Science.gov

Sample records for accurate quantum chemical

  1. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  2. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGESBeta

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  3. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  4. Chemically accurate description of aromatic rings interaction using quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Azadi, Sam

    We present an accurate study of interactions between benzene molecules using wave function based quantum Monte Carlo (QMC) methods. We compare our QMC results with density functional theory (DFT) using various van der Waals (vdW) functionals. This comparison enables us to tune vdW functionals. We show that highly optimizing the wave function and introducing more dynamical correlation into the wave function are crucial to calculate the weak chemical binding energy between benzene molecules. The good agreement among our results, experiments and quantum chemistry methods, is an important sign of the capability of the wave function based QMC methods to provide accurate description of very weak intermolecular interactions based on vdW dispersive forces.

  5. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-01

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems. PMID:26651397

  6. How Iron-Containing Proteins Control Dioxygen Chemistry: A Detailed Atomic Level Description Via Accurate Quantum Chemical and Mixed Quantum Mechanics/Molecular Mechanics Calculations.

    SciTech Connect

    Friesner, Richard A.; Baik, Mu-Hyun; Gherman, Benjamin F.; Guallar, Victor; Wirstam, Maria E.; Murphy, Robert B.; Lippard, Stephen J.

    2003-03-01

    Over the past several years, rapid advances in computational hardware, quantum chemical methods, and mixed quantum mechanics/molecular mechanics (QM/MM) techniques have made it possible to model accurately the interaction of ligands with metal-containing proteins at an atomic level of detail. In this paper, we describe the application of our computational methodology, based on density functional (DFT) quantum chemical methods, to two diiron-containing proteins that interact with dioxygen: methane monooxygenase (MMO) and hemerythrin (Hr). Although the active sites are structurally related, the biological function differs substantially. MMO is an enzyme found in methanotrophic bacteria and hydroxylates aliphatic C-H bonds, whereas Hr is a carrier protein for dioxygen used by a number of marine invertebrates. Quantitative descriptions of the structures and energetics of key intermediates and transition states involved in the reaction with dioxygen are provided, allowing their mechanisms to be compared and contrasted in detail. An in-depth understanding of how the chemical identity of the first ligand coordination shell, structural features, electrostatic and van der Waals interactions of more distant shells control ligand binding and reactive chemistry is provided, affording a systematic analysis of how iron-containing proteins process dioxygen. Extensive contact with experiment is made in both systems, and a remarkable degree of accuracy and robustness of the calculations is obtained from both a qualitative and quantitative perspective.

  7. Quantum chemical approach for condensed-phase thermochemistry (III): Accurate evaluation of proton hydration energy and standard hydrogen electrode potential

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atsushi; Nakai, Hiromi

    2016-04-01

    Gibbs free energy of hydration of a proton and standard hydrogen electrode potential were evaluated using high-level quantum chemical calculations. The solvent effect was included using the cluster-continuum model, which treated short-range effects by quantum chemical calculations of proton-water complexes, and the long-range effects by a conductor-like polarizable continuum model. The harmonic solvation model (HSM) was employed to estimate enthalpy and entropy contributions due to nuclear motions of the clusters by including the cavity-cluster interactions. Compared to the commonly used ideal gas model, HSM treatment significantly improved the contribution of entropy, showing a systematic convergence toward the experimental data.

  8. Quantum Chemical Calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The current methods of quantum chemical calculations will be reviewed. The accent will be on the accuracy that can be achieved with these methods. The basis set requirements and computer resources for the various methods will be discussed. The utility of the methods will be illustrated with some examples, which include the calculation of accurate bond energies for SiF$_n$ and SiF$_n^+$ and the modeling of chemical data storage.

  9. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, David C.; Goorvitch, D.

    1994-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schr\\"{o}dinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  10. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  11. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    PubMed

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  12. An accurate and simple quantum model for liquid water.

    PubMed

    Paesani, Francesco; Zhang, Wei; Case, David A; Cheatham, Thomas E; Voth, Gregory A

    2006-11-14

    The path-integral molecular dynamics and centroid molecular dynamics methods have been applied to investigate the behavior of liquid water at ambient conditions starting from a recently developed simple point charge/flexible (SPC/Fw) model. Several quantum structural, thermodynamic, and dynamical properties have been computed and compared to the corresponding classical values, as well as to the available experimental data. The path-integral molecular dynamics simulations show that the inclusion of quantum effects results in a less structured liquid with a reduced amount of hydrogen bonding in comparison to its classical analog. The nuclear quantization also leads to a smaller dielectric constant and a larger diffusion coefficient relative to the corresponding classical values. Collective and single molecule time correlation functions show a faster decay than their classical counterparts. Good agreement with the experimental measurements in the low-frequency region is obtained for the quantum infrared spectrum, which also shows a higher intensity and a redshift relative to its classical analog. A modification of the original parametrization of the SPC/Fw model is suggested and tested in order to construct an accurate quantum model, called q-SPC/Fw, for liquid water. The quantum results for several thermodynamic and dynamical properties computed with the new model are shown to be in a significantly better agreement with the experimental data. Finally, a force-matching approach was applied to the q-SPC/Fw model to derive an effective quantum force field for liquid water in which the effects due to the nuclear quantization are explicitly distinguished from those due to the underlying molecular interactions. Thermodynamic and dynamical properties computed using standard classical simulations with this effective quantum potential are found in excellent agreement with those obtained from significantly more computationally demanding full centroid molecular dynamics

  13. Quantum logics and chemical kinetics

    NASA Astrophysics Data System (ADS)

    Ivanov, C. I.

    1981-06-01

    A statistical theory of chemical kinetics is presented based on the quantum logical concept of chemical observables. The apparatus of Boolean algebra B is applied for the construction of appropriate composition polynomials referring to any stipulated arrangement of the atomic constituents. A physically motivated probability measure μ( F) is introduced on the field B of chemical observables, which considers the occurrence of the yes response of a given F ɛ B. The equations for the time evolution of the species density operators and the master equations for the corresponding number densities are derived. The general treatment is applied to a superposition of elementary substitution reactions (AB) α + C ⇄ (AC) β + B. The expressions for the reaction rate coefficients are established.

  14. Quantum mechanical calculations to chemical accuracy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.

  15. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    SciTech Connect

    Gray, S.K.

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  16. Accurate ab initio energy gradients in chemical compound space.

    PubMed

    Anatole von Lilienfeld, O

    2009-10-28

    Analytical potential energy derivatives, based on the Hellmann-Feynman theorem, are presented for any pair of isoelectronic compounds. Since energies are not necessarily monotonic functions between compounds, these derivatives can fail to predict the right trends of the effect of alchemical mutation. However, quantitative estimates without additional self-consistency calculations can be made when the Hellmann-Feynman derivative is multiplied with a linearization coefficient that is obtained from a reference pair of compounds. These results suggest that accurate predictions can be made regarding any molecule's energetic properties as long as energies and gradients of three other molecules have been provided. The linearization coefficent can be interpreted as a quantitative measure of chemical similarity. Presented numerical evidence includes predictions of electronic eigenvalues of saturated and aromatic molecular hydrocarbons. PMID:19894922

  17. Accurate energies of the He atom with undergraduate quantum mechanics

    NASA Astrophysics Data System (ADS)

    Massé, Robert C.; Walker, Thad G.

    2015-08-01

    Estimating the energies and splitting of the 1s2s singlet and triplet states of helium is a classic exercise in quantum perturbation theory but yields only qualitatively correct results. Using a six-line computer program, the 1s2s energies calculated by matrix diagonalization using a seven-state basis improve the results to 0.4% error or better. This is an effective and practical illustration of the quantitative power of quantum mechanics, at a level accessible to undergraduate students.

  18. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  19. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.

    PubMed

    Victora, Andrea; Möller, Heiko M; Exner, Thomas E

    2014-12-16

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3-0.6 ppm and correlation coefficients (r(2)) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  20. Chemical accuracy from quantum Monte Carlo for the benzene dimer

    SciTech Connect

    Azadi, Sam; Cohen, R. E.

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  1. Chemical accuracy from quantum Monte Carlo for the benzene dimer.

    PubMed

    Azadi, Sam; Cohen, R E

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods. PMID:26374029

  2. Quantum chemical studies of estrogenic compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  3. Remote Chemical Detection using Quantum Cascade Lasers

    SciTech Connect

    Hatchell, Brian K.; Harper, Warren W.; Gervais, Kevin L.

    2006-02-01

    The Infrared Technologies Program at the Pacific Northwest National Laboratory (PNNL) is focused on the science and technology of remote and in-situ chemical sensors for detecting proliferation and countering terrorism. The program is focusing on the infrared detection of gaseous species including chemical warfare agents and gases associated with the production of chemical and nuclear weapons. Several sensors under development are based on miniature infrared quantum cascade (QC) lasers constructed of semiconductor material. The QC laser is unique in that by simply changing the thickness of the semiconductor layers, the laser's wavelength can be changed to target molecular absorption features of specific chemicals. For remote sensing over long optical paths, QC lasers are applied to remote areas using the differential-absorption LIDAR technique. Using a single laser, this technique can easily monitor large areas that would require a large network of point sensors. The original remote sensing configuration, suitable for laboratory applications, consisted of an optical table, laser, beam expander, telescope, mirror, and various supporting electronic and optical components. Recently, PNNL began development of a ruggedized version to conduct experiments in real-world conditions. To reduce the effects of thermal distortion, the system had to be operated from within a large, well insulated, temperature-controlled trailer. The optical breadboard was attached to 4 shock-mounts to reduce shock and vibrational loads to the optical set-up during transport. A custom jacking system using electromechanical actuators was designed to affix the optical table directly to the ground through penetrations in the trailer floor. The jacking system allows remote sensing at longer ranges (up to 5 km) by eliminating jitter caused by wind or personnel movement within the trailer. A computer-controlled gimbal-mounted mirror was added to allow the laser beam to be accurately pointed in both the

  4. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  5. Fast and accurate predictions of covalent bonds in chemical space

    NASA Astrophysics Data System (ADS)

    Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (˜1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2+ . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  6. Sensitive chemical compass assisted by quantum criticality

    NASA Astrophysics Data System (ADS)

    Cai, C. Y.; Ai, Qing; Quan, H. T.; Sun, C. P.

    2012-02-01

    A radical-pair-based chemical reaction might be used by birds for navigation via the geomagnetic direction. The inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could respond to a weak magnetic field and be sensitive to the direction of such a field; this then results in different photopigments to be sensed by the avian eyes. Here, we propose a quantum bionic setup, inspired by the avian compass, as an ultrasensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of detection of weak magnetic fields.

  7. Spectroscopic and quantum chemical studies of isocytosine

    SciTech Connect

    Tulub, A.A.; Semenov, S.G.; Stetsenko, A.I.; Yudovich, E.E.

    1988-07-01

    The methods of electronic and vibrational (IR) spectroscopy were used to study the spectral properties of isocytosine in H/sub 2/O, D/sub 2/O, chloroform, and hexane in a wide concentration interval. Quantum chemical calculations of tautomeric forms and dimers of isocytosine were carried out. The bands of the calculated and experimental spectra were assigned. The results of the quantum calculations were compared with the experimental data. The spectral bands were classified according to the type of tautomer or dimer to which they belong.

  8. Accurate numerical verification of the instanton method for macroscopic quantum tunneling: Dynamics of phase slips

    SciTech Connect

    Danshita, Ippei; Polkovnikov, Anatoli

    2010-09-01

    We study the quantum dynamics of supercurrents of one-dimensional Bose gases in a ring optical lattice to verify instanton methods applied to coherent macroscopic quantum tunneling (MQT). We directly simulate the real-time quantum dynamics of supercurrents, where a coherent oscillation between two macroscopically distinct current states occurs due to MQT. The tunneling rate extracted from the coherent oscillation is compared with that given by the instanton method. We find that the instanton method is quantitatively accurate when the effective Planck's constant is sufficiently small. We also find phase slips associated with the oscillations.

  9. Automated generation of quantum-accurate classical interatomic potentials for metals and semiconductors

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan; Foiles, Stephen; Schultz, Peter; Swiler, Laura; Trott, Christian; Tucker, Garritt

    2013-03-01

    Molecular dynamics (MD) is a powerful condensed matter simulation tool for bridging between macroscopic continuum models and quantum models (QM) treating a few hundred atoms, but is limited by the accuracy of available interatomic potentials. Sound physical and chemical understanding of these interactions have resulted in a variety of concise potentials for certain systems, but it is difficult to extend them to new materials and properties. The growing availability of large QM data sets has made it possible to use more automated machine-learning approaches. Bartók et al. demonstrated that the bispectrum of the local neighbor density provides good regression surrogates for QM models. We adopt a similar bispectrum representation within a linear regression scheme. We have produced potentials for silicon and tantalum, and we are currently extending the method to III-V compounds. Results will be presented demonstrating the accuracy of these potentials relative to the training data, as well as their ability to accurately predict material properties not explicitly included in the training data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy Nat. Nuclear Security Admin. under Contract DE-AC04-94AL85000.

  10. Properties of Solar Thermal Fuels by Accurate Quantum Monte Carlo Calculations

    NASA Astrophysics Data System (ADS)

    Saritas, Kayahan; Ataca, Can; Grossman, Jeffrey C.

    2014-03-01

    Efficient utilization of the sun as a renewable and clean energy source is one of the major goals of this century due to increasing energy demand and environmental impact. Solar thermal fuels are materials that capture and store the sun's energy in the form of chemical bonds, which can then be released as heat on demand and charged again. Previous work on solar thermal fuels faced challenges related to the cyclability of the fuel over time, as well as the need for higher energy densities. Recently, it was shown that by templating photoswitches onto carbon nanostructures, both high energy density as well as high stability can be achieved. In this work, we explore alternative molecules to azobenzene in such a nano-templated system. We employ the highly accurate quantum Monte Carlo (QMC) method to predict the energy storage potential for each molecule. Our calculations show that in many cases the level of accuracy provided by density functional theory (DFT) is sufficient. However, in some cases, such as dihydroazulene, the drastic change in conjugation upon light absorption causes the DFT predictions to be inconsistent and incorrect. For this case, we compare our QMC results for the geometric structure, band gap and reaction enthalpy with different DFT functionals.

  11. Chemical application of diffusion quantum Monte Carlo

    NASA Technical Reports Server (NTRS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1984-01-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.

  12. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    2006-01-01

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  13. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    1999-07-02

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  14. Quantum chemical study of methane oxidation species

    NASA Technical Reports Server (NTRS)

    Jackels, Charles F.

    1993-01-01

    The research funded by this project has focused on quantum chemical investigations of molecular species thought to be important in the chemistry of the earth's upper and lower atmospheres. The body of this report contains brief discussions of the results of the several phases of this investigation. In many instances these results have been presented at scientific meetings and/or published in refereed journals. Those bibliographic references are given. In addition to the study of specific chemical systems, there were several phases during the course of this investigation where much of the effort went into the development and modification of computer codes necessary to carry out these calculations on the wide range of computer equipment used during this study. This type of code maintenance and development work did not generally result in publications and presentations, but a brief review is given.

  15. Quantum dynamics of fast chemical reactions

    SciTech Connect

    Light, J.C.

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  16. Ligand Affinities Estimated by Quantum Chemical Calculations.

    PubMed

    Söderhjelm, Pär; Kongsted, Jacob; Ryde, Ulf

    2010-05-11

    We present quantum chemical estimates of ligand-binding affinities performed, for the first time, at a level of theory for which there is a hope that dispersion and polarization effects are properly accounted for (MP2/cc-pVTZ) and at the same time effects of solvation, entropy, and sampling are included. We have studied the binding of seven biotin analogues to the avidin tetramer. The calculations have been performed by the recently developed PMISP approach (polarizable multipole interactions with supermolecular pairs), which treats electrostatic interactions by multipoles up to quadrupoles, induction by anisotropic polarizabilities, and nonclassical interactions (dispersion, exchange repulsion, etc.) by explicit quantum chemical calculations, using a fragmentation approach, except for long-range interactions that are treated by standard molecular-mechanics Lennard-Jones terms. In order to include effects of sampling, 10 snapshots from a molecular dynamics simulation are studied for each biotin analogue. Solvation energies are estimated by the polarized continuum model (PCM), coupled to the multipole-polarizability model. Entropy effects are estimated from vibrational frequencies, calculated at the molecular mechanics level. We encounter several problems, not previously discussed, illustrating that we are first to apply such a method. For example, the PCM model is, in the present implementation, questionable for large molecules, owing to the use of a surface definition that gives numerous small cavities in a protein. PMID:26615702

  17. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  18. A hierarchical approach to accurate predictions of macroscopic thermodynamic behavior from quantum mechanics and molecular simulations

    NASA Astrophysics Data System (ADS)

    Garrison, Stephen L.

    2005-07-01

    The combination of molecular simulations and potentials obtained from quantum chemistry is shown to be able to provide reasonably accurate thermodynamic property predictions. Gibbs ensemble Monte Carlo simulations are used to understand the effects of small perturbations to various regions of the model Lennard-Jones 12-6 potential. However, when the phase behavior and second virial coefficient are scaled by the critical properties calculated for each potential, the results obey a corresponding states relation suggesting a non-uniqueness problem for interaction potentials fit to experimental phase behavior. Several variations of a procedure collectively referred to as quantum mechanical Hybrid Methods for Interaction Energies (HM-IE) are developed and used to accurately estimate interaction energies from CCSD(T) calculations with a large basis set in a computationally efficient manner for the neon-neon, acetylene-acetylene, and nitrogen-benzene systems. Using these results and methods, an ab initio, pairwise-additive, site-site potential for acetylene is determined and then improved using results from molecular simulations using this initial potential. The initial simulation results also indicate that a limited range of energies important for accurate phase behavior predictions. Second virial coefficients calculated from the improved potential indicate that one set of experimental data in the literature is likely erroneous. This prescription is then applied to methanethiol. Difficulties in modeling the effects of the lone pair electrons suggest that charges on the lone pair sites negatively impact the ability of the intermolecular potential to describe certain orientations, but that the lone pair sites may be necessary to reasonably duplicate the interaction energies for several orientations. Two possible methods for incorporating the effects of three-body interactions into simulations within the pairwise-additivity formulation are also developed. A low density

  19. Quantum dynamics of two quantum dots coupled through localized plasmons: An intuitive and accurate quantum optics approach using quasinormal modes

    NASA Astrophysics Data System (ADS)

    Ge, Rong-Chun; Hughes, Stephen

    2015-11-01

    We study the quantum dynamics of two quantum dots (QDs) or artificial atoms coupled through the fundamental localized plasmon of a gold nanorod resonator. We derive an intuitive and efficient time-local master equation, in which the effect of the metal nanorod is taken into consideration self-consistently using a quasinormal mode (QNM) expansion technique of the photon Green function. Our efficient QNM technique offers an alternative and more powerful approach over the standard Jaynes-Cummings model, where the radiative decay, nonradiative decay, and spectral reshaping effect of the electromagnetic environment is rigorously included in a clear and transparent way. We also show how one can use our approach to compliment the approximate Jaynes-Cummings model in certain spatial regimes where it is deemed to be valid. We then present a study of the quantum dynamics and photoluminescence spectra of the two plasmon-coupled QDs. We first explore the non-Markovian regime, which is found to be important only on the ultrashort time scale of the plasmon mode which is about 40 fs. For the field free evolution case of excited QDs near the nanorod, we demonstrate how spatially separated QDs can be effectively coupled through the plasmon resonance and we show how frequencies away from the plasmon resonance can be more effective for coherently coupling the QDs. Despite the strong inherent dissipation of gold nanoresonators, we show that qubit entanglements as large as 0.7 can be achieved from an initially separate state, which has been limited to less than 0.5 in previous work for weakly coupled reservoirs. We also study the superradiance and subradiance decay dynamics of the QD pair. Finally, we investigate the rich quantum dynamics of QDs that are incoherently pumped, and study the polarization dependent behavior of the emitted photoluminescence spectrum where a double-resonance structure is observed due to the strong photon exchange interactions. Our general quantum plasmonics

  20. Remote chemical sensing with quantum cascade lasers

    SciTech Connect

    Harper, Warren W.; Strasburg, Jana D.

