Science.gov

Sample records for accurate quantitative measurements

  1. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    SciTech Connect

    Pourmoghaddas, Amir Wells, R. Glenn

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  2. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  3. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  4. Groundtruth approach to accurate quantitation of fluorescence microarrays

    SciTech Connect

    Mascio-Kegelmeyer, L; Tomascik-Cheeseman, L; Burnett, M S; van Hummelen, P; Wyrobek, A J

    2000-12-01

    To more accurately measure fluorescent signals from microarrays, we calibrated our acquisition and analysis systems by using groundtruth samples comprised of known quantities of red and green gene-specific DNA probes hybridized to cDNA targets. We imaged the slides with a full-field, white light CCD imager and analyzed them with our custom analysis software. Here we compare, for multiple genes, results obtained with and without preprocessing (alignment, color crosstalk compensation, dark field subtraction, and integration time). We also evaluate the accuracy of various image processing and analysis techniques (background subtraction, segmentation, quantitation and normalization). This methodology calibrates and validates our system for accurate quantitative measurement of microarrays. Specifically, we show that preprocessing the images produces results significantly closer to the known ground-truth for these samples.

  5. Accurate quantitative measurements of brachial artery cross-sectional vascular area and vascular volume elastic modulus using automated oscillometric measurements: comparison with brachial artery ultrasound

    PubMed Central

    Tomiyama, Yuuki; Yoshinaga, Keiichiro; Fujii, Satoshi; Ochi, Noriki; Inoue, Mamiko; Nishida, Mutumi; Aziki, Kumi; Horie, Tatsunori; Katoh, Chietsugu; Tamaki, Nagara

    2015-01-01

    Increasing vascular diameter and attenuated vascular elasticity may be reliable markers for atherosclerotic risk assessment. However, previous measurements have been complex, operator-dependent or invasive. Recently, we developed a new automated oscillometric method to measure a brachial artery's estimated area (eA) and volume elastic modulus (VE). The aim of this study was to investigate the reliability of new automated oscillometric measurement of eA and VE. Rest eA and VE were measured using the recently developed automated detector with the oscillometric method. eA was estimated using pressure/volume curves and VE was defined as follows (VE=Δ pressure/ (100 × Δ area/area) mm Hg/%). Sixteen volunteers (age 35.2±13.1 years) underwent the oscillometric measurements and brachial ultrasound at rest and under nitroglycerin (NTG) administration. Oscillometric measurement was performed twice on different days. The rest eA correlated with ultrasound-measured brachial artery area (r=0.77, P<0.001). Rest eA and VE measurement showed good reproducibility (eA: intraclass correlation coefficient (ICC)=0.88, VE: ICC=0.78). Under NTG stress, eA was significantly increased (12.3±3.0 vs. 17.1±4.6 mm2, P<0.001), and this was similar to the case with ultrasound evaluation (4.46±0.72 vs. 4.73±0.75 mm, P<0.001). VE was also decreased (0.81±0.16 vs. 0.65±0.11 mm Hg/%, P<0.001) after NTG. Cross-sectional vascular area calculated using this automated oscillometric measurement correlated with ultrasound measurement and showed good reproducibility. Therefore, this is a reliable approach and this modality may have practical application to automatically assess muscular artery diameter and elasticity in clinical or epidemiological settings. PMID:25693851

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  9. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  10. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  11. Quantitative proteomic analysis by accurate mass retention time pairs.

    PubMed

    Silva, Jeffrey C; Denny, Richard; Dorschel, Craig A; Gorenstein, Marc; Kass, Ignatius J; Li, Guo-Zhong; McKenna, Therese; Nold, Michael J; Richardson, Keith; Young, Phillip; Geromanos, Scott

    2005-04-01

    Current methodologies for protein quantitation include 2-dimensional gel electrophoresis techniques, metabolic labeling, and stable isotope labeling methods to name only a few. The current literature illustrates both pros and cons for each of the previously mentioned methodologies. Keeping with the teachings of William of Ockham, "with all things being equal the simplest solution tends to be correct", a simple LC/MS based methodology is presented that allows relative changes in abundance of proteins in highly complex mixtures to be determined. Utilizing a reproducible chromatographic separations system along with the high mass resolution and mass accuracy of an orthogonal time-of-flight mass spectrometer, the quantitative comparison of tens of thousands of ions emanating from identically prepared control and experimental samples can be made. Using this configuration, we can determine the change in relative abundance of a small number of ions between the two conditions solely by accurate mass and retention time. Employing standard operating procedures for both sample preparation and ESI-mass spectrometry, one typically obtains under 5 ppm mass precision and quantitative variations between 10 and 15%. The principal focus of this paper will demonstrate the quantitative aspects of the methodology and continue with a discussion of the associated, complementary qualitative capabilities.

  12. Analytical Validation of a Highly Quantitative, Sensitive, Accurate, and Reproducible Assay (HERmark®) for the Measurement of HER2 Total Protein and HER2 Homodimers in FFPE Breast Cancer Tumor Specimens

    PubMed Central

    Larson, Jeffrey S.; Goodman, Laurie J.; Tan, Yuping; Defazio-Eli, Lisa; Paquet, Agnes C.; Cook, Jennifer W.; Rivera, Amber; Frankson, Kristi; Bose, Jolly; Chen, Lili; Cheung, Judy; Shi, Yining; Irwin, Sarah; Kiss, Linda D. B.; Huang, Weidong; Utter, Shannon; Sherwood, Thomas; Bates, Michael; Weidler, Jodi; Parry, Gordon; Winslow, John; Petropoulos, Christos J.; Whitcomb, Jeannette M.

    2010-01-01

    We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7–10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH). PMID:21151530

  13. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  14. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  15. Accurate measurement of streamwise vortices using dual-plane PIV

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Breuer, Kenneth S.

    2012-11-01

    Low Reynolds number aerodynamic experiments with flapping animals (such as bats and small birds) are of particular interest due to their application to micro air vehicles which operate in a similar parameter space. Previous PIV wake measurements described the structures left by bats and birds and provided insight into the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions based on said measurements. The highly three-dimensional and unsteady nature of the flows associated with flapping flight are major challenges for accurate measurements. The challenge of animal flight measurements is finding small flow features in a large field of view at high speed with limited laser energy and camera resolution. Cross-stream measurement is further complicated by the predominately out-of-plane flow that requires thick laser sheets and short inter-frame times, which increase noise and measurement uncertainty. Choosing appropriate experimental parameters requires compromise between the spatial and temporal resolution and the dynamic range of the measurement. To explore these challenges, we do a case study on the wake of a fixed wing. The fixed model simplifies the experiment and allows direct measurements of the aerodynamic forces via load cell. We present a detailed analysis of the wake measurements, discuss the criteria for making accurate measurements, and present a solution for making quantitative aerodynamic load measurements behind free-flyers.

  16. Accurate, reproducible measurement of blood pressure.

    PubMed Central

    Campbell, N R; Chockalingam, A; Fodor, J G; McKay, D W

    1990-01-01

    The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings. PMID:2192791

  17. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  18. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  19. Fast and accurate exhaled breath ammonia measurement.

    PubMed

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  20. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  1. Considerations for Accurate Whole Plant Photosynthesis Measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole plant photosynthetic rate (Pn) measurements provide an integral assessment of how an entire plant responds to biotic and abitics factors. Pn determination is based on measurements of CO2 exchange rates (CER) using various types of system including Closed, Semi-closed, and Open systems. This ...

  2. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  3. Instrument accurately measures weld angle and offset

    NASA Technical Reports Server (NTRS)

    Boyd, W. G.

    1967-01-01

    Weld angle is measured to the nearest arc minute and offset to one thousandth of an inch by an instrument designed to use a reference plane at two locations on a test coupon. A special table for computation has been prepared for use with the instrument.

  4. Air brake-dynamometer accurately measures torque

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  5. Modified algesimeter provides accurate depth measurements

    NASA Technical Reports Server (NTRS)

    Turner, D. P.

    1966-01-01

    Algesimeter which incorporates a standard sensory needle with a sensitive micrometer, measures needle point depth penetration in pain tolerance research. This algesimeter provides an inexpensive, precise instrument with assured validity of recordings in those biomedical areas with a requirement for repeated pain detection or ascertaining pain sensitivity.

  6. EMR Gage Would Measure Coal Thickness Accurately

    NASA Technical Reports Server (NTRS)

    King, J. D.; Rollwitz, W. L.

    1982-01-01

    Laboratory tests indicate electron magnetic resonance (EMR) would be effective in measuring thickness of coal overlying rock substrate. In prototype dual-frequency EMR system, Sample is irradiated by two radio frequencies. Signals are mixed, producing sum and difference output frequencies that are detected by receiver. Magnetic field is varied to scan resonant spot through sample. In system designed for field use, electromagnet is U-shaped, so that sample can be adjacent to, rather than inside the probe. Same coil is used for transmitting and receiving.

  7. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  8. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  9. Accurate measurement of streamwise vortices in low speed aerodynamic flows

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.

    2010-11-01

    Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.

  10. Optimization of sample preparation for accurate results in quantitative NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamazaki, Taichi; Nakamura, Satoe; Saito, Takeshi

    2017-04-01

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy has received high marks as an excellent measurement tool that does not require the same reference standard as the analyte. Measurement parameters have been discussed in detail and high-resolution balances have been used for sample preparation. However, the high-resolution balances, such as an ultra-microbalance, are not general-purpose analytical tools and many analysts may find those balances difficult to use, thereby hindering accurate sample preparation for qNMR measurement. In this study, we examined the relationship between the resolution of the balance and the amount of sample weighed during sample preparation. We were able to confirm the accuracy of the assay results for samples weighed on a high-resolution balance, such as the ultra-microbalance. Furthermore, when an appropriate tare and amount of sample was weighed on a given balance, accurate assay results were obtained with another high-resolution balance. Although this is a fundamental result, it offers important evidence that would enhance the versatility of the qNMR method.

  11. Quantitative tomographic measurements of opaque multiphase flows

    SciTech Connect

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  12. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  13. Accurate Insertion Loss Measurements of the Juno Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Chen, Jacqueline; Hodges, Richard; Demas, John

    2010-01-01

    This paper describes two independent methods for estimating the insertion loss of patch array antennas that were developed for the Juno Microwave Radiometer instrument. One method is based principally on pattern measurements while the other method is based solely on network analyzer measurements. The methods are accurate to within 0.1 dB for the measured antennas and show good agreement (to within 0.1dB) of separate radiometric measurements.

  14. Ultrasonic system for accurate distance measurement in the air.

    PubMed

    Licznerski, Tomasz J; Jaroński, Jarosław; Kosz, Dariusz

    2011-12-01

    This paper presents a system that accurately measures the distance travelled by ultrasound waves through the air. The simple design of the system and its obtained accuracy provide a tool for non-contact distance measurements required in the laser's optical system that investigates the surface of the eyeball.

  15. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  16. FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads

    PubMed Central

    Zhang, Gong; Fedyunin, Ivan; Kirchner, Sebastian; Xiao, Chuanle; Valleriani, Angelo; Ignatova, Zoya

    2012-01-01

    The most crucial step in data processing from high-throughput sequencing applications is the accurate and sensitive alignment of the sequencing reads to reference genomes or transcriptomes. The accurate detection of insertions and deletions (indels) and errors introduced by the sequencing platform or by misreading of modified nucleotides is essential for the quantitative processing of the RNA-based sequencing (RNA-Seq) datasets and for the identification of genetic variations and modification patterns. We developed a new, fast and accurate algorithm for nucleic acid sequence analysis, FANSe, with adjustable mismatch allowance settings and ability to handle indels to accurately and quantitatively map millions of reads to small or large reference genomes. It is a seed-based algorithm which uses the whole read information for mapping and high sensitivity and low ambiguity are achieved by using short and non-overlapping reads. Furthermore, FANSe uses hotspot score to prioritize the processing of highly possible matches and implements modified Smith–Watermann refinement with reduced scoring matrix to accelerate the calculation without compromising its sensitivity. The FANSe algorithm stably processes datasets from various sequencing platforms, masked or unmasked and small or large genomes. It shows a remarkable coverage of low-abundance mRNAs which is important for quantitative processing of RNA-Seq datasets. PMID:22379138

  17. FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads.

    PubMed

    Zhang, Gong; Fedyunin, Ivan; Kirchner, Sebastian; Xiao, Chuanle; Valleriani, Angelo; Ignatova, Zoya

    2012-06-01

    The most crucial step in data processing from high-throughput sequencing applications is the accurate and sensitive alignment of the sequencing reads to reference genomes or transcriptomes. The accurate detection of insertions and deletions (indels) and errors introduced by the sequencing platform or by misreading of modified nucleotides is essential for the quantitative processing of the RNA-based sequencing (RNA-Seq) datasets and for the identification of genetic variations and modification patterns. We developed a new, fast and accurate algorithm for nucleic acid sequence analysis, FANSe, with adjustable mismatch allowance settings and ability to handle indels to accurately and quantitatively map millions of reads to small or large reference genomes. It is a seed-based algorithm which uses the whole read information for mapping and high sensitivity and low ambiguity are achieved by using short and non-overlapping reads. Furthermore, FANSe uses hotspot score to prioritize the processing of highly possible matches and implements modified Smith-Watermann refinement with reduced scoring matrix to accelerate the calculation without compromising its sensitivity. The FANSe algorithm stably processes datasets from various sequencing platforms, masked or unmasked and small or large genomes. It shows a remarkable coverage of low-abundance mRNAs which is important for quantitative processing of RNA-Seq datasets.

  18. In-line sensor for accurate rf power measurements

    NASA Astrophysics Data System (ADS)

    Gahan, D.; Hopkins, M. B.

    2005-10-01

    An in-line sensor has been constructed with 50Ω characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  19. In-line sensor for accurate rf power measurements

    SciTech Connect

    Gahan, D.; Hopkins, M.B.

    2005-10-15

    An in-line sensor has been constructed with 50 {omega} characteristic impedance to accurately measure rf power dissipated in a matched or unmatched load with a view to being implemented as a rf discharge diagnostic. The physical construction and calibration technique are presented. The design is a wide band, hybrid directional coupler/current-voltage sensor suitable for fundamental and harmonic power measurements. A comparison with a standard wattmeter using dummy load impedances shows that this in-line sensor is significantly more accurate in mismatched conditions.

  20. Accurate detection and quantitation of heteroplasmic mitochondrial point mutations by pyrosequencing.

    PubMed

    White, Helen E; Durston, Victoria J; Seller, Anneke; Fratter, Carl; Harvey, John F; Cross, Nicholas C P

    2005-01-01

    Disease-causing mutations in mitochondrial DNA (mtDNA) are typically heteroplasmic and therefore interpretation of genetic tests for mitochondrial disorders can be problematic. Detection of low level heteroplasmy is technically demanding and it is often difficult to discriminate between the absence of a mutation or the failure of a technique to detect the mutation in a particular tissue. The reliable measurement of heteroplasmy in different tissues may help identify individuals who are at risk of developing specific complications and allow improved prognostic advice for patients and family members. We have evaluated Pyrosequencing technology for the detection and estimation of heteroplasmy for six mitochondrial point mutations associated with the following diseases: Leber's hereditary optical neuropathy (LHON), G3460A, G11778A, and T14484C; mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS), A3243G; myoclonus epilepsy with ragged red fibers (MERRF), A8344G, and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP)/Leighs: T8993G/C. Results obtained from the Pyrosequencing assays for 50 patients with presumptive mitochondrial disease were compared to those obtained using the commonly used diagnostic technique of polymerase chain reaction (PCR) and restriction enzyme digestion. The Pyrosequencing assays provided accurate genotyping and quantitative determination of mutational load with a sensitivity and specificity of 100%. The MELAS A3243G mutation was detected reliably at a level of 1% heteroplasmy. We conclude that Pyrosequencing is a rapid and robust method for detecting heteroplasmic mitochondrial point mutations.

  1. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  2. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  3. Instrument accurately measures small temperature changes on test surface

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Miller, H. B.

    1966-01-01

    Calorimeter apparatus accurately measures very small temperature rises on a test surface subjected to aerodynamic heating. A continuous thin sheet of a sensing material is attached to a base support plate through which a series of holes of known diameter have been drilled for attaching thermocouples to the material.

  4. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  5. Ellipsoidal-mirror reflectometer accurately measures infrared reflectance of materials

    NASA Technical Reports Server (NTRS)

    Dunn, S. T.; Richmond, J. C.

    1967-01-01

    Reflectometer accurately measures the reflectance of specimens in the infrared beyond 2.5 microns and under geometric conditions approximating normal irradiation and hemispherical viewing. It includes an ellipsoidal mirror, a specially coated averaging sphere associated with a detector for minimizing spatial and angular sensitivity, and an incident flux chopper.

  6. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, Glyn; Horton, Keith A.; Elias, Tamar; Garbeil, Harold; Mouginis-Mark, Peter J; Sutton, A. Jeff; Harris, Andrew J. L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Kīlauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s−1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements.

  7. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra.

  8. Optical Fiber Geometry: Accurate Measurement of Cladding Diameter

    PubMed Central

    Young, Matt; Hale, Paul D.; Mechels, Steven E.

    1993-01-01

    We have developed three instruments for accurate measurement of optieal fiber cladding diameter: a contact micrometer, a scanning confocal microscope, and a white-light interference microscope. Each instrument has an estimated uncertainty (3 standard deviations) of 50 nm or less, but the confocal microscope may display a 20 nm systematic error as well. The micrometer is used to generate Standard Reference Materials that are commercially available. PMID:28053467

  9. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  10. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  11. RTbox: a device for highly accurate response time measurements.

    PubMed

    Li, Xiangrui; Liang, Zhen; Kleiner, Mario; Lu, Zhong-Lin

    2010-02-01

    Although computer keyboards and mice are frequently used in measuring response times (RTs), the accuracy of these measurements is quite low. Specialized RT collection devices must be used to obtain more accurate measurements. However, all the existing devices have some shortcomings. We have developed and implemented a new, commercially available device, the RTbox, for highly accurate RT measurements. The RTbox has its own microprocessor and high-resolution clock. It can record the identities and timing of button events with high accuracy, unaffected by potential timing uncertainty or biases during data transmission and processing in the host computer. It stores button events until the host computer chooses to retrieve them. The asynchronous storage greatly simplifies the design of user programs. The RTbox can also receive and record external signals as triggers and can measure RTs with respect to external events. The internal clock of the RTbox can be synchronized with the computer clock, so the device can be used without external triggers. A simple USB connection is sufficient to integrate the RTbox with any standard computer and operating system.

  12. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe

    NASA Astrophysics Data System (ADS)

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-01

    Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0–7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems.

  13. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe

    PubMed Central

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-01-01

    Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0–7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems. PMID:27934889

  14. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  15. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.

    PubMed

    Gallien, Sebastien; Domon, Bruno

    2014-08-01

    High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

  16. Accurate measurement of the helical twisting power of chiral dopants

    NASA Astrophysics Data System (ADS)

    Kosa, Tamas; Bodnar, Volodymyr; Taheri, Bahman; Palffy-Muhoray, Peter

    2002-03-01

    We propose a method for the accurate determination of the helical twisting power (HTP) of chiral dopants. In the usual Cano-wedge method, the wedge angle is determined from the far-field separation of laser beams reflected from the windows of the test cell. Here we propose to use an optical fiber based spectrometer to accurately measure the cell thickness. Knowing the cell thickness at the positions of the disclination lines allows determination of the HTP. We show that this extension of the Cano-wedge method greatly increases the accuracy with which the HTP is determined. We show the usefulness of this method by determining the HTP of ZLI811 in a variety of hosts with negative dielectric anisotropy.

  17. Accurate Runout Measurement for HDD Spinning Motors and Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Bi, Chao; Lin, Song

    As hard disk drive (HDD) areal density increases, its track width becomes smaller and smaller and so is non-repeatable runout. HDD industry needs more accurate and better resolution runout measurements of spinning spindle motors and media platters in both axial and radial directions. This paper introduces a new system how to precisely measure the runout of HDD spinning disks and motors through synchronously acquiring the rotor position signal and the displacements in axial or radial directions. In order to minimize the synchronizing error between the rotor position and the displacement signal, a high resolution counter is adopted instead of the conventional phase-lock loop method. With Laser Doppler Vibrometer and proper signal processing, the proposed runout system can precisely measure the runout of the HDD spinning disks and motors with 1 nm resolution and 0.2% accuracy with a proper sampling rate. It can provide an effective and accurate means to measure the runout of high areal density HDDs, in particular the next generation HDDs, such as, pattern media HDDs and HAMR HDDs.

  18. Accurate measurement method for tube's endpoints based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2017-01-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  19. Development and Measurement of Preschoolers' Quantitative Knowledge

    ERIC Educational Resources Information Center

    Geary, David C.

    2015-01-01

    The collection of studies in this special issue make an important contribution to our understanding and measurement of the core cognitive and noncognitive factors that influence children's emerging quantitative competencies. The studies also illustrate how the field has matured, from a time when the quantitative competencies of infants and young…

  20. Accurate vessel width measurement from fundus photographs: a new concept.

    PubMed Central

    Rassam, S M; Patel, V; Brinchmann-Hansen, O; Engvold, O; Kohner, E M

    1994-01-01

    Accurate determination of retinal vessel width measurement is important in the study of the haemodynamic changes that accompany various physiological and pathological states. Currently the width at the half height of the transmittance and densitometry profiles are used as a measure of retinal vessel width. A consistent phenomenon of two 'kick points' on the slopes of the transmittance and densitometry profiles near the base, has been observed. In this study, mathematical models have been formulated to describe the characteristic curves of the transmittance and the densitometry profiles. They demonstrate the kick points being coincident with the edges of the blood column. The horizontal distance across the kick points would therefore indicate the actual blood column width. To evaluate this hypothesis, blood was infused through two lengths of plastic tubing of known diameters, and photographed. In comparison with the known diameters, the half height underestimated the blood column width by 7.33% and 6.46%, while the kick point method slightly overestimated it by 1.40% and 0.34%. These techniques were applied to monochromatic fundus photographs. In comparison with the kick point method, the half height underestimated the blood column width in veins by 16.67% and in arteries by 15.86%. The characteristics of the kick points and their practicality have been discussed. The kick point method may provide the most accurate measurement of vessel width possible from these profiles. Images PMID:8110693

  1. Quantitative spectroscopy of hot stars: accurate atomic data applied on a large scale as driver of recent breakthroughs

    NASA Astrophysics Data System (ADS)

    Przybilla, N.; Schaffenroth, V.; Nieva, M. F.; Butler, K.

    2016-10-01

    OB-type stars present hotbeds for non-LTE physics because of their strong radiation fields that drive the atmospheric plasma out of local thermodynamic equilibrium. We report on recent breakthroughs in the quantitative analysis of the optical and UV-spectra of OB-type stars that were facilitated by application of accurate and precise atomic data on a large scale. An astrophysicist's dream has come true, by bringing observed and model spectra into close match over wide parts of the observed wavelength ranges. This allows tight observational constraints to be derived from OB-type stars for a wide range of applications in astrophysics. However, despite the progress made, many details of the modelling may be improved further. We discuss atomic data needs in terms of laboratory measurements and also ab-initio calculations. Particular emphasis is given to quantitative spectroscopy in the near-IR, which will be the focus in the era of the upcoming extremely large telescopes.

  2. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  3. Novel dispersion tolerant interferometry method for accurate measurements of displacement

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Maria, Michael; Leick, Lasse; Podoleanu, Adrian G.

    2015-05-01

    We demonstrate that the recently proposed master-slave interferometry method is able to provide true dispersion free depth profiles in a spectrometer-based set-up that can be used for accurate displacement measurements in sensing and optical coherence tomography. The proposed technique is based on correlating the channelled spectra produced by the linear camera in the spectrometer with previously recorded masks. As such technique is not based on Fourier transformations (FT), it does not require any resampling of data and is immune to any amounts of dispersion left unbalanced in the system. In order to prove the tolerance of technique to dispersion, different lengths of optical fiber are used in the interferometer to introduce dispersion and it is demonstrated that neither the sensitivity profile versus optical path difference (OPD) nor the depth resolution are affected. In opposition, it is shown that the classical FT based methods using calibrated data provide less accurate optical path length measurements and exhibit a quicker decays of sensitivity with OPD.

  4. Accurate and precise zinc isotope ratio measurements in urban aerosols.

    PubMed

    Gioia, Simone; Weiss, Dominik; Coles, Barry; Arnold, Tim; Babinski, Marly

    2008-12-15

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05 per thousand per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37 per thousand in coarse and between -1.04 and 0.02 per thousand in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta(66)Zn(Imperial) = 0.26 +/- 0.10 per thousand).

  5. Accurate measurement of the pulse wave delay with imaging photoplethysmography

    PubMed Central

    Kamshilin, Alexei A.; Sidorov, Igor S.; Babayan, Laura; Volynsky, Maxim A.; Giniatullin, Rashid; Mamontov, Oleg V.

    2016-01-01

    Assessment of the cardiovascular parameters using noncontact video-based or imaging photoplethysmography (IPPG) is usually considered as inaccurate because of strong influence of motion artefacts. To optimize this technique we performed a simultaneous recording of electrocardiogram and video frames of the face for 36 healthy volunteers. We found that signal disturbances originate mainly from the stochastically enhanced dichroic notch caused by endogenous cardiovascular mechanisms, with smaller contribution of the motion artefacts. Our properly designed algorithm allowed us to increase accuracy of the pulse-transit-time measurement and visualize propagation of the pulse wave in the facial region. Thus, the accurate measurement of the pulse wave parameters with this technique suggests a sensitive approach to assess local regulation of microcirculation in various physiological and pathological states. PMID:28018731

  6. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  7. Measurement and Accurate Interpretation of the Solubility of Pharmaceutical Salts.

    PubMed

    He, Yan; Ho, Chris; Yang, Donglai; Chen, Jeane; Orton, Edward

    2017-01-30

    Salt formation is one of the primary approaches to improve the developability of ionizable poorly water-soluble compounds. Solubility determination of the salt candidates in aqueous media or biorelevant fluids is a critical step in salt screening. Salt solubility measurements can be complicated due to dynamic changes in both solution and solid phases. Because of the early implementation of salt screening in research, solubility measurements often are performed using minimal amount of material. Some salts have transient high solubility on dissolution. Recognition of these transients can be critical in developing these salts into drug products. This minireview focuses on challenges in salt solubility measurements due to the changes in solution caused by self-buffering effects of dissolved species and the changes in solid phase due to solid-state phase transformations. Solubility measurements and their accurate interpretation are assessed in the context of dissolution monitoring and solid-phase analysis technologies. A harmonized method for reporting salt solubility measurements is recommended to reduce errors and to align with the U.S. Pharmacopeial policy and Food and Drug Administration recommendations for drug products containing pharmaceutical salts.

  8. Accurate measurement of RF exposure from emerging wireless communication systems

    NASA Astrophysics Data System (ADS)

    Letertre, Thierry; Monebhurrun, Vikass; Toffano, Zeno

    2013-04-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  9. Liquid crystal quantitative temperature measurement technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wu, Zongshan

    2001-10-01

    Quantitative temperature measurement using wide band thermochromic liquid crystals is an “area” thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.

  10. Accurate measure by weight of liquids in industry

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  11. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  12. Method for Accurate Surface Temperature Measurements During Fast Induction Heating

    NASA Astrophysics Data System (ADS)

    Larregain, Benjamin; Vanderesse, Nicolas; Bridier, Florent; Bocher, Philippe; Arkinson, Patrick

    2013-07-01

    A robust method is proposed for the measurement of surface temperature fields during induction heating. It is based on the original coupling of temperature-indicating lacquers and a high-speed camera system. Image analysis tools have been implemented to automatically extract the temporal evolution of isotherms. This method was applied to the fast induction treatment of a 4340 steel spur gear, allowing the full history of surface isotherms to be accurately documented for a sequential heating, i.e., a medium frequency preheating followed by a high frequency final heating. Three isotherms, i.e., 704, 816, and 927°C, were acquired every 0.3 ms with a spatial resolution of 0.04 mm per pixel. The information provided by the method is described and discussed. Finally, the transformation temperature Ac1 is linked to the temperature on specific locations of the gear tooth.

  13. Electron Microprobe Analysis Techniques for Accurate Measurements of Apatite

    NASA Astrophysics Data System (ADS)

    Goldoff, B. A.; Webster, J. D.; Harlov, D. E.

    2010-12-01

    Apatite [Ca5(PO4)3(F, Cl, OH)] is a ubiquitous accessory mineral in igneous, metamorphic, and sedimentary rocks. The mineral contains halogens and hydroxyl ions, which can provide important constraints on fugacities of volatile components in fluids and other phases in igneous and metamorphic environments in which apatite has equilibrated. Accurate measurements of these components in apatite are therefore necessary. Analyzing apatite by electron microprobe (EMPA), which is a commonly used geochemical analytical technique, has often been found to be problematic and previous studies have identified sources of error. For example, Stormer et al. (1993) demonstrated that the orientation of an apatite grain relative to the incident electron beam could significantly affect the concentration results. In this study, a variety of alternative EMPA operating conditions for apatite analysis were investigated: a range of electron beam settings, count times, crystal grain orientations, and calibration standards were tested. Twenty synthetic anhydrous apatite samples that span the fluorapatite-chlorapatite solid solution series, and whose halogen concentrations were determined by wet chemistry, were analyzed. Accurate measurements of these samples were obtained with many EMPA techniques. One effective method includes setting a static electron beam to 10-15nA, 15kV, and 10 microns in diameter. Additionally, the apatite sample is oriented with the crystal’s c-axis parallel to the slide surface and the count times are moderate. Importantly, the F and Cl EMPA concentrations are in extremely good agreement with the wet-chemical data. We also present EMPA operating conditions and techniques that are problematic and should be avoided. J.C. Stormer, Jr. et al., Am. Mineral. 78 (1993) 641-648.

  14. An Approach for the Accurate Measurement of Social Morality Levels

    PubMed Central

    Liu, Haiyan; Chen, Xia; Zhang, Bo

    2013-01-01

    In the social sciences, computer-based modeling has become an increasingly important tool receiving widespread attention. However, the derivation of the quantitative relationships linking individual moral behavior and social morality levels, so as to provide a useful basis for social policy-making, remains a challenge in the scholarly literature today. A quantitative measurement of morality from the perspective of complexity science constitutes an innovative attempt. Based on the NetLogo platform, this article examines the effect of various factors on social morality levels, using agents modeling moral behavior, immoral behavior, and a range of environmental social resources. Threshold values for the various parameters are obtained through sensitivity analysis; and practical solutions are proposed for reversing declines in social morality levels. The results show that: (1) Population size may accelerate or impede the speed with which immoral behavior comes to determine the overall level of social morality, but it has no effect on the level of social morality itself; (2) The impact of rewards and punishment on social morality levels follows the “5∶1 rewards-to-punishment rule,” which is to say that 5 units of rewards have the same effect as 1 unit of punishment; (3) The abundance of public resources is inversely related to the level of social morality; (4) When the cost of population mobility reaches 10% of the total energy level, immoral behavior begins to be suppressed (i.e. the 1/10 moral cost rule). The research approach and methods presented in this paper successfully address the difficulties involved in measuring social morality levels, and promise extensive application potentials. PMID:24312189

  15. Quantitative Measurement of Oxygen in Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in both microgravity combustion research and as a sensor on-board Spacelab as either an air quality monitor or as part of a fire detection system. In our prior microgravity work, an eight line-of-sight fiber optic system measured

  16. Accurate measurement of liquid transport through nanoscale conduits

    PubMed Central

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  17. ELODIE: A spectrograph for accurate radial velocity measurements.

    NASA Astrophysics Data System (ADS)

    Baranne, A.; Queloz, D.; Mayor, M.; Adrianzyk, G.; Knispel, G.; Kohler, D.; Lacroix, D.; Meunier, J.-P.; Rimbaud, G.; Vin, A.

    1996-10-01

    The fibre-fed echelle spectrograph of Observatoire de Haute-Provence, ELODIE, is presented. This instrument has been in operation since the end of 1993 on the 1.93 m telescope. ELODIE is designed as an updated version of the cross-correlation spectrometer CORAVEL, to perform very accurate radial velocity measurements such as needed in the search, by Doppler shift, for brown-dwarfs or giant planets orbiting around nearby stars. In one single exposure a spectrum at a resolution of 42000 (λ/{DELTA}λ) ranging from 3906A to 6811A is recorded on a 1024x1024 CCD. This performance is achieved by using a tanθ=4 echelle grating and a combination of a prism and a grism as cross-disperser. An automatic on-line data treatment reduces all the ELODIE echelle spectra and computes cross-correlation functions. The instrument design and the data reduction algorithms are described in this paper. The efficiency and accuracy of the instrument and its long term instrumental stability allow us to measure radial velocities with an accuracy better than 15m/s for stars up to 9th magnitude in less than 30 minutes exposure time. Observations of 16th magnitude stars are also possible to measure velocities at about 1km/s accuracy. For classic spectroscopic studies (S/N>100) 9th magnitude stars can be observed in one hour exposure time.

  18. Accurate phase measurements for thick spherical objects using optical quadrature microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2009-02-01

    In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.

  19. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  20. Accurate multipixel phase measurement with classical-light interferometry

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Khare, Kedar; Jha, Anand Kumar; Prabhakar, Shashi; Singh, R. P.

    2015-02-01

    We demonstrate accurate phase measurement from experimental low photon level interferograms using a constrained optimization method that takes into account the expected redundancy in the unknown phase function. This approach is shown to have significant noise advantage over traditional methods, such as balanced homodyning or phase shifting, that treat individual pixels in the interference data as independent of each other. Our interference experiments comparing the optimization method with the traditional phase-shifting method show that when the same photon resources are used, the optimization method provides phase recoveries with tighter error bars. In particular, rms phase error performance of the optimization method for low photon number data (10 photons per pixel) shows a >5 × noise gain over the phase-shifting method. In our experiments where a laser light source is used for illumination, the results imply phase measurement with an accuracy better than the conventional single-pixel-based shot-noise limit that assumes independent phases at individual pixels. The constrained optimization approach presented here is independent of the nature of the light source and may further enhance the accuracy of phase detection when a nonclassical-light source is used.

  1. Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations

    NASA Astrophysics Data System (ADS)

    Gibelli, François; Lombez, Laurent; Guillemoles, Jean-François

    2017-02-01

    In order to characterize hot carrier populations in semiconductors, photoluminescence measurement is a convenient tool, enabling us to probe the carrier thermodynamical properties in a contactless way. However, the analysis of the photoluminescence spectra is based on some assumptions which will be discussed in this work. We especially emphasize the importance of the variation of the material absorptivity that should be considered to access accurate thermodynamical properties of the carriers, especially by varying the excitation power. The proposed method enables us to obtain more accurate results of thermodynamical properties by taking into account a rigorous physical description and finds direct application in investigating hot carrier solar cells, which are an adequate concept for achieving high conversion efficiencies with a relatively simple device architecture.

  2. Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations.

    PubMed

    Gibelli, François; Lombez, Laurent; Guillemoles, Jean-François

    2017-02-15

    In order to characterize hot carrier populations in semiconductors, photoluminescence measurement is a convenient tool, enabling us to probe the carrier thermodynamical properties in a contactless way. However, the analysis of the photoluminescence spectra is based on some assumptions which will be discussed in this work. We especially emphasize the importance of the variation of the material absorptivity that should be considered to access accurate thermodynamical properties of the carriers, especially by varying the excitation power. The proposed method enables us to obtain more accurate results of thermodynamical properties by taking into account a rigorous physical description and finds direct application in investigating hot carrier solar cells, which are an adequate concept for achieving high conversion efficiencies with a relatively simple device architecture.

  3. Uncertainty Quantification for Quantitative Imaging Holdup Measurements

    SciTech Connect

    Bevill, Aaron M; Bledsoe, Keith C

    2016-01-01

    In nuclear fuel cycle safeguards, special nuclear material "held up" in pipes, ducts, and glove boxes causes significant uncertainty in material-unaccounted-for estimates. Quantitative imaging is a proposed non-destructive assay technique with potential to estimate the holdup mass more accurately and reliably than current techniques. However, uncertainty analysis for quantitative imaging remains a significant challenge. In this work we demonstrate an analysis approach for data acquired with a fast-neutron coded aperture imager. The work includes a calibrated forward model of the imager. Cross-validation indicates that the forward model predicts the imager data typically within 23%; further improvements are forthcoming. A new algorithm based on the chi-squared goodness-of-fit metric then uses the forward model to calculate a holdup confidence interval. The new algorithm removes geometry approximations that previous methods require, making it a more reliable uncertainty estimator.

  4. Accurate measurement of psoralen-crosslinked DNA: direct biochemical measurements and indirect measurement by hybridization

    SciTech Connect

    Matsuo, N.; Ross, P.M.

    1988-11-01

    This paper evaluates methods to measure crosslinkage due to psoralen plus light in total DNA and in specific sequences. DNA exposed in cells or in vitro to a bifunctional psoralen and near ultraviolet light accumulates interstrand crosslinks. Crosslinkage is the DNA mass fraction that is attached in both strands to a crosslink. We show here biochemical methods to measure psoralen photocrosslinkage accurately in total DNA. We also describe methods to measure photocrosslinkage indirectly, in specific sequences, by nucleic acid hybridization. We show that a single 4,5',8-trimethylpsoralen (TMP) crosslink causes at least 50 kbp of alkali-denatured DNA contiguous in both strands with it to snap back into the duplex form when the denatured preparation is returned to neutral pH. This process was so efficient that the DNA was not nicked by the single-strand nuclease S1 at 100-fold excess after snapping back. Uncrosslinked DNA was digested to acid-soluble material by the enzyme. Crosslinkage therefore equals the fraction of S1-resistant nucleotide in this kind of experiment. We alkali-denatured DNA samples crosslinked to varying degrees by varying TMP concentration at constant light exposure. We then measured crosslinkage by ethidium bromide (EtBr) fluorometry at pH 11.8; by EtBr fluorometry at neutral pH of S1 digests of the DNA; and by the fraction of radioactivity remaining acid insoluble in S1-digests of DNA labeled uniformly with (3H)deoxythymidine. These assays measure distinct physical properties of crosslinked DNA. Numerical agreement is expected only when all three measurements are accurate. Under optimum conditions, the three methods yielded identical results over the range of measurement. Using alkaline EtBr fluorescence in crude cell lysates, we detected crosslinks at frequencies in the range of 1.6 X 10(-7) per base pair.

  5. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  6. History and progress on accurate measurements of the Planck constant

    NASA Astrophysics Data System (ADS)

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10-34 J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, NA. As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 108 from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the improved

  7. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  8. Estimation of bone permeability using accurate microstructural measurements.

    PubMed

    Beno, Thoma; Yoon, Young-June; Cowin, Stephen C; Fritton, Susannah P

    2006-01-01

    While interstitial fluid flow is necessary for the viability of osteocytes, it is also believed to play a role in bone's mechanosensory system by shearing bone cell membranes or causing cytoskeleton deformation and thus activating biochemical responses that lead to the process of bone adaptation. However, the fluid flow properties that regulate bone's adaptive response are poorly understood. In this paper, we present an analytical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity in bone. First, we estimate the total number of canaliculi emanating from each osteocyte lacuna based on published measurements from parallel-fibered shaft bones of several species (chick, rabbit, bovine, horse, dog, and human). Next, we determine the local three-dimensional permeability of the lacunar-canalicular porosity for these species using recent microstructural measurements and adapting a previously developed model. Results demonstrated that the number of canaliculi per osteocyte lacuna ranged from 41 for human to 115 for horse. Permeability coefficients were found to be different in three local principal directions, indicating local orthotropic symmetry of bone permeability in parallel-fibered cortical bone for all species examined. For the range of parameters investigated, the local lacunar-canalicular permeability varied more than three orders of magnitude, with the osteocyte lacunar shape and size along with the 3-D canalicular distribution determining the degree of anisotropy of the local permeability. This two-step theoretical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity will be useful for accurate quantification of interstitial fluid movement in bone.

  9. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  10. Method for accurate quantitation of background tissue optical properties in the presence of emission from a strong fluorescence marker

    NASA Astrophysics Data System (ADS)

    Bravo, Jaime; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.

    2015-03-01

    Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%, respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.

  11. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  12. SILAC-Based Quantitative Strategies for Accurate Histone Posttranslational Modification Profiling Across Multiple Biological Samples.

    PubMed

    Cuomo, Alessandro; Soldi, Monica; Bonaldi, Tiziana

    2017-01-01

    Histone posttranslational modifications (hPTMs) play a key role in regulating chromatin dynamics and fine-tuning DNA-based processes. Mass spectrometry (MS) has emerged as a versatile technology for the analysis of histones, contributing to the dissection of hPTMs, with special strength in the identification of novel marks and in the assessment of modification cross talks. Stable isotope labeling by amino acid in cell culture (SILAC), when adapted to histones, permits the accurate quantification of PTM changes among distinct functional states; however, its application has been mainly confined to actively dividing cell lines. A spike-in strategy based on SILAC can be used to overcome this limitation and profile hPTMs across multiple samples. We describe here the adaptation of SILAC to the analysis of histones, in both standard and spike-in setups. We also illustrate its coupling to an implemented "shotgun" workflow, by which heavy arginine-labeled histone peptides, produced upon Arg-C digestion, are qualitatively and quantitatively analyzed in an LC-MS/MS system that combines ultrahigh-pressure liquid chromatography (UHPLC) with new-generation Orbitrap high-resolution instrument.

  13. Quantitative measurement of the pivot shift, reliability, and clinical applications.

    PubMed

    Kuroda, Ryosuke; Hoshino, Yuichi; Araki, Daisuke; Nishizawa, Yuichiro; Nagamune, Kouki; Matsumoto, Tomoyuki; Kubo, Seiji; Matsushita, Takehiko; Kurosaka, Masahiro

    2012-04-01

    Static load-displacement measurement is unrelated to the dynamic knee function of anterior cruciate ligament (ACL) insufficiency. Performing an accurate, dynamic functional evaluation is necessary not only for the primary ACL injury, but also as an outcome measurement in ACL reconstruction. The pivot shift test is commonly used for assessing dynamic rotatory knee laxity in ACL-insufficient knees and is related to subjective knee function. Residual pivot shift after ACL reconstruction is a crucial factor related to poor clinical outcome. However, the pivot shift test is subjectively determined by the examiners' hands. Not only 3-dimensional (3D) position displacement but also its 3D acceleration should be measured for quantitative evaluation of the pivot shift test and is currently feasible by using recent advanced technology, i.e., electromagnetic devices. We summarize the basic knowledge and current concepts of quantitative exploration of the dynamic knee movement during the pivot shift test.

  14. Novel micelle PCR-based method for accurate, sensitive and quantitative microbiota profiling.

    PubMed

    Boers, Stefan A; Hays, John P; Jansen, Ruud

    2017-04-05

    In the last decade, many researchers have embraced 16S rRNA gene sequencing techniques, which has led to a wealth of publications and documented differences in the composition of microbial communities derived from many different ecosystems. However, comparison between different microbiota studies is currently very difficult due to the lack of a standardized 16S rRNA gene sequencing protocol. Here we report on a novel approach employing micelle PCR (micPCR) in combination with an internal calibrator that allows for standardization of microbiota profiles via their absolute abundances. The addition of an internal calibrator allows the researcher to express the resulting operational taxonomic units (OTUs) as a measure of 16S rRNA gene copies by correcting the number of sequences of each individual OTU in a sample for efficiency differences in the NGS process. Additionally, accurate quantification of OTUs obtained from negative extraction control samples allows for the subtraction of contaminating bacterial DNA derived from the laboratory environment or chemicals/reagents used. Using equimolar synthetic microbial community samples and low biomass clinical samples, we demonstrate that the calibrated micPCR/NGS methodology possess a much higher precision and a lower limit of detection compared with traditional PCR/NGS, resulting in more accurate microbiota profiles suitable for multi-study comparison.

  15. Novel micelle PCR-based method for accurate, sensitive and quantitative microbiota profiling

    PubMed Central

    Boers, Stefan A.; Hays, John P.; Jansen, Ruud

    2017-01-01

    In the last decade, many researchers have embraced 16S rRNA gene sequencing techniques, which has led to a wealth of publications and documented differences in the composition of microbial communities derived from many different ecosystems. However, comparison between different microbiota studies is currently very difficult due to the lack of a standardized 16S rRNA gene sequencing protocol. Here we report on a novel approach employing micelle PCR (micPCR) in combination with an internal calibrator that allows for standardization of microbiota profiles via their absolute abundances. The addition of an internal calibrator allows the researcher to express the resulting operational taxonomic units (OTUs) as a measure of 16S rRNA gene copies by correcting the number of sequences of each individual OTU in a sample for efficiency differences in the NGS process. Additionally, accurate quantification of OTUs obtained from negative extraction control samples allows for the subtraction of contaminating bacterial DNA derived from the laboratory environment or chemicals/reagents used. Using equimolar synthetic microbial community samples and low biomass clinical samples, we demonstrate that the calibrated micPCR/NGS methodology possess a much higher precision and a lower limit of detection compared with traditional PCR/NGS, resulting in more accurate microbiota profiles suitable for multi-study comparison. PMID:28378789

  16. Quantitative measurement and modeling of sensitization development in stainless steel

    SciTech Connect

    Bruemmer, S.M.; Atteridge, D.G.

