses in human cells and animal disease models. In this study, we validate in human and murine cells a qPCR system for the single-tube assessment of lentiviral vector copy numbers that is suitable for analyses in at least 33 different mammalian species, including human and other primates, mouse, pig, cat and domestic ruminants. The established assay combines the accuracy of single-tube quantitation by duplex qPCR with the convenience of one-off assay optimisation for cross-species analyses and with the direct comparability of lentiviral transduction efficiencies in different species. PMID:26202078

  16. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments

    PubMed Central

    Zhang, Wei; Ma, Hong; Yang, Simon X.

    2016-01-01

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products. PMID:26999161

  17. Quantitation of carcinogen bound protein adducts by fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Gan, Liang-Shang; Otteson, Michael S.; Doxtader, Mark M.; Skipper, Paul L.; Dasari, Ramachandra R.; Tannenbaum, Steven R.

    1989-01-01

    A highly significant correlation of aflatoxin B 1 serum albumin adduct level with daily aflatoxin B 1 intake was observed in a molecular epidemiological study of aflatoxin carcinogenesis which used conventional fluorescence spectroscopy methods for adduct quantitation. Synchronous fluorescence spectroscopy and laser induced fluorescence techniques have been employed to quantitate antibenzo[ a]pyrene diol epoxide derived globin peptide adducts. Fast and efficient methods to isolate the peptide adducts as well as eliminate protein fluorescence background are described. A detection limit of several femtomoles has been achieved. Experimental and technical considerations of low temperature synchronous fluorescence spectroscopy and fluorescence line narrowing to improve the detection sensitivities are also presented.

  18. Quantitative measure for the "nakedness" of fluoride ion sources.

    PubMed

    Christe, Karl O; Jenkins, H Donald Brooke

    2003-08-01

    A quantitative measure for the donor strength or "nakedness" of fluoride ion donors is presented. It is based on the free energy change associated with the transfer of a fluoride ion from the donor to a given acceptor molecule. Born-Haber cycle calculations were used to calculate both the free energy and the enthalpy change for this process. The enthalpy change is given by the sum of the fluoride ion affinity of the acceptor (as defined in strict thermodynamic convention) and the lattice energy difference (DeltaU(POT)) between the fluoride ion donor and the salt formed with the acceptor. Because, for a given acceptor, the fluoride affinity has a constant value, the relative enthalpy (and also the corresponding free energy) changes are governed exclusively by the lattice energy differences. In this study, BF(3), PF(5), AsF(5), and SbF(5) were used as the acceptors, and the following seven fluoride ion donors were evaluated: CsF, N(CH(3))(4)F (TMAF), N-methylurotropinium fluoride (MUF), hexamethylguanidinium fluoride (HMGF), hexamethylpiperidinium fluoride (HMPF), N,N,N-trimethyl-1-adamantylammonium fluoride (TMAAF), and hexakis(dimethylamino)phosphazenium fluoride (HDMAPF). Smooth relationships between the enthalpy changes and the molar volumes of the donor cations were found which asymptotically approach constant values for infinitely large cations. Whereas CsF is a relatively poor F(-) donor [(U(POT)(CsF) - U(POT)(CsSbF(6))) = 213 kJ mol(-)(1)], when compared to N(CH(3))(4)F [(U(POT)(TMAF) - U(POT)(TMASbF(6))) = 69 kJ mol(-)(1)], a 4 times larger cation (phosphazenium salt) and an infinitely large cation are required to decrease DeltaU(POT) to 17 and 0 kJ mol(-)(1), respectively. These results clearly demonstrate that very little is gained by increasing the cation size past a certain level and that secondary factors, such as chemical and physical properties, become overriding considerations.

  19. Laser flare photometry: a noninvasive, objective, and quantitative method to measure intraocular inflammation.

    PubMed

    Tugal-Tutkun, Ilknur; Herbort, Carl P

    2010-10-01

    Aqueous flare and cells are the two inflammatory parameters of anterior chamber inflammation resulting from disruption of the blood-ocular barriers. When examined with the slit lamp, measurement of intraocular inflammation remains subjective with considerable intra- and interobserver variations. Laser flare cell photometry is an objective quantitative method that enables accurate measurement of these parameters with very high reproducibility. Laser flare photometry allows detection of subclinical alterations in the blood-ocular barriers, identifying subtle pathological changes that could not have been recorded otherwise. With the use of this method, it has been possible to compare the effect of different surgical techniques, surgical adjuncts, and anti-inflammatory medications on intraocular inflammation. Clinical studies of uveitis patients have shown that flare measurements by laser flare photometry allowed precise monitoring of well-defined uveitic entities and prediction of disease relapse. Relationships of laser flare photometry values with complications of uveitis and visual loss further indicate that flare measurement by laser flare photometry should be included in the routine follow-up of patients with uveitis.

  20. Measuring laser power as a force: a new paradigm to accurately monitor optical power during laser-based machining operations

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Simonds, Brian; Sowards, Jeffrey; Hadler, Joshua

    2016-03-01

    In laser manufacturing operations, accurate measurement of laser power is important for product quality, operational repeatability, and process validation. Accurate real-time measurement of high-power lasers, however, is difficult. Typical thermal power meters must absorb all the laser power in order to measure it. This constrains power meters to be large, slow and exclusive (that is, the laser cannot be used for its intended purpose during the measurement). To address these limitations, we have developed a different paradigm in laser power measurement where the power is not measured according to its thermal equivalent but rather by measuring the laser beam's momentum (radiation pressure). Very simply, light reflecting from a mirror imparts a small force perpendicular to the mirror which is proportional to the optical power. By mounting a high-reflectivity mirror on a high-sensitivity force transducer (scale), we are able to measure laser power in the range of tens of watts up to ~ 100 kW. The critical parameters for such a device are mirror reflectivity, angle of incidence, and scale sensitivity and accuracy. We will describe our experimental characterization of a radiation-pressure-based optical power meter. We have tested it for modulated and CW laser powers up to 92 kW in the laboratory and up to 20 kW in an experimental laser welding booth. We will describe present accuracy, temporal response, sources of measurement uncertainty, and hurdles which must be overcome to have an accurate power meter capable of routine operation as a turning mirror within a laser delivery head.

  1. Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors

    PubMed Central

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-01-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961

  2. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  3. Detection and quantitation of trace phenolphthalein (in pharmaceutical preparations and in forensic exhibits) by liquid chromatography-tandem mass spectrometry, a sensitive and accurate method.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2013-01-01

    Phenolphthalein, an acid-base indicator and laxative, is important as a constituent of widely used weight-reducing multicomponent food formulations. Phenolphthalein is an useful reagent in forensic science for the identification of blood stains of suspected victims and for apprehending erring officials accepting bribes in graft or trap cases. The pink-colored alkaline hand washes originating from the phenolphthalein-smeared notes can easily be determined spectrophotometrically. But in many cases, colored solution turns colorless with time, which renders the genuineness of bribe cases doubtful to the judiciary. No method is known till now for the detection and identification of phenolphthalein in colorless forensic exhibits with positive proof. Liquid chromatography-tandem mass spectrometry had been found to be most sensitive, accurate method capable of detection and quantitation of trace phenolphthalein in commercial formulations and colorless forensic exhibits with positive proof. The detection limit of phenolphthalein was found to be 1.66 pg/L or ng/mL, and the calibration curve shows good linearity (r(2) = 0.9974). PMID:23106487

  4. Allele specific locked nucleic acid quantitative PCR (ASLNAqPCR): an accurate and cost-effective assay to diagnose and quantify KRAS and BRAF mutation.

    PubMed

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes.

  5. A Proposed Frequency Synthesis Approach to Accurately Measure the Angular Position of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Bagri, D. S.

    2005-01-01

    This article describes an approach for measuring the angular position of a spacecraft with reference to a nearby calibration source (quasar) with an accuracy of a few tenths of a nanoradian using a very long baseline interferometer of two antennas that measures the interferometer phase with a modest accuracy. It employs (1) radio frequency phase to determine the spacecraft position with high precision and (2) multiple delay measurements using either frequency tones or telemetry signals at different frequency spacings to resolve ambiguity of the location of the fringe (cycle) containing the direction of the spacecraft.

  6. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application.

  7. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application. PMID:22497159

  8. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    NASA Astrophysics Data System (ADS)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  9. Accurate VUV Laboratory Measurements of Fe III Transitions for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Blackwell-Whitehead, R. J.; Pickering, J. C.; Smillie, D.; Nave, G.; Szabo, C. I.; Smith, Peter L.; Nielsen, K. E.; Peters, G.

    2006-01-01

    We report preliminary measurements of Fe III spectra in the 1150 to 2500 A wavelength interval. Spectra have been recorded with an iron-neon Penning discharge lamp (PDL) between 1600 and 2500 A at Imperial College (IC) using high resolution Fourier (FT) transform spectroscopy. These FT spectrometer measurements were extended beyond 1600 A to 1150 A using high-resolution grating spectroscopy at the National Institute of Standards and Technology (NIST). These recorded spectra represent the first radiometrically calibrated measurements of a doubly-ionized iron-group element spectrum combining the techniques of vacuum ultraviolet FT and grating spectroscopy. The spectral range of the new laboratory measurements corresponds to recent HST/STIS observations of sharp-lined B stars and of Eta Carinae. The new improved atomic data can be applied to abundance studies and diagnostics of astrophysical plasmas.

  10. Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements.

    PubMed

    Kairn, T; Charles, P H; Cranmer-Sargison, G; Crowe, S B; Langton, C M; Thwaites, D I; Trapp, J V

    2015-06-01

    There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6 × 6 to 98 × 98 mm(2). Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26  %, for the "very small" fields smaller than 15 mm, and 0.18 % for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within uncertainties. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2 % to the very small field output factors. The overall uncertainties in the field output factors were 1.8 % for the very small fields and 1.1 % for the fields larger than 15 mm across. Recommended steps for acquiring small field output

  11. Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements

    PubMed Central

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2016-01-01

    Electrical tomography can be used as a structural health monitoring technique to identify different damage mechanisms in composite laminates. Previous work has established the link between transverse cracking density and mesoscale conductivity of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking density. Interpretation of this measure will be accurate provided the assumptions made during homogenization are valid. One main assumption of mesoscale homogenization is that the electric field is in the plane. Here, we test the validity of this assumption for laminates with varying anisotropy ratios and for different distances between the cracked ply and surface that is instrumented with electrodes. We also show the equivalence in electrical response between measurements from cracked laminates and their equivalent mesoscale counterparts. Finally, we propose some general guidelines on the measurement strategy for maximizing the accuracy of transverse cracks identification. PMID:27023542

  12. Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets

    PubMed Central

    Park, Jimin; Han, Hyung-Seop; Kim, Yu-Chan; Ahn, Jae-Pyeong; Ok, Myoung-Ryul; Lee, Kyung Eun; Lee, Jee-Wook; Cha, Pil-Ryung; Seok, Hyun-Kwang; Jeon, Hojeong

    2015-01-01

    The size-dependent wettability of sessile water droplets is an important matter in wetting science. Although extensive studies have explored this problem, it has been difficult to obtain empirical data for microscale sessile droplets at a wide range of diameters because of the flaws resulting from evaporation and insufficient imaging resolution. Herein, we present the size-dependent quantitative change of wettability by directly visualizing the three phase interfaces of droplets using a cryogenic-focused ion beam milling and SEM-imaging technique. With the fundamental understanding of the formation pathway, evaporation, freezing, and contact angle hysteresis for sessile droplets, microdroplets with diameters spanning more than three orders of magnitude on various metal substrates were examined. Wetting nature can gradually change from hydrophobic at the hundreds-of-microns scale to super-hydrophobic at the sub-μm scale, and a nonlinear relationship between the cosine of the contact angle and contact line curvature in microscale water droplets was demonstrated. We also showed that the wettability could be further tuned in a size-dependent manner by introducing regular heterogeneities to the substrate. PMID:26657208

  13. Beyond Math Skills: Measuring Quantitative Reasoning in Context

    ERIC Educational Resources Information Center

    Grawe, Nathan D.

    2011-01-01

    It might be argued that quantitative and qualitative analyses are merely two alternative reflections of an overarching critical thinking. For instance, just as instructors of numeracy warn their charges to consider the construction of variables, teachers of qualitative approaches caution students to define terms. Similarly, an advocate of…

  14. A quantitative tool for measuring the quality of medical training in emergency medicine.

    PubMed

    Smith, Simon M; Davis, Peyton; Davies, Llion

    2015-12-01

    The most common method of assessing the quality of medical education is through a selection of qualitative assessments, usually as part of a programme evaluation. Common qualitative assessments include measurements of students' and teachers' participation, outcome measures such as assessment results, and qualitative assessments such as interviews and questionnaires of students and teachers. Programme evaluation can therefore be a process that is both laborious and subject to accusations of a lack of objectivity. As a result, the development of a quantitative tool that could be used alongside a programme evaluation may be both useful and desirable. A pragmatic scoring system, utilizing routinely collected quantitative data, termed as the Quality Assessment Tool, was developed during the 2013 academic year within the setting of an Emergency Medicine training programme in the UK. This tool was tested against the standard assessment currently used for this programme to establish whether the quantitative tool correlated with the programme evaluation. Second, the individual items within the tool were investigated to identify any correlations with the current assessment of quality established by the programme evaluation. The Quality Assessment Tool appears to be correlated to the quality of training delivered at individual training sites in a single specialty. It certainly identifies those centres delivering the highest quality of training and also identifies those centres whose training is consistently of a lower standard. The assessment tool is less accurate at ranking those training centres whose training is merely 'satisfactory'; whether this is a result of the imprecision of the tool itself or a reflection of the subjective nature of the current assessment (i.e. whether the current evaluation system lacks validity) cannot be stated. In summary, it appears to be possible to use a single quantitative tool to reliably, and with validity, measure the quality of training

  15. Accurate GPS measurement of the location and orientation of a floating platform. [for sea floor geodesy

    NASA Technical Reports Server (NTRS)

    Purcell, G. H., Jr.; Young, L. E.; Wolf, S. K.; Meehan, T. K.; Duncan, C. B.; Fisher, S. S.; Spiess, F. N.; Austin, G.; Boegeman, D. E.; Lowenstein, C. D.

    1990-01-01

    This article describes the design and initial tests of the GPS portion of a system for making seafloor geodesy measurements. In the planned system, GPS antennas on a floating platform will be used to measure the location of an acoustic transducer, attached below the platform, which interrogates an array of transponders on the seafloor. Since the GPS antennas are necessarily some distance above the transducer, a short-baseline GPS interferometer consisting of three antennas is used to measure the platform's orientation. A preliminary test of several crucial elements of the system was performed. The test involved a fixed antenna on the pier and a second antenna floating on a buoy about 80 m away. GPS measurements of the vertical component of this baseline, analyzed independently by two groups using different software, agree with each other and with an independent measurement within a centimeter. The first test of an integrated GPS/acoustic system took place in the Santa Cruz Basin off the coast of southern California in May 1990. In this test a much larger buoy, designed and built at SIO, was equipped with three GPS antennas and an acoustic transducer that interrogated a transponder on the ocean floor. Preliminary analysis indicates that the horizontal position of the transponder can be determined with a precision of about a centimeter.

  16. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography.

    PubMed

    Hayashida, Misa; Kumagai, Kazuhiro; Malac, Marek

    2015-12-01

    Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.