    2004-10-15

    A trailer based sensor system has been developed for remote chemical sensing applications. The sensor uses quantum cascade lasers (QCL) that operate in the long wave infrared. The QCL is operated continuous wave, and its wavelength is both ramped over a molecular absorption feature and frequency modulated. Lock-in techniques are used to recover weak laser return signals. Field experiments have monitored ambient water vapor and small quantities of nitrous oxide, tetrafluoroethane (R134a), and hydrogen sulfide released as atmospheric plumes. Round trip path lengths up to 10 km were obtained using a retro-reflector. Atmospheric turbulence was found to be the dominating noise source. It causes intensity fluctuations in the received power, which can significantly degrade the sensor performance. Unique properties associated with QCLs enabled single beam normalization techniques to be implemented thus reducing the impact that turbulence has on experimental signal to noise. Weighted data averaging was additionally used to increase the signal to noise of data traces. Absorbance sensitivities as low as {approx}1 x 10{sup -4} could be achieved with 5 seconds of data averaging, even under high turbulence conditions.

  1. Remote chemical sensing with quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Harper, Warren W.; Strasburg, Jana D.

    2004-09-01

    A trailer based sensor system has been developed for remote chemical sensing applications. The sensor uses quantum cascade lasers (QCL) that operate in the long wave infrared. The QCL is operated continuous wave, and its wavelength is both ramped over a molecular absorption feature and frequency modulated. Lock-in techniques are used to recover weak laser return signals. Field experiments have monitored ambient water vapor and small quantities of nitrous oxide, tetrafluoroethane (R134a), and hydrogen sulfide released as atmospheric plumes. Round trip path lengths up to 10 km were obtained using a retroreflector. Atmospheric turbulence was found to be the dominating noise source. It causes intensity fluctuations in the received power, which can significantly degrade the sensor performance. Unique properties associated with QCLs enabled single beam normalization techniques to be implemented thus reducing the impact that turbulence has on experimental signal to noise. Weighted data averaging was additionally used to increase the signal to noise of data traces. Absorbance sensitivities as low as ~1x10-4 could be achieved with 5 seconds of data averaging, even under high turbulence conditions.

  2. Approaching chemical accuracy with quantum Monte Carlo.

    PubMed

    Petruzielo, F R; Toulouse, Julien; Umrigar, C J

    2012-03-28

    A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol. Optimizing the orbitals within variational Monte Carlo improves the agreement between diffusion Monte Carlo and experiment, reducing the mean absolute deviation to 2.1 kcal/mol. Moving beyond a single determinant Slater-Jastrow trial wavefunction, diffusion Monte Carlo with a small complete active space Slater-Jastrow trial wavefunction results in near chemical accuracy. In this case, the mean absolute deviation from experimental atomization energies is 1.2 kcal/mol. It is shown from calculations on systems containing phosphorus that the accuracy can be further improved by employing a larger active space. PMID:22462844

  3. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    SciTech Connect

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lower temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.

  4. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    DOE PAGESBeta

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lowermore » temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.« less

  5. Accurate non-adiabatic quantum dynamics from pseudospectral sampling of time-dependent Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Mazziotti, David A.

    2016-08-01

    Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. In this paper, we employ pseudospectral sampling of time-dependent Gaussian basis functions for the simulation of non-adiabatic dynamics. Unlike other methods, the pseudospectral Gaussian molecular dynamics tests the Schrödinger equation with N Dirac delta functions located at the centers of the Gaussian functions reducing the scaling of potential energy evaluations from O ( N 2 ) to O ( N ) . By projecting the Gaussian basis onto discrete points in space, the method is capable of efficiently and quantitatively describing the nonadiabatic population transfer and intra-surface quantum coherence. We investigate three model systems: the photodissociation of three coupled Morse oscillators, the bound state dynamics of two coupled Morse oscillators, and a two-dimensional model for collinear triatomic vibrational dynamics. In all cases, the pseudospectral Gaussian method is in quantitative agreement with numerically exact calculations. The results are promising for nonadiabatic molecular dynamics in molecular systems where strongly correlated ground or excited states require expensive electronic structure calculations.

  6. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods.

    PubMed

    Fang, Tao; Li, Wei; Gu, Fangwei; Li, Shuhua

    2015-01-13

    We extend the generalized energy-based fragmentation (GEBF) approach to molecular crystals under periodic boundary conditions (PBC), and we demonstrate the performance of the method for a variety of molecular crystals. With this approach, the lattice energy of a molecular crystal can be obtained from the energies of a series of embedded subsystems, which can be computed with existing advanced molecular quantum chemistry methods. The use of the field compensation method allows the method to take long-range electrostatic interaction of the infinite crystal environment into account and make the method almost translationally invariant. The computational cost of the present method scales linearly with the number of molecules in the unit cell. Illustrative applications demonstrate that the PBC-GEBF method with explicitly correlated quantum chemistry methods is capable of providing accurate descriptions on the lattice energies and structures for various types of molecular crystals. In addition, this approach can be employed to quantify the contributions of various intermolecular interactions to the theoretical lattice energy. Such qualitative understanding is very useful for rational design of molecular crystals. PMID:26574207

  7. Chemically accurate energy barriers of small gas molecules moving through hexagonal water rings.

    PubMed

    Hjertenæs, Eirik; Trinh, Thuat T; Koch, Henrik

    2016-07-21

    We present chemically accurate potential energy curves of CH4, CO2 and H2 moving through hexagonal water rings, calculated by CCSD(T)/aug-cc-pVTZ with counterpoise correction. The barriers are extracted from a potential energy surface obtained by allowing the water ring to expand while the gas molecule diffuses through. State-of-the-art XC-functionals are evaluated against the CCSD(T) potential energy surface. PMID:27345929

  8. Computational Chemical Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging Accurately Determines Cardiac Transplant Rejection

    PubMed Central

    Tiwari, Saumya; Reddy, Vijaya B.; Bhargava, Rohit; Raman, Jaishankar

    2015-01-01

    Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR) spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients’ biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures. PMID:25932912

  9. Remote Chemical Sensing Using Quantum Cascade Lasers

    SciTech Connect

    Harper, Warren W.; Strasburg, Jana D.; Aker, Pam M.; Schultz, John F.

    2004-01-20

    instrument detection limit. The range of chemicals detectable by FM DIAL has also been extended. Prior to FY03 only water and nitrous oxide (N2O) had been seen. Experiments on extending the tuning range of the quantum cascade laser (QCL) currently used in the experiments demonstrate that many more species are now accessible including H2S, C2F4H2, and CH4. We additionally demonstrated that FM DIAL measurements can be made using short wave infrared (SWIR) telecommunications lasers. While measurements made using these components are noisier because turbulence and particulate matter cause more interference in this spectral region, monitoring in this region enables larger species to be detected simply because these lasers have a greater tuning range. In addition, SWIR monitoring also allows for the detection of second-row hydride species such as HF and HCl, which are important nuclear and CWA proliferation signatures.

  10. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGESBeta

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  11. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    SciTech Connect

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  12. A quantum accurate waveform synthesizer as a voltage reference for an electronic primary thermometer

    NASA Astrophysics Data System (ADS)

    Pollarolo, Alessio; Benz, Samuel; Rogalla, Horst; Dresselhaus, Paul

    2014-03-01

    We are using a quantum voltage noise source (QVNS) for use as an intrinsically accurate voltage reference for a new type of electronic temperature standard. In Johnson Noise Thermometry (JNT) the noise of a resistor is used to measure temperature or Boltzmann's constant k, because the Nyquist equation =4kTR Δf shows that the power spectral density is proportional to k, temperature T, resistance R and measurement bandwidth Δf . The QVNS is a digital to analog converter used to synthesize a voltage waveform that resembles pseudo-random noise comparable in amplitude to the resistor noise. The signal generated is a frequency comb of harmonics tones that are equally spaced in frequency, all having identical amplitudes but random phases. The QVNS is an array superconducting Josephson junctions that are biased with a pulsed waveform clocked at 10 GHz. The accuracy of the voltage waveform derives from the identical voltage pulses produced by each junction that are perfectly quantized because their time-integrals are always equal to flux quantum h/2 e. The time-dependent output voltage waveform is determined by the number of pulses and their density in time. The measurement electronics exploits cross-correlation techniques to reduce the uncorrelated measurement noise so as to reveal the resistor noise, both of which are on the order of 2 nV/ √Hz. With this technique we have measured k with an uncertainty of about one part in 105, which we hope to improve by another order of magnitude with further research.

  13. NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.

    PubMed

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  14. NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data

    PubMed Central

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  15. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.

    PubMed

    Neal, Stephen; Nip, Alex M; Zhang, Haiyan; Wishart, David S

    2003-07-01

    A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts--RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 A) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of approximately 20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (<1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1Halpha), 0.980 (13Calpha), 0.996 (13Cbeta), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http

  16. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  17. Accurate band gaps of semiconductors and insulators from Quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Nazarov, Roman; Hood, Randolph; Morales, Miguel

    2015-03-01

    Ab initio calculations are useful tools in developing materials with targeted band gaps for semiconductor industry. Unfortunately, the main workhorse of ab initio calculations - density functional theory (DFT) in local density approximation (LDA) or generalized gradient approximation (GGA) underestimates band gaps. Several approaches have been proposed starting from empirical corrections to more elaborate exchange-correlation functionals to deal with this problem. But none of these work well for the entire range of semiconductors and insulators. Deficiencies of DFT as a mean field method can be overcome using many-body techniques. Quantum Monte Carlo (QMC) methods can obtain a nearly exact numerical solutions of both total energies and spectral properties. Diffusion Monte Carlo (DMC), the most widely used QMC method, has been shown to provide gold standard results for different material properties, including spectroscopic constants of dimers and clusters, equation of state for solids, accurate descriptions of defects in metals and insulators. To test DMC's accuracy in a wider range of semiconductors and insulators we have computed band gaps of several semiconductors and insulators. We show that DMC can provide superior agreement with experiment compared with more traditional DFT approaches including high level exchange-correlation functionals (e.g. HSE).

  18. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    SciTech Connect

    Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  19. Assessment of the extended Koopmans' theorem for the chemical reactivity: Accurate computations of chemical potentials, chemical hardnesses, and electrophilicity indices.

    PubMed

    Yildiz, Dilan; Bozkaya, Uğur

    2016-01-30

    The extended Koopmans' theorem (EKT) provides a straightforward way to compute ionization potentials and electron affinities from any level of theory. Although it is widely applied to ionization potentials, the EKT approach has not been applied to evaluation of the chemical reactivity. We present the first benchmarking study to investigate the performance of the EKT methods for predictions of chemical potentials (μ) (hence electronegativities), chemical hardnesses (η), and electrophilicity indices (ω). We assess the performance of the EKT approaches for post-Hartree-Fock methods, such as Møller-Plesset perturbation theory, the coupled-electron pair theory, and their orbital-optimized counterparts for the evaluation of the chemical reactivity. Especially, results of the orbital-optimized coupled-electron pair theory method (with the aug-cc-pVQZ basis set) for predictions of the chemical reactivity are very promising; the corresponding mean absolute errors are 0.16, 0.28, and 0.09 eV for μ, η, and ω, respectively. PMID:26458329

  20. Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips

    PubMed Central

    Ding, Huijiang; Sadeghi, Saman; Shah, Gaurav J.; Chen, Supin; Keng, Pei Yuin; Kim, Chang-Jin “CJ”; van Dam, R. Michael

    2015-01-01

    Digital microfluidic chips provide a new platform for manipulating chemicals for multi-step chemical synthesis or assays at the microscale. The organic solvents and reagents needed for these applications are often volatile, sensitive to contamination, and wetting, i.e. have contact angles of < 90° even on the highly hydrophobic surfaces (e.g., Teflon® or Cytop®) typically used on digital microfluidic chips. Furthermore, often the applications dictate that the processes are performed in a gas environment, not allowing the use of a filler liquid (e.g., oil). These properties pose challenges for delivering controlled volumes of liquid to the chip. An automated, simple, accurate and reliable method of delivering reagents from sealed, off-chip reservoirs is presented here. This platform overcomes the issues of evaporative losses of volatile solvents, cross-contamination, and flooding of the chip by combining a syringe pump, a simple on-chip liquid detector and a robust interface design. The impedance-based liquid detection requires only minimal added hardware to provide a feedback signal to ensure accurate volumes of volatile solvents are introduced to the chip, independent of time delays between dispensing operations. On-demand dispensing of multiple droplets of acetonitrile, a frequently used but difficult to handle solvent due to its wetting properties and volatility, was demonstrated and used to synthesize the positron emission tomography (PET) probe [18F]FDG reliably. PMID:22825699

  1. Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips.

    PubMed

    Ding, Huijiang; Sadeghi, Saman; Shah, Gaurav J; Chen, Supin; Keng, Pei Yuin; Kim, Chang-Jin C J; van Dam, R Michael

    2012-09-21

    Digital microfluidic chips provide a new platform for manipulating chemicals for multi-step chemical synthesis or assays at the microscale. The organic solvents and reagents needed for these applications are often volatile, sensitive to contamination, and wetting, i.e. have contact angles of <90° even on the highly hydrophobic surfaces (e.g., Teflon® or Cytop®) typically used on digital microfluidic chips. Furthermore, often the applications dictate that the processes are performed in a gas environment, not allowing the use of a filler liquid (e.g., oil). These properties pose challenges for delivering controlled volumes of liquid to the chip. An automated, simple, accurate and reliable method of delivering reagents from sealed, off-chip reservoirs is presented here. This platform overcomes the issues of evaporative losses of volatile solvents, cross-contamination, and flooding of the chip by combining a syringe pump, a simple on-chip liquid detector and a robust interface design. The impedance-based liquid detection requires only minimal added hardware to provide a feedback signal to ensure accurate volumes of volatile solvents are introduced to the chip, independent of time delays between dispensing operations. On-demand dispensing of multiple droplets of acetonitrile, a frequently used but difficult to handle solvent due to its wetting properties and volatility, was demonstrated and used to synthesize the positron emission tomography (PET) probe [(18)F]FDG reliably. PMID:22825699

  2. Forming NCO(-) in Dense Molecular Clouds: Possible Gas-Phase Chemical Paths From Quantum Calculations.

    PubMed

    Yurtsever, E; Gianturco, F A; Wester, R

    2016-07-14

    The existence of NCO(-) anions in the interstellar medium (ISM) has been suggested and searched for over the years but without any formal definitive sighting of that molecule. We discuss in this work the possible formation of either NCO(-) directly or of NCO neutral as a precursor to NCO(-) formation by electron attachment. We follow simple, gas-phase chemical reactions for which the general features are obtained from accurate quantum calculations. The results are shedding some additional light on the likely presence of this anion in the ISM environment, drawing further information from the specific features of the considered reactions on the additional chemical options that exist for its formation. PMID:26696323

  3. Forming NCO– in Dense Molecular Clouds: Possible Gas-Phase Chemical Paths From Quantum Calculations

    PubMed Central

    2015-01-01

    The existence of NCO– anions in the interstellar medium (ISM) has been suggested and searched for over the years but without any formal definitive sighting of that molecule. We discuss in this work the possible formation of either NCO– directly or of NCO neutral as a precursor to NCO– formation by electron attachment. We follow simple, gas-phase chemical reactions for which the general features are obtained from accurate quantum calculations. The results are shedding some additional light on the likely presence of this anion in the ISM environment, drawing further information from the specific features of the considered reactions on the additional chemical options that exist for its formation. PMID:26696323

  4. Halogen bonded supramolecular capsules: a challenging test case for quantum chemical methods.

    PubMed

    Sure, Rebecca; Grimme, Stefan

    2016-08-01

    Recently, Diederich et al. synthesized the first supramolecular capsule with a well-defined four-point halogen bonding interaction [Angew. Chem., Int. Ed., 2015, 54, 12339]. This interesting system comprising about 400 atoms represents a challenging test case for accurate quantum chemical methods. We investigate it with our new density functional based composite method for structures and noncovalent interactions (PBEh-3c) as well as our standard protocol for supramolecular thermochemistry and give predictions for chemical modifications to improve the binding strength. PMID:27416814

  5. Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.; Lomakina, Ekaterina I.

    2009-08-01

    Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6±0.2 kcal mol-1. In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.