    1992-09-01

    The state-of-the-art to quantitatively measure and model sensitization development in austenitic stainless steels is assessed and critically analyzed. A modeling capability is evolved and validated using a diverse experimental data base. Quantitative predictions are demonstrated for simple and complex thermal and thermomechanical treatments. Commercial stainless steel heats ranging from high-carbon Type 304 and 316 to low-carbon Type 304L and 316L have been examined including many heats which correspond to extra-low-carbon, nuclear-grade compositions. Within certain limits the electrochemical potentiokinetic reactivation (EPR) test was found to give accurate and reproducible measurements of the degree of sensitization (DOS) in Type 304 and 316 stainless steels. EPR test results are used to develop the quantitative data base and evolve/validate the quantitative modeling capability. This thesis represents a first step to evolve methods for the quantitative assessment of structural reliability in stainless steel components and weldments. Assessments will be based on component-specific information concerning material characteristics, fabrication history and service exposure. Methods will enable fabrication (e.g., welding and repair welding) procedures and material aging effects to be evaluated and ensure adequate cracking resistance during the service lifetime of reactor components. This work is being conducted by the Oregon Graduate Institute with interactive input from personnel at Pacific Northwest Laboratory.

  17. Measuring Agarwood Formation Ratio Quantitatively by Fluorescence Spectral Imaging Technique.

    PubMed

    Huang, Botao; Nguyen, Duykien; Liu, Tianyi; Jiang, Kaibin; Tan, Jinfen; Liu, Chunxin; Zhao, Jing; Huang, Shaowei

    2015-01-01

    Agarwood is a kind of important and precious traditional Chinese medicine. With the decreasing of natural agarwood, artificial cultivation has become more and more important in recent years. Quantifying the formation of agarwood is an essential work which could provide information for guiding cultivation and controlling quality. But people only can judge the amount of agarwood qualitatively by experience before. Fluorescence multispectral imaging method is presented to measure the agarwood quantitatively in this paper. A spectral cube from 450 nm to 800 nm was captured under the 365 nm excitation sources. The nonagarwood, agarwood, and rotten wood in the same sample were distinguished based on analyzing the spectral cube. Then the area ratio of agarwood to the whole sample was worked out, which is the quantitative information of agarwood area percentage. To our knowledge, this is the first time that the formation of agarwood was quantified accurately and nondestructively.

  18. Measuring Agarwood Formation Ratio Quantitatively by Fluorescence Spectral Imaging Technique

    PubMed Central

    Huang, Botao; Nguyen, Duykien; Jiang, Kaibin; Tan, Jinfen; Liu, Chunxin; Zhao, Jing; Huang, Shaowei

    2015-01-01

    Agarwood is a kind of important and precious traditional Chinese medicine. With the decreasing of natural agarwood, artificial cultivation has become more and more important in recent years. Quantifying the formation of agarwood is an essential work which could provide information for guiding cultivation and controlling quality. But people only can judge the amount of agarwood qualitatively by experience before. Fluorescence multispectral imaging method is presented to measure the agarwood quantitatively in this paper. A spectral cube from 450 nm to 800 nm was captured under the 365 nm excitation sources. The nonagarwood, agarwood, and rotten wood in the same sample were distinguished based on analyzing the spectral cube. Then the area ratio of agarwood to the whole sample was worked out, which is the quantitative information of agarwood area percentage. To our knowledge, this is the first time that the formation of agarwood was quantified accurately and nondestructively. PMID:26089935

  19. How accurately can suborbital experiments measure the CMB?

    SciTech Connect

    Oliveira-Costa, Angelica de; Tegmark, Max; Devlin, Mark J.; Page, Lyman; Miller, Amber D.; Netterfield, C. Barth; Xu Yongzhong

    2005-02-15

    Great efforts are currently being channeled into ground- and balloon-based CMB experiments, mainly to explore polarization and anisotropy on small angular scales. To optimize instrumental design and assess experimental prospects, it is important to understand in detail the atmosphere-related systematic errors that limit the science achievable with new instruments. As a step in this direction, we spatially compare the 648 square degree ground- and balloon-based QMASK map with the atmosphere-free WMAP map, finding beautiful agreement on all angular scales where both are sensitive. Although much work remains on quantifying atmospheric effects on CMB experiments, this is a reassuring quantitative assessment of the power of the state-of-the-art fast-Fourier-transform- and matrix-based mapmaking techniques that have been used for QMASK and virtually all subsequent experiments.

  20. Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    NASA Technical Reports Server (NTRS)

    Kubitschek, H. E.

    1967-01-01

    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening.

  1. Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions

    SciTech Connect

    Trabert, E

    2009-02-19

    A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

  2. Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.

    PubMed

    de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen

    2016-01-01

    The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown.

  3. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  4. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  5. Magnetic field models of nine CP stars from "accurate" measurements

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2013-01-01

    The dipole models of magnetic fields in nine CP stars are constructed based on the measurements of metal lines taken from the literature, and performed by the LSD method with an accuracy of 10-80 G. The model parameters are compared with the parameters obtained for the same stars from the hydrogen line measurements. For six out of nine stars the same type of structure was obtained. Some parameters, such as the field strength at the poles B p and the average surface magnetic field B s differ considerably in some stars due to differences in the amplitudes of phase dependences B e (Φ) and B s (Φ), obtained by different authors. It is noted that a significant increase in the measurement accuracy has little effect on the modelling of the large-scale structures of the field. By contrast, it is more important to construct the shape of the phase dependence based on a fairly large number of field measurements, evenly distributed by the rotation period phases. It is concluded that the Zeeman component measurement methods have a strong effect on the shape of the phase dependence, and that the measurements of the magnetic field based on the lines of hydrogen are more preferable for modelling the large-scale structures of the field.

  6. Apparatus designed for very accurate measurement of the optical reflection.

    PubMed

    Piombini, Hervé; Voarino, Philippe

    2007-12-20

    The described instrument is a new reflectometer designed to check the normal specular reflectance of 40,000 reflectors necessary for the Laser Megajoule (LMJ). This new reflectometer has a high accuracy over the 400-950 nm wavelength range and allows the delicate measurement of shaped parts. The measurements are relative and several reference mirrors, which are low loss dielectric mirrors [R(lambda)>99.9%], are used for the standardization. The apparatus gives an excellent repeatability (< 0.06% at 2sigma) thanks to its design and automatic focalization imaging system. After a brief review that is related to performance evolution of the spectrophotometers, our facility and its components are described. The methodology of focusing and calibration are explained. The capabilities of our device are illustrated through some measurements realized on flat or shaped samples.

  7. Accurate measurement of gas volumes by liquid displacement

    NASA Technical Reports Server (NTRS)

    Christian, J. D.

    1972-01-01

    Mariotte bottle as liquid displacement device was used to measure gas volumes at flow rates that are far below threshold of wet test gas meters. Study of factors affecting amount of liquid displaced by gas flow was completed, and equations were derived which relate different variables.

  8. An accurate method of extracting fat droplets in liver images for quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masahiro; Kobayashi, Naoki; Komagata, Hideki; Shinoda, Kazuma; Yamaguchi, Masahiro; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2015-03-01

    The steatosis in liver pathological tissue images is a promising indicator of nonalcoholic fatty liver disease (NAFLD) and the possible risk of hepatocellular carcinoma (HCC). The resulting values are also important for ensuring the automatic and accurate classification of HCC images, because the existence of many fat droplets is likely to create errors in quantifying the morphological features used in the process. In this study we propose a method that can automatically detect, and exclude regions with many fat droplets by using the feature values of colors, shapes and the arrangement of cell nuclei. We implement the method and confirm that it can accurately detect fat droplets and quantify the fat droplet ratio of actual images. This investigation also clarifies the effective characteristics that contribute to accurate detection.

  9. Air toxics being measured more accurately, controlled more effectively

    SciTech Connect

    1995-04-01

    In response to the directives of the Clean Air Act Amendments, Argonne National Laboratory is developing new or improved pollutant control technologies for industries that burn fossil fuels. This research continues Argonne`s traditional support for the US DOE Flue Gas Cleanup Program. Research is underway to measure process emissions and identify new and improved control measures. Argonne`s emission control research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing to pilot-scale field tests of several technologies. Whenever appropriate, the work has emphasized integrated or combined control systems as the best approach to technologies that offer low cost and good operating characteristics.

  10. Accurate reconstruction in measurement of microstructures using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Xiao, Hong; Xu, Min

    2016-11-01

    Due to the limitation of traditional interferometry, digital holographic microscopy has attracted intensive attention for its capability of measuring complex shapes. However, speckles are inevitable in the recorded interferometric patterns, thereby polluting the reconstructed surface topographies. In this paper, a phase-shifting interferometer is built to realize the in-axis digital holographic microscopy. The anti-aliasing shift-invariant contourlet transform (ASCT) is used for reconstructing the measured surfaces. By avoiding subsampling in the scale and directional filtering schemes, the problems of frequency aliasing and phase distortion can be effectively solved. Practical experiments show that speckles can be recognized and removed straightforwardly. Therefore the proposed method has excellent performance for reconstructing structured surfaces.

  11. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  12. ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD

    SciTech Connect

    Kurzeja, R.

    2009-09-09

    Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

  13. Fast processing techniques for accurate ultrasonic range measurements

    NASA Astrophysics Data System (ADS)

    Barshan, Billur

    2000-01-01

    Four methods of range measurement for airborne ultrasonic systems - namely simple thresholding, curve-fitting, sliding-window, and correlation detection - are compared on the basis of bias error, standard deviation, total error, robustness to noise, and the difficulty/complexity of implementation. Whereas correlation detection is theoretically optimal, the other three methods can offer acceptable performance at much lower cost. Performances of all methods have been investigated as a function of target range, azimuth, and signal-to-noise ratio. Curve fitting, sliding window, and thresholding follow correlation detection in the order of decreasing complexity. Apart from correlation detection, minimum bias and total error is most consistently obtained with the curve-fitting method. On the other hand, the sliding-window method is always better than the thresholding and curve-fitting methods in terms of minimizing the standard deviation. The experimental results are in close agreement with the corresponding simulation results. Overall, the three simple and fast processing methods provide a variety of attractive compromises between measurement accuracy and system complexity. Although this paper concentrates on ultrasonic range measurement in air, the techniques described may also find application in underwater acoustics.

  14. Model verification studies using accurate measurements of spin up

    NASA Technical Reports Server (NTRS)

    Hyun, J. M.

    1981-01-01

    The reliability and accuracy of the numerical code for spin up flows in a cylinder by comparing the numerical results against high resolution laser Doppler velocimeter (LDV) measurements of the azimuthal flows were checked. A computer code to generate numerical solution for axisymmetric rotating fluid in a cylinder was obtained and amended for routine use at MSFC. The numerical simulations used the Navier-Stokes equations in axisymmetric form and employed finite difference techniques on both constant and variable grids. The numerical solutions are analyzed to gain further insight into the fundamental questions analyzed in rotating fluid dynamics.

  15. Accurate measurement of mean sea level changes by altimetric satellites

    NASA Technical Reports Server (NTRS)

    Born, G. H.; Tapley, B. D.; Ries, J. C.; Stewart, R. H.

    1986-01-01

    A technique for monitoring changes in global mean sea levels using altimeter data from a well-tracked satellite is examined. The usefulness of this technique is evaluated by analyzing Seasat altimeter data obtained during July-September 1978. The effects of orbit errors, geoid errors, sampling intervals, tides, and atmosphere refraction on the calculation of the mean sea level are investigated. The data reveal that the stability of an altimeter can be determined with an accuracy of + or - 7 cm using globally averaged sea surface height measurements. The application of this procedure to the US/French Ocean Topography Experiment is discussed.

  16. Diamond micro-Raman thermometers for accurate gate temperature measurements

    SciTech Connect

    Simon, Roland B.; Pomeroy, James W.; Kuball, Martin

    2014-05-26

    Determining the peak channel temperature in AlGaN/GaN high electron mobility transistors and other devices with high accuracy is an important and challenging issue. A surface-sensitive thermometric technique is demonstrated, utilizing Raman thermography and diamond microparticles to measure the gate temperature. This technique enhances peak channel temperature estimation, especially when it is applied in combination with standard micro-Raman thermography. Its application to other metal-covered areas of devices, such as field plates is demonstrated. Furthermore, this technique can be readily applied to other material/device systems.

  17. Accurate measurement of curvilinear shapes by Virtual Image Correlation

    NASA Astrophysics Data System (ADS)

    Semin, B.; Auradou, H.; François, M. L. M.

    2011-10-01

    The proposed method allows the detection and the measurement, in the sense of metrology, of smooth elongated curvilinear shapes. Such measurements are required in many fields of physics, for example: mechanical engineering, biology or medicine (deflection of beams, fibers or filaments), fluid mechanics or chemistry (detection of fronts). Contrary to actual methods, the result is given in an analytical form of class C∞ (and not a finite set of locations or pixels) thus curvatures and slopes, often of great interest in science, are given with good confidence. The proposed Virtual Image Correlation (VIC) method uses a virtual beam, an image which consists in a lateral expansion of the curve with a bell-shaped gray level. This figure is deformed until it fits the best the physical image with a method issued from the Digital Image Correlation method in use in solid mechanics. The precision of the identification is studied in a benchmark and successfully compared to two state-of-the-art methods. Three practical examples are given: a bar bending under its own weight, a thin fiber transported by a flow within a fracture and a thermal front. The first allows a comparison with theoretical solution, the second shows the ability of the method to deal with complex shapes and crossings and the third deals with ill-defined image.

  18. Knowledge of accurate blood pressure measurement procedures in chiropractic students

    PubMed Central

    Crosley, Angela M.; Rose, James R. La

    2013-01-01

    Objective Blood pressure measurement is a basic clinical procedure. However, studies have shown that many errors are made when health care providers acquire blood pressure readings. Our study assessed knowledge of blood pressure measurement procedures in chiropractic students. Methods This was an observational, descriptive study. A questionnaire based on one created by the American Heart Association was given to 1st, 2nd, 3rd, and final year students (n = 186). A one way ANOVA was used to analyze the data. Results Of the students 80% were confident that their knowledge of this clinical skill was adequate or better. However, the overall score on the knowledge test of blood pressure–taking skills was 52% (range, 24%–88%). The only significant difference in the mean scores was between the 1st and 2nd year students compared to the 3rd and 4th year students (p < .005). Of the 16 questions given, the following mean scores were: 1st year 10.45, 2nd year 9.75, 3rd year 7.93, and 4th year 8.33. Of the 16 areas tested, 10 were of major concern (test item score <70%), showing the need for frequent retraining of chiropractic students. Conclusion Consistent with studies in other health care disciplines, our research found the knowledge of blood pressure skills to be deficient in our sample. There is a need for subsequent training in our teaching program. PMID:23957320

  19. Fast and accurate automated measurements in digitized stereophotogrammetric radiographs.

    PubMed

    Vrooman, H A; Valstar, E R; Brand, G J; Admiraal, D R; Rozing, P M; Reiber, J H

    1998-05-01

    Until recently, Roentgen Stereophotogrammetric Analysis (RSA) required the manual definition of all markers using a high-resolution measurement table. To automate this tedious and time-consuming process and to eliminate observer variabilities, an analytical software package has been developed and validated for the detection, identification, and matching of markers in RSA radiographs. The digital analysis procedure consisted of the following steps: (1) the detection of markers using a variant of the Hough circle-finder technique; (2) the identification and labeling of the detected markers; (3) the reconstruction of the three-dimensional position of the bone markers and the prosthetic markers; and (4) the computation of micromotion. To assess the influence of film digitization, the measurements obtained from nine phantom radiographs using two different film scanners were compared with the results obtained by manual processing. All markers in the phantom radiographs were automatically detected and correctly labeled. The best results were obtained with a Vidar VXR-12 CCD scanner, for which the measurement errors were comparable to the errors associated with the manual approach. To assess the in vivo reproducibility, 30 patient radiographs were analyzed twice with the manual as well as with the automated procedure. Approximately, 85% of all calibration markers and bone markers were automatically detected and correctly matched. The calibration errors and the rigid-body errors show that the accuracy of the automated procedure is comparable to the accuracy of the manual procedure. The rigid-body errors had comparable mean values for both techniques: 0.05 mm for the tibia and 0.06 mm for the prosthesis. The reproducibility of the automated procedure showed to be slightly better than that of the manual procedure. The maximum errors in the computed translation and rotation of the tibial component were 0.11 mm and 0.24, compared to 0.13 mm and 0.27 for the manual RSA procedure

  20. Quantitative measurement of oxygen in microgravity combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1995-01-01

    This research combines two innovations in an experimental system which should result in a new capability for quantitative, nonintrusive measurement of major combustion species. Using a newly available vertical cavity surface-emitting diode laser (VCSEL) and an improved spatial scanning method, we plan to measure the temporal and spatial profiles of the concentrations and temperatures of molecular oxygen in a candle flame and in a solid fuel (cellulose sheet) system. The required sensitivity for detecting oxygen is achieved by the use of high frequency wavelength modulation spectroscopy (WMS). Measurements will be performed in the NASA Lewis 2.2-second Drop Tower Facility. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size, and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in microgravity combustion research. We will also demonstrate diode lasers' potential usefulness for compact, intrinsically-safe monitoring sensors aboard spacecraft. Such sensors could be used to monitor any of the major cabin gases as well as important pollutants.

  1. Numerical assessment of accurate measurements of laminar flame speed

    NASA Astrophysics Data System (ADS)

    Goulier, Joules; Bizon, Katarzyna; Chaumeix, Nabiha; Meynet, Nicolas; Continillo, Gaetano

    2016-12-01

    In combustion, the laminar flame speed constitutes an important parameter that reflects the chemistry of oxidation for a given fuel, along with its transport and thermal properties. Laminar flame speeds are used (i) in turbulent models used in CFD codes, and (ii) to validate detailed or reduced mechanisms, often derived from studies using ideal reactors and in diluted conditions as in jet stirred reactors and in shock tubes. End-users of such mechanisms need to have an assessment of their capability to predict the correct heat released by combustion in realistic conditions. In this view, the laminar flame speed constitutes a very convenient parameter, and it is then very important to have a good knowledge of the experimental errors involved with its determination. Stationary configurations (Bunsen burners, counter-flow flames, heat flux burners) or moving flames (tubes, spherical vessel, soap bubble) can be used. The spherical expanding flame configuration has recently become popular, since it can be used at high pressures and temperatures. With this method, the flame speed is not measured directly, but derived through the recording of the flame radius. The method used to process the radius history will have an impact on the estimated flame speed. Aim of this work is to propose a way to derive the laminar flame speed from experimental recording of expanding flames, and to assess the error magnitude.

  2. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  3. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  4. Quantitative Measurements of X-ray Intensity

    SciTech Connect

    Haugh, M. J., Schneider, M.

    2011-09-01

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  5. How accurate is the Kubelka-Munk theory of diffuse reflection? A quantitative answer

    NASA Astrophysics Data System (ADS)

    Joseph, Richard I.; Thomas, Michael E.

    2012-10-01

    The (heuristic) Kubelka-Munk theory of diffuse reflectance and transmittance of a film on a substrate, which is widely used because it gives simple analytic results, is compared to the rigorous radiative transfer model of Chandrasekhar. The rigorous model has to be numerically solved, thus is less intuitive. The Kubelka-Munk theory uses an absorption coefficient and scatter coefficient as inputs, similar to the rigorous model of Chandrasekhar. The relationship between these two sets of coefficients is addressed. It is shown that the Kubelka-Munk theory is remarkably accurate if one uses the proper albedo parameter.

  6. Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine.

    PubMed

    Kohler, Isabelle; Schappler, Julie; Rudaz, Serge

    2013-05-30

    The combination of capillary electrophoresis (CE) and mass spectrometry (MS) is particularly well adapted to bioanalysis due to its high separation efficiency, selectivity, and sensitivity; its short analytical time; and its low solvent and sample consumption. For clinical and forensic toxicology, a two-step analysis is usually performed: first, a screening step for compound identification, and second, confirmation and/or accurate quantitation in cases of presumed positive results. In this study, a fast and sensitive CE-MS workflow was developed for the screening and quantitation of drugs of abuse in urine samples. A CE with a time-of-flight MS (CE-TOF/MS) screening method was developed using a simple urine dilution and on-line sample preconcentration with pH-mediated stacking. The sample stacking allowed for a high loading capacity (20.5% of the capillary length), leading to limits of detection as low as 2 ng mL(-1) for drugs of abuse. Compound quantitation of positive samples was performed by CE-MS/MS with a triple quadrupole MS equipped with an adapted triple-tube sprayer and an electrospray ionization (ESI) source. The CE-ESI-MS/MS method was validated for two model compounds, cocaine (COC) and methadone (MTD), according to the Guidance of the Food and Drug Administration. The quantitative performance was evaluated for selectivity, response function, the lower limit of quantitation, trueness, precision, and accuracy. COC and MTD detection in urine samples was determined to be accurate over the range of 10-1000 ng mL(-1) and 21-1000 ng mL(-1), respectively.

  7. Development and Validation of a Highly Accurate Quantitative Real-Time PCR Assay for Diagnosis of Bacterial Vaginosis

    PubMed Central

    Smith, William L.; Chadwick, Sean G.; Toner, Geoffrey; Mordechai, Eli; Adelson, Martin E.; Aguin, Tina J.; Sobel, Jack D.

    2016-01-01

    Bacterial vaginosis (BV) is the most common gynecological infection in the United States. Diagnosis based on Amsel's criteria can be challenging and can be aided by laboratory-based testing. A standard method for diagnosis in research studies is enumeration of bacterial morphotypes of a Gram-stained vaginal smear (i.e., Nugent scoring). However, this technique is subjective, requires specialized training, and is not widely available. Therefore, a highly accurate molecular assay for the diagnosis of BV would be of great utility. We analyzed 385 vaginal specimens collected prospectively from subjects who were evaluated for BV by clinical signs and Nugent scoring. We analyzed quantitative real-time PCR (qPCR) assays on DNA extracted from these specimens to quantify nine organisms associated with vaginal health or disease: Gardnerella vaginalis, Atopobium vaginae, BV-associated bacteria 2 (BVAB2, an uncultured member of the order Clostridiales), Megasphaera phylotype 1 or 2, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus jensenii. We generated a logistic regression model that identified G. vaginalis, A. vaginae, and Megasphaera phylotypes 1 and 2 as the organisms for which quantification provided the most accurate diagnosis of symptomatic BV, as defined by Amsel's criteria and Nugent scoring, with 92% sensitivity, 95% specificity, 94% positive predictive value, and 94% negative predictive value. The inclusion of Lactobacillus spp. did not contribute sufficiently to the quantitative model for symptomatic BV detection. This molecular assay is a highly accurate laboratory tool to assist in the diagnosis of symptomatic BV. PMID:26818677

  8. Restriction Site Tiling Analysis: accurate discovery and quantitative genotyping of genome-wide polymorphisms using nucleotide arrays

    PubMed Central

    2010-01-01

    High-throughput genotype data can be used to identify genes important for local adaptation in wild populations, phenotypes in lab stocks, or disease-related traits in human medicine. Here we advance microarray-based genotyping for population genomics with Restriction Site Tiling Analysis. The approach simultaneously discovers polymorphisms and provides quantitative genotype data at 10,000s of loci. It is highly accurate and free from ascertainment bias. We apply the approach to uncover genomic differentiation in the purple sea urchin. PMID:20403197

  9. There's plenty of gloom at the bottom: the many challenges of accurate quantitation in size-based oligomeric separations.

    PubMed

    Striegel, André M

    2013-11-01

    There is a variety of small-molecule species (e.g., tackifiers, plasticizers, oligosaccharides) the size-based characterization of which is of considerable scientific and industrial importance. Likewise, quantitation of the amount of oligomers in a polymer sample is crucial for the import and export of substances into the USA and European Union (EU). While the characterization of ultra-high molar mass macromolecules by size-based separation techniques is generally considered a challenge, it is this author's contention that a greater challenge is encountered when trying to perform, for quantitation purposes, separations in and of the oligomeric region. The latter thesis is expounded herein, by detailing the various obstacles encountered en route to accurate, quantitative oligomeric separations by entropically dominated techniques such as size-exclusion chromatography, hydrodynamic chromatography, and asymmetric flow field-flow fractionation, as well as by methods which are, principally, enthalpically driven such as liquid adsorption and temperature gradient interaction chromatography. These obstacles include, among others, the diminished sensitivity of static light scattering (SLS) detection at low molar masses, the non-constancy of the response of SLS and of commonly employed concentration-sensitive detectors across the oligomeric region, and the loss of oligomers through the accumulation wall membrane in asymmetric flow field-flow fractionation. The battle is not lost, however, because, with some care and given a sufficient supply of sample, the quantitation of both individual oligomeric species and of the total oligomeric region is often possible.

  10. Quantitation of Insulin-Like Growth Factor 1 in Serum by Liquid Chromatography High Resolution Accurate-Mass Mass Spectrometry.

    PubMed

    Ketha, Hemamalini; Singh, Ravinder J

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is a 70 amino acid peptide hormone which acts as the principal mediator of the effects of growth hormone (GH). Due to a wide variability in circulating concentration of GH, IGF-1 quantitation is the first step in the diagnosis of GH excess or deficiency. Majority (>95 %) of IGF-1 circulates as a ternary complex along with its principle binding protein insulin-like growth factor 1 binding protein 3 (IGFBP-3) and acid labile subunit. The assay design approach for IGF-1 quantitation has to include a step to dissociate IGF-1 from its ternary complex. Several commercial assays employ a buffer containing acidified ethanol to achieve this. Despite several modifications, commercially available immunoassays have been shown to have challenges with interference from IGFBP-3. Additionally, inter-method comparison between IGF-1 immunoassays has been shown to be suboptimal. Mass spectrometry has been utilized for quantitation of IGF-1. In this chapter a liquid chromatography high resolution accurate-mass mass spectrometry (LC-HRAMS) based method for IGF-1 quantitation has been described.

  11. Quantitative measurement of nanomechanical properties in composite materials

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    results significantly, and new, power-law body of revolution models of the probe tip geometry have been applied. Due to the low yield strength of polymers compared with other engineering materials, elastic-plastic contact is considered to better represent the epoxy surface response and was used to acquire more accurate quantitative measurements. Visco-elastic contact response was introduced in the boundary condition of the AFAM cantilever vibration model, due to the creep nature of epoxy, to determine time-dependent effects. These methods have direct impact on the quantitative measurement capabilities of near-filler interphase regions in polymers and composites and the long-term influence of environmental conditions on composites. In addition, quantitative AFAM scans were made on distal surfaces of human bicuspids and molars, to determine the microstructural and spatial variation in nanomechanical properties of the enamel biocomposite. Single point AFAM measurements were performed on individual enamel prism and sheath locations to determine spatial elastic modulus. Mechanical property variation of enamel is associated to the differences in the mineral to organic content and the apatite crystal orientations within the enamel microstructure. Also, variation in the elastic modulus of the enamel ultrastructure was observed in measurements at the outer enamel versus near the dentine enamel junction (DEJ).

  12. Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Hao; Lee, Mon-Juan; Lee, Wei

    2016-08-01

    Liquid crystal (LC)-based biosensing is generally limited by the lack of accurate quantitative strategies. This study exploits the unique electric capacitance properties of LCs to establish quantitative assay methods for bovine serum albumin (BSA) biomolecules. By measuring the voltage-dependent electric capacitance of LCs under an alternating-current field with increasing amplitude, positive correlations were derived between the BSA concentration and the electric capacitance parameters of LCs. This study demonstrates that quantitative analysis can be achieved in LC-based biosensing through electric capacitance measurements extensively employed in LCD research and development.

  13. Development and Validation of a Highly Accurate Quantitative Real-Time PCR Assay for Diagnosis of Bacterial Vaginosis.

    PubMed

    Hilbert, David W; Smith, William L; Chadwick, Sean G; Toner, Geoffrey; Mordechai, Eli; Adelson, Martin E; Aguin, Tina J; Sobel, Jack D; Gygax, Scott E

    2016-04-01

    Bacterial vaginosis (BV) is the most common gynecological infection in the United States. Diagnosis based on Amsel's criteria can be challenging and can be aided by laboratory-based testing. A standard method for diagnosis in research studies is enumeration of bacterial morphotypes of a Gram-stained vaginal smear (i.e., Nugent scoring). However, this technique is subjective, requires specialized training, and is not widely available. Therefore, a highly accurate molecular assay for the diagnosis of BV would be of great utility. We analyzed 385 vaginal specimens collected prospectively from subjects who were evaluated for BV by clinical signs and Nugent scoring. We analyzed quantitative real-time PCR (qPCR) assays on DNA extracted from these specimens to quantify nine organisms associated with vaginal health or disease:Gardnerella vaginalis,Atopobium vaginae, BV-associated bacteria 2 (BVAB2, an uncultured member of the orderClostridiales),Megasphaeraphylotype 1 or 2,Lactobacillus iners,Lactobacillus crispatus,Lactobacillus gasseri, andLactobacillus jensenii We generated a logistic regression model that identifiedG. vaginalis,A. vaginae, andMegasphaeraphylotypes 1 and 2 as the organisms for which quantification provided the most accurate diagnosis of symptomatic BV, as defined by Amsel's criteria and Nugent scoring, with 92% sensitivity, 95% specificity, 94% positive predictive value, and 94% negative predictive value. The inclusion ofLactobacillusspp. did not contribute sufficiently to the quantitative model for symptomatic BV detection. This molecular assay is a highly accurate laboratory tool to assist in the diagnosis of symptomatic BV.

  14. An Improved Method for Accurate and Rapid Measurement of Flight Performance in Drosophila

    PubMed Central

    Babcock, Daniel T.; Ganetzky, Barry

    2014-01-01

    Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens. PMID:24561810

  15. Accurate measurement of respiratory airway wall thickness in CT images using a signal restoration technique

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Tae Jung; Kim, Kwang Gi; Lee, Sang Ho; Goo, Jin Mo; Kim, Jong Hyo

    2008-03-01

    Airway wall thickness (AWT) is an important bio-marker for evaluation of pulmonary diseases such as chronic bronchitis, bronchiectasis. While an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of AWT in Multidetector-Row Computed Tomography (MDCT) images involves various sources of error and uncertainty. So we have developed an accurate AWT measurement technique for small airways with three-dimensional (3-D) approach. To evaluate performance of these techniques, we used a set of acryl tube phantom was made to mimic small airways to have three different sizes of wall diameter (4.20, 1.79, 1.24 mm) and wall thickness (1.84, 1.22, 0.67 mm). The phantom was imaged with MDCT using standard reconstruction kernel (Sensation 16, Siemens, Erlangen). The pixel size was 0.488 mm × 0.488 mm × 0.75 mm in x, y, and z direction respectively. The images were magnified in 5 times using cubic B-spline interpolation, and line profiles were obtained for each tube. To recover faithful line profile from the blurred images, the line profiles were deconvolved with a point spread kernel of the MDCT which was estimated using the ideal tube profile and image line profile. The inner diameter, outer diameter, and wall thickness of each tube were obtained with full-width-half-maximum (FWHM) method for the line profiles before and after deconvolution processing. Results show that significant improvement was achieved over the conventional FWHM method in the measurement of AWT.

  16. Quantitative Method of Measuring Metastatic Activity

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  17. A Global Approach to Accurate and Automatic Quantitative Analysis of NMR Spectra by Complex Least-Squares Curve Fitting

    NASA Astrophysics Data System (ADS)

    Martin, Y. L.

    The performance of quantitative analysis of 1D NMR spectra depends greatly on the choice of the NMR signal model. Complex least-squares analysis is well suited for optimizing the quantitative determination of spectra containing a limited number of signals (<30) obtained under satisfactory conditions of signal-to-noise ratio (>20). From a general point of view it is concluded, on the basis of mathematical considerations and numerical simulations, that, in the absence of truncation of the free-induction decay, complex least-squares curve fitting either in the time or in the frequency domain and linear-prediction methods are in fact nearly equivalent and give identical results. However, in the situation considered, complex least-squares analysis in the frequency domain is more flexible since it enables the quality of convergence to be appraised at every resonance position. An efficient data-processing strategy has been developed which makes use of an approximate conjugate-gradient algorithm. All spectral parameters (frequency, damping factors, amplitudes, phases, initial delay associated with intensity, and phase parameters of a baseline correction) are simultaneously managed in an integrated approach which is fully automatable. The behavior of the error as a function of the signal-to-noise ratio is theoretically estimated, and the influence of apodization is discussed. The least-squares curve fitting is theoretically proved to be the most accurate approach for quantitative analysis of 1D NMR data acquired with reasonable signal-to-noise ratio. The method enables complex spectral residuals to be sorted out. These residuals, which can be cumulated thanks to the possibility of correcting for frequency shifts and phase errors, extract systematic components, such as isotopic satellite lines, and characterize the shape and the intensity of the spectral distortion with respect to the Lorentzian model. This distortion is shown to be nearly independent of the chemical species

  18. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    SciTech Connect

    Labuda, Aleksander; Proksch, Roger

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  19. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Proksch, Roger

    2015-06-01

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  20. Is scintillometer measurement accurate enough for evaluating remote sensing based energy balance ET models?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three evapotranspiration (ET) measurement/retrieval techniques used in this study, lysimeter, scintillometer and remote sensing vary in their level of complexity, accuracy, resolution and applicability. The lysimeter with its point measurement is the most accurate and direct method to measure ET...

  1. Simple, fast, and accurate methodology for quantitative analysis using Fourier transform infrared spectroscopy, with bio-hybrid fuel cell examples.

    PubMed

    Mackie, David M; Jahnke, Justin P; Benyamin, Marcus S; Sumner, James J

    2016-01-01

    The standard methodologies for quantitative analysis (QA) of mixtures using Fourier transform infrared (FTIR) instruments have evolved until they are now more complicated than necessary for many users' purposes. We present a simpler methodology, suitable for widespread adoption of FTIR QA as a standard laboratory technique across disciplines by occasional users.•Algorithm is straightforward and intuitive, yet it is also fast, accurate, and robust.•Relies on component spectra, minimization of errors, and local adaptive mesh refinement.•Tested successfully on real mixtures of up to nine components. We show that our methodology is robust to challenging experimental conditions such as similar substances, component percentages differing by three orders of magnitude, and imperfect (noisy) spectra. As examples, we analyze biological, chemical, and physical aspects of bio-hybrid fuel cells.

  2. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    PubMed

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-02-23

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor and resource intensive methods. An efficient method for identifying single copy transgene insertion events from a population of independent transgenic lines is desirable. Currently transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one and two copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR (dPCR)-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato, and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. This article is protected by copyright. All rights reserved.

  3. Indium adhesion provides quantitative measure of surface cleanliness

    NASA Technical Reports Server (NTRS)

    Krieger, G. L.; Wilson, G. J.

    1968-01-01

    Indium tipped probe measures hydrophobic and hydrophilic contaminants on rough and smooth surfaces. The force needed to pull the indium tip, which adheres to a clean surface, away from the surface provides a quantitative measure of cleanliness.

  4. Preferential access to genetic information from endogenous hominin ancient DNA and accurate quantitative SNP-typing via SPEX

    PubMed Central

    Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip

    2010-01-01

    The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251

  5. Renal Cortical Lactate Dehydrogenase: A Useful, Accurate, Quantitative Marker of In Vivo Tubular Injury and Acute Renal Failure

    PubMed Central

    Zager, Richard A.; Johnson, Ali C. M.; Becker, Kirsten

    2013-01-01

    Studies of experimental acute kidney injury (AKI) are critically dependent on having precise methods for assessing the extent of tubular cell death. However, the most widely used techniques either provide indirect assessments (e.g., BUN, creatinine), suffer from the need for semi-quantitative grading (renal histology), or reflect the status of residual viable, not the number of lost, renal tubular cells (e.g., NGAL content). Lactate dehydrogenase (LDH) release is a highly reliable test for assessing degrees of in vitro cell death. However, its utility as an in vivo AKI marker has not been defined. Towards this end, CD-1 mice were subjected to graded renal ischemia (0, 15, 22, 30, 40, or 60 min) or to nephrotoxic (glycerol; maleate) AKI. Sham operated mice, or mice with AKI in the absence of acute tubular necrosis (ureteral obstruction; endotoxemia), served as negative controls. Renal cortical LDH or NGAL levels were assayed 2 or 24 hrs later. Ischemic, glycerol, and maleate-induced AKI were each associated with striking, steep, inverse correlations (r, −0.89) between renal injury severity and renal LDH content. With severe AKI, >65% LDH declines were observed. Corresponding prompt plasma and urinary LDH increases were observed. These observations, coupled with the maintenance of normal cortical LDH mRNA levels, indicated the renal LDH efflux, not decreased LDH synthesis, caused the falling cortical LDH levels. Renal LDH content was well maintained with sham surgery, ureteral obstruction or endotoxemic AKI. In contrast to LDH, renal cortical NGAL levels did not correlate with AKI severity. In sum, the above results indicate that renal cortical LDH assay is a highly accurate quantitative technique for gauging the extent of experimental acute ischemic and toxic renal injury. That it avoids the limitations of more traditional AKI markers implies great potential utility in experimental studies that require precise quantitation of tubule cell death. PMID:23825563

  6. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  7. Diagnostics for conformity of paired quantitative measurements.

    PubMed

    Hawkins, Douglas M

    2002-07-15

    Matched pairs data arise in many contexts - in case-control clinical trials, for example, and from cross-over designs. They also arise in experiments to verify the equivalence of quantitative assays. This latter use (which is the main focus of this paper) raises difficulties not always seen in other matched pairs applications. Since the designs deliberately vary the analyte levels over a wide range, issues of variance dependent on mean, calibrations of differing slopes, and curvature all need to be added to the usual model assumptions such as normality. Violations in any of these assumptions invalidate the conventional matched pairs analysis. A graphical method, due to Bland and Altman, of looking at the relationship between the average and the difference of the members of the pairs is shown to correspond to a formal testable regression model. Using standard regression diagnostics, one may detect and diagnose departures from the model assumptions and remedy them - for example using variable transformations. Examples of different common scenarios and possible approaches to handling them are shown.

  8. Quantitative blood flux measurement using MUSIC

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Qin, Jia; Wang, Ruikang K.

    2014-03-01

    In this paper, we propose a method to quantify red blood cell (RBC) flow through capillary loops and microvessels using optical microangiography (OMAG). Current existing methods of capillary flow quantification either require a very long scanning time (~few minutes) or a large acquisition number per location (+100 scans per location) to form a highresolution spectral estimation. We utilize a model-based super-resolution spectral estimation technique based on principle of orthogonality to quantify moving RBCs within a voxel. The scanning protocol required for our method is very similar to 3D ultrahigh sensitive OMAG that requires few scans per location (8) and can be performed in few seconds that makes it applicable for in vivo experiments. This method is analogous to power Doppler in ultrasonography and estimates the number of red blood cells passing through the beam as opposed to the velocity of the particles. The technique is tested both qualitatively and quantitatively by using OMAG to image microcirculation within mouse ear flap in vivo.

  9. Quantitative Measures of Mineral Supply Risk

    NASA Astrophysics Data System (ADS)

    Long, K. R.

    2009-12-01

    Almost all metals and many non-metallic minerals are traded internationally. An advantage of global mineral markets is that minerals can be obtained from the globally lowest-cost source. For example, one rare-earth element (REE) mine in China, Bayan Obo, is able to supply most of world demand for rare earth elements at a cost significantly less than its main competitors. Concentration of global supplies at a single mine raises significant political risks, illustrated by China’s recent decision to prohibit the export of some REEs and severely limit the export of others. The expected loss of REE supplies will have a significant impact on the cost and production of important national defense technologies and on alternative energy programs. Hybrid vehicles and wind-turbine generators, for example, require REEs for magnets and batteries. Compact fluorescent light bulbs use REE-based phosphors. These recent events raise the general issue of how to measure the degree of supply risk for internationally sourced minerals. Two factors, concentration of supply and political risk, must first be addressed. Concentration of supply can be measured with standard economic tools for measuring industry concentration, using countries rather than firms as the unit of analysis. There are many measures of political risk available. That of the OECD is a measure of a country’s commitment to rule-of-law and enforcement of contracts, as well as political stability. Combining these measures provides a comparative view of mineral supply risk across commodities and identifies several minerals other than REEs that could suddenly become less available. Combined with an assessment of the impact of a reduction in supply, decision makers can use these measures to prioritize risk reduction efforts.

  10. Accurate measurements of the acoustical physical constants of synthetic alpha-quartz for SAW devices.

    PubMed

    Kushibiki, Juin-ichi; Takanaga, Izumi; Nishiyama, Shouichi

    2002-01-01

    Accurate measurements of the acoustical physical constants (elastic constants, piezoelectric constants, dielectric constants, and density) of commercially available and widely used surface acoustic wave (SAW)-grade synthetic a-quartz are reported. The propagation directions and modes of bulk waves optimal for accurately determining the constants were selected through numerical calculations, and three principal X-, Y-, and Z-cut specimens and several rotated Y-cut specimens were prepared from a single crystal ingot to determine the constants and to confirm their accuracy. All of the constants were determined through highly accurate measurements of the longitudinal velocities, shear velocities, dielectric constants, and density. The velocity values measured for the specimens that were not used to determine the constants agreed well with those calculated from the determined constants, within a difference of +/- 0.20 m/s (+/- 0.004%).

  11. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  12. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  13. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  14. Accurate measurement method of Fabry-Perot cavity parameters via optical transfer function

    SciTech Connect

    Bondu, Francois; Debieu, Olivier

    2007-05-10

    It is shown how the transfer function from frequency noise to a Pound-Drever-Hall signal for a Fabry-Perot cavity can be used to accurately measure cavity length, cavity linewidth, mirror curvature, misalignments, laser beam shape mismatching with resonant beam shape, and cavity impedance mismatching with respect to vacuum.

  15. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... production and utilization? 3275.15 Section 3275.15 Public Lands: Interior Regulations Relating to Public...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.15 How accurately must I measure my production and utilization? It depends on whether you use a meter to calculate Federal production or...

  16. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... production and utilization? 3275.15 Section 3275.15 Public Lands: Interior Regulations Relating to Public...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.15 How accurately must I measure my production and utilization? It depends on whether you use a meter to calculate Federal production or...

  17. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... production and utilization? 3275.15 Section 3275.15 Public Lands: Interior Regulations Relating to Public...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.15 How accurately must I measure my production and utilization? It depends on whether you use a meter to calculate Federal production or...

  18. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  19. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  20. Techniques for determining propulsion system forces for accurate high speed vehicle drag measurements in flight

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.

    1975-01-01

    As part of a NASA program to evaluate current methods of predicting the performance of large, supersonic airplanes, the drag of the XB-70 airplane was measured accurately in flight at Mach numbers from 0.75 to 2.5. This paper describes the techniques used to determine engine net thrust and the drag forces charged to the propulsion system that were required for the in-flight drag measurements. The accuracy of the measurements and the application of the measurement techniques to aircraft with different propulsion systems are discussed. Examples of results obtained for the XB-70 airplane are presented.

  1. Accurate mass replacement method for the sediment concentration measurement with a constant volume container

    NASA Astrophysics Data System (ADS)

    Ban, Yunyun; Chen, Tianqin; Yan, Jun; Lei, Tingwu

    2017-04-01

    The measurement of sediment concentration in water is of great importance in soil erosion research and soil and water loss monitoring systems. The traditional weighing method has long been the foundation of all the other measuring methods and instrument calibration. The development of a new method to replace the traditional oven-drying method is of interest in research and practice for the quick and efficient measurement of sediment concentration, especially field measurements. A new method is advanced in this study for accurately measuring the sediment concentration based on the accurate measurement of the mass of the sediment-water mixture in the confined constant volume container (CVC). A sediment-laden water sample is put into the CVC to determine its mass before the CVC is filled with water and weighed again for the total mass of the water and sediments in the container. The known volume of the CVC, the mass of sediment-laden water, and sediment particle density are used to calculate the mass of water, which is replaced by sediments, therefore sediment concentration of the sample is calculated. The influence of water temperature was corrected by measuring water density to determine the temperature of water before measurements were conducted. The CVC was used to eliminate the surface tension effect so as to obtain the accurate volume of water and sediment mixture. Experimental results showed that the method was capable of measuring the sediment concentration from 0.5 up to 1200 kg m‑3. A good liner relationship existed between the designed and measured sediment concentrations with all the coefficients of determination greater than 0.999 and the averaged relative error less than 0.2%. All of these seem to indicate that the new method is capable of measuring a full range of sediment concentration above 0.5 kg m‑3 to replace the traditional oven-drying method as a standard method for evaluating and calibrating other methods.

  2. Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus).

    PubMed

    Morin, P A; Chambers, K E; Boesch, C; Vigilant, L

    2001-07-01

    Noninvasive samples are useful for molecular genetic analyses of wild animal populations. However, the low DNA content of such samples makes DNA amplification difficult, and there is the potential for erroneous results when one of two alleles at heterozygous microsatellite loci fails to be amplified. In this study we describe an assay designed to measure the amount of amplifiable nuclear DNA in low DNA concentration extracts from noninvasive samples. We describe the range of DNA amounts obtained from chimpanzee faeces and shed hair samples and formulate a new efficient approach for accurate microsatellite genotyping. Prescreening of extracts for DNA quantity is recommended for sorting of samples for likely success and reliability. Repetition of results remains extensive for analysis of microsatellite amplifications beginning from low starting amounts of DNA, but is reduced for those with higher DNA content.

  3. Automated and quantitative headspace in-tube extraction for the accurate determination of highly volatile compounds from wines and beers.