  17. Accurate measurement of body weight and food intake in environmentally enriched male Wistar rats.

    PubMed

    Beale, Kylie E L; Murphy, Kevin G; Harrison, Eleanor K; Kerton, Angela J; Ghatei, Mohammad A; Bloom, Stephen R; Smith, Kirsty L

    2011-08-01

    Laboratory animals are crucial in the study of energy homeostasis. In particular, rats are used to study alterations in food intake and body weight. To accurately record food intake or energy expenditure it is necessary to house rats individually, which can be stressful for social animals. Environmental enrichment may reduce stress and improve welfare in laboratory rodents. However, the effect of environmental enrichment on food intake and thus experimental outcome is unknown. We aimed to determine the effect of environmental enrichment on food intake, body weight, behavior and fecal and plasma stress hormones in male Wistar rats. Singly housed 5-7-week-old male rats were given either no environmental enrichment, chew sticks, a plastic tube of 67 mm internal diameter, or both chew sticks and a tube. No differences in body weight or food intake were seen over a 7-day period. Importantly, the refeeding response following a 24-h fast was unaffected by environmental enrichment. Rearing, a behavior often associated with stress, was significantly reduced in all enriched groups compared to controls. There was a significant increase in fecal immunoglobulin A (IgA) in animals housed with both forms of enrichment compared to controls at the termination of the study, suggesting enrichment reduces hypothalamo-pituitary-adrenal (HPA) axis activity in singly housed rats. In summary, environmental enrichment does not influence body weight and food intake in singly housed male Wistar rats and may therefore be used to refine the living conditions of animals used in the study of energy homeostasis without compromising experimental outcome.

  18. A method to measure the density of seawater accurately to the level of 10-6

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Wolf, Henning; Hassel, Egon

    2016-04-01

    A substitution method to measure seawater density relative to pure water density using vibrating tube densimeters was realized and validated. Standard uncertainties of 1 g m-3 at atmospheric pressure, 10 g m-3 up to 10 MPa, and 20 g m-3 to 65 MPa in the temperature range of 5 °C to 35 °C and for salt contents up to 35 g kg-1 were achieved. The realization was validated by comparison measurements with a hydrostatic weighing apparatus for atmospheric pressure. For high pressures, literature values of seawater compressibility were compared with substitution measurements of the realized apparatus.

  19. Accurate DOSY measure for out-of-equilibrium systems using permutated DOSY (p-DOSY).

    PubMed

    Oikonomou, Maria; Asencio-Hernández, Julia; Velders, Aldrik H; Delsuc, Marc-André

    2015-09-01

    NMR spectroscopy is a excellent tool for monitoring in-situ chemical reactions. In particular, DOSY measurement is well suited to characterize transient species by the determination of their sizes. However, here we bring to light a difficulty in the DOSY experiments performed in out-of-equilibrium systems. On such a system, the evolution of the concentration of species interferes with the measurement process, and creates a bias on the diffusion coefficient determination that may lead to erroneous interpretations. We show that a random permutation of the series of gradient strengths used during the DOSY experiment allows to average out this bias. This approach, that we name p-DOSY does not require changes in the pulse sequences nor in the processing software, and restores completely the full accuracy of the measure. This technique is demonstrated on the monitoring of the anomerization reaction of α- to β-glucose.

  20. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-01

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  1. Accurate heteronuclear J-coupling measurements in dilute spin systems using the multiple-quantum filtered J-resolved experiment.

    PubMed

    Martineau, Charlotte; Fayon, Franck; Legein, Christophe; Buzaré, Jean-Yves; Silly, Gilles; Massiot, Dominique

    2007-07-14

    A new solid-state MAS NMR experiment is proposed to accurately measure heteronuclear (19)F-(207)Pb J-coupling constants, even though these couplings are not visible on high speed (19)F 1D MAS spectra; in particular, we demonstrate that the J-resolved experiment combined with scalar multiple-quantum filtering considerably improves the resolution of J-multiplet patterns for dilute spin systems. PMID:17594032

  2. "Per cell" normalization method for mRNA measurement by quantitative PCR and microarrays

    PubMed Central

    Kanno, Jun; Aisaki, Ken-ichi; Igarashi, Katsuhide; Nakatsu, Noriyuki; Ono, Atsushi; Kodama, Yukio; Nagao, Taku

    2006-01-01

    Background Transcriptome data from quantitative PCR (Q-PCR) and DNA microarrays are typically obtained from a fixed amount of RNA collected per sample. Therefore, variations in tissue cellularity and RNA yield across samples in an experimental series compromise accurate determination of the absolute level of each mRNA species per cell in any sample. Since mRNAs are copied from genomic DNA, the simplest way to express mRNA level would be as copy number per template DNA, or more practically, as copy number per cell. Results Here we report a method (designated the "Percellome" method) for normalizing the expression of mRNA values in biological samples. It provides a "per cell" readout in mRNA copy number and is applicable to both quantitative PCR (Q-PCR) and DNA microarray studies. The genomic DNA content of each sample homogenate was measured from a small aliquot to derive the number of cells in the sample. A cocktail of five external spike RNAs admixed in a dose-graded manner (dose-graded spike cocktail; GSC) was prepared and added to each homogenate in proportion to its DNA content. In this way, the spike mRNAs represented absolute copy numbers per cell in the sample. The signals from the five spike mRNAs were used as a dose-response standard curve for each sample, enabling us to convert all the signals measured to copy numbers per cell in an expression profile-independent manner. A series of samples was measured by Q-PCR and Affymetrix GeneChip microarrays using this Percellome method, and the results showed up to 90 % concordance. Conclusion Percellome data can be compared directly among samples and among different studies, and between different platforms, without further normalization. Therefore, "percellome" normalization can serve as a standard method for exchanging and comparing data across different platforms and among different laboratories. PMID:16571132

  3. An affordable and accurate conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Carminati, Marco; Luzzatto-Fegiz, Paolo

    2015-11-01

    In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.

  4. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  5. High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments

    NASA Technical Reports Server (NTRS)

    Fagot, R. J.; Mc Donald, R. T.; Roman, J. A.

    1968-01-01

    Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration.

  6. Acoustic resolution photoacoustic Doppler flowmetry: practical considerations for obtaining accurate measurements of blood flow

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2014-03-01

    An assessment has been made of various experimental factors affecting the accuracy of flow velocities measured using a pulsed time correlation photoacoustic Doppler technique. In this method, Doppler time shifts are quantified via crosscorrelation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves are detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. This enables penetration depths of several millimetres or centimetres, unlike methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1 mm. In the acoustic resolution mode, it is difficult to detect time shifts in highly concentrated suspensions of flowing absorbers, such as red blood cell suspensions and whole blood, and this challenge supposedly arises because of the lack of spatial heterogeneity. However, by assessing the effect of different absorption coefficients and tube diameters, we offer an alternative explanation relating to light attenuation and parabolic flow. We also demonstrate a new signal processing method that surmounts the previous problem of measurement under-reading. This method is a form of signal range gating and enables mapping of the flow velocity profile across the tube as well as measurement of the average flow velocity. We show that, using our signal processing scheme, it is possible to measure the flow of whole blood using a relatively low frequency detector. This important finding paves the way for application of the technique to measurements of blood flow several centimetres deep in living tissue.

  7. GAP on EJSM: an accelerometer for accurate gravity and atmospheric measurements of Ganymede

    NASA Astrophysics Data System (ADS)

    Lenoir, Benjamin; Christophe, Bruno

    2010-05-01

    The Gravity Advanced Package (GAP) is an electrostatic accelerometer with a bias calibration system proposed on EJSM Jupiter Ganymede Orbiter (JGO) for fundamental physics objectives - more precisely for testing the law of gravity at the scale of the solar system - and for planetary objectives. GAP can provide decisive information during the planetary phase of the mission. During the orbit of JGO around Ganymede or the flyby of Callisto, such an instrument will measure the non-gravitational forces acting on the spacecraft, mainly due to the atmosphere. By combining these measurements with the ones provided by the radio-science instrument, which measures the total acceleration of the spacecraft, the gravitational forces acting on the spacecraft can be derived without using any model of the atmosphere. This is a major contribution of GAP to the mission considering the low altitude and the size of the solar panel, which would otherwise require precise models. Indeed, the presence of the instrument on board would provide data to better understand the atmosphere and the gravity field of Ganymede and Callisto. This combination of measurements from the accelerometer and from radio-science is similar to what is currently done for determining precise model of the Earth gravity potential with CHAMP, GRACE and GOCE missions. The GAP instrument is proposed by the ONERA team which has already built the 9 accelerometers in orbit for these geodetic missions. The presentation will describe the scientific objectives of the instrument with a review of the impact of the non-gravitational forces on the gravity measurement of Jupiter's moons. Then, a description of the instrument with its performance will be given, as well as the requirements for its implementation in the spacecraft.

  8. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels.

    PubMed

    Sivaramakrishnan, Mathangi; Maslov, Konstantin; Zhang, Hao F; Stoica, George; Wang, Lihong V

    2007-03-01

    We investigate the feasibility of obtaining accurate quantitative information, such as local blood oxygenation level (sO2), with a spatial resolution of about 50 microm from spectral photoacoustic (PA) measurements. The optical wavelength dependence of the peak values of the PA signals is utilized to obtain the local blood oxygenation level. In our in vitro experimental models, the PA signal amplitude is found to be linearly proportional to the blood optical absorption coefficient when using ultrasonic transducers with central frequencies high enough such that the ultrasonic wavelengths are shorter than the light penetration depth into the blood vessels. For an optical wavelength in the 578-596 nm region, with a transducer central frequency that is above 25 MHz, the sensitivity and accuracy of sO2 inversion is shown to be better than 4%. The effect of the transducer focal position on the accuracy of quantifying blood oxygenation is found to be negligible. In vivo oxygenation measurements of rat skin microvasculature yield results consistent with those from in vitro studies, although factors specific to in vivo measurements, such as the spectral dependence of tissue optical attenuation, dramatically affect the accuracy of sO2 quantification in vivo.

  9. Measurement of testicular volume in smaller testes: how accurate is the conventional orchidometer?

    PubMed

    Lin, Chih-Chieh; Huang, William J S; Chen, Kuang-Kuo

    2009-01-01

    The aim of this study was to evaluate the accuracy of different methods, including the Seager orchidometer (SO) and ultrasonography (US), for assessing testicular volume of smaller testes (testes volume less than 18 mL). Moreover, the equations used for the calculations--the Hansen formula (length [L] x width [W](2) x 0.52, equation A), the prolate ellipsoid formula (L x W x height [H] x 0.52, equation B), and the Lambert equation (L x W x H x 0.71, equation C)--were also examined and compared with the gold standard testicular volume obtained by water displacement (Archimedes principle). In this study, 30 testes from 15 men, mean age 75.3 (+/-8.3) years, were included. They all had advanced prostate cancer and were admitted for orchiectomy. Before the procedure, all the testes were assessed using SO and US. The dimensions were then input into each equation to obtain the volume estimates. The testicular volume by water displacement was 8.1 +/- 3.5 mL. Correlation coefficients (R(2)) of the 2 different methods (SO, US) to the gold standard were 0.70 and 0.85, respectively. The calculated testicular volumes were 9.2 +/- 3.9 mL (measured by SO, equation A), 11.9 +/- 5.2 mL (measured by SO, equation C), 7.3 +/- 4.2 mL (measured by US, equation A), 6.5 +/- 3.3 mL (measured by US, equation B) and 8.9 +/- 4.5 mL (measured by US, equation C). Only the mean size measured by US and volume calculated with the Hansen equation (equation A) and the mean size measured by US and volume calculated with the Lambert equation (equation C) showed no significant differences when compared with the volumes estimated by water displacement (mean difference 0.81 mL, P = .053, and 0.81 mL, P = .056, respectively). Based on our measurements, we categorized testicular volume by different cutoff values (7.0 mL, 7.5 mL, 8.0 mL, and 8.5 mL) to calculate a new constant for use in the Hansen equation. The new constant was 0.59. We then reexamined the equations using the new 0.59 constant, and found

  10. Reporters for sensitive and quantitative measurement of auxin response

    PubMed Central

    Liao, Che-Yang; Smet, Wouter; Brunoud, Geraldine; Yoshida, Saiko; Vernoux, Teva; Weijers, Dolf

    2015-01-01

    Visualization of hormonal signaling input and output is of key importance for understanding regulation of multicellular development. The plant signaling molecule auxin triggers many growth and developmental responses, but current tools lack sensitivity or precision to visualize these. We developed a set of novel fluorescent reporters that allow sensitive and semi-quantitative readout of auxin responses at cellular resolution in Arabidopsis. These generic tools are suitable for any transformable plant species. PMID:25643149

  11. Quantitative method of measuring cancer cell urokinase and metastatic potential

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1993-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated urokinase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  12. Describing and compensating gas transport dynamics for accurate instantaneous emission measurement

    NASA Astrophysics Data System (ADS)

    Weilenmann, Martin; Soltic, Patrik; Ajtay, Delia

    Instantaneous emission measurements on chassis dynamometers and engine test benches are becoming increasingly usual for car-makers and for environmental emission factor measurement and calculation, since much more information about the formation conditions can be extracted than from the regulated bag measurements (integral values). The common exhaust gas analysers for the "regulated pollutants" (carbon monoxide, total hydrocarbons, nitrogen oxide, carbon dioxide) allow measurement at a rate of one to ten samples per second. This gives the impression of having after-the-catalyst emission information with that chronological precision. It has been shown in recent years, however, that beside the reaction time of the analysers, the dynamics of gas transport in both the exhaust system of the car and the measurement system last significantly longer than 1 s. This paper focuses on the compensation of all these dynamics convoluting the emission signals. Most analysers show linear and time-invariant reaction dynamics. Transport dynamics can basically be split into two phenomena: a pure time delay accounting for the transport of the gas downstream and a dynamic signal deformation since the gas is mixed by turbulence along the way. This causes emission peaks to occur which are smaller in height and longer in time at the sensors than they are after the catalyst. These dynamics can be modelled using differential equations. Both mixing dynamics and time delay are constant for modelling a raw gas analyser system, since the flow in that system is constant. In the exhaust system of the car, however, the parameters depend on the exhaust volume flow. For gasoline cars, the variation in overall transport time may be more than 6 s. It is shown in this paper how all these processes can be described by invertible mathematical models with the focus on the more complex case of the car's exhaust system. Inversion means that the sharp emission signal at the catalyst out location can be

  13. A step toward standardization: development of accurate measurements of X-ray absorption and fluorescence.

    PubMed

    Chantler, Christopher T; Barnea, Zwi; Tran, Chanh Q; Rae, Nicholas A; de Jonge, Martin D

    2012-11-01

    This paper explains how to take the counting precision available for XAFS (X-ray absorption fine structure) and attenuation measurements, of perhaps one part in 10(6) in special cases, to produce a local variance below 0.01% and an accuracy of attenuation of the order 0.01%, with an XAFS accuracy at a similar level leading to the determination of dynamical bond lengths to an accuracy similar to that obtained by standard and experienced crystallographic measurements. This includes the necessary corrections for the detector response to be linear, including a correction for dark current and air-path energy dependencies; a proper interpretation of the range of sample thicknesses for absorption experiments; developments of methods to measure and correct for harmonic contamination, especially at lower energies without mirrors; the significance of correcting for the actual bandwidth of the beam on target after monochromation, especially for the portability of results and edge structure from one beamline to another; definitions of precision, accuracy and XAFS accuracy suitable for theoretical model analysis; the role of additional and alternative high-accuracy procedures; and discusses some principles regarding data formats for XAFS and for the deposition of data sets with manuscripts or to a database. Increasingly, the insight of X-ray absorption and the standard of accuracy needed requires data with high intrinsic precision and therefore with allowance for a range of small but significant systematic effects. This is always crucial for absolute measurements of absorption, and is of equal importance but traditionally difficult for (usually relative) measurements of fluorescence XAFS or even absorption XAFS. Robust error analysis is crucial so that the significance of conclusions can be tested within the uncertainties of the measurements. Errors should not just include precision uncertainty but should attempt to include estimation of the most significant systematic error

  14. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth W.; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M.