  6. H2 Adsorption in a Porous Crystal: Accurate First-Principles Quantum Simulation.

    PubMed

    D'Arcy, Jordan H; Jordan, Meredith J T; Frankcombe, Terry J; Collins, Michael A

    2015-12-17

    A general method is presented for constructing, from ab initio quantum chemistry calculations, the potential energy surface (PES) for H2 absorbed in a porous crystalline material. The method is illustrated for the metal-organic framework material MOF-5. Rigid body quantum diffusion Monte Carlo simulations are used in the construction of the PES and to evaluate the quantum ground state of H2 in MOF-5, the zero-point energy, and the enthalpy of adsorption at 0 K. PMID:26322374

  7. Limits and potentials of quantum chemical methods in modelling photosynthetic antennae.

    PubMed

    Jurinovich, Sandro; Viani, Lucas; Curutchet, Carles; Mennucci, Benedetta

    2015-12-14

    Advances in electronic spectroscopies with femtosecond time resolution have provided new information on the excitonic processes taking place during the energy conversion in natural photosynthetic antennae. This has promoted the development of new theoretical protocols aiming at accurately describing the properties and mechanisms of exciton formation and relaxation. In this perspective, we provide an overview of the quantum chemical based approaches, trying to underline both the potentials of the methods and their weaknesses. In particular three main aspects will be analysed, the quantum mechanical description of excitonic parameters (site energies and couplings), the incorporation of environmental effects on these parameters through hybrid quantum/classical approaches, and the modelling of the dynamical coupling among such parameters and the vibrations of the pigment-protein complex. PMID:25865958

  8. Chemical application of diffusion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1983-10-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. As an example the singlet-triplet splitting of the energy of the methylene molecule CH2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on our VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX is discussed. Since CH2 has only eight electrons, most of the loops in this application are fairly short. The longest inner loops run over the set of atomic basis functions. The CPU time dependence obtained versus the number of basis functions is discussed and compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures. Finally, preliminary work on restructuring the algorithm to compute the separate Monte Carlo realizations in parallel is discussed.

  9. Remote Chemical Sensing Using Quantum Cascade Lasers

    SciTech Connect

    Harper, Warren W.; Schultz, John F.

    2003-01-30

    Spectroscopic chemical sensing research at Pacific Northwest National Laboratory (PNNL) is focused on developing advanced sensors for detecting the production of nuclear, chemical, or biological weapons; use of chemical weapons; or the presence of explosives, firearms, narcotics, or other contraband of significance to homeland security in airports, cargo terminals, public buildings, or other sensitive locations. For most of these missions, the signature chemicals are expected to occur in very low concentrations, and in mixture with ambient air or airborne waste streams that contain large numbers of other species that may interfere with spectroscopic detection, or be mistaken for signatures of illicit activity. PNNL’s emphasis is therefore on developing remote and sampling sensors with extreme sensitivity, and resistance to interferents, or selectivity. PNNL’s research activities include: 1. Identification of signature chemicals and quantification of their spectral characteristics, 2. Identification and development of laser and other technologies that enable breakthroughs in sensitivity and selectivity, 3. Development of promising sensing techniques through experimentation and modeling the physical phenomenology and practical engineering limitations affecting their performance, and 4. Development and testing of data collection methods and analysis algorithms. Close coordination of all aspects of the research is important to ensure that all parts are focused on productive avenues of investigation. Close coordination of experimental development and numerical modeling is particularly important because the theoretical component provides understanding and predictive capability, while the experiments validate calculations and ensure that all phenomena and engineering limitations are considered.

  10. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, J.-S.; Chen, K.-H.; Choi, Y.

    1992-01-01

    A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.

  11. Chemically Accurate Simulation of a Polyatomic Molecule-Metal Surface Reaction.

    PubMed

    Nattino, Francesco; Migliorini, Davide; Kroes, Geert-Jan; Dombrowski, Eric; High, Eric A; Killelea, Daniel R; Utz, Arthur L

    2016-07-01

    Although important to heterogeneous catalysis, the ability to accurately model reactions of polyatomic molecules with metal surfaces has not kept pace with developments in gas phase dynamics. Partnering the specific reaction parameter (SRP) approach to density functional theory with ab initio molecular dynamics (AIMD) extends our ability to model reactions with metals with quantitative accuracy from only the lightest reactant, H2, to essentially all molecules. This is demonstrated with AIMD calculations on CHD3 + Ni(111) in which the SRP functional is fitted to supersonic beam experiments, and validated by showing that AIMD with the resulting functional reproduces initial-state selected sticking measurements with chemical accuracy (4.2 kJ/mol ≈ 1 kcal/mol). The need for only semilocal exchange makes our scheme computationally tractable for dissociation on transition metals. PMID:27284787

  12. Chemically Accurate Simulation of a Polyatomic Molecule-Metal Surface Reaction

    PubMed Central

    2016-01-01

    Although important to heterogeneous catalysis, the ability to accurately model reactions of polyatomic molecules with metal surfaces has not kept pace with developments in gas phase dynamics. Partnering the specific reaction parameter (SRP) approach to density functional theory with ab initio molecular dynamics (AIMD) extends our ability to model reactions with metals with quantitative accuracy from only the lightest reactant, H2, to essentially all molecules. This is demonstrated with AIMD calculations on CHD3 + Ni(111) in which the SRP functional is fitted to supersonic beam experiments, and validated by showing that AIMD with the resulting functional reproduces initial-state selected sticking measurements with chemical accuracy (4.2 kJ/mol ≈ 1 kcal/mol). The need for only semilocal exchange makes our scheme computationally tractable for dissociation on transition metals. PMID:27284787

  13. Quantum chemical parameters in QSAR: what do I use when?

    USGS Publications Warehouse

    Hickey, James P.

    1996-01-01

    This chapter provides a brief overview of the numerous quantum chemical parameters that have been/are currently being used in quantitative structure activity relationships (QSAR), along with a representative bibliography. The parameters will be grouped according to their mechanistic interpretations, and representative biological and physical chemical applications will be mentioned. Parmater computation methods and the appropriate software are highlighted, as are sources for software.

  14. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    NASA Astrophysics Data System (ADS)

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  15. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies.

    PubMed

    Mühlbach, Adrian H; Vaucher, Alain C; Reiher, Markus

    2016-03-01

    The inherently high computational cost of iterative self-consistent field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to 30% as a consequence of a reduced number of SCF iterations. PMID:26788887

  16. Quantum and semiclassical theories of chemical reaction rates

    SciTech Connect

    Miller, W.H. |

    1995-09-01

    A rigorous quantum mechanical theory (and a semiclassical approximation thereto) is described for calculating chemical reaction rates ``directly``, i.e., without having to solve the complete state-to-state reactive scattering problem. The approach has many vestiges of transition state theory, for which it may be thought of as the rigorous generalization.

  17. Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations

    SciTech Connect

    Kelly, Aaron; Markland, Thomas E.; Brackbill, Nora

    2015-03-07

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  18. Identification of "Known Unknowns" Utilizing Accurate Mass Data and Chemical Abstracts Service Databases

    NASA Astrophysics Data System (ADS)

    Little, James L.; Cleven, Curtis D.; Brown, Stacy D.

    2011-02-01

    In many cases, an unknown to an investigator is actually known in the chemical literature. We refer to these types of compounds as "known unknowns." Chemical Abstracts Service (CAS) Registry is a particularly good source of these substances as it contains over 54 million entries. Accurate mass measurements can be used to query the CAS Registry by either molecular formulae or average molecular weights. Searching the database by the web-based version of SciFinder is the preferred approach when molecular formulae are available. However, if a definitive molecular formula cannot be ascertained, searching the database with STN Express by average molecular weights is a viable alternative. The results from either approach are refined by employing the number of associated references or minimal sample history as orthogonal filters. These approaches were shown to be successful in identifying "known unknowns" noted in LC-MS and even GC-MS analyses in our laboratory. In addition, they were demonstrated in the identification of a variety of compounds of interest to others.

  19. Investigation of quantum confinement behavior of zinc sulphide quantum dots synthesized via various chemical methods

    SciTech Connect

    Jose, Meera Sakthivel, T. Chandran, Hrisheekesh T. Nivea, R. Gunasekaran, V.

    2014-10-15

    In this work, undoped and Ag-doped ZnS quantum dots were synthesized using various chemical methods. The products were characterized using X-ray diffraction (XRD), UV-visible spectroscopy and Photoluminescence spectroscopy. Our results revealed that the size of the as-prepared samples range from 1–6 nm in diameter and have a cubic zinc-blende structure. Also, we observed the emission of different wavelength of light from different sized quantum dots of the same material due to quantum confinement effect. The results will be presented in detail and ZnS can be a potential candidate for optical device development and applications.

  20. Asymmetric chemical reactions by polarized quantum beams

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun-Ichi; Kobayashi, Kensei

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bio-organic compounds (L-amino acid and D-sugar dominant) is nominated as "Cosmic Scenario"; a chiral impulse from asymmetric excitation sources in space triggered asymmetric reactions on the surfaces of such space materials as meteorites or interstellar dusts prior to the existence of terrestrial life. 1) Effective asymmetric excitation sources in space are proposed as polarized quantum beams, such as circularly polarized light and spin polarized electrons. Circularly polarized light is emitted as synchrotron radiation from tightly captured electrons by intense magnetic field around neutron stars. In this case, either left-or right-handed polarized light can be observed depending on the direction of observation. On the other hand, spin polarized electrons is emitted as beta-ray in beta decay from radioactive nuclei or neutron fireballs in supernova explosion. 2) The spin of beta-ray electrons is longitudinally polarized due to parity non-conservation in the weak interaction. The helicity (the the projection of the spin onto the direction of kinetic momentum) of beta-ray electrons is universally negative (left-handed). For the purpose of verifying the asymmetric structure emergence in bio-organic compounds by polarized quantum beams, we are now carrying out laboratory simulations using circularly polarized light from synchrotron radiation facility or spin polarized electron beam from beta-ray radiation source. 3,4) The target samples are solid film or aqueous solution of racemic amino acids. 1) K.Kobayashi, K.Kaneko, J.Takahashi, Y.Takano, in Astrobiology: from simple molecules to primitive life; Ed. V.Basiuk; American Scientific Publisher: Valencia, 2008. 2) G.A.Gusev, T.Saito, V.A.Tsarev, A.V.Uryson, Origins Life Evol. Biosphere. 37, 259 (2007). 3) J.Takahashi, H.Shinojima, M.Seyama, Y.Ueno, T.Kaneko, K.Kobayashi, H.Mita, M.Adachi, M.Hosaka, M.Katoh, Int. J. Mol. Sci. 10, 3044

  1. Quantum Chemical Topology: Knowledgeable atoms in peptides

    NASA Astrophysics Data System (ADS)

    Popelier, Paul L. A.

    2012-06-01

    The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.

  2. Continuum descriptions of membranes and their interaction with proteins: Towards chemically accurate models.

    PubMed

    Argudo, David; Bethel, Neville P; Marcoline, Frank V; Grabe, Michael

    2016-07-01

    Biological membranes deform in response to resident proteins leading to a coupling between membrane shape and protein localization. Additionally, the membrane influences the function of membrane proteins. Here we review contributions to this field from continuum elastic membrane models focusing on the class of models that couple the protein to the membrane. While it has been argued that continuum models cannot reproduce the distortions observed in fully-atomistic molecular dynamics simulations, we suggest that this failure can be overcome by using chemically accurate representations of the protein. We outline our recent advances along these lines with our hybrid continuum-atomistic model, and we show the model is in excellent agreement with fully-atomistic simulations of the nhTMEM16 lipid scramblase. We believe that the speed and accuracy of continuum-atomistic methodologies will make it possible to simulate large scale, slow biological processes, such as membrane morphological changes, that are currently beyond the scope of other computational approaches. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26853937

  3. How accurately can the microcanonical ensemble describe small isolated quantum systems?

    NASA Astrophysics Data System (ADS)

    Ikeda, Tatsuhiko N.; Ueda, Masahito

    2015-08-01

    We numerically investigate quantum quenches of a nonintegrable hard-core Bose-Hubbard model to test the accuracy of the microcanonical ensemble in small isolated quantum systems. We show that, in a certain range of system size, the accuracy increases with the dimension of the Hilbert space D as 1 /D . We ascribe this rapid improvement to the absence of correlations between many-body energy eigenstates. Outside of that range, the accuracy is found to scale either as 1 /√{D } or algebraically with the system size.

  4. Accurate determination of the temperature dependent thermalization coefficient (Q) in InAs/AlAsSb quantum wells

    NASA Astrophysics Data System (ADS)

    Esmaielpour, Hamidreza; Tang, Jinfeng; Whiteside, Vincent R.; Vijeyaragunathan, Sangeetha; Mishima, Tetsuya D.; Santos, Michael B.; Sellers, Ian R.

    2015-03-01

    We present an investigation of hot carriers in InAs/AlAsSb quantum wells as a practical candidate for a hot carrier solar cell absorber. The thermalization coefficient (Q) of the sample is investigated using continuous wave photoluminescence (PL). The Q is accurately determined through transfer matrix calculations of the absorption, analysis of the power density, penetration depth, diffusion, and recombination rates using a combination of simulation and empirical methods. A precise measurement of laser spot size is important in order to determine the absorbed power density. Simulations were performed based on our PL geometry in order to calculate the excitation spot size, which was compared with experiment by measurements using variable diameter pinholes to determine beam radius. Here, these techniques are described, in addition to, the temperature dependent hot carrier dynamics and phonon mediated thermalization coefficient for the InAs/AlAsSb quantum well structure.

  5. [Large scale quantum chemical calculation for drug discovery].

    PubMed

    Kitaura, Kazuo

    2011-01-01

    Due to the increase in computer power and the development of computational methods, it becomes possible to perform quantum mechanical calculations of very large molecules such as proteins that were previously exclusively treated with classical force field methods. We have developed the fragment molecular orbital (FMO) method aimed at biomolecular applications. One of the important applications of the method is in structure-based drug design because it provides accurate descriptions of various non-bonded interactions between a protein and its ligand. In this article, the FMO method will be described as well as its applications to the analysis of protein-ligand binding. PMID:21804319

  6. Accurate analysis of electron transfer from quantum dots to metal oxides in quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Javad Fahimi, Mohammad; Fathi, Davood; Ansari-Rad, Mehdi

    2015-09-01

    Electron transfer rate from quantum dot (QD) to metal oxide (MO) in quantum dot sensitized solar cells (QDSSCs) has an important role in the efficiency. In this work, we analyse the electron transfer rate from CdSe, CdS and CdTe QDs to TiO2, ZnO and SnO2 MOs by extending the related equations with considering various effects, based on the Marcus theory. In this regard, the effects of QD diameter, QD-MO spacing, the crystalline defects, temperature, and the reorganizational energy, on the electron transfer rate are investigated. The results show that, the maximum electron transfer rate is achieved for CdTe QD with the mentioned three MOs. Moreover, in order to direct the designer to reach the appropriate QDs-MOs combinations for obtaining the maximum electron transfer rate, the average electron transfer rate for various combinations is calculated. For the verification of simulation method, a part of work has been compared with the previous experimental and theoretical results, which indicates the correctness of our simulation algorithm.

  7. State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation.

    PubMed

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-04-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space

  8. State space truncation with quantified errors for accurate solutions to discrete Chemical Master Equation

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEG), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of 1) the birth and death model, 2) the single gene expression model, 3) the genetic toggle switch model, and 4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate out theories. Overall, the novel state space

  9. When do perturbative approaches accurately capture the dynamics of complex quantum systems?

    PubMed Central

    Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.

    2016-01-01

    Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model. PMID:27335176

  10. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.

    PubMed

    Tao, Jianmin; Mo, Yuxiang

    2016-08-12

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals. PMID:27563956

  11. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Mo, Yuxiang

    2016-08-01

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.

  12. Accurate experimental and theoretical comparisons between superconductor-insulator-superconductor mixers showing weak and strong quantum effects

    NASA Technical Reports Server (NTRS)

    Mcgrath, W. R.; Richards, P. L.; Face, D. W.; Prober, D. E.; Lloyd, F. L.

    1988-01-01

    A systematic study of the gain and noise in superconductor-insulator-superconductor mixers employing Ta based, Nb based, and Pb-alloy based tunnel junctions was made. These junctions displayed both weak and strong quantum effects at a signal frequency of 33 GHz. The effects of energy gap sharpness and subgap current were investigated and are quantitatively related to mixer performance. Detailed comparisons are made of the mixing results with the predictions of a three-port model approximation to the Tucker theory. Mixer performance was measured with a novel test apparatus which is accurate enough to allow for the first quantitative tests of theoretical noise predictions. It is found that the three-port model of the Tucker theory underestimates the mixer noise temperature by a factor of about 2 for all of the mixers. In addition, predicted values of available mixer gain are in reasonable agreement with experiment when quantum effects are weak. However, as quantum effects become strong, the predicted available gain diverges to infinity, which is in sharp contrast to the experimental results. Predictions of coupled gain do not always show such divergences.

  13. The Bondons: The Quantum Particles of the Chemical Bond

    PubMed Central

    Putz, Mihai V.

    2010-01-01

    By employing the combined Bohmian quantum formalism with the U(1) and SU(2) gauge transformations of the non-relativistic wave-function and the relativistic spinor, within the Schrödinger and Dirac quantum pictures of electron motions, the existence of the chemical field is revealed along the associate bondon particle B̶ characterized by its mass (mB̶), velocity (vB̶), charge (eB̶), and life-time (tB̶). This is quantized either in ground or excited states of the chemical bond in terms of reduced Planck constant ħ, the bond energy Ebond and length Xbond, respectively. The mass-velocity-charge-time quaternion properties of bondons’ particles were used in discussing various paradigmatic types of chemical bond towards assessing their covalent, multiple bonding, metallic and ionic features. The bondonic picture was completed by discussing the relativistic charge and life-time (the actual zitterbewegung) problem, i.e., showing that the bondon equals the benchmark electronic charge through moving with almost light velocity. It carries negligible, although non-zero, mass in special bonding conditions and towards observable femtosecond life-time as the bonding length increases in the nanosystems and bonding energy decreases according with the bonding length-energy relationship Ebond[kcal/mol]×Xbond[A0]=182019, providing this way the predictive framework in which the B̶ particle may be observed. Finally, its role in establishing the virtual states in Raman scattering was also established. PMID:21151435

  14. Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

    PubMed Central

    Madebene, Bruno; Ulusoy, Inga; Mancera, Luis; Scribano, Yohann; Chulkov, Sergey

    2011-01-01

    Summary We present a theoretical framework for the computation of anharmonic vibrational frequencies for large systems, with a particular focus on determining adsorbate frequencies from first principles. We give a detailed account of our local implementation of the vibrational self-consistent field approach and its correlation corrections. We show that our approach is both robust, accurate and can be easily deployed on computational grids in order to provide an efficient computational tool. We also present results on the vibrational spectrum of hydrogen fluoride on pyrene, on the thiophene molecule in the gas phase, and on small neutral gold clusters. PMID:22003450

  15. Ab initio molecular dynamics with noisy and cheap quantum Monte Carlo forces: accurate calculation of vibrational frequencies

    NASA Astrophysics Data System (ADS)

    Luo, Ye; Sorella, Sandro

    2014-03-01

    We introduce a general and efficient method for the calculation of vibrational frequencies of electronic systems, ranging from molecules to solids. By performing damped molecular dynamics with ab initio forces, we show that quantum vibrational frequencies can be evaluated by diagonalizing the time averaged position-position or force-force correlation matrices, although the ionic motion is treated on the classical level within the Born-Oppenheimer approximation. The novelty of our approach is to evaluate atomic forces with QMC by means of a highly accurate and correlated variational wave function which is optimized simultaneously during the dynamics. QMC is an accurate and promising many-body technique for electronic structure calculation thanks to massively parallel computers. However, since infinite statistics is not feasible, property evaluation may be affected by large noise that is difficult to harness. Our approach controls the QMC stochastic bias systematically and gives very accurate results with moderate computational effort, namely even with noisy forces. We prove the accuracy and efficiency of our method on the water monomer[A. Zen et al., JCTC 9 (2013) 4332] and dimer. We are currently working on the challenging problem of simulating liquid water at ambient conditions.