    PubMed

    Zapata, Julián; Mateo-Vivaracho, Laura; Lopez, Ricardo; Ferreira, Vicente

    2012-03-23

    An automatic headspace in-tube extraction (ITEX) method for the accurate determination of acetaldehyde, ethyl acetate, diacetyl and other volatile compounds from wine and beer has been developed and validated. Method accuracy is based on the nearly quantitative transference of volatile compounds from the sample to the ITEX trap. For achieving that goal most methodological aspects and parameters have been carefully examined. The vial and sample sizes and the trapping materials were found to be critical due to the pernicious saturation effects of ethanol. Small 2 mL vials containing very small amounts of sample (20 μL of 1:10 diluted sample) and a trap filled with 22 mg of Bond Elut ENV resins could guarantee a complete trapping of sample vapors. The complete extraction requires 100 × 0.5 mL pumping strokes at 60 °C and takes 24 min. Analytes are further desorbed at 240 °C into the GC injector under a 1:5 split ratio. The proportion of analytes finally transferred to the trap ranged from 85 to 99%. The validation of the method showed satisfactory figures of merit. Determination coefficients were better than 0.995 in all cases and good repeatability was also obtained (better than 7% in all cases). Reproducibility was better than 8.3% except for acetaldehyde (13.1%). Detection limits were below the odor detection thresholds of these target compounds in wine and beer and well below the normal ranges of occurrence. Recoveries were not significantly different to 100%, except in the case of acetaldehyde. In such a case it could be determined that the method is not able to break some of the adducts that this compound forms with sulfites. However, such problem was avoided after incubating the sample with glyoxal. The method can constitute a general and reliable alternative for the analysis of very volatile compounds in other difficult matrixes.

  4. Defining allowable physical property variations for high accurate measurements on polymer parts

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Sonne, M. R.; Madruga, D. G.; De Chiffre, L.; Hattel, J. H.

    2016-06-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which is a challenge in today`s production and metrology environments. The residual deformations in polymer products at room temperature after injection molding are important when micrometer accuracy needs to be achieved. Numerical modelling can give a valuable insight to what is happening in the polymer during cooling down after injection molding. In order to obtain accurate simulations, accurate inputs to the model are crucial. In reality however, the material and physical properties will have some variations. Although these variations may be small, they can act as a source of uncertainty for the measurement. In this paper, we investigated how big the variation in material and physical properties are allowed in order to reach the 5 μm target on the uncertainty.

  5. Phase measurements of erythrocytes affected by metal ions with quantitative interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shouyu; Yan, Keding; Shan, Yanke; Xu, Mingfei; Liu, Fei; Xue, Liang

    2015-12-01

    Erythrocyte morphology is an important factor in disease diagnosis, however, traditional setups as microscopes and cytometers cannot provide enough quantitative information of cellular morphology for in-depth statistics and analysis. In order to capture variations of erythrocytes affected by metal ions, quantitative interferometric microscopy (QIM) is applied to monitor their morphology changes. Combined with phase retrieval and cell recognition, erythrocyte phase images, as well as phase area and volume, can be accurately and automatically obtained. The research proves that QIM is an effective tool in cellular observation and measurement.

  6. The calibration of video cameras for quantitative measurements

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.; Shortis, Mark R.

    1993-01-01

    Several different recent applications of velocimetry at Langley Research Center are described in order to show the need for video camera calibration for quantitative measurements. Problems peculiar to video sensing are discussed, including synchronization and timing, targeting, and lighting. The extension of the measurements to include radiometric estimates is addressed.

  7. Measurement Invariance: A Foundational Principle for Quantitative Theory Building

    ERIC Educational Resources Information Center

    Nimon, Kim; Reio, Thomas G., Jr.

    2011-01-01

    This article describes why measurement invariance is a critical issue to quantitative theory building within the field of human resource development. Readers will learn what measurement invariance is and how to test for its presence using techniques that are accessible to applied researchers. Using data from a LibQUAL+[TM] study of user…

  8. System to measure accurate temperature dependence of electric conductivity down to 20 K in ultrahigh vacuum.

    PubMed

    Sakai, C; Takeda, S N; Daimon, H

    2013-07-01

    We have developed the new in situ electrical-conductivity measurement system which can be operated in ultrahigh vacuum (UHV) with accurate temperature measurement down to 20 K. This system is mainly composed of a new sample-holder fixing mechanism, a new movable conductivity-measurement mechanism, a cryostat, and two receptors for sample- and four-probe holders. Sample-holder is pushed strongly against the receptor, which is connected to a cryostat, by using this new sample-holder fixing mechanism to obtain high thermal conductivity. Test pieces on the sample-holders have been cooled down to about 20 K using this fixing mechanism, although they were cooled down to only about 60 K without this mechanism. Four probes are able to be touched to a sample surface using this new movable conductivity-measurement mechanism for measuring electrical conductivity after making film on substrates or obtaining clean surfaces by cleavage, flashing, and so on. Accurate temperature measurement is possible since the sample can be transferred with a thermocouple and∕or diode being attached directly to the sample. A single crystal of Bi-based copper oxide high-Tc superconductor (HTSC) was cleaved in UHV to obtain clean surface, and its superconducting critical temperature has been successfully measured in situ. The importance of in situ measurement of resistance in UHV was demonstrated for this HTSC before and after cesium (Cs) adsorption on its surface. The Tc onset increase and the Tc offset decrease by Cs adsorption were observed.

  9. Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup

    NASA Astrophysics Data System (ADS)

    Natividad, Eva; Castro, Miguel; Mediano, Arturo

    2008-03-01

    Accurate measurements of the specific absorption rate (SAR) of solids and fluids were obtained by a calorimetric method, using a special-purpose setup working under adiabatic conditions. Unlike in current nonadiabatic setups, the weak heat exchange with the surroundings allowed a straightforward determination of temperature increments, avoiding the usual initial-time approximations. The measurements performed on a commercial magnetite aqueous ferrofluid revealed a good reproducibility (4%). Also, the measurements on a copper sample allowed comparison between experimental and theoretical values: adiabatic conditions gave SAR values only 3% higher than the theoretical ones, while the typical nonadiabatic method underestimated SAR by 21%.

  10. Photoacoustic spectrometer for accurate, continuous measurements of atmospheric carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Reed, Zachary D.; Sperling, Brent; van Zee, Roger D.; Whetstone, James R.; Gillis, Keith A.; Hodges, Joseph T.

    2014-06-01

    We have developed a portable photoacoustic spectrometer that offers routine, precise and accurate measurements of the molar concentration of atmospheric carbon. The temperature-controlled spectrometer continuously samples dried atmospheric air and employs an intensity-modulated distributed feedback laser and fiber amplifier operating near 1.57 µm. For measurements of carbon dioxide in air, we demonstrate a measurement precision (60-s averaging time) of 0.15 µmol mol-1 and achieve a standard uncertainty of 0.8 µmol mol-1 by calibrating the analyzer response in terms of certified gas mixtures. We also investigate how water vapor affects the photoacoustic signal by promoting collisional relaxation of the carbon dioxide.

  11. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement

    PubMed Central

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-01-01

    Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139

  12. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  13. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    SciTech Connect

    Heinrich, Martin; Kluska, Sven; Binder, Sebastian; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given on how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.

  14. Accurate microfour-point probe sheet resistance measurements on small samples.

    PubMed

    Thorsteinsson, Sune; Wang, Fei; Petersen, Dirch H; Hansen, Torben Mikael; Kjaer, Daniel; Lin, Rong; Kim, Jang-Yong; Nielsen, Peter F; Hansen, Ole

    2009-05-01

    We show that accurate sheet resistance measurements on small samples may be performed using microfour-point probes without applying correction factors. Using dual configuration measurements, the sheet resistance may be extracted with high accuracy when the microfour-point probes are in proximity of a mirror plane on small samples with dimensions of a few times the probe pitch. We calculate theoretically the size of the "sweet spot," where sufficiently accurate sheet resistances result and show that even for very small samples it is feasible to do correction free extraction of the sheet resistance with sufficient accuracy. As an example, the sheet resistance of a 40 microm (50 microm) square sample may be characterized with an accuracy of 0.3% (0.1%) using a 10 microm pitch microfour-point probe and assuming a probe alignment accuracy of +/-2.5 microm.

  15. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  16. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  17. Accurate measurement of spatial noise portraits of photosensors of digital cameras

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Kulakov, M. N.; Starikov, R. S.

    2016-08-01

    Method of measurement of accurate portraits of light and dark spatial noise of photosensors is described. The method consists of four steps: creation of spatially homogeneous illumination; shooting light and dark frames; digital processing and filtering. Unlike standard technique, this method uses iterative creation of spatially homogeneous illumination by display, compensation of photosensor dark spatial noise portrait and improved procedure of elimination of dark temporal noise. Portraits of light and dark spatial noise of photosensors of a scientific digital camera were found. Characteristics of the measured portraits were compared with values of photo response and dark signal non-uniformities of camera's photosensor.

  18. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    SciTech Connect

    Malik, Afshan N.; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana; Laftah, Abas; Cunningham, Phil

    2011-08-19

    Highlights: {yields} Mitochondrial dysfunction is central to many diseases of oxidative stress. {yields} 95% of the mitochondrial genome is duplicated in the nuclear genome. {yields} Dilution of untreated genomic DNA leads to dilution bias. {yields} Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as {beta}-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.

  19. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    SciTech Connect

    Suchyta, E.

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases. We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.

  20. No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Suchyta, E.; Huff, E. M.; Aleksić, J.; Melchior, P.; Jouvel, S.; MacCrann, N.; Ross, A. J.; Crocce, M.; Gaztanaga, E.; Honscheid, K.; Leistedt, B.; Peiris, H. V.; Rykoff, E. S.; Sheldon, E.; Abbott, T.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Percival, W. J.; Reil, K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Zhang, Y.; DES Collaboration

    2016-03-01

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of detectable stars or galaxies. We have implemented our proposal in BALROG, software which embeds fake objects in real imaging to accurately characterize measurement biases. We demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the Landy-Szalay estimator suppresses the effects of variable survey selection by at least two orders of magnitude. With this correction, our measured angular clustering is found to be in excellent agreement with that of a matched sample from much deeper, higher resolution space-based Cosmological Evolution Survey (COSMOS) imaging; over angular scales of 0.004° < θ < 0.2°, we find a best-fitting scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending measurements' statistical reach in a variety of upcoming imaging surveys.

  1. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey

    DOE PAGES

    Suchyta, E.

    2016-01-27

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases.more » We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.« less

  2. Accurate surface tension measurement of glass melts by the pendant drop method.

    PubMed

    Chang, Yao-Yuan; Wu, Ming-Ya; Hung, Yi-Lin; Lin, Shi-Yow

    2011-05-01

    A pendant drop tensiometer, coupled with image digitization technology and a best-fitting algorithm, was built to accurately measure the surface tension of glass melts at high temperatures. More than one thousand edge-coordinate points were obtained for a pendant glass drop. These edge points were fitted with the theoretical drop profiles derived from the Young-Laplace equation to determine the surface tension of glass melt. The uncertainty of the surface tension measurements was investigated. The measurement uncertainty (σ) could be related to a newly defined factor of drop profile completeness (Fc): the larger the Fc is, the smaller σ is. Experimental data showed that the uncertainty of the surface tension measurement when using this pendant drop tensiometer could be ±3 mN∕m for glass melts.

  3. A fast and accurate image-based measuring system for isotropic reflection materials

    NASA Astrophysics Data System (ADS)

    Kim, Duck Bong; Kim, Kang Yeon; Park, Kang Su; Seo, Myoung Kook; Lee, Kwan H.

    2008-08-01

    We present a novel image-based BRDF (Bidirectional Reflectance Distribution Function) measurement system for materials that have isotropic reflectance properties. Our proposed system is fast due to simple set up and automated operations. It also provides a wide angular coverage and noise reduction capability so that it achieves accuracy that is needed for computer graphics applications. We test the uniformity and constancy of the light source and the reciprocity of the measurement system. We perform a photometric calibration of HDR (High Dynamic Range) camera to recover an accurate radiance map from each HDR image. We verify our proposed system by comparing it with a previous imagebased BRDF measurement system. We demonstrate the efficiency and accuracy of our proposed system by generating photorealistic images of the measured BRDF data that include glossy blue, green plastics, gold coated metal and gold metallic paints.

  4. Accurate Alternative Measurements for Female Lifetime Reproductive Success in Drosophila melanogaster

    PubMed Central

    Nguyen, Trinh T. X.; Moehring, Amanda J.

    2015-01-01

    Fitness is an individual’s ability to survive and reproduce, and is an important concept in evolutionary biology. However, accurately measuring fitness is often difficult, and appropriate fitness surrogates need to be identified. Lifetime reproductive success, the total progeny an organism can produce in their lifetime, is thought to be a suitable proxy for fitness, but the measure of an organism’s reproductive output across a lifetime can be difficult or impossible to obtain. Here we demonstrate that the short-term measure of reproductive success across five days provides a reasonable prediction of an individual's total lifetime reproductive success in Drosophila melanogaster. However, the lifetime reproductive success of a female that has only mated once is not correlated to the lifetime reproductive success of a female that is allowed to mate multiple times, demonstrating that these measures should not serve as surrogates nor be used to make inferences about one another. PMID:26125633

  5. Traceable phosphorus measurements by ICP-OES and HPLC for the quantitation of DNA.

    PubMed

    Holden, Marcia J; Rabb, Savelas A; Tewari, Yadu B; Winchester, Michael R

    2007-02-15

    Measurement of the phosphorus content of nucleotides and deoxyribonucleic acid (DNA) offers an approach to the quantitation of nucleic acids that is traceable to the SI. Such measurements can be an alternative to the commonly used spectroscopic tools that are not traceable. Phosphorus measurements of thymidine 5'-monophosphate (TMP) and acid-digested plasmid and genomic DNA preparations were made using high-performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES) and high-performance liquid chromatography (HPLC) and compared for bias and uncertainty. A prerequisite for quality measurement is the purity of the materials. Quantitation with the two platforms was comparable for the TMP. However, the HPLC values had larger uncertainties and were all statistically different from the gravimetric values at the 95% confidence level. When using ICP-OES, the digestion of the nucleotide monophosphate can be eliminated, thus simplifying the procedure. The differences between the results obtained by using the two platforms, when measuring genomic or plasmid DNA, were dependent on the mass fraction of the digest. ICP-OES measurement of phosphorus provides a highly accurate quantitation for both nucleotide monophosphates and DNA with expanded uncertainties of less than 0.1%. Currently, ICP-OES requires a significant sample size restricting its usefulness for the quantitation of DNA but represents a valuable tool for certification of reference materials. HPLC requires smaller amounts of material to perform the analysis but is less useful for certification of reference materials because of lower accuracy and 10-fold higher expanded uncertainties.

  6. Toward a Cognitive Basis for Quantitative Ability Measures.

    ERIC Educational Resources Information Center

    Sebrechts, Marc M.; And Others

    The construct validity of algebra word problems for measuring quantitative reasoning was examined, focusing on an analysis of problem attributes and on the analysis of constructed-response solutions. Constructed-response solutions to 20 problems from the Graduate Record Examinations (GRE) General Test were collected from 51 undergraduates.…

  7. Quantitative Measurement of Trans-Fats by Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Walker, Edward B.; Davies, Don R.; Campbell, Mike

    2007-01-01

    Trans-fat is a general term, which is mainly used to describe the various trans geometric isomers present in unsaturated fatty acids. Various techniques are now used for a quantitative measurement of the amount of trans-fats present in foods and cooking oil.

  8. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  9. Accurate quantification of creatinine in serum by coupling a measurement standard to extractive electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Keke; Li, Ming; Li, Hongmei; Li, Mengwan; Jiang, You; Fang, Xiang

    2016-01-01

    Ambient ionization (AI) techniques have been widely used in chemistry, medicine, material science, environmental science, forensic science. AI takes advantage of direct desorption/ionization of chemicals in raw samples under ambient environmental conditions with minimal or no sample preparation. However, its quantitative accuracy is restricted by matrix effects during the ionization process. To improve the quantitative accuracy of AI, a matrix reference material, which is a particular form of measurement standard, was coupled to an AI technique in this study. Consequently the analyte concentration in a complex matrix can be easily quantified with high accuracy. As a demonstration, this novel method was applied for the accurate quantification of creatinine in serum by using extractive electrospray ionization (EESI) mass spectrometry. Over the concentration range investigated (0.166 ~ 1.617 μg/mL), a calibration curve was obtained with a satisfactory linearity (R2 = 0.994), and acceptable relative standard deviations (RSD) of 4.6 ~ 8.0% (n = 6). Finally, the creatinine concentration value of a serum sample was determined to be 36.18 ± 1.08 μg/mL, which is in excellent agreement with the certified value of 35.16 ± 0.39 μg/mL.

  10. Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume.

    PubMed

    Schonbrun, Ethan; Malka, Roy; Di Caprio, Giuseppe; Schaak, Diane; Higgins, John M

    2014-04-01

    We present an optical system, called the quantitative absorption cytometer (QAC), to measure the volume and hemoglobin mass of red blood cells flowing through a microfluidic channel. In contrast to clinical hematology analyzers, where cells are sphered in order for both volume and hemoglobin to be measured accurately, the QAC measures cells in their normal physiological shape. Human red blood cells are suspended in a refractive index-matching absorbing buffer, driven through a microfluidic channel, and imaged using a transmission light microscope onto a color camera. A red and a blue LED illuminate cells and images at each color are used to independently retrieve cell volume and hemoglobin mass. This system shows good agreement with red blood cell indices retrieved by a clinical hematology analyzer and in fact measures a smaller coefficient of variation of hemoglobin concentration. In addition to cell indices, the QAC returns height and mass maps of each measured cell. These quantitative images are valuable for analyzing the detailed morphology of individual cells as well as statistical outliers found in the data. We also measured red blood cells in hypertonic and hypotonic buffers to quantify the correlation between volume and hemoglobin mass under osmotic stress. Because this method is invariant to cell shape, even extremely nonspherical cells in hypertonic buffers can be measured accurately.

  11. Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements.

    PubMed

    Kudryavtsev, Volodymyr; Sikor, Martin; Kalinin, Stanislav; Mokranjac, Dejana; Seidel, Claus A M; Lamb, Don C

    2012-03-01

    Single-pair Förster resonance energy transfer (spFRET) experiments using single-molecule burst analysis on a confocal microscope are an ideal tool to measure inter- and intramolecular distances and dynamics on the nanoscale. Different techniques have been developed to maximize the amount of information available in spFRET burst analysis experiments. Multiparameter fluorescence detection (MFD) is used to monitor a variety of fluorescence parameters simultaneously and pulsed interleaved excitation (PIE) employs direct excitation of the acceptor to probe its presence and photoactivity. To calculate accurate FRET efficiencies from spFRET experiments with MFD or PIE, several calibration measurements are usually required. Herein, we demonstrate that by combining MFD with PIE information regarding all calibration factors as well as an accurate determination of spFRET histograms can be performed in a single measurement. In addition, the quality of overlap of the different detection volumes as well as the detection of acceptor photophysics can be investigated with MFD-PIE. Bursts containing acceptor photobleaching can be identified and excluded from further investigation while bursts that contain FRET dynamics are unaffected by this analysis. We have employed MFD-PIE to accurately analyze the effects of nucleotides and substrate on the interdomain separation in DnaK, the major bacterial heat shock protein 70 (Hsp70). The interdomain distance increases from 47 Å in the ATP-bound state to 84 Å in the ADP-bound state and slightly contracts to 77 Å when a substrate is bound. This is in contrast to what was observed for the mitochondrial member of the Hsp70s, Ssc1, supporting the notion of evolutionary specialization of Hsp70s for different cellular functions in different organisms and cell organelles.

  12. Accurate Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative Humidity.

    PubMed

    Rovelli, Grazia; Miles, Rachael E H; Reid, Jonathan P; Clegg, Simon L

    2016-06-30

    Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations that account for both the heat and mass transport governing the droplet evaporation kinetics, these measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e., the variations with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water activity (from >0.99 to, in principle, <0.05) on time scales of <10 s for droplets containing involatile or volatile solutes. The approach is benchmarked for binary and ternary inorganic solution aerosols with typical uncertainties in water activity of <±0.2% at water activities >0.9 and ∼±1% below 80% RH, and maximum uncertainties in diameter growth factor of ±0.7%. For all of the inorganic systems examined, the time-dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1).

  13. A general way for quantitative magnetic measurement by transmitted electrons

    PubMed Central

    Song, Dongsheng; Li, Gen; Cai, Jianwang; Zhu, Jing

    2016-01-01

    EMCD (electron magnetic circular dichroism) technique opens a new door to explore magnetic properties by transmitted electrons. The recently developed site-specific EMCD technique makes it possible to obtain rich magnetic information from the Fe atoms sited at nonequivalent crystallographic planes in NiFe2O4, however it is based on a critical demand for the crystallographic structure of the testing sample. Here, we have further improved and tested the method for quantitative site-specific magnetic measurement applicable for more complex crystallographic structure by using the effective dynamical diffraction effects (general routine for selecting proper diffraction conditions, making use of the asymmetry of dynamical diffraction for design of experimental geometry and quantitative measurement, etc), and taken yttrium iron garnet (Y3Fe5O12, YIG) with more complex crystallographic structure as an example to demonstrate its applicability. As a result, the intrinsic magnetic circular dichroism signals, spin and orbital magnetic moment of iron with site-specific are quantitatively determined. The method will further promote the development of quantitative magnetic measurement with high spatial resolution by transmitted electrons. PMID:26726959

  14. Note: long range and accurate measurement of deep trench microstructures by a specialized scanning tunneling microscope.

    PubMed

    Ju, Bing-Feng; Chen, Yuan-Liu; Zhang, Wei; Zhu, Wule; Jin, Chao; Fang, F Z

    2012-05-01

    A compact but practical scanning tunneling microscope (STM) with high aspect ratio and high depth capability has been specially developed. Long range scanning mechanism with tilt-adjustment stage is adopted for the purpose of adjusting the probe-sample relative angle to compensate the non-parallel effects. A periodical trench microstructure with a pitch of 10 μm has been successfully imaged with a long scanning range up to 2.0 mm. More innovatively, a deep trench with depth and step height of 23.0 μm has also been successfully measured, and slope angle of the sidewall can approximately achieve 67°. The probe can continuously climb the high step and exploring the trench bottom without tip crashing. The new STM could perform long range measurement for the deep trench and high step surfaces without image distortion. It enables accurate measurement and quality control of periodical trench microstructures.

  15. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area1

    PubMed Central

    Easlon, Hsien Ming; Bloom, Arnold J.

    2014-01-01

    • Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images. PMID:25202639

  16. EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture.

    PubMed

    Armengaud, Patrick; Zambaux, Kevin; Hills, Adrian; Sulpice, Ronan; Pattison, Richard J; Blatt, Michael R; Amtmann, Anna

    2009-03-01

    The root system is essential for the growth and development of plants. In addition to anchoring the plant in the ground, it is the site of uptake of water and minerals from the soil. Plant root systems show an astonishing plasticity in their architecture, which allows for optimal exploitation of diverse soil structures and conditions. The signalling pathways that enable plants to sense and respond to changes in soil conditions, in particular nutrient supply, are a topic of intensive research, and root system architecture (RSA) is an important and obvious phenotypic output. At present, the quantitative description of RSA is labour intensive and time consuming, even using the currently available software, and the lack of a fast RSA measuring tool hampers forward and quantitative genetics studies. Here, we describe EZ-Rhizo: a Windows-integrated and semi-automated computer program designed to detect and quantify multiple RSA parameters from plants growing on a solid support medium. The method is non-invasive, enabling the user to follow RSA development over time. We have successfully applied EZ-Rhizo to evaluate natural variation in RSA across 23 Arabidopsis thaliana accessions, and have identified new RSA determinants as a basis for future quantitative trait locus (QTL) analysis.

  17. Multiple-frequency continuous wave ultrasonic system for accurate distance measurement

    NASA Astrophysics Data System (ADS)

    Huang, C. F.; Young, M. S.; Li, Y. C.

    1999-02-01

    A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.

  18. Fiddler crabs accurately measure two-dimensional distance over three-dimensional terrain.

    PubMed

    Walls, Michael L; Layne, John E

    2009-10-01

    Foraging fiddler crabs (Uca spp.) monitor the location of, and are able to return to, their burrows by employing path integration. This requires them to accurately measure both the directions and distances of their locomotory movements. Even though most fiddler crabs inhabit relatively flat terrain, they must cope with vertical features of their environment, such as sloping beaches, mounds and shells, which may represent significant obstacles. To determine whether fiddler crabs can successfully perform path integration among such three-dimensional obstacles, we tested their ability to measure distance while we imposed a vertical detour. By inserting a large hill in the homeward path of foraging crabs we show that fiddler crabs can cope with vertical detours: they accurately travel the correct horizontal distance, despite the fact that the shape of the hill forces them to change their gait from what would be used on flat ground. Our results demonstrate a flexible path integrator capable of measuring, and either integrating or discarding, the vertical dimension.

  19. Earth's field NMR flow meter: preliminary quantitative measurements.

    PubMed

    Fridjonsson, Einar O; Stanwix, Paul L; Johns, Michael L

    2014-08-01

    In this paper we demonstrate the use of Earth's field NMR (EF NMR) combined with a pre-polarising permanent magnet for measuring fast fluid velocities. This time of flight measurement protocol has a considerable history in the literature; here we demonstrate that it is quantitative when employing the Earth's magnetic field for signal detection. NMR signal intensities are measured as a function of flow rate (0-1m/s) and separation distance between the permanent magnet and the EF NMR signal detection. These data are quantitatively described by a flow model, ultimately featuring no free parameters, that accounts for NMR signal modulation due to residence time inside the pre-polarising magnet, between the pre-polarising magnet and the detection RF coil and inside the detection coil respectively. The methodology is subsequently demonstrated with a metallic pipe in the pre-polarising region.

  20. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  1. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  2. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  3. Accurate Measurements of Multiple-Bond 13C- 1H Coupling Constants from Phase-Sensitive 2D INEPT Spectra

    NASA Astrophysics Data System (ADS)

    Ding, Keyang

    1999-10-01

    Measurements of multiple-bond 13C-1H coupling constants are of great interest for the assignment of nonprotonated 13C resonances and the elucidation of molecular conformation in solution. Usually, the heteronuclear multiple-bond coupling constants were measured either by the JCH splittings mostly in selective 2D spectra or in 3D spectra, which are time consuming, or by the cross peak intensity analysis in 2D quantitative heteronuclear J correlation spectra (1994, G. Zhu, A. Renwick, and A. Bax, J. Magn. Reson. A 110, 257; 1994, A. Bax, G. W. Vuister, S. Grzesiek, F. Delaglio, A. C. Wang, R. Tschudin, and G. Zhu, Methods Enzymol. 239, 79.), which suffer from the accuracy problem caused by the signal-to-noise ratio and the nonpure absorptive peak patterns. Concerted incrementation of the duration for developing proton antiphase magnetization with respect to carbon-13 and the evolution time for proton chemical shift in different steps in a modified INEPT pulse sequence provides a new method for accurate measurements of heteronuclear multiple-bond coupling constants in a single 2D experiment.

  4. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Utku, Cuneyt; Tarkocin, Yalcin; LeVine, David M.

    2010-01-01

    This report describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz that is at the center of the L-Sand radiometric protected frequency spectrum. Aquarius will be sensing the sea surface salinity from space in this band. The objective of the project is to refine the model function for the dielectric constant as a function of salinity and temperature so that remote sensing measurements can be made with the accuracy needed to meet the measurement goals (0.2 psu) of the Aquarius mission. The measurements were made, using a microwave cavity operated in the transmission configuration. The cavity's temperature was accurately regulated to 0.02 C by immersing it in a temperature controlled bath of distilled water and ethanol glycol. Seawater had been purchased from Ocean Scientific International Limited (OS1L) at salinities of 30, 35 and 38 psu. Measurements of these seawater samples were then made over a range of temperatures, from l0 C to 35 C in 5 C intervals. Repeated measurements were made at each temperature and salinity, Mean values and standard deviations were then computed. Total error budgets indicated that the real and imaginary parts of the dielectric constant had a relative accuracy of about l%.

  5. Accurate Measurement of the in vivo Ammonium Concentration in Saccharomyces cerevisiae.

    PubMed

    Cueto-Rojas, Hugo F; Maleki Seifar, Reza; Ten Pierick, Angela; Heijnen, Sef J; Wahl, Aljoscha

    2016-04-23

    Ammonium (NH₄⁺) is the most common N-source for yeast fermentations, and N-limitation is frequently applied to reduce growth and increase product yields. While there is significant molecular knowledge on NH₄⁺ transport and assimilation, there have been few attempts to measure the in vivo concentration of this metabolite. In this article, we present a sensitive and accurate analytical method to quantify the in vivo intracellular ammonium concentration in Saccharomyces cerevisiae based on standard rapid sampling and metabolomics techniques. The method validation experiments required the development of a proper sample processing protocol to minimize ammonium production/consumption during biomass extraction by assessing the impact of amino acid degradation-an element that is often overlooked. The resulting cold chloroform metabolite extraction method, together with quantification using ultra high performance liquid chromatography-isotope dilution mass spectrometry (UHPLC-IDMS), was not only more sensitive than most of the existing methods but also more accurate than methods that use electrodes, enzymatic reactions, or boiling water or boiling ethanol biomass extraction because it minimized ammonium consumption/production during sampling processing and interference from other metabolites in the quantification of intracellular ammonium. Finally, our validation experiments showed that other metabolites such as pyruvate or 2-oxoglutarate (αKG) need to be extracted with cold chloroform to avoid measurements being biased by the degradation of other metabolites (e.g., amino acids).

  6. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study1234

    PubMed Central

    Harnly, James

    2016-01-01

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical for establishing relations between diet and health. There are as many as 50,000 secondary metabolites that may influence human health. Their structural and chemical diversity presents a challenge to analytical chemistry. With respect to flavonoids, putative identification is accessible, but positive identification and quantification are limited by the lack of standards. Quantification has been tested with use of both nonspecific and specific methods. Nonspecific methods, which include antioxidant capacity methods, fail to provide information on the measured components, suffer from numerous interferences, are not equatable, and are unsuitable for health research. Specific methods, such as LC with diode array and mass spectrometric detection, require the use of internal standards and relative molar response factors. These methods are relatively expensive and require a high level of expertise and experimental verification; however, they represent the only suitable means of relating health outcomes to specific dietary components. PMID:26980821

  7. Accurate size measurement of monosize calibration spheres by differential mobility analysis

    SciTech Connect

    Mulholland, George W.; Fernandez, Marco

    1998-11-24

    A differential mobility analyzer was used to measure the mean particle size of three monosize suspensions of polystyrene spheres in water. Key features of the experiment to minimize the uncertainty in the results include developing a recirculating flow to ensure equal flows into and out of the classifier, an accurate divider circuit for calibrating the electrode voltage, and use of the 100.7 nm NIST SRM for calibrating the flow of the classifier. The measured average sizes and expanded uncertainties with a coverage factor of 2 are 92.4 nm{+-}1.1 nm, 126.9 nm{+-}1.4 nm, and 217.7 nm{+-}3.4 nm. These calibration sizes were characterized by NIST to improve the calibration of scanning surface inspection systems.

  8. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study.

    PubMed

    Harnly, James

    2016-03-01

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical for establishing relations between diet and health. There are as many as 50,000 secondary metabolites that may influence human health. Their structural and chemical diversity presents a challenge to analytical chemistry. With respect to flavonoids, putative identification is accessible, but positive identification and quantification are limited by the lack of standards. Quantification has been tested with use of both nonspecific and specific methods. Nonspecific methods, which include antioxidant capacity methods, fail to provide information on the measured components, suffer from numerous interferences, are not equatable, and are unsuitable for health research. Specific methods, such as LC with diode array and mass spectrometric detection, require the use of internal standards and relative molar response factors. These methods are relatively expensive and require a high level of expertise and experimental verification; however, they represent the only suitable means of relating health outcomes to specific dietary components.

  9. A solution for measuring accurate reaction time to visual stimuli realized with a programmable microcontroller.

    PubMed

    Ohyanagi, Toshio; Sengoku, Yasuhito

    2010-02-01

    This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.

  10. Home Circadian Phase Assessments with Measures of Compliance Yield Accurate Dim Light Melatonin Onsets

    PubMed Central

    Burgess, Helen J.; Wyatt, James K.; Park, Margaret; Fogg, Louis F.

    2015-01-01

    Study Objectives: There is a need for the accurate assessment of circadian phase outside of the clinic/laboratory, particularly with the gold standard dim light melatonin onset (DLMO). We tested a novel kit designed to assist in saliva sampling at home for later determination of the DLMO. The home kit includes objective measures of compliance to the requirements for dim light and half-hourly saliva sampling. Design: Participants were randomized to one of two 10-day protocols. Each protocol consisted of two back-to-back home and laboratory phase assessments in counterbalanced order, separated by a 5-day break. Setting: Laboratory or participants' homes. Participants: Thirty-five healthy adults, age 21–62 y. Interventions: N/A. Measurements and Results: Most participants received at least one 30-sec epoch of light > 50 lux during the home phase assessments (average light intensity 4.5 lux), but on average for < 9 min of the required 8.5 h. Most participants collected every saliva sample within 5 min of the scheduled time. Ninety-two percent of home DLMOs were not affected by light > 50 lux or sampling errors. There was no significant difference between the home and laboratory DLMOs (P > 0.05); on average the home DLMOs occurred 9.6 min before the laboratory DLMOs. The home DLMOs were highly correlated with the laboratory DLMOs (r = 0.91, P < 0.001). Conclusions: Participants were reasonably compliant to the home phase assessment procedures. The good agreement between the home and laboratory dim light melatonin onsets (DLMOs) demonstrates that including objective measures of light exposure and sample timing during home saliva sampling can lead to accurate home DLMOs. Clinical Trial Registration: Circadian Phase Assessments at Home, http://clinicaltrials.gov/show/NCT01487252, NCT01487252. Citation: Burgess HJ, Wyatt JK, Park M, Fogg LF. Home circadian phase assessments with measures of compliance yield accurate dim light melatonin onsets. SLEEP 2015;38(6):889–897

  11. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  12. How accurately will SWOT measurements be able to characterize river discharge?

    NASA Astrophysics Data System (ADS)

    Durand, M.; Alsdorf, D.; Bates, P.; Rodríguez, E.; Andreadis, K.; Clark, E.

    2008-12-01

    The Surface Water and Ocean Topography (SWOT) mission is a swath mapping radar altimeter that would provide new measurements of inland water surface elevation (WSE) for rivers, lakes, wetlands and reservoirs. SWOT has been recommended by the National Research Council Decadal Survey to measure ocean topography as well as WSE over land; the proposed launch date timeframe is between 2013 - 2016. SWOT WSE estimates would provide a source of information for characterizing streamflow globally. In this paper, we evaluate the accuracy of river discharge estimates obtained from SWOT measurements over the Ohio River and eight of its major tributaries within the context of a virtual mission (VM). SWOT VM measurements are obtained by simulation from the hydrodynamic model LISFLOOD, using USGS streamflow gages as boundary conditions and validation data. SWOT measurements are then input into an algorithm to obtain estimates of discharge variations. The algorithm is based on Manning's equation, in which river width and slope are obtained from SWOT, roughness is estimated a priori. Three different algorithms are used to estimate depth. SWOT discharge estimates are compared to the discharge simulated by LISFLOOD. In this way, we are able to characterize the accuracy of SWOT estimates of instantaneous discharge. More specifically, we characterize how SWOT accuracy varies as a function of the river characteristics and contributing area, such as Strahler order. More accurate depth and discharge estimates can be obtained by data assimilation, but will be more computationally expensive.

  13. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements

    PubMed Central

    Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan

    2017-01-01

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ2(q) = [I(q) + const.]/(kq), where I(q) is the scattering intensity as a function of the momentum transfer q; k and const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurement errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors. PMID:28381982

  14. A quantitative measure of phase correlations in density fields

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Shandarin, Sergei F.

    1991-01-01

    A quantitative measure of the phase correlations in a density field is presented based on the location of the maxima of the Fourier components of that field. It is found that this measue can easily detect non-Gaussian behavior either in artificially constructed density fields or those that become non-Gaussian from gravitational clustering of Gaussian initial conditions. It is found that different initial power spectra produce somewhat distinguishable signals, and the signals are robust against sparse sampling.

  15. Quantitative measurement of tissue perfusion and diffusion in vivo.

    PubMed

    Chenevert, T L; Pipe, J G; Williams, D M; Brunberg, J A

    1991-01-01

    Magnetic resonance imaging techniques designed for sensitivity to microscopic motions of water diffusion and blood flow in the capillary network are also exceptionally sensitive to bulk motion properties of the tissue, which may lead to contrast artifact and large quantitative errors. The magnitude of bulk motion error that exists in human brain perfusion/diffusion imaging and the inability of cardiac gating to adequately control this motion are demonstrated by direct measurement of phase stability of voxels localized in the brain. Two methods are introduced to reduce bulk motion phase error. The first, a postprocessing phase correction algorithm, reduces coarse phase error but is inadequate by itself for quantitative perfusion/diffusion MRI. The second method employs orthogonal slice selection gradients to define a column of tissue in the object, from which echoes may be combined in a phase-insensitive manner to measure more reliably the targeted signal attenuation. Applying this acquisition technique and a simplistic model of perfusion and diffusion signal attenuations yields an estimated perfusion fraction of 3.4 +/- 1.1% and diffusion coefficient of 1.1 +/- 0.2 x 10(-5) cm2/s in the white matter of one normal volunteer. Successful separation of perfusion and diffusion effects by this technique is supported in a dynamic study of calf muscle. Periods of normal blood flow, low flow, and reactive hyperemia are clearly distinguished in the quantitative perfusion results, whereas measured diffusion remained nearly constant.

  16. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  17. Accurate label-free reaction kinetics determination using initial rate heat measurements

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  18. Measuring nonlinear oscillations using a very accurate and low-cost linear optical position transducer

    NASA Astrophysics Data System (ADS)

    Donoso, Guillermo; Ladera, Celso L.

    2016-09-01

    An accurate linear optical displacement transducer of about 0.2 mm resolution over a range of ∼40 mm is presented. This device consists of a stack of thin cellulose acetate strips, each strip longitudinally slid ∼0.5 mm over the precedent one so that one end of the stack becomes a stepped wedge of constant step. A narrowed light beam from a white LED orthogonally incident crosses the wedge at a known point, the transmitted intensity being detected with a phototransistor whose emitter is connected to a diode. We present the interesting analytical proof that the voltage across the diode is linearly dependent upon the ordinate of the point where the light beam falls on the wedge, as well as the experimental validation of such a theoretical proof. Applications to nonlinear oscillations are then presented—including the interesting case of a body moving under dry friction, and the more advanced case of an oscillator in a quartic energy potential—whose time-varying positions were accurately measured with our transducer. Our sensing device can resolve the dynamics of an object attached to it with great accuracy and precision at a cost considerably less than that of a linear neutral density wedge. The technique used to assemble the wedge of acetate strips is described.

  19. Quantitative fiber-optic Raman spectroscopy for tissue Raman measurements

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Bergholt, Mads; Zheng, Wei; Huang, Zhiwei

    2014-03-01

    Molecular profiling of tissue using near-infrared (NIR) Raman spectroscopy has shown great promise for in vivo detection and prognostication of cancer. The Raman spectra measured from the tissue generally contain fundamental information about the absolute biomolecular concentrations in tissue and its changes associated with disease transformation. However, producing analogues tissue Raman spectra present a great technical challenge. In this preliminary study, we propose a method to ensure the reproducible tissue Raman measurements and validated with the in vivo Raman spectra (n=150) of inner lip acquired using different laser powers (i.e., 30 and 60 mW). A rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe was utilized for tissue Raman measurements. The investigational results showed that the variations between the spectra measured with different laser powers are almost negligible, facilitating the quantitative analysis of tissue Raman measurements in vivo.

  20. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions.

    PubMed

    Dong, Miao L; Goyal, Kashika G; Worth, Bradley W; Makkar, Sorab S; Calhoun, William R; Bali, Lalit M; Bali, Samir

    2013-08-01

    A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

  1. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions

    NASA Astrophysics Data System (ADS)

    Dong, Miao L.; Goyal, Kashika G.; Worth, Bradley W.; Makkar, Sorab S.; Calhoun, William R.; Bali, Lalit M.; Bali, Samir

    2013-08-01

    A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

  2. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  3. New insights for accurate chemically specific measurements of slow diffusing molecules

    NASA Astrophysics Data System (ADS)

    Hou, Jianbo; Madsen, Louis A.

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using 2H2O and obtain expected results, but we observe crippling artifacts when measuring 1H-glycerol diffusion with the same experimental parameters. A mathematical analysis of 2H2O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration.

  4. Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak?

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Hoffmann, K.-H.

    2004-03-01

    In this case study a complex Otto engine simulation provides data including, but not limited to, effects from losses due to heat conduction, exhaust losses and frictional losses. This data is used as a benchmark to test whether the Novikov engine with heat leak, a simple endoreversible model, can reproduce the complex engine behavior quantitatively by an appropriate choice of model parameters. The reproduction obtained proves to be of high quality.

  5. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    SciTech Connect

    Spiridonov, Maxim; Toebaert, David

    2006-09-10

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes,and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator(typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  6. Root resistance to cavitation is accurately measured using a centrifuge technique.

    PubMed

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change.

  7. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    PubMed

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  8. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis

    NASA Astrophysics Data System (ADS)

    Xu, Z. N.

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  9. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  10. Accurate Measurement of Canal Length during Root Canal Treatment: An In Vivo Study

    PubMed Central

    Sadaf, Durre; Ahmad, Muhammad Zubair

    2015-01-01

    Objectives: To assess the consistency and accuracy of Electronic Apex Locator (EAL) (Root ZXII) in individual canals and its association with other clinical variables. Study Design: Cross-Sectional study. Place of study: Dental section of the Aga Khan University Hospital, Karachi, Pakistan. Materials and Methods: Working length was measured by EAL in 180 patients requiring endodontic therapy in molar and premolar teeth. The effects of clinical variables e.g. gender and pulpal status on the consistency and accuracy of EAL were recorded. Performance of apex locator was considered “Consistent” when the scale bar was stable and moved only in correspondence to the movement of file in the root canal. Accuracy was determined by inserting the file at the working length determined by the EAL and periapical view of radiograph was taken using paralleling technique. Estimated working length was considered accurate when the file tip was located 0-2mm short of the radiographic apex. If the file was overextended from the radiographic apex, it showed dysfunction of the EAL. Results: Consistency of EAL was found 97.6% in distobuccal canals, 91.1% in palatal canals, 73.7% in mesiolingual canals, 83.3% in mesiobuccal and 80.2% in distal canals. Accuracy of EAL was 91.4% in mesiolingual canal, 92% in mesiobuccal, and 90.2% in Palatal and 93.2% in distal canal. Conclusion: Consistency of electronic apex locator vary in different canals, however consistent measurements are highly accurate. No significant association was found between other clinical variables with the consistency and accuracy of EAL.

  11. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  12. The accurate measurement of second virial coefficients using self-interaction chromatography: experimental considerations.

    PubMed

    Quigley, A; Heng, J Y Y; Liddell, J M; Williams, D R

    2013-11-01

    Measurement of B22, the second virial coefficient, is an important technique for describing the solution behaviour of proteins, especially as it relates to precipitation, aggregation and crystallisation phenomena. This paper describes the best practise for calculating B22 values from self-interaction chromatograms (SIC) for aqueous protein solutions. Detailed analysis of SIC peak shapes for lysozyme shows that non-Gaussian peaks are commonly encountered for SIC, with typical peak asymmetries of 10%. This asymmetry reflects a non-linear chromatographic retention process, in this case heterogeneity of the protein-protein interactions. Therefore, it is important to use the centre of mass calculations for determining accurate retention volumes and thus B22 values. Empirical peak maximum chromatogram analysis, often reported in the literature, can result in errors of up to 50% in B22 values. A methodology is reported here for determining both the mean and the variance in B22 from SIC experiments, includes a correction for normal longitudinal peak broadening. The variance in B22 due to chemical effects is quantified statistically and is a measure of the heterogeneity of protein-protein interactions in solution. In the case of lysozyme, a wide range of B22 values are measured which can vary significantly from the average B22 values.

  13. Stratus optical coherence tomogram III: a novel, reliable and accurate way to measure corneal thickness.

    PubMed

    Madgula, Indira M; Kotta, Satish

    2007-01-01

    The commercially available optical coherence tomogram (Stratus OCT III) designed for posterior segment imaging can be used for central corneal thickness (CCT) measurement. The aim of the study was to determine the accuracy and reliability of CCT measurements using Stratus OCT III versus ultrasound pachymetry. CCT using Stratus OCT III (CCT oct) was taken and averaged. The focusing system had to be defocused near the maximum to relay the image of the OCT beam onto the cornea. CCT was then determined using the ultrasound pachymeter (CCT usg). Thirty white volunteers (12 male, 18 female) participated in this study. The mean CCToct was 522.33+/-34.44 microns. The mean CCTusg was 547.37+/-33.08 microns. The mean differences between CCTusg and CCToct was 25.04+/-11.67. CCT usg was found to be highly correlated with CCToct (P < 0.001) The relation can be represented by the equation. CCToct = 0.98 (CCTusg) - 13.9. The Stratus OCT III gave reliable readings of CCT and is a novel, reliable and accurate way to measure CCT.