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10-3 for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  15. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity.

    PubMed

    Allen, Kenneth W; Scott, Mark M; Reid, David R; Bean, Jeffrey A; Ellis, Jeremy D; Morris, Andrew P; Marsh, Jeramy M

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10(-3) for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands. PMID:27250447

  16. A Procedure for Accurately Measuring the Shaker Overturning Moment During Random Vibration Tests

    NASA Technical Reports Server (NTRS)

    Nayeri, Reza D.

    2011-01-01

    Motivation: For large system level random vibration tests, there may be some concerns about the shaker's capability for the overturning moment. It is the test conductor's responsibility to predict and monitor the overturning moment during random vibration tests. If the predicted moment is close to the shaker's capability, test conductor must measure the instantaneous moment at low levels and extrapolate to higher levels. That data will be used to decide whether it is safe to proceed to the next test level. Challenge: Kistler analog formulation for computing the real-time moment is only applicable to very limited cases in which we have 3 or 4 load cells installed at shaker interface with hardware. Approach: To overcome that limitation, a simple procedure was developed for computing the overturning moment time histories using the measured time histories of the individual load cells.

  17. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  18. Switched integration amplifier-based photocurrent meter for accurate spectral responsivity measurement of photometers.

    PubMed

    Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop

    2016-03-20

    This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer. PMID:27140564

  19. Accurate metrology of polarization curves measured at the speckle size of visible light scattering.

    PubMed

    Ghabbach, A; Zerrad, M; Soriano, G; Amra, C

    2014-06-16

    An optical procedure is presented to measure at the speckle size and with high accuracy, the polarization degree of patterns scattered by disordered media. Whole mappings of polarization ratio, polarimetric phase and polarization degree are pointed out. Scattered clouds are emphasized on the Poincaré sphere, and are completed by probability density functions of the polarization degree. A special care is attributed to the accuracy of data. The set-up provides additional signatures of scattering media.

  20. Development of Filtered Rayleigh Scattering for Accurate Measurement of Gas Velocity

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Lempert, Walter R.

    1995-01-01

    The overall goals of this research were to develop new diagnostic tools capable of capturing unsteady and/or time-evolving, high-speed flow phenomena. The program centers around the development of Filtered Rayleigh Scattering (FRS) for velocity, temperature, and density measurement, and the construction of narrow linewidth laser sources which will be capable of producing an order MHz repetition rate 'burst' of high power pulses.

  1. Exercise-induced hyperthermia may prevent accurate core temperature measurement by tympanic membrane thermometer.

    PubMed

    Yeo, S; Scarbough, M

    1996-01-01

    The purpose of this study was to assess the effect of exercise-induced hyperthermia on brain and deep trunk temperature measurement in order to determine the optimal temperature site of the body for varying nursing practices in outpatient clinical settings. Eight women, 18 to 50 years old (30.9 +/- 12.6; mean +/- SD), participated in the study. Subjects were asked to perform their regular aerobic exercise in a natural environment while body temperature (ear and rectal) and heart rate (HR) were measured simultaneously and repeatedly before, during, and after exercise. Glass mercury rectal thermometers were used for measurement of deep trunk temperature, an infrared tympanic membrane thermometer for measurement of brain temperature, and a portable heart rate monitor for monitoring heart rate. Rectal temperature was higher than ear temperature for all but one of the 40 pairs of observation. The time pattern varied for the two modes of temperature (F = 9.67; df 4,28; p < .001). Rectal temperature changed over time (F = 7.86; df 4,28; p < .002), and ear temperature did not (F = 1.5; df 4,28; p = .25), indicating that ear temperature did not respond to exercise. While rectal temperature was strongly correlated with HR (r = .60), ear temperature did not correlate either with rectal temperature (r = .02) or with HR (r = .08). Thus deep trunk temperature responds to exercise at moderate levels. On the other hand, ear temperature does not increase due to exercise. Ear temperature is not a valid indicator of trunk temperature during and immediately after exercise.

  2. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  3. A Robust Method of Vehicle Stability Accurate Measurement Using GPS and INS

    NASA Astrophysics Data System (ADS)

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-12-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) is a very practical method to get high-precision measurement data. Usually, the Kalman filter is used to fuse the data from GPS and INS. In this paper, a robust method is used to measure vehicle sideslip angle and yaw rate, which are two important parameters for vehicle stability. First, a four-wheel vehicle dynamic model is introduced, based on sideslip angle and yaw rate. Second, a double level Kalman filter is established to fuse the data from Global Positioning System and Inertial Navigation System. Then, this method is simulated on a sample vehicle, using Carsim software to test the sideslip angle and yaw rate. Finally, a real experiment is made to verify the advantage of this approach. The experimental results showed the merits of this method of measurement and estimation, and the approach can meet the design requirements of the vehicle stability controller.

  4. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required.

  5. Regular, Fast and Accurate Airborne In-Situ Methane Measurements Around the Tropopause

    NASA Astrophysics Data System (ADS)

    Dyroff, Christoph; Rauthe-Schöch, Armin; Schuck, Tanja J.; Zahn, Andreas

    2013-04-01

    We present a laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft. The instrument is based on a commercial fast methane analyzer (FMA, Los Gatos Res.), which was modified for fully unattended employment. A laboratory characterization was performed and the results with emphasis on the precision, cross sensitivity to H2O, and accuracy are presented. An in-flight calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. By statistical comparison of the in-situ measurements with the flask samples we derive a total uncetrainty estimate of ~ 3.85 ppbv (1?) around the tropopause, and ~ 12.4 ppbv (1?) during aircraft ascent and descent. Data from the first two years of airborne operation are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere, with occasional crossings of the tropics on flights to southern Africa. With its high spatial resolution and high accuracy this data set is unprecedented in the highly important atmospheric layer of the tropopause.

  6. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required. PMID:18488965

  7. Optical aperture area determination for accurate illuminance and luminous efficacy measurements of LED lamps

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Mäntynen, Henrik; Ikonen, Erkki

    2016-06-01

    The measurement uncertainty of illuminance and, consequently, luminous flux and luminous efficacy of LED lamps can be reduced with a recently introduced method based on the predictable quantum efficient detector (PQED). One of the most critical factors affecting the measurement uncertainty with the PQED method is the determination of the aperture area. This paper describes an upgrade to an optical method for direct determination of aperture area where superposition of equally spaced Gaussian laser beams is used to form a uniform irradiance distribution. In practice, this is accomplished by scanning the aperture in front of an intensity-stabilized laser beam. In the upgraded method, the aperture is attached to the PQED and the whole package is transversely scanned relative to the laser beam. This has the benefit of having identical geometry in the laser scanning of the aperture area and in the actual photometric measurement. Further, the aperture and detector assembly does not have to be dismantled for the aperture calibration. However, due to small acceptance angle of the PQED, differences between the diffraction effects of an overfilling plane wave and of a combination of Gaussian laser beams at the circular aperture need to be taken into account. A numerical calculation method for studying these effects is discussed in this paper. The calculation utilizes the Rayleigh-Sommerfeld diffraction integral, which is applied to the geometry of the PQED and the aperture. Calculation results for various aperture diameters and two different aperture-to-detector distances are presented.

  8. Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHZ

    NASA Technical Reports Server (NTRS)

    Lang, R.H.; Tarkocin, Y.; Utku, C.; Le Vine, D.M.

    2008-01-01

    Measurements of the complex. dielectric constant of seawater at 30.00 psu, 35.00 psu and 38.27 psu over the temperature range from 5 C to 3 5 at 1.413 GHz are given and compared with the Klein-Swift results. A resonant cavity technique is used. The calibration constant used in the cavity perturbation formulas is determined experimentally using methanol and ethanediol (ethylene glycol) as reference liquids. Analysis of the data shows that the measurements are accurate to better than 1.0% in almost all cases studied.

  9. Examining factors that may influence accurate measurement of testosterone in sea turtles.

    PubMed

    Graham, Katherine M; Mylniczenko, Natalie D; Burns, Charlene M; Bettinger, Tammie L; Wheaton, Catharine J

    2016-01-01

    Differences in reported testosterone concentrations in male sea turtle blood samples are common in the veterinary literature, but may be accounted for by differences in sample handling and processing prior to assay. Therefore, our study was performed to determine best practices for testosterone analysis in male sea turtles (Caretta caretta and Chelonia mydas). Blood samples were collected into 5 collection tube types, and assay validation and measured testosterone concentrations were compared across different sample storage (fresh, refrigerated 1 week, or frozen), extraction (unextracted or ether-extracted), and processing treatment (untreated, homogenized, or dissociation reagent) conditions. Ether-extracted and dissociation reagent-treated samples validated in all conditions tested and are recommended for use, as unextracted samples validated only if assayed fresh. Dissociation reagent treatment was simpler to perform than ether extraction and resulted in total testosterone concentrations ~2.7-3.5 times greater than free testosterone measured in ether-extracted samples. Sample homogenization did not affect measured testosterone concentrations, and could be used to increase volume in gelled samples. An annual seasonal testosterone increase was observed in both species when ether extraction or dissociation reagent treatment was used. Annual deslorelin implant treatments in a Chelonia mydas male resulted in suppression of seasonal testosterone following the fourth treatment. Seasonal testosterone patterns resumed following discontinuation of deslorelin. Comparison of in-house and commercially available enzyme immunoassay kits revealed similar patterns of seasonal testosterone increases and deslorelin-induced suppression. Our study highlights the importance of methodological validation and provides laboratorians with best practices for testosterone enzyme immunoassay in sea turtles.

  10. Examining factors that may influence accurate measurement of testosterone in sea turtles.

    PubMed

    Graham, Katherine M; Mylniczenko, Natalie D; Burns, Charlene M; Bettinger, Tammie L; Wheaton, Catharine J

    2016-01-01

    Differences in reported testosterone concentrations in male sea turtle blood samples are common in the veterinary literature, but may be accounted for by differences in sample handling and processing prior to assay. Therefore, our study was performed to determine best practices for testosterone analysis in male sea turtles (Caretta caretta and Chelonia mydas). Blood samples were collected into 5 collection tube types, and assay validation and measured testosterone concentrations were compared across different sample storage (fresh, refrigerated 1 week, or frozen), extraction (unextracted or ether-extracted), and processing treatment (untreated, homogenized, or dissociation reagent) conditions. Ether-extracted and dissociation reagent-treated samples validated in all conditions tested and are recommended for use, as unextracted samples validated only if assayed fresh. Dissociation reagent treatment was simpler to perform than ether extraction and resulted in total testosterone concentrations ~2.7-3.5 times greater than free testosterone measured in ether-extracted samples. Sample homogenization did not affect measured testosterone concentrations, and could be used to increase volume in gelled samples. An annual seasonal testosterone increase was observed in both species when ether extraction or dissociation reagent treatment was used. Annual deslorelin implant treatments in a Chelonia mydas male resulted in suppression of seasonal testosterone following the fourth treatment. Seasonal testosterone patterns resumed following discontinuation of deslorelin. Comparison of in-house and commercially available enzyme immunoassay kits revealed similar patterns of seasonal testosterone increases and deslorelin-induced suppression. Our study highlights the importance of methodological validation and provides laboratorians with best practices for testosterone enzyme immunoassay in sea turtles. PMID:26699527

  11. Possibility of detecting anisotropic expansion of the universe by very accurate astrometry measurements.

    PubMed

    Quercellini, Claudia; Quartin, Miguel; Amendola, Luca

    2009-04-17

    Refined astrometry measurements allow us to detect large-scale deviations from isotropy through real-time observations of changes in the angular separation between sources at cosmic distances. This "cosmic parallax" effect is a powerful consistency test of the Friedmann-Robertson-Walker metric and may set independent constraints on cosmic anisotropy. We apply this novel general test to Lemaitre-Tolman-Bondi cosmologies with off-center observers and show that future satellite missions such as Gaia might achieve accuracies that would put limits on the off-center distance which are competitive with cosmic microwave background dipole constraints. PMID:19518616

  12. Accurate mass measurements of short-lived isotopes with the MISTRAL* rf spectrometer

    SciTech Connect

    Toader, C.; Audi, G.; Doubre, H.; Jacotin, M.; Henry, S.; Kepinski, J.-F.; Le Scornet, G.; Lunney, D.; Monsanglant, C.; Saint Simon, M. de; Thibault, C.; Borcea, C.; Duma, M.; Lebee, G.

    1999-01-15

    The MISTRAL* experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  13. The dark art of light measurement: accurate radiometry for low-level light therapy.

    PubMed

    Hadis, Mohammed A; Zainal, Siti A; Holder, Michelle J; Carroll, James D; Cooper, Paul R; Milward, Michael R; Palin, William M

    2016-05-01

    Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement

  14. The dark art of light measurement: accurate radiometry for low-level light therapy.

    PubMed

    Hadis, Mohammed A; Zainal, Siti A; Holder, Michelle J; Carroll, James D; Cooper, Paul R; Milward, Michael R; Palin, William M

    2016-05-01

    Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement

  15. Quantitation of absorbed or deposited materials on a substrate that measures energy deposition

    DOEpatents

    Grant, Patrick G.; Bakajin, Olgica; Vogel, John S.; Bench, Graham

    2005-01-18

    This invention provides a system and method for measuring an energy differential that correlates to quantitative measurement of an amount mass of an applied localized material. Such a system and method remains compatible with other methods of analysis, such as, for example, quantitating the elemental or isotopic content, identifying the material, or using the material in biochemical analysis.

  16. A simple and reliable sensor for accurate measurement of angular speed for low speed rotating machinery

    NASA Astrophysics Data System (ADS)

    Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo

    2014-01-01

    This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.

  17. A simple and reliable sensor for accurate measurement of angular speed for low speed rotating machinery.

    PubMed

    Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo

    2014-01-01

    This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.

  18. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations

    PubMed Central

    Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice. PMID:26090400

  19. Recent Advances in Highly Accurate Range Measurements with TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Eineder, Michael; Balss, Ulrich; Gisinger, Christoph; Cong, Xiao Ying; Brcic, Ramon; Steigenberger, Peter

    2013-04-01

    Earth surface displacement measurement from space using Synthetic Aperture Radar (SAR) imagery is an interesting alternative to SAR interferometry (InSAR). The advantages are that 2D information can be retrieved (InSAR only 1D), absolute displacements can be retrieved (no reference point required) and it is very robust (phase unwrapping not required). On the other hand, the accuracy is limited by the pixel resolution, the object contrast, the orbit accuracy, by wave propagation distortion and by geodetic effects. Therefore the accuracy was more in the meter / decimeter level in the past, compared to millimeter accuracy of InSAR. During the recent years our team established a test and validation site at the geodetic observatory Wettzell, Germany and developed compensation methods to reduce the overall error of absolute range measurements from decimeters to only one centimeter. The methods include correction of dry and wet atmospheric delays, ionospheric corrections, solid earth tides, continental drift, atmospheric pressure loading and ocean tidal loading. For more one year a radar reflector was monitored and each image evaluated. Our presentation gives and overview of methods and achieved results. Futhermore, examples of real world applications and an outlook on more applications is given such as phase unwrapping augmentation.

  20. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations.