  16. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations.

    PubMed

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online. PMID:25770527

  17. Optimizing photon fluence measurements for the accurate determination of detective quantum efficiency

    NASA Astrophysics Data System (ADS)

    Wong, Molly; Zhang, Da; Rong, John; Wu, Xizeng; Liu, Hong

    2009-10-01

    Our goal was to evaluate the error contributed by photon fluence measurements to the detective quantum efficiency (DQE) of an x-ray imaging system. The investigation consisted of separate error analyses for the exposure and spectrum measurements that determine the photon fluence. Methods were developed for each to determine the number of measurements required to achieve an acceptable error. A new method for calculating the magnification factor in the exposure measurements was presented and compared to the existing method. The new method not only produces much lower error at small source-to-image distances (SIDs) such as clinical systems, but is also independent of SID. The exposure and spectra results were combined to determine the photon fluence error contribution to the DQE of 4%. The error in this study is small because the measurements resulted from precisely controlled experimental procedures designed to minimize the error. However, these procedures are difficult to follow in clinical environments, and application of this method on clinical systems could therefore provide important insight into error reduction. This investigation was focused on the error in the photon fluence contribution to the DQE, but the error analysis method can easily be extended to a wide range of applications.

  18. Accurate quantum dynamics calculations using symmetrized Gaussians on a doubly dense Von Neumann lattice

    SciTech Connect

    Halverson, Thomas; Poirier, Bill

    2012-12-14

    In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004); and ibid. 121, 1704 (2004)], a new method was introduced for performing exact quantum dynamics calculations. The method uses a 'weylet' basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality-the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions).

  19. Accurate quantum dynamics calculations using symmetrized Gaussians on a doubly dense Von Neumann lattice.

    PubMed

    Halverson, Thomas; Poirier, Bill

    2012-12-14

    In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004); and ibid. 121, 1704 (2004)], a new method was introduced for performing exact quantum dynamics calculations. The method uses a "weylet" basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality--the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions). PMID:23248981

  20. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    SciTech Connect

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10{sup 3}-10{sup 5} molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  1. Accurate quantum dynamics calculations using symmetrized Gaussians on a doubly dense Von Neumann lattice

    NASA Astrophysics Data System (ADS)

    Halverson, Thomas; Poirier, Bill

    2012-12-01

    In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003);, 10.1142/S0219633603000380 B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004);, 10.1063/1.1767511 B. Poirier and A. Salam, J. Chem. Phys. 121, 1704 (2004), 10.1063/1.1767512], a new method was introduced for performing exact quantum dynamics calculations. The method uses a "weylet" basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality—the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions).

  2. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-01

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  3. Stabilized Quantum Cascade Lasers and Ultrasensitive Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Taubman, Matthew S.

    2003-03-01

    Quantum Cascade Lasers (QCLs) are a relatively new type of semiconductor laser operating in the mid- to long-wave infrared. Being monopolar multilayered quantum well structures, they can be fabricated to operate anywhere in a 3 to 20 micron region. This makes them an ideal choice for infrared chemical sensing, a topic of great interest at present. The broad range of applications of this technology includes everything from environmental sensing to homeland security and the non-proliferation of weapons of mass destruction. In addition to a discussion of these new laser devices, we will show results of resent experiments, including frequency stabilization of QCLs down to a relative frequency of 5.6Hz. In this experiment we use two QCLs locked to two separate optical cavities, and we observe the heterodyne beat. A third control loop (in addition to the two for locking the lasers) is used to remove low frequency noise between the two cavity systems. We also present data from several different cavity-enhanced QCL chemical sensors demonstrating sensitivities down to the mid 10-11/cm/root(Hz).

  4. A microwave and quantum chemical study of allyltrifluorosilane

    NASA Astrophysics Data System (ADS)

    Møllendal, H.; Guirgis, G. A.

    2003-04-01

    The structural and conformational properties of allytrifluorsilane, H 2CCH-CH 2-SiF 3, have been explored by microwave (MW) spectroscopy and high-level ab initio and density functional theory quantum chemical calculations. The microwave spectrum was investigated in the 18-62 GHz spectral regions. The a-type R-branch transitions of one conformer were assigned for the ground as well as for 10 vibrationally excited states. The CC-C-Si chain of atoms in this rotamer takes an anti-clinal ('skew') conformation, with a dihedral angle calculated to be 111.6° from the syn-periplanar (0°) conformation. The question whether a CC-C-Si syn-periplanar conformer exists as a high-energy form in the gas phase remains open. In most of the quantum chemical calculations this conformation is predicted to be a transition state. However, in the most advanced calculations (B3LYP/aug-cc-pVTZ level of theory) the syn-periplanar conformer is predicted to be a stable rotamer that is calculated to be 6.5 kJ/mol higher in energy than the anti-clinal form. Since there is no indication in the MW spectrum for the presence of high-energy form(s), it is concluded that the anti-clinal conformer is at least 4 kJ/mol more stable than any other hypothetical rotamer.

  5. Response to “Accurate Risk-Based Chemical Screening Relies on Robust Exposure Estimates”

    EPA Science Inventory

    This is a correspondence (letter to the editor) with reference to comments by Rudel and Perovich on the article "Integration of Dosimetry, Exposure, and High-Throughput Screening Data in Chemical Toxicity Assessment". Article Reference: SI # 238882

  6. State-Resolved Quantum Dynamics of Photodetachment of HCO2(-)/DCO2(-) on an Accurate Global Potential Energy Surface.

    PubMed

    Zou, Lindong; Li, Jun; Wang, Hui; Ma, Jianyi; Guo, Hua

    2015-07-16

    Full-dimensional quantum dynamics studies of the photodetachment of HCO2(-) and DCO2(-) are reported using a wave-packet method on an accurate global potential energy surface of the neutral HOCO/HCO2 system. The calculated photoelectron spectra reproduced both the positions and widths of the main HCO2 and DCO2 peaks observed in experiment. Specifically, both the (2)A1 and (2)B2 resonance peaks of the neutral radicals were identified in our simulations thanks to the adiabatic PES that captures both the (2)A1 and (2)B2 minima. The narrow widths and isotope effect of the lowest resonances are indicative of tunneling-facilitated predissociation. Furthermore, the dissociation product CO2 was found to be excited in both its symmetric stretching and bending modes, which are coupled via a strong Fermi resonance, but rotationally cold, in good agreement with the recent photoelectron-photodetachment coincidence experiments. PMID:25607218

  7. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  8. Radiation and quantum chemical studies of chalcone derivatives.

    PubMed

    Gaikwad, P; Priyadarsini, K I; Naumov, S; Rao, B S M

    2010-08-01

    The reactions of oxidizing radicals ((*)OH, Br(2)(*-), and SO(4)(*-)) with -OH-, -CH(3)-, or -NH(2)-substituted indole chalcones and hydroxy benzenoid chalcones were studied by radiation and quantum chemical methods. The (*)OH radical was found to react by addition at diffusion-controlled rates (k = 1.1-1.7 x 10(10) dm(3) mol(-1) s(-1)), but Br(2)(*-) radical reacted by 2 orders of magnitude lower. Quantum chemical calculations at the B3LYP/6-31+G(d,p) level of theory have shown that the (C2-OH)(*), (C11-OH)(*), and (C10-OH)(*) adducts of the indole chalcones and the (C7-OH)(*) and (C8-OH)(*) adducts of the hydroxy benzenoid chalcones are more stable with DeltaH = -39 to -28 kcal mol(-1) and DeltaG = -32 to -19 kcal mol(-1). This suggests that (*)OH addition to the alpha,beta-unsaturated bond is a major reaction channel in both types of chalcones and is barrierless. The stability and lack of dehydration of the (*)OH adducts arise from two factors: strong frontier orbital interaction due to the low energy gap between interacting orbitals and the negligible Coulombic repulsion due to small absolute values of Mulliken charges. The transient absorption spectrum measured in the (*)OH radical reaction with all the indole chalcone derivatives exhibited a maximum at 390 nm, which is in excellent agreement with the computed value (394 nm). The formation of three phenolic products under steady-state radiolysis is in line with the three stable (*)OH adducts predicted by theory. Independent of the substituent, identical spectra (lambda(max) = 330-360 and approximately 580 nm) were obtained on one-electron oxidation of the three indole chalcones. MO calculations predict the deprotonation from the -NH group is more efficient than from the substituent due to the larger electron density on the N1 atom forming the chalcone indolyl radical. Its reduction potential was determined to be 0.56 V from the ABTS(*-)/ABTS(2-) couple. In benzenoid chalcones, the (*)OH adduct spectrum is

  9. Spectroscopic and quantum chemical studies on 4-acryloyl morpholine

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Rani, T.; Santhanalakshmi, K.; Mohan, S.

    2011-09-01

    Fourier transform infrared (FTIR) and FT-Raman spectra have been recorded and an extensive spectroscopic investigations have been carried out on 4-acryloyl morpholine (4AM). Theoretical quantum chemical studies have also been performed. From the ab initio and DFT analysis using HF, B3LYP and B3PW91 methods with 6-31G(d,p) and 6-311G++(d,p) basis sets the energies, structural, thermodynamical and vibrational characteristics of the compound were determined. The energy difference between the chair equatorial and chair axial conformers of 4AM have been calculated by density functional theory (DFT) method. The optimized geometrical parameters, theoretical wavenumbers and thermodynamic properties of the molecule are compared with the experimental values. The effect of acryloyl group on the characteristic frequencies of the morpholine ring has been analysed. The mixing of the fundamental modes with the help of potential energy distribution (PED) through normal co-ordinate analysis has been discussed.

  10. Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator.

    PubMed

    Lu, Dawei; Xu, Nanyang; Xu, Ruixue; Chen, Hongwei; Gong, Jiangbin; Peng, Xinhua; Du, Jiangfeng

    2011-07-01

    Quantum simulation can beat current classical computers with minimally a few tens of qubits. Here we report an experimental demonstration that a small nuclear-magnetic-resonance quantum simulator is already able to simulate the dynamics of a prototype laser-driven isomerization reaction using engineered quantum control pulses. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future. PMID:21797586

  11. Quantum chemical approach for condensed-phase thermochemistry: Proposal of a harmonic solvation model

    NASA Astrophysics Data System (ADS)

    Nakai, Hiromi; Ishikawa, Atsushi

    2014-11-01

    We propose a novel quantum chemical method, called the harmonic solvation model (HSM), for calculating thermochemical parameters in the condensed phase, particularly in the liquid phase. The HSM represents translational and rotational motions of a solute as vibrations interacting with a cavity wall of solvent molecules. As examples, the HSM and the ideal-gas model (IGM) were used for the standard formation reaction of liquid water, combustion reactions of liquid formic acid, methanol, and ethanol, vapor-liquid equilibration of water and ethanol, and dissolution of gaseous CO2 in water. The numerical results confirmed the reliability and applicability of the HSM. In particular, the temperature dependence of the Gibbs energy of liquid molecules was accurately reproduced by the HSM; for example, the boiling point of water was reasonably determined using the HSM, whereas the conventional IGM treatment failed to obtain a crossing of the two Gibbs energy curves for gaseous and liquid water.

  12. Quantum chemical approach for condensed-phase thermochemistry: Proposal of a harmonic solvation model

    SciTech Connect

    Nakai, Hiromi; Ishikawa, Atsushi

    2014-11-07

    We propose a novel quantum chemical method, called the harmonic solvation model (HSM), for calculating thermochemical parameters in the condensed phase, particularly in the liquid phase. The HSM represents translational and rotational motions of a solute as vibrations interacting with a cavity wall of solvent molecules. As examples, the HSM and the ideal-gas model (IGM) were used for the standard formation reaction of liquid water, combustion reactions of liquid formic acid, methanol, and ethanol, vapor–liquid equilibration of water and ethanol, and dissolution of gaseous CO{sub 2} in water. The numerical results confirmed the reliability and applicability of the HSM. In particular, the temperature dependence of the Gibbs energy of liquid molecules was accurately reproduced by the HSM; for example, the boiling point of water was reasonably determined using the HSM, whereas the conventional IGM treatment failed to obtain a crossing of the two Gibbs energy curves for gaseous and liquid water.

  13. Quantum chemical calculations predict biological function: the case of T cell receptor interaction with a peptide/MHC class I

    PubMed Central

    Antipas, Georgios S. E.; Germenis, Anastasios E.

    2015-01-01

    A combination of atomic correlation statistics and quantum chemical calculations are shown to predict biological function. In the present study, various antigenic peptide-Major Histocompatibility Complex (pMHC) ligands with near-identical stereochemistries, in complexation with the same T cell receptor (TCR), were found to consistently induce distinctly different quantum chemical behavior, directly dependent on the peptide's electron spin density and intrinsically expressed by the protonation state of the peptide's N-terminus. Furthermore, the cumulative coordination difference of any variant in respect to the native peptide was found to accurately reflect peptide biological function and immerges as the physical observable which is directly related to the immunological end-effect of pMHC-TCR interaction. PMID:25713797

  14. Quantum Chemical Study of the Thermochemical Properties of Organophosphorous Compounds.

    PubMed

    Khalfa, A; Ferrari, M; Fournet, R; Sirjean, B; Verdier, L; Glaude, P A

    2015-10-22

    Organophosphorous compounds are involved in many toxic compounds such as fungicides, pesticides, or chemical warfare nerve agents. The understanding of the decomposition chemistry of these compounds in the environment is largely limited by the scarcity of thermochemical data. Because of the high toxicity of many of these molecules, experimental determination of their thermochemical properties is very difficult. In this work, standard gas-phase thermodynamic data, i.e., enthalpies of formation (ΔfH298°), standard entropies (S298°), and heat capacities (Cp°(T)), were determined using quantum chemical calculations and more specifically the CBS-QB3 composite method, which was found to be the best compromise between precision and calculation time among high accuracy composite methods. A large number of molecules was theoretically investigated, involving trivalent and pentavalent phosphorus atoms, and C, H, O, N, S, and F atoms. These data were used to propose 83 original groups, used in the semiempirical group contribution method proposed by Benson. Thanks to these latter group values, thermochemical properties of several nerve agents, common pesticides and herbicides have been evaluated. Bond dissociations energies (BDE), useful for the analysis the thermal stability of the compounds, were also determined in several molecules of interest. PMID:26434606

  15. Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine

    NASA Astrophysics Data System (ADS)

    Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing

    2016-12-01

    Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.

  16. Small pores in soils: Is the physico-chemical environment accurately reflected in biogeochemical models ?

    NASA Astrophysics Data System (ADS)

    Weber, Tobias K. D.; Riedel, Thomas

    2015-04-01

    Free water is a prerequesite to chemical reactions and biological activity in earth's upper crust essential to life. The void volume between the solid compounds provides space for water, air, and organisms that thrive on the consumption of minerals and organic matter thereby regulating soil carbon turnover. However, not all water in the pore space in soils and sediments is in its liquid state. This is a result of the adhesive forces which reduce the water activity in small pores and charged mineral surfaces. This water has a lower tendency to react chemically in solution as this additional binding energy lowers its activity. In this work, we estimated the amount of soil pore water that is thermodynamically different from a simple aqueous solution. The quantity of soil pore water with properties different to liquid water was found to systematically increase with increasing clay content. The significance of this is that the grain size and surface area apparently affects the thermodynamic state of water. This implies that current methods to determine the amount of water content, traditionally determined from bulk density or gravimetric water content after drying at 105°C overestimates the amount of free water in a soil especially at higher clay content. Our findings have consequences for biogeochemical processes in soils, e.g. nutrients may be contained in water which is not free which could enhance preservation. From water activity measurements on a set of various soils with 0 to 100 wt-% clay, we can show that 5 to 130 mg H2O per g of soil can generally be considered as unsuitable for microbial respiration. These results may therefore provide a unifying explanation for the grain size dependency of organic matter preservation in sedimentary environments and call for a revised view on the biogeochemical environment in soils and sediments. This could allow a different type of process oriented modelling.

  17. New insights for accurate chemically specific measurements of slow diffusing molecules

    NASA Astrophysics Data System (ADS)

    Hou, Jianbo; Madsen, Louis A.

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using 2H2O and obtain expected results, but we observe crippling artifacts when measuring 1H-glycerol diffusion with the same experimental parameters. A mathematical analysis of 2H2O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration.

  18. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Technical Reports Server (NTRS)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  19. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Astrophysics Data System (ADS)

    Truhlar, Donald G.

    1993-04-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  20. Mode-Specific Tunneling Splittings for a Sequential Double-Hydrogen Transfer Case: An Accurate Quantum Mechanical Scheme.