  14. Extracting accurate strain measurements in bone mechanics: A critical review of current methods.

    PubMed

    Grassi, Lorenzo; Isaksson, Hanna

    2015-10-01

    Osteoporosis related fractures are a social burden that advocates for more accurate fracture prediction methods. Mechanistic methods, e.g. finite element models, have been proposed as a tool to better predict bone mechanical behaviour and strength. However, there is little consensus about the optimal constitutive law to describe bone as a material. Extracting reliable and relevant strain data from experimental tests is of fundamental importance to better understand bone mechanical properties, and to validate numerical models. Several techniques have been used to measure strain in experimental mechanics, with substantial differences in terms of accuracy, precision, time- and length-scale. Each technique presents upsides and downsides that must be carefully evaluated when designing the experiment. Moreover, additional complexities are often encountered when applying such strain measurement techniques to bone, due to its complex composite structure. This review of literature examined the four most commonly adopted methods for strain measurements (strain gauges, fibre Bragg grating sensors, digital image correlation, and digital volume correlation), with a focus on studies with bone as a substrate material, at the organ and tissue level. For each of them the working principles, a summary of the main applications to bone mechanics at the organ- and tissue-level, and a list of pros and cons are provided.

  15. Indirect viscosimetric method is less accurate than ektacytometry for the measurement of red blood cell deformability.

    PubMed

    Vent-Schmidt, Jens; Waltz, Xavier; Pichon, Aurélien; Hardy-Dessources, Marie-Dominique; Romana, Marc; Connes, Philippe

    2015-01-01

    The aim of this study was to test the accuracy of viscosimetric method to estimate the red blood cell (RBC) deformability properties. Thirty-three subjects were enrolled in this study: 6 healthy subjects (AA), 11 patients with sickle cell-hemoglobin C disease (SC) and 16 patients with sickle cell anemia (SS). Two methods were used to assess RBC deformability: 1) indirect viscosimetric method and 2) ektacytometry. The indirect viscosimetric method was based on the Dintenfass equation where blood viscosity, plasma viscosity and hematocrit are measured and used to calculate an index of RBC rigidity (Tk index). The RBC deformability/rigidity of the three groups was compared using the two methods. Tk index was not different between SS and SC patients and the two groups had higher values than AA group. When ektacytometry was used, RBC deformability was lower in SS and SC groups compared to the AA group and SS and SC patients were different. Although the two measures of RBC deformability were correlated, the association was not very high. Bland and Altman analysis demonstrated a 3.25 bias suggesting a slight difference between the two methods. In addition, the limit of agreement represented 28% (>15%) of the mean values of RBC deformability, showing no interchangeability between the two methods. In conclusion, measuring RBC deformability by indirect viscosimetry is less accurate than by ektacytometry, which is considered the gold standard.

  16. An accurate optical technique for measuring the nuclear polarisation of 3He gas

    NASA Astrophysics Data System (ADS)

    Talbot, C.; Batz, M.; Nacher, P.-J.; Tastevin, G.

    2011-06-01

    In the metastability exchange optical pumping cells of our on-site production unit and of our other experimental set-ups, we use a light absorption technique to measure the 3He nuclear polarisation. It involves weak probe beams at 1083 nm, that are either perpendicular or parallel to the magnetic field and cell axis, with suitable light polarisations. When metastability exchange collisions control the populations of the sublevels in the 23S state, absolute values of the 3He ground state nuclear polarisation are directly inferred from the ratio of the absorption rates measured for these probe beams. Our report focuses on the transverse detection scheme for which this ratio, measured at low magnetic field for σ and π light polarisations, hardly depends on gas pressure or the presence of an intense pump beam. This technique has been systematically tested both in pure 3He and isotopic mixtures and it is routinely used for accurate control of the optical pumping efficiency as well as for calibration of the NMR system.

  17. Quantitative evaluation of magnetic immunoassay with remanence measurement

    NASA Astrophysics Data System (ADS)

    Enpuku, K.; Soejima, K.; Nishimoto, T.; Kuma, H.; Hamasaki, N.; Tsukamoto, A.; Saitoh, K.; Kandori, A.

    2006-05-01

    Magnetic immunoassays utilizing magnetic markers and a high -Tc SQUID have been performed. The marker was designed so as to generate remanence, and its remanence field was measured with the SQUID. The SQUID system was developed so as to measure 12 samples in one measurement sequence. We first conducted a detection of antigen called human IgE using IgE standard solution, and showed the detection of IgE down to 2 attomol. The binding process between IgE and the marker could be semi-quantitatively explained with the Langmuir-type adsorption model. We also measured IgE in human serums, and demonstrated the usefulness of the present method for practical diagnosis.

  18. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  19. A quantitative method for measuring the quality of history matches

    SciTech Connect

    Shaw, T.S.; Knapp, R.M.

    1997-08-01

    History matching can be an efficient tool for reservoir characterization. A {open_quotes}good{close_quotes} history matching job can generate reliable reservoir parameters. However, reservoir engineers are often frustrated when they try to select a {open_quotes}better{close_quotes} match from a series of history matching runs. Without a quantitative measurement, it is always difficult to tell the difference between a {open_quotes}good{close_quotes} and a {open_quotes}better{close_quotes} matches. For this reason, we need a quantitative method for testing the quality of matches. This paper presents a method for such a purpose. The method uses three statistical indices to (1) test shape conformity, (2) examine bias errors, and (3) measure magnitude of deviation. The shape conformity test insures that the shape of a simulated curve matches that of a historical curve. Examining bias errors assures that model reservoir parameters have been calibrated to that of a real reservoir. Measuring the magnitude of deviation assures that the difference between the model and the real reservoir parameters is minimized. The method was first tested on a hypothetical model and then applied to published field studies. The results showed that the method can efficiently measure the quality of matches. It also showed that the method can serve as a diagnostic tool for calibrating reservoir parameters during history matching.

  20. CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

    SciTech Connect

    Haugh, M J; Charest, M R; Ross, P W; Lee, J J; Schneider, M B; Palmer, N E; Teruya, A T

    2012-02-16

    National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

  1. Accurate, in vivo NIR measurement of skeletal muscle oxygenation through fat

    NASA Astrophysics Data System (ADS)

    Jin, Chunguang; Zou, Fengmei; Ellerby, Gwenn E. C.; Scott, Peter; Peshlov, Boyan; Soller, Babs R.

    2010-02-01

    Noninvasive near infrared (NIR) spectroscopic measurement of muscle oxygenation requires the penetration of light through overlying skin and fat layers. We have previously demonstrated a dual-light source design and orthogonalization algorithm that corrects for inference from skin absorption and fat scattering. To achieve accurate muscle oxygen saturation (SmO2) measurement, one must select the appropriate source-detector distance (SD) to completely penetrate the fat layer. Methods: Six healthy subjects were supine for 15min to normalize tissue oxygenation across the body. NIR spectra were collected from the calf, shoulder, lower and upper thigh muscles with long SD distances of 30mm, 35mm, 40mm and 45mm. Spectral preprocessing with the short SD (3mm) spectrum preceded SmO2 calculation with a Taylor series expansion method. Three-way ANOVA was used to compare SmO2 values over varying fat thickness, subjects and SD distances. Results: Overlying fat layers varied in thickness from 4.9mm to 19.6mm across all subjects. SmO2 measured at the four locations were comparable for each subject (p=0.133), regardless of fat thickness and SD distance. SmO2 (mean+/-std dev) measured at calf, shoulder, low and high thigh were 62+/-3%, 59+/-8%, 61+/-2%, 61+/-4% respectively for SD distance of 30mm. In these subjects no significant influence of SD was observed (p=0.948). Conclusions: The results indicate that for our sensor design a 30mm SD is sufficient to penetrate through a 19mm fat layer and that orthogonalization with short SD effectively removed spectral interference from fat to result in a reproducible determination of SmO2.

  2. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy.

    PubMed

    Baalousha, M; Prasad, A; Lead, J R

    2014-05-01

    Microscopy techniques are indispensable to the nanoanalytical toolbox and can provide accurate information on the number size distribution and number concentration of nanoparticles (NPs) at low concentrations (ca. ppt to ppb range) and small sizes (ca. <20 nm). However, the high capabilities of microscopy techniques are limited by the traditional sample preparation based on drying a small volume of suspension of NPs on a microscopy substrate. This method is limited by low recovery of NPs (ca. <10%), formation of aggregates during the drying process, and thus, the complete misrepresentation of the NP suspensions under consideration. This paper presents a validated quantitative sampling technique for atomic force microscopy (AFM) that overcomes the above-mentioned shortcomings and allows full recovery and representativeness of the NPs under consideration by forcing the NPs into the substrate via ultracentrifugation and strongly attaches the NPs to the substrate by surface functionalization of the substrate or by adding cations to the NP suspension. The high efficiency of the analysis is demonstrated by the uniformity of the NP distribution on the substrate (that is low variability between the number of NPs counted on different images on different areas of the substrate), the high recovery of the NPs up to 71%) and the good correlation (R > 0.95) between the mass and number concentrations. Therefore, for the first time, we developed a validated quantitative sampling technique that enables the use of the full capabilities of microscopy tools to quantitatively and accurately determine the number size distribution and number concentration of NPs at environmentally relevant low concentrations (i.e. 0.34-100 ppb). This approach is of high environmental relevance and can be applied widely in environmental nanoscience and nanotoxicology for (i) measuring the number concentration dose in nanotoxicological studies and (ii) accurately measuring the number size distribution of

  3. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers

    PubMed Central

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-01-01

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time. PMID:27941705

  4. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering

    NASA Astrophysics Data System (ADS)

    Moskalensky, Alexander E.; Yurkin, Maxim A.; Konokhova, Anastasiya I.; Strokotov, Dmitry I.; Nekrasov, Vyacheslav M.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  5. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers.

    PubMed

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-12-09

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.

  6. Wear characteristics of UHMW polyethylene: a method for accurately measuring extremely low wear rates.

    PubMed

    McKellop, H; Clarke, I C; Markolf, K L; Amstutz, H C

    1978-11-01

    The wear of UHMW polyethylene bearing against 316 stainless steel or cobalt chrome alloy was measured using a 12-channel wear tester especially developed for the evaluation of candidate materials for prosthetic joints. The coefficient of friction and wear rate was determined as a function of lubricant, contact stress, and metallic surface roughness in tests lasting two to three million cycles, the equivalent of several years' use of a prosthesis. Wear was determined from the weight loss of the polyethylene specimens corrected for the effect of fluid absorption. The friction and wear processes in blood serum differed markedly from those in saline solution or distilled water. Only serum lubrication produced wear surfaces resembling those observed on removed prostheses. The experimental method provided a very accurate reproducible measurement of polyethylene wear. The long-term wear rates were proportional to load and sliding distance and were much lower than expected from previously published data. Although the polyethylene wear rate increased with increasing surface roughness, wear was not severe except with very coarse metal surfaces. The data obtained in these studies forms a basis for the subsequent comparative evaluation of potentially superior materials for prosthetic joints.

  7. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, B.; Hut, R.; Van De Giesen, N.

    2012-12-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the $150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  8. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  9. Accurate measurement of interferometer group delay using field-compensated scanning white light interferometer.

    PubMed

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2010-10-10

    Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interferometer calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region.

  10. Cleavage Entropy as Quantitative Measure of Protease Specificity

    PubMed Central

    Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Margreiter, Michael A.; Spitzer, Gudrun M.; Wallnoefer, Hannes G.; Liedl, Klaus R.

    2013-01-01

    A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity. PMID:23637583

  11. Cleavage entropy as quantitative measure of protease specificity.

    PubMed

    Fuchs, Julian E; von Grafenstein, Susanne; Huber, Roland G; Margreiter, Michael A; Spitzer, Gudrun M; Wallnoefer, Hannes G; Liedl, Klaus R

    2013-04-01

    A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity.

  12. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system.

    PubMed

    Koubar, Khodor; Bekaert, Virgile; Brasse, David; Laquerriere, Patrice

    2015-06-01

    Bone mineral density plays an important role in the determination of bone strength and fracture risks. Consequently, it is very important to obtain accurate bone mineral density measurements. The microcomputerized tomography system provides 3D information about the architectural properties of bone. Quantitative analysis accuracy is decreased by the presence of artefacts in the reconstructed images, mainly due to beam hardening artefacts (such as cupping artefacts). In this paper, we introduced a new beam hardening correction method based on a postreconstruction technique performed with the use of off-line water and bone linearization curves experimentally calculated aiming to take into account the nonhomogeneity in the scanned animal. In order to evaluate the mass correction rate, calibration line has been carried out to convert the reconstructed linear attenuation coefficient into bone masses. The presented correction method was then applied on a multimaterial cylindrical phantom and on mouse skeleton images. Mass correction rate up to 18% between uncorrected and corrected images were obtained as well as a remarkable improvement of a calculated mouse femur mass has been noticed. Results were also compared to those obtained when using the simple water linearization technique which does not take into account the nonhomogeneity in the object.

  13. Quantitative measurement of red blood cell central pallor and hypochromasia.

    PubMed

    Bacus, J W

    1980-06-01

    A quantitataive definition and techniques of measurement for central pallor of red blood cells are proposed. These are based on high-resolution measurements of absorbance across the center of the cell. Thus, the measurements reflect both variations in cell thickness and hemoglobin concentration. Although contributions of thickness and concentration may differ in individual cells, to a first approximation, a specific cell may be considered as having a similar concentration of hemoglobin throughout, and thus the major contribution to the central pallor is that due to the difference in thickness between the edges of the cell and the center. The definition proposed expresses central pallor as the percentage volume of indentation, comparing the red cell to a disc of uniform absorbance equal to the maximum found at the cell edges. Population distributions of central pallor then provide a basis for quantitation of hypochromasia. The mean and standard deviation of such distributions are proposed as quantitative descriptors. Sample distributions from 27 normal persons, 8 patients with spherocytic anemia and 26 patients with iron deficiency anemia were studied.

  14. Quantitative colorimetric measurement of cellulose degradation under microbial culture conditions.

    PubMed

    Haft, Rembrandt J F; Gardner, Jeffrey G; Keating, David H

    2012-04-01

    We have developed a simple, rapid, quantitative colorimetric assay to measure cellulose degradation based on the absorbance shift of Congo red dye bound to soluble cellulose. We term this assay "Congo Red Analysis of Cellulose Concentration," or "CRACC." CRACC can be performed directly in culture media, including rich and defined media containing monosaccharides or disaccharides (such as glucose and cellobiose). We show example experiments from our laboratory that demonstrate the utility of CRACC in probing enzyme kinetics, quantifying cellulase secretion, and assessing the physiology of cellulolytic organisms. CRACC complements existing methods to assay cellulose degradation, and we discuss its utility for a variety of applications.

  15. Dynamic holographic interferometry by photorefractive crystals for quantitative deformation measurements.

    PubMed

    Pouet, B; Krishnaswamy, S

    1996-02-10

    A holographic interferometer that uses two-wave mixing in a photorefractive (Bi12SiO20) crystal under an applied ac field is described. The interferometer uses a repetitive sequence of separate record and readout times to obtain quasi real-time holographic interferograms of vibrating objects. It is shown that a good signal-to-noise ratio of the interferometer is obtained by turning off the object illumination and the applied ac field during readout of the hologram. The good signal-to-noise ratio of the resulting holographic interferograms enables phase measurement, which allows for quantitative deformation analysis.

  16. Advanced quantitative measurement methodology in physics education research

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    parts. The first part involves the comparison between item response theory (IRT) and classical test theory (CTT). The two theories both provide test item statistics for educational inferences and decisions. The two theories are both applied to Force Concept Inventory data obtained from students enrolled in The Ohio State University. Effort was made to examine the similarity and difference between the two theories, and the possible explanation to the difference. The study suggests that item response theory is more sensitive to the context and conceptual features of the test items than classical test theory. The IRT parameters provide a better measure than CTT parameters for the educational audience to investigate item features. The second part of the dissertation is on the measure of association for binary data. In quantitative assessment, binary data is often encountered because of its simplicity. The current popular measures of association fail under some extremely unbalanced conditions. However, the occurrence of these conditions is not rare in educational data. Two popular association measures, the Pearson's correlation and the tetrachoric correlation are examined. A new method, model based association is introduced, and an educational testing constraint is discussed. The existing popular methods are compared with the model based association measure with and without the constraint. Connections between the value of association and the context and conceptual features of questions are discussed in detail. Results show that all the methods have their advantages and disadvantages. Special attention to the test and data conditions is necessary. The last part of the dissertation is focused on exploratory factor analysis (EFA). The theoretical advantages of EFA are discussed. Typical misunderstanding and misusage of EFA are explored. The EFA is performed on Lawson's Classroom Test of Scientific Reasoning (LCTSR), a widely used assessment on scientific reasoning skills. The

  17. Infectious titres of sheep scrapie and bovine spongiform encephalopathy agents cannot be accurately predicted from quantitative laboratory test results.

    PubMed

    González, Lorenzo; Thorne, Leigh; Jeffrey, Martin; Martin, Stuart; Spiropoulos, John; Beck, Katy E; Lockey, Richard W; Vickery, Christopher M; Holder, Thomas; Terry, Linda

    2012-11-01

    It is widely accepted that abnormal forms of the prion protein (PrP) are the best surrogate marker for the infectious agent of prion diseases and, in practice, the detection of such disease-associated (PrP(d)) and/or protease-resistant (PrP(res)) forms of PrP is the cornerstone of diagnosis and surveillance of the transmissible spongiform encephalopathies (TSEs). Nevertheless, some studies question the consistent association between infectivity and abnormal PrP detection. To address this discrepancy, 11 brain samples of sheep affected with natural scrapie or experimental bovine spongiform encephalopathy were selected on the basis of the magnitude and predominant types of PrP(d) accumulation, as shown by immunohistochemical (IHC) examination; contra-lateral hemi-brain samples were inoculated at three different dilutions into transgenic mice overexpressing ovine PrP and were also subjected to quantitative analysis by three biochemical tests (BCTs). Six samples gave 'low' infectious titres (10⁶·⁵ to 10⁶·⁷ LD₅₀ g⁻¹) and five gave 'high titres' (10⁸·¹ to ≥ 10⁸·⁷ LD₅₀ g⁻¹) and, with the exception of the Western blot analysis, those two groups tended to correspond with samples with lower PrP(d)/PrP(res) results by IHC/BCTs. However, no statistical association could be confirmed due to high individual sample variability. It is concluded that although detection of abnormal forms of PrP by laboratory methods remains useful to confirm TSE infection, infectivity titres cannot be predicted from quantitative test results, at least for the TSE sources and host PRNP genotypes used in this study. Furthermore, the near inverse correlation between infectious titres and Western blot results (high protease pre-treatment) argues for a dissociation between infectivity and PrP(res).

  18. A cost-effective transparency-based digital imaging for efficient and accurate wound area measurement.

    PubMed

    Li, Pei-Nan; Li, Hong; Wu, Mo-Li; Wang, Shou-Yu; Kong, Qing-You; Zhang, Zhen; Sun, Yuan; Liu, Jia; Lv, De-Cheng

    2012-01-01

    Wound measurement is an objective and direct way to trace the course of wound healing and to evaluate therapeutic efficacy. Nevertheless, the accuracy and efficiency of the current measurement methods need to be improved. Taking the advantages of reliability of transparency tracing and the accuracy of computer-aided digital imaging, a transparency-based digital imaging approach is established, by which data from 340 wound tracing were collected from 6 experimental groups (8 rats/group) at 8 experimental time points (Day 1, 3, 5, 7, 10, 12, 14 and 16) and orderly archived onto a transparency model sheet. This sheet was scanned and its image was saved in JPG form. Since a set of standard area units from 1 mm(2) to 1 cm(2) was integrated into the sheet, the tracing areas in JPG image were measured directly, using the "Magnetic lasso tool" in Adobe Photoshop program. The pixel values/PVs of individual outlined regions were obtained and recorded in an average speed of 27 second/region. All PV data were saved in an excel form and their corresponding areas were calculated simultaneously by the formula of Y (PV of the outlined region)/X (PV of standard area unit) × Z (area of standard unit). It took a researcher less than 3 hours to finish area calculation of 340 regions. In contrast, over 3 hours were expended by three skillful researchers to accomplish the above work with traditional transparency-based method. Moreover, unlike the results obtained traditionally, little variation was found among the data calculated by different persons and the standard area units in different sizes and shapes. Given its accurate, reproductive and efficient properties, this transparency-based digital imaging approach would be of significant values in basic wound healing research and clinical practice.

  19. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  20. Investigation of a diffuse optical measurements-assisted quantitative photoacoustic tomographic method in reflection geometry

    PubMed Central

    Xu, Chen; Kumavor, Patrick D.; Aguirre, Andres

    2012-01-01

    Abstract. Photoacoustic tomography provides the distribution of absorbed optical energy density, which is the product of optical absorption coefficient and optical fluence distribution. We report the experimental investigation of a novel fitting procedure that quantitatively determines the optical absorption coefficient of chromophores. The experimental setup consisted of a hybrid system of a 64-channel photoacoustic imaging system with a frequency-domain diffused optical measurement system. The fitting procedure included a complete photoacoustic forward model and an analytical solution of a target chromophore using the diffusion approximation. The fitting procedure combines the information from the photoacoustic image and the background information from the diffuse optical measurements to minimize the photoacoustic measurements and forward model data and recover the target absorption coefficient quantitatively. 1-cm-cube phantom absorbers of high and low contrasts were imaged at depths of up to 3.0 cm. The fitted absorption coefficient results were at least 80% of their true values. The sensitivities of this fitting procedure to target location, target radius, and background optical properties were also investigated. We found that this fitting procedure was most sensitive to the accurate determination of the target radius and depth. Blood sample in a thin tube of radius 0.58 mm, simulating a blood vessel, was also studied. The photoacoustic images and fitted absorption coefficients are presented. These results demonstrate the clinical potential of this fitting procedure to quantitatively characterize small lesions in breast imaging. PMID:22734743

  1. Enabling high grayscale resolution displays and accurate response time measurements on conventional computers.

    PubMed

    Li, Xiangrui; Lu, Zhong-Lin

    2012-02-29

    Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect

  2. Quantitative Morphology Measures in Galaxies: Ground-Truthing from Simulations

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika T.; Abruzzo, Matthew W.; Dave, Romeel; Thompson, Robert

    2017-01-01

    The process of galaxy assembly is a prevalent question in astronomy; there are a variety of potentially important effects, including baryonic accretion from the intergalactic medium, as well as major galaxy mergers. Recent years have ushered in the development of quantitative measures of morphology such as the Gini coefficient (G), the second-order moment of the brightest quintile of a galaxy’s light (M20), and the concentration (C), asymmetry (A), and clumpiness (S) of galaxies. To investigate the efficacy of these observational methods at identifying major mergers, we have run a series of very high resolution cosmological zoom simulations, and coupled these with 3D Monte Carlo dust radiative transfer. Our methodology is powerful in that it allows us to “observe” the simulation as an observer would, while maintaining detailed knowledge of the true merger history of the galaxy. In this presentation, we will present our main results from our analysis of these quantitative morphology measures, with a particular focus on high-redshift (z>2) systems.

  3. An easy way to measure accurately the direct magnetoelectric voltage coefficient of thin film devices

    NASA Astrophysics Data System (ADS)

    Poullain, Gilles; More-Chevalier, Joris; Cibert, Christophe; Bouregba, Rachid

    2017-01-01

    TbxDy1-xFe2/Pt/Pb(Zrx, Ti1-x)O3 thin films were grown on Pt/TiO2/SiO2/Si substrate by multi-target sputtering. The magnetoelectric voltage coefficient αΗΜΕ was determined at room temperature using a lock-in amplifier. By adding, in series in the circuit, a capacitor of the same value as that of the device under test, we were able to demonstrate that the magnetoelectric device behaves as a voltage source. Furthermore, a simple way to subtract the stray voltage arising from the flow of eddy currents in the measurement set-up, is proposed. This allows the easy and accurate determination of the true magnetoelectric voltage coefficient. A large αΗΜΕ of 8.3 V/cm. Oe was thus obtained for a Terfenol-D/Pt/PZT thin film device, without DC magnetic field nor mechanical resonance.

  4. Mass spectrometry in Earth sciences: the precise and accurate measurement of time.

    PubMed

    Schaltegger, Urs; Wotzlaw, Jörn-Frederik; Ovtcharova, Maria; Chiaradia, Massimo; Spikings, Richard

    2014-01-01

    Precise determinations of the isotopic compositions of a variety of elements is a widely applied tool in Earth sciences. Isotope ratios are used to quantify rates of geological processes that occurred during the previous 4.5 billion years, and also at the present time. An outstanding application is geochronology, which utilizes the production of radiogenic daughter isotopes by the radioactive decay of parent isotopes. Geochronological tools, involving isotopic analysis of selected elements from smallest volumes of minerals by thermal ionization mass spectrometry, provide precise and accurate measurements of time throughout the geological history of our planet over nine orders of magnitude, from the accretion of the proto-planetary disk, to the timing of the last glaciation. This article summarizes the recent efforts of the Isotope Geochemistry, Geochronology and Thermochronology research group at the University of Geneva to advance the U-Pb geochronological tool to achieve unprecedented precision and accuracy, and presents two examples of its application to two significant open questions in Earth sciences: what are the triggers and timescales of volcanic supereruptions, and what were the causes of mass extinctions in the geological past, driven by global climatic and environmental deterioration?

  5. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties.

  6. Integration of an intensified charge-coupled device (ICCD) camera for accurate spectroscopic measurements.

    PubMed

    Peláez, Ramón Javier; Mar, Santiago; Aparicio, Juan Antonio; Belmonte, María Teresa

    2012-08-01

    Intensified charge-coupled devices (ICCD) are used in a great variety of spectroscopic applications, some of them requiring high sensitivity and spectral resolution. The setup, configuration, and featuring of these cameras are fundamental issues in order to acquire high quality spectra. In this work a critical assessment of these detectors is performed and the specific configuration, the optical alignment, featuring, and the dark and shot noise are described and analyzed. Spatial response of the detector usually shows a significant lack of spatial homogeneity and a map of interferences may appear in certain ranges of wavelengths, which damages the quality of the recorded spectra. In this work the spectral resolution and the spatial and spectral sensitivity are also studied. The analysis of the dark current reveals the existence of a smooth but clear spatial dependence. As a final conclusion, the spectra registered with the spectrometer equipped with our ICCD camera allow us to explore and measure accurately spectral line shapes emitted by pulsed plasmas in the visible range and particularly in the ultraviolet (UV) range.

  7. Produced water toxicity tests accurately measure the produced water toxicity in marine environments?

    SciTech Connect

    Douglas, W.S.; Veil, J.A.

    1996-10-01

    U.S. Environmental Protection Agency (EPA) Region VI has issued a general permit for offshore oil and gas discharges to the Gulf of Mexico that places numerical limits on whole effluent toxicity (WEI) for produced water. Recently proposed EPA general permits for other produced water discharges in Regions VI and X also include enforceable numerical limits on WET. Clearly, the industry will be conducting extensive produced water WET testing. Unfortunately, the WET test may not accurately measure the toxicity of the chemical constituents of produced water. Rather the mortality of test organisms may be attributable to (1) the high salinity of produced water, which causes salinity shock to the organisms, or (2) an ionic imbalance caused by excesses or deficiencies of one or more of seawater`s essential ions in the test chambers. Both of these effects are likely to be mitigated in actual offshore discharge settings, where the receiving water will be seawater and substantial dilution will be probable. Thus, the additional salinity of produced water will be rapidly assimilated, and the proper marine ionic balance will be quickly restored. Regulatory authorities should be aware of these factors when interpreting WET test results.

  8. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    NASA Technical Reports Server (NTRS)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  9. Application of an Effective Statistical Technique for an Accurate and Powerful Mining of Quantitative Trait Loci for Rice Aroma Trait

    PubMed Central

    Golestan Hashemi, Farahnaz Sadat; Rafii, Mohd Y.; Ismail, Mohd Razi; Mohamed, Mahmud Tengku Muda; Rahim, Harun A.; Latif, Mohammad Abdul; Aslani, Farzad

    2015-01-01

    When a phenotype of interest is associated with an external/internal covariate, covariate inclusion in quantitative trait loci (QTL) analyses can diminish residual variation and subsequently enhance the ability of QTL detection. In the in vitro synthesis of 2-acetyl-1-pyrroline (2AP), the main fragrance compound in rice, the thermal processing during the Maillard-type reaction between proline and carbohydrate reduction produces a roasted, popcorn-like aroma. Hence, for the first time, we included the proline amino acid, an important precursor of 2AP, as a covariate in our QTL mapping analyses to precisely explore the genetic factors affecting natural variation for rice scent. Consequently, two QTLs were traced on chromosomes 4 and 8. They explained from 20% to 49% of the total aroma phenotypic variance. Additionally, by saturating the interval harboring the major QTL using gene-based primers, a putative allele of fgr (major genetic determinant of fragrance) was mapped in the QTL on the 8th chromosome in the interval RM223-SCU015RM (1.63 cM). These loci supported previous studies of different accessions. Such QTLs can be widely used by breeders in crop improvement programs and for further fine mapping. Moreover, no previous studies and findings were found on simultaneous assessment of the relationship among 2AP, proline and fragrance QTLs. Therefore, our findings can help further our understanding of the metabolomic and genetic basis of 2AP biosynthesis in aromatic rice. PMID:26061689

  10. Quantitative viscoelastic parameters measured by harmonic motion imaging.

    PubMed

    Vappou, Jonathan; Maleke, Caroline; Konofagou, Elisa E

    2009-06-07

    Quantifying the mechanical properties of soft tissues remains a challenging objective in the field of elasticity imaging. In this work, we propose an ultrasound-based method for quantitatively estimating viscoelastic properties, using the amplitude-modulated harmonic motion imaging (HMI) technique. In HMI, an oscillating acoustic radiation force is generated inside the medium by using focused ultrasound and the resulting displacements are measured using an imaging transducer. The proposed approach is a two-step method that uses both the properties of the propagating shear wave and the phase shift between the applied stress and the measured strain in order to infer to the shear storage (G') and shear loss modulus (G''), which refer to the underlying tissue elasticity and viscosity, respectively. The proposed method was first evaluated on numerical phantoms generated by finite-element simulations, where a very good agreement was found between the input and the measured values of G' and G''. Experiments were then performed on three soft tissue-mimicking gel phantoms. HMI measurements were compared to rotational rheometry (dynamic mechanical analysis), and very good agreement was found at the only overlapping frequency (10 Hz) in the estimate of the shear storage modulus G' (14% relative error, averaged p-value of 0.34), whereas poorer agreement was found in G'' (55% relative error, averaged p-value of 0.0007), most likely due to the significantly lower values of G'' of the gel phantoms, posing thus a greater challenge in the sensitivity of the method. Nevertheless, this work proposes an original model-independent ultrasound-based elasticity imaging method that allows for direct, quantitative estimation of tissue viscoelastic properties, together with a validation against mechanical testing.

  11. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data

    PubMed Central

    2010-01-01

    Background Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. Results By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. Conclusion We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene

  12. Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos.

    PubMed

    Araki, Tadashi; Banchhor, Sumit K; Londhe, Narendra D; Ikeda, Nobutaka; Radeva, Petia; Shukla, Devarshi; Saba, Luca; Balestrieri, Antonella; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Suri, Jasjit S

    2016-03-01

    Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm(3), 27.79 ± 10.94 mm(3), 46.44 ± 19.13 mm(3) and 35.92 ± 16.44 mm(3) respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student's t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80%. Out procedure and protocol is along the line with method previously published clinically.

  13. MELIFT - A new device for accurate measurements in a snow rich environment

    NASA Astrophysics Data System (ADS)

    Dorninger, M.

    2012-04-01

    A deep snow pack, remote locations, no external power supply and very low temperatures are often the main ingredients when it comes to the deployment of meteorological stations in mountainous terrain. The accurate position of the sensor related to the snow surface is normally not known. A new device called METLIFT overcomes the problems. WMO recommends a height between 1.2 m and 2 m above ground level for the measurement of air temperature and humidity. The height above ground level is specified to take care of the possible strong vertical temperature and humidity gradients at the lowest layers in the atmosphere. Especially in snow rich and remote locations it may be hardly possible to follow this advice. Therefore most of the meteorological stations in mountainous terrain are situated at mountain tops where strong winds will blow off the snow or in valleys where a daily inspection of the sensors is possible. In other unpopulated mountainous areas, e.g. basins, plateaus, the distance of the sensor to the snow surface is not known or the sensor will be snow-covered. A new device was developed to guarantee the sensor height above surface within the WMO limits in harsh and remote environments. An ultrasonic snow height sensor measures the distance to the snow surface. If it exceeds certain limits due to snow accumulation or snow melt the lift adapts its height accordingly. The prototype of METLIFT has been installed in Lower Austria at an altitude of 1000m. The lift is 6 m high and can pull out for another 4 m. Sensor arms are mounted every meter to allow the connection of additional sensors or to measure a profile of a certain parameter of the lowest 5 m above surface. Sensors can be added easily since cable wiring is provided to each sensor arm. Horizontal winds are measured at 7 m height above surface. METLIFT is independent of external power supply. Three lead gel accumulators recharged by three solar panels provide the energy necessary for the sensors, the data

  14. Quantitative Measurement of Highly Focused Ultrasound Pressure Field by Optical Shadowgraph

    NASA Astrophysics Data System (ADS)

    Miyasaka, R.; Harigane, S.; Yoshizawa, S.; Umemura, S.

    2014-06-01

    In the development of medical ultrasound techniques, fast and accurate pressure field measurement is important. The most common method to measure an ultrasound pressure field is mechanically scanning a hydrophone, which takes a long time and might disturb the acoustic field. In this study, we used an optical shadowgraph method. To perform this method quantitatively, it is important to define the optical propagation length precisely. For this purpose, a holographic diffuser was used as the imaging screen. Combined with a computed tomography (CT) algorithm, a pressure field was reconstructed, and the result was compared with that of hydrophone measurement. By using two shadowgraph data from short and long propagation lengths, the pressure field was successfully reconstructed even at a pressure level for high intensity focused ultrasound (HIFU) treatment.

  15. Quantitative phase measurement for wafer-level optics

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Huang, Lei; Zuo, Chao

    2015-07-01

    Wafer-level-optics now is widely used in smart phone camera, mobile video conferencing or in medical equipment that require tiny cameras. Extracting quantitative phase information has received increased interest in order to quantify the quality of manufactured wafer-level-optics, detect defective devices before packaging, and provide feedback for manufacturing process control, all at the wafer-level for high-throughput microfabrication. We demonstrate two phase imaging methods, digital holographic microscopy (DHM) and Transport-of-Intensity Equation (TIE) to measure the phase of the wafer-level lenses. DHM is a laser-based interferometric method based on interference of two wavefronts. It can perform a phase measurement in a single shot. While a minimum of two measurements of the spatial intensity of the optical wave in closely spaced planes perpendicular to the direction of propagation are needed to do the direct phase retrieval by solving a second-order differential equation, i.e., with a non-iterative deterministic algorithm from intensity measurements using the Transport-of-Intensity Equation (TIE). But TIE is a non-interferometric method, thus can be applied to partial-coherence light. We demonstrated the capability and disability for the two phase measurement methods for wafer-level optics inspection.

  16. Are portable bladder scanning and real-time ultrasound accurate measures of bladder volume in postnatal women?

    PubMed

    Mathew, S; Horne, A W; Murray, L S; Tydeman, G; McKinley, C A

    2007-08-01

    Real-time ultrasound and portable bladder scanners are commonly used instead of catheterisation to determine bladder volumes in postnatal women but it is not known whether these are accurate. Change in bladder volumes measured by ultrasound and portable scanners were compared with actual voided volume (VV) in 100 postnatal women. The VV was on average 41 ml (CI 29 - 54 ml) higher than that measured by ultrasound, and 33 ml (CI 17 - 48 ml) higher than that measured by portable scanners. Portable scanner volumes were 9 ml (CI -8 - 26 ml) higher than those measured by ultrasound. Neither method is an accurate tool for detecting bladder volume in postnatal women.

  17. A new direct absorption measurement for high precision and accurate measurement of water vapor in the UT/LS

    NASA Astrophysics Data System (ADS)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Anderson, J.

    2011-12-01

    Highly accurate and precise water vapor measurements in the upper troposphere and lower stratosphere are critical to understanding the climate feedbacks of water vapor and clouds in that region. However, the continued disagreement among water vapor measurements (~1 - 2 ppmv) are too large to constrain the role of different hydration and dehydration mechanisms operating in the UT/LS, with model validation dependent upon which dataset is chosen. In response to these issues, we present a new instrument for measurement of water vapor in the UT/LS that was flown during the April 2011 MACPEX mission out of Houston, TX. The dual axis instrument combines the heritage and validated accuracy of the Harvard Lyman-alpha instrument with a newly designed direct IR absorption instrument, the Harvard Herriott Hygrometer (HHH). The Lyman-alpha detection axis has flown aboard NASA's WB-57 and ER2 aircraft since 1994, and provides a requisite link between the new HHH instrument and the long history of Harvard water vapor measurements. The instrument utilizes the highly sensitive Lyman-alpha photo-fragment fluorescence detection method; its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. The Harvard Herriott Hygrometer employs a fiber coupled near-IR laser with state-of-the-art electronics to measure water vapor via direct absorption in a spherical Herriott cell of 10 cm length. The instrument demonstrated in-flight precision of 0.1 ppmv (1-sec, 1-sigma) at mixing ratios as low as 5 ppmv with accuracies of 10% based on careful laboratory calibrations and in-flight performance. We present a description of the measurement technique along with our methodology for calibration and details of the measurement uncertainties. The simultaneous utilization of radically different measurement techniques in a single duct in the new Harvard Water Vapor (HWV) instrument allows for the constraint of systematic errors inherent in each technique

  18. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid–Base and Ligand Binding Equilibria of Aquacobalamin

    SciTech Connect

    Johnston, Ryne C.; Zhou, Jing; Smith, Jeremy C.; Parks, Jerry M.

    2016-07-08

    In redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. Moreover, a major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co ligand binding equilibrium constants (Kon/off), pKas and reduction potentials for models of aquacobalamin in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for CoIII, CoII, and CoI species, respectively, and the second model features saturation of each vacant axial coordination site on CoII and CoI species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of

  19. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid–Base and Ligand Binding Equilibria of Aquacobalamin

    DOE PAGES

    Johnston, Ryne C.; Zhou, Jing; Smith, Jeremy C.; ...

    2016-07-08

    In redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. Moreover, a major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co ligand binding equilibrium constants (Kon/off), pKas and reduction potentials for models of aquacobalaminmore » in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for CoIII, CoII, and CoI species, respectively, and the second model features saturation of each vacant axial coordination site on CoII and CoI species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co axial ligand binding, leading to substantial errors in predicted

  20. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid-Base and Ligand Binding Equilibria of Aquacobalamin.

    PubMed

    Johnston, Ryne C; Zhou, Jing; Smith, Jeremy C; Parks, Jerry M

    2016-08-04

    Redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. A major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co-ligand binding equilibrium constants (Kon/off), pKas, and reduction potentials for models of aquacobalamin in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co(III), Co(II), and Co(I) species, respectively, and the second model features saturation of each vacant axial coordination site on Co(II) and Co(I) species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co-axial ligand binding, leading to substantial errors in predicted pKas and

  1. Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation.

    PubMed

    Fagerstone, Kelly D; Quinn, Jason C; Bradley, Thomas H; De Long, Susan K; Marchese, Anthony J

    2011-11-01

    Although numerous lifecycle assessments (LCA) of microalgae-based biofuels have suggested net reductions of greenhouse gas emissions, limited experimental data exist on direct emissions from microalgae cultivation systems. For example, nitrous oxide (N(2)O) is a potent greenhouse gas that has been detected from microalgae cultivation. However, little quantitative experimental data exist on direct N(2)O emissions from microalgae cultivation, which has inhibited LCA performed to date. In this study, microalgae species Nannochloropsis salina was cultivated with diurnal light-dark cycling using a nitrate nitrogen source. Gaseous N(2)O emissions were quantitatively measured using Fourier transform infrared spectrometry. Under a nitrogen headspace (photobioreactor simulation), the reactors exhibited elevated N(2)O emissions during dark periods, and reduced N(2)O emissions during light periods. Under air headspace conditions (open pond simulation), N(2)O emissions were negligible during both light and dark periods. Results show that N(2)O production was induced by anoxic conditions when nitrate was present, suggesting that N(2)O was produced by denitrifying bacteria within the culture. The presence of denitrifying bacteria was verified through PCR-based detection of norB genes and antibiotic treatments, the latter of which substantially reduced N(2)O emissions. Application of these results to LCA and strategies for growth management to reduce N(2)O emissions are discussed.

  2. Quantitative Fluorescent Speckle Microscopy (QFSM) to Measure Actin Dynamics

    PubMed Central

    Mendoza, Michelle C.; Besson, Sebastien; Danuser, Gaudenz

    2012-01-01

    Quantitative Fluorescent Speckle Microscopy (QFSM) is a live cell imaging method to analyze the dynamics of macromolecular assemblies with high spatial and temporal resolution. Its greatest successes were in the analysis of actin filament and adhesion dynamics in the context of cell migration and microtubule dynamics in interphase and the meotic/mitotic spindle. Here, we focus on the former application to illustrate the procedures of FSM imaging and the computational image processing that extracts quantitative information from these experiments. QFSM is advantageous over other methods because it measures the movement and turnover kinetics of the actin filament (F-actin) network in living cells across the entire field of view. Experiments begin with microinjection of fluorophore-labeled actin into cells, which generate a low ratio of fluorescently-labeled:endogenous unlabeled actin monomers. Spinning disk confocal or wide-field imaging then visualizes fluorophore clusters (2–8 actin monomers) within the assembled F-actin network as speckles. QFSM software identifies and computationally tracks and utilizes the location, appearance, and disappearance of speckles to derive network flows and maps of the rate of filament assembly and disassembly. PMID:23042526

  3. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Huang, Y. S.; Huang, Y. P.; Huang, K. N.; Young, M. S.

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39°C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  4. Novel method for the quantitative measurement of color vision deficiencies

    NASA Astrophysics Data System (ADS)

    Xiong, Kai; Hou, Minxian; Ye, Guanrong

    2005-01-01

    The method is based on chromatic visual evoked potential (VEP) measurement. The equiluminance of color stimulus in normal subjects is characterized by L-cone and M-cone activation in retina. For the deuteranopes and protanopes, only the activations of one relevant remaining cone type should be considered. The equiluminance turning curve was established for the recorded VEPs of the luminance changes of the red and green color stimulus, and the position of the equiluminance was used to define the kind and degree of color vision deficiencies. In the test of 47 volunteers, we got the VEP traces and the equiluminance turning curves, which was in accordance with the judgment by the pseudoisochromatic plate used in clinic. The method fulfills the impersonal and quantitative requirements in color vision deficiencies test.

  5. A novel semi-quantitative method for measuring tissue bleeding.

    PubMed

    Vukcevic, G; Volarevic, V; Raicevic, S; Tanaskovic, I; Milicic, B; Vulovic, T; Arsenijevic, S

    2014-03-01

    In this study, we describe a new semi-quantitative method for measuring the extent of bleeding in pathohistological tissue samples. To test our novel method, we recruited 120 female patients in their first trimester of pregnancy and divided them into three groups of 40. Group I was the control group, in which no dilation was applied. Group II was an experimental group, in which dilation was performed using classical mechanical dilators. Group III was also an experimental group, in which dilation was performed using a hydraulic dilator. Tissue samples were taken from the patients' cervical canals using a Novak's probe via energetic single-step curettage prior to any dilation in Group I and after dilation in Groups II and III. After the tissue samples were prepared, light microscopy was used to obtain microphotographs at 100x magnification. The surfaces affected by bleeding were measured in the microphotographs using the Autodesk AutoCAD 2009 program and its "polylines" function. The lines were used to mark the area around the entire sample (marked A) and to create "polyline" areas around each bleeding area on the sample (marked B). The percentage of the total area affected by bleeding was calculated using the formula: N = Bt x 100 / At where N is the percentage (%) of the tissue sample surface affected by bleeding, At (A total) is the sum of the surfaces of all of the tissue samples and Bt (B total) is the sum of all the surfaces affected by bleeding in all of the tissue samples. This novel semi-quantitative method utilizes the Autodesk AutoCAD 2009 program, which is simple to use and widely available, thereby offering a new, objective and precise approach to estimate the extent of bleeding in tissue samples.

  6. A Quantitative Measure of Handwriting Dysfluency for Assessing Tardive Dyskinesia

    PubMed Central

    Caligiuri, Michael P.; Teulings, Hans-Leo; Dean, Charles E.; Lohr, James B.