    PubMed

    Douxfils, Jonathan; Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel; Mullier, François

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice. PMID:26090400

  1. Surface EMG measurements during fMRI at 3T: accurate EMG recordings after artifact correction.

    PubMed

    van Duinen, Hiske; Zijdewind, Inge; Hoogduin, Hans; Maurits, Natasha

    2005-08-01

    In this experiment, we have measured surface EMG of the first dorsal interosseus during predefined submaximal isometric contractions (5, 15, 30, 50, and 70% of maximal force) of the index finger simultaneously with fMRI measurements. Since we have used sparse sampling fMRI (3-s scanning; 2-s non-scanning), we were able to compare the mean amplitude of the undisturbed EMG (non-scanning) intervals with the mean amplitude of the EMG intervals during scanning, after MRI artifact correction. The agreement between the mean amplitudes of the corrected and the undisturbed EMG was excellent and the mean difference between the two amplitudes was not significantly different. Furthermore, there was no significant difference between the corrected and undisturbed amplitude at different force levels. In conclusion, we have shown that it is feasible to record surface EMG during scanning and that, after MRI artifact correction, the EMG recordings can be used to quantify isometric muscle activity, even at very low activation intensities.

  2. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears

    NASA Astrophysics Data System (ADS)

    Ferreira, N.; Krah, T.; Jeong, D. C.; Metz, D.; Kniel, K.; Dietzel, A.; Büttgenbach, S.; Härtig, F.

    2014-06-01

    The integration of silicon micro probing systems into conventional gear measuring instruments (GMIs) allows fully automated measurements of external involute micro spur gears of normal modules smaller than 1 mm. This system, based on a silicon microprobe, has been developed and manufactured at the Institute for Microtechnology of the Technische Universität Braunschweig. The microprobe consists of a silicon sensor element and a stylus which is oriented perpendicularly to the sensor. The sensor is fabricated by means of silicon bulk micromachining. Its small dimensions of 6.5 mm × 6.5 mm allow compact mounting in a cartridge to facilitate the integration into a GMI. In this way, tactile measurements of 3D microstructures can be realized. To enable three-dimensional measurements with marginal forces, four Wheatstone bridges are built with diffused piezoresistors on the membrane of the sensor. On the reverse of the membrane, the stylus is glued perpendicularly to the sensor on a boss to transmit the probing forces to the sensor element during measurements. Sphere diameters smaller than 300 µm and shaft lengths of 5 mm as well as measurement forces from 10 µN enable the measurements of 3D microstructures. Such micro probing systems can be integrated into universal coordinate measuring machines and also into GMIs to extend their field of application. Practical measurements were carried out at the Physikalisch-Technische Bundesanstalt by qualifying the microprobes on a calibrated reference sphere to determine their sensitivity and their physical dimensions in volume. Following that, profile and helix measurements were carried out on a gear measurement standard with a module of 1 mm. The comparison of the measurements shows good agreement between the measurement values and the calibrated values. This result is a promising basis for the realization of smaller probe diameters for the tactile measurement of micro gears with smaller modules.

  3. Point-of-Care Quantitative Measure of Glucose-6-Phosphate Dehydrogenase Enzyme Deficiency

    PubMed Central

    Kaplan, Michael; Glader, Bertil; Cotten, Michael; Kleinert, Jairus; Pamula, Vamsee

    2015-01-01

    BACKGROUND AND OBJECTIVES: Widespread newborn screening on a point-of-care basis could prevent bilirubin neurotoxicity in newborns with glucose-6-phosphate dehydrogenase (G6PD) deficiency. We evaluated a quantitative G6PD assay on a digital microfluidic platform by comparing its performance with standard clinical methods. METHODS: G6PD activity was measured quantitatively by using digital microfluidic fluorescence and the gold standard fluorescence biochemical test on a convenience sample of 98 discarded blood samples. Twenty-four samples were designated as G6PD deficient. RESULTS: Mean ± SD G6PD activity for normal samples using the digital microfluidic method and the standard method, respectively, was 9.7 ± 2.8 and 11.1 ± 3.0 U/g hemoglobin (Hb), respectively; for G6PD-deficient samples, it was 0.8 ± 0.7 and 1.4 ± 0.9 U/g Hb. Bland-Altman analysis determined a mean difference of –0.96 ± 1.8 U/g Hb between the digital microfluidic fluorescence results and the standard biochemical test results. The lower and upper limits for the digital microfluidic platform were 4.5 to 19.5 U/g Hb for normal samples and 0.2 to 3.7 U/g Hb for G6PD-deficient samples. The lower and upper limits for the Stanford method were 5.5 to 20.7 U/g Hb for normal samples and 0.1 to 2.8 U/g Hb for G6PD-deficient samples. The measured activity discriminated between G6PD-deficient samples and normal samples with no overlap. CONCLUSIONS: Pending further validation, a digital microfluidics platform could be an accurate point-of-care screening tool for rapid newborn G6PD screening. PMID:26459646

  4. Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase.

    PubMed

    Fafarman, Aaron T; Sigala, Paul A; Schwans, Jason P; Fenn, Timothy D; Herschlag, Daniel; Boxer, Steven G

    2012-02-01

    Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete locations and orientations within an enzyme active site, we have incorporated site-specific thiocyanate vibrational probes into multiple positions within bacterial ketosteroid isomerase. A battery of X-ray crystallographic, vibrational Stark spectroscopy, and NMR studies revealed electrostatic field heterogeneity of 8 MV/cm between active site probe locations and widely differing sensitivities of discrete probes to common electrostatic perturbations from mutation, ligand binding, and pH changes. Electrostatic calculations based on active site ionization states assigned by literature precedent and computational pK(a) prediction were unable to quantitatively account for the observed vibrational band shifts. However, electrostatic models of the D40N mutant gave qualitative agreement with the observed vibrational effects when an unusual ionization of an active site tyrosine with a pK(a) near 7 was included. UV-absorbance and (13)C NMR experiments confirmed the presence of a tyrosinate in the active site, in agreement with electrostatic models. This work provides the most direct measure of the heterogeneous and anisotropic nature of the electrostatic environment within an enzyme active site, and these measurements provide incisive benchmarks for further developing accurate computational models and a foundation for future tests of electrostatics in enzymatic catalysis.

  5. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  6. Accurate measurement of the 12.6 GHz "clock" transition in trapped (171)Yb(+) ions.

    PubMed

    Fisk, P H; Sellars, M J; Lawn, M A; Coles, G

    1997-01-01

    We have measured the frequency of the (171)Yb(+) 12.6 GHz M(F)=0-->0 ground state hyperfine "clock" transition in buffer gas-cooled ion clouds confined in two similar, but not identical, linear Paul traps. After correction for the known differences between the two ion traps, including significantly different second-order Doppler shifts, the frequencies agree within an uncertainty of less than 2 parts in 10(13). Our best value, based on an analytic model for the second-order Doppler shift, for the frequency of the clock transition of an isolated ion at zero temperature, velocity, electric field and magnetic field, is 12642812118.466+0.002 Hz.

  7. Material interactions with the Low Earth Orbital (LEO) environment: Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Leger, Lubert J.

    1987-01-01

    To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.

  8. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    SciTech Connect

    Hong Xinguo; Hao Quan

    2009-01-15

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  9. Quantitative measurement of cyanide species in simulated ferrocyanide Hanford waste

    SciTech Connect

    Bryan, S.A.; Pool, K.H.; Matheson, J.D.

    1993-02-01

    Analytical methods for the quantification of cyanide species in Hanford simulated high-level radioactive waste were pursued in this work. Methods studied include infrared spectroscopy (solid state and solution), Raman spectroscopy, Moessbauer spectroscopy, X-ray diffraction, scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS), and ion chromatography. Of these, infrared, Raman, X-ray diffraction, and ion chromatography techniques show promise in the concentration range of interest. Quantitation limits for these latter four techniques were demonstrated to be approximately 0.1 wt% (as cyanide) using simulated Hanford wastes.

  10. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    USGS Publications Warehouse

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among

  11. Investigation of PACE™ software and VeriFax's Impairoscope device for quantitatively measuring the effects of stress

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Nuñez, German R.; Botello, Aaron M.; Soto, Jose; Shrairman, Ruth; Landau, Alexander

    1998-01-01

    Many reaction time experiments have been conducted over the years to observe human responses. However, most of the experiments that were performed did not have quantitatively accurate instruments for measuring change in reaction time under stress. There is a great need for quantitative instruments to measure neuromuscular reaction responses under stressful conditions such as distraction, disorientation, disease, alcohol, drugs, etc. The two instruments used in the experiments reported in this paper are such devices. Their accuracy, portability, ease of use, and biometric character are what makes them very special. PACE™ is a software model used to measure reaction time. VeriFax's Impairoscope measures the deterioration of neuromuscular responses. During the 1997 Summer Semester, various reaction time experiments were conducted on University of Colorado faculty, staff, and students using the PACE™ system. The tests included both two-eye and one-eye unstressed trials and trials with various stresses such as fatigue, distractions in which subjects were asked to perform simple arithmetic during the PACE™ tests, and stress due to rotating-chair dizziness. Various VeriFax Impairoscope tests, both stressed and unstressed, were conducted to determine the Impairoscope's ability to quantitatively measure this impairment. In the 1997 Fall Semester, a Phase II effort was undertaken to increase test sample sizes in order to provide statistical precision and stability. More sophisticated statistical methods remain to be applied to better interpret the data.

  12. Tunable PIE and synchronized gating detections by FastFLIM for quantitative microscopy measurements of fast dynamics of single molecules

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Coskun, Ulas; Ferreon, Allan Chris; Barbieri, Beniamino; Liao, Shih-Chu Jeff

    2016-03-01

    The crosstalk between two fluorescent species causes problems in fluorescence microscopy imaging, especially for quantitative measurements such as co-localization, Förster resonance energy transfer (FRET), fluorescence cross correlation spectroscopy (FCCS). In laser scanning confocal microscopy, the lasers can be switched on and off by acousto-optic tunable filters (AOTF) in the microsecond scale for alternative line scanning in order to avoid the crosstalk while minimizing the time delay between two lasers on the same pixel location. In contrast, the pulsed interleaved excitation (PIE) technique synchronizes two pulsed lasers of different wavelengths in the nanosecond scale to enable measuring superfast dynamics of two fluorescent species simultaneously and yet quantitatively without the crosstalk contamination. This feature is critical for many cell biology applications, e.g. accurate determination of stoichiometry in FRET measurements for studying protein-protein interactions or cell signal events, detection of weaker bindings in FCCS by eliminating the false cross correlation due to the crosstalk. The PIE has been used with the time correlated single photon counting (TCSPC) electronics. Here, we describe a novel PIE development using the digital frequency domain (DFD) technique -- FastFLIM, which provides tunable PIE setups and synchronized gating detections, tailored and optimized to specific applications. A few PIE setups by FastFLIM and measurement examples are described. Combined with the sensitivity of Alba and Q2 systems, the PIE allowed us to quantitatively measure the fast dynamics of single molecules.

  13. Quantitative Measurement of Integrated Band Intensities of Isoprene and Formaldehyde

    NASA Astrophysics Data System (ADS)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sams, Robert L.

    2013-06-01

    The OH-initiated oxidation of isoprene, which is one of the primary volatile organic compounds produced by vegetation, is a major source of atmospheric formaldehyde and other oxygenated organics. Both molecules are also known products of biomass burning. Absorption coefficients and integrated band intensities for isoprene and formaldehyde are reported in the 600 - 6500 cm^{-1} region. The pressure broadened (1 atmosphere N_2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm^{-1} resolution, using a Bruker 66V FTIR. Composite spectra are composed of a minimum of seven pressures at each temperature for both molecules. These data are part of the PNNL Spectral Database, which contains quantitative spectra of over 600 molecules. These quantitative spectra facilitate atmospheric monitoring for both remote and in situ sensing and such applications will be discussed. Timothy J. Johnson, Luisa T. M. Profeta, Robert L. Sams, David W. T. Griffith, Robert L. Yokelson Vibrational Spectroscopy {53}(1);97-102 (2010).

  14. Accurate measurement of the sticking time and sticking probability of Rb atoms on a polydimethylsiloxane coating

    SciTech Connect

    Atutov, S. N. Plekhanov, A. I.

    2015-01-15

    We present the results of a systematic study of Knudsen’s flow of Rb atoms in cylindrical capillary cells coated with a polydimethylsiloxane (PDMS) compound. The purpose of the investigation is to determine the characterization of the coating in terms of the sticking probability and sticking time of Rb on the two types of coating of high and medium viscosities. We report the measurement of the sticking probability of a Rb atom to the coating equal to 4.3 × 10{sup −5}, which corresponds to the number of bounces 2.3 × 10{sup 4} at room temperature. These parameters are the same for the two kinds of PDMS used. We find that at room temperature, the respective sticking times for high-viscosity and medium-viscosity PDMS are 22 ± 3 μs and 49 ± 6 μs. These sticking times are about million times larger than the sticking time derived from the surface Rb atom adsorption energy and temperature of the coating. A tentative explanation of this surprising result is proposed based on the bulk diffusion of the atoms that collide with the surface and penetrate inside the coating. The results can be important in many resonance cell experiments, such as the efficient magnetooptical trapping of rare elements or radioactive isotopes and in experiments on the light-induced drift effect.

  15. Pushing the frontiers of T-cell vaccines: accurate measurement of human T-cell responses

    PubMed Central

    Saade, Fadi; Gorski, Stacey Ann; Petrovsky, Nikolai

    2013-01-01

    There is a need for novel approaches to tackle major vaccine challenges such as malaria, tuberculosis and HIV, among others. Success will require vaccines able to induce a cytotoxic T-cell response – a deficiency of most current vaccine approaches. The successful development of T-cell vaccines faces many hurdles, not least being the lack of consensus on a standardized T-cell assay format able to be used as a correlate of vaccine efficacy. Hence, there remains a need for reproducible measures of T-cell immunity proven in human clinical trials to correlate with vaccine protection. The T-cell equivalent of a neutralizing antibody assay would greatly accelerate the development and commercialization of T-cell vaccines. Recent advances have seen a plethora of new T-cell assays become available, including some like cytometry by time-of-flight with extreme multiparameter T-cell phenotyping capability. However, whether it is historic thymidine-based proliferation assays or sophisticated new cytometry assays, each assay has its relative advantages and disadvantages, and relatively few of these assays have yet to be validated in large-scale human vaccine trials. This review examines the current range of T-cell assays and assesses their suitability for use in human vaccine trials. Should one or more of these assays be accepted as an agreed surrogate of T-cell protection by a regulatory agency, this would significantly accelerate the development of T-cell vaccines. PMID:23252389

  16. Capsular Outcomes After Pediatric Cataract Surgery Without Intraocular Lens Implantation: Qualitative Classification and Quantitative Measurement.