    PubMed

    Ren, Yinghui; Bian, Wensheng

    2015-05-21

    We present the first accurate quantum dynamics calculations of mode-specific tunneling splittings in a sequential double-hydrogen transfer process. This is achieved in the vinylidene-acetylene system, the simplest molecular system of this kind, and by large-scale parallel computations with an efficient theoretical scheme developed by us. In our scheme, basis functions are customized for the hydrogen transfer process; a 4-dimensional basis contraction strategy is combined with the preconditioned inexact spectral transform method; efficient parallel implementation is achieved. Mode-specific permutation tunneling splittings of vinylidene states are reported and tremendous mode-specific promotion effects are revealed; in particular, the CH2 rock mode enhances the ground-state splitting by a factor of 10(3). We find that the ground-state vinylidene has a reversible-isomerization time of 622 ps, much longer than all previous estimates. Our calculations also shed light on the importance of the deep intermediate well and vibrational excitation in the double-hydrogen transfer processes. PMID:26263255

  1. Accurate sensitivity of quantum dots for detection of HER2 expression in breast cancer cells and tissues.

    PubMed

    Tabatabaei-Panah, Akram-Sadat; Jeddi-Tehrani, Mahmood; Ghods, Roya; Akhondi, Mohammad-Mehdi; Mojtabavi, Nazanin; Mahmoudi, Ahmad-Reza; Mirzadegan, Ebrahim; Shojaeian, Sorour; Zarnani, Amir-Hassan

    2013-03-01

    Here we introduce novel optical properties and accurate sensitivity of Quantum dot (QD)-based detection system for tracking the breast cancer marker, HER2. QD525 was used to detect HER2 using home-made HER2-specific monoclonal antibodies in fixed and living HER2(+) SKBR-3 cell line and breast cancer tissues. Additionally, we compared fluorescence intensity (FI), photostability and staining index (SI) of QD525 signals at different exposure times and two excitation wavelengths with those of the conventional organic dye, FITC. Labeling signals of QD525 in both fixed and living breast cancer cells and tissue preparations were found to be significantly higher than those of FITC at 460-495 nm excitation wavelengths. Interestingly, when excited at 330-385 nm, the superiority of QD525 was more highlighted with at least 4-5 fold higher FI and SI compared to FITC. Moreover, QDs exhibited exceptional photostability during continuous illumination of cancerous cells and tissues, while FITC signal faded very quickly. QDs can be used as sensitive reporters for in situ detection of tumor markers which in turn could be viewed as a novel approach for early detection of cancers. To take comprehensive advantage of QDs, it is necessary that their optimal excitation wavelength is employed. PMID:23212129

  2. Six-dimensional quantum dynamics of dissociative chemisorption of H2 on Co(0001) on an accurate global potential energy surface.

    PubMed

    Jiang, Bin; Hu, Xixi; Lin, Sen; Xie, Daiqian; Guo, Hua

    2015-09-28

    Cobalt is a widely used catalyst for many heterogeneous reactions, including the Fischer-Tropsch (FT) process, which converts syngas (H2 and CO) to higher hydrocarbons. As a result, a better understanding of the key chemical steps on the Co surface, such as the dissociative chemisorption of H2 as an initial step of the FT process, is of fundamental importance. Here, we report an accurate full-dimensional global potential energy surface for the dissociative chemisorption of H2 on the rigid Co(0001) surface constructed from more than 3000 density functional theory points. The high-fidelity potential energy surface was obtained using the permutation invariant polynomial-neural network method, which preserves both the permutation symmetry of H2 and translational symmetry of the Co(0001) surface. The reaction path features a very low barrier on the top site. Full-dimensional quantum dynamical calculations provide insights into the dissociation dynamics and influence of the initial vibrational, rotational, and orientational degrees of freedom. PMID:26286861

  3. Chemical physics: Quantum control of light-induced reactions

    NASA Astrophysics Data System (ADS)

    Chandler, David W.

    2016-07-01

    An investigation of how ultracold molecules are broken apart by light reveals surprising, previously unobserved quantum effects. The work opens up avenues of research in quantum optics. See Letter p.122

  4. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide

    PubMed Central

    Lafont, F.; Ribeiro-Palau, R.; Kazazis, D.; Michon, A.; Couturaud, O.; Consejo, C.; Chassagne, T.; Zielinski, M.; Portail, M.; Jouault, B.; Schopfer, F.; Poirier, W.

    2015-01-01

    Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10−9 in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we report on a graphene device grown by chemical vapour deposition on SiC, which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron-density devices. PMID:25891533

  5. Chemical Functionalisation and Photoluminescence of Graphene Quantum Dots.

    PubMed

    Sekiya, Ryo; Uemura, Yuichiro; Naito, Hiroyoshi; Naka, Kensuke; Haino, Takeharu

    2016-06-01

    Chemical modification of graphene quantum dots (GQDs) can influence their physical and chemical properties; hence, the investigation of the effect of organic functional groups on GQDs is of importance for developing GQD-organic hybrid materials. Three peripherally functionalised GQDs having a third-generation dendritic wedge (GQD-2), long alkyl chains (GQD-3) and a polyhedral oligomeric silsesquioxane group (GQD-4) were prepared by the Cu(I) -catalysed Huisgen cycloaddition reaction of GQD-1 with organic azides. Cyclic voltammetry indicated that reduction occurred on the surfaces of GQD-1-4 and on the five-membered imide rings at the periphery, and this suggested that the functional groups distort the periphery by steric interactions between neighbouring functional groups. The HOMO-LUMO bandgaps of GQD-1-4 were estimated to be approximately 2 eV, and their low-lying LUMO levels (<-3.9 eV) were lower than that of phenyl-C61 -butyric acid methyl ester, an n-type organic semiconductor. The solubility of GQD-1-4 in organic solvents depends on the functional groups present. The functional groups likely cover the surfaces and periphery of the GQDs, and thus increase their affinity for solvent and avoid precipitation. Similar to GQD-2, both GQD-3 and GQD-4 emitted white light upon excitation at 360 nm. Size-exclusion chromatography demonstrated that white-light emission originates from the coexistence of differently sized GQDs that have different photoluminescence emission wavelengths. PMID:27115715

  6. [Study of quantum-pharmacological chemical characteristics of quercetin].

    PubMed

    Zahorodnyĭ, M I

    2007-01-01

    It was established in the previous studies that quercetin prevented the development and caused faster regression of ulcers, petechia and anabroses in rats, which were induced by diclofenac taking. In the group of patients taking diclofenac together with quercetin, the ulcers and dyspeptic events were less found. The application of quercetin normalizes the function and metabolism of cartilage tissue of rabbits with an experimental osteoarthrosis and in patients with osteoartrosis. Quantum-chemical properties of molecule quercetin were studied using the methods of molecular mechanics MM+ and ab initio 6-31G*, and also semiempirical method. The following indices were investigated: distance between atoms (A), the distribution of electronic density of only external valency electrons, distribution of electrostatic potential; common energy of the exertion of molecule (kkal/mmol); binding energy (kkal/mmol); electron energy (kkal/mmol); energy of nucleus-nucleus interaction (kkal/mmol); formation heat (kkal/mmol); atomic charge (eB); value of the dipole moment of molecule (D); localization and energy of highest occupied orbital (HOMO) and the lowest unoccupied (LUMO) molecular orbital (eB) of quercetin miolecule; the value of absolute rigidity of chemical structure of bioflavonoid. It was shown, that bioflavonoid quercetin belongs to mild reagents, has nucleophilic properties, can react with alkaline, unsaturated and aromatic compounds,. Polar substitutes in the quercetine molecule influence on the distribution of superficial valency electrons and localization of HOMO and LUMO. The energy value of quercetin LUMO enables us to refer quercetine to the reducing agent and it is illustrated by antioxidant properties of this medicine. PMID:18663944

  7. Charge transport in conjugated materials: insight from quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Beljonne, David; Cornil, J. P.; Calbert, J. P.; Bredas, Jean-Luc

    2001-06-01

    The electronic structure of neutral and singly charged conjugated molecular clusters is investigated by means of quantum-chemical calculations. We first assess the influence of interchain interactions on the nature of the singly charged species (polarons) in organic conjugated polymers. In a two- chain model aggregate, the polaron is found to be delocalized over the two conjugated chains for short interchain separation. Such a delocalization strongly affects the geometric and electronic relaxation phenomena induced by charge injection, which in turn lead to a dramatic spectral redistribution of the linear absorption cross section. We then consider pentacene clusters built from the experimental crystal structure and compute the HOMO and LUMO bandwidths, which are decisive parameters for charge transport in the limiting case of band-like motion (i.e., complete delocalization of the excess charge over a large number of interacting molecules). Very large bandwidths are obtained, in agreement with the remarkable electron and hole charge-carrier mobilities reported recently for ultrahigh purity pentacene single crystals.

  8. Quantum chemical study of the autoxidation of ascorbate.

    PubMed

    Herrmann, Nils; Heinz, Norah; Dolg, Michael; Cao, Xiaoyan

    2016-07-01

    Reactions involved in the autoxidation of ascorbate have been investigated with quantum chemical first-principles and ab initio methods. Reaction energies and Gibbs energies of the reactions were calculated at the density functional theory level applying the gradient-corrected BP86 and the hybrid B3LYP functionals together with def2-TZVP basis sets. Results of single-point CC2, CCSD, and CCSD(T) calculations were used for calibration of the density functional theory data and show excellent agreement with the B3LYP values. Based on the Gibbs energy ascorbic acid AscH2 is found to be the energetically lowest species in aqueous solution, whereas the monoanion ascorbate AscH - is the most abundant one near pH = 7. Asc 2- was found to be the preferred reducing agent for autoxidation and oxidation processes. The results also support a metal-catalyzed synthesis of the reactive oxygen species H2 O2 according to a redox cycling mechanism proposed in literature. © 2016 Wiley Periodicals, Inc. PMID:27316823

  9. Microsolvation of methyl hydrogen peroxide: Ab initio quantum chemical approach

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anant D.; Rai, Dhurba; Bartolotti, Libero J.; Pathak, Rajeev K.

    2009-08-01

    Methyl hydrogen peroxide (MHP), one of the simplest organic hydroperoxides, is a strong oxidant, with enhanced activity in aqueous ambience. The present study investigates, at the molecular level, the role of hydrogen bonding that is conducive to cluster formation of MHP with water molecules from its peroxide end, with the methyl group remaining hydrophobic for up to five water molecules. Ab initio quantum chemical computations on MHP⋯(H2O)n, [n =1-5] are performed at second order Møller-Plesset (MP2) perturbation theory employing the basis sets 6-31G(d,p) and 6-311++G(2d,2p) to study the cluster formation of MHP with water molecules from its peroxide end and hydrophobic hydration due to the methyl group. Successive addition of water molecules alters the hydrogen bonding pattern, which leads to changes in overall cluster geometry and in turn to IR vibrational frequency shifts. Molecular co-operativity in these clusters is gauged directly through a detailed many-body interaction energy analysis. Molecular electrostatic potential maps are shown to have a bearing on predicting further growth of these clusters, which is duly corroborated through sample calculations for MHP⋯(H2O)8. Further, a continuum solvation model calculation for energetically stable clusters suggests that this study should serve as a precursor for pathways to aqueous solvation of MHP.

  10. Quantum-chemical study of CHCl3-SO2 association.

    PubMed

    Hippler, Michael

    2005-11-22

    CHCl(3)-SO(2) association is studied by high-level quantum-chemical calculations of stationary points of the dimer electronic potential-energy hypersurface, including correlated second-order Moller-Plesset and CCSD(T) calculations with basis sets up to 6-311++G(d,p). During geometry optimization, frequency, and energy calculations, a self-written computer code embedding the GAMESS ab initio program suite applies counterpoise correction of the basis set superposition error. A CH...O hydrogen-bonded complex (DeltaE(0)=-8.73 kJmol) with a 2.4 A intermolecular H...O distance and two very weak van der Waals complexes (DeltaE(0)=-3.78 and -2.94 kJmol) are located on the counterpoise-corrected potential-energy surface. The intermolecular interactions are characterized by Kitaura-Morokuma interaction energy decompositions and Mulliken electron population analyses. The unusual hydrogen bond is distinguished by a CH-bond contraction, a pronounced enhancement of the IR intensity and a shift to higher frequency ("blueshift") of the CH-stretching vibration compared to the CHCl(3) monomer. Spectroscopy and association in liquid solution is also discussed; our results provide an alternative explanation for features in the CH-stretching vibration spectrum of chloroform dissolved in liquid sulfur dioxide which have been attributed previously to an intermolecular Fermi resonance. PMID:16351260

  11. Quantum-chemical study of CHCl3-SO2 association

    NASA Astrophysics Data System (ADS)

    Hippler, Michael

    2005-11-01

    CHCl3-SO2 association is studied by high-level quantum-chemical calculations of stationary points of the dimer electronic potential-energy hypersurface, including correlated second-order Møller-Plesset and CCSD(T) calculations with basis sets up to 6-311++G(d,p). During geometry optimization, frequency, and energy calculations, a self-written computer code embedding the GAMESS ab initio program suite applies counterpoise correction of the basis set superposition error. A CH ⋯O hydrogen-bonded complex (ΔE0=-8.73kJ/mol) with a 2.4Å intermolecular H ⋯O distance and two very weak van der Waals complexes (ΔE0=-3.78 and -2.94kJ /mol) are located on the counterpoise-corrected potential-energy surface. The intermolecular interactions are characterized by Kitaura-Morokuma interaction energy decompositions and Mulliken electron population analyses. The unusual hydrogen bond is distinguished by a CH-bond contraction, a pronounced enhancement of the IR intensity and a shift to higher frequency ("blueshift") of the CH-stretching vibration compared to the CHCl3 monomer. Spectroscopy and association in liquid solution is also discussed; our results provide an alternative explanation for features in the CH-stretching vibration spectrum of chloroform dissolved in liquid sulfur dioxide which have been attributed previously to an intermolecular Fermi resonance.

  12. Chemically-mediated quantum criticality in NbFe2

    SciTech Connect

    Alam, Aftab; Johnson, Duane

    2011-11-09

    Laves-phase Nb{sub 1+c}Fe{sub 2-c} is a rare itinerant intermetallic compound exhibiting magnetic quantum criticality at c{sub cr} {approx} 1.5% Nb excess; its origin, and how alloying mediates it, remains an enigma. For NbFe{sub 2}, we show that an unconventional band critical point above the Fermi level E{sub F} explains most observations and that chemical alloying mediates access to this unconventional band critical point by an increase in E{sub F} with decreasing electrons (increasing %Nb), counter to rigid-band concepts. We calculate that E{sub F} enters the unconventional band critical point region for c{sub cr} > 1.5% Nb and by 1.74% Nb there is no Nb site-occupation preference between symmetry-distinct Fe sites, i.e., no electron-hopping disorder, making resistivity near constant as observed. At larger Nb (Fe) excess, the ferromagnetic Stoner criterion is satisfied.

  13. Periodic quantum chemical studies on anhydrous and hydrated acid clinoptilolite.

    PubMed

    Valdiviés Cruz, Karell; Lam, Anabel; Zicovich-Wilson, Claudio M

    2014-08-01

    Periodic quantum chemistry methods as implemented in the crystal09 code were considered to study acid clinoptilolite (HEU framework type), both anhydrous and hydrated. The most probable location of acid sites and water molecules together with other structural details has been the object of particular attention. Calculations were performed at hybrid and pristine DFT levels of theory with a VDZP quality basis set in order to compare performances. It arises that PBE0 provides the best agreement with experimental data as concerns structural features and the most stable Al distribution in the framework. The role of the water molecule distribution in the stability of the systems, the most probable structure that they induce in the material, and their eventual influence on further chemical modification processes, such as dealumination, are discussed in detail. Results show that, apart from the usually considered interactions of water molecules with the zeolite framework, that is, a H-bond with Brönsted acid sites and coordination with framework Al as Lewis ones, it is necessary to consider cooperation of other weaker effects so as to fully understand the hydration effect in this kind of materials. PMID:24730675

  14. Comparison of sugar molecule decomposition through glucose and fructose: a high-level quantum chemical study.

    SciTech Connect

    Assary, R. S.; Curtiss, L. A.

    2012-02-01

    Efficient chemical conversion of biomass is essential to produce sustainable energy and industrial chemicals. Industrial level conversion of glucose to useful chemicals, such as furfural, hydroxymethylfurfural, and levulinic acid, is a major step in the biomass conversion but is difficult because of the formation of undesired products and side reactions. To understand the molecular level reaction mechanisms involved in the decomposition of glucose and fructose, we have carried out high-level quantum chemical calculations [Gaussian-4 (G4) theory]. Selective 1,2-dehydration, keto-enol tautomerization, isomerization, retro-aldol condensation, and hydride shifts of glucose and fructose molecules were investigated. Detailed kinetic and thermodynamic analyses indicate that, for acyclic glucose and fructose molecules, the dehydration and isomerization require larger activation barriers compared to the retro-aldol reaction at 298 K in neutral medium. The retro-aldol reaction results in the formation of C2 and C4 species from glucose and C3 species from fructose. The formation of the most stable C3 species, dihydroxyacetone from fructose, is thermodynamically downhill. The 1,3-hydride shift leads to the cleavage of the C-C bond in the acyclic species; however, the enthalpy of activation is significantly higher (50-55 kcal/mol) than that of the retro-aldol reaction (38 kcal/mol) mainly because of the sterically hindered distorted four-membered transition state compared to the hexa-membered transition state in the retro-aldol reaction. Both tautomerization and dehydration are catalyzed by a water molecule in aqueous medium; however, water has little effect on the retro-aldol reaction. Isomerization of glucose to fructose and glyceraldehyde to dihydroxyacetone proceeds through hydride shifts that require an activation enthalpy of about 40 kcal/mol at 298 K in water medium. This investigation maps out accurate energetics of the decomposition of glucose and fructose molecules

  15. How to understand quantum chemical computations on DNA and RNA systems? A practical guide for non-specialists.

    PubMed

    Šponer, Jiří; Šponer, Judit E; Mládek, Arnošt; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal

    2013-11-01

    In this review primarily written for non-experts we explain basic methodological aspects and interpretation of modern quantum chemical (QM) computations applied to nucleic acids. We introduce current reference QM computations on small model systems consisting of dozens of atoms. Then we comment on recent advance of fast and accurate dispersion-corrected density functional theory methods, which will allow computations of small but complete nucleic acids building blocks in the near future. The qualitative difference between QM and molecular mechanics (MM, force field) computations is discussed. We also explain relation of QM and molecular simulation computations to experiments. PMID:23747334

  16. Chemical Compass Model for Avian Magnetoreception as a Quantum Coherent Device

    NASA Astrophysics Data System (ADS)

    Cai, Jianming; Plenio, Martin B.

    2013-12-01

    It is known that more than 50 species use the Earth’s magnetic field for orientation and navigation. Intensive studies, particularly behavior experiments with birds, provide support for a chemical compass based on magnetically sensitive free radical reactions as a source of this sense. However, the fundamental question of how quantum coherence plays an essential role in such a chemical compass model of avian magnetoreception yet remains controversial. Here, we show that the essence of the chemical compass model can be understood in analogy to a quantum interferometer exploiting global quantum coherence rather than any subsystem coherence. Within the framework of quantum metrology, we quantify global quantum coherence and correlate it with the function of chemical magnetoreception. Our results allow us to understand and predict how various factors can affect the performance of a chemical compass from the unique perspective of quantum coherence assisted metrology. This represents a crucial step to affirm a direct connection between quantum coherence and the function of a chemical compass.