    2015-01-01

    Tardive dyskinesia (TD) is movement disorder commonly associated with chronic exposure to antidopaminergic medications which may be in some cases disfiguring and socially disabling. The consensus from a growing body of research on the incidence and prevalence of TD in the modern era of antipsychotics indicates that this disorder has not disappeared continues to challenge the effective management of psychotic symptoms in patients with schizophrenia. A fundamental component in an effective strategy for managing TD is its reliable and accurate assessment. In the present study, we examined the clinical utility of a brief handwriting dysfluency measure for quantifying TD. Digitized samples of handwritten circles and loops were obtained from 62 psychosis patients with or without TD and from 50 healthy subjects. Two measures of dysfluent pen movements were extracted from each vertical pen stroke, including normalized jerk and the number of acceleration peaks. TD patients exhibited significantly higher dysfluency scores than non-TD patients and controls. Severity of handwriting movement dysfluency was correlated with AIMS severity ratings for some tasks. The procedure yielded high degrees of test-retest reliability. These results suggest that measures of handwriting movement dysfluency may be particularly useful for objectively evaluating the efficacy of pharmacotherapeutic strategies for treating TD. PMID:25679121

  7. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis

    PubMed Central

    Jing, Ying; Mal, Niladri; Williams, P. Stephen; Mayorga, Maritza; Penn, Marc S.; Chalmers, Jeffrey J.; Zborowski, Maciej

    2008-01-01

    Superparamagnetic iron oxide (SPIO) particles have been used successfully as an intracellular contrast agent for nuclear MRI cell tracking in vivo. We present a method of detecting intracellular SPIO colloid uptake in live cells using cell magnetophoresis, with potential applications in measuring intracellular MRI contrast uptake. The method was evaluated by measuring shifts in mean and distribution of the cell magnetophoretic mobility, and the concomitant changes in population frequency of the magnetically positive cells when compared to the unmanipulated negative control. Seven different transfection agent (TA) -SPIO complexes based on dendrimer, lipid, and polyethylenimine compounds were used as test standards, in combination with 3 different cell types: mesenchymal stem cells, cardiac fibroblasts, and cultured KG-1a hematopoietic stem cells. Transfectol (TRA) -SPIO incubation resulted in the highest frequency of magnetically positive cells (>90%), and Fugene 6 (FUG) -SPIO incubation the lowest, below that when using SPIO alone. A highly regular process of cell magnetophoresis was amenable to intracellular iron mass calculations. The results were consistent in all the cell types studied and with other reports. The cell magnetophoresis depends on the presence of high-spin iron species and is therefore expected to be directly related to the cell MRI contrast level.—Jing, Y., Mal, N., Williams, P. S., Mayorga, M., Penn, M. S., Chalmers, J. J., Zborowski, M. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis. PMID:18725459

  8. A Systems Perspective on Situation Awareness I: Conceptual Framework, Modeling, and Quantitative Measurement

    DTIC Science & Technology

    2003-05-01

    A Systems Perspective on Situation Awareness I: Conceptual Framework , Modeling, and Quantitative Measurement Alex Kirlik (University of...I: Conceptual Framework , Modeling, and Quantitative Measurement 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Systems Perspective on Situation Awareness I: Conceptual Framework , Modeling, and Quantitative Measurement ALEX KIRLIK Institute of Aviation

  9. Quantitative measurements of cerebral blood flow in volume imaging PET scanners

    SciTech Connect

    Smith, R.J.; Shao, L.; Freifelder, R.; Karp, J.S.; Ragland, J.D.

    1995-08-01

    Quantitative measurements of Cerebral Blood Flow (CBF) are performed in a volume imaging PET Scanner by means of moderate activity infusions. In equilibrium infusions, activations are measured by scanning over 10 minutes with 16 minute activations. Typical measured whole brain CBF values are 37{+-}8 ml/min/100g, close to the value of 42 ml/min/100g reported by other groups using this method. For ramped infusions, scanning over 4 minutes with 5 minute activations results in whole brain CBFs of 49 {+-} 9 ml/min/100g, close to the Kety and Schmidt value of 50 ml/min/100g. Both equilibrium and ramped infusion methods have been used to study face and word memory in human subjects. Both methods were able to detect significant activations in regions implicated in human memory. The authors conclude that precise quantitation of regional CBF is achieved using both methods, and that ramped infusions also provide accurate measures of CBF. In addition a simplified protocol for ramped infusion studies has been developed. In this method the whole brain tissue time activity curve generated from dynamic scanning is replaced by an appropriately scaled camera coincidence countrate curve. The resulting whole brain CBF values are only 7% different from the dynamic scan and fit results. Regional CBFs (rCBF) may then be generated from the summed image (4.25 minutes) using a count density vs flow lookup table.

  10. Measurement of tumour reactive antibody and antibody conjugate by competition, quantitated by flow cytofluorimetry.

    PubMed

    Robins, R A; Laxton, R R; Garnett, M; Price, M R; Baldwin, R W

    1986-06-24

    Binding of unlabelled monoclonal antibody preparations has been assessed by competition at saturation with fluorochrome labelled homologous antibody for binding to antigen bearing target cells. The extent of competition was measured by quantitative flow cytofluorimetry, and simple mathematical procedures have been developed to allow the interpretation of competition data in terms of antibody binding activity. In the system studied, non-specific (non-competitive) fluorescence was minimal, but an iterative method to calculate its contribution to the measured signal is given. This approach has the advantage that the antibody preparation to be tested does not need to be labelled or modified; this is particularly important when evaluating the binding activity of therapeutic antibody conjugates. Comparison with a well characterized standard antibody preparation provides a rapid, sensitive and accurate quality control procedure. This test is also simple to perform, requiring only the mixing of labelled and unlabelled antibodies with target cells, a single incubation, followed by analysis without washing of the target cells.

  11. A High Resolution/Accurate Mass (HRAM) Data-Dependent MS3 Neutral Loss Screening, Classification, and Relative Quantitation Methodology for Carbonyl Compounds in Saliva

    NASA Astrophysics Data System (ADS)

    Dator, Romel; Carrà, Andrea; Maertens, Laura; Guidolin, Valeria; Villalta, Peter W.; Balbo, Silvia

    2016-10-01

    Reactive carbonyl compounds (RCCs) are ubiquitous in the environment and are generated endogenously as a result of various physiological and pathological processes. These compounds can react with biological molecules inducing deleterious processes believed to be at the basis of their toxic effects. Several of these compounds are implicated in neurotoxic processes, aging disorders, and cancer. Therefore, a method characterizing exposures to these chemicals will provide insights into how they may influence overall health and contribute to disease pathogenesis. Here, we have developed a high resolution accurate mass (HRAM) screening strategy allowing simultaneous identification and relative quantitation of DNPH-derivatized carbonyls in human biological fluids. The screening strategy involves the diagnostic neutral loss of hydroxyl radical triggering MS3 fragmentation, which is only observed in positive ionization mode of DNPH-derivatized carbonyls. Unique fragmentation pathways were used to develop a classification scheme for characterizing known and unanticipated/unknown carbonyl compounds present in saliva. Furthermore, a relative quantitation strategy was implemented to assess variations in the levels of carbonyl compounds before and after exposure using deuterated d 3 -DNPH. This relative quantitation method was tested on human samples before and after exposure to specific amounts of alcohol. The nano-electrospray ionization (nano-ESI) in positive mode afforded excellent sensitivity with detection limits on-column in the high-attomole levels. To the best of our knowledge, this is the first report of a method using HRAM neutral loss screening of carbonyl compounds. In addition, the method allows simultaneous characterization and relative quantitation of DNPH-derivatized compounds using nano-ESI in positive mode.

  12. Noninvasive, quantitative respirator fit testing through dynamic pressure measurement.

    PubMed

    Carpenter, D R; Willeke, K

    1988-10-01

    A new method has been invented for the noninvasive and quantitative determination of fit for a respirator. The test takes a few seconds and requires less expensive instrumentation than presently used for invasive testing. In this test, the breath is held at a negative pressure for a few seconds, and the leak-induced pressure decay inside the respirator cavity is monitored. A dynamic pressure sensor is attached to a modified cartridge of an air-purifying respirator or built into the respirator body or into the air supply line of an air-supplied respirator. The method is noninvasive in that the modified cartridge can be mounted onto any air-purifying respirator. The pressure decay during testing quantifies the airflow entered through the leak site. An equation has been determined which gives the air leakage as a function of pressure decay slope, respirator volume and the pressure differential during actual wear--all of which are determined by the dynamic pressure sensor. Thus, the ratio of air inhaled through the filters or via the air supply line to the leak rate is a measure of respirator fit, independent of aerosol deposition in the lung and aerosol distribution in the respirator cavity as found for quantitative fit testing with aerosols. The new method is shown to be independent of leak and sensor locations. The concentration and distribution of aerosols entered through the leak site is dependent only on the physical dimensions of the leak site and the air velocity in it, which can be determined independently.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. The quantitative measurement of consciousness during epileptic seizures.

    PubMed

    Nani, Andrea; Cavanna, Andrea E

    2014-01-01

    The assessment of consciousness is a fundamental element in the classification of epileptic seizures. It is, therefore, of great importance for clinical practice to develop instruments that enable an accurate and reliable measurement of the alteration of consciousness during seizures. Over the last few years, three psychometric scales have been specifically proposed to measure ictal consciousness: the Ictal Consciousness Inventory (ICI), the Consciousness Seizure Scale (CSS), and the Responsiveness in Epilepsy Scale--versions I and II (RES-I and RES-II). The ICI is a self-report psychometric instrument which retrospectively assesses ictal consciousness along the dimensions of the level/arousal and contents/awareness. The CSS has been used by clinicians to quantify the impairment of consciousness in order to establish correlations with the brain mechanisms underlying alterations of consciousness during temporal lobe seizures. The most recently developed observer-rated instrument is the RES-I, which has been used to assess responsiveness during epileptic seizures in patients undergoing video-EEG. The implementation of standardized psychometric tools for the assessment of ictal consciousness can complement clinical observations and contribute to improve accuracy in seizure classification.

  14. Anomalous Transport in Carbonate Rock - Predictions and Quantitative Measures

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Blunt, M. J.

    2014-12-01

    Solute transport in rock subsurface is important in a number of applications such as contaminant hydrology, carbon storage and enhanced oil recovery. Carbonate rock contain most of the world's oil reserves and potentially hold a storage capacity for carbon dioxide. Pore structure in carbonate rock introduces an additional complexity in the form of bimodal pore size distributions, which leads to complex anomalous transport behavior and poses a significant challenge for accurate predictions. We present a new modeling concept that simulates flow and transport on micro-CT images containing the information on inter- and intra-grain pore space of carbonate rock. Navier-Stokes equations are solved for flow in the image voxels comprising the pore space, streamline-based simulation is used to account for advection, and diffusion is superimposed by random walk. Firstly, the model is validated against the experimental NMR measurements in the dual porosity beadpack. Furthermore, the model predictions are made for a number of carbonate rock images which are then classified in terms of heterogeneity of the inter- and intra-grain pore space, heterogeneity in the flow field, and the mass transfer characteristics of the porous media. Finally, we demonstrate the predictive capabilities of the model through an analysis that includes a number of probability density functions (PDFs) measures of non-Fickian transport on the micro-CT images.

  15. Laboratory technique for quantitative thermal emissivity measurements of geological samples

    NASA Astrophysics Data System (ADS)

    Mathew, George; Nair, Archana; Gundu Rao, T. K.; Pande, Kanchan

    2009-08-01

    Thermal infrared spectroscopy is a powerful technique for the compositional analysis of geological materials. The spectral feature in the mid-IR region is diagnostic of the mineralogy and spectral signatures of mixtures of minerals that add linearly, and therefore, can be used as an important tool to determine the mineralogy of rocks in the laboratory and remotely for planetary exploration. The greatest challenge in the emission measurement lies in the measurement of the weak thermal photons emitted from geological materials in a laboratory setup, and accurately records the temperature of the rock sample. The present work pertains to the details of a new Thermal Emission Spectrometer (TES) laboratory that has been developed under the ISRO Planetary Science and Exploration (PLANEX) programme, for emission related mineralogical investigations of planetary surfaces. The focus of the paper is on the acquisition and calibration technique for obtaining emissivity, and the deconvolution procedure to obtain the modal abundances of the thermal emission spectra in the range of 6-25 µm using Fourier Transform Infrared (FTIR) spectroscopy. The basic technique is adopted from the work of Ruff et al (1997). This laboratory at the Department of Earth Sciences, IIT-Bombay is currently developing pure end mineral library of mineral particulates (<65 µm), and adding new end members to the existing ASU spectral library. The paper argues the need for considering Lunar Orbiter Thermal Emission Spectrometer (LOTES) for future Indian Moon mission programme (Chandrayan-II) to determine evidences of varied lithologies on the lunar surface.

  16. Quantitative measurements of force and displacement using an optical trap.

    PubMed Central

    Simmons, R M; Finer, J T; Chu, S; Spudich, J A

    1996-01-01

    We combined a single-beam gradient optical trap with a high-resolution photodiode position detector to show that an optical trap can be used to make quantitative measurements of nanometer displacements and piconewton forces with millisecond resolution. When an external force is applied to a micron-sized bead held by an optical trap, the bead is displaced from the center of the trap by an amount proportional to the applied force. When the applied force is changed rapidly, the rise time of the displacement is on the millisecond time scale, and thus a trapped bead can be used as a force transducer. The performance can be enhanced by a feedback circuit so that the position of the trap moves by means of acousto-optic modulators to exert a force equal and opposite to the external force applied to the bead. In this case the position of the trap can be used to measure the applied force. We consider parameters of the trapped bead such as stiffness and response time as a function of bead diameter and laser beam power and compare the results with recent ray-optic calculations. PMID:8785341

  17. The registry index: a quantitative measure of materials' interfacial commensurability.

    PubMed

    Hod, Oded

    2013-08-05

    Nanoscale tribology is an active and rapidly developing area of research that poses fundamental scientific questions that, if answered, may offer great technological potential in the fields of friction, wear, and lubrication. When considering nanoscale material's junctions, surface commensurability often plays a crucial rule in dictating the tribological properties of the interface. This Review surveys recent theoretical work in this area, with the aim of providing a quantitative measure of the crystal lattice commensurability at interfaces between rigid materials and relating it to the tribological properties of the junction. By considering a variety of hexagonal layered materials, including graphene, hexagonal boron nitride, and molybdenum disulfide, we show how a simple geometrical parameter, termed the "registry index" (RI), can capture the interlayer sliding energy landscape as calculated using advanced electronic structure methods. The predictive power of this method is further demonstrated by showing how the RI is able to fully reproduce the experimentally measured frictional behavior of a graphene nanoflake sliding over a graphite surface. It is shown that generalizations towards heterogeneous junctions and non-planar structures (e.g., nanotubes) provide a route for designing nanoscale systems with unique tribological properties, such as robust superlubricity. Future extension of this method towards nonparallel interfaces, bulk-material junctions, molecular surface diffusion barriers, and dynamic simulations are discussed.

  18. Probe-based Real-time PCR Approaches for Quantitative Measurement of microRNAs

    PubMed Central

    Wong, Wilson; Farr, Ryan; Joglekar, Mugdha; Januszewski, Andrzej; Hardikar, Anandwardhan

    2015-01-01

    Probe-based quantitative PCR (qPCR) is a favoured method for measuring transcript abundance, since it is one of the most sensitive detection methods that provides an accurate and reproducible analysis. Probe-based chemistry offers the least background fluorescence as compared to other (dye-based) chemistries. Presently, there are several platforms available that use probe-based chemistry to quantitate transcript abundance. qPCR in a 96 well plate is the most routinely used method, however only a maximum of 96 samples or miRNAs can be tested in a single run. This is time-consuming and tedious if a large number of samples/miRNAs are to be analyzed. High-throughput probe-based platforms such as microfluidics (e.g. TaqMan Array Card) and nanofluidics arrays (e.g. OpenArray) offer ease to reproducibly and efficiently detect the abundance of multiple microRNAs in a large number of samples in a short time. Here, we demonstrate the experimental setup and protocol for miRNA quantitation from serum or plasma-EDTA samples, using probe-based chemistry and three different platforms (96 well plate, microfluidics and nanofluidics arrays) offering increasing levels of throughput. PMID:25938938

  19. An automatic framework for quantitative validation of voxel based morphometry measures of anatomical brain asymmetry.

    PubMed

    Pepe, Antonietta; Dinov, Ivo; Tohka, Jussi

    2014-10-15

    The study of anatomical brain asymmetries has been a topic of great interest in the neuroimaging community in the past decades. However, the accuracy of brain asymmetry measurements has been rarely investigated. In this study, we propose a fully automatic methodology for the quantitative validation of brain tissue asymmetries as measured by Voxel Based Morphometry (VBM) from structural magnetic resonance (MR) images. Starting from a real MR image, the methodology generates simulated 3D MR images with a known and realistic pattern of inter-hemispheric asymmetry that models the left-occipital right-frontal petalia of a normal brain and the related rightward bending of the inter-hemispheric fissure. As an example, we generated a dataset of 64 simulated MR images and applied this dataset for the quantitative validation of optimized VBM measures of asymmetries in brain tissue composition. Our results suggested that VBM analysis strongly depended on the spatial normalization of the individual brain images, the selected template space, and the amount of spatial smoothing applied. The most accurate asymmetry detections were achieved by 9-degrees of freedom registration to the symmetrical template space with 4 to 8mm spatial smoothing.

  20. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    NASA Astrophysics Data System (ADS)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  1. Robust Quantitative Measurement of Flows and Transparent or Highly Reflective Objects

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Rashidnia, Nasser

    1995-01-01

    The liquid crystal point diffraction interferometer (LCPDI) is a new instrument that has been developed for the measurement of phase objects. The LCPDI uses the compact, robust design of Linnik's point diffraction interferometer and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave-fronts. A solid state camera provides very high data density and automated data reduction. The instrument can measure either transparent objects like fluids and lenses, or highly reflective opaque objects like mirrors. In the former case, the refractive index distribution is measured and then related to various properties like temperature, density, chemical composition, or thickness. In the latter case, the measured phase distribution is related to the object shape. The objects measured must be stationary or quasisteady state because the measurement requires the acquisition of several frames of image data during which time the object's properties must not have changed. The data acquisition time depends on the speed of the frame grabber and the required number of data frames. Typically, three to five frames taking 1 to 2 seconds are required. The potential for faster data acquisition exists.

  2. Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.; Gower, J. F. R.

    1977-01-01

    A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.

  3. A Framework for Mixing Methods in Quantitative Measurement Development, Validation, and Revision: A Case Study

    ERIC Educational Resources Information Center

    Luyt, Russell

    2012-01-01

    A framework for quantitative measurement development, validation, and revision that incorporates both qualitative and quantitative methods is introduced. It extends and adapts Adcock and Collier's work, and thus, facilitates understanding of quantitative measurement development, validation, and revision as an integrated and cyclical set of…

  4. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor.

    PubMed

    Hu, Wei; Zhao, Zhangyan; Wang, Yunfeng; Zhang, Haiying; Lin, Fujiang

    2014-03-01

    The designed sensor enables accurate reconstruction of chest-wall movement caused by cardiopulmonary activities, and the algorithm enables estimation of respiration, heartbeat rate, and some indicators of heart rate variability (HRV). In particular, quadrature receiver and arctangent demodulation with calibration are introduced for high linearity representation of chest displacement; 24-bit ADCs with oversampling are adopted for radar baseband acquisition to achieve a high signal resolution; continuous-wavelet filter and ensemble empirical mode decomposition (EEMD) based algorithm are applied for cardio/pulmonary signal recovery and separation so that accurate beat-to-beat interval can be acquired in time domain for HRV analysis. In addition, the wireless sensor is realized and integrated on a printed circuit board compactly. The developed sensor system is successfully tested on both simulated target and human subjects. In simulated target experiments, the baseband signal-to-noise ratio (SNR) is 73.27 dB, high enough for heartbeat detection. The demodulated signal has 0.35% mean squared error, indicating high demodulation linearity. In human subject experiments, the relative error of extracted beat-to-beat intervals ranges from 2.53% to 4.83% compared with electrocardiography (ECG) R-R peak intervals. The sensor provides an accurate analysis for heart rate with the accuracy of 100% for p = 2% and higher than 97% for p = 1%.

  5. Quantitative Measurement of Protein Relocalization in Live Cells

    PubMed Central

    Bush, Alan; Colman-Lerner, Alejandro

    2013-01-01

    Microscope cytometry provides a powerful means to study signaling in live cells. Here we present a quantitative method to measure protein relocalization over time, which reports the absolute fraction of a tagged protein in each compartment. Using this method, we studied an essential step in the early propagation of the pheromone signal in Saccharomyces cerevisiae: recruitment to the membrane of the scaffold Ste5 by activated Gβγ dimers. We found that the dose response of Ste5 recruitment is graded (EC50 = 0.44 ± 0.08 nM, Hill coefficient = 0.8 ± 0.1). Then, we determined the effective dissociation constant (Kde) between Ste5 and membrane sites during the first few minutes when the negative feedback from the MAPK Fus3 is first activated. Kde changed during the first minutes from a high affinity of <0.65 nM to a steady-state value of 17 ± 9 nM. During the same period, the total number of binding sites decreased slightly, from 1940 ± 150 to 1400 ± 200. This work shows how careful quantification of a protein relocalization dynamic can give insight into the regulation mechanisms of a biological system. PMID:23442923

  6. The challenge of measuring lung structure. On the "Standards for the Quantitative Assessment of Lung Structure".

    PubMed

    Weibel, Ewald R

    2010-09-01

    The purpose of this review is to call attention of respiratory scientists to an Official Policy Statement jointly issued by the American Thoracic Society and the European Respiratory Society on "Standards for the Quantitative Assessment of Lung Structure", based on an extended report of a joint task force of 20 experts, and recently published in the Am. J. Respir. Crit. Care Med. This document provides investigators of normal and diseased lung structure with a review of the stereological methods that allow measurements to be done on sections. It critically discusses the preparation procedures, the conditions for unbiased sampling of the lung for microscopic study, and the potential applications of such methods. Here we present some case studies that underpin the importance of using accurate methods of structure quantification and outline paths into the future for structure-function studies on lung diseases.

  7. A device for rapid and quantitative measurement of cardiac myocyte contractility

    NASA Astrophysics Data System (ADS)

    Gaitas, Angelo; Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-03-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l-1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.

  8. Quantitative and Morphological Measures May Predict Growth and Mortality During Prenatal Growth in Japanese Quails

    PubMed Central

    Arora, Kashmiri L.; Vatsalya, Vatsalya

    2014-01-01

    Growth pattern and mortality rate during the embryonic phase of avian species are difficult to recognize and predict. Determination of such measures and associated events may enhance our understanding of characteristics involved in the growth and hatching process. Furthermore, some quantitative measures could validate morphological determinants during the embryonic phase and predict the course of normal growth and alterations. Our aim was to characterize quantitative growth of embryos and to establish baseline embryonic standards for use in comparative and pathological research during the prenatal life of Japanese quail. Day 10 was a landmark timeline for initiation of extensive anatomical changes in growth and transformation. Wet and dry weights were positively correlated with each other and inversely correlated with water content (p = 0.05). Following d10, the water content decreased progressively, whereas, dry and wet weights increased with increasing age. Velocity of growth in wet and dry weights was evident starting d6, spiked at d11 and d15 and then declined before hatching on d16. Organic and inorganic contents of embryos were positively associated with age. Progressive increase in the organic to inorganic ratio with age was evident after d5, spiked on d9, d13 and d16. Accurate determinations of prenatal growth processes could serve as valuable tools in identifying morphological developments and characterization of prenatal growth and mortality, thus enhancing the reproductive efficiency of the breeding colony and the postnatal robustness of the offspring. PMID:25285101

  9. Measuring the absolute water content of the brain using quantitative MRI.

    PubMed

    Shah, Nadim Joni; Ermer, Veronika; Oros-Peusquens, Ana-Maria

    2011-01-01

    Methods for quantitative imaging of the brain are presented and compared. Highly precise and accurate mapping of the absolute water content and distribution, as presented here, requires a significant number of corrections and also involves mapping of other MR parameters. Here, either T(1) and T(2)(*) or T(2) is mapped, and several corrections involving the measurement of temperature, transmit and receive B(1) inhomogeneities and signal extrapolation to zero TE are applied. Information about the water content of the whole brain can be acquired in clinically acceptable measurement times (10 or 20 min). Since water content is highly regulated in the healthy brain, pathological changes can be easily identified and their evolution or correlation with other manifestations of the disease investigated. In addition to voxel-based total water content, information about the different environments of water can be gleaned from qMRI. The myelin water fraction can be extracted from the fit of very high-SNR multiple-echo T(2) decay curves with a superposition of a large number of exponentials. Diseases involving de- or dysmyelination can be investigated and lead to novel observations regarding the water compartmentalisation in tissue, despite the limited spatial coverage. In conclusion, quantitative MRI is emerging as an unparalleled tool for the study of the normal and diseased brain, replacing the customary time-space environment of the sequential mixed-contrast MRI with a multi-NMR-parametric space in which tissue microscopy is increasingly revealed.

  10. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  11. Novel method for accurate g measurements in electron-spin resonance

    NASA Astrophysics Data System (ADS)

    Stesmans, A.; Van Gorp, G.

    1989-09-01

    In high-accuracy work, electron-spin-resonance (ESR) g values are generally determined by calibrating against the accurately known proton nuclear magnetic resonance (NMR). For that method—based on leakage of microwave energy out of the ESR cavity—a convenient technique is presented to obtain accurate g values without needing conscientious precalibration procedures or cumbersome constructions. As main advantages, the method allows the easy monitoring of the positioning of the ESR and NMR samples while they are mounted as close as physically realizable at all time during their simultaneous resonances. Relative accuracies on g of ≊2×10-6 are easily achieved for ESR signals of peak-to-peak width ΔBpp≲0.3 G. The method has been applied to calibrate the g value of conduction electrons of small Li particles embedded in LiF—a frequently used g marker—resulting in gLiF: Li=2.002 293±0.000 002.

  12. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    PubMed Central

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-01-01

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739

  13. Highly accurate measurements of the spontaneous fission half-life of 240,242Pu

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2013-12-01

    Fast spectrum neutron-induced fission cross-section data for transuranic isotopes are of special demand from the nuclear data community. In particular highly accurate data are needed for the new generation IV nuclear applications. The aim is to obtain precise neutron-induced fission cross sections for 240Pu and 242Pu. To do so, accurate data on spontaneous fission half-lives must be available. Also, minimizing uncertainties in the detector efficiency is a key point. We studied both isotopes by means of a twin Frisch-grid ionization chamber with the goal of improving the present data on the neutron-induced fission cross section. For the two plutonium isotopes the high α-particle decay rates pose a particular problem to experiments due to piling-up events in the counting gas. Argon methane and methane were employed as counting gases, the latter showed considerable improvement in signal generation due to its higher drift velocity. The detection efficiency for both samples was determined, and improved spontaneous fission half-lives were obtained with very low statistical uncertainty (0.13% for 240Pu and 0.04% for 242Pu): for 240Pu, T1/2,SF=1.165×1011 yr (1.1%), and for 242Pu, T1/2,SF=6.74×1010 yr (1.3%). Systematic uncertainties are due to sample mass (0.4% for 240Pu and 0.9% for 242Pu) and efficiency (1%).

  14. Accurate monitoring and fault detection in wind measuring devices through wireless sensor networks.

    PubMed

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-11-24

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models.

  15. Autonomous Instrumentation for Fast, Continuous and Accurate Isotopic Measurements of Water Vapor (δ18O, δ 2H, H2O) in the Field

    NASA Astrophysics Data System (ADS)

    Liem, J. S.; Dong, F.; Owano, T. G.; Baer, D. S.

    2010-12-01

    Stable isotopes of water vapor are powerful tracers to investigate the hydrological cycle and ecological processes. Therefore, continuous, in-situ and accurate measurements of δ18O and δ2H are critical to advance the understanding of water-cycle dynamics worldwide. Furthermore, the combination of meteorological techniques and high-frequency isotopic water measurements can provide detailed time-resolved information on the eco-physiological performance of plants and enable improved understanding of water fluxes at ecosystem scales. In this work, we present recent development and field deployment of a novel Water Vapor Isotope Measurement System (WVIMS) capable of simultaneous in situ measurements of δ18O and δ2H and water mixing ratio (H2O) with high precision, accuracy and speed (up to 10 Hz measurement rate). The WVIMS consists of an Analyzer (Water Vapor Isotope Analyzer), based on cavity enhanced laser absorption spectroscopy, and a Standard Source (Water Vapor Isotope Standard Source), based on quantitative evaporation of a liquid water standard (with known isotopic content), and operates in a dual-inlet configuration. The WVIMS automatically controls the entire sample and data collection, data analysis and calibration process to allow for continuous, autonomous unattended long-term operation. The WVIMS has been demonstrated for accurate (i.e. fully calibrated) measurements ranging from 500 ppmv (typical of arctic environments) to over 30,000 ppmv (typical of tropical environments) in air. Dual-inlet operation, which involves regular calibration with isotopic water vapor reference standards, essentially eliminates measurement drift, ensures data reliability, and allows operation over an extremely wide ambient temperature range (5-45C). This presentation will include recent measurements recorded using the WVIMS in plant growth chambers and in arctic environments. The availability of this new instrumentation provides new opportunities for detailed continuous

  16. Bone morphometry and mineral density measurement using quantitative computed tomography

    SciTech Connect

    Jacobson, D.R.

    1991-01-01

    Application of computed tomography (CT) to the study of bone structure and density was explored and developed. A review of bone mineral densitometry (BMD) methodology and general principles of quantitative CT (QCT) are presented. A method for QCT of the spine was developed using a flexible tissue equivalent reference placed adjacent to the patient. A methodology for the development and production of tissue equivalent materials is also presented. Patient equivalent phantoms were used to characterize the method, and phantom studies were performed at five clinical sites. A protocol is defined for measuring the inside diameter of the lumbar pedicular canal. Data generated from this study has proven invaluable in the planning for lumbar fusion surgery when screws are to be used for immobilization. Pedicular canal data from 33 patients is presented. QCT was also used to quantify several parameters of the femoral shaft for use in hip replacement surgical planning. Parameters studied include inside diameter, BMD, endosteal BMD and proximal shaft morphology. The structure and trabecular BMD of the proximal femur was extensively studied using QCT. A large variation was found in the fat content of marrow within the proximal femur, and phantom studies were performed to quantify the effect of fat on trabecular QCT BMD. Cadaveric trabecular bone samples with marrow were analyzed physically to determine water, fat, non-fat soft tissue, and ash content. Multiple thin-slice CT studies were performed on cadaveric femurs. A structural model of the proximal femur was developed in which the structural support is provided primarily by trabecular bone. This model may have profound implications in the study of femoral fractures and prosthetic hardware design.

  17. Fully automated software for quantitative measurements of mitochondrial morphology.

    PubMed

    McClatchey, P Mason; Keller, Amy C; Bouchard, Ron; Knaub, Leslie A; Reusch, Jane E B

    2016-01-01

    Mitochondria undergo dynamic changes in morphology in order to adapt to changes in nutrient and oxygen availability, communicate with the nucleus, and modulate intracellular calcium dynamics. Many recent papers have been published assessing mitochondrial morphology endpoints. Although these studies have yielded valuable insights, contemporary assessment of mitochondrial morphology is typically subjective and qualitative, precluding direct comparison of outcomes between different studies and likely missing many subtle effects. In this paper, we describe a novel software technique for measuring the average length, average width, spatial density, and intracellular localization of mitochondria from a fluorescent microscope image. This method was applied to distinguish baseline characteristics of Human Umbilical Vein Endothelial Cells (HUVECs), primary Goto-Kakizaki rat aortic smooth muscle cells (GK SMCs), primary Wistar rat aortic smooth muscle cells (Wistar SMCs), and SH-SY5Ys (human neuroblastoma cell line). Consistent with direct observation, our algorithms found SH-SY5Ys to have the greatest mitochondrial density, while HUVECs were found to have the longest mitochondria. Mitochondrial morphology responses to temperature, nutrient, and oxidative stressors were characterized to test algorithm performance. Large morphology changes recorded by the software agreed with direct observation, and subtle but consistent morphology changes were found that would not otherwise have been detected. Endpoints were consistent between experimental repetitions (R=0.93 for length, R=0.93 for width, R=0.89 for spatial density, and R=0.74 for localization), and maintained reasonable agreement even when compared to images taken with compromised microscope resolution or in an alternate imaging plane. These results indicate that the automated software described herein allows quantitative and objective characterization of mitochondrial morphology from fluorescent microscope images.

  18. Quantitative measurement of endogenous amino acid absorption in unanaesthetized pigs.

    PubMed

    Rerat, A; Vaissade, P; Vaugelade, P

    1988-06-01

    The present experiment was carried out with 11 pigs (mean body weight: 53.9 +/- 1.3 kg) fitted with permanent catheters in the portal vein and carotid artery and with an electromagnetic flow probe around the portal vein. They were each subjected to 2 or 3 trials at 3 to 4-day intervals. During each trial the animals received after a previous fasting of 20 h a given amount of a protein-free diet (200 to 1200 g). The blood was collected either continuously for a quantitative determination of amino nitrogen, reducing sugars, urea and ammonia (number of meals 12, mean intake: 727 +/- 60 g) or discontinuously every 30 min between 0 and 8 h after the meal for amino acid analysis (number of meals 8; mean intake 709 +/- 105 g). A rather constant appearance (2 g/h) of amino acids in the portal blood was observed throughout the postprandial period. The intestinal absorption of each amino acid was however variable and represented between 10 and 50% of the daily requirements of the animal during the measuring period (8 h). Glutamine and to a less extent glutamic acid were exceptions as they were taken up by the gut wall from the arterial blood. There was also a marked synthesis of ornithine and citrulline by the latter. Because of the low blood level of urea, there were no apparent exchanges of urea between the blood and the intestine; in contrast, the ammonia absorption represented about 70% of that observed after ingestion of normal protein diets. Most amino acids are largely taken up by the liver and peripheral tissues, but in the case of alanine the syntheses exceed the uptake.

  19. Quantitation of and measurements utilizing the sphenoid ridge.

    PubMed

    Tubbs, R Shane; Salter, E George; Oakes, W Jerry

    2007-03-01

    The sphenoid ridge (posterior aspect of the lesser wings) is encountered in many intracranial procedures. Increased knowledge of its morphology and relationships is, therefore, of importance to the neurosurgeon and clinician who appreciate imaging of this anatomical region. We have quantitated this part of the sphenoid bone in dry human skulls (35) and made cadaveric (15) measurements between its parts and surrounding neuroanatomical structures in all three cranial fossae. The length of the left and right lesser wings was on average 4.2 and 4 cm, respectively. The mean widths of this bony part at its midline, midpoint, and lateral point (crista alaris) were 1.5 cm, 2.0 cm, and 2 mm, respectively. From the crista alaris the mean distances to the crista galli, V3 at its exit through the foramen ovale, entrance of the occulomotor nerve into the cavernous sinus, middle meningeal artery at its emergence from the foramen spinosum, and the facial and vestibulocochlear nerves at the internal auditory meatus were 4.9, 4.5, 5, 4.7, and 6.1 cm, respectively. From the midpoint of the lesser wing, the mean distances to the crista galli, V3 at its exit through the foramen ovale, entrance of the occulomotor nerve into the cavernous sinus, middle meningeal artery at its emergence from the foramen spinosum, and the facial and vestibulocochlear nerves at the internal auditory meatus were 4.2, 2.9, 3, 3.4, and 4.7 cm, respectively. From the anterior clinoid process of the lesser wing, the mean distances to the crista galli, V3 at its exit through the foramen ovale, entrance of the oculomotor nerve into the cavernous sinus, middle meningeal artery at its emergence from the foramen spinosum, and the facial and vestibulocochlear nerves at the internal auditory meatus were 4.3, 2.8, 1, 3.3, and 4.1 cm, respectively. Additional measurements between the parts of the sphenoid ridge and surrounding anatomical structures may assist the surgeon who operates in this region or the clinician who

  20. 43 CFR 3275.15 - How accurately must I measure my production and utilization?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... royalty: (1) If the meter measures electricity, it must have an accuracy of ±0.25% or better of reading... meter measures water flowing at more than 500,000 lbs/hr on a monthly basis, it must have an accuracy reading of ±2 percent or better; (5) If the meter measures water flowing at 500,000 lbs/hr or less on...

  1. Lightdrum—Portable Light Stage for Accurate BTF Measurement on Site

    PubMed Central

    Havran, Vlastimil; Hošek, Jan; Němcová, Šárka; Čáp, Jiří; Bittner, Jiří

    2017-01-01

    We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF) and the bidirectional texture function (BTF) of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED) modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0∘ to 75∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples. PMID:28241466

  2. A More Accurate Measurement of the {sup 28}Si Lattice Parameter

    SciTech Connect

    Massa, E. Sasso, C. P.; Mana, G.; Palmisano, C.

    2015-09-15

    In 2011, a discrepancy between the values of the Planck constant measured by counting Si atoms and by comparing mechanical and electrical powers prompted a review, among others, of the measurement of the spacing of {sup 28}Si (220) lattice planes, either to confirm the measured value and its uncertainty or to identify errors. This exercise confirmed the result of the previous measurement and yields the additional value d{sub 220} = 192 014 711.98(34) am having a reduced uncertainty.

  3. Metrology target design simulations for accurate and robust scatterometry overlay measurements

    NASA Astrophysics Data System (ADS)

    Ben-Dov, Guy; Tarshish-Shapir, Inna; Gready, David; Ghinovker, Mark; Adel, Mike; Herzel, Eitan; Oh, Soonho; Choi, DongSub; Han, Sang Hyun; El Kodadi, Mohamed; Hwang, Chan; Lee, Jeongjin; Lee, Seung Yoon; Lee, Kuntack

    2016-03-01

    Overlay metrology target design is an essential step prior to performing overlay measurements. This step is done through the optimization of target parameters for a given process stack. A simulation tool is therefore used to improve measurement performances. This work shows how our Metrology Target Design (MTD) simulator helps significantly in the target design process. We show the role of film and Optical CD measurements in improving significantly the fidelity of the simulations. We demonstrate that for various target design parameters we are capable of predicting measured performance metrics by simulations and correctly rank various designs performances.

  4. Establishing traceability of photometric absorbance values for accurate measurements of the haemoglobin concentration in blood

    NASA Astrophysics Data System (ADS)

    Witt, K.; Wolf, H. U.; Heuck, C.; Kammel, M.; Kummrow, A.; Neukammer, J.

    2013-10-01

    Haemoglobin concentration in blood is one of the most frequently measured analytes in laboratory medicine. Reference and routine methods for the determination of the haemoglobin concentration in blood are based on the conversion of haeme, haemoglobin and haemiglobin species into uniform end products. The total haemoglobin concentration in blood is measured using the absorbance of the reaction products. Traceable absorbance measurement values on the highest metrological level are a prerequisite for the calibration and evaluation of procedures with respect to their suitability for routine measurements and their potential as reference measurement procedures. For this purpose, we describe a procedure to establish traceability of spectral absorbance measurements for the haemiglobincyanide (HiCN) method and for the alkaline haematin detergent (AHD) method. The latter is characterized by a higher stability of the reaction product. In addition, the toxic hazard of cyanide, which binds to the iron ion of the haem group and thus inhibits the oxygen transport, is avoided. Traceability is established at different wavelengths by applying total least-squares analysis to derive the conventional quantity values for the absorbance from the measured values. Extrapolation and interpolation are applied to get access to the spectral regions required to characterize the Q-absorption bands of the HiCN and AHD methods, respectively. For absorbance values between 0.3 and 1.8, the contributions of absorbance measurements to the total expanded uncertainties (95% level of confidence) of absorbance measurements range from 1% to 0.4%.

  5. Lightdrum-Portable Light Stage for Accurate BTF Measurement on Site.

    PubMed

    Havran, Vlastimil; Hošek, Jan; Němcová, Šárka; Čáp, Jiří; Bittner, Jiří

    2017-02-23

    We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF) and the bidirectional texture function (BTF) of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED) modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0 ∘ to 75 ∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples.

  6. Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy.

    PubMed

    Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi

    2012-11-01

    Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.

  7. Archimedes Revisited: A Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2005-01-01

    A little-known method of measuring the volume of small objects based on Archimedes' principle is described, which involves suspending an object in a water-filled container placed on electronic scales. The suspension technique is a variation on the hydrostatic weighing technique used for measuring volume. The suspension method was compared with two…

  8. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments.

    PubMed

    Zhang, Wei; Ma, Hong; Yang, Simon X

    2016-03-18

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products.

  9. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments

    PubMed Central

    Zhang, Wei; Ma, Hong; Yang, Simon X.

    2016-01-01

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products. PMID:26999161

  10. Quantitative measurements in a lid-driven, cylindrical cavity using the PHANTOMM flow-tagging technique

    NASA Astrophysics Data System (ADS)

    Harris, Scott Raymond

    This thesis presents the development and application of a quantitative flow tagging velocimetry technique for liquid flows utilizing Photo-Activated Fluorophores (PAFs). PAFs are nominally fluorescent molecules that have been rendered non-fluorescent by the strategic attachment of a chemical caging group. The caging group is photolytically cleaved upon absorption of ultraviolet light and the original fluorescent dye is recovered and tracked using Laser Induced Fluorescence (LIF). Lines of fluorescent dye are created inside a flow with an ultraviolet laser, and quantitative observations of their motion during a known time interval are used to produce accurate measurements of velocity. We have termed this technique Photo-Activated Nonintrusive Tracking Of Molecular Motion (PHANTOMM). The portions of this technique developed in this thesis include several main elements: an automated line fitting procedure which can identify the center of tagged lines to sub pixel precision, an analysis of the errors resulting from the Lagrangian approach to velocity measurements, a camera model that is used to make quantitative measurements from flow tagging images, and a ray tracing procedure that can be used with the camera model to remove distortion in images caused by viewing objects through surfaces where the index of refraction changes. At low Reynolds numbers, the flow in the lid driven cylinder is easily computed and can be used to evaluate the accuracy of the velocimetry technique by comparing measurements directly to computations. These comparisons show that the technique, including all other sources of error, has an RMS error across the entire measured velocity profile of less than 6.0% when two orthogonal cameras are used to reconstruct the tagged line displacement. This also thesis presents the first measurements made in a lid driven cylinder at high Reynolds numbers. This flow is examined over a two decade range of Reynolds numbers (103 ≤ Re ≤ 105). Measurements of

  11. Application of Digital Ultrasound Speckle Image Velocimetry(DUSIV) for Quantitative Flow Measurements in Aortic Vessel- an In Vitro Study

    NASA Astrophysics Data System (ADS)

    Zarandi, Mehrdad; Dabiri, Dana; Gharib, Morteza

    2001-11-01

    A new method is developed to use speckle signals for obtaining quantitative information about the flow field and its related properties such as wall shear stress. Speckle imaging allows for mapping flows at normal angles to the probe where Doppler technique render little information. Our custom developed method of Digital Ultrasound Speckle Image Velocimetry is used to measure the flow field and wall shear stress in a model of aortic vessel. The method has great potential for other applications such as flow in curved vessels, branching vessels, heart chambers and through valves for quantitative blood flow measurements. It also allows us to correct for the errors in ultrasound measurements caused by the angle of interrogation , or signal attenuation with distance from the ultrasound probe. Speckle velocimetry also allows calibration of the results obtained from the conventional Doppler shift based ultrasound methods and should therefore contribute to more accurate quantitative measurements of blood flow by ultrasound. Providing quantitative information with much higher resolution than Color Doppler measurements and applicability to optically inaccessible flows are the other advantages of this method.

  12. Accurate measurement of the x-ray coherent scattering form factors of tissues

    NASA Astrophysics Data System (ADS)

    King, Brian W.

    The material dependent x-ray scattering properties of tissues are determined by their scattering form factors, measured as a function of the momentum transfer argument, x. Incoherent scattering form factors, Finc, are calculable for all values of x while coherent scattering form factors, Fcoh, cannot be calculated except at large C because of their dependence on long range order. As a result, measuring Fcoh is very important to the developing field of x-ray scatter imaging. Previous measurements of Fcoh, based on crystallographic techniques, have shown significant variability, as these methods are not optimal for amorphous materials. Two methods of measuring F coh, designed with amorphous materials in mind, are developed in this thesis. An angle-dispersive technique is developed that uses a polychromatic x-ray beam and a large area, energy-insensitive detector. It is shown that Fcoh can be measured in this system if the incident x-ray spectrum is known. The problem is ill-conditioned for typical x-ray spectra and two numerical methods of dealing with the poor conditioning are explored. It is shown that these techniques work best with K-edge filters to limit the spectral width and that the accuracy degrades for strongly ordered materials. Measurements of width Fcoh for water samples are made using 50, 70 and 92 kVp spectra. The average absolute relative difference in Fcoh between our results and the literature for water is approximately 10-15%. Similar measurements for fat samples were made and found to be qualitatively similar to results in the literature, although there is very large variation between the literature values in this case. The angle-dispersive measurement is limited to low resolution measurements of the coherent scattering form factor although it is more accessible than traditional measurements because of the relatively commonplace equipment requirements. An energy-dispersive technique is also developed that uses a polychromatic x-ray beam and an

  13. Accurate, quantitative assays for the hydrolysis of soluble type I, II, and III /sup 3/H-acetylated collagens by bacterial and tissue collagenases

    SciTech Connect

    Mallya, S.K.; Mookhtiar, K.A.; Van Wart, H.E.