    PubMed

    Tan, Xuhua; Lin, Haotian; Lin, Zhuoling; Chen, Jingjing; Tang, Xiangchen; Luo, Lixia; Chen, Weirong; Liu, Yizhi

    2016-03-01

    The objective of this study was to investigate capsular outcomes 12 months after pediatric cataract surgery without intraocular lens implantation via qualitative classification and quantitative measurement.This study is a cross-sectional study that was approved by the institutional review board of Zhongshan Ophthalmic Center of Sun Yat-sen University in Guangzhou, China.Digital coaxial retro-illumination photographs of 329 aphakic pediatric eyes were obtained 12 months after pediatric cataract surgery without intraocular lens implantation. Capsule digital coaxial retro-illumination photographs were divided as follows: anterior capsule opening area (ACOA), posterior capsule opening area (PCOA), and posterior capsule opening opacity (PCOO). Capsular outcomes were qualitatively classified into 3 types based on the PCOO: Type I-capsule with mild opacification but no invasion into the capsule opening; Type II-capsule with moderate opacification accompanied by contraction of the ACOA and invasion to the occluding part of the PCOA; and Type III-capsule with severe opacification accompanied by total occlusion of the PCOA. Software was developed to quantitatively measure the ACOA, PCOA, and PCOO using standardized DCRPs. The relationships between the accurate intraoperative anterior and posterior capsulorhexis sizes and the qualitative capsular types were statistically analyzed.The DCRPs of 315 aphakic eyes (95.8%) of 191 children were included. Capsular outcomes were classified into 3 types: Type I-120 eyes (38.1%); Type II-157 eyes (49.8%); Type III-38 eyes (12.1%). The scores of the capsular outcomes were negatively correlated with intraoperative anterior capsulorhexis size (R = -0.572, P < 0.001), but no significant correlation with intraoperative posterior capsulorhexis size (R = -0.16, P = 0.122) was observed. The ACOA significantly decreased from Type I to Type II to Type III, the PCOA increased in size from Type I to Type II, and the PCOO increased

  17. The need for preoperative baseline arm measurement to accurately quantify breast cancer-related lymphedema.

    PubMed

    Sun, Fangdi; Skolny, Melissa N; Swaroop, Meyha N; Rawal, Bhupendra; Catalano, Paul J; Brunelle, Cheryl L; Miller, Cynthia L; Taghian, Alphonse G

    2016-06-01

    Breast cancer-related lymphedema (BCRL) is a feared outcome of breast cancer treatment, yet the push for early screening is hampered by a lack of standardized quantification. We sought to determine the necessity of preoperative baseline in accounting for temporal changes of upper extremity volume. 1028 women with unilateral breast cancer were prospectively screened for lymphedema by perometry. Thresholds were defined: relative volume change (RVC) ≥10 % for clinically significant lymphedema and ≥5 % including subclinical lymphedema. The first postoperative measurement (pseudo-baseline) simulated the case of no baseline. McNemar's test and binomial logistic regression models were used to analyze BCRL misdiagnoses. Preoperatively, 28.3 and 2.9 % of patients had arm asymmetry of ≥5 and 10 %, respectively. Without baseline, 41.6 % of patients were underdiagnosed and 40.1 % overdiagnosed at RVC ≥ 5 %, increasing to 50.0 and 54.8 % at RVC ≥ 10 %. Increased pseudo-baseline asymmetry, increased weight change between baselines, hormonal therapy, dominant use of contralateral arm, and not receiving axillary lymph node dissection (ALND) were associated with increased risk of underdiagnosis at RVC ≥ 5 %; not receiving regional lymph node radiation was significant at RVC ≥ 10 %. Increased pseudo-baseline asymmetry, not receiving ALND, and dominant use of ipsilateral arm were associated with overdiagnosis at RVC ≥ 5 %; increased pseudo-baseline asymmetry and not receiving ALND were significant at RVC ≥ 10 %. The use of a postoperative proxy even early after treatment results in poor sensitivity for identifying BCRL. Providers with access to patients before surgery should consider the consequent need for proper baseline, with specific strategy tailored by institution. PMID:27154787

  18. Patient safety measures in burn care: do National reporting systems accurately reflect quality of burn care?

    PubMed

    Mandell, Samuel P; Robinson, Ellen F; Cooper, Claudette L; Klein, Matthew B; Gibran, Nicole S

    2010-01-01

    UHC CDB provide a potential to benchmark quality of care. However, reporting quality data for trauma and burns requires stringent understanding of injury data collection. Although quality measures are important for improving patient safety and establishing benchmarks for complication and mortality rates, caution must be taken when applying them to specific product lines.

  19. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    SciTech Connect

    Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.; Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2014-11-19

    The OH- and O3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm-1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of seven pressures at each temperature.

  20. Quantitative measurement of CyberKnife robotic arm steering.

    PubMed

    Wong, K H; Dieterich, S; Tang, J; Cleary, K

    2007-12-01

    Respiratory motion is a significant and challenging problem for radiation medicine. Without adequate compensation for respiratory motion, it is impossible to deliver highly conformal doses to tumors in the thorax and abdomen. The CyberKnife frameless stereotactic radiosurgery system with Synchrony provides respiratory motion adaptation by monitoring skin motion and dynamically steering the beam to follow the moving tumor. This study quantitatively evaluated this beam steering technology using optical tracking of both the linear accelerator and a ball-cube target. Respiratory motion of the target was simulated using a robotic motion platform and movement patterns recorded from previous CyberKnife patients. Our results show that Synchrony respiratory tracking can achieve sub-millimeter precision when following a moving object. PMID:17994788

  1. Evaluating quantitative measures of grammatical complexity in spontaneous speech samples.

    PubMed

    Blake, J; Quartaro, G; Onorati, S

    1993-02-01

    The validity of MLU and a measure of syntactic complexity were tested against LARSP on spontaneous speech samples from 87 children, ranging in age from 1;6 to 4;9. Change in some LARSP clausal measures was found across MLU stages up to MLU 4.5. For the measure of syntactic complexity, no such ceiling was found for the clausal connectivity score in LARSP or for average clausal complexity in LARSP. Neither MLU nor the measure of syntactic complexity indexed LARSP phrasal complexity. It is concluded that MLU is a valid measure of clausal complexity up to 4.5 and that our measure of syntactic complexity is more valid at more advanced stages.

  2. Quantitative comparison of measurements of urgent care service quality.

    PubMed

    Qin, Hong; Prybutok, Victor; Prybutok, Gayle

    2016-01-01

    Service quality and patient satisfaction are essential to health care organization success. Parasuraman, Zeithaml, and Berry introduced SERVQUAL, a prominent service quality measure not yet applied to urgent care. We develop an instrument to measure perceived service quality and identify the determinants of patient satisfaction/ behavioral intentions. We examine the relationships among perceived service quality, patient satisfaction and behavioral intentions, and demonstrate that urgent care service quality is not equivalent using measures of perceptions only, differences of expectations minus perceptions, ratio of perceptions to expectations, and the log of the ratio. Perceptions provide the best measure of urgent care service quality. PMID:26950539

  3. Quantitative comparison of measurements of urgent care service quality.

    PubMed

    Qin, Hong; Prybutok, Victor; Prybutok, Gayle

    2016-01-01

    Service quality and patient satisfaction are essential to health care organization success. Parasuraman, Zeithaml, and Berry introduced SERVQUAL, a prominent service quality measure not yet applied to urgent care. We develop an instrument to measure perceived service quality and identify the determinants of patient satisfaction/ behavioral intentions. We examine the relationships among perceived service quality, patient satisfaction and behavioral intentions, and demonstrate that urgent care service quality is not equivalent using measures of perceptions only, differences of expectations minus perceptions, ratio of perceptions to expectations, and the log of the ratio. Perceptions provide the best measure of urgent care service quality.

  4. A Two-Sinker Densimeter for Accurate Measurements of the Density of Natural Gases at Standard Conditions

    NASA Astrophysics Data System (ADS)

    Richter, Markus; Kleinrahm, Reiner; Glos, Stefan; Wagner, Wolfgang; Span, Roland; Schley, Peter; Uhrig, Martin

    2010-05-01

    A special reference densimeter has been developed for accurate measurements of densities of natural gases and multicomponent gas mixtures at standard conditions of temperature and pressure ( T s = 273.15 K and p s = 0.101325 MPa). The densimeter covers the range from 0.7 kg · m-3 to 1.3 kg · m-3; the total measurement uncertainty in density is 0.020 % (95 % level of confidence). The measurement principle used is the two-sinker method, which is based on the Archimedes buoyancy principle. The certified calibration laboratory of E.ON Ruhrgas AG, Germany, uses this densimeter to verify the standard densities of certified calibration gases (binary and multicomponent gas mixtures). Moreover, the densimeter is used to determine the compositions of commercially available binary gas mixtures with a small uncertainty of (0.01-0.03) mol%.

  5. Accurate measurement of dispersion data through short and narrow tubes used in very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2015-09-01

    An original method is proposed for the accurate and reproducible measurement of the time-based dispersion properties of short L< 50cm and narrow rc< 50μm tubes at mobile phase flow rates typically used in very high-pressure liquid chromatography (vHPLC). Such tubes are used to minimize sample dispersion in vHPLC; however, their dispersion characteristics cannot be accurately measured at such flow rates due to system dispersion contribution of vHPLC injector and detector. It is shown that using longer and wider tubes (>10μL) enables a reliable measurement of the dispersion data. We confirmed that the dimensionless plot of the reduced dispersion coefficient versus the reduced linear velocity (Peclet number) depends on the aspect ratio, L/rc, of the tube, and unexpectedly also on the diffusion coefficient of the analyte. This dimensionless plot could be easily obtained for a large volume tube, which has the same aspect ratio as that of the short and narrow tube, and for the same diffusion coefficient. The dispersion data for the small volume tube are then directly extrapolated from this plot. For instance, it is found that the maximum volume variances of 75μm×30.5cm and 100μm×30.5cm prototype finger-tightened connecting tubes are 0.10 and 0.30μL(2), respectively, with an accuracy of a few percent and a precision smaller than seven percent.

  6. Quantitative Measures of Sustainability in Institutions of Higher Education

    ERIC Educational Resources Information Center

    Klein-Banai, Cynthia

    2010-01-01

    The measurement of sustainability for institutions, businesses, regions, and nations is a complex undertaking. There are many disciplinary approaches but sustainability is innately interdisciplinary and the challenge is to apply these approaches in a way that can best measure progress towards sustainability. The most common methods used by…

  7. Evaluation of the sample needed to accurately estimate outcome-based measurements of dairy welfare on farm.

    PubMed

    Endres, M I; Lobeck-Luchterhand, K M; Espejo, L A; Tucker, C B

    2014-01-01

    Dairy welfare assessment programs are becoming more common on US farms. Outcome-based measurements, such as locomotion, hock lesion, hygiene, and body condition scores (BCS), are included in these assessments. The objective of the current study was to investigate the proportion of cows in the pen or subsamples of pens on a farm needed to provide an accurate estimate of the previously mentioned measurements. In experiment 1, we evaluated cows in 52 high pens (50 farms) for lameness using a 1- to 5-scale locomotion scoring system (1 = normal and 5 = severely lame; 24.4 and 6% of animals were scored ≥ 3 or ≥ 4, respectively). Cows were also given a BCS using a 1- to 5-scale, where 1 = emaciated and 5 = obese; cows were rarely thin (BCS ≤ 2; 0.10% of cows) or fat (BCS ≥ 4; 0.11% of cows). Hygiene scores were assessed on a 1- to 5-scale with 1 = clean and 5 = severely dirty; 54.9% of cows had a hygiene score ≥ 3. Hock injuries were classified as 1 = no lesion, 2 = mild lesion, and 3 = severe lesion; 10.6% of cows had a score of 3. Subsets of data were created with 10 replicates of random sampling that represented 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10, 5, and 3% of the cows measured/pen. In experiment 2, we scored the same outcome measures on all cows in lactating pens from 12 farms and evaluated using pen subsamples: high; high and fresh; high, fresh, and hospital; and high, low, and hospital. For both experiments, the association between the estimates derived from all subsamples and entire pen (experiment 1) or herd (experiment 2) prevalence was evaluated using linear regression. To be considered a good estimate, 3 criteria must be met: R(2)>0.9, slope = 1, and intercept = 0. In experiment 1, on average, recording 15% of the pen represented the percentage of clinically lame cows (score ≥ 3), whereas 30% needed to be measured to estimate severe lameness (score ≥ 4). Only 15% of the pen was needed to estimate the percentage of the herd with a hygiene

  8. A quantitative measurement method for comparison of seated postures.

    PubMed

    Hillman, Susan J; Hollington, James

    2016-05-01

    This technical note proposes a method to measure and compare seated postures. The three-dimensional locations of palpable anatomical landmarks corresponding to the anterior superior iliac spines, clavicular notch, head, shoulders and knees are measured in terms of x, y and z co-ordinates in the reference system of the measuring apparatus. These co-ordinates are then transformed onto a body-based axis system which allows comparison within-subject. The method was tested on eleven unimpaired adult participants and the resulting data used to calculate a Least Significant Difference (LSD) for the measure, which is used to determine whether two postures are significantly different from one another. The method was found to be sensitive to the four following standardised static postural perturbations: posterior pelvic tilt, pelvic obliquity, pelvic rotation, and abduction of the thighs. The resulting data could be used as an outcome measure for the postural alignment aspect of seating interventions in wheelchairs. PMID:26920073

  9. Quantitative carrier lifetime images optically measured on rough silicon wafers

    NASA Astrophysics Data System (ADS)

    Schubert, Martin C.; Pingel, Sebastian; The, Manuel; Warta, Wilhelm

    2007-06-01

    Results of optical carrier lifetime measurements like carrier density imaging significantly depend on surface conditions of the sample under test. Rough or textured surfaces have a severe impact on the measurement quality since they cause blurring and overestimation of the lifetime measurement. We propose a correction method for both, the adjustment of the absolute value and the restoration of the spatial distribution of the recombination lifetime. The absolute value is corrected by taking the emissivity of the sample into account. The unblurred signal distribution is obtained by mathematical deconvolution via Wiener filtering. For this purpose an appropriate point spread function is experimentally determined.

  10. Quantitative Evaluation of MODIS Fire Radiative Power Measurement for Global Smoke Emissions Assessment

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Ellison, Luke

    2011-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has steadily gained increasing recognition as an important parameter for facilitating the development of various scientific studies and applications relating to the quantitative characterization of biomass burning and their emissions. To establish the scientific integrity of the FRP as a stable quantity that can be measured consistently across a variety of sensors and platforms, with the potential of being utilized to develop a unified long-term climate data record of fire activity and impacts, it needs to be thoroughly evaluated, calibrated, and validated. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to evaluate the uncertainties associated with them, such as those due to the effects of satellite variable observation geometry and other factors, in order to establish their error budget for use in diverse scientific research and applications. In this presentation, we will show recent results of the MODIS FRP uncertainty analysis and error mitigation solutions, and demonstrate

  11. Quantitative measurement of holographic image quality using Adobe Photoshop

    NASA Astrophysics Data System (ADS)

    Wesly, E.

    2013-02-01

    Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.

  12. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE PAGES

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sharpe, S. W.; Sams, R. L.; Johnson, T. J.

    2014-11-19

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 Kmore » in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  13. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies.

    PubMed

    Wong, William W; Clarke, Lucinda L

    2012-11-01

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to hydrogen gas (H(2)) for mass spectrometric analysis are labor intensive, require special reagent, and involve memory effect and potential isotope fractionation. The objective of this study was to determine the accuracy and precision of a platinum catalyzed H(2)-water equilibration method for stable hydrogen isotope ratio measurements. Time to reach isotopic equilibrium, day-to-day and week-to-week reproducibility, accuracy, and precision of stable hydrogen isotope ratio measurements by the H(2)-water equilibration method were assessed using a Thermo DELTA V Advantage continuous-flow isotope ratio mass spectrometer. It took 3 h to reach isotopic equilibrium. The day-to-day and week-to-week measurements on water and urine samples with natural abundance and enriched levels of deuterium were highly reproducible. The method was accurate to within 2.8 (o)/oo and reproducible to within 4.0 (o)/oo based on analysis of international references. All the outcome variables, whether in urine samples collected in 10 doubly labeled water studies or plasma samples collected in 26 body water studies, did not differ from those obtained using the reference zinc reduction method. The method produced highly accurate estimation on ad libitum energy intakes, body composition, and water turnover rates. The method greatly reduces the analytical cost and could easily be adopted by laboratories equipped with a continuous-flow isotope ratio mass spectrometer.

  14. A Hydrogen Gas-Water Equilibration Method Produces Accurate and Precise Stable Hydrogen Isotope Ratio Measurements in Nutrition Studies12

    PubMed Central

    Wong, William W.; Clarke, Lucinda L.