  17. Chemical compass model for avian magnetoreception as a quantum coherent device.

    PubMed

    Cai, Jianming; Plenio, Martin B

    2013-12-01

    It is known that more than 50 species use the Earth's magnetic field for orientation and navigation. Intensive studies, particularly behavior experiments with birds, provide support for a chemical compass based on magnetically sensitive free radical reactions as a source of this sense. However, the fundamental question of how quantum coherence plays an essential role in such a chemical compass model of avian magnetoreception yet remains controversial. Here, we show that the essence of the chemical compass model can be understood in analogy to a quantum interferometer exploiting global quantum coherence rather than any subsystem coherence. Within the framework of quantum metrology, we quantify global quantum coherence and correlate it with the function of chemical magnetoreception. Our results allow us to understand and predict how various factors can affect the performance of a chemical compass from the unique perspective of quantum coherence assisted metrology. This represents a crucial step to affirm a direct connection between quantum coherence and the function of a chemical compass. PMID:24476240

  18. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit.

    PubMed

    Kruse, Holger; Mladek, Arnost; Gkionis, Konstantinos; Hansen, Andreas; Grimme, Stefan; Sponer, Jiri

    2015-10-13

    We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0χOL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ∼0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields. PMID:26574283

  19. Does a More Precise Chemical Description of Protein–Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?

    PubMed Central

    2014-01-01

    Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a predetermined theory-inspired functional form for the relationship between the variables that describe an experimentally determined or modeled structure of a protein–ligand complex and its binding affinity. The inherent problem of this approach is in the difficulty of explicitly modeling the various contributions of intermolecular interactions to binding affinity. New scoring functions based on machine-learning regression models, which are able to exploit effectively much larger amounts of experimental data and circumvent the need for a predetermined functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein–ligand complex does not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result: modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational heterogeneity in data. PMID:24528282

  20. Optimization of an External Cavity Quantum Cascade Laser for Chemical Sensing Applications

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.; Taubman, Matthew S.; Cannon, Bret D.; Schiffern, John T.; Myers, Tanya L.

    2010-03-01

    We describe and characterize an external cavity quantum cascade laser designed for detection of multiple airborne chemicals, and used with a compact astigmatic Herriott cell for sensing of acetone and hydrogen peroxide.

  1. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester

    NASA Astrophysics Data System (ADS)

    Shoba, D.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and first hyper polarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method.

  2. Fast Infrared Chemical Imaging with a Quantum Cascade Laser

    PubMed Central

    2015-01-01

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm–1) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546

  3. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    PubMed

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement

  4. GaN quantum dots as optical transducers for chemical sensors

    SciTech Connect

    Weidemann, O.; Jegert, G.; Stutzmann, M.; Kandaswamy, P. K.; Monroy, E.

    2009-03-16

    GaN/AlN quantum dots were investigated as optical transducers for field effect chemical sensors. The structures were synthesized by molecular-beam epitaxy and covered by a semitransparent catalytic Pt top contact. Due to the thin (3 nm) AlN barriers, the variation of the quantum dot photoluminescence with an external electric field along the [0001] axis is dominated by the tunneling current rather than by the quantum confined Stark effect. An increasing field results in a blueshift of the luminescence and a decreasing intensity. This effect is used to measure the optical response of quantum dot superlattices upon exposure to molecular hydrogen.

  5. Accurate quantum yields by laser gain vs absorption spectroscopy - Investigation of Br/Br(asterisk) channels in photofragmentation of Br2 and IBr

    NASA Technical Reports Server (NTRS)

    Haugen, H. K.; Weitz, E.; Leone, S. R.

    1985-01-01

    Various techniques have been used to study photodissociation dynamics of the halogens and interhalogens. The quantum yields obtained by these techniques differ widely. The present investigation is concerned with a qualitatively new approach for obtaining highly accurate quantum yields for electronically excited states. This approach makes it possible to obtain an accuracy of 1 percent to 3 percent. It is shown that measurement of the initial transient gain/absorption vs the final absorption in a single time-resolved signal is a very accurate technique in the study of absolute branching fractions in photodissociation. The new technique is found to be insensitive to pulse and probe laser characteristics, molecular absorption cross sections, and absolute precursor density.

  6. Electronic and rovibrational quantum chemical analysis of C3P-: the next interstellar anion?

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Lukemire, Joseph A.

    2015-11-01

    C3P- is analogous to the known interstellar anion C3N- with phosphorus replacing nitrogen in a simple step down the periodic table. In this work, it is shown that C3P- is likely to possess a dipole-bound excited state. It has been hypothesized and observationally supported that dipole-bound excited states are an avenue through which anions could be formed in the interstellar medium. Additionally, C3P- has a valence excited state that may lead to further stabilization of this molecule, and C3P- has a larger dipole moment than neutral C3P (˜6 D versus ˜4 D). As such, C3P- is probably a more detectable astromolecule than even its corresponding neutral radical. Highly accurate quantum chemical quartic force fields are also applied to C3P- and its singly 13C substituted isotopologues in order to provide structures, vibrational frequencies, and spectroscopic constants that may aid in its detection.

  7. Conformations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane: are ab initio quantum chemistry predictions accurate?

    NASA Astrophysics Data System (ADS)

    Smith, Grant D.; Jaffe, Richard L.; Yoon, Do. Y.

    1998-06-01

    High-level ab initio quantum chemistry calculations are shown to predict conformer populations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane that are consistent with gas-phase NMR vicinal coupling constant measurements. The conformational energies of the cyclic ether 5-methoxy-1,3-dioxane are found to be consistent with those predicted by a rotational isomeric state (RIS) model based upon the acyclic analog 1,2-dimethoxypropane. The quantum chemistry and RIS calculations indicate the presence of strong attractive 1,5 C(H 3)⋯O electrostatic interactions in these molecules, similar to those found in 1,2-dimethoxyethane.

  8. Quantum Hall effect on centimeter scale chemical vapor deposited graphene films

    NASA Astrophysics Data System (ADS)

    Shen, Tian; Wu, Wei; Yu, Qingkai; Richter, Curt A.; Elmquist, Randolph; Newell, David; Chen, Yong P.

    2011-12-01

    We report observations of well developed half integer quantum Hall effect on mono layer graphene films of 7 mm × 7 mm in size. The graphene films are grown by chemical vapor deposition on copper, then transferred to SiO2/Si substrates, with typical carrier mobilities ≈4000 cm2/Vs. The large size graphene with excellent quality and electronic homogeneity demonstrated in this work is promising for graphene-based quantum Hall resistance standards and can also facilitate a wide range of experiments on quantum Hall physics of graphene and practical applications exploiting the exceptional properties of graphene.

  9. Quantum Hall effect on centimeter scale chemical vapor deposited graphene films

    NASA Astrophysics Data System (ADS)

    Shen, Tian; Wu, Wei; Yu, Qingkai; Richter, Curt; Elmquist, Randolph; Newell, David; Chen, Yong

    2012-02-01

    We report observations of well developed half integer quantum Hall effect on mono layer graphene films of 7 mm by 7 mm in size. The graphene films are grown by chemical vapor deposition on copper, then transferred to SiO2/Si substrates, with typical carrier mobilities 4000 cm^2/Vs. The large size graphene with excellent quality and electronic homogeneity demonstrated in this work is promising for graphene-based quantum Hall resistance standards, and can also facilitate a wide range of experiments on quantum Hall physics of graphene and practical applications exploiting the exceptional properties of graphene.

  10. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods

    NASA Astrophysics Data System (ADS)

    Kapil, V.; VandeVondele, J.; Ceriotti, M.

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

  11. Towards Quantum Simulation of Chemical Dynamics with Prethreshold Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Cook, A. W.; Stancil, P. C.; Geller, M.; You, Hao; Sornborger, A. T.

    While large-scale, fault-tolerant quantum computing devices are still on the horizon, considerable activity has focused on quantum simulation (qs). While advances have been made in realizing both digital and analog qs, the former is still restricted by the need for fault-tolerant computational qubits. As an alternative, we are exploring the single excitation subspace (ses) approach which has the advantage of using today's prethreshold devices and can function as a schroedinger equation solver. One application of the ses method is the study of molecular collision problems. we are both developing efficient, optimized scattering approaches on classical computers and porting the method to an ses processor focusing on superconducting architectures. Issues related to propagator efficiency, multichannel potential averaging, and ehrenfest symmetrization have been explored. Results from classical calculations and simulations of qs for ion-atom collisions will be presented.

  12. Wet chemical synthesis of quantum dots for medical applications

    NASA Astrophysics Data System (ADS)

    Cepeda-Pérez, E. I.; López-Luke, T.; Pérez-Mayen, L.; Hidalgo, Alberto; de la Rosa, E.; Torres-Castro, Alejandro; Ceja-Fdez, Andrea; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana L.

    2015-07-01

    In recent years the use of nanoparticles in medical applications has boomed. This is because the various applications that provide these materials like drug delivery, cancer cell diagnostics and therapeutics [1-5]. Biomedical applications of Quantum Dots (QDs) are focused on molecular imaging and biological sensing due to its optical properties. The size of QDs can be continuously tuned from 2 to 10 nm in diameter, which, after polymer encapsulation, generally increases to 5 - 20 nm diminishing the toxicity. The QDs prepared in our lab have a diameter between 2 to 7 nm. Particles smaller than 5 nm can interact with the cells [2]. Some of the characteristics that distinguish QDs from the commonly used fluorophores are wider range of emission, narrow and more sharply defined emission peak, brighter emission and a higher signal to noise ratio compared with organic dyes [6]. In this paper we will show our progress in the study of the interaction of quantum dots in live cells for image and Raman spectroscopy applications. We will also show the results of the interaction of quantum dots with genomic DNA for diagnostic purposes.

  13. Simulation of chemical reactions in solution by a combination of classical and quantum mechanical approach

    NASA Astrophysics Data System (ADS)

    Onida, Giovanni; Andreoni, Wanda

    1995-09-01

    A classical trajectory mapping method was developed to study chemical reactions in solution and in enzymes. In this method, the trajectories were calculated on a classical potential surface and the free energy profile was obtained by mapping the classical surface to the quantum mechanical surface obtained by the semiempirical AM1 method. There is no need to perform expensive quantum mechanical calculations at each iteration step. This method was applied to proton transfer reactions both in aqueous solution and in papain. The results are encouraging, indicating the applicability of this hybrid method to chemical reactions both in solution and in enzymes.

  14. Stability of phenol and thiophenol radical cations - interpretation by comparative quantum chemical approaches

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Naumov, S.; Mahalaxmi, G. R.; Brede, O.

    2000-07-01

    The deprotonation kinetics of phenol-type radical cations, formed via a very efficient electron transfer in the pulse radiolysis of non-polar solutions, for example n-chlorobutane, is governed mainly by electronic effects due to the nature of the phenol substituents, whereas steric effects are of minor importance; thiophenols, which are sulphur analogues of phenols, exhibit a similar behavior. Comparative quantum chemical calculations show that the calculated spin densities at the hetero atoms correlate well with the experimentally determined radical cation lifetimes. Not only the Density Functional Theory (DTF) B3LYP but also the semiempirical quantum chemical model PM3 can be applied for the open shell systems mentioned.

  15. Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. IV. Discrete variable representation (DVR) basis functions and the analysis of accurate results for F+H2

    NASA Astrophysics Data System (ADS)

    Bačić, Z.; Kress, J. D.; Parker, G. A.; Pack, R. T.

    1990-02-01

    Accurate 3D coupled channel calculations for total angular momentum J=0 for the reaction F+H2→HF+H using a realistic potential energy surface are analyzed. The reactive scattering is formulated using the hyperspherical (APH) coordinates of Pack and Parker. The adiabatic basis functions are generated quite efficiently using the discrete variable representation method. Reaction probabilities for relative collision energies of up to 17.4 kcal/mol are presented. To aid in the interpretation of the resonances and quantum structure observed in the calculated reaction probabilities, we analyze the phases of the S matrix transition elements, Argand diagrams, time delays and eigenlifetimes of the collision lifetime matrix. Collinear (1D) and reduced dimensional 3D bending corrected rotating linear model (BCRLM) calculations are presented and compared with the accurate 3D calculations.

  16. Mode specificity for the dissociative chemisorption of H2O on Cu(111): a quantum dynamics study on an accurately fitted potential energy surface.

    PubMed

    Liu, Tianhui; Zhang, Zhaojun; Fu, Bina; Yang, Xueming; Zhang, Dong H

    2016-03-16

    The mode-specific dynamics for the dissociative chemisorption of H2O on Cu(111) is first investigated by seven-dimensional quantum dynamics calculations, based on an accurately fitted potential energy surface (PES) recently developed by neural network fitting to DFT energy points. It is indicated that excitations in all three vibrational modes have a significant impact on reactivity, which are more efficacious than increasing the translational energy in promoting the reaction, with the largest enhancement for the excitation in the asymmetric stretching mode. There is large discrepancy between the six-dimensional reactivities with fixed azimuthal angles and seven-dimensional results, revealing that the 6D "flat surface" model cannot accurately characterize the reaction dynamics. The azimuthal angle-averaging approach is validated for vibrational excited states of the reactant, where the 7D mode-specific probability can be well reproduced by averaging the 6D azimuthal angle-fixed probabilities over 18 angles. PMID:26941197

  17. TOXICOGENOMIC STUDY OF TRIAZOLE FUNGICIDES AND PERFLUOROALKYL ACIDS IN RAT LIVERS ACCURATELY CATEGORIZES CHEMICALS AND IDENTIFIES MECHANISMS OF TOXICITY

    EPA Science Inventory

    Toxicogenomic analysis of five environmental chemicals was performed to investigate the ability of genomics to predict toxicity, categorize chemicals, and elucidate mechanisms of toxicity. Three triazole antifungals (myclobutanil, propiconazole, and triadimefon) and two perfluori...

  18. Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: the influenza a M2 transmembrane peptide as an example.

    PubMed

    Hong, Mei; Mishanina, Tatiana V; Cady, Sarah D

    2009-06-10

    The use of side chain methyl (13)C chemical shifts for the determination of the rotameric conformation of Val and Leu residues in proteins by solid-state NMR spectroscopy is described. Examination of the solution NMR stereospecifically assigned methyl groups shows significant correlation between the difference in the two methyl carbons' chemical shifts and the side chain conformation. It is found that alpha-helical and beta-sheet backbones cause different side chain methyl chemical shift trends. In alpha-helical Leu's, a relatively large absolute methyl (13)C shift difference of 2.89 ppm is found for the most populated mt rotamer (chi(1) = -60 degrees, chi(2) = 180 degrees), while a much smaller value of 0.73 ppm is found for the next populated tp rotamer (chi(1) = 180 degrees, chi(2) = 60 degrees). For alpha-helical Val residues, the dominant t rotamer (chi(1) = 180 degrees) has more downfield Cgamma2 chemical shifts than Cgamma1 by 1.71 ppm, while the next populated m rotamer (chi(1) = -60 degrees) shows the opposite trend of more downfield Cgamma1 chemical shift by 1.23 ppm. These significantly different methyl (13)C chemical shifts exist despite the likelihood of partial rotameric averaging at ambient temperature. We show that these conformation-dependent methyl (13)C chemical shifts can be utilized for side chain structure determination once the methyl (13)C resonances are accurately measured by double-quantum (DQ) filtered 2D correlation experiments, most notably the dipolar DQ to single-quantum (SQ) correlation technique. The advantage of the DQ-SQ correlation experiment over simple 2D SQ-SQ correlation experiments is demonstrated on the transmembrane peptide of the influenza A M2 proton channel. The methyl chemical shifts led to predictions of the side chain rotameric states for several Val and Leu residues in this tetrameric helical bundle. The predicted Val rotamers were further verified by dipolar correlation experiments that directly measure the chi(1

  19. Studies on the Conformational Landscape of Tert-Butyl Acetate Using Microwave Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Zhao, YueYue; Mouhib, Halima; Li, Guohua; Stahl, Wolfgang; Kleiner, Isabelle

    2014-06-01

    The tert-Butyl acetate molecule was studied using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy in the 9 to 14 GHz range. Due to its rather rigid frame, the molecule possesses only two different conformers: one of Cs and one of C1 symmetry. According to ab initio calculations, the Cs conformer is 46 kJ/mol lower in energy and is the one observed in the supersonic jet. We report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, with accurate rotational and centrifugal distortion constants. Additionally, the barrier to internal rotation of the acetyl methyl group was determined. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we determine the barrier height to be about 113 cm-1 and compare the molecular parameters obtained from these two codes. Additionally, the experimental rotational constants were used to validate numerous quantum chemical calculations. This study is part of a larger project which aims at determining the lowest energy conformers of organic esters and ketones which are of interest for flavor or perfume synthetic applications Project partly supported by the PHC PROCOPE 25059YB.

  20. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    NASA Astrophysics Data System (ADS)

    Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus

    2015-12-01

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  1. Quantum chemical methods for the investigation of photoinitiated processes in biological systems: theory and applications.

    PubMed

    Dreuw, Andreas

    2006-11-13

    With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented. PMID:17009357

  2. Physico-chemical mechanism for the vapors sensitivity of photoluminescent InP quantum dots

    NASA Astrophysics Data System (ADS)

    Prosposito, P.; De Angelis, R.; De Matteis, F.; Hatami, F.; Masselink, W. T.; Zhang, H.; Casalboni, M.

    2016-03-01

    InP/InGaP surface quantum dots are interesting materials for optical chemical sensors since they present an intense emission at room temperature, whose intensity changes rapidly and reversibly depending on the composition of the environmental atmosphere. We present here their emission properties by time resolved photoluminescence spectroscopy investigation and we discuss the physico-chemical mechanism behind their sensitivity to the surrounding atmosphere. Photoluminescence transients in inert atmosphere (N2) and in solvent vapours of methanol, clorophorm, acetone and water were measured. The presence of vapors of clorophorm, acetone and water showed a very weak effect on the transient times, while an increase of up to 15% of the decay time was observed for methanol vapour exposure. On the basis of the vapor molecule nature (polarity, proticity, steric hindrance, etc.) and of the interaction of the vapor molecules with the quantum dots surface a sensing mechanism involving quantum dots non-radiative surface states is proposed.