    1986-11-01

    Accurate and quantitative assays for the hydrolysis of soluble /sup 3/H-acetylated rat tendon type I, bovine cartilage type II, and human amnion type III collagens by both bacterial and tissue collagenases have been developed. The assays are carried out at any temperature in the 1-30/sup 0/C range in a single reaction tube and the progress of the reaction is monitored by withdrawing aliquots as a function of time, quenching with 1,10-phenanthroline, and quantitation of the concentration of hydrolysis fragments. The latter is achieved by selective denaturation of these fragments by incubation under conditions described in the previous paper of this issue. The assays give percentages of hydrolysis of all three collagen types by neutrophil collagenase that agree well with the results of gel electrophoresis experiments. The initial rates of hydrolysis of all three collagens are proportional to the concentration of both neutrophil or Clostridial collagenases over a 10-fold range of enzyme concentrations. All three assays can be carried out at collagen concentrations that range from 0.06 to 2 mg/ml and give linear double reciprocal plots for both tissue and bacterial collagenases that can be used to evaluate the kinetic parameters K/sub m/ and k/sub cat/ or V/sub max/. The assay developed for the hydrolysis of rat type I collagen by neutrophil collagenase is shown to be more sensitive by at least one order of magnitude than comparable assays that use rat type I collagen fibrils or gels as substrate.

  14. Measuring laser power as a force: a new paradigm to accurately monitor optical power during laser-based machining operations

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Simonds, Brian; Sowards, Jeffrey; Hadler, Joshua

    2016-03-01

    In laser manufacturing operations, accurate measurement of laser power is important for product quality, operational repeatability, and process validation. Accurate real-time measurement of high-power lasers, however, is difficult. Typical thermal power meters must absorb all the laser power in order to measure it. This constrains power meters to be large, slow and exclusive (that is, the laser cannot be used for its intended purpose during the measurement). To address these limitations, we have developed a different paradigm in laser power measurement where the power is not measured according to its thermal equivalent but rather by measuring the laser beam's momentum (radiation pressure). Very simply, light reflecting from a mirror imparts a small force perpendicular to the mirror which is proportional to the optical power. By mounting a high-reflectivity mirror on a high-sensitivity force transducer (scale), we are able to measure laser power in the range of tens of watts up to ~ 100 kW. The critical parameters for such a device are mirror reflectivity, angle of incidence, and scale sensitivity and accuracy. We will describe our experimental characterization of a radiation-pressure-based optical power meter. We have tested it for modulated and CW laser powers up to 92 kW in the laboratory and up to 20 kW in an experimental laser welding booth. We will describe present accuracy, temporal response, sources of measurement uncertainty, and hurdles which must be overcome to have an accurate power meter capable of routine operation as a turning mirror within a laser delivery head.

  15. Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors

    PubMed Central

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-01-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961

  16. Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy.

    PubMed Central

    Picard, F; Buffeteau, T; Desbat, B; Auger, M; Pézolet, M

    1999-01-01

    Quantitative orientation measurements by attenuated total reflectance (ATR) infrared spectroscopy require the accurate knowledge of the dichroic ratio and of the mean-square electric fields along the three axes of the ATR crystal. In this paper, polarized ATR spectra of single supported bilayers of the phospholipid dimyristoylphosphatidic acid covered by either air or water have been recorded and the dichroic ratio of the bands due to the methylene stretching vibrations has been calculated. The mean-square electric field amplitudes were calculated using three formalisms, namely the Harrick thin film approximation, the two-phase approximation, and the thickness- and absorption-dependent one. The results show that for dry bilayers, the acyl chain tilt angle varies with the formalism used, while no significant variations are observed for the hydrated bilayers. To test the validity of the different formalisms, s- and p-polarized ATR spectra of a 40-A lipid layer were simulated for different acyl chain tilt angles. The results show that the thickness- and absorption-dependent formalism using the mean values of the electric fields over the film thickness gives the most accurate values of acyl chain tilt angle in dry lipid films. However, for lipid monolayers or bilayers, the tilt angle can be determined with an acceptable accuracy using the Harrick thin film approximation. Finally, this study shows clearly that the uncertainty on the determination of the tilt angle comes mostly from the experimental error on the dichroic ratio and from the knowledge of the refractive index. PMID:9876167

  17. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application.

  18. Measurement of lentiviral vector titre and copy number by cross-species duplex quantitative PCR.

    PubMed

    Christodoulou, I; Patsali, P; Stephanou, C; Antoniou, M; Kleanthous, M; Lederer, C W

    2016-01-01

    Lentiviruses are the vectors of choice for many preclinical studies and clinical applications of gene therapy. Accurate measurement of biological vector titre before treatment is a prerequisite for vector dosing, and the calculation of vector integration sites per cell after treatment is as critical to the characterisation of modified cell products as it is to long-term follow-up and the assessment of risk and therapeutic efficiency in patients. These analyses are typically based on quantitative real-time PCR (qPCR), but as yet compromise accuracy and comparability between laboratories and experimental systems, the former by using separate simplex reactions for the detection of endogene and lentiviral sequences and the latter by designing different PCR assays for analyses in human cells and animal disease models. In this study, we validate in human and murine cells a qPCR system for the single-tube assessment of lentiviral vector copy numbers that is suitable for analyses in at least 33 different mammalian species, including human and other primates, mouse, pig, cat and domestic ruminants. The established assay combines the accuracy of single-tube quantitation by duplex qPCR with the convenience of one-off assay optimisation for cross-species analyses and with the direct comparability of lentiviral transduction efficiencies in different species.

  19. Novel methodology for accurate resolution of fluid signatures from multi-dimensional NMR well-logging measurements.

    PubMed

    Anand, Vivek

    2017-03-01

    A novel methodology for accurate fluid characterization from multi-dimensional nuclear magnetic resonance (NMR) well-logging measurements is introduced. This methodology overcomes a fundamental challenge of poor resolution of features in multi-dimensional NMR distributions due to low signal-to-noise ratio (SNR) of well-logging measurements. Based on an unsupervised machine-learning concept of blind source separation, the methodology resolves fluid responses from simultaneous analysis of large quantities of well-logging data. The multi-dimensional NMR distributions from a well log are arranged in a database matrix that is expressed as the product of two non-negative matrices. The first matrix contains the unique fluid signatures, and the second matrix contains the relative contributions of the signatures for each measurement sample. No a priori information or subjective assumptions about the underlying features in the data are required. Furthermore, the dimensionality of the data is reduced by several orders of magnitude, which greatly simplifies the visualization and interpretation of the fluid signatures. Compared to traditional methods of NMR fluid characterization which only use the information content of a single measurement, the new methodology uses the orders-of-magnitude higher information content of the entire well log. Simulations show that the methodology can resolve accurate fluid responses in challenging SNR conditions. The application of the methodology to well-logging data from a heavy oil reservoir shows that individual fluid signatures of heavy oil, water associated with clays and water in interstitial pores can be accurately obtained.

  20. Novel methodology for accurate resolution of fluid signatures from multi-dimensional NMR well-logging measurements

    NASA Astrophysics Data System (ADS)

    Anand, Vivek

    2017-03-01

    A novel methodology for accurate fluid characterization from multi-dimensional nuclear magnetic resonance (NMR) well-logging measurements is introduced. This methodology overcomes a fundamental challenge of poor resolution of features in multi-dimensional NMR distributions due to low signal-to-noise ratio (SNR) of well-logging measurements. Based on an unsupervised machine-learning concept of blind source separation, the methodology resolves fluid responses from simultaneous analysis of large quantities of well-logging data. The multi-dimensional NMR distributions from a well log are arranged in a database matrix that is expressed as the product of two non-negative matrices. The first matrix contains the unique fluid signatures, and the second matrix contains the relative contributions of the signatures for each measurement sample. No a priori information or subjective assumptions about the underlying features in the data are required. Furthermore, the dimensionality of the data is reduced by several orders of magnitude, which greatly simplifies the visualization and interpretation of the fluid signatures. Compared to traditional methods of NMR fluid characterization which only use the information content of a single measurement, the new methodology uses the orders-of-magnitude higher information content of the entire well log. Simulations show that the methodology can resolve accurate fluid responses in challenging SNR conditions. The application of the methodology to well-logging data from a heavy oil reservoir shows that individual fluid signatures of heavy oil, water associated with clays and water in interstitial pores can be accurately obtained.

  1. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    NASA Astrophysics Data System (ADS)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  2. Accurate VUV Laboratory Measurements of Fe III Transitions for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Blackwell-Whitehead, R. J.; Pickering, J. C.; Smillie, D.; Nave, G.; Szabo, C. I.; Smith, Peter L.; Nielsen, K. E.; Peters, G.

    2006-01-01

    We report preliminary measurements of Fe III spectra in the 1150 to 2500 A wavelength interval. Spectra have been recorded with an iron-neon Penning discharge lamp (PDL) between 1600 and 2500 A at Imperial College (IC) using high resolution Fourier (FT) transform spectroscopy. These FT spectrometer measurements were extended beyond 1600 A to 1150 A using high-resolution grating spectroscopy at the National Institute of Standards and Technology (NIST). These recorded spectra represent the first radiometrically calibrated measurements of a doubly-ionized iron-group element spectrum combining the techniques of vacuum ultraviolet FT and grating spectroscopy. The spectral range of the new laboratory measurements corresponds to recent HST/STIS observations of sharp-lined B stars and of Eta Carinae. The new improved atomic data can be applied to abundance studies and diagnostics of astrophysical plasmas.

  3. Laser flare photometry: a noninvasive, objective, and quantitative method to measure intraocular inflammation.

    PubMed

    Tugal-Tutkun, Ilknur; Herbort, Carl P

    2010-10-01

    Aqueous flare and cells are the two inflammatory parameters of anterior chamber inflammation resulting from disruption of the blood-ocular barriers. When examined with the slit lamp, measurement of intraocular inflammation remains subjective with considerable intra- and interobserver variations. Laser flare cell photometry is an objective quantitative method that enables accurate measurement of these parameters with very high reproducibility. Laser flare photometry allows detection of subclinical alterations in the blood-ocular barriers, identifying subtle pathological changes that could not have been recorded otherwise. With the use of this method, it has been possible to compare the effect of different surgical techniques, surgical adjuncts, and anti-inflammatory medications on intraocular inflammation. Clinical studies of uveitis patients have shown that flare measurements by laser flare photometry allowed precise monitoring of well-defined uveitic entities and prediction of disease relapse. Relationships of laser flare photometry values with complications of uveitis and visual loss further indicate that flare measurement by laser flare photometry should be included in the routine follow-up of patients with uveitis.

  4. A LSO β microprobe for measuring input functions for quantitative small animal PET

    NASA Astrophysics Data System (ADS)

    Maramraju, S.; Stoll, S.; Woody, C.; Schlyer, D.; Schiffer, W.; Lee, D.; Dewey, S.; Vaska, P.

    2007-02-01

    A miniature scintillation microprobe has been developed to measure the input function in live rodents for use in longitudinal, quantitative PET studies. The probe consists of a small lutetium oxyorthosilicate (LSO) crystal measuring typically 0.3-0.5 mm diameter ×0.5-2 mm in length that is used to directly detect positrons in the blood or tissue. The probe has a sensitivity of 10-30 Hz/μCi/cm 3 and is primarily sensitive to short-range positrons emitted by labeled radiotracers in the blood. The sensitivity to γ-ray background can be minimized using a variable threshold in the readout to discriminate between positrons and γ's. The probe was implanted in one of the tail veins of a Sprague-Dawley rat and the input function was measured for the injection of 0.8 mCi of FDG in the other tail vein. The probe exhibits a fast time response that is able to quickly and accurately measure the concentration of 18F circulating in the bloodstream. Additional tests were also carried out to study the probe's sensitivity to γ-ray background.

  5. Accurate Ultrasonic Measurement of Surface Profile Using Phase Shift of Echo and Inverse Filtering

    NASA Astrophysics Data System (ADS)

    Arihara, Chihiro; Hasegawa, Hideyuki; Kanai, Hiroshi

    2006-05-01

    Atherosclerosis is the main cause of circulatory diseases such as myocardial infarction and cerebral infarction, and it is very important to diagnose atherosclerosis in its early stage. In the early stage of atherosclerosis, the luminal surface of an arterial wall becomes rough because of the injury of the endothelium [R. Ross: New Engl. J. Med. 340 (2004) 115]. Conventional ultrasonic diagnostic equipments cannot detect such roughness on the order of micrometer because of their low resolution of approximately 0.1 mm. In this study, for the accurate detection of surface roughness, an ultrasonic beam was scanned in the direction that is parallel to the surface of an object. When there is a gap on the surface, the phase of the echo from the surface changes because the distance between the probe and the surface changes during the scanning. Therefore, surface roughness can be assessed by estimating the phase shift of echoes obtained during the beam scanning. Furthermore, lateral resolution, which is deteriorated by a finite diameter of the ultrasound beam, was improved by an inverse filter. By using the proposed method, the surface profile of a phantom, which had surface roughness on the micrometer order, was detected, and the estimated surface profiles became more precise by applying the inverse filter.

  6. Quantitation of carcinogen bound protein adducts by fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Gan, Liang-Shang; Otteson, Michael S.; Doxtader, Mark M.; Skipper, Paul L.; Dasari, Ramachandra R.; Tannenbaum, Steven R.

    1989-01-01

    A highly significant correlation of aflatoxin B 1 serum albumin adduct level with daily aflatoxin B 1 intake was observed in a molecular epidemiological study of aflatoxin carcinogenesis which used conventional fluorescence spectroscopy methods for adduct quantitation. Synchronous fluorescence spectroscopy and laser induced fluorescence techniques have been employed to quantitate antibenzo[ a]pyrene diol epoxide derived globin peptide adducts. Fast and efficient methods to isolate the peptide adducts as well as eliminate protein fluorescence background are described. A detection limit of several femtomoles has been achieved. Experimental and technical considerations of low temperature synchronous fluorescence spectroscopy and fluorescence line narrowing to improve the detection sensitivities are also presented.

  7. Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets

    NASA Astrophysics Data System (ADS)

    Park, Jimin; Han, Hyung-Seop; Kim, Yu-Chan; Ahn, Jae-Pyeong; Ok, Myoung-Ryul; Lee, Kyung Eun; Lee, Jee-Wook; Cha, Pil-Ryung; Seok, Hyun-Kwang; Jeon, Hojeong

    2015-12-01

    The size-dependent wettability of sessile water droplets is an important matter in wetting science. Although extensive studies have explored this problem, it has been difficult to obtain empirical data for microscale sessile droplets at a wide range of diameters because of the flaws resulting from evaporation and insufficient imaging resolution. Herein, we present the size-dependent quantitative change of wettability by directly visualizing the three phase interfaces of droplets using a cryogenic-focused ion beam milling and SEM-imaging technique. With the fundamental understanding of the formation pathway, evaporation, freezing, and contact angle hysteresis for sessile droplets, microdroplets with diameters spanning more than three orders of magnitude on various metal substrates were examined. Wetting nature can gradually change from hydrophobic at the hundreds-of-microns scale to super-hydrophobic at the sub-μm scale, and a nonlinear relationship between the cosine of the contact angle and contact line curvature in microscale water droplets was demonstrated. We also showed that the wettability could be further tuned in a size-dependent manner by introducing regular heterogeneities to the substrate.

  8. Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets

    PubMed Central

    Park, Jimin; Han, Hyung-Seop; Kim, Yu-Chan; Ahn, Jae-Pyeong; Ok, Myoung-Ryul; Lee, Kyung Eun; Lee, Jee-Wook; Cha, Pil-Ryung; Seok, Hyun-Kwang; Jeon, Hojeong

    2015-01-01

    The size-dependent wettability of sessile water droplets is an important matter in wetting science. Although extensive studies have explored this problem, it has been difficult to obtain empirical data for microscale sessile droplets at a wide range of diameters because of the flaws resulting from evaporation and insufficient imaging resolution. Herein, we present the size-dependent quantitative change of wettability by directly visualizing the three phase interfaces of droplets using a cryogenic-focused ion beam milling and SEM-imaging technique. With the fundamental understanding of the formation pathway, evaporation, freezing, and contact angle hysteresis for sessile droplets, microdroplets with diameters spanning more than three orders of magnitude on various metal substrates were examined. Wetting nature can gradually change from hydrophobic at the hundreds-of-microns scale to super-hydrophobic at the sub-μm scale, and a nonlinear relationship between the cosine of the contact angle and contact line curvature in microscale water droplets was demonstrated. We also showed that the wettability could be further tuned in a size-dependent manner by introducing regular heterogeneities to the substrate. PMID:26657208

  9. Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements

    PubMed Central

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2016-01-01

    Electrical tomography can be used as a structural health monitoring technique to identify different damage mechanisms in composite laminates. Previous work has established the link between transverse cracking density and mesoscale conductivity of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking density. Interpretation of this measure will be accurate provided the assumptions made during homogenization are valid. One main assumption of mesoscale homogenization is that the electric field is in the plane. Here, we test the validity of this assumption for laminates with varying anisotropy ratios and for different distances between the cracked ply and surface that is instrumented with electrodes. We also show the equivalence in electrical response between measurements from cracked laminates and their equivalent mesoscale counterparts. Finally, we propose some general guidelines on the measurement strategy for maximizing the accuracy of transverse cracks identification. PMID:27023542

  10. Instrumentation for the accurate measurement of phase and amplitude in optical tomography

    NASA Astrophysics Data System (ADS)

    Nissilä, Ilkka; Kotilahti, Kalle; Fallström, Kim; Katila, Toivo

    2002-09-01

    A single-channel prototype for a frequency-domain optical tomography system is presented. The two main goals in the design of the system were the measurement of phase with minimal systematic errors and a high enough signal-to-noise ratio to detect the small changes in the absorption of brain tissue during brain activity. Although the system inherently is an imaging system, the aspects of the system that relate to multichannel operation will be published separately, as this part of the system is not yet finished. The instrument is described in detail, including the radio-frequency system, the light detection system, and the light source. Factors that affect the accuracy of the measured phase include phase drift, radio-frequency coupling between the source and detector electronics, phase-amplitude cross talk, and others. To increase the range of intensities that can be measured, the gain of the detector is adjusted while keeping the mean anode current small compared with the quiescent current through the voltage bleeder of the photomultiplier tube so that cross talk is avoided. The calibration of the measurements is considered, and the data measured on a phantom are compared with a time-resolved instrument as well as with a finite-element forward model. The instrument allows the measurement of phase to an accuracy of 0.5° between 80 fW and 80 nW at a modulation frequency of 100 MHz, giving a dynamic range of 1:106. With a time constant of 0.3 s, phase noise is 0.5° at 1 pW and decreases to 0.06° in a typical activation measurement at 3 cm separation between the optodes. Amplitude noise is 0.8% at 1 pW and 0.1% at 3 cm separation.

  11. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography.

    PubMed

    Hayashida, Misa; Kumagai, Kazuhiro; Malac, Marek

    2015-12-01

    Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.

  12. Accurate GPS measurement of the location and orientation of a floating platform. [for sea floor geodesy

    NASA Technical Reports Server (NTRS)

    Purcell, G. H., Jr.; Young, L. E.; Wolf, S. K.; Meehan, T. K.; Duncan, C. B.; Fisher, S. S.; Spiess, F. N.; Austin, G.; Boegeman, D. E.; Lowenstein, C. D.

    1990-01-01

    This article describes the design and initial tests of the GPS portion of a system for making seafloor geodesy measurements. In the planned system, GPS antennas on a floating platform will be used to measure the location of an acoustic transducer, attached below the platform, which interrogates an array of transponders on the seafloor. Since the GPS antennas are necessarily some distance above the transducer, a short-baseline GPS interferometer consisting of three antennas is used to measure the platform's orientation. A preliminary test of several crucial elements of the system was performed. The test involved a fixed antenna on the pier and a second antenna floating on a buoy about 80 m away. GPS measurements of the vertical component of this baseline, analyzed independently by two groups using different software, agree with each other and with an independent measurement within a centimeter. The first test of an integrated GPS/acoustic system took place in the Santa Cruz Basin off the coast of southern California in May 1990. In this test a much larger buoy, designed and built at SIO, was equipped with three GPS antennas and an acoustic transducer that interrogated a transponder on the ocean floor. Preliminary analysis indicates that the horizontal position of the transponder can be determined with a precision of about a centimeter.

  13. Accurate GPS measurement of the location and orientation of a floating platform

    NASA Astrophysics Data System (ADS)

    Purcell, G. H., Jr.; Young, L. E.; Wolf, S. K.; Meehan, T. K.; Duncan, C. B.; Fisher, S. S.; Spiess, F. N.; Austin, G.; Boegeman, D. E.; Lowenstein, C. D.

    This article describes the design and initial tests of the GPS portion of a system for making seafloor geodesy measurements. In the planned system, GPS antennas on a floating platform will be used to measure the location of an acoustic transducer, attached below the platform, which interrogates an array of transponders on the seafloor. Since the GPS antennas are necessarily some distance above the transducer, a short-baseline GPS interferometer consisting of three antennas is used to measure the platform's orientation. A preliminary test of several crucial elements of the system was performed. The test involved a fixed antenna on the pier and a second antenna floating on a buoy about 80 m away. GPS measurements of the vertical component of this baseline, analyzed independently by two groups using different software, agree with each other and with an independent measurement within a centimeter. The first test of an integrated GPS/acoustic system took place in the Santa Cruz Basin off the coast of southern California in May 1990. In this test a much larger buoy, designed and built at SIO, was equipped with three GPS antennas and an acoustic transducer that interrogated a transponder on the ocean floor. Preliminary analysis indicates that the horizontal position of the transponder can be determined with a precision of about a centimeter.

  14. Beyond Math Skills: Measuring Quantitative Reasoning in Context

    ERIC Educational Resources Information Center

    Grawe, Nathan D.

    2011-01-01

    It might be argued that quantitative and qualitative analyses are merely two alternative reflections of an overarching critical thinking. For instance, just as instructors of numeracy warn their charges to consider the construction of variables, teachers of qualitative approaches caution students to define terms. Similarly, an advocate of…

  15. Detection and quantitation of trace phenolphthalein (in pharmaceutical preparations and in forensic exhibits) by liquid chromatography-tandem mass spectrometry, a sensitive and accurate method.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2013-01-01

    Phenolphthalein, an acid-base indicator and laxative, is important as a constituent of widely used weight-reducing multicomponent food formulations. Phenolphthalein is an useful reagent in forensic science for the identification of blood stains of suspected victims and for apprehending erring officials accepting bribes in graft or trap cases. The pink-colored alkaline hand washes originating from the phenolphthalein-smeared notes can easily be determined spectrophotometrically. But in many cases, colored solution turns colorless with time, which renders the genuineness of bribe cases doubtful to the judiciary. No method is known till now for the detection and identification of phenolphthalein in colorless forensic exhibits with positive proof. Liquid chromatography-tandem mass spectrometry had been found to be most sensitive, accurate method capable of detection and quantitation of trace phenolphthalein in commercial formulations and colorless forensic exhibits with positive proof. The detection limit of phenolphthalein was found to be 1.66 pg/L or ng/mL, and the calibration curve shows good linearity (r(2) = 0.9974).

  16. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  17. Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?

    PubMed

    Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto

    2002-09-01

    Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore

  18. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  19. Development and calibration of an accurate 6-degree-of-freedom measurement system with total station

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Lin, Jiarui; Yang, Linghui; Zhu, Jigui

    2016-12-01

    To meet the demand of high-accuracy, long-range and portable use in large-scale metrology for pose measurement, this paper develops a 6-degree-of-freedom (6-DOF) measurement system based on total station by utilizing its advantages of long range and relative high accuracy. The cooperative target sensor, which is mainly composed of a pinhole prism, an industrial lens, a camera and a biaxial inclinometer, is designed to be portable in use. Subsequently, a precise mathematical model is proposed from the input variables observed by total station, imaging system and inclinometer to the output six pose variables. The model must be calibrated in two levels: the intrinsic parameters of imaging system, and the rotation matrix between coordinate systems of the camera and the inclinometer. Then corresponding approaches are presented. For the first level, we introduce a precise two-axis rotary table as a calibration reference. And for the second level, we propose a calibration method by varying the pose of a rigid body with the target sensor and a reference prism on it. Finally, through simulations and various experiments, the feasibilities of the measurement model and calibration methods are validated, and the measurement accuracy of the system is evaluated.

  20. An affordable and accurate conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Carminati, Marco; Luzzatto-Fegiz, Paolo

    2015-11-01

    In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.

  1. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  2. High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments

    NASA Technical Reports Server (NTRS)

    Fagot, R. J.; Mc Donald, R. T.; Roman, J. A.

    1968-01-01

    Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration.

  3. The effect of external dynamic loads on the lifetime of rolling element bearings: accurate measurement of the bearing behaviour

    NASA Astrophysics Data System (ADS)

    Jacobs, W.; Boonen, R.; Sas, P.; Moens, D.

    2012-05-01

    Accurate prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. Recent research emphasizes an important influence of external dynamic loads on the lifetime of bearings. However, most lifetime calculations of bearings are based on the classical ISO 281 standard, neglecting this influence. For bearings subjected to highly varying loads, this leads to inaccurate estimations of the lifetime, and therefore excessive safety factors during the design and unexpected failures during operation. This paper presents a novel test rig, developed to analyse the behaviour of rolling element bearings subjected to highly varying loads. Since bearings are very precise machine components, their motion can only be measured in an accurately controlled environment. Otherwise, noise from other components and external influences such as temperature variations will dominate the measurements. The test rig is optimised to perform accurate measurements of the bearing behaviour. Also, the test bearing is fitted in a modular structure, which guarantees precise mounting and allows testing different types and sizes of bearings. Finally, a fully controlled multi-axial static and dynamic load is imposed on the bearing, while its behaviour is monitored with capacitive proximity probes.

  4. Acoustic resolution photoacoustic Doppler flowmetry: practical considerations for obtaining accurate measurements of blood flow

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2014-03-01

    An assessment has been made of various experimental factors affecting the accuracy of flow velocities measured using a pulsed time correlation photoacoustic Doppler technique. In this method, Doppler time shifts are quantified via crosscorrelation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves are detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. This enables penetration depths of several millimetres or centimetres, unlike methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1 mm. In the acoustic resolution mode, it is difficult to detect time shifts in highly concentrated suspensions of flowing absorbers, such as red blood cell suspensions and whole blood, and this challenge supposedly arises because of the lack of spatial heterogeneity. However, by assessing the effect of different absorption coefficients and tube diameters, we offer an alternative explanation relating to light attenuation and parabolic flow. We also demonstrate a new signal processing method that surmounts the previous problem of measurement under-reading. This method is a form of signal range gating and enables mapping of the flow velocity profile across the tube as well as measurement of the average flow velocity. We show that, using our signal processing scheme, it is possible to measure the flow of whole blood using a relatively low frequency detector. This important finding paves the way for application of the technique to measurements of blood flow several centimetres deep in living tissue.

  5. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth W.; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M.

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10-3 for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  6. Spontaneous fluctuation indices of the cardiovagal baroreflex accurately measure the baroreflex sensitivity at the operating point during upright tilt.

    PubMed

    Schwartz, Christopher E; Medow, Marvin S; Messer, Zachary; Stewart, Julian M

    2013-06-15

    Spontaneous fluctuation indices of cardiovagal baroreflex have been suggested to be inaccurate measures of baroreflex function during orthostatic stress compared with alternate open-loop methods (e.g. neck pressure/suction, modified Oxford method). We therefore tested the hypothesis that spontaneous fluctuation measurements accurately reflect local baroreflex gain (slope) at the operating point measured by the modified Oxford method, and that apparent differences between these two techniques during orthostasis can be explained by a resetting of the baroreflex function curve. We computed the sigmoidal baroreflex function curves supine and during 70° tilt in 12 young, healthy individuals. With the use of the modified Oxford method, slopes (gains) of supine and upright curves were computed at their maxima (Gmax) and operating points. These were compared with measurements of spontaneous indices in both positions. Supine spontaneous analyses of operating point slope were similar to calculated Gmax of the modified Oxford curve. In contrast, upright operating point was distant from the centering point of the reset curve and fell on the nonlinear portion of the curve. Whereas spontaneous fluctuation measurements were commensurate with the calculated slope of the upright modified Oxford curve at the operating point, they were significantly lower than Gmax. In conclusion, spontaneous measurements of cardiovagal baroreflex function accurately estimate the slope near operating points in both supine and upright position.

  7. Describing and compensating gas transport dynamics for accurate instantaneous emission measurement

    NASA Astrophysics Data System (ADS)

    Weilenmann, Martin; Soltic, Patrik; Ajtay, Delia

    Instantaneous emission measurements on chassis dynamometers and engine test benches are becoming increasingly usual for car-makers and for environmental emission factor measurement and calculation, since much more information about the formation conditions can be extracted than from the regulated bag measurements (integral values). The common exhaust gas analysers for the "regulated pollutants" (carbon monoxide, total hydrocarbons, nitrogen oxide, carbon dioxide) allow measurement at a rate of one to ten samples per second. This gives the impression of having after-the-catalyst emission information with that chronological precision. It has been shown in recent years, however, that beside the reaction time of the analysers, the dynamics of gas transport in both the exhaust system of the car and the measurement system last significantly longer than 1 s. This paper focuses on the compensation of all these dynamics convoluting the emission signals. Most analysers show linear and time-invariant reaction dynamics. Transport dynamics can basically be split into two phenomena: a pure time delay accounting for the transport of the gas downstream and a dynamic signal deformation since the gas is mixed by turbulence along the way. This causes emission peaks to occur which are smaller in height and longer in time at the sensors than they are after the catalyst. These dynamics can be modelled using differential equations. Both mixing dynamics and time delay are constant for modelling a raw gas analyser system, since the flow in that system is constant. In the exhaust system of the car, however, the parameters depend on the exhaust volume flow. For gasoline cars, the variation in overall transport time may be more than 6 s. It is shown in this paper how all these processes can be described by invertible mathematical models with the focus on the more complex case of the car's exhaust system. Inversion means that the sharp emission signal at the catalyst out location can be

  8. A Procedure for Accurately Measuring the Shaker Overturning Moment During Random Vibration Tests

    NASA Technical Reports Server (NTRS)

    Nayeri, Reza D.

    2011-01-01

    Motivation: For large system level random vibration tests, there may be some concerns about the shaker's capability for the overturning moment. It is the test conductor's responsibility to predict and monitor the overturning moment during random vibration tests. If the predicted moment is close to the shaker's capability, test conductor must measure the instantaneous moment at low levels and extrapolate to higher levels. That data will be used to decide whether it is safe to proceed to the next test level. Challenge: Kistler analog formulation for computing the real-time moment is only applicable to very limited cases in which we have 3 or 4 load cells installed at shaker interface with hardware. Approach: To overcome that limitation, a simple procedure was developed for computing the overturning moment time histories using the measured time histories of the individual load cells.

  9. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  10. Measuring Accurately Single-Phase Sinusoidal and Non-Sinusoidal Power.

    DTIC Science & Technology

    1983-01-01

    dc source. - 1 T Figure 2.2 Power Measuring Test Set-up Source: Robert L. Boylestad , Introductory Circuit Analysis (Ohio: Charles E. Merrill, 1977) p...Power Waveforms for the General Case. Source: Robert L. Boylestad , Introductory CircuitAnalysis (Ohio: Charles E. Merrill, 1968) p. 309. Note that the...Inductive Circuit Source: Robert L. Boylestad , Introductory Circuit Analysis (Ohio: Charles E. Merrill, 1968) p. 43-. and c) In a1 purely capacitive

  11. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  12. Development of Filtered Rayleigh Scattering for Accurate Measurement of Gas Velocity

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Lempert, Walter R.

    1995-01-01

    The overall goals of this research were to develop new diagnostic tools capable of capturing unsteady and/or time-evolving, high-speed flow phenomena. The program centers around the development of Filtered Rayleigh Scattering (FRS) for velocity, temperature, and density measurement, and the construction of narrow linewidth laser sources which will be capable of producing an order MHz repetition rate 'burst' of high power pulses.

  13. Optical aperture area determination for accurate illuminance and luminous efficacy measurements of LED lamps

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Mäntynen, Henrik; Ikonen, Erkki

    2016-06-01

    The measurement uncertainty of illuminance and, consequently, luminous flux and luminous efficacy of LED lamps can be reduced with a recently introduced method based on the predictable quantum efficient detector (PQED). One of the most critical factors affecting the measurement uncertainty with the PQED method is the determination of the aperture area. This paper describes an upgrade to an optical method for direct determination of aperture area where superposition of equally spaced Gaussian laser beams is used to form a uniform irradiance distribution. In practice, this is accomplished by scanning the aperture in front of an intensity-stabilized laser beam. In the upgraded method, the aperture is attached to the PQED and the whole package is transversely scanned relative to the laser beam. This has the benefit of having identical geometry in the laser scanning of the aperture area and in the actual photometric measurement. Further, the aperture and detector assembly does not have to be dismantled for the aperture calibration. However, due to small acceptance angle of the PQED, differences between the diffraction effects of an overfilling plane wave and of a combination of Gaussian laser beams at the circular aperture need to be taken into account. A numerical calculation method for studying these effects is discussed in this paper. The calculation utilizes the Rayleigh-Sommerfeld diffraction integral, which is applied to the geometry of the PQED and the aperture. Calculation results for various aperture diameters and two different aperture-to-detector distances are presented.

  14. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    PubMed

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required.

  15. A Robust Method of Vehicle Stability Accurate Measurement Using GPS and INS

    NASA Astrophysics Data System (ADS)

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-12-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) is a very practical method to get high-precision measurement data. Usually, the Kalman filter is used to fuse the data from GPS and INS. In this paper, a robust method is used to measure vehicle sideslip angle and yaw rate, which are two important parameters for vehicle stability. First, a four-wheel vehicle dynamic model is introduced, based on sideslip angle and yaw rate. Second, a double level Kalman filter is established to fuse the data from Global Positioning System and Inertial Navigation System. Then, this method is simulated on a sample vehicle, using Carsim software to test the sideslip angle and yaw rate. Finally, a real experiment is made to verify the advantage of this approach. The experimental results showed the merits of this method of measurement and estimation, and the approach can meet the design requirements of the vehicle stability controller.

  16. Regular, Fast and Accurate Airborne In-Situ Methane Measurements Around the Tropopause

    NASA Astrophysics Data System (ADS)

    Dyroff, Christoph; Rauthe-Schöch, Armin; Schuck, Tanja J.; Zahn, Andreas

    2013-04-01

    We present a laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft. The instrument is based on a commercial fast methane analyzer (FMA, Los Gatos Res.), which was modified for fully unattended employment. A laboratory characterization was performed and the results with emphasis on the precision, cross sensitivity to H2O, and accuracy are presented. An in-flight calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. By statistical comparison of the in-situ measurements with the flask samples we derive a total uncetrainty estimate of ~ 3.85 ppbv (1?) around the tropopause, and ~ 12.4 ppbv (1?) during aircraft ascent and descent. Data from the first two years of airborne operation are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere, with occasional crossings of the tropics on flights to southern Africa. With its high spatial resolution and high accuracy this data set is unprecedented in the highly important atmospheric layer of the tropopause.

  17. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels.

    PubMed

    Sivaramakrishnan, Mathangi; Maslov, Konstantin; Zhang, Hao F; Stoica, George; Wang, Lihong V

    2007-03-07

    We investigate the feasibility of obtaining accurate quantitative information, such as local blood oxygenation level (sO2), with a spatial resolution of about 50 microm from spectral photoacoustic (PA) measurements. The optical wavelength dependence of the peak values of the PA signals is utilized to obtain the local blood oxygenation level. In our in vitro experimental models, the PA signal amplitude is found to be linearly proportional to the blood optical absorption coefficient when using ultrasonic transducers with central frequencies high enough such that the ultrasonic wavelengths are shorter than the light penetration depth into the blood vessels. For an optical wavelength in the 578-596 nm region, with a transducer central frequency that is above 25 MHz, the sensitivity and accuracy of sO2 inversion is shown to be better than 4%. The effect of the transducer focal position on the accuracy of quantifying blood oxygenation is found to be negligible. In vivo oxygenation measurements of rat skin microvasculature yield results consistent with those from in vitro studies, although factors specific to in vivo measurements, such as the spectral dependence of tissue optical attenuation, dramatically affect the accuracy of sO2 quantification in vivo.

  18. Breach Risk Magnitude: A Quantitative Measure of Database Security

    PubMed Central

    Yasnoff, William A.

    2016-01-01

    A quantitative methodology is described that provides objective evaluation of the potential for health record system breaches. It assumes that breach risk increases with the number of potential records that could be exposed, while it decreases when more authentication steps are required for access. The breach risk magnitude (BRM) is the maximum value for any system user of the common logarithm of the number of accessible database records divided by the number of authentication steps needed to achieve such access. For a one million record relational database, the BRM varies from 5.52 to 6 depending on authentication protocols. For an alternative data architecture designed specifically to increase security by separately storing and encrypting each patient record, the BRM ranges from 1.3 to 2.6. While the BRM only provides a limited quantitative assessment of breach risk, it may be useful to objectively evaluate the security implications of alternative database organization approaches. PMID:28269923

  19. Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHZ

    NASA Technical Reports Server (NTRS)

    Lang, R.H.; Tarkocin, Y.; Utku, C.; Le Vine, D.M.

    2008-01-01

    Measurements of the complex. dielectric constant of seawater at 30.00 psu, 35.00 psu and 38.27 psu over the temperature range from 5 C to 3 5 at 1.413 GHz are given and compared with the Klein-Swift results. A resonant cavity technique is used. The calibration constant used in the cavity perturbation formulas is determined experimentally using methanol and ethanediol (ethylene glycol) as reference liquids. Analysis of the data shows that the measurements are accurate to better than 1.0% in almost all cases studied.

  20. Quantitative method of measuring cancer cell urokinase and metastatic potential

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1993-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated urokinase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  1. Recognition of human IgM subgroups by quantitative measurement

    PubMed Central

    Klein, F.; De Bruyn, A. M.; Radema, H.

    1973-01-01

    By means of the single radial immunodiffusion technique it is possible to detect at least two subgroups of human IgM paraproteins, if the square ring diameter is plotted against absolute concentration. These groups give different calibration lines with the same antiserum, even when no qualitative differences can be detected by the double diffusion technique. The possibility of distinguishing these groups is not limited to the use of a single antiserum. The differences between the groups are abolished by reduction of the IgM paraprotein to 7S subunits and therefore seem to be of conformational nature. No identity with other known classifications has yet been found. In one out of two cases investigated differences in quantitative reactivity were found between 19S and >19S components in the same serum. The results suggest that quantitative methods may be used to detect differences in immunoglobulin structure, when qualitative methods fail. They show that different human IgM paraproteins cannot be directly compared quantitatively by the radial immunodiffusion method. PMID:4128890

  2. Examining factors that may influence accurate measurement of testosterone in sea turtles.

    PubMed

    Graham, Katherine M; Mylniczenko, Natalie D; Burns, Charlene M; Bettinger, Tammie L; Wheaton, Catharine J

    2016-01-01

    Differences in reported testosterone concentrations in male sea turtle blood samples are common in the veterinary literature, but may be accounted for by differences in sample handling and processing prior to assay. Therefore, our study was performed to determine best practices for testosterone analysis in male sea turtles (Caretta caretta and Chelonia mydas). Blood samples were collected into 5 collection tube types, and assay validation and measured testosterone concentrations were compared across different sample storage (fresh, refrigerated 1 week, or frozen), extraction (unextracted or ether-extracted), and processing treatment (untreated, homogenized, or dissociation reagent) conditions. Ether-extracted and dissociation reagent-treated samples validated in all conditions tested and are recommended for use, as unextracted samples validated only if assayed fresh. Dissociation reagent treatment was simpler to perform than ether extraction and resulted in total testosterone concentrations ~2.7-3.5 times greater than free testosterone measured in ether-extracted samples. Sample homogenization did not affect measured testosterone concentrations, and could be used to increase volume in gelled samples. An annual seasonal testosterone increase was observed in both species when ether extraction or dissociation reagent treatment was used. Annual deslorelin implant treatments in a Chelonia mydas male resulted in suppression of seasonal testosterone following the fourth treatment. Seasonal testosterone patterns resumed following discontinuation of deslorelin. Comparison of in-house and commercially available enzyme immunoassay kits revealed similar patterns of seasonal testosterone increases and deslorelin-induced suppression. Our study highlights the importance of methodological validation and provides laboratorians with best practices for testosterone enzyme immunoassay in sea turtles.

  3. The dark art of light measurement: accurate radiometry for low-level light therapy.

    PubMed

    Hadis, Mohammed A; Zainal, Siti A; Holder, Michelle J; Carroll, James D; Cooper, Paul R; Milward, Michael R; Palin, William M

    2016-05-01

    Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement

  4. Possibility of detecting anisotropic expansion of the universe by very accurate astrometry measurements.

    PubMed

    Quercellini, Claudia; Quartin, Miguel; Amendola, Luca

    2009-04-17

    Refined astrometry measurements allow us to detect large-scale deviations from isotropy through real-time observations of changes in the angular separation between sources at cosmic distances. This "cosmic parallax" effect is a powerful consistency test of the Friedmann-Robertson-Walker metric and may set independent constraints on cosmic anisotropy. We apply this novel general test to Lemaitre-Tolman-Bondi cosmologies with off-center observers and show that future satellite missions such as Gaia might achieve accuracies that would put limits on the off-center distance which are competitive with cosmic microwave background dipole constraints.

  5. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears

    NASA Astrophysics Data System (ADS)

    Ferreira, N.; Krah, T.; Jeong, D. C.; Metz, D.; Kniel, K.; Dietzel, A.; Büttgenbach, S.; Härtig, F.

    2014-06-01

    The integration of silicon micro probing systems into conventional gear measuring instruments (GMIs) allows fully automated measurements of external involute micro spur gears of normal modules smaller than 1 mm. This system, based on a silicon microprobe, has been developed and manufactured at the Institute for Microtechnology of the Technische Universität Braunschweig. The microprobe consists of a silicon sensor element and a stylus which is oriented perpendicularly to the sensor. The sensor is fabricated by means of silicon bulk micromachining. Its small dimensions of 6.5 mm × 6.5 mm allow compact mounting in a cartridge to facilitate the integration into a GMI. In this way, tactile measurements of 3D microstructures can be realized. To enable three-dimensional measurements with marginal forces, four Wheatstone bridges are built with diffused piezoresistors on the membrane of the sensor. On the reverse of the membrane, the stylus is glued perpendicularly to the sensor on a boss to transmit the probing forces to the sensor element during measurements. Sphere diameters smaller than 300 µm and shaft lengths of 5 mm as well as measurement forces from 10 µN enable the measurements of 3D microstructures. Such micro probing systems can be integrated into universal coordinate measuring machines and also into GMIs to extend their field of application. Practical measurements were carried out at the Physikalisch-Technische Bundesanstalt by qualifying the microprobes on a calibrated reference sphere to determine their sensitivity and their physical dimensions in volume. Following that, profile and helix measurements were carried out on a gear measurement standard with a module of 1 mm. The comparison of the measurements shows good agreement between the measurement values and the calibrated values. This result is a promising basis for the realization of smaller probe diameters for the tactile measurement of micro gears with smaller modules.

  6. Rapid and accurate measurement of the frequency-frequency correlation function.

    PubMed

    Osborne, Derek G; Kubarych, Kevin J

    2013-07-25

    Using an implementation of heterodyne-detected vibrational echo spectroscopy, we show that equilibrium spectral diffusion caused by solvation dynamics can be measured in a fraction of the time required using traditional two-dimensional infrared spectroscopy. Spectrally resolved, heterodyne-detected rephasing and nonrephasing signals, recorded at a single delay between the first two pulses in a photon echo sequence, can be used to measure the full waiting time dependent spectral dynamics that are typically extracted from a series of 2D-IR spectra. Hence, data acquisition is accelerated by more than 1 order of magnitude, while permitting extremely fine sampling of the spectral dynamics during the waiting time between the second and third pulses. Using cymantrene (cyclopentadienyl manganese tricarbonyl, CpMn(CO)3) in alcohol solutions, we compare this novel approach--denoted rapidly acquired spectral diffusion (RASD)--with a traditional method using full 2D-IR spectra, finding excellent agreement. Though this approach is largely limited to isolated vibrational bands, we also show how to remove interference from cross-peaks that can produce characteristic modulations of the spectral dynamics through vibrational quantum beats.

  7. Non-VKA Oral Anticoagulants: Accurate Measurement of Plasma Drug Concentrations.

    PubMed

    Douxfils, Jonathan; Mani, Helen; Minet, Valentine; Devalet, Bérangère; Chatelain, Bernard; Dogné, Jean-Michel; Mullier, François

    2015-01-01

    Non-VKA oral anticoagulants (NOACs) have now widely reached the lucrative market of anticoagulation. While the marketing authorization holders claimed that no routine monitoring is required and that these compounds can be given at fixed doses, several evidences arisen from the literature tend to demonstrate the opposite. New data suggests that an assessment of the response at the individual level could improve the benefit-risk ratio of at least dabigatran. Information regarding the association of rivaroxaban and apixaban exposure and the bleeding risk is available in the drug approval package on the FDA website. These reviews suggest that accumulation of these compounds increases the risk of experiencing a bleeding complication. Therefore, in certain patient populations such as patients with acute or chronic renal impairment or with multiple drug interactions, measurement of drug exposure may be useful to ensure an optimal treatment response. More specific circumstances such as patients experiencing a haemorrhagic or thromboembolic event during the treatment duration, patients who require urgent surgery or an invasive procedure, or patient with a suspected overdose could benefit from such a measurement. This paper aims at providing guidance on how to best estimate the intensity of anticoagulation using laboratory assays in daily practice.

  8. Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography.