    2012-01-01

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to hydrogen gas (H2) for mass spectrometric analysis are labor intensive, require special reagent, and involve memory effect and potential isotope fractionation. The objective of this study was to determine the accuracy and precision of a platinum catalyzed H2-water equilibration method for stable hydrogen isotope ratio measurements. Time to reach isotopic equilibrium, day-to-day and week-to-week reproducibility, accuracy, and precision of stable hydrogen isotope ratio measurements by the H2-water equilibration method were assessed using a Thermo DELTA V Advantage continuous-flow isotope ratio mass spectrometer. It took 3 h to reach isotopic equilibrium. The day-to-day and week-to-week measurements on water and urine samples with natural abundance and enriched levels of deuterium were highly reproducible. The method was accurate to within 2.8 o/oo and reproducible to within 4.0 o/oo based on analysis of international references. All the outcome variables, whether in urine samples collected in 10 doubly labeled water studies or plasma samples collected in 26 body water studies, did not differ from those obtained using the reference zinc reduction method. The method produced highly accurate estimation on ad libitum energy intakes, body composition, and water turnover rates. The method greatly reduces the analytical cost and could easily be adopted by laboratories equipped with a continuous-flow isotope ratio mass spectrometer. PMID:23014490

  15. Variation of quantitative emphysema measurements from CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Henschke, Claudia I.; Barr, R. Graham; Yankelevitz, David F.

    2008-03-01

    Emphysema is a lung disease characterized by destruction of the alveolar air sacs and is associated with long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema, and several measures have been introduced for the quantification of the extent of disease. In this paper we compare these measures for repeatability over time. The measures of interest in this study are emphysema index, mean lung density, histogram percentile, and the fractal dimension. To allow for direct comparisons, the measures were normalized to a 0-100 scale. These measures have been computed for a set of 2,027 scan pairs in which the mean interval between scans was 1.15 years (σ: 93 days). These independent pairs were considered with respect to three different scanning conditions (a) 223 pairs where both were scanned with a 5 mm slice thickness protocol, (b) 695 with the first scanned with the 5 mm protocol and the second with a 1.25 mm protocol, and (c) 1109 pairs scanned both times using a 1.25 mm protocol. We found that average normalized emphysema index and histogram percentiles scores increased by 5.9 and 11 points respectively, while the fractal dimension showed stability with a mean difference of 1.2. We also found, a 7 point bias introduced for emphysema index under condition (b), and that the fractal dimension measure is least affected by scanner parameter changes.

  16. Challenge in Enhancing the Teaching and Learning of Variable Measurements in Quantitative Research

    ERIC Educational Resources Information Center

    Kee, Chang Peng; Osman, Kamisah; Ahmad, Fauziah

    2013-01-01

    Statistical analysis is one component that cannot be avoided in a quantitative research. Initial observations noted that students in higher education institution faced difficulty analysing quantitative data which were attributed to the confusions of various variable measurements. This paper aims to compare the outcomes of two approaches applied in…

  17. Initial Description of a Quantitative, Cross-Species (Chimpanzee-Human) Social Responsiveness Measure

    ERIC Educational Resources Information Center

    Marrus, Natasha; Faughn, Carley; Shuman, Jeremy; Petersen, Steve E.; Constantino, John N.; Povinelli, Daniel J.; Pruett, John R., Jr.

    2011-01-01

    Objective: Comparative studies of social responsiveness, an ability that is impaired in autism spectrum disorders, can inform our understanding of both autism and the cognitive architecture of social behavior. Because there is no existing quantitative measure of social responsiveness in chimpanzees, we generated a quantitative, cross-species…

  18. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    NASA Astrophysics Data System (ADS)

    Öz, E.; Batsch, F.; Muggli, P.

    2016-09-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.

  19. Quantitative Measurement of Soil Erosion from Tls and Uav Data

    NASA Astrophysics Data System (ADS)

    Eltner, A.; Mulsow, C.; Maas, H.-G.

    2013-08-01

    Soil erosion is a major issue concerning crop land degradation. Understanding these complex erosion processes is necessary for effective soil conservation. Herein, high resolution modelling of relief changes caused by run-off from precipitation events is an essential research matter. For non-invasive field measurements the combination of unmanned airborne vehicle (UAV) image data and terrestrial laser scanning (TLS) may be especially suitable. The study's objective is to measure high precision digital terrain models (DTM) of the soil surface at two selected research areas with the extent of at least 500 square meters. The used UAV is integrated with GPS and inertial measurement unit (IMU). Furthermore, an active stabilizing camera mount equipped with a customary compact camera is implemented. For multi-temporal comparison of measured soil surfaces and for aligning UAV and TLS data a stable local reference system consisting of signalized points is defined by total station measurements. Two different software packages are applied for DTM generation from UAV images and compared to the corresponding DTM captured by TLS. Differences between the point clouds are minimal six millimeters and generally within TLS accuracy range. First multi-temporal comparisons are made and illustrate interesting surface changes.

  20. Quantitative measurement of brightness from living cells in the presence of photodepletion.

    PubMed

    Hur, Kwang-Ho; Macdonald, Patrick J; Berk, Serkan; Angert, C Isaac; Chen, Yan; Mueller, Joachim D

    2014-01-01

    The brightness of fluorescently labeled proteins provides an excellent marker for identifying protein interactions in living cells. Quantitative interpretation of brightness, however, hinges on a detailed understanding of the processes that affect the signal fluctuation of the fluorescent label. Here, we focus on the cumulative influence of photobleaching on brightness measurements in cells. Photobleaching within the finite volume of the cell leads to a depletion of the population of fluorescently labeled proteins with time. The process of photodepletion reduces the fluorescence signal which biases the analysis of brightness data. Our data show that even small reductions in the signal can introduce significant bias into the analysis of the data. We develop a model that quantifies the bias and introduce an analysis method that accurately determines brightness in the presence of photodepletion as verified by experiments with mammalian and yeast cells. In addition, photodepletion experiments with the fluorescent protein EGFP reveal the presence of a photoconversion process, which leads to a marked decrease in the brightness of the EGFP protein. We also identify conditions where the effect of EGFP's photoconversion on brightness experiments can be safely ignored.

  1. Measurements in quantitative research: how to select and report on research instruments.

    PubMed

    Hagan, Teresa L

    2014-07-01

    Measures exist to numerically represent degrees of attributes. Quantitative research is based on measurement and is conducted in a systematic, controlled manner. These measures enable researchers to perform statistical tests, analyze differences between groups, and determine the effectiveness of treatments. If something is not measurable, it cannot be tested.

  2. Velocity field measurement of a round jet using quantitative schlieren.

    PubMed

    Iffa, Emishaw D; Aziz, A Rashid A; Malik, Aamir S

    2011-02-10

    This paper utilizes the background oriented schlieren (BOS) technique to measure the velocity field of a variable density round jet. The density field of the jet is computed based on the light deflection created during the passage of light through the understudy jet. The deflection vector estimation was carried out using phase-based optical flow algorithms. The density field is further exploited to extract the axial and radial velocity vectors with the aid of continuity and energy equations. The experiment is conducted at six different jet-exit temperature values. Additional turbulence parameters, such as velocity variance and power spectral density of the vector field, are also computed. Finally, the measured velocity parameters are compared with the hot wire anemometer measurements and their correlation is displayed.

  3. Velocity field measurement of a round jet using quantitative schlieren

    SciTech Connect

    Iffa, Emishaw D.; Aziz, A. Rashid A.; Malik, Aamir S.

    2011-02-10

    This paper utilizes the background oriented schlieren (BOS) technique to measure the velocity field of a variable density round jet. The density field of the jet is computed based on the light deflection created during the passage of light through the understudy jet. The deflection vector estimation was carried out using phase-based optical flow algorithms. The density field is further exploited to extract the axial and radial velocity vectors with the aid of continuity and energy equations. The experiment is conducted at six different jet-exit temperature values. Additional turbulence parameters, such as velocity variance and power spectral density of the vector field, are also computed. Finally, the measured velocity parameters are compared with the hot wire anemometer measurements and their correlation is displayed.

  4. An accurate scatter measurement and correction technique for cone beam breast CT imaging using scanning sampled measurement (SSM)technique

    NASA Astrophysics Data System (ADS)

    Liu, Xinming; Shaw, Chris C.; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C.; Kappadath, S. Cheenu

    2006-03-01

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images. Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  5. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode

    PubMed Central

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    ABSTRACT Objectives To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. Materials and Methods We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recent pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered an inaccurate result. Results A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Conclusions Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH. PMID:27286119

  6. Cultural Values Predicting Acculturation Orientations: Operationalizing a Quantitative Measure

    ERIC Educational Resources Information Center

    Ehala, Martin

    2012-01-01

    This article proposes that acculturation orientations are related to two sets of cultural values: utilitarianism (Ut) and traditionalism (Tr). While utilitarian values enhance assimilation, traditional values support language and identity maintenance. It is proposed that the propensity to either end of this value opposition can be measured by an…

  7. Continuous Quantitative Measurements on a Linear Air Track

    ERIC Educational Resources Information Center

    Vogel, Eric

    1973-01-01

    Describes the construction and operational procedures of a spark-timing apparatus which is designed to record the back and forth motion of one or two carts on linear air tracks. Applications to measurements of velocity, acceleration, simple harmonic motion, and collision problems are illustrated. (CC)

  8. Quantitative Spectral Radiance Measurements in the HYMETS Arc Jet

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Hires, Drew V.; Johansen, Craig T.; Bathel, Brett F.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.

    2012-01-01

    Calibrated spectral radiance measurements of gaseous emission spectra have been obtained from the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. A fiber-optic coupled spectrometer collected natural luminosity from the flow. Spectral radiance measurements are reported between 340 and 1000 nm. Both Silicon Carbide (SiC) and Phenolic Impregnated Carbon Ablator (PICA) samples were placed in the flow. Test gases studied included a mostly-N2 atmosphere (95% nitrogen, 5% argon), a simulated Earth Air atmosphere (75% nitrogen, 20% oxygen, 5% argon) and a simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon). The bulk enthalpy of the flow was varied as was the location of the measurement. For the intermediate flow enthalpy tested (20 MJ/kg), emission from the Mars simulant gas was about 10 times higher than the Air flow and 15 times higher than the mostly-N2 atmosphere. Shock standoff distances were estimated from the spectral radiance measurements. Within-run, run-to-run and day-to-day repeatability of the emission were studied, with significant variations (15-100%) noted.

  9. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  10. Conducting Art Therapy Research Using Quantitative EEG Measures

    ERIC Educational Resources Information Center

    Belkofer, Christopher M.; Konopka, Lukasz M.

    2008-01-01

    This study presents a modified, single subject design that measured the patterns of electrical activity of a participant's brain following an hour spent painting and drawing. Paired t tests were used to compare pre and post art-making electroencephalograph (EEG) data. The results indicated that neurobiological activity after drawing and painting…

  11. The Analysis of Repeated Measurements: A Quantitative Research Synthesis.

    ERIC Educational Resources Information Center

    Keselman, Joanne C.; And Others

    Meta-analytic methods were used to summarize results of Monte Carlo (MC) studies investigating the robustness of various statistical procedures for testing within-subjects effects in split-plot repeated measures designs. Through a literature review, accessible MC studies were identified, and characteristics (simulation factors) and outcomes (rates…

  12. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).

    PubMed

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ∼10%. The dual-frequency TDTR approach is useful for future studies of thin films. PMID:27475589

  13. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).

    PubMed

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ∼10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  14. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR)

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ˜10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  15. Robust quantitative parameter estimation by advanced CMP measurements for vadose zone hydrological studies

    NASA Astrophysics Data System (ADS)

    Koyama, C.; Wang, H.; Khuut, T.; Kawai, T.; Sato, M.

    2015-12-01

    Soil moisture plays a crucial role in the understanding of processes in the vadose zone hydrology. In the last two decades ground penetrating radar (GPR) has been widely discussed has nondestructive measurement technique for soil moisture data. Especially the common mid-point (CMP) technique, which has been used in both seismic and GPR surveys to investigate the vertical velocity profiles, has a very high potential for quantitaive obervsations from the root zone to the ground water aquifer. However, the use is still rather limited today and algorithms for robust quantitative paramter estimation are lacking. In this study we develop an advanced processing scheme for operational soil moisture reetrieval at various depth. Using improved signal processing, together with a semblance - non-normalized cross-correlation sum combined stacking approach and the Dix formula, the interval velocities for multiple soil layers are obtained from the RMS velocities allowing for more accurate estimation of the permittivity at the reflecting point. Where the presence of a water saturated layer, like a groundwater aquifer, can be easily identified by its RMS velocity due to the high contrast compared to the unsaturated zone. By using a new semi-automated measurement technique the acquisition time for a full CMP gather with 1 cm intervals along a 10 m profile can be reduced significantly to under 2 minutes. The method is tested and validated under laboratory conditions in a sand-pit as well as on agricultural fields and beach sand in the Sendai city area. Comparison between CMP estimates and TDR measurements yield a very good agreement with RMSE of 1.5 Vol.-%. The accuracy of depth estimation is validated with errors smaller than 2%. Finally, we demonstrate application of the method in a test site in semi-arid Mongolia, namely the Orkhon River catchment in Bulgan, using commercial 100 MHz and 500 MHz RAMAC GPR antennas. The results demonstrate the suitability of the proposed method for

  16. Can endocranial volume be estimated accurately from external skull measurements in great-tailed grackles (Quiscalus mexicanus)?

    PubMed Central

    Palmstrom, Christin R.

    2015-01-01

    There is an increasing need to validate and collect data approximating brain size on individuals in the field to understand what evolutionary factors drive brain size variation within and across species. We investigated whether we could accurately estimate endocranial volume (a proxy for brain size), as measured by computerized tomography (CT) scans, using external skull measurements and/or by filling skulls with beads and pouring them out into a graduated cylinder for male and female great-tailed grackles. We found that while females had higher correlations than males, estimations of endocranial volume from external skull measurements or beads did not tightly correlate with CT volumes. We found no accuracy in the ability of external skull measures to predict CT volumes because the prediction intervals for most data points overlapped extensively. We conclude that we are unable to detect individual differences in endocranial volume using external skull measurements. These results emphasize the importance of validating and explicitly quantifying the predictive accuracy of brain size proxies for each species and each sex. PMID:26082858

  17. Personal Exposure Monitoring Wearing Protocol Compliance: An Initial Assessment of Quantitative Measurements

    EPA Science Inventory

    Personal exposure sampling provides the most accurate and representative assessment of exposure to a pollutant, but only if measures are implemented to minimize exposure misclassification and reduce confounders that may cause misinterpretation of the collected data. Poor complian...

  18. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    EPA Science Inventory

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  19. Quantitative Species Measurements in Microgravity Combustion Flames using Near-Infrared Diode Lasers

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1999-01-01

    Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for characterizing dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Unfortunately, combustion is highly complicated by fluid mechanical and chemical kinetic processes, requiring the use of numerical modeling to compare with carefully designed experiments. More sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion as well as provide accurate feedback to improve the predictive capabilities of the models. Diode lasers are a natural choice for use under the severe conditions of low gravity experiments. Reliable, simple solid state operation at low power satisfies the operational restrictions imposed by drop towers, aircraft and space-based studies. Modulation wavelength absorption spectroscopy (WMS) provides a means to make highly sensitive and quantitative measurements of local gas concentration and, in certain cases, temperature. With near-infrared diode lasers, detection of virtually all major combustion species with extremely rapid response time is possible in an inexpensive package. Advancements in near-infrared diode laser fabrication technology and concurrent development of optical fibers for these lasers led to their use in drop towers. Since near-infrared absorption line strengths for overtone and combination vibrational transitions are weaker than the mid-infrared fundamental bands, WMS techniques are applied to increase detection sensitivity and allow measurement of the major combustion gases. In the first microgravity species measurement, Silver et al. mounted a fiber-coupled laser at the top of the NASA 2.2-sec drop tower and piped the light through a single-mode fiber to the drop rig. A fiber splitter divided the light into eight channels that directed

  20. Development of a Quantitative Measure of Holistic Nursing Care.

    PubMed

    Kinchen, Elizabeth

    2015-09-01

    Holistic care has long been a defining attribute of nursing practice. From the earliest years of its formal history, nursing has favored a holistic approach in the care of patients, and such an approach has become more important over time. The expansion of nursing's responsibility in delivering comprehensive primary care, the recognition of the importance of relationship-centered care, and the need for evidence-based legitimation of holistic nursing care and practices to insurance companies, policy-makers, health care providers, and patients highlight the need to examine the holistic properties of nursing care. The Holistic Caring Inventory is a theoretically sound, valid, and reliable tool; however, it does not comprehensively address attributes that have come to define holistic nursing care, necessitating the development of a more current instrument to measure the elements of a holistic perspective in nursing care. The development of a current and more comprehensive measure of holistic nursing care may be critical in demonstrating the importance of a holistic approach to patient care that reflects the principles of relationship-based care, shared decision-making, authentic presence, and pattern recognition.