  3. An efficient matrix product operator representation of the quantum chemical Hamiltonian.

    PubMed

    Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries - abelian and non-abelian - and different relativistic and non-relativistic models may be solved by an otherwise unmodified program. PMID:26723662

  4. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    SciTech Connect

    Keller, Sebastian Reiher, Markus; Dolfi, Michele Troyer, Matthias

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  5. Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation.

    PubMed

    Sawaya, Nicolas P D; Smelyanskiy, Mikhail; McClean, Jarrod R; Aspuru-Guzik, Alán

    2016-07-12

    Calculating molecular energies is likely to be one of the first useful applications to achieve quantum supremacy, performing faster on a quantum than a classical computer. However, if future quantum devices are to produce accurate calculations, errors due to environmental noise and algorithmic approximations need to be characterized and reduced. In this study, we use the high performance qHiPSTER software to investigate the effects of environmental noise on the preparation of quantum chemistry states. We simulated 18 16-qubit quantum circuits under environmental noise, each corresponding to a unitary coupled cluster state preparation of a different molecule or molecular configuration. Additionally, we analyze the nature of simple gate errors in noise-free circuits of up to 40 qubits. We find that, in most cases, the Jordan-Wigner (JW) encoding produces smaller errors under a noisy environment as compared to the Bravyi-Kitaev (BK) encoding. For the JW encoding, pure dephasing noise is shown to produce substantially smaller errors than pure relaxation noise of the same magnitude. We report error trends in both molecular energy and electron particle number within a unitary coupled cluster state preparation scheme, against changes in nuclear charge, bond length, number of electrons, noise types, and noise magnitude. These trends may prove to be useful in making algorithmic and hardware-related choices for quantum simulation of molecular energies. PMID:27254482

  6. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  7. Toward Accurate Reaction Energetics for Molecular Line Growth at Surface: Quantum Monte Carlo and Density Functional Theory Calculations

    SciTech Connect

    Kanai, Y; Takeuchi, N

    2009-10-14

    We revisit the molecular line growth mechanism of styrene on the hydrogenated Si(001) 2x1 surface. In particular, we investigate the energetics of the radical chain reaction mechanism by means of diffusion quantum Monte Carlo (QMC) and density functional theory (DFT) calculations. For the exchange correlation (XC) functional we use the non-empirical generalized-gradient approximation (GGA) and meta-GGA. We find that the QMC result also predicts the intra dimer-row growth of the molecular line over the inter dimer-row growth, supporting the conclusion based on DFT results. However, the absolute magnitudes of the adsorption and reaction energies, and the heights of the energy barriers differ considerably between the QMC and DFT with the GGA/meta-GGA XC functionals.

  8. Quantum Chemical Simulation of Carbon Nanotube Nucleation on Al2O3 Catalysts via CH4 Chemical Vapor Deposition.

    PubMed

    Page, Alister J; Saha, Supriya; Li, Hai-Bei; Irle, Stephan; Morokuma, Keiji

    2015-07-29

    We present quantum chemical simulations demonstrating how single-walled carbon nanotubes (SWCNTs) form, or "nucleate", on the surface of Al2O3 nanoparticles during chemical vapor deposition (CVD) using CH4. SWCNT nucleation proceeds via the formation of extended polyyne chains that only interact with the catalyst surface at one or both ends. Consequently, SWCNT nucleation is not a surface-mediated process. We demonstrate that this unusual nucleation sequence is due to two factors. First, the π interaction between graphitic carbon and Al2O3 is extremely weak, such that graphitic carbon is expected to desorb at typical CVD temperatures. Second, hydrogen present at the catalyst surface actively passivates dangling carbon bonds, preventing a surface-mediated nucleation mechanism. The simulations reveal hydrogen's reactive chemical pathways during SWCNT nucleation and that the manner in which SWCNTs form on Al2O3 is fundamentally different from that observed using "traditional" transition metal catalysts. PMID:26148208

  9. Quantum Chemical Studies of Methane Monooxygenase: Comparison with P450

    SciTech Connect

    Guallar, Victor; Gherman, Benjamin F.; Lippard, Stephen J.; Friesner, Richard A.

    2002-04-01

    The catalytic pathways of soluble methane monooxygenase (sMMO) and cytochrome P450CAM, iron-containing enzymes, are described and compared. Recent extensive density functional ab initio electronic structure calculations have revealed many similarities in a number of the key catalytic steps, as well as some important differences. A particularly interesting and significant contrast is the role played by the protein in each system. For sMMO, the protein stabilizes various species in the catalytic cycle through a series of carboxylate shifts. This process is adequately described by a relatively compact model of the active site (similar to100 atoms), providing a reasonable description of the energetics of hydrogen atom abstraction. For P450CAM, in contrast, the inclusion of the full protein is necessary for an accurate description of the hydrogen atom abstraction.

  10. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    PubMed

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care. PMID:27136117

  11. Accurate Ab Initio Quantum Mechanics Simulations of Bi2Se3 and Bi2Te3 Topological Insulator Surfaces.

    PubMed

    Crowley, Jason M; Tahir-Kheli, Jamil; Goddard, William A

    2015-10-01

    It has been established experimentally that Bi2Te3 and Bi2Se3 are topological insulators, with zero band gap surface states exhibiting linear dispersion at the Fermi energy. Standard density functional theory (DFT) methods such as PBE lead to large errors in the band gaps for such strongly correlated systems, while more accurate GW methods are too expensive computationally to apply to the thin films studied experimentally. We show here that the hybrid B3PW91 density functional yields GW-quality results for these systems at a computational cost comparable to PBE. The efficiency of our approach stems from the use of Gaussian basis functions instead of plane waves or augmented plane waves. This remarkable success without empirical corrections of any kind opens the door to computational studies of real chemistry involving the topological surface state, and our approach is expected to be applicable to other semiconductors with strong spin-orbit coupling. PMID:26722872

  12. An accurate homogenized tissue phantom for broad spectrum autofluorescence studies: a tool for optimizing quantum dot-based contrast agents

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu; Wilson, Brian C.

    2008-02-01

    We are investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). The present studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. These contrast optimization studies require optical phantoms that simulate tissue autofluorescence, absorption and scattering over the entire visible spectrum, while allowing us to control the optical thickness. We present an optical phantom made of fresh homogenized tissue diluted in water. The homogenized tissue is poured into a clear polymer tank designed to hold a QD-loaded silica capillary in its center. Because of the non-linear effects of absorption and scattering on measured autofluorescence, direct comparison between results obtained using tissue phantoms of different concentration is not possible. We introduce mathematical models that make it possible to perform measurements on diluted tissue homogenates and subsequently extrapolate the results to intact (non-diluted) tissue. Finally, we present preliminary QD contrast data showing that the 380-420 nm spectral window is optimal for surface QD imaging.

  13. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.

    PubMed

    Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger

    2016-07-26

    Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to restore nanocrystal stoichiometry can trigger the formation of epitaxial superlattices of PbSe and PbS quantum dots. More specifically, we show that both chalcogen-adding (sodium sulfide) and lead oleate displacing (amines) additives induce small area epitaxial superlattices of PbSe quantum dots. In the latter case, the amine basicity is a sensitive handle to tune the superlattice symmetry, with strong and weak bases yielding pseudohexagonal or quasi-square lattices, respectively. Through density functional theory calculations and in situ titrations monitored by nuclear magnetic resonance spectroscopy, we link this observation to the concomitantly different coordination enthalpy and ligand displacement potency of the amine. Next to that, an initial ∼10% reduction of the initial ligand density prior to monolayer formation and addition of a mild, lead oleate displacing chemical trigger such as aniline proved key to induce square superlattices with long-range, square micrometer order; an effect that is the more pronounced the larger the quantum dots. Because the approach applies to PbS quantum dots as well, we conclude that it offers a reproducible and rational method for the formation of highly ordered epitaxial quantum dot superlattices. PMID:27383262

  14. Quantum chemical and spectroscopic investigations of 5-aminoquinoline.

    PubMed

    Arjunan, V; Mohan, S; Balamourougane, P S; Ravindran, P

    2009-12-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 5-aminoquinoline (5AQ) have been recorded in the range 4000-400 and 3500-100 cm(-1), respectively. The complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out using the observed FTIR and FT-Raman data. (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by using the gauge independent atomic orbital (GIAO) method. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The geometric parameters, chemical shifts and absorption wavelengths were compared with the experimental data of the molecule. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from ab initio HF and DFT-B3LYP gradient calculations employing the 6-31G** and 6-311++G** basis sets for optimized geometries of the compound. The interactions of NH-pi and the influence of amino group on the skeletal modes are investigated. PMID:19854675

  15. Quantum chemical and spectroscopic investigations of 5-aminoquinoline

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Mohan, S.; Balamourougane, P. S.; Ravindran, P.

    2009-12-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 5-aminoquinoline (5AQ) have been recorded in the range 4000-400 and 3500-100 cm -1, respectively. The complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out using the observed FTIR and FT-Raman data. 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by using the gauge independent atomic orbital (GIAO) method. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The geometric parameters, chemical shifts and absorption wavelengths were compared with the experimental data of the molecule. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from ab initio HF and DFT-B3LYP gradient calculations employing the 6-31G** and 6-311++G** basis sets for optimized geometries of the compound. The interactions of NH-π and the influence of amino group on the skeletal modes are investigated.

  16. Development of Accurate Chemical Equilibrium Models for the Hanford Waste Tanks: New Thermodynamic Measurements and Model Applications

    SciTech Connect

    Felmy, Andrew R.; Mason, Marvin; Qafoku, Odeta; Xia, Yuanxian; Wang, Zheming; MacLean, Graham

    2003-03-27

    Developing accurate thermodynamic models for predicting the chemistry of the high-level waste tanks at Hanford is an extremely daunting challenge in electrolyte and radionuclide chemistry. These challenges stem from the extremely high ionic strength of the tank waste supernatants, presence of chelating agents in selected tanks, wide temperature range in processing conditions and the presence of important actinide species in multiple oxidation states. This presentation summarizes progress made to date in developing accurate models for these tank waste solutions, how these data are being used at Hanford and the important challenges that remain. New thermodynamic measurements on Sr and actinide complexation with specific chelating agents (EDTA, HEDTA and gluconate) will also be presented.

  17. Combined spectroscopic and quantum chemical studies of ezetimibe

    NASA Astrophysics Data System (ADS)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti

    2016-12-01

    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.

  18. The nature and role of quantized transition states in the accurate quantum dynamics of the reaction O + H2 yields OH + H

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Friedman, Ronald S.; Lynch, Gillian C.; Truhlar, Donald G.; Schwenke, David W.

    1993-01-01

    Accurate quantum mechanical dynamics calculations are reported for the reaction probabilities of O(3P) + H2 yields OH + H with zero total angular momentum on a single potential energy surface. The results show that the reactive flux is gated by quantized transition states up to the highest energy studied, which corresponds to a total energy of 1.90 eV. The quantized transition states are assigned and compared to vibrationally adiabatic barrier maxima; their widths and transmission coefficients are determined; and they are classified as variational, supernumerary of the first kind, and supernumerary of the second kind. Their effects on state-selected and state-to-state reactivity are discussed in detail.

  19. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods.

    PubMed

    Kapil, V; VandeVondele, J; Ceriotti, M

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats. PMID:26851912

  20. Quantum-Chemical Calculation of Carbododecahedron Formation in Carbon Plasma.

    PubMed

    Poklonski, Nikolai A; Ratkevich, Sergey V; Vyrko, Sergey A

    2015-08-27

    The ground state of the molecule consisting of 10 carbon atoms in C10(rg) "ring" conformation and the energy of its metastable C10(st) "star" conformation are reported. The reaction coordinate for the isomeric transition C10(st) → C10(rg) was calculated using density functional theory (DFT) with UB3LYP/6-31G(d,p). It was established that a 5-fold symmetry axis is conserved in this isomeric transition. The total energy of the ring isomer is by 10.33 eV (9.16 eV as zero-point energy corrected) lower than that of the star isomer. The energy barrier for the transition from the metastable star state to the ring state is 2.87 eV (3.57 eV as zero-point energy corrected). An analysis of possible chemical reactions in carbon plasma involving C10(st) and C10(rg) and leading to the formation of C20 fullerenes was performed. It was revealed that the presence of the C10(st) conformation in the reaction medium is a necessary condition for C20 fullerene formation. It was shown that the presence of hydrogen atoms in carbon plasma and UV radiation accelerate the C10(st) → C10(rg) transition and thus suppress the C20 fullerene formation. PMID:26267290

  1. Transmission coefficients for chemical reactions with multiple states: role of quantum decoherence.

    PubMed

    de la Lande, Aurélien; Řezáč, Jan; Lévy, Bernard; Sanders, Barry C; Salahub, Dennis R

    2011-03-23

    Transition-state theory (TST) is a widely accepted paradigm for rationalizing the kinetics of chemical reactions involving one potential energy surface (PES). Multiple PES reaction rate constants can also be estimated within semiclassical approaches provided the hopping probability between the quantum states is taken into account when determining the transmission coefficient. In the Marcus theory of electron transfer, this hopping probability was historically calculated with models such as Landau-Zener theory. Although the hopping probability is intimately related to the question of the transition from the fully quantum to the semiclassical description, this issue is not adequately handled in physicochemical models commonly in use. In particular, quantum nuclear effects such as decoherence or dephasing are not present in the rate constant expressions. Retaining the convenient semiclassical picture, we include these effects through the introduction of a phenomenological quantum decoherence function. A simple modification to the usual TST rate constant expression is proposed: in addition to the electronic coupling, a characteristic decoherence time τ(dec) now also appears as a key parameter of the rate constant. This new parameter captures the idea that molecular systems, although intrinsically obeying quantum mechanical laws, behave semiclassically after a finite but nonzero amount of time (τ(dec)). This new degree of freedom allows a fresh look at the underlying physics of chemical reactions involving more than one quantum state. The ability of the proposed formula to describe the main physical lines of the phenomenon is confirmed by comparison with results obtained from density functional theory molecular dynamics simulations for a triplet to singlet transition within a copper dioxygen adduct relevant to the question of dioxygen activation by copper monooxygenases. PMID:21344903

  2. Polychloride monoanions from [Cl3]- to [Cl9]- : a Raman spectroscopic and quantum chemical investigation.

    PubMed

    Brückner, Robin; Haller, Heike; Ellwanger, Mathias; Riedel, Sebastian

    2012-04-27

    Polychloride monoanions stabilized by quaternary ammonium salts are investigated using Raman spectroscopy and state-of-the-art quantum-chemical calculations. A regular V-shaped pentachloride is characterized for the [N(Me)(4)][Cl(5)] salt, whereas a hockey-stick-like structure is tentatively assigned for [N(Et)(4)][Cl(2)⋅⋅⋅Cl(3)(-)]. Increasing the size of the cation to the quaternary ammonium salts [NPr(4)](+) and [NBu(4)](+) leads to the formation of the [Cl(3)](-) anion. The latter is found to be a pale yellow liquid at about 40 °C, whereas all the other compounds exist as powders. Further to these observations, the novel [Cl(9)](-) anion is characterized by low-temperature Raman spectroscopy in conjunction with quantum-chemical calculations. PMID:22461376

  3. Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies.

    PubMed

    Chiba, Shuntaro; Furuta, Tadaomi; Shimizu, Seishi

    2016-08-11

    Cosolvents, such as urea, affect protein folding and binding, and the solubility of solutes. The modeling of cosolvents has been facilitated significantly by the rigorous Kirkwood-Buff (KB) theory of solutions, which can describe structural thermodynamics over the entire composition range of aqueous cosolvent mixtures based only on the solution density and the KB integrals (KBIs), i.e., the net excess radial distribution functions from the bulk. Using KBIs to describe solution thermodynamics has given rise to a clear guideline that an accurate prediction of KBIs is equivalent to accurate modeling of cosolvents. Taking urea as an example, here we demonstrate that an improvement in the prediction of KBIs comes from an improved reproduction of high-level quantum chemical (QC) electrostatic potential and molecular pairwise interaction energies. This rational approach to the improvement of the KBI prediction stems from a comparison of existing force fields, AMOEBA, and the generalized AMBER force field, as well as the further optimization of the former to enable better agreement with QC interaction energies. Such improvements would pave the way toward a rational and systematic determination of the transferable force field parameters for a number of important small molecule cosolvents. PMID:27434200

  4. Beyond the Halogen Bond: Examining the Limits of Extended Polybromide Networks through Quantum-Chemical Investigations.

    PubMed

    Easton, Max E; Chan, Bun; Masters, Anthony F; Radom, Leo; Maschmeyer, Thomas

    2016-03-01

    The bonding environments of some polybromide monoanions and networks were examined by quantum-chemical methods to investigate electronic interactions between dibromine-dibromine contacts. Examination of thermodynamic parameters and a bond critical point analysis give strong evidence for such bonding modes, which have been previously treated disparately in the literature. The thermodynamic stability of large polybromides up to [Br37 ](-) was also predicted by these methods. PMID:26833846

  5. Elucidating the interaction of H2O2 with polar amino acids - Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karmakar, Tarak; Balasubramanian, Sundaram

    2014-10-01

    Quantum chemical calculations have been carried out to investigate the interaction motifs of H2O2 with polar amino acid residues. Binding energies obtained from gas phase and continuum solvent phase calculations range between 2 and 30 kcal/mol. H2O2 interacts with the side chain of polar amino acids chiefly through the formation of hydrogen bonds. The sbnd CH group in side chains of a few residues provides additional stabilization to H2O2.

  6. Monocrystalline molybdenum silicide based quantum dot superlattices grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Savelli, Guillaume; Silveira Stein, Sergio; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent

    2016-09-01

    This paper presents the growth of doped monocrystalline molybdenum-silicide-based quantum dot superlattices (QDSL). This is the first time that such nanostructured materials integrating molybdenum silicide nanodots have been grown. QDSL are grown by reduced pressure chemical vapor deposition (RPCVD). We present here their crystallographic structures and chemical properties, as well as the influence of the nanostructuration on their thermal and electrical properties. Particularly, it will be shown some specific characteristics for these QDSL, such as a localization of nanodots between the layers, unlike other silicide based QDSL, an accumulation of doping atoms near the nanodots, and a strong decrease of the thermal conductivity obtained thanks to the nanostructuration.

  7. Sub-nanometrically resolved chemical mappings of quantum-cascade laser active regions

    NASA Astrophysics Data System (ADS)

    Pantzas, Konstantinos; Beaudoin, Grégoire; Patriarche, Gilles; Largeau, Ludovic; Mauguin, Olivia; Pegolotti, Giulia; Vasanelli, Angela; Calvar, Ariane; Amanti, Maria; Sirtori, Carlo; Sagnes, Isabelle

    2016-05-01

    A procedure that produces sub-nanometrically resolved chemical mappings of MOCVD-grown InGaAs/InAlAs/InP quantum cascade lasers is presented. The chemical mappings reveal that, although the structure is lattice-matched to InP, the InAlAs barriers do not attain the nominal aluminum content—48%—and are, in fact, InGaAlAs quaternaries. This information is used to adjust the aluminum precursor flow and fine-tune the composition of the barriers, resulting in a significant improvement of the fabricated lasers.

  8. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  9. Quantum chemical 13Cα chemical shift calculations for protein NMR structure determination, refinement, and validation

    PubMed Central

    Vila, Jorge A.; Aramini, James M.; Rossi, Paolo; Kuzin, Alexandre; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Tong, Liang; Montelione, Gaetano T.; Scheraga, Harold A.

    2008-01-01

    A recently determined set of 20 NMR-derived conformations of a 48-residue all-α-helical protein, (PDB ID code 2JVD), is validated here by comparing the observed 13Cα chemical shifts with those computed at the density functional level of theory. In addition, a recently introduced physics-based method, aimed at determining protein structures by using NOE-derived distance constraints together with observed and computed 13Cα chemical shifts, was applied to determine a new set of 10 conformations, (Set-bt), as a blind test for the same protein. A cross-validation of these two sets of conformations in terms of the agreement between computed and observed 13Cα chemical shifts, several stereochemical quality factors, and some NMR quality assessment scores reveals the good quality of both sets of structures. We also carried out an analysis of the agreement between the observed and computed 13Cα chemical shifts for a slightly longer construct of the protein solved by x-ray crystallography at 2.0-Å resolution (PDB ID code 3BHP) with an identical amino acid residue sequence to the 2JVD structure for the first 46 residues. Our results reveal that both of the NMR-derived sets, namely 2JVD and Set-bt, are somewhat better representations of the observed 13Cα chemical shifts in solution than the 3BHP crystal structure. In addition, the 13Cα-based validation analysis appears to be more sensitive to subtle structural differences across the three sets of structures than any other NMR quality-assessment scores used here, and, although it is computationally intensive, this analysis has potential value as a standard procedure to determine, refine, and validate protein structures. PMID:18787110

  10. Quantum Chemical Calculations of Amide-15N Chemical Shift Anisotropy Tensors for a Membrane-Bound Cytochrome b5

    PubMed Central

    Pandey, Manoj Kumar; Ramamoorthy, Ayyalusamy

    2013-01-01

    There is considerable interest in determining amide-15N chemical shift anisotropy (CSA) tensors from biomolecules and understanding their variation for structural and dynamics studies using solution and solid-state NMR spectroscopy and also by quantum chemical calculations. Due to the difficulties associated with the measurement of CSA tensors from membrane proteins, NMR-based structural studies heavily relied on the CSA tensors determined from model systems, typically single crystals of model peptides. In the present study, the principal components of backbone amide-15N CSA tensor have been determined using density functional theory for a 16.7-kDa membrane-bound paramagnetic heme containing protein, cytochrome b5 (cytb5). All the calculations were performed by taking residues within 5Å distance from the backbone amide-15N nucleus of interest. The calculated amide-15N CSA spans agree less well with our solution NMR data determined for an effective internuclear distance rN-H = 1.023 Å and a constant angle β = 18° that the least shielded component (δ11) makes with the N-H bond. The variation of amide-15N CSA span obtained using quantum chemical calculations is found to be smaller than that obtained from solution NMR measurements, whereas the trends of the variations are found to be in close agreement. We believe that the results reported in this study will be useful in studying the structure and dynamics of membrane proteins and heme-containing proteins, and also membrane-bound protein-protein complexes such as cytochromes-b5-P450. PMID:23268659

  11. Chemical modification of Hyflon® AD copolymer end groups by means of physical and chemical treatments. A joint spectroscopic and quantum chemical investigation

    NASA Astrophysics Data System (ADS)

    Radice, Stefano; Canil, Giorgio; Millefanti, Stefano; Tortelli, Vito; Milani, Alberto; Castiglioni, Chiara

    2015-06-01

    In this paper is presented a study on the effects of physical treatments, namely electron beam irradiation or fluorination, on a perfluoropolymer copolymer of tetrafluoroethylene with 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole (Hyflon® AD copolymer). The analysis has been carried out by means of IR spectroscopy and quantum chemical modeling based on density functional theory; this combined experimental/theoretical approach has proven effective for the interpretation of previously unassigned IR bands, which are associated to functional groups generated by polymer degradation and chain scission. We performed a systematic screening of chemical groups and structures compatible with degradation pathways that are possible from the chemical point of view: the chemical mechanisms and the correlation with the spectroscopic experimental data (both frequency and intensity) provide guidelines in understanding the phenomena. Moreover, the spectroscopic experimental/theoretical and chemical approaches allowed us to identify some chemical structures responsible for the unassigned IR bands in the Cdbnd O stretching frequency region above 1800 cm-1, which is typical for carbonyl groups in fluorinated systems.

  12. Toward Accurate Modelling of Enzymatic Reactions: All Electron Quantum Chemical Analysis combined with QM/MM Calculation of Chorismate Mutase

    SciTech Connect

    Ishida, Toyokazu

    2008-09-17

    To further understand the catalytic role of the protein environment in the enzymatic process, the author has analyzed the reaction mechanism of the Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM). By introducing a new computational strategy that combines all-electron QM calculations with ab initio QM/MM modelings, it was possible to simulate the molecular interactions between the substrate and the protein environment. The electrostatic nature of the transition state stabilization was characterized by performing all-electron QM calculations based on the fragment molecular orbital technique for the entire enzyme.

  13. On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; McClean, Jarrod; Wecker, Dave; Aspuru-Guzik, Alán; Wiebe, Nathan

    2015-03-01

    Although the simulation of quantum chemistry is one of the most anticipated applications of quantum computing, the scaling of known upper bounds on the complexity of these algorithms is daunting. Prior work has bounded errors due to Trotterization in terms of the norm of the error operator and analyzed scaling with respect to the number of spin-orbitals. However, we find that these error bounds can be loose by up to sixteen orders of magnitude for some molecules. Furthermore, numerical results for small systems fail to reveal any clear correlation between ground state error and number of spin-orbitals. We instead argue that chemical properties, such as the maximum nuclear charge in a molecule and the filling fraction of orbitals, can be decisive for determining the cost of a quantum simulation. Our analysis motivates several strategies to use classical processing to further reduce the required Trotter step size and to estimate the necessary number of steps, without requiring additional quantum resources. Finally, we demonstrate improved methods for state preparation techniques which are asymptotically superior to proposals in the simulation literature.

  14. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; McClean, Jarrod; Wecker, Dave; Aspuru-Guzik, Alán; Wiebe, Nathan

    2015-02-01

    Although the simulation of quantum chemistry is one of the most anticipated applications of quantum computing, the scaling of known upper bounds on the complexity of these algorithms is daunting. Prior work has bounded errors due to discretization of the time evolution (known as "Trotterization") in terms of the norm of the error operator and analyzed scaling with respect to the number of spin orbitals. However, we find that these error bounds can be loose by up to 16 orders of magnitude for some molecules. Furthermore, numerical results for small systems fail to reveal any clear correlation between ground-state error and number of spin orbitals. We instead argue that chemical properties, such as the maximum nuclear charge in a molecule and the filling fraction of orbitals, can be decisive for determining the cost of a quantum simulation. Our analysis motivates several strategies to use classical processing to further reduce the required Trotter step size and estimate the necessary number of steps, without requiring additional quantum resources. Finally, we demonstrate improved methods for state preparation techniques which are asymptotically superior to proposals in the simulation literature.

  15. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    SciTech Connect

    Zhang, Yiteng; Kais, Sabre; Berman, Gennady Petrovich

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  16. Grid-based methods for biochemical ab initio quantum chemical applications

    SciTech Connect

    Colvin, M.E.; Nelson, J.S.; Mori, E.

    1997-01-01

    A initio quantum chemical methods are seeing increased application in a large variety of real-world problems including biomedical applications ranging from drug design to the understanding of environmental mutagens. The vast majority of these quantum chemical methods are {open_quotes}spectral{close_quotes}, that is they describe the charge distribution around the nuclear framework in terms of a fixed analytic basis set. Despite the additional complexity they bring, methods involving grid representations of the electron or solvent charge can provide more efficient schemes for evaluating spectral operators, inexpensive methods for calculating electron correlation, and methods for treating the electrostatic energy of salvation in polar solvents. The advantage of mixed or {open_quotes}pseudospectral{close_quotes} methods is that they allow individual non-linear operators in the partial differential equations, such as coulomb operators, to be calculated in the most appropriate regime. Moreover, these molecular grids can be used to integrate empirical functionals of the electron density. These so-called density functional methods (DFT) are an extremely promising alternative to conventional post-Hartree Fock quantum chemical methods. The introduction of a grid at the molecular solvent-accessible surface allows a very sophisticated treatment of a polarizable continuum solvent model (PCM). Where most PCM approaches use a truncated expansion of the solute`s electric multipole expansion, e.g. net charge (Born model) or dipole moment (Onsager model), such a grid-based boundary-element method (BEM) yields a nearly exact treatment of the solute`s electric field. This report describes the use of both DFT and BEM methods in several biomedical chemical applications.

  17. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  18. Demonstration of Fast and Accurate Discrimination and Quantification of Chemically Similar Species Utilizing a Single Cross-Selective Chemiresistor

    PubMed Central

    2015-01-01

    Performance characteristics of gas-phase microsensors will determine the ultimate utility of these devices for a wide range of chemical monitoring applications. Commonly employed chemiresistor elements are quite sensitive to selected analytes, and relatively new methods have increased the selectivity to specific compounds, even in the presence of interfering species. Here, we have focused on determining whether purposefully driven temperature modulation can produce faster sensor-response characteristics, which could enable measurements for a broader range of applications involving dynamic compositional analysis. We investigated the response speed of a single chemiresitive In2O3 microhotplate sensor to four analytes (methanol, ethanol, acetone, 2-butanone) by systematically varying the oscillating frequency (semicycle periods of 20–120 ms) of a bilevel temperature cycle applied to the sensing element. It was determined that the fastest response (≈ 9 s), as indicated by a 98% signal-change metric, occurred for a period of 30 ms and that responses under such modulation were dramatically faster than for isothermal operation of the same device (>300 s). Rapid modulation between 150 and 450 °C exerts kinetic control over transient processes, including adsorption, desorption, diffusion, and reaction phenomena, which are important for charge transfer occurring in transduction processes and the observed response times. We also demonstrate that the fastest operation is accompanied by excellent discrimination within a challenging 16-category recognition problem (consisting of the four analytes at four separate concentrations). This critical finding demonstrates that both speed and high discriminatory capabilities can be realized through temperature modulation. PMID:24931319

  19. Quantum-chemical investigations of spectroscopic properties of a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.

    2012-09-01

    The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.

  20. (77)Se chemical shift tensor of L-selenocystine: experimental NMR measurements and quantum chemical investigations of structural effects.

    PubMed

    Struppe, Jochem; Zhang, Yong; Rozovsky, Sharon

    2015-03-01

    The genetically encoded amino acid selenocysteine and its dimeric form, selenocystine, are both utilized by nature. They are found in active sites of selenoproteins, enzymes that facilitate a diverse range of reactions, including the detoxification of reactive oxygen species and regulation of redox pathways. Due to selenocysteine and selenocystine's specialized biological roles, it is of interest to examine their (77)Se NMR properties and how those can in turn be employed to study biological systems. We report the solid-state (77)Se NMR measurements of the L-selenocystine chemical shift tensor, which provides the first experimental chemical shift tensor information on selenocysteine-containing systems. Quantum chemical calculations of L-selenocystine models were performed to help understand various structural effects on (77)Se L-selenocystine's chemical shift tensor. The effects of protonation state, protein environment, and substituent of selenium-bonded carbon on the isotropic chemical shift were found to be in a range of ca. 10-20 ppm. However, the conformational effect was found to be much larger, spanning ca. 600 ppm for the C-Se-Se-C dihedral angle range of -180° to +180°. Our calculations show that around the minimum energy structure with a C-Se-Se-C dihedral angle of ca. -90°, the energy costs to alter the dihedral angle in the range from -120° to -60° are within only 2.5 kcal/mol. This makes it possible to realize these conformations in a protein or crystal environment. (77)Se NMR was found to be a sensitive probe to such changes and has an isotropic chemical shift range of 272 ± 30 ppm for this energetically favorable conformation range. The energy-minimized structures exhibited calculated isotropic shifts that lay within 3-9% of those reported in previous solution NMR studies. The experimental solid-state NMR isotropic chemical shift is near the lower bound of this calculated range for these readily accessible conformations. These results suggest

  1. 77Se Chemical Shift Tensor of L-selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects

    PubMed Central

    Struppe, Jochem; Zhang, Yong; Rozovsky, Sharon

    2015-01-01

    The genetically encoded amino acid selenocysteine and its dimeric form, selenocystine, are both utilized by nature. They are found in active sites of selenoproteins, enzymes that facilitate a diverse range of reactions, including the detoxification of reactive oxygen species and regulation of redox pathways. Due to selenocysteine and selenocystine’s specialized biological roles, it is of interest to examine their 77Se NMR properties and how those can in turn be employed to study biological systems. We report the solid-state 77Se NMR measurements of the L-selenocystine chemical shift tensor, which provides the first experimental chemical shift tensor information of selenocysteine-containing systems. Quantum chemical calculations of L-selenocystine models were performed to help understand various structural effects on 77Se L-selenocystine’s chemical shift tensor. The effects of protonation state, protein environment, and substituent of selenium-bonded carbon on the isotropic chemical shift were found to be in a range of ca. 10–20 ppm. However, the conformational effect was found to be much larger, spanning ca. 600 ppm for the C-Se-Se-C dihedral angle range of −180° to +180°. Our calculations show that around the minimum energy structure with a C-Se-Se-C dihedral angle of ca. −90°, the energy costs to alter the dihedral angle in the range from −120° to −60° are within only 2.5 kcal/mol. This makes it possible to realize these conformations in a protein or crystal environment. 77Se NMR was found to be a sensitive probe to such changes and has an isotropic chemical shift range of 272±30 ppm for this energetically favorable conformation range. The energy-minimized structures exhibited calculated isotropic shifts that lay within 3–9% of those reported in previous solution NMR studies. The experimental solid-state NMR isotropic chemical shift is near the lower bound of this calculated range for these readily accessible conformations. These results

  2. Communication: Ro-vibrational control of chemical reactivity in H+CH{sub 4}→ H{sub 2}+CH{sub 3} : Full-dimensional quantum dynamics calculations and a sudden model

    SciTech Connect

    Welsch, Ralph Manthe, Uwe

    2014-08-07

    The mode-selective chemistry of the title reaction is studied by full-dimensional quantum dynamics simulation on an accurate ab initio potential energy surface for vanishing total angular momentum. Using a rigorous transition state based approach and multi-configurational time-dependent Hartree wave packet propagation, initial state-selected reaction probabilities for many ro-vibrational states of methane are calculated. The theoretical results are compared with experimental trends seen in reactions of methane. An intuitive interpretation of the ro-vibrational control of the chemical reactivity provided by a sudden model based on the quantum transition state concept is discussed.

  3. Biomimetic, Mild Chemical Synthesis of CdTe-GSH Quantum Dots with Improved Biocompatibility

    PubMed Central

    Pérez-Donoso, José M.; Monrás, Juan P.; Bravo, Denisse; Aguirre, Adam; Quest, Andrew F.; Osorio-Román, Igor O.; Aroca, Ricardo F.; Chasteen, Thomas G.; Vásquez, Claudio C.

    2012-01-01

    Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs) or quantum dots (QDs) have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility. In this study, a simple protocol for the chemical synthesis of glutathione (GSH)-capped CdTe QDs (CdTe-GSH) resembling conditions found in biological systems is described. Using only CdCl2, K2TeO3 and GSH, highly fluorescent QDs were obtained under pH, temperature, buffer and oxygen conditions that allow microorganisms growth. These CdTe-GSH NPs displayed similar size, chemical composition, absorbance and fluorescence spectra and quantum yields as QDs synthesized using more complicated and expensive methods. CdTe QDs were not freely incorporated into eukaryotic cells thus favoring their biocompatibility and potential applications in biomedicine. In addition, NPs entry was facilitated by lipofectamine, resulting in intracellular fluorescence and a slight increase in cell death by necrosis. Toxicity of the as prepared CdTe QDs was lower than that observed with QDs produced by other chemical methods, probably as consequence of decreased levels of Cd+2 and higher amounts of GSH. We present here the simplest, fast and economical method for CdTe QDs synthesis described to date. Also, this biomimetic protocol favors NPs biocompatibility and helps to establish the basis for the development of new, “greener” methods to synthesize cadmium-containing QDs. PMID:22292028

  4. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  5. Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gambuzzi, Elisa; Pedone, Alfonso; Menziani, Maria Cristina; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault

    2014-01-01

    Silicon and aluminium chemical environments in silicate and aluminosilicate glasses with compositions 60SiO2·20Na2O·20CaO (CSN), 60SiO2·20Al2O3·20CaO (CAS), 78SiO2·11Al2O3·11Na2O (NAS) and 60SiO2·10Al2O3·10Na2O·20CaO (CASN) have been investigated by 27Al and 29Si solid state magic angle spinning (MAS) and multiple quantum MAS (MQMAS) nuclear magnetic resonance (NMR) experiments. To interpret the NMR data, first-principles calculations using density functional theory were performed on structural models of these glasses. These models were generated by Shell-model molecular dynamics (MD) simulations. The theoretical NMR parameters and spectra were computed using the gauge including projected augmented wave (GIPAW) method and spin-effective Hamiltonians, respectively. This synergetic computational-experimental approach offers a clear structural characterization of these glasses, particularly in terms of network polymerization, chemical disorder (i.e. Si and Al distribution in second coordination sphere) and modifier cation distributions. The relationships between the local structural environments and the 29Si and 27Al NMR parameters are highlighted, and show that: (i) the isotropic chemical shift of both 29Si and 27Al increases of about +5 ppm for each Al added in the second sphere and (ii) both the 27Al and 29Si isotropic