    PubMed

    Mutelet, Fabrice; Jaubert, Jean-Noël

    2006-01-13

    Activity coefficients at infinite dilution of 29 organic compounds in two room temperature ionic liquids were determined using inverse gas chromatography. The measurements were carried out at different temperatures between 323.15 and 343.15K. To establish the influence of concurrent retention mechanisms on the accuracy of activity coefficients at infinite dilution for 1-butyl-3-methylimidazolium octyl sulfate and 1-ethyl-3-methylimidazolium tosylate, phase loading studies of the net retention volume per gram of packing as a function of the percent phase loading were used. It is shown that most of the solutes are retained largely by partition with a small contribution from adsorption on 1-butyl-3-methylimidazolium octyl sulfate and that the n-alkanes are retained predominantly by interfacial adsorption on 1-ethyl-3-methylimidazolium tosylate.

  9. Accurate optical measurement of nuclear polarization in optically pumped ^3He gas

    NASA Astrophysics Data System (ADS)

    Bigelow, N. P.; Nacher, P. J.; Leduc, M.

    1992-12-01

    Large nuclear polarizations M (over 80 %) can now be achieved in gaseous ^3He by optical pumping. The gas is excited by an RF discharge and is oriented using a high power LNA laser which is lamp pumped and tuned to the 2 ^3S-2 ^3P transition at 1.08 μm. In this paper we describe an experiment in which we measure M with high absolute precision. Our method is based on a change as a function of M in the ratio of σ or π polarized light absorbed from a weak probe beam by the 2 ^3S metastable atoms. The probe was delivered by a diode pumped LNA laser and propagated perpendicular to the direction of the magnetization. Simultaneous measurement of M was made by monitoring the degree of circular polarization \\cal{P} of the optical line at 668 nm emitted by the discharge. Our measurements show a linear relationship between M and \\cal{P} for all accessible M values and for a wide range of experimental conditions (sample pressure, magnetic field, RF discharge level, etc.). This provides a second method of measurement of the ^3He nuclear polarization which is simple to operate and is calibrated and is calibrated over a pressure range of 0.15 to 6.5 torr. On peut maintenant produire par pompage optique de fortes polarisations nucléaires M (M supérieure à 80 % dans l' ^3He gazeux. Le gaz est excité par une décharge radiofréquence et orienté à l'aide d'un laser LNA de forte intensité qui est pompé par des lampes et accordé sur la transition 2 ^3S-2 ^3P à 1,08 μm. Dans cet article, nous décrivons une expérience où nous mesurons M avec une grande précision absolue. Notre méthode est fondée sur la variation en fonction de M de l'absorption par les atomes métastables d'un faisceau sonde de faible intensité polarisé linéairement. Nous mesurons le rapport des absorptions pour des polarisations π et σ. Le faisceau sonde est un laser LNA pompé par diode qui se propage perpendiculairement à la direction de l'aimantation. Simultanément, nous mesurons M par le

  10. Numerical simulation and analysis of accurate blood oxygenation measurement by using optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Yu, Tianhao; Li, Qian; Li, Lin; Zhou, Chuanqing

    2016-10-01

    Accuracy of photoacoustic signal is the crux on measurement of oxygen saturation in functional photoacoustic imaging, which is influenced by factors such as defocus of laser beam, curve shape of large vessels and nonlinear saturation effect of optical absorption in biological tissues. We apply Monte Carlo model to simulate energy deposition in tissues and obtain photoacoustic signals reaching a simulated focused surface detector to investigate corresponding influence of these factors. We also apply compensation on photoacoustic imaging of in vivo cat cerebral cortex blood vessels, in which signals from different lateral positions of vessels are corrected based on simulation results. And this process on photoacoustic images can improve the smoothness and accuracy of oxygen saturation results.

  11. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  12. Accurate measurement of silver isotopic compositions in geological materials including low Pd/Ag meteorites

    NASA Astrophysics Data System (ADS)

    Woodland, S. J.; Rehkämper, M.; Halliday, A. N.; Lee, D.-C.; Hattendorf, B.; Günther, D.

    2005-04-01

    Very precise silver (Ag) isotopic compositions have been determined for a number of terrestrial rocks, and high and low Pd/Ag meteorites by utilizing multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The meteorites include primitive chondrites, the Group IAB iron meteorites Canyon Diablo and Toluca, and the Group IIIAB iron meteorite Grant. Silver isotopic measurements are primarily of interest because 107Ag was produced by decay of the short-lived radionuclide 107Pd during the formation of the solar system and hence the Pd-Ag chronometer has set constraints on the timing of early planetesimal formation. A 2σ precision of ±0.05‰ can be obtained for analyses of standard solutions when Ag isotopic ratios are normalized to Pd, to correct for instrumental mass discrimination, and to bracketing standards. Caution must be exercised when making Ag isotopic measurements because isotopic artifacts can be generated in the laboratory and during mass spectrometry. The external reproducibility for geological samples based on replicate analyses of rocks is ±0.2‰ (2σ). All chondrites analyzed have similar Ag isotopic compositions that do not differ significantly (>0.3‰) from the 'terrestrial' value of the NIST SRM 978a Ag isotope standard. Hence, they show no evidence of excess 107Ag derived from 107Pd decay or, of stable Ag isotope fractionation associated with volatile element depletion within the accretion disk or from parent body metamorphism. The Group IAB iron meteorite samples analyzed show evidence of complex behavior and disturbance of Ag isotope systematics. Therefore, care must be taken when using this group of iron meteorites to obtain chronological information based on the Pd-Ag decay scheme.

  13. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    SciTech Connect

    Hong Xinguo; Hao Quan

    2009-01-15

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  14. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    NASA Astrophysics Data System (ADS)

    Hong, Xinguo; Hao, Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 °C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  15. Quantitation of absorbed or deposited materials on a substrate that measures energy deposition

    DOEpatents

    Grant, Patrick G.; Bakajin, Olgica; Vogel, John S.; Bench, Graham

    2005-01-18

    This invention provides a system and method for measuring an energy differential that correlates to quantitative measurement of an amount mass of an applied localized material. Such a system and method remains compatible with other methods of analysis, such as, for example, quantitating the elemental or isotopic content, identifying the material, or using the material in biochemical analysis.

  16. Development of Accurate Chemical Equilibrium Models for the Hanford Waste Tanks: New Thermodynamic Measurements and Model Applications

    SciTech Connect

    Felmy, Andrew R.; Mason, Marvin; Qafoku, Odeta; Xia, Yuanxian; Wang, Zheming; MacLean, Graham

    2003-03-27

    Developing accurate thermodynamic models for predicting the chemistry of the high-level waste tanks at Hanford is an extremely daunting challenge in electrolyte and radionuclide chemistry. These challenges stem from the extremely high ionic strength of the tank waste supernatants, presence of chelating agents in selected tanks, wide temperature range in processing conditions and the presence of important actinide species in multiple oxidation states. This presentation summarizes progress made to date in developing accurate models for these tank waste solutions, how these data are being used at Hanford and the important challenges that remain. New thermodynamic measurements on Sr and actinide complexation with specific chelating agents (EDTA, HEDTA and gluconate) will also be presented.

  17. S3 HMBC hetero: Spin-State-Selective HMBC for accurate measurement of long-range heteronuclear coupling constants

    NASA Astrophysics Data System (ADS)

    Hoeck, Casper; Gotfredsen, Charlotte H.; Sørensen, Ole W.

    2017-02-01

    A novel method, Spin-State-Selective (S3) HMBC hetero, for accurate measurement of heteronuclear coupling constants is introduced. The method extends the S3 HMBC technique for measurement of homonuclear coupling constants by appending a pulse sequence element that interchanges the polarization in 13C-1H methine pairs. This amounts to converting the spin-state selectivity from 1H spin states to 13C spin states in the spectra of long-range coupled 1H spins, allowing convenient measurement of heteronuclear coupling constants similar to other S3 or E.COSY-type methods. As usual in this type of techniques, the accuracy of coupling constant measurement is independent of the size of the coupling constant of interest. The merits of the new method are demonstrated by application to vinyl acetate, the alkaloid strychnine, and the carbohydrate methyl β-maltoside.

  18. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    USGS Publications Warehouse

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among

  19. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements In Vivo

    PubMed Central

    Valdes, Pablo A.; Bekelis, Kimon; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Kim, Anthony; Simmons, Nathan E.; Erkmen, Kadir; Paulsen, Keith D.; Roberts, David W.

    2014-01-01

    BACKGROUND The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. OBJECTIVE To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. METHODS ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intra-operative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. RESULTS Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (CPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher CPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. CONCLUSION ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature. PMID:23887194

  20. Accurate weak lensing of standard candles. II. Measuring σ8 with supernovae

    NASA Astrophysics Data System (ADS)

    Quartin, Miguel; Marra, Valerio; Amendola, Luca

    2014-01-01

    Soon the number of type Ia supernova (SN) measurements should exceed 100 000. Understanding the effect of weak lensing by matter structures on the supernova brightness will then be more important than ever. Although SN lensing is usually seen as a source of systematic noise, we will show that it can be in fact turned into signal. More precisely, the non-Gaussianity introduced by lensing in the SN Hubble diagram dispersion depends rather sensitively on the amplitude σ8 of the matter power spectrum. By exploiting this relation, we are able to predict constraints on σ8 of 7% (3%) for a catalog of 100 000 (500 000) SNe of average magnitude error 0.12, without having to assume that such intrinsic dispersion and its redshift evolution are known a priori. The intrinsic dispersion has been assumed to be Gaussian; possible intrinsic non-Gaussianities in the data set (due to the SN themselves and/or to other transients) could be potentially dealt with by means of additional nuisance parameters describing higher moments of the intrinsic dispersion distribution function. This method is independent of and complementary to the standard methods based on cosmic microwave background, cosmic shear, or cluster abundance observables.

  1. Accurate thickness/density measurements of organic light-emitting diodes

    SciTech Connect

    Maree, C.H.; Weller, R.A.; Feldman, L.C.; Pakbaz, K.; Lee, H.W.

    1998-10-01

    We report on the use of Rutherford backscattering spectroscopy for thickness analysis of organic light-emitting diode structures (OLEDs) with subnanometer resolution and a spatial resolution {lt}1thinspmm. A careful study of ion beam induced effects revealed some organic film degradation, but not so severe as to inhibit meaningful measurements. The method is independent of the substrate and is still applicable if the organic film is capped with a metal cathode. Common OLED materials have been the subject of this study: poly(2-methoxy,5-(2{sup {prime}}-ethylhexoxy)-1,4-phenylene-vinylene) (MEH-PPV), N{sup {prime}},N{sup {prime}}-diphenyl-N, N{sup {prime}}-bis(3-methylphenyl)-1,1{sup {prime}} biphenyl-4,4{sup {prime}}-diamine (TPD), and tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}). The densities of thin films of evaporated TPD ({rho}=1.22{plus_minus}0.05thinspg/cm{sup 3}) and Alq{sub 3} ({rho}=1.51{plus_minus}0.03thinspg/cm{sup 3}) have been established. {copyright} {ital 1998 American Institute of Physics.}

  2. Accurate modeling of antennas for radiating short pulses, FDTD analysis and experimental measurements

    NASA Astrophysics Data System (ADS)

    Maloney, James G.; Smith, Glenn S.

    1993-01-01

    Antennas used to radiate short pulses often require different design rules that those that are used to radiate essentially time-harmonic signals. The finite-difference time-domain (FDTD) method is a very flexible numerical approach that can be used to treat a variety of electromagnetic problems in the time domain. It is well suited to the analysis and design of antennas for radiating short pulses; however, several advances had to be made before the method could be applied to this problem. In this paper, we will illustrate the use of the FDTD method with two antennas designed for the radiation of short pulses. The first is a simple, two-dimensional geometry, and open-ended parallel-plate waveguide, while the second is a three-dimensional, rotationally symmetric geometry, a conical monopole fed through an image by a coaxial transmission line. Both antennas are 'optimized' according to given criteria by adjusting geometrical parameters and including resistive loading that varies continuously with position along the antenna. The predicted performance for the conical monopole antenna is compared with experimental measurements; this verifies the optimization and demonstrates the practicality of the design.

  3. Accurate measurement of the sticking time and sticking probability of Rb atoms on a polydimethylsiloxane coating

    SciTech Connect

    Atutov, S. N. Plekhanov, A. I.

    2015-01-15

    We present the results of a systematic study of Knudsen’s flow of Rb atoms in cylindrical capillary cells coated with a polydimethylsiloxane (PDMS) compound. The purpose of the investigation is to determine the characterization of the coating in terms of the sticking probability and sticking time of Rb on the two types of coating of high and medium viscosities. We report the measurement of the sticking probability of a Rb atom to the coating equal to 4.3 × 10{sup −5}, which corresponds to the number of bounces 2.3 × 10{sup 4} at room temperature. These parameters are the same for the two kinds of PDMS used. We find that at room temperature, the respective sticking times for high-viscosity and medium-viscosity PDMS are 22 ± 3 μs and 49 ± 6 μs. These sticking times are about million times larger than the sticking time derived from the surface Rb atom adsorption energy and temperature of the coating. A tentative explanation of this surprising result is proposed based on the bulk diffusion of the atoms that collide with the surface and penetrate inside the coating. The results can be important in many resonance cell experiments, such as the efficient magnetooptical trapping of rare elements or radioactive isotopes and in experiments on the light-induced drift effect.

  4. Do anthropometric indices accurately reflect directly measured body composition in men and women with chronic heart failure?

    PubMed

    Oreopoulos, Antigone; Fonarow, Gregg C; Ezekowitz, Justin A; McAlister, Finlay A; Sharma, Arya M; Kalantar-Zadeh, Kamyar; Norris, Colleen M; Johnson, Jeffery A; Padwal, Raj S

    2011-01-01

    How well anthropometric indices such as body mass index (BMI), waist circumference, waist-stature ratio, and waist index correlate with direct measures of body composition (lean body mass, body fat) in men and women with chronic heart failure (CHF) has not been reported. Body composition was assessed by dual-energy x-ray absorptiometry in 140 patients with CHF. Age-adjusted Pearson correlations between each index and measures of body composition for men and women were calculated. Diagnostic accuracy of detecting obesity or high central fat was also examined. In men, all of the anthropometric indices except waist index were just as strongly correlated with lean body mass (correlation coefficients varied between 0.56 for waist-stature ratio to 0.74 for BMI) as with percentage of body fat (correlation coefficients varied between 0.72 for BMI to 0.79 for waist circumference). In women, all 4 anthropometric measures were unable to significantly differentiate between body fat and lean body mass. The positive likelihood ratios for the detection of obesity varied between 2.26 for waist circumference and 3.42 for BMI, waist-stature ratio, and waist index. Anthropometric indices do not accurately reflect body composition in patients with CHF, especially in women. When accurate assessment of body composition is required, direct measurements should be obtained.

  5. Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach.

    PubMed

    Fang, Ruihua; Elias, Dwayne A; Monroe, Matthew E; Shen, Yufeng; McIntosh, Martin; Wang, Pei; Goddard, Carrie D; Callister, Stephen J; Moore, Ronald J; Gorby, Yuri A; Adkins, Joshua N; Fredrickson, Jim K; Lipton, Mary S; Smith, Richard D

    2006-04-01

    We describe the application of LC-MS without the use of stable isotope labeling for differential quantitative proteomic analysis of whole cell lysates of Shewanella oneidensis MR-1 cultured under aerobic and suboxic conditions. LC-MS/MS was used to initially identify peptide sequences, and LC-FTICR was used to confirm these identifications as well as measure relative peptide abundances. 2343 peptides covering 668 proteins were identified with high confidence and quantified. Among these proteins, a subset of 56 changed significantly using statistical approaches such as statistical analysis of microarrays, whereas another subset of 56 that were annotated as performing housekeeping functions remained essentially unchanged in relative abundance. Numerous proteins involved in anaerobic energy metabolism exhibited up to a 10-fold increase in relative abundance when S. oneidensis was transitioned from aerobic to suboxic conditions.

  6. Differential Label-free Quantitative Proteomic Analysis of Shewanella oneidensis Cultured under Aerobic and Suboxic Conditions by Accurate Mass and Time Tag Approach

    SciTech Connect

    Fang, Ruihua; Elias, Dwayne A.; Monroe, Matthew E.; Shen, Yufeng; McIntosh, Martin; Wang, Pei; Goddard, Carrie D.; Callister, Stephen J.; Moore, Ronald J.; Gorby, Yuri A.; Adkins, Joshua N.; Fredrickson, Jim K.; Lipton, Mary S.; Smith, Richard D.

    2006-04-01

    We describe the application of liquid chromatography coupled to mass spectrometry (LC/MS) without the use of stable isotope labeling for differential quantitative proteomics analysis of whole cell lysates of Shewanella oneidensis MR-1 cultured under aerobic and sub-oxic conditions. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to initially identify peptide sequences, and LC coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR) was used to confirm these identifications, as well as measure relative peptide abundances. 2343 peptides, covering 668 proteins were identified with high confidence and quantified. Among these proteins, a subset of 56 changed significantly using statistical approaches such as SAM, while another subset of 56 that were annotated as performing housekeeping functions remained essentially unchanged in relative abundance. Numerous proteins involved in anaerobic energy metabolism exhibited up to a 10-fold increase in relative abundance when S. oneidensis is transitioned from aerobic to sub-oxic conditions.

  7. A systematic approach for the accurate and rapid measurement of water vapor transmission through ultra-high barrier films

    NASA Astrophysics Data System (ADS)

    Kiese, Sandra; Kücükpinar, Esra; Reinelt, Matthias; Miesbauer, Oliver; Ewender, Johann; Langowski, Horst-Christian

    2017-02-01

    Flexible organic electronic devices are often protected from degradation by encapsulation in multilayered films with very high barrier properties against moisture and oxygen. However, metrology must be improved to detect such low quantities of permeants. We therefore developed a modified ultra-low permeation measurement device based on a constant-flow carrier-gas system to measure both the transient and stationary water vapor permeation through high-performance barrier films. The accumulation of permeated water vapor before its transport to the detector allows the measurement of very low water vapor transmission rates (WVTRs) down to 2 × 10-5 g m-2 d-1. The measurement cells are stored in a temperature-controlled chamber, allowing WVTR measurements within the temperature range 23-80 °C. Differences in relative humidity can be controlled within the range 15%-90%. The WVTR values determined using the novel measurement device agree with those measured using a commercially available carrier-gas device from MOCON®. Depending on the structure and quality of the barrier film, it may take a long time for the WVTR to reach a steady-state value. However, by using a combination of the time-dependent measurement and the finite element method, we were able to estimate the steady-state WVTR accurately with significantly shorter measurement times.

  8. Towards More Accurate Measurements of the Ionization Energy of Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Sprecher, D.; Beyer, M.; Liu, J.; Merkt, F.; Salumbides, E.; Eikema, K. S. E.; Ubachs, W.; Jungen, Ch.

    2013-06-01

    With two electrons and two protons, molecular hydrogen is the simplest molecule displaying all features of a chemical bond. H_2 is therefore a fundamental system for testing molecular quantum mechanics and quantum electrodynamics in molecules. The test can be performed by comparing measured and calculated intervals between different rovibronic states of H_2. Two further quantities that can be used for this test are the dissociation and ionization energies of H_2, and considerable efforts have been invested over more than 80 years to improve the precision and accuracy of experimental and theoretical determination of these two quantities. The current status of the comparison is that the theoretical and experimental values of the ionization and dissociation energies of H_2 agree within the combined uncertainty of 30 MHz (see also). The factors currently limiting the precision of the experimental determination will be discussed and the strategies that are being implemented towards overcoming these limitations will be presented. A long-term goal is to achieve a precision of better than 15 kHz, which is the ultimate limit imposed on the accuracy of the theoretical determination by the current uncertainty of the proton-to-electron mass ratio. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov and W. Ubachs, {Phys. Rev. Lett.} 107 (4), 043005 (2011). K. Piszczatowski, G. Lach, M. Przybytek, J. Komasa, K. Pachuckiand and B. Jeziorski, {J. Chem. Theory Comput.} 5 (11), 3039 (2009). J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs and F. Merkt, {J. Chem. Phys.} 130 (17), 174306 (2009). D. Sprecher, Ch. Jungen, W. Ubachs and F. Merkt, {Faraday Discuss.} 150, 51 (2011).

  9. Investigation of PACE™ software and VeriFax's Impairoscope device for quantitatively measuring the effects of stress

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Nuñez, German R.; Botello, Aaron M.; Soto, Jose; Shrairman, Ruth; Landau, Alexander

    1998-01-01

    Many reaction time experiments have been conducted over the years to observe human responses. However, most of the experiments that were performed did not have quantitatively accurate instruments for measuring change in reaction time under stress. There is a great need for quantitative instruments to measure neuromuscular reaction responses under stressful conditions such as distraction, disorientation, disease, alcohol, drugs, etc. The two instruments used in the experiments reported in this paper are such devices. Their accuracy, portability, ease of use, and biometric character are what makes them very special. PACE™ is a software model used to measure reaction time. VeriFax's Impairoscope measures the deterioration of neuromuscular responses. During the 1997 Summer Semester, various reaction time experiments were conducted on University of Colorado faculty, staff, and students using the PACE™ system. The tests included both two-eye and one-eye unstressed trials and trials with various stresses such as fatigue, distractions in which subjects were asked to perform simple arithmetic during the PACE™ tests, and stress due to rotating-chair dizziness. Various VeriFax Impairoscope tests, both stressed and unstressed, were conducted to determine the Impairoscope's ability to quantitatively measure this impairment. In the 1997 Fall Semester, a Phase II effort was undertaken to increase test sample sizes in order to provide statistical precision and stability. More sophisticated statistical methods remain to be applied to better interpret the data.

  10. Tunable PIE and synchronized gating detections by FastFLIM for quantitative microscopy measurements of fast dynamics of single molecules

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Coskun, Ulas; Ferreon, Allan Chris; Barbieri, Beniamino; Liao, Shih-Chu Jeff

    2016-03-01

    The crosstalk between two fluorescent species causes problems in fluorescence microscopy imaging, especially for quantitative measurements such as co-localization, Förster resonance energy transfer (FRET), fluorescence cross correlation spectroscopy (FCCS). In laser scanning confocal microscopy, the lasers can be switched on and off by acousto-optic tunable filters (AOTF) in the microsecond scale for alternative line scanning in order to avoid the crosstalk while minimizing the time delay between two lasers on the same pixel location. In contrast, the pulsed interleaved excitation (PIE) technique synchronizes two pulsed lasers of different wavelengths in the nanosecond scale to enable measuring superfast dynamics of two fluorescent species simultaneously and yet quantitatively without the crosstalk contamination. This feature is critical for many cell biology applications, e.g. accurate determination of stoichiometry in FRET measurements for studying protein-protein interactions or cell signal events, detection of weaker bindings in FCCS by eliminating the false cross correlation due to the crosstalk. The PIE has been used with the time correlated single photon counting (TCSPC) electronics. Here, we describe a novel PIE development using the digital frequency domain (DFD) technique -- FastFLIM, which provides tunable PIE setups and synchronized gating detections, tailored and optimized to specific applications. A few PIE setups by FastFLIM and measurement examples are described. Combined with the sensitivity of Alba and Q2 systems, the PIE allowed us to quantitatively measure the fast dynamics of single molecules.

  11. Measuring edge importance: a quantitative analysis of the stochastic shielding approximation for random processes on graphs.

    PubMed

    Schmidt, Deena R; Thomas, Peter J

    2014-04-17

    Mathematical models of cellular physiological mechanisms often involve random walks on graphs representing transitions within networks of functional states. Schmandt and Galán recently introduced a novel stochastic shielding approximation as a fast, accurate method for generating approximate sample paths from a finite state Markov process in which only a subset of states are observable. For example, in ion-channel models, such as the Hodgkin-Huxley or other conductance-based neural models, a nerve cell has a population of ion channels whose states comprise the nodes of a graph, only some of which allow a transmembrane current to pass. The stochastic shielding approximation consists of neglecting fluctuations in the dynamics associated with edges in the graph not directly affecting the observable states. We consider the problem of finding the optimal complexity reducing mapping from a stochastic process on a graph to an approximate process on a smaller sample space, as determined by the choice of a particular linear measurement functional on the graph. The partitioning of ion-channel states into conducting versus nonconducting states provides a case in point. In addition to establishing that Schmandt and Galán's approximation is in fact optimal in a specific sense, we use recent results from random matrix theory to provide heuristic error estimates for the accuracy of the stochastic shielding approximation for an ensemble of random graphs. Moreover, we provide a novel quantitative measure of the contribution of individual transitions within the reaction graph to the accuracy of the approximate process.

  12. Breath-hold Multi-Echo Fast Spin-Echo Pulse Sequence for Accurate R2 Measurement in the Heart and Liver

    PubMed Central

    Kim, Daniel; Jensen, Jens H.; Wu, Ed X.; Sheth, Sujit S.; Brittenham, Gary M.

    2009-01-01

    Measurement of proton transverse relaxation rates (R2) is a generally useful means for quantitative characterization of pathological changes in tissue with a variety of clinical applications. The most widely used R2 measurement method is the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence but its relatively long scan time requires respiratory gating for chest or body MRI, rendering this approach impractical for comprehensive assessment within a clinically acceptable examination time. The purpose of our study was to develop a breath-hold multi-echo fast spin-echo (FSE) sequence for accurate measurement of R2 in the liver and heart. Phantom experiments and studies of subjects in vivo were performed to compare the FSE data with the corresponding even-echo CPMG data. For pooled data, the R2 measurements were strongly correlated (Pearson correlation coefficient = 0.99) and in excellent agreement (mean difference [CPMG-FSE] = 0.10 s−1; 95% limits of agreement were 1.98 and −1.78 s−1) between the two pulse sequences. PMID:19526516

  13. Accurate measurement of dispersion data through short and narrow tubes used in very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2015-09-04

    An original method is proposed for the accurate and reproducible measurement of the time-based dispersion properties of short L< 50cm and narrow rc< 50μm tubes at mobile phase flow rates typically used in very high-pressure liquid chromatography (vHPLC). Such tubes are used to minimize sample dispersion in vHPLC; however, their dispersion characteristics cannot be accurately measured at such flow rates due to system dispersion contribution of vHPLC injector and detector. It is shown that using longer and wider tubes (>10μL) enables a reliable measurement of the dispersion data. We confirmed that the dimensionless plot of the reduced dispersion coefficient versus the reduced linear velocity (Peclet number) depends on the aspect ratio, L/rc, of the tube, and unexpectedly also on the diffusion coefficient of the analyte. This dimensionless plot could be easily obtained for a large volume tube, which has the same aspect ratio as that of the short and narrow tube, and for the same diffusion coefficient. The dispersion data for the small volume tube are then directly extrapolated from this plot. For instance, it is found that the maximum volume variances of 75μm×30.5cm and 100μm×30.5cm prototype finger-tightened connecting tubes are 0.10 and 0.30μL(2), respectively, with an accuracy of a few percent and a precision smaller than seven percent.

  14. Compensation method for obtaining accurate, sub-micrometer displacement measurements of immersed specimens using electronic speckle interferometry.

    PubMed

    Fazio, Massimo A; Bruno, Luigi; Reynaud, Juan F; Poggialini, Andrea; Downs, J Crawford

    2012-03-01

    We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.

  15. Accurate measurement of optical properties of narrow leaves and conifer needles with a typical integrating sphere and spectroradiometer.

    PubMed

    Noda, Hibiki M; Motohka, Takeshi; Murakami, Kazutaka; Muraoka, Hiroyuki; Nasahara, Kenlo Nishida

    2013-10-01

    Accurate information on the optical properties (reflectance and transmittance spectra) of single leaves is important for an ecophysiological understanding of light use by leaves, radiative transfer models and remote sensing of terrestrial ecosystems. In general, leaf optical properties are measured with an integrating sphere and a spectroradiometer. However, this method is usually difficult to use with grass leaves and conifer needles because they are too narrow to cover the sample port of a typical integrating sphere. Although ways to measure the optical properties of narrow leaves have been suggested, they have problems. We propose a new measurement protocol and calculation algorithms. The protocol does not damage sample leaves and is valid for various types of leaves, including green and senescent. We tested our technique with leaves of Aucuba japonica, an evergreen broadleaved shrub, and compared the spectral data of whole leaves and narrow strips of the leaves. The reflectance and transmittance of the strips matched those of the whole leaves, indicating that our technique can accurately estimate the optical properties of narrow leaves. Tests of conifer needles confirmed the applicability.

  16. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    SciTech Connect

    Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.; Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2014-11-19

    The OH- and O3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm-1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of seven pressures at each temperature.

  17. Quantitative measurement of hypertrophic scar: interrater reliability and concurrent validity.

    PubMed

    Nedelec, Bernadette; Correa, José A; Rachelska, Grazyna; Armour, Alexis; LaSalle, Léo

    2008-01-01

    Research into the pathophysiology and treatment of hypertrophic scar (HSc) remains limited by the heterogeneity of scar and the imprecision with which its severity is measured. The objective of this study was to test the interrater reliability and concurrent validity of the Cutometer measurement of elasticity, the Mexameter measurement of erythema and pigmentation, and total thickness measure of the DermaScan C relative to the modified Vancouver Scar Scale (mVSS) in patient-matched normal skin, normal scar, and HSc. Three independent investigators evaluated 128 sites (severe HSc, moderate or mild HSc, donor site, and normal skin) on 32 burn survivors using all of the above measurement tools. The intraclass correlation coefficient, which was used to measure interrater reliability, reflects the inherent amount of error in the measure and is considered acceptable when it is >0.75. Interrater reliability of the totals of the height, pliability, and vascularity subscales of the mVSS fell below the acceptable limit ( congruent with0.50). The individual subscales of the mVSS fell well below the acceptable level (< or =0.3). The Cutometer reading of elasticity provided acceptable reliability (>0.89) for each study site with the exception of severe scar. Mexameter and DermaScan C reliability measurements were acceptable for all sites (>0.82). Concurrent validity correlations with the mVSS were significant except for the comparison of the mVSS pliability subscale and the Cutometer maximum deformation measure comparison in severe scar. In conclusion, the Mexameter and DermaScan C measurements of scar color and thickness of all sites, as well as the Cutometer measurement of elasticity in all but the most severe scars shows high interrater reliability. Their significant concurrent validity with the mVSS confirms that these tools are measuring the same traits as the mVSS, and in a more objective way.

  18. Quantitative comparison of measurements of urgent care service quality.

    PubMed

    Qin, Hong; Prybutok, Victor; Prybutok, Gayle

    2016-01-01

    Service quality and patient satisfaction are essential to health care organization success. Parasuraman, Zeithaml, and Berry introduced SERVQUAL, a prominent service quality measure not yet applied to urgent care. We develop an instrument to measure perceived service quality and identify the determinants of patient satisfaction/ behavioral intentions. We examine the relationships among perceived service quality, patient satisfaction and behavioral intentions, and demonstrate that urgent care service quality is not equivalent using measures of perceptions only, differences of expectations minus perceptions, ratio of perceptions to expectations, and the log of the ratio. Perceptions provide the best measure of urgent care service quality.

  19. Enhanced quantitative confocal microscopy and its application for the measurement of tympanic membrane thickness

    NASA Astrophysics Data System (ADS)

    Kuypers, Liesbeth

    2005-11-01

    This work shows that confocal microscopy allows a quantitative study of delicate 3D-biotissue in fresh condition, thus avoiding histological preparation processes. The developed procedure results in exact and accurate thickness data for mum-sized objects with a measuring error of less than 1mum. It is, however, necessary to take into account the effect of focal shift in the case of refractive index mismatch to obtain such precise data. The use of the proposed method is advised instead of the use of a paraxial approximation for the axial scale correction because the method improves measurement precision by a factor of four. The axial scaling correction factors obtained in this work show that for most practical situations the correction cannot be ignored when one wants to obtain precise quantitative data. The thickness correction method can also be used to determine with high accuracy the index of refraction of biological tissue. The thickness measurement method was applied to fresh, untreated tympanic membranes of the gerbil, the cat and the human. Thickness had to be measured at many points as it differs strongly across the membrane. Similar thickness distributions were found in all pars tensas measured even across the species studied: (1) a very thin, central region with a rather constant thickness, curving as a horse shoe upwards around the manubrium (thickness: gerbil: about 7mum, cat: about 10mum, human: large inter-specimen variation: 40mum-120mum), (2) a thinnest zone at the inferior side, (3) a thicker zone at the supero-anterior side, (4) superior to the umbo, an anterior region thicker than the posterior region, (5) maximal thicknesses in a very small region near the entire manubrium and the entire annular periphery. The pars flaccida is found to be thicker than the pars tensa. It shows no central homogeneous zone: the thickness varies irregularly and very rapidly over short distances. Arbitrarily spaced bumps and notches are present over the entire pars

  20. Quantitative Measures of Sustainability in Institutions of Higher Education

    ERIC Educational Resources Information Center

    Klein-Banai, Cynthia

    2010-01-01

    The measurement of sustainability for institutions, businesses, regions, and nations is a complex undertaking. There are many disciplinary approaches but sustainability is innately interdisciplinary and the challenge is to apply these approaches in a way that can best measure progress towards sustainability. The most common methods used by…

  1. Accurately measuring 'green' credentials.

    PubMed

    Túnica, José; Planas, Carla; Clemente, Raquel

    2013-08-01

    In a slightly adapted version of article first published in the IFHE (International Federation of Hospital Engineering) Digest 2012, José Túnica, managing director, Carla Planas, BREEAM assessor, and Raquel Clemente, LEED AP BREEAM assessor, at Spanish independent engineering firm, JG Ingenieros, examine the impact on the design of hospitals and other healthcare buildings of some of the key environmental assessment schemes now in use internationally.

  2. Quantitative Evaluation of MODIS Fire Radiative Power Measurement for Global Smoke Emissions Assessment

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Ellison, Luke

    2011-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has steadily gained increasing recognition as an important parameter for facilitating the development of various scientific studies and applications relating to the quantitative characterization of biomass burning and their emissions. To establish the scientific integrity of the FRP as a stable quantity that can be measured consistently across a variety of sensors and platforms, with the potential of being utilized to develop a unified long-term climate data record of fire activity and impacts, it needs to be thoroughly evaluated, calibrated, and validated. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to evaluate the uncertainties associated with them, such as those due to the effects of satellite variable observation geometry and other factors, in order to establish their error budget for use in diverse scientific research and applications. In this presentation, we will show recent results of the MODIS FRP uncertainty analysis and error mitigation solutions, and demonstrate

  3. Quantitative measurement of holographic image quality using Adobe Photoshop

    NASA Astrophysics Data System (ADS)

    Wesly, E.

    2013-02-01

    Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.

  4. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    NASA Astrophysics Data System (ADS)

    Öz, E.; Batsch, F.; Muggli, P.

    2016-09-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.

  5. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE PAGES

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; ...

    2014-11-19

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 Kmore » in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  6. Novel biosensors for quantitative phytic acid and phytase measurement.

    PubMed

    Mak, Wing Cheung; Ng, Yuk Mui; Chan, Chiyui; Kwong, Wai Kuen; Renneberg, Reinhard

    2004-04-15

    Phytase (EC 3.1.3.26) and phytic acid (myo-inositol hexaphosphate) play an important environmental role in poultry industry and have a health aspect in food industry. Novel biosensors have been developed for simple, one step quantitative phytic acid and phytase detection. A system based on the sequentially acting enzyme phytase and pyruvate oxidase (POD) was employed for the development of phytase and phytic acid biosensors. Poly(carbamoylsulphonate) (PCS) hydrogel immobilized POD electrode was applied for the detection of phytase. It was based on the indication of phosphate ions produced by the hydrolysis of phytic acid. The phytase biosensor showed a linear response ranging from 0.5 to 6.0 units/ml. A bi-enzyme sensor based on co-immobilization of phytase and POD was developed for the detection of phytic acid on the basis of amperometric detection of the enzymatically-generated hydrogen peroxide at 0.6 V versus Ag/AgCl. It showed a linear response ranging from 0.2 to 2.0 mM with a detection limit of 0.002 mM.

  7. Variation of quantitative emphysema measurements from CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Henschke, Claudia I.; Barr, R. Graham; Yankelevitz, David F.

    2008-03-01

    Emphysema is a lung disease characterized by destruction of the alveolar air sacs and is associated with long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema, and several measures have been introduced for the quantification of the extent of disease. In this paper we compare these measures for repeatability over time. The measures of interest in this study are emphysema index, mean lung density, histogram percentile, and the fractal dimension. To allow for direct comparisons, the measures were normalized to a 0-100 scale. These measures have been computed for a set of 2,027 scan pairs in which the mean interval between scans was 1.15 years (σ: 93 days). These independent pairs were considered with respect to three different scanning conditions (a) 223 pairs where both were scanned with a 5 mm slice thickness protocol, (b) 695 with the first scanned with the 5 mm protocol and the second with a 1.25 mm protocol, and (c) 1109 pairs scanned both times using a 1.25 mm protocol. We found that average normalized emphysema index and histogram percentiles scores increased by 5.9 and 11 points respectively, while the fractal dimension showed stability with a mean difference of 1.2. We also found, a 7 point bias introduced for emphysema index under condition (b), and that the fractal dimension measure is least affected by scanner parameter changes.

  8. Development of a Ground-Based Differential Absorption Lidar for High Accurate Measurements of Vertical CO2 Concentration Profiles

    NASA Astrophysics Data System (ADS)

    Nagasawa, Chikao; Abo, Makoto; Shibata, Yasukuni; Nagai, Tomohiro; Nakazato, Masahisa; Sakai, Tetsu; Tsukamoto, Makoto; Sakaizawa, Daisuku

    2010-05-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve high accurate measurements of vertical CO2 profiles in the atmosphere. The DIAL system is constructed from the optical parametric oscillation(OPO) transmitter and the direct detection receiving system that included a near-infrared photomultiplier tube operating at photon counting mode. The primitive DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 50 minutes and vertical resolution of 150m. We are developing the next generation 1.6 μm DIAL that can measure simultaneously the vertical CO2 concentration, temperature and pressure profiles in the atmosphere. The output laser of the OPO is 20mJ at a 500 Hz repetition rate and a 600mm diameter telescope is employed for this measurement. A very narrow interference filter (0.5nm FWHM) is used for daytime measurement. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement may be realized. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration, temperature and pressure, which measured by DIAL techniques. This work was financially supported by the Japan EOS Promotion Program by the MEXT Japan and System Development Program for Advanced Measurement and Analysis by the JST. Reference D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and

  9. Initial Description of a Quantitative, Cross-Species (Chimpanzee-Human) Social Responsiveness Measure

    ERIC Educational Resources Information Center

    Marrus, Natasha; Faughn, Carley; Shuman, Jeremy; Petersen, Steve E.; Constantino, John N.; Povinelli, Daniel J.; Pruett, John R., Jr.

    2011-01-01

    Objective: Comparative studies of social responsiveness, an ability that is impaired in autism spectrum disorders, can inform our understanding of both autism and the cognitive architecture of social behavior. Because there is no existing quantitative measure of social responsiveness in chimpanzees, we generated a quantitative, cross-species…

  10. Challenge in Enhancing the Teaching and Learning of Variable Measurements in Quantitative Research

    ERIC Educational Resources Information Center

    Kee, Chang Peng; Osman, Kamisah; Ahmad, Fauziah

    2013-01-01

    Statistical analysis is one component that cannot be avoided in a quantitative research. Initial observations noted that students in higher education institution faced difficulty analysing quantitative data which were attributed to the confusions of various variable measurements. This paper aims to compare the outcomes of two approaches applied in…

  11. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode

    PubMed Central

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    ABSTRACT Objectives To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. Materials and Methods We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recent pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered an inaccurate result. Results A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Conclusions Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH. PMID:27286119

  12. Measurements in quantitative research: how to select and report on research instruments.

    PubMed

    Hagan, Teresa L

    2014-07-01

    Measures exist to numerically represent degrees of attributes. Quantitative research is based on measurement and is conducted in a systematic, controlled manner. These measures enable researchers to perform statistical tests, analyze differences between groups, and determine the effectiveness of treatments. If something is not measurable, it cannot be tested.

  13. Semi-quantitative measurements of body hair in hirsute women compare well with direct diameter measurements of hair shafts.

    PubMed

    Barth, J H

    1997-07-01

    No standards exist for the evaluation of hair in hirsute women. This study compared the semi-quantitative visual scoring of body hair, using the Ferriman & Gallwey scale, in 88 hirsute women with direct objective measurements of hair shaft diameter and daily linear growth rates of hair growing on the pre-auricular area of the face, the forearm, the anterior abdominal wall and the anterior thigh. There was a significant correlation between the semi-quantitative score and diameter measurements on the forearm, abdominal wall and thigh. There was no relationship between linear growth rates at any of the four sites and the semi-quantitative score. The conclusion of this report is that suitably standardised and controlled semi-quantitative measurement of hair in hirsute women with visual analogue scores would appear to offer information similar to that obtained by direct measurement of hair diameter.

  14. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia.

    PubMed

    Blad, B; Persson, B; Lindström, K

    1992-01-01

    The objective of this study is a non-invasive assessment of the thermal dose in hyperthermia. Electrical impedance tomography (EIT) has previously been given a first trial as a temperature monitoring method together with microwave-induced hyperthermia treatment, but it has not been thoroughly investigated. In the present work we have examined this method in order to investigate the correlation in vitro between the true spatial temperature distribution and the corresponding measured relative resistivity changes. Different hyperthermia techniques, such as interstitial water tubings, microwave-induced, laser-induced and ferromagnetic seeds have been used. The results show that it is possible to find a correlation between the measured temperature values and the tomographically measured relative resistivity changes in tissue-equivalent phantoms. But the uncertainty of the temperature coefficients, which has been observed, shows that the method has to be improved before it can be applied to clinical in vivo applications.

  15. A quantitative evaluation of confidence measures for stereo vision.

    PubMed

    Hu, Xiaoyan; Mordohai, Philippos

    2012-11-01

    We present an extensive evaluation of 17 confidence measures for stereo matching that compares the most widely used measures as well as several novel techniques proposed here. We begin by categorizing these methods according to which aspects of stereo cost estimation they take into account and then assess their strengths and weaknesses. The evaluation is conducted using a winner-take-all framework on binocular and multibaseline datasets with ground truth. It measures the capability of each confidence method to rank depth estimates according to their likelihood for being correct, to detect occluded pixels, and to generate low-error depth maps by selecting among multiple hypotheses for each pixel. Our work was motivated by the observation that such an evaluation is missing from the rapidly maturing stereo literature and that our findings would be helpful to researchers in binocular and multiview stereo.

  16. Can endocranial volume be estimated accurately from external skull measurements in great-tailed grackles (Quiscalus mexicanus)?

    PubMed Central

    Palmstrom, Christin R.

    2015-01-01

    There is an increasing need to validate and collect data approximating brain size on individuals in the field to understand what evolutionary factors drive brain size variation within and across species. We investigated whether we could accurately estimate endocranial volume (a proxy for brain size), as measured by computerized tomography (CT) scans, using external skull measurements and/or by filling skulls with beads and pouring them out into a graduated cylinder for male and female great-tailed grackles. We found that while females had higher correlations than males, estimations of endocranial volume from external skull measurements or beads did not tightly correlate with CT volumes. We found no accuracy in the ability of external skull measures to predict CT volumes because the prediction intervals for most data points overlapped extensively. We conclude that we are unable to detect individual differences in endocranial volume using external skull measurements. These results emphasize the importance of validating and explicitly quantifying the predictive accuracy of brain size proxies for each species and each sex. PMID:26082858

  17. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    NASA Astrophysics Data System (ADS)

    Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.

    2011-02-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.

  18. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression.

    PubMed

    Nakamura, Tomonori; Yabuta, Yukihiro; Okamoto, Ikuhiro; Aramaki, Shinya; Yokobayashi, Shihori; Kurimoto, Kazuki; Sekiguchi, Kiyotoshi; Nakagawa, Masato; Yamamoto, Takuya; Saitou, Mitinori

    2015-05-19

    Single-cell mRNA sequencing (RNA-seq) methods have undergone rapid development in recent years, and transcriptome analysis of relevant cell populations at single-cell resolution has become a key research area of biomedical sciences. We here present single-cell mRNA 3-prime end sequencing (SC3-seq), a practical methodology based on PCR amplification followed by 3-prime-end enrichment for highly quantitative, parallel and cost-effective measurement of gene expression in single cells. The SC3-seq allows excellent quantitative measurement of mRNAs ranging from the 10,000-cell to 1-cell level, and accordingly, allows an accurate estimate of the transcript levels by a regression of the read counts of spike-in RNAs with defined copy numbers. The SC3-seq has clear advantages over other typical single-cell RNA-seq methodologies for the quantitative measurement of transcript levels and at a sequence depth required for the saturation of transcript detection. The SC3-seq distinguishes four distinct cell types in the peri-implantation mouse blastocysts. Furthermore, the SC3-seq reveals the heterogeneity in human-induced pluripotent stem cells (hiPSCs) cultured under on-feeder as well as feeder-free conditions, demonstrating a more homogeneous property of the feeder-free hiPSCs. We propose that SC3-seq might be used as a powerful strategy for single-cell transcriptome analysis in a broad range of investigations in biomedical sciences.

  19. Conducting Art Therapy Research Using Quantitative EEG Measures

    ERIC Educational Resources Information Center

    Belkofer, Christopher M.; Konopka, Lukasz M.

    2008-01-01

    This study presents a modified, single subject design that measured the patterns of electrical activity of a participant's brain following an hour spent painting and drawing. Paired t tests were used to compare pre and post art-making electroencephalograph (EEG) data. The results indicated that neurobiological activity after drawing and painting…

  20. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  1. Quantitative Spectral Radiance Measurements in the HYMETS Arc Jet

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Hires, Drew V.; Johansen, Craig T.; Bathel, Brett F.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.