  1. Quantitative measurement of the course of bean callus differentiation.

    PubMed

    Haddon, L E; Northcote, D H

    1975-01-01

    Two strains of callus have been isolated from bean hypocotyl and grown on a defined maintenance medium supplemented with 2 mg/l. 2:4-dichlorophenoxyacetic acid (2:4D) and 2% sucrose. Root initiation was observed in one strain and formation of nodules containing xylem and phloem in both strains after transfer to an induction medium supplemented with 1 mg/l. naphthyleneacetic acid, 0-2 mg/l. kinetin and 3% sucrose, after 3 transfers to maintenance medium. The number of nodules per gramme increased 10-fold between 6 and 12 days after transfer, and thereafter remained constant. Phenylalanine ammonia lyase (PAL) activity rose to a maximum value when the rate of nodule formation was greatest, and decreased after the maximum nodule concentration was reached. The final constant value for PAL activity was above that of callus grown on maintenance medium. Beta I leads to 3 glucan synthetase activity rose to a maximum 15 days after transfer, and then fell gradually to a level above that measured in callus on maintenance medium. Callus was transferred from maintenance medium after 3, 4, 5 and 6 transfers. The concentration of nodules after 21 days on induction medium decreased as the callus was kept in culture. No further differentiation could be induced after 6 transfers. The fall in nodule formation was paralleled by a decrease in PAL and betaI leads to 3 glucan synthetase activities measured 21 days after transfer.

  2. Ultrasonic Measurement of Change in Elasticity due to Endothelium Dependent Relaxation Response by Accurate Detection of Artery-Wall Boundary

    NASA Astrophysics Data System (ADS)

    Kaneko, Takuya; Hasegawa, Hideyuki; Kanai, Hiroshi

    2007-07-01

    Ross hypothesized that an endothelial dysfunction is considered to be an initial step in atherosclerosis. Endothelial cells, which release nitric oxide (NO) in response to shear stress from blood flow, have a function of relaxing smooth muscle in the media of the arterial wall. For the assessment of the endothelial function, there is a conventional method in which the change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) is measured with ultrasound. However, despite the fact that the collagen-rich hard adventitia does not respond to NO, the conventional method measures the change in diameter depending on the mechanical property of the entire wall including the adventitia. Therefore, we developed a method of measuring the change in the thickness and the elasticity of the brachial artery during a cardiac cycle using the phased tracking method for the evaluation of the mechanical property of only the intima-media region. In this study, the initial positions of echoes from the lumen-intima and media-adventitia boundaries are determined using complex template matching to accurately estimate the minute change in the thickness and the elasticity of the brachial and radial arteries. The ambiguity in the determination of such boundaries was eliminated using complex template matching, and the change in elasticity measured by the proposed method was larger than the change in inner diameter obtained by the conventional method.

  3. Quantitative estimates of precision for molecular isotopic measurements.

    PubMed

    Jasper, J P

    2001-01-01

    At least three methods of calculating the random errors or variance of molecular isotopic data are presently in use. The major components of variance are differentiated and quantified here into least three to four individual components. The measurement of error of the analyte relative to a working (whether an internal or an external) standard is quantified via the statistical pooled estimate of error. A statistical method for calculating the total variance associated with the difference of two individual isotopic compositions from two isotope laboratories is given, including the variances of the laboratory (secondary) and working standards, as well as those of the analytes. An abbreviated method for estimation of of error typical for chromatographic/isotope mass spectrometric methods is also presented.

  4. A direct measurement of skull attenuation for quantitative SPECT

    SciTech Connect

    Turkington, T.G.; Gilland, D.R.; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E. . Dept. of Radiology); Smith, M.F. . Dept. of Biomedical Engineering)

    1993-08-01

    The attenuation of 140 keV photons was measured in three empty skulls by placing a [sup 99m]Tc line source inside each one and acquiring projection data. These projections were compared to projections of the line source alone to determine the transmission through each point in the skull surrounding the line source. The effective skull thickness was calculated for each point using an assumed dense bone attenuation coefficient. The relative attenuation for this thickness of bone was compared to that of an equivalent amount of soft tissue to evaluate the increased attenuation of photons in brain SPECT relative to a uniform soft tissue approximation. For the skull regions surrounding most of the brain, the effective bone thickness varied considerably, but was generally less than 6 mm, resulting in a relative attenuation increases of less than 6%.

  5. Identification and Quantitative Measurements of Chemical Species by Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Zondlo, Mark A.; Bomse, David S.

    2005-01-01

    The development of a miniature gas chromatograph/mass spectrometer system for the measurement of chemical species of interest to combustion is described. The completed system is a fully-contained, automated instrument consisting of a sampling inlet, a small-scale gas chromatograph, a miniature, quadrupole mass spectrometer, vacuum pumps, and software. A pair of computer-driven valves controls the gas sampling and introduction to the chromatographic column. The column has a stainless steel exterior and a silica interior, and contains an adsorbent of that is used to separate organic species. The detection system is based on a quadrupole mass spectrometer consisting of a micropole array, electrometer, and a computer interface. The vacuum system has two miniature pumps to maintain the low pressure needed for the mass spectrometer. A laptop computer uses custom software to control the entire system and collect the data. In a laboratory demonstration, the system separated calibration mixtures containing 1000 ppm of alkanes and alkenes.

  6. The measurement of red blood cell volume change induced by Ca2+ based on full field quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seungrag; Lee, Ji Yong; Yang, Wenzhong; Kim, Dug Young

    2009-02-01

    We present the measurement of red blood cell (RBC) volume change induced by Ca2+ for a live cell imaging with full field quantitative phase microscopy (FFQPM). FFQPM is based on the Mach-Zehnder interferometer combined with an inverted microscopy system. We present the effective method to obtain a clear image and an accurate volume of the cells. An edge detection technique is used to accurately resolve the boundary between the cell line and the suspension medium. The measurement of the polystyrene bead diameter and volume has been demonstrated the validity of our proposed method. The measured phase profile can be easily converted into thickness profile. The measured polystyrene bead volume and the simulated result are about 14.74 μm3 and 14.14 μm3, respectively. The experimental results of our proposed method agree well with the simulated results within less than 4 %. We have also measured the volume variation of a single RBC on a millisecond time scale. Its mean volume is 54.02 μm3 and its standard deviation is 0.52 μm3. With the proposed system, the shape and volume changes of RBC induced by the increased intracellular Ca2+ are measured after adding ionophore A23187. A discocyte RBC is deformed to a spherocyte due to the increased intracellular Ca2+ in RBC. The volume of the spherocyte is 47.88 μm3 and its standard deviation is 0.19 μm3. We have demonstrated that the volume measurement technique is easy, accurate, and robust method with high volume sensitivity (<0.0000452 μm3) and this provides the ability to study a biological phenomenon in Hematology.

  7. Accurate High-Resolution Measurements of 3-D Tissue Dynamics With Registration-Enhanced Displacement Encoded MRI

    PubMed Central

    Merchant, Samer S.; Hsu, Edward W.

    2014-01-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI. PMID:24771572

  8. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  9. Quantitative measurements of active Ionian volcanoes in Galileo NIMS data

    NASA Astrophysics Data System (ADS)

    Saballett, Sebastian; Rathbun, Julie A.; Lopes, Rosaly M. C.; Spencer, John R.

    2016-10-01

    Io is the most volcanically active body in our solar system. The spatial distribution of volcanoes a planetary body's surface gives clues into its basic inner workings (i.e., plate tectonics on earth). Tidal heating is the major contributor to active surface geology in the outer solar system, and yet its mechanism is not completely understood. Io's volcanoes are the clearest signature of tidal heating and measurements of the total heat output and how it varies in space and time are useful constraints on tidal heating. Hamilton et al. (2013) showed through a nearest neighbor analysis that Io's hotspots are globally random, but regionally uniform near the equator. Lopes-Gautier et al. (1999) compared the locations of hotspots detected by NIMS to the spatial variation of heat flow predicted by two end-member tidal heating models. They found that the distribution of hotspots is more consistent with tidal heating occurring in asthenosphere rather than the mantle. Hamilton et al. (2013) demonstrate that clustering of hotspots also supports a dominant role for asthenosphere heating. These studies were unable to account for the relative brightness of the hotspots. Furthermore, studies of the temporal variability of Ionian volcanoes have yielded substantial insight into their nature. The Galileo Near Infrared Mapping Spectrometer (NIMS) gave us a large dataset from which to observe active volcanic activity. NIMS made well over 100 observations of Io over an approximately 10-year time frame. With wavelengths spanning from 0.7 to 5.2 microns, it is ideally suited to measure blackbody radiation from surfaces with temperatures over 300 K. Here, we report on our effort to determine the activity level of each hotspot observed in the NIMS data. We decide to use 3.5 micron brightness as a proxy for activity level because it will be easy to compare to, and incorporate, ground-based observations. We fit a 1-temperature blackbody to spectra in each grating position and averaged the

  10. Measuring Edge Importance: A Quantitative Analysis of the Stochastic Shielding Approximation for Random Processes on Graphs

    PubMed Central

    2014-01-01

    Mathematical models of cellular physiological mechanisms often involve random walks on graphs representing transitions within networks of functional states. Schmandt and Galán recently introduced a novel stochastic shielding approximation as a fast, accurate method for generating approximate sample paths from a finite state Markov process in which only a subset of states are observable. For example, in ion-channel models, such as the Hodgkin–Huxley or other conductance-based neural models, a nerve cell has a population of ion channels whose states comprise the nodes of a graph, only some of which allow a transmembrane current to pass. The stochastic shielding approximation consists of neglecting fluctuations in the dynamics associated with edges in the graph not directly affecting the observable states. We consider the problem of finding the optimal complexity reducing mapping from a stochastic process on a graph to an approximate process on a smaller sample space, as determined by the choice of a particular linear measurement functional on the graph. The partitioning of ion-channel states into conducting versus nonconducting states provides a case in point. In addition to establishing that Schmandt and Galán’s approximation is in fact optimal in a specific sense, we use recent results from random matrix theory to provide heuristic error estimates for the accuracy of the stochastic shielding approximation for an ensemble of random graphs. Moreover, we provide a novel quantitative measure of the contribution of individual transitions within the reaction graph to the accuracy of the approximate process. PMID:24742077

  11. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  12. Quantitative and qualitative measures of decomposition: Is there a link?

    SciTech Connect

    Eaton, Robert, J.; Sanchez, Felipe, G.

    2009-03-01

    Decomposition rates of loblolly pine coarse woody debris (CWD) were determined by mass loss and wood density changes for trees that differed in source of mortality (natural, girdle-poison, and felling). Specifically, three treatments were examined: (1) control (CON): natural mortality; (2) CD: 5-fold increase in CWD compared with the CON; and (3) CS: 12-fold increase in snags compared with the CON. The additional CWD in the CD treatment plots and the additional snags in the CS plots were achieved by felling (for the CD plots) or girdling followed by herbicide injection (for the CS plots) select trees in these plots. Consequently,mortality on the CD plots is due to natural causes and felling. Likewise, mortality on the CS plots is due to natural causes and girdle-poison. In each treatment plot, mortality due to natural causes was inventoried since 1997, whereas mortality due to girdle-poison and felling were inventoried since 2001. No significant difference was detected between the rates of decomposition for the CWD on these treatment plots, indicating that source of the tree mortality did not influence rates of decomposition once the tree fell. These experimental measures of decomposition were compared with two decay classification systems (three- and five-unit classifications) to determine linkages. Changes in wood density did not correlate to any decay classification, whereas mass loss had a weak correlation with decay class. However, the large degree of variation limits the utility of decay classification systems in estimating mass loss.

  13. Quantitative Measures for Software Independent Verification and Validation

    NASA Technical Reports Server (NTRS)

    Lee, Alice

    1996-01-01

    As software is maintained or reused, it undergoes an evolution which tends to increase the overall complexity of the code. To understand the effects of this, we brought in statistics experts and leading researchers in software complexity, reliability, and their interrelationships. These experts' project has resulted in our ability to statistically correlate specific code complexity attributes, in orthogonal domains, to errors found over time in the HAL/S flight software which flies in the Space Shuttle. Although only a prototype-tools experiment, the result of this research appears to be extendable to all other NASA software, given appropriate data similar to that logged for the Shuttle onboard software. Our research has demonstrated that a more complete domain coverage can be mathematically demonstrated with the approach we have applied, thereby ensuring full insight into the cause-and-effects relationship between the complexity of a software system and the fault density of that system. By applying the operational profile we can characterize the dynamic effects of software path complexity under this same approach We now have the ability to measure specific attributes which have been statistically demonstrated to correlate to increased error probability, and to know which actions to take, for each complexity domain. Shuttle software verifiers can now monitor the changes in the software complexity, assess the added or decreased risk of software faults in modified code, and determine necessary corrections. The reports, tool documentation, user's guides, and new approach that have resulted from this research effort represent advances in the state of the art of software quality and reliability assurance. Details describing how to apply this technique to other NASA code are contained in this document.

  14. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  15. Quantitative analysis in field-flow fractionation using ultraviolet-visible detectors: an experimental design for absolute measurements

    PubMed

    Zattoni; Melucci; Torsi; Reschiglian

    2000-03-01

    In previous works, it has been shown that a standard ultraviolet-visible detection system can be used for quantitative analysis of heterogeneous systems (dispersed supermicron particles) in field-flow fractionation (FFF) by single peak area measurements. Such an analysis method was shown to require either experimental measurements (standardless analysis) or an accurate model (absolute analysis) to determine the extinction efficiency of the particulate samples. In this work, an experimental design to assess absolute analysis in FFF through prediction of particles' optical extinction is presented. Prediction derives from the semiempirical approach by van de Hulst and Walstra. Special emphasis is given to the restriction of the experimental domain of instrumental conditions within which absolute analysis is allowed. Validation by statistical analysis and a practical application to real sample recovery studies are also given.

  16. Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Riedo, A.; Meyer, S.; Heredia, B.; Neuland, M. B.; Bieler, A.; Tulej, M.; Leya, I.; Iakovleva, M.; Mezger, K.; Wurz, P.

    2013-10-01

    An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.

  17. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients

    PubMed Central

    Asaoka, Ryo; Fujino, Yuri; Murata, Hiroshi; Miki, Atsuya; Tanito, Masaki; Mizoue, Shiro; Mori, Kazuhiko; Suzuki, Katsuyoshi; Yamashita, Takehiro; Kashiwagi, Kenji; Shoji, Nobuyuki

    2016-01-01

    Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an ‘intraocular pressure (IOP)-integrated VF trend analysis’ was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553

  18. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  19. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients.

    PubMed

    2016-01-01

    Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an 'intraocular pressure (IOP)-integrated VF trend analysis' was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements. PMID:27562553

  20. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  1. Accurate characterization of delay discounting: a multiple model approach using approximate Bayesian model selection and a unified discounting measure.

    PubMed

    Franck, Christopher T; Koffarnus, Mikhail N; House, Leanna L; Bickel, Warren K

    2015-01-01

    The study of delay discounting, or valuation of future rewards as a function of delay, has contributed to understanding the behavioral economics of addiction. Accurate characterization of discounting can be furthered by statistical model selection given that many functions have been proposed to measure future valuation of rewards. The present study provides a convenient Bayesian model selection algorithm that selects the most probable discounting model among a set of candidate models chosen by the researcher. The approach assigns the most probable model for each individual subject. Importantly, effective delay 50 (ED50) functions as a suitable unifying measure that is computable for and comparable between a number of popular functions, including both one- and two-parameter models. The combined model selection/ED50 approach is illustrated using empirical discounting data collected from a sample of 111 undergraduate students with models proposed by Laibson (1997); Mazur (1987); Myerson & Green (1995); Rachlin (2006); and Samuelson (1937). Computer simulation suggests that the proposed Bayesian model selection approach outperforms the single model approach when data truly arise from multiple models. When a single model underlies all participant data, the simulation suggests that the proposed approach fares no worse than the single model approach.

  2. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  3. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  4. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  5. The importance of complete tissue homogenization for accurate stoichiometric measurement of myosin light chain phosphorylation in airway smooth muscle.

    PubMed

    Wang, Lu; Paré, Peter D; Seow, Chun Y

    2015-02-01

    The standard method for measuring the phosphorylation of the regulatory myosin light chain (MLC20) in smooth muscle is extraction of the light chain using a urea extraction buffer, urea-glycerol gel electrophoresis of the soluble portion of the extract (supernatant) and Western blot analysis. The undissolved portion of the tissue during extraction (the pellet) is usually discarded. Because the pellet contains a finite amount of MLC20, omission of the pellet could result in inaccurate measurement of MLC20 phosphorylation. In this study we compared the level of tracheal smooth muscle MLC20 phosphorylation in the supernatant alone, with that in the complete tissue homogenate (supernatant and pellet) using the standard method. The supernatant fraction showed the well-known double bands representing phosphorylated and un-phosphorylated MLC20. The dissolved pellet fraction showed varying amounts of un-phosphorylated and phosphorylated MLC20. There was a small but statistically significant overestimation of the percent MLC20 phosphorylation if the pellet was not taken into consideration. The overestimation was 7% ± 2% (mean ± SEM) (p < 0.05) in unstimulated muscle and 2% ± 1% (p < 0.05) in acetylcholine (10(-6) mol/L) stimulated muscle. This finding suggests that for accurate estimation of the stoichiometry of MLC20 phosphorylation it is necessary to consider the contribution from the pellet portion of the muscle tissue homogenate.

  6. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  7. Quantitative temperature measurement of multi-layered semiconductor devices using spectroscopic thermoreflectance microscopy.

    PubMed

    Kim, Dong Uk; Park, Kwan Seob; Jeong, Chan Bae; Kim, Geon Hee; Chang, Ki Soo

    2016-06-27

    Thermoreflectance microscopy is essential in understanding the unpredictable local heating generation that occurs during microelectronic device operation. However, temperature measurements of multi-layered semiconductor devices represent a challenge because the thermoreflectance coefficient is quite small and is dramatically changed by the optical interference inside transparent layers of the device. Therefore, we propose a spectroscopic thermoreflectance microscopy system using a systematic approach for improving the quantitative temperature measurement of multi-layered semiconductor devices. We demonstrate the quantitative measurement of the temperature profile for physical defects on thin-film polycrystalline silicon resistors via thermoreflectance coefficient calibration and effective coefficient κ estimation.

  8. Quantitative temperature measurement of multi-layered semiconductor devices using spectroscopic thermoreflectance microscopy.

    PubMed

    Kim, Dong Uk; Park, Kwan Seob; Jeong, Chan Bae; Kim, Geon Hee; Chang, Ki Soo

    2016-06-27

    Thermoreflectance microscopy is essential in understanding the unpredictable local heating generation that occurs during microelectronic device operation. However, temperature measurements of multi-layered semiconductor devices represent a challenge because the thermoreflectance coefficient is quite small and is dramatically changed by the optical interference inside transparent layers of the device. Therefore, we propose a spectroscopic thermoreflectance microscopy system using a systematic approach for improving the quantitative temperature measurement of multi-layered semiconductor devices. We demonstrate the quantitative measurement of the temperature profile for physical defects on thin-film polycrystalline silicon resistors via thermoreflectance coefficient calibration and effective coefficient κ estimation. PMID:27410553

  9. The Kety-Schmidt Technique for Quantitative Perfusion and Oxygen Metabolism Measurements in the MR Environment

    PubMed Central

    Lee, John J.; Powers, William J.; Faulkner, Chad B.; Boyle, Patrick J.; Derdeyn, Colin P.

    2013-01-01

    The Kety-Schmidt technique provides quantitative measurement of whole brain cerebral blood flow (CBF). CBF is measured as the area between the arterial and venous washout curves of a diffusible tracer. Oxygen extraction and metabolism may be calculated from arterial and venous samples. In this report we present a method for performing these measurements in an MR environment. This technique could be useful for validation of MR methods of hemodynamic and metabolic measurements in humans. PMID:22997166

  10. Quantitative magnetic resonance (QMR) measurement of changes in body composition of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The survival of low birth weight pigs in particular may depend on energy stores in the body. QMR (quantitative magnetic resonance) is a new approach to measuring total body fat, lean and water. These measurements are based on quantifying protons associated with lipid and water molecules in the body...

  11. Preliminary Evidence of the Reliability and Validity of a Quantitative Measure of Self-Authorship

    ERIC Educational Resources Information Center

    Creamer, Elizabeth G.; Magolda, Marcia Baxter; Yue, Jessica

    2010-01-01

    This article presents preliminary evidence of the reliability and validity of a measure of self-authorship derived from 18 items in the Career Decision Making Survey. The research conceptualizes a quantitative measure of self-authorship as a three-part score that reflects level of agreement with statements at each of the first three phases of…

  12. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  13. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    NASA Astrophysics Data System (ADS)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-09-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21 cm emission line, without any need for inclination corrections. We measure a slope for the linewidth-based BTFR of α = 3.75 ± 0.11, a value that is somewhat steeper than (but in broad agreement with) previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of ± 0.1 dex from the best fit line. The low observational error budget for our sample enables us to establish that, despite its tightness, the measured linewidth-based BTFR has some small (i.e., non-zero) intrinsic scatter. We furthermore find a systematic difference in the BTFR of galaxies with "double-horned" 21 cm line profiles - suggestive of flat outer galactic rotation curves - and those with "peaked" profiles - suggestive of rising rotation curves. When we restrict our sample of galaxies to objects in the former category, we measure a slightly steeper slope of α = 4.13 ± 0.15. Overall, the high-accuracy measurement of the BTFR presented in this article is intended as a reliable observational benchmark against which to test theoretical expectations. Here we consider a representative set of semi-analytic models and hydrodynamic simulations in the lambda cold dark matter (ΛCDM) context, as well as modified Newtonian dynamics (MOND). In the near future, interferometric follow-up observations of several sample members will enable us to further refine the BTFR measurement, and

  14. High-resolution accurate mass measurements of biomolecules using a new electrospray ionization ion cyclotron resonance mass spectrometer.

    PubMed

    Winger, B E; Hofstadler, S A; Bruce, J E; Udseth, H R; Smith, R D

    1993-07-01

    A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10(-9) torr. The increased pumping speed attainable with cryopumping (> 10(5) L/s) allowed brief pressure excursions to above 10(-4) torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10-25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4(+) charge state (m/z 1434) of insulin. PMID:24227643

  15. A Simple Dewar/Cryostat for Thermally Equilibrating Samples at Known Temperatures for Accurate Cryogenic Luminescence Measurements.

    PubMed

    Weaver, Phoebe G; Jagow, Devin M; Portune, Cameron M; Kenney, John W

    2016-01-01

    The design and operation of a simple liquid nitrogen Dewar/cryostat apparatus based upon a small fused silica optical Dewar, a thermocouple assembly, and a CCD spectrograph are described. The experiments for which this Dewar/cryostat is designed require fast sample loading, fast sample freezing, fast alignment of the sample, accurate and stable sample temperatures, and small size and portability of the Dewar/cryostat cryogenic unit. When coupled with the fast data acquisition rates of the CCD spectrograph, this Dewar/cryostat is capable of supporting cryogenic luminescence spectroscopic measurements on luminescent samples at a series of known, stable temperatures in the 77-300 K range. A temperature-dependent study of the oxygen quenching of luminescence in a rhodium(III) transition metal complex is presented as an example of the type of investigation possible with this Dewar/cryostat. In the context of this apparatus, a stable temperature for cryogenic spectroscopy means a luminescent sample that is thermally equilibrated with either liquid nitrogen or gaseous nitrogen at a known measureable temperature that does not vary (ΔT < 0.1 K) during the short time scale (~1-10 sec) of the spectroscopic measurement by the CCD. The Dewar/cryostat works by taking advantage of the positive thermal gradient dT/dh that develops above liquid nitrogen level in the Dewar where h is the height of the sample above the liquid nitrogen level. The slow evaporation of the liquid nitrogen results in a slow increase in h over several hours and a consequent slow increase in the sample temperature T over this time period. A quickly acquired luminescence spectrum effectively catches the sample at a constant, thermally equilibrated temperature. PMID:27501355

  16. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    PubMed

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  17. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    NASA Astrophysics Data System (ADS)

    Serata, S.

    2006-12-01

    basis to disclose an acting earthquake shear stress S at top of the tectonic plate is established at the depth of 600-800m (Window). This concept is supported by outcome of the Japanese government stress measurement made at the epicenter of the Kobe earthquake of 1995, where S is found to be less than 5 MPa. At the same time S at the earthquake active Ashio mining district was found to be 36 MPa (90 percent of maximum S) at Window. These findings led to formulation of a quantitative method proposed to monitor earthquake triggering potential in and around any growing earthquake stress nucleus along shallow active faults. For future earthquake time prediction, the Stressmeter can be applied first to survey general distribution of earthquake shear stress S along major active faults. A site with its shear stress greater than 30 MPa may be identified as a site of growing stress nucleus. A Stressmeter must be permanently buried at the site to monitor future stress growth toward a possible triggering by mathematical analysis of the stress excursion dynamics. This is made possible by the automatic stress measurement capability of the Stressmeter at a frequency up to 100 times per day. The significance of this approach is a possibility to save lives by time-prediction of a forthcoming major earthquake with accuracy in hours and minutes.

  18. The application of intraoperative transit time flow measurement to accurately assess anastomotic quality in sequential vein grafting

    PubMed Central

    Yu, Yang; Zhang, Fan; Gao, Ming-Xin; Li, Hai-Tao; Li, Jing-Xing; Song, Wei; Huang, Xin-Sheng; Gu, Cheng-Xiong

    2013-01-01

    OBJECTIVES Intraoperative transit time flow measurement (TTFM) is widely used to assess anastomotic quality in coronary artery bypass grafting (CABG). However, in sequential vein grafting, the flow characteristics collected by the conventional TTFM method are usually associated with total graft flow and might not accurately indicate the quality of every distal anastomosis in a sequential graft. The purpose of our study was to examine a new TTFM method that could assess the quality of each distal anastomosis in a sequential graft more reliably than the conventional TTFM approach. METHODS Two TTFM methods were tested in 84 patients who underwent sequential saphenous off-pump CABG in Beijing An Zhen Hospital between April and August 2012. In the conventional TTFM method, normal blood flow in the sequential graft was maintained during the measurement, and the flow probe was placed a few centimetres above the anastomosis to be evaluated. In the new method, blood flow in the sequential graft was temporarily reduced during the measurement by placing an atraumatic bulldog clamp at the graft a few centimetres distal to the anastomosis to be evaluated, while the position of the flow probe remained the same as in the conventional method. This new TTFM method was named the flow reduction TTFM. Graft flow parameters measured by both methods were compared. RESULTS Compared with the conventional TTFM, the flow reduction TTFM resulted in significantly lower mean graft blood flow (P < 0.05); in contrast, yielded significantly higher pulsatility index (P < 0.05). Diastolic filling was not significantly different between the two methods and was >50% in both cases. Interestingly, the flow reduction TTFM identified two defective middle distal anastomoses that the conventional TTFM failed to detect. Graft flows near the defective distal anastomoses were improved substantially after revision. CONCLUSIONS In this study, we found that temporary reduction of graft flow during TTFM seemed to

  19. Quantitative measurements of HER2 and phospho-HER2 expression: correlation with pathologic response to neoadjuvant chemotherapy and trastuzumab

    PubMed Central

    2014-01-01

    Background Preoperative therapy with chemotherapy and the HER2-targeted monoclonal antibody trastuzumab is valuable for patients with large or locally advanced HER2-positive (HER2+) breast cancers but traditional methods of measuring HER2 expression do not accurately stratify patients for likelihood of response. Quantitative immunofluorescent approaches have the potential to provide a mathematically continuous measure of HER2. Here we seek to determine whether quantitative measurement of HER2 or phospho-HER2 correlates with likelihood of response to trastuzumab- containing neoadjuvant therapy. Methods We evaluated core biopsy samples from 27 HER2+ breast cancer patients enrolled in a preoperative clinical trial using trastuzumab, nab-paclitaxel and carboplatin combination therapy (BrUOG BR-211B (NCT00617942)). Tumor core biopsies were taken before initiation of treatment and 9–13 days after patients received "run-in" doses of either single agent trastuzumab or nab-paclitaxel. The AQUA method of quantitative immunofluorescence was used for analysis of in situ protein expression. Patients then received 18 weeks of treatment, followed by surgery to assess pathologic response to the neoadjuvant regimen. Results A HER2 score of 2111 by AQUA analysis has been shown to be equivalent to HER2 3+ by immunohistochemical staining in previous studies. Of 20 evaluable patients, 10 cases who achieved a pathologic complete response (pathCR) with neoadjuvant treatment had a mean HER2 level of 10251 compared with 4766 in the patients without pathCR (p = 0.0021). Measurement of phospho-HER2 showed no difference in pathCR vs non-pathCR groups. In 9 patients who had HER2 levels repeated after a single treatment with trastuzumab there was no evidence of a reduction in the HER2 or phospho-HER2 levels following that exposure. Conclusions High levels of HER2 are associated with achievement of a pathCR in the preoperative setting, while levels of Phospho-HER2 were not predictive of

  20. Precise and accurate measurement of U and Th isotopes via ICP-MS using a single solution

    NASA Astrophysics Data System (ADS)

    Mertz-Kraus, R.; Sharp, W. D.; Ludwig, K. R.

    2012-04-01

    , allowing the sample's 238U/235U ratio to be measured. In step 3, we monitor peak-tails at half-mass positions (229.5, 231.5, 234.5) and on mass 237 while aspirating sample solution. Tail measurement requires a distinct cup configuration to maintain 238U in the cups; however, no sample is consumed during automated cup reconfiguration. We monitor the accuracy of 234U/238U ratios using CRM 145, which gives a weighted mean atom ratio of (5.2846 ± 0.0029) - 10-5 (all errors 2σ), consistent with published and reference values. The reproducibility of 230Th/238U ratios is monitored using the Schwartzwalder Mine secular-equilibrium standard (SM). We detect no bias in 230Th/238U or 234U/238U ratios measured for SM at beam intensities ranging over a factor of four, consistent with accurate correction for IC yields. Aladdin's cave coral (AC-1) was analyzed to check our ICP-MS method (and the preceding purification by ion exchange) on a carbonate and yields a mean age of 125.43 ± 0.38 ka, in agreement with published values. We are currently applying the method to corals, speleothems, pedogenic coatings, and tufas.