    2012-01-01

    Calibrated spectral radiance measurements of gaseous emission spectra have been obtained from the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. A fiber-optic coupled spectrometer collected natural luminosity from the flow. Spectral radiance measurements are reported between 340 and 1000 nm. Both Silicon Carbide (SiC) and Phenolic Impregnated Carbon Ablator (PICA) samples were placed in the flow. Test gases studied included a mostly-N2 atmosphere (95% nitrogen, 5% argon), a simulated Earth Air atmosphere (75% nitrogen, 20% oxygen, 5% argon) and a simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon). The bulk enthalpy of the flow was varied as was the location of the measurement. For the intermediate flow enthalpy tested (20 MJ/kg), emission from the Mars simulant gas was about 10 times higher than the Air flow and 15 times higher than the mostly-N2 atmosphere. Shock standoff distances were estimated from the spectral radiance measurements. Within-run, run-to-run and day-to-day repeatability of the emission were studied, with significant variations (15-100%) noted.

  2. Continuous Quantitative Measurements on a Linear Air Track

    ERIC Educational Resources Information Center

    Vogel, Eric

    1973-01-01

    Describes the construction and operational procedures of a spark-timing apparatus which is designed to record the back and forth motion of one or two carts on linear air tracks. Applications to measurements of velocity, acceleration, simple harmonic motion, and collision problems are illustrated. (CC)

  3. Cultural Values Predicting Acculturation Orientations: Operationalizing a Quantitative Measure

    ERIC Educational Resources Information Center

    Ehala, Martin

    2012-01-01

    This article proposes that acculturation orientations are related to two sets of cultural values: utilitarianism (Ut) and traditionalism (Tr). While utilitarian values enhance assimilation, traditional values support language and identity maintenance. It is proposed that the propensity to either end of this value opposition can be measured by an…

  4. Quantitative measurement of hypertrophic scar: intrarater reliability, sensitivity, and specificity.

    PubMed

    Nedelec, Bernadette; Correa, José A; Rachelska, Grazyna; Armour, Alexis; LaSalle, Léo

    2008-01-01

    The comparison of scar evaluation over time requires measurement tools with acceptable intrarater reliability and the ability to discriminate skin characteristics of interest. The objective of this study was to evaluate the intrarater reliability and sensitivity and specificity of the Cutometer, the Mexameter, and the DermaScan C relative to the modified Vancouver Scar Scale (mVSS) in patient-matched normal skin, normal scar (donor sites), and hypertrophic scar (HSc). A single investigator evaluated four tissue types (severe HSc, less severe HSc, donor site, and normal skin) in 30 burn survivors with all four measurement tools. The intraclass correlation coefficient (ICC) for the Cutometer was acceptable (> or =0.75) for the maximum deformation measure for the donor site and normal skin (>0.78) but was below the acceptable range for the HSc sites and all other parameters. The ICC for the Mexameter erythema (>0.75) and melanin index (>0.89) and the DermaScan C total thickness measurement (>0.82) were acceptable for all sites. The ICC for the total of the height, pliability, and vascularity subscales of the mVSS was acceptable (0.81) for normal scar but below the acceptable range for the scar sites. The DermaScan C was clearly able to discriminate HSc from normal scar and normal skin based on the total thickness measure. The Cutometer was less discriminating but was still able to discriminate HSc from normal scar and normal skin. The Mexameter erythema index was not a good discriminator of HSc and normal scar. Receiver operating characteristic curves were generated to establish the best cutoff point for the DermaScan C total thickness and the Cutometer maximum deformation, which were 2.034 and 0.387 mm, respectively. This study showed that although the Cutometer, the DermaScan C, and the Mexameter have measurement properties that make them attractive substitutes for the mVSS, caution must be used when interpreting results since the Cutometer has a ceiling effect when

  5. Robust quantitative parameter estimation by advanced CMP measurements for vadose zone hydrological studies

    NASA Astrophysics Data System (ADS)

    Koyama, C.; Wang, H.; Khuut, T.; Kawai, T.; Sato, M.

    2015-12-01

    Soil moisture plays a crucial role in the understanding of processes in the vadose zone hydrology. In the last two decades ground penetrating radar (GPR) has been widely discussed has nondestructive measurement technique for soil moisture data. Especially the common mid-point (CMP) technique, which has been used in both seismic and GPR surveys to investigate the vertical velocity profiles, has a very high potential for quantitaive obervsations from the root zone to the ground water aquifer. However, the use is still rather limited today and algorithms for robust quantitative paramter estimation are lacking. In this study we develop an advanced processing scheme for operational soil moisture reetrieval at various depth. Using improved signal processing, together with a semblance - non-normalized cross-correlation sum combined stacking approach and the Dix formula, the interval velocities for multiple soil layers are obtained from the RMS velocities allowing for more accurate estimation of the permittivity at the reflecting point. Where the presence of a water saturated layer, like a groundwater aquifer, can be easily identified by its RMS velocity due to the high contrast compared to the unsaturated zone. By using a new semi-automated measurement technique the acquisition time for a full CMP gather with 1 cm intervals along a 10 m profile can be reduced significantly to under 2 minutes. The method is tested and validated under laboratory conditions in a sand-pit as well as on agricultural fields and beach sand in the Sendai city area. Comparison between CMP estimates and TDR measurements yield a very good agreement with RMSE of 1.5 Vol.-%. The accuracy of depth estimation is validated with errors smaller than 2%. Finally, we demonstrate application of the method in a test site in semi-arid Mongolia, namely the Orkhon River catchment in Bulgan, using commercial 100 MHz and 500 MHz RAMAC GPR antennas. The results demonstrate the suitability of the proposed method for

  6. Development of Ground-Based DIAL Techniques for High Accurate Measurements of CO2 Concentration Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Nakazato, M.; Sakai, T.; Tsukamoto, M.; Sakaizawa, D.

    2009-12-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve high accurate measurements of vertical CO2 profiles in the atmosphere. The DIAL system is constructed from the optical parametric oscillation(OPO) transmitter and the direct detection receiving system that included a near-infrared photomultiplier tube operating at photon counting mode (Fig.1). The primitive DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 50 minutes and vertical resolution of 150m. We develop the next generation 1.6 μm DIAL that can measure simultaneously the vertical CO2 concentration, temperature and pressure profiles in the atmosphere. The characteristics of the 1.6 μm DIALs of the primitive and next generations are shown in Table 1. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement may be realized. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration, temperature and pressure which measured by DIAL techniques. This work was financially supported by the Japan EOS Promotion Program by the MEXT Japan and System Development Program for Advanced Measurement and Analysis by the JST. Reference D. Sakaisawa et al., Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009. Fig. 1 Experimental setup of the 1.6 μm CO2 DIAL. Comparison of primitive

  7. Personal Exposure Monitoring Wearing Protocol Compliance: An Initial Assessment of Quantitative Measurements

    EPA Science Inventory

    Personal exposure sampling provides the most accurate and representative assessment of exposure to a pollutant, but only if measures are implemented to minimize exposure misclassification and reduce confounders that may cause misinterpretation of the collected data. Poor complian...

  8. Quantitative measurement of aging using image texture entropy

    PubMed Central

    Shamir, Lior; Wolkow, Catherine A.; Goldberg, Ilya G.

    2009-01-01

    Motivation: A key element in understanding the aging of Caenorhabditis elegans is objective quantification of the morphological differences between younger and older animals. Here we propose to use the image texture entropy as an objective measurement that reflects the structural deterioration of the C.elegans muscle tissues during aging. Results: The texture entropy and directionality of the muscle microscopy images were measured using 50 animals on Days 0, 2, 4, 6, 8, 10 and 12 of adulthood. Results show that the entropy of the C.elegans pharynx tissues increases as the animal ages, but a sharper increase was measured between Days 2 and 4, and between Days 8 and 10. These results are in agreement with gene expression findings, and support the contention that the process of C.elegans aging has several distinct stages. This can indicate that C.elegans aging is driven by developmental pathways, rather than stochastic accumulation of damage. Availability: The image data are freely available on the Internet at http://ome.grc.nia.nih.gov/iicbu2008/celegans, and the Haralick and Tamura texture analysis source code can be downloaded at http://ome.grc.nia.nih.gov/wnd-charm. Contact: shamirl@mail.nih.gov PMID:19808878

  9. Framework and need for dosimetry and measurements: quantitation matters.

    PubMed

    Guilmette, Raymond A

    2015-02-01

    It has always been recognized that radiation measurements and dosimetry (M &8; D) play a crucial role in developing radiation protection programs for workers and members of the public, particularly as they relate to mitigating potential health risks from exposure to radiation. The National Council on Radiation Protection and Measurements (NCRP) has always devoted significant resources to these scientific disciplines in terms of its published reports, and it is anticipated that this emphasis will continue. This includes focus on both external and internal radiation exposure as well as radiation and radioactivity measurement methodology. NCRP, as part of its management of scientific activities, has designated Program Area Committee 6 to focus on radiation M &8; D. This paper briefly describes how radiation M &8; D has been addressed historically in terms of NCRP activities. It reports how the emphases have changed over the years and how NCRP has worked effectively with other radiation protection organizations, such as the International Commission on Radiological Protection, to leverage its expertise in advancing the science of M &8; D. Current and prospective activities in M &8; D by NCRP are also described to frame the future in these areas of interest necessary for the optimum application of radiation protection principles and programs.

  10. Quantitative Species Measurements in Microgravity Combustion Flames using Near-Infrared Diode Lasers

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1999-01-01

    Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for characterizing dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Unfortunately, combustion is highly complicated by fluid mechanical and chemical kinetic processes, requiring the use of numerical modeling to compare with carefully designed experiments. More sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion as well as provide accurate feedback to improve the predictive capabilities of the models. Diode lasers are a natural choice for use under the severe conditions of low gravity experiments. Reliable, simple solid state operation at low power satisfies the operational restrictions imposed by drop towers, aircraft and space-based studies. Modulation wavelength absorption spectroscopy (WMS) provides a means to make highly sensitive and quantitative measurements of local gas concentration and, in certain cases, temperature. With near-infrared diode lasers, detection of virtually all major combustion species with extremely rapid response time is possible in an inexpensive package. Advancements in near-infrared diode laser fabrication technology and concurrent development of optical fibers for these lasers led to their use in drop towers. Since near-infrared absorption line strengths for overtone and combination vibrational transitions are weaker than the mid-infrared fundamental bands, WMS techniques are applied to increase detection sensitivity and allow measurement of the major combustion gases. In the first microgravity species measurement, Silver et al. mounted a fiber-coupled laser at the top of the NASA 2.2-sec drop tower and piped the light through a single-mode fiber to the drop rig. A fiber splitter divided the light into eight channels that directed

  11. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    EPA Science Inventory

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  12. A novel image processing and measurement system applied to quantitative analysis of simulated tooth root canal shape

    NASA Astrophysics Data System (ADS)

    Yong, Tao; Yong, Wei; Jin, Guofan; Gao, Xuejun

    2005-02-01

    Dental pulp is located in root canal of tooth. To modern root canal therapy, "Root canal preparation" is the main means to debride dental pulp infection. The shape of root canal will be changed after preparation, so, when assessing the preparation instruments and techniques, the root canal shaping ability especially the apical offset is very important factor. In this paper, a novel digital image processing and measurement system is designed and applied to quantitative analysis of simulated canal shape. By image pretreatment, feature extraction, registration and fusion, the variation of the root canals' characteristics (before and after preparation) can be accurately compared and measured, so as to assess the shaping ability of instruments. When the scanning resolution is 1200dpi or higher, the registration and measurement precision of the system can achieve 0.021mm or higher. The performance of the system is tested by a series of simulated root canals and stainless steel K-files.

  13. Quantitative IgD measurement for discrimination of human bloodstains.

    PubMed

    Keil, W; Glowatzki, M L

    1986-06-01

    The IgD concentrations of eluates of artificial bloodstains and of the corresponding sera from 40 subjects of different ages were measured by single radial immunodiffusion. IgD was found in bloodstains stored up to 53 days, i.e. IgD storage stability is sufficient for forensic purposes. Since serum IgD concentrations of individuals, in particular of adults, are almost invariable and serum levels of different individuals can vary by more than a 1000-fold, the discrimination of bloodstains on the basis of IgD is generally possible. Thus IgD constitutes a further marker in antibody profiling of bloodstains.

  14. Development of a Quantitative Measure of Holistic Nursing Care.

    PubMed

    Kinchen, Elizabeth

    2015-09-01

    Holistic care has long been a defining attribute of nursing practice. From the earliest years of its formal history, nursing has favored a holistic approach in the care of patients, and such an approach has become more important over time. The expansion of nursing's responsibility in delivering comprehensive primary care, the recognition of the importance of relationship-centered care, and the need for evidence-based legitimation of holistic nursing care and practices to insurance companies, policy-makers, health care providers, and patients highlight the need to examine the holistic properties of nursing care. The Holistic Caring Inventory is a theoretically sound, valid, and reliable tool; however, it does not comprehensively address attributes that have come to define holistic nursing care, necessitating the development of a more current instrument to measure the elements of a holistic perspective in nursing care. The development of a current and more comprehensive measure of holistic nursing care may be critical in demonstrating the importance of a holistic approach to patient care that reflects the principles of relationship-based care, shared decision-making, authentic presence, and pattern recognition.

  15. Accurate high-resolution measurements of 3-D tissue dynamics with registration-enhanced displacement encoded MRI.

    PubMed

    Gomez, Arnold D; Merchant, Samer S; Hsu, Edward W

    2014-06-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI.

  16. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  17. The measurement of red blood cell volume change induced by Ca2+ based on full field quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seungrag; Lee, Ji Yong; Yang, Wenzhong; Kim, Dug Young

    2009-02-01

    We present the measurement of red blood cell (RBC) volume change induced by Ca2+ for a live cell imaging with full field quantitative phase microscopy (FFQPM). FFQPM is based on the Mach-Zehnder interferometer combined with an inverted microscopy system. We present the effective method to obtain a clear image and an accurate volume of the cells. An edge detection technique is used to accurately resolve the boundary between the cell line and the suspension medium. The measurement of the polystyrene bead diameter and volume has been demonstrated the validity of our proposed method. The measured phase profile can be easily converted into thickness profile. The measured polystyrene bead volume and the simulated result are about 14.74 μm3 and 14.14 μm3, respectively. The experimental results of our proposed method agree well with the simulated results within less than 4 %. We have also measured the volume variation of a single RBC on a millisecond time scale. Its mean volume is 54.02 μm3 and its standard deviation is 0.52 μm3. With the proposed system, the shape and volume changes of RBC induced by the increased intracellular Ca2+ are measured after adding ionophore A23187. A discocyte RBC is deformed to a spherocyte due to the increased intracellular Ca2+ in RBC. The volume of the spherocyte is 47.88 μm3 and its standard deviation is 0.19 μm3. We have demonstrated that the volume measurement technique is easy, accurate, and robust method with high volume sensitivity (<0.0000452 μm3) and this provides the ability to study a biological phenomenon in Hematology.

  18. Quantitative Fundus Autofluorescence in Mice: Correlation With HPLC Quantitation of RPE Lipofuscin and Measurement of Retina Outer Nuclear Layer Thickness

    PubMed Central

    Sparrow, Janet R.; Blonska, Anna; Flynn, Erin; Duncker, Tobias; Greenberg, Jonathan P.; Secondi, Roberta; Ueda, Keiko; Delori, François C.

    2013-01-01

    Purpose. Our study was conducted to establish procedures and protocols for quantitative autofluorescence (qAF) measurements in mice, and to report changes in qAF, A2E bisretinoid concentration, and outer nuclear layer (ONL) thickness in mice of different genotypes and age. Methods. Fundus autofluorescence (AF) images (55° lens, 488 nm excitation) were acquired in albino Abca4−/−, Abca4+/−, and Abca4+/+ mice (ages 2–12 months) with a confocal scanning laser ophthalmoscope (cSLO). Gray levels (GLs) in each image were calibrated to an internal fluorescence reference. The bisretinoid A2E was measured by quantitative high performance liquid chromatography (HPLC). Histometric analysis of ONL thicknesses was performed. Results. The Bland-Altman coefficient of repeatability (95% confidence interval) was ±18% for between-session qAF measurements. Mean qAF values increased with age (2–12 months) in all groups of mice. qAF was approximately 2-fold higher in Abca4−/− mice than in Abca4+/+ mice and approximately 20% higher in heterozygous mice. HPLC measurements of the lipofuscin fluorophore A2E also revealed age-associated increases, and the fold difference between Abca4−/− and wild-type mice was more pronounced (approximately 3–4-fold) than measurable by qAF. Moreover, A2E levels declined after 8 months of age, a change not observed with qAF. The decline in A2E levels in the Abca4−/− mice corresponded to reduced photoreceptor cell viability as reflected in ONL thinning beginning at 8 months of age. Conclusions. The qAF method enables measurement of in vivo lipofuscin and the detection of genotype and age-associated differences. The use of this approach has the potential to aid in understanding retinal disease processes and will facilitate preclinical studies. PMID:23548623

  19. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  20. Chamber for indirect calorimetry with accurate measurement and time discrimination of metabolic plateaus of over 20 min.

    PubMed

    Nguyen, T; de Jonge, L; Smith, S R; Bray, G A

    2003-09-01

    A robust algorithm for pull-calorimeters that provides a rapid response to changes in respiratory gas exchange has been implemented. Metabolic plateaus (over 20 min), such as that generated by steady treadmill exercise, can be measured accurately (< 2.0% error for an energy expenditure level of 16.7 kJ min(-1)). The time resolution for changes between plateaus can be accurately found with 1 min discrimination. Implementation required only software changes but no structural or instrumentation changes to the chamber. The algorithm was based on the one developed for the push-calorimeter at the Sahlgrenska Hospital in Sweden. The method utilises published equations for the rate of O2 consumption and CO2 production in the chamber, along with techniques for suppressing noise and identifying trends. Using the exact solution of the equations for steady state, the O2 concentrations from the preceding 30 min period are fitted to two connected exponential segments, of variable length, using the least-squares method. The smoothed O2 concentration and associated time derivative are then determined for the time point 15 min earlier and substituted into the respiration equations. The CO2 concentrations are subjected to the same analysis. The process is repeated every minute, and the newly computed rates of O2 consumption and CO2 production, as well as metabolic rate, are then presented. Gas injection tests proved that the chamber can respond instantaneously to a change from one steady state of respiration to another and correctly averages repeated changes in respiration with periods less than 15min (< 1.4% error for simulated, alternating O2 consumption levels of 0.81 min (-1) and 0.01 min). The successful integration of the algorithm into the Pennington chambers allows for traditional 24 h energy expenditure measurements and various metabolic experiments requiring rapid responses.

  1. Identification and Quantitative Measurements of Chemical Species by Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Zondlo, Mark A.; Bomse, David S.

    2005-01-01

    The development of a miniature gas chromatograph/mass spectrometer system for the measurement of chemical species of interest to combustion is described. The completed system is a fully-contained, automated instrument consisting of a sampling inlet, a small-scale gas chromatograph, a miniature, quadrupole mass spectrometer, vacuum pumps, and software. A pair of computer-driven valves controls the gas sampling and introduction to the chromatographic column. The column has a stainless steel exterior and a silica interior, and contains an adsorbent of that is used to separate organic species. The detection system is based on a quadrupole mass spectrometer consisting of a micropole array, electrometer, and a computer interface. The vacuum system has two miniature pumps to maintain the low pressure needed for the mass spectrometer. A laptop computer uses custom software to control the entire system and collect the data. In a laboratory demonstration, the system separated calibration mixtures containing 1000 ppm of alkanes and alkenes.

  2. Linguistic Distance: A Quantitative Measure of the Distance between English and Other Languages

    ERIC Educational Resources Information Center

    Chiswick, Barry R.; Miller, Paul W.

    2005-01-01

    This paper develops a scalar or quantitative measure of the "distance" between English and a myriad of other (non-native American) languages. This measure is based on the difficulty Americans have learning other languages. The linguistic distance measure is then used in an analysis of the determinants of English language proficiency…

  3. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens.

    PubMed

    Alperin, Samuel N; Niederriter, Robert D; Gopinath, Juliet T; Siemens, Mark E

    2016-11-01

    We show that the average orbital angular momentum (OAM) of twisted light can be measured simply and robustly with a single stationary cylindrical lens and a camera. Theoretical motivation is provided, along with self-consistent optical modeling and experimental results. In contrast to qualitative interference techniques for measuring OAM, we quantitatively measure non-integer average OAM in mode superpositions.

  4. Quantitative EEG (QEEG) Measures Differentiate Parkinson's Disease (PD) Patients from Healthy Controls (HC)

    PubMed Central

    Chaturvedi, Menorca; Hatz, Florian; Gschwandtner, Ute; Bogaarts, Jan G.; Meyer, Antonia; Fuhr, Peter; Roth, Volker

    2017-01-01

    Objectives: To find out which Quantitative EEG (QEEG) parameters could best distinguish patients with Parkinson's disease (PD) with and without Mild Cognitive Impairment from healthy individuals and to find an optimal method for feature selection. Background: Certain QEEG parameters have been seen to be associated with dementia in Parkinson's and Alzheimer's disease. Studies have also shown some parameters to be dependent on the stage of the disease. We wanted to investigate the differences in high-resolution QEEG measures between groups of PD patients and healthy individuals, and come up with a small subset of features that could accurately distinguish between the two groups. Methods: High-resolution 256-channel EEG were recorded in 50 PD patients (age 68.8 ± 7.0 year; female/male 17/33) and 41 healthy controls (age 71.1 ± 7.7 year; female/male 20/22). Data was processed to calculate the relative power in alpha, theta, delta, beta frequency bands across the different regions of the brain. Median, peak frequencies were also obtained and alpha1/theta ratios were calculated. Machine learning methods were applied to the data and compared. Additionally, penalized Logistic regression using LASSO was applied to the data in R and a subset of best-performing features was obtained. Results: Random Forest and LASSO were found to be optimal methods for feature selection. A group of six measures selected by LASSO was seen to have the most effect in differentiating healthy individuals from PD patients. The most important variables were the theta power in temporal left region and the alpha1/theta ratio in the central left region. Conclusion: The penalized regression method applied was helpful in selecting a small group of features from a dataset that had high multicollinearity. PMID:28167911

  5. Measuring Edge Importance: A Quantitative Analysis of the Stochastic Shielding Approximation for Random Processes on Graphs

    PubMed Central

    2014-01-01

    Mathematical models of cellular physiological mechanisms often involve random walks on graphs representing transitions within networks of functional states. Schmandt and Galán recently introduced a novel stochastic shielding approximation as a fast, accurate method for generating approximate sample paths from a finite state Markov process in which only a subset of states are observable. For example, in ion-channel models, such as the Hodgkin–Huxley or other conductance-based neural models, a nerve cell has a population of ion channels whose states comprise the nodes of a graph, only some of which allow a transmembrane current to pass. The stochastic shielding approximation consists of neglecting fluctuations in the dynamics associated with edges in the graph not directly affecting the observable states. We consider the problem of finding the optimal complexity reducing mapping from a stochastic process on a graph to an approximate process on a smaller sample space, as determined by the choice of a particular linear measurement functional on the graph. The partitioning of ion-channel states into conducting versus nonconducting states provides a case in point. In addition to establishing that Schmandt and Galán’s approximation is in fact optimal in a specific sense, we use recent results from random matrix theory to provide heuristic error estimates for the accuracy of the stochastic shielding approximation for an ensemble of random graphs. Moreover, we provide a novel quantitative measure of the contribution of individual transitions within the reaction graph to the accuracy of the approximate process. PMID:24742077

  6. How accurate are antenatal weight measurements? A survey of hospital and community clinics in a South Thames Region NHS Trust.

    PubMed

    Harris, H E; Ellison, G T; Holliday, M; Nickson, C

    1998-04-01

    The accuracy of antenatal weight data recorded in obstetric notes was investigated in the 45 hospital and community antenatal clinics within a South Thames Region NHS Trust. In order to assess the reliability and validity of all 60 clinic scales triplicate measurements of body weight for low- and high-weight subjects were recorded on each clinical scale and on a calibrated standard scale. The quality of weighing practice during antenatal care was investigated by means of semi-structured interviews conducted with all 33 midwives who currently provide antenatal care within the Trust. Beam balances had the highest reliability and validity, whereas scales with spring mechanisms were the least accurate. Only 40% of the clinics surveyed had access to beam balances, yet most of the maternal weight measurements recorded during antenatal care are likely to be out by no more than 1-1.5% of body weight. Weighing practice was generally inconsistent, and serial measurements of maternal body weight collected during pregnancy are probably too imprecise to provide a sensitive screen for conditions associated with unusual weight gain and too inaccurate to assess compliance with guidelines for weight gain.

  7. Quantitative measurements of active Ionian volcanoes in Galileo NIMS data

    NASA Astrophysics Data System (ADS)

    Saballett, Sebastian; Rathbun, Julie A.; Lopes, Rosaly M. C.; Spencer, John R.

    2016-10-01

    Io is the most volcanically active body in our solar system. The spatial distribution of volcanoes a planetary body's surface gives clues into its basic inner workings (i.e., plate tectonics on earth). Tidal heating is the major contributor to active surface geology in the outer solar system, and yet its mechanism is not completely understood. Io's volcanoes are the clearest signature of tidal heating and measurements of the total heat output and how it varies in space and time are useful constraints on tidal heating. Hamilton et al. (2013) showed through a nearest neighbor analysis that Io's hotspots are globally random, but regionally uniform near the equator. Lopes-Gautier et al. (1999) compared the locations of hotspots detected by NIMS to the spatial variation of heat flow predicted by two end-member tidal heating models. They found that the distribution of hotspots is more consistent with tidal heating occurring in asthenosphere rather than the mantle. Hamilton et al. (2013) demonstrate that clustering of hotspots also supports a dominant role for asthenosphere heating. These studies were unable to account for the relative brightness of the hotspots. Furthermore, studies of the temporal variability of Ionian volcanoes have yielded substantial insight into their nature. The Galileo Near Infrared Mapping Spectrometer (NIMS) gave us a large dataset from which to observe active volcanic activity. NIMS made well over 100 observations of Io over an approximately 10-year time frame. With wavelengths spanning from 0.7 to 5.2 microns, it is ideally suited to measure blackbody radiation from surfaces with temperatures over 300 K. Here, we report on our effort to determine the activity level of each hotspot observed in the NIMS data. We decide to use 3.5 micron brightness as a proxy for activity level because it will be easy to compare to, and incorporate, ground-based observations. We fit a 1-temperature blackbody to spectra in each grating position and averaged the

  8. Quantitative and qualitative measures of decomposition: Is there a link?

    SciTech Connect

    Eaton, Robert, J.; Sanchez, Felipe, G.

    2009-03-01

    Decomposition rates of loblolly pine coarse woody debris (CWD) were determined by mass loss and wood density changes for trees that differed in source of mortality (natural, girdle-poison, and felling). Specifically, three treatments were examined: (1) control (CON): natural mortality; (2) CD: 5-fold increase in CWD compared with the CON; and (3) CS: 12-fold increase in snags compared with the CON. The additional CWD in the CD treatment plots and the additional snags in the CS plots were achieved by felling (for the CD plots) or girdling followed by herbicide injection (for the CS plots) select trees in these plots. Consequently,mortality on the CD plots is due to natural causes and felling. Likewise, mortality on the CS plots is due to natural causes and girdle-poison. In each treatment plot, mortality due to natural causes was inventoried since 1997, whereas mortality due to girdle-poison and felling were inventoried since 2001. No significant difference was detected between the rates of decomposition for the CWD on these treatment plots, indicating that source of the tree mortality did not influence rates of decomposition once the tree fell. These experimental measures of decomposition were compared with two decay classification systems (three- and five-unit classifications) to determine linkages. Changes in wood density did not correlate to any decay classification, whereas mass loss had a weak correlation with decay class. However, the large degree of variation limits the utility of decay classification systems in estimating mass loss.

  9. Quantitative Measures for Software Independent Verification and Validation

    NASA Technical Reports Server (NTRS)

    Lee, Alice

    1996-01-01

    As software is maintained or reused, it undergoes an evolution which tends to increase the overall complexity of the code. To understand the effects of this, we brought in statistics experts and leading researchers in software complexity, reliability, and their interrelationships. These experts' project has resulted in our ability to statistically correlate specific code complexity attributes, in orthogonal domains, to errors found over time in the HAL/S flight software which flies in the Space Shuttle. Although only a prototype-tools experiment, the result of this research appears to be extendable to all other NASA software, given appropriate data similar to that logged for the Shuttle onboard software. Our research has demonstrated that a more complete domain coverage can be mathematically demonstrated with the approach we have applied, thereby ensuring full insight into the cause-and-effects relationship between the complexity of a software system and the fault density of that system. By applying the operational profile we can characterize the dynamic effects of software path complexity under this same approach We now have the ability to measure specific attributes which have been statistically demonstrated to correlate to increased error probability, and to know which actions to take, for each complexity domain. Shuttle software verifiers can now monitor the changes in the software complexity, assess the added or decreased risk of software faults in modified code, and determine necessary corrections. The reports, tool documentation, user's guides, and new approach that have resulted from this research effort represent advances in the state of the art of software quality and reliability assurance. Details describing how to apply this technique to other NASA code are contained in this document.

  10. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  11. Accurate and precise plasma clearance measurement using four 99mTc-DTPA plasma samples over 4 h

    PubMed Central

    Wanasundara, Surajith N.; Wesolowski, Michal J.; Barnfield, Mark C.; Waller, Michael L.; Murray, Anthony W.; Burniston, Maria T.; Babyn, Paul S.

    2016-01-01

    Objectives Glomerular filtration rate can be measured as the plasma clearance (CL) of a glomerular filtration rate marker despite body fluid disturbances using numerous, prolonged time samples. We desire a simplified technique without compromised accuracy and precision. Materials and methods We compared CL values derived from two plasma concentration curve area methods – (a) biexponential fitting [CL (E2)] and (b) Tikhonov adaptively regularized gamma variate fitting [CL (Tk-GV)] – for 4 versus 8 h time samplings from 412 99mTc-DTPA studies in 142 patients, mostly paediatric patients, with suspected fluid disturbances. Results CL (Tk-GV) from four samples/4 h and from nine samples/8 h, both accurately and precisely agreed with the standard, which was taken to be nine samples/8 h CL from (noncompartmental) numerical integration [CL (NI)]. The E2 method, four samples/4 h, and nine samples/8 h median CL values significantly overestimated the CL (NI) values by 4.9 and 3.8%, respectively. Conclusion Compared with the standard, CL (E2) from four samples/4 h and from nine samples/8 h proved to be the most inaccurate and imprecise method examined, and can be replaced by better methods for calculating CL. The CL (Tk-GV) can be used to reduce sampling time in half from 8 to 4 h and from nine to four samples for a precise and accurate, yet more easily tolerated and simplified test. PMID:26465802

  12. Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Riedo, A.; Meyer, S.; Heredia, B.; Neuland, M. B.; Bieler, A.; Tulej, M.; Leya, I.; Iakovleva, M.; Mezger, K.; Wurz, P.

    2013-10-01

    An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.

  13. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  14. Optimally accurate thermal-wave cavity photopyroelectric measurements of pressure-dependent thermophysical properties of air: theory and experiments.

    PubMed

    Kwan, Chi-Hang; Matvienko, Anna; Mandelis, Andreas

    2007-10-01

    An experimental technique for the measurement of thermal properties of air at low pressures using a photopyroelectric (PPE) thermal-wave cavity (TWC) was developed. In addition, two theoretical approaches, a conventional one-dimensional thermal-wave model and a three-dimensional theory based on the Hankel integral, were applied to interpret the thermal-wave field in the thermal-wave cavity. The importance of radiation heat transfer mechanisms in a TWC was also investigated. Radiation components were added to the purely conductive model by linearizing the radiation heat transfer component at the cavity boundary. The experimental results indicate that the three-dimensional model is necessary to describe the PPE signal, especially at low frequencies where thermal diffusion length is large and sideways propagation of the thermal-wave field becomes significant. Radiation is found to be the dominant contributor of the PPE signal at high frequencies and large cavity lengths, where heat conduction across the TWC length is relatively weak. The three-dimensional theory and the Downhill Simplex algorithm were used to fit the experimental data and extract the thermal diffusivity of air and the heat transfer coefficient in a wide range of pressures from 760 to 2.6 Torr. It was shown that judicious adjustments of cavity length and computational best fits to frequency-scanned data using three-dimensional photopyroelectric theory lead to optimally accurate value measurements of thermal diffusivity and heat transfer coefficient at various pressures.

  15. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  16. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  17. A modified ELISA accurately measures secretion of high molecular weight hyaluronan (HA) by Graves' disease orbital cells.

    PubMed

    Krieger, Christine C; Gershengorn, Marvin C

    2014-02-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated.

  18. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  19. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  20. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  1. Development of an accurate EPID-based output measurement and dosimetric verification tool for electron beam therapy

    PubMed Central

    Ding, Aiping; Xing, Lei; Han, Bin

    2015-01-01

    chamber measurements. The average discrepancy between EPID and ion chamber/film measurements was 0.81% ± 0.60% (SD) and 1.34% ± 0.75%, respectively. For the three clinical cases, the difference in output between the EPID- and ion chamber array measured values was found to be 1.13% ± 0.11%, 0.54% ± 0.10%, and 0.74% ± 0.11%, respectively. Furthermore, the γ-index analysis showed an excellent agreement between the EPID- and ion chamber array measured dose distributions: 100% of the pixels passed the criteria of 3%/3 mm. When the γ-index was set to be 2%/2 mm, the pass rate was found to be 99.0% ± 0.07%, 98.2% ± 0.14%, and 100% for the three cases. Conclusions: The EPID dosimetry system developed in this work provides an accurate and reliable tool for routine output measurement and dosimetric verification of electron beam therapy. Coupled with its portability and ease of use, the proposed system promises to replace the current film-based approach for fast and reliable assessment of small and irregular electron field dosimetry. PMID:26133618

  2. Genome-Wide Association Studies of Quantitatively Measured Skin, Hair, and Eye Pigmentation in Four European Populations

    PubMed Central

    Candille, Sophie I.; Absher, Devin M.; Beleza, Sandra; Bauchet, Marc; McEvoy, Brian; Garrison, Nanibaa’ A.; Li, Jun Z.; Myers, Richard M.; Barsh, Gregory S.; Tang, Hua; Shriver, Mark D.

    2012-01-01

    Pigmentation of the skin, hair, and eyes varies both within and between human populations. Identifying the genes and alleles underlying this variation has been the goal of many candidate gene and several genome-wide association studies (GWAS). Most GWAS for pigmentary traits to date have been based on subjective phenotypes using categorical scales. But skin, hair, and eye pigmentation vary continuously. Here, we seek to characterize quantitative variation in these traits objectively and accurately and to determine their genetic basis. Objective and quantitative measures of skin, hair, and eye color were made using reflectance or digital spectroscopy in Europeans from Ireland, Poland, Italy, and Portugal. A GWAS was conducted for the three quantitative pigmentation phenotypes in 176 women across 313,763 SNP loci, and replication of the most significant associations was attempted in a sample of 294 European men and women from the same countries. We find that the pigmentation phenotypes are highly stratified along axes of European genetic differentiation. The country of sampling explains approximately 35% of the variation in skin pigmentation, 31% of the variation in hair pigmentation, and 40% of the variation in eye pigmentation. All three quantitative phenotypes are correlated with each other. In our two-stage association study, we reproduce the association of rs1667394 at the OCA2/HERC2 locus with eye color but we do not identify new genetic determinants of skin and hair pigmentation supporting the lack of major genes affecting skin and hair color variation within Europe and suggesting that not only careful phenotyping but also larger cohorts are required to understand the genetic architecture of these complex quantitative traits. Interestingly, we also see that in each of these four populations, men are more lightly pigmented in the unexposed skin of the inner arm than women, a fact that is underappreciated and may vary across the world. PMID:23118974

  3. Genome-wide association studies of quantitatively measured skin, hair, and eye pigmentation in four European populations.

    PubMed

    Candille, Sophie I; Absher, Devin M; Beleza, Sandra; Bauchet, Marc; McEvoy, Brian; Garrison, Nanibaa' A; Li, Jun Z; Myers, Richard M; Barsh, Gregory S; Tang, Hua; Shriver, Mark D

    2012-01-01

    Pigmentation of the skin, hair, and eyes varies both within and between human populations. Identifying the genes and alleles underlying this variation has been the goal of many candidate gene and several genome-wide association studies (GWAS). Most GWAS for pigmentary traits to date have been based on subjective phenotypes using categorical scales. But skin, hair, and eye pigmentation vary continuously. Here, we seek to characterize quantitative variation in these traits objectively and accurately and to determine their genetic basis. Objective and quantitative measures of skin, hair, and eye color were made using reflectance or digital spectroscopy in Europeans from Ireland, Poland, Italy, and Portugal. A GWAS was conducted for the three quantitative pigmentation phenotypes in 176 women across 313,763 SNP loci, and replication of the most significant associations was attempted in a sample of 294 European men and women from the same countries. We find that the pigmentation phenotypes are highly stratified along axes of European genetic differentiation. The country of sampling explains approximately 35% of the variation in skin pigmentation, 31% of the variation in hair pigmentation, and 40% of the variation in eye pigmentation. All three quantitative phenotypes are correlated with each other. In our two-stage association study, we reproduce the association of rs1667394 at the OCA2/HERC2 locus with eye color but we do not identify new genetic determinants of skin and hair pigmentation supporting the lack of major genes affecting skin and hair color variation within Europe and suggesting that not only careful phenotyping but also larger cohorts are required to understand the genetic architecture of these complex quantitative traits. Interestingly, we also see that in each of these four populations, men are more lightly pigmented in the unexposed skin of the inner arm than women, a fact that is underappreciated and may vary across the world.

  4. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    NASA Astrophysics Data System (ADS)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-09-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21 cm emission line, without any need for inclination corrections. We measure a slope for the linewidth-based BTFR of α = 3.75 ± 0.11, a value that is somewhat steeper than (but in broad agreement with) previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of ± 0.1 dex from the best fit line. The low observational error budget for our sample enables us to establish that, despite its tightness, the measured linewidth-based BTFR has some small (i.e., non-zero) intrinsic scatter. We furthermore find a systematic difference in the BTFR of galaxies with "double-horned" 21 cm line profiles - suggestive of flat outer galactic rotation curves - and those with "peaked" profiles - suggestive of rising rotation curves. When we restrict our sample of galaxies to objects in the former category, we measure a slightly steeper slope of α = 4.13 ± 0.15. Overall, the high-accuracy measurement of the BTFR presented in this article is intended as a reliable observational benchmark against which to test theoretical expectations. Here we consider a representative set of semi-analytic models and hydrodynamic simulations in the lambda cold dark matter (ΛCDM) context, as well as modified Newtonian dynamics (MOND). In the near future, interferometric follow-up observations of several sample members will enable us to further refine the BTFR measurement, and

  5. A Simple Dewar/Cryostat for Thermally Equilibrating Samples at Known Temperatures for Accurate Cryogenic Luminescence Measurements.

    PubMed

    Weaver, Phoebe G; Jagow, Devin M; Portune, Cameron M; Kenney, John W

    2016-07-19

    The design and operation of a simple liquid nitrogen Dewar/cryostat apparatus based upon a small fused silica optical Dewar, a thermocouple assembly, and a CCD spectrograph are described. The experiments for which this Dewar/cryostat is designed require fast sample loading, fast sample freezing, fast alignment of the sample, accurate and stable sample temperatures, and small size and portability of the Dewar/cryostat cryogenic unit. When coupled with the fast data acquisition rates of the CCD spectrograph, this Dewar/cryostat is capable of supporting cryogenic luminescence spectroscopic measurements on luminescent samples at a series of known, stable temperatures in the 77-300 K range. A temperature-dependent study of the oxygen quenching of luminescence in a rhodium(III) transition metal complex is presented as an example of the type of investigation possible with this Dewar/cryostat. In the context of this apparatus, a stable temperature for cryogenic spectroscopy means a luminescent sample that is thermally equilibrated with either liquid nitrogen or gaseous nitrogen at a known measureable temperature that does not vary (ΔT < 0.1 K) during the short time scale (~1-10 sec) of the spectroscopic measurement by the CCD. The Dewar/cryostat works by taking advantage of the positive thermal gradient dT/dh that develops above liquid nitrogen level in the Dewar where h is the height of the sample above the liquid nitrogen level. The slow evaporation of the liquid nitrogen results in a slow increase in h over several hours and a consequent slow increase in the sample temperature T over this time period. A quickly acquired luminescence spectrum effectively catches the sample at a constant, thermally equilibrated temperature.

  6. Simple and accurate measurement of carbamazepine in surface water by use of porous membrane-protected micro-solid-phase extraction coupled with isotope dilution mass spectrometry.

    PubMed

    Teo, Hui Ling; Wong, Lingkai; Liu, Qinde; Teo, Tang Lin; Lee, Tong Kooi; Lee, Hian Kee

    2016-03-17

    To achieve fast and accurate analysis of carbamazepine in surface water, we developed a novel porous membrane-protected micro-solid-phase extraction (μ-SPE) method, followed by liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS) analysis. The μ-SPE device (∼0.8 × 1 cm) was fabricated by heat-sealing edges of a polypropylene membrane sheet to devise a bag enclosing the sorbent. The analytes (both carbamazepine and isotope-labelled carbamazepine) were first extracted by μ-SPE device in the sample (10 mL) via agitation, then desorbed in an organic solvent (1 mL) via ultrasonication. Several parameters such as organic solvent for pre-conditioning of μ-SPE device, amount of sorbent, adsorption time, and desorption solvent and time were investigated to optimize the μ-SPE efficiency. The optimized method has limits of detection and quantitation estimated to be 0.5 ng L(-1) and 1.6 ng L(-1), respectively. Surface water samples spiked with different amounts of carbamazepine (close to 20, 500, and 1600 ng L(-1), respectively) were analysed for the validation of method precision and accuracy. Good precision was obtained as demonstrated by relative standard deviations of 0.7% for the samples with concentrations of 500 and 1600 ng kg(-1), and 5.8% for the sample with concentration of 20 ng kg(-1). Good accuracy was also demonstrated by the relative recoveries in the range of 96.7%-103.5% for all samples with uncertainties of 1.1%-5.4%. Owing to the same chemical properties of carbamazepine and isotope-labelled carbamazepine, the isotope ratio in the μ-SPE procedure was accurately controlled. The use of μ-SPE coupled with IDMS analysis significantly facilitated the fast and accurate measurement of carbamazepine in surface water.

  7. Effect of Doppler broadening on quantitative concentration measurements with degenerate four-wave mixing spectroscopy

    NASA Astrophysics Data System (ADS)

    Reichardt, Thomas A.; Lucht, Robert P.

    1996-06-01

    The effect of Doppler broadening on degenerate four-wave mixing (DFWM) signal intensities in the regime of high pump and probe laser intensities is investigated theoretically. DFWM reflectivities are calculated by solving the time-dependent density-matrix equations for a two-level system interacting with three laser fields. The density-matrix equations are integrated directly in the time domain on a grid of spatial locations along the phase-matching axis; the DFWM signal level is then calculated by summation of the polarization contribution (with the appropriate phase factor) from each of the spatial grid points. For the case in which the Doppler and the collisional linewidths are comparable, the DFWM reflectivity is found to be inversely proportional to the factor 1+(b Delta omega D/ Delta omega C ) 2 , where Delta omega D is the Doppler width, Delta omega C is the collisional width, and b is weakly dependent on the pump and the probe laser powers. We developed an analytical expression for the reflectivity of a line that is both collision and Doppler broadened by dividing the widely used Abrams and Lind expression for homogeneous reflectivity Rhom by the factor 1+(b Delta omega D/ Delta omega C )2 . This modified reflectivity expression is found to give accurate results for the DFWM reflectivity over a wide range of values for the ratio of Doppler to collisional width. With this modified Abrams-Lind expression, strategies for quantitative DFWM concentration measurements in flames and plasmas are proposed and analyzed. We conclude that, by selection of the appropriate rotational transition, a DFWM reflectivity that is directly proportional to the square of the total species number density can be obtained over a wide range of temperature for constant-laser-intensity spatial profile mapping in flames.

  8. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    PubMed

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  9. Quantitative magnetic resonance (QMR) measurement of changes in body composition of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The survival of low birth weight pigs in particular may depend on energy stores in the body. QMR (quantitative magnetic resonance) is a new approach to measuring total body fat, lean and water. These measurements are based on quantifying protons associated with lipid and water molecules in the body...

  10. Development of a Quantitative Measure of the Mentorship Experience in College Students

    ERIC Educational Resources Information Center

    Gullan, Rebecca Lakin; Bauer, Kathleen; Korfiatis, Pierre; DeOliveira, Jennifer; Blong, Kelsey; Docherty, Meagan

    2016-01-01

    Although the importance of mentorship has been widely recognized, operationalizing and measuring critical components of the mentoring relationship has proved to be a greater challenge. This brief focused on the development of a quantitative measure of mentoring relationships during the college years. The study's findings provide initial evidence…

  11. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  12. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    SciTech Connect

    Juang, T; Adamovics, J; Oldham, M

    2014-06-15

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, high resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately

  13. Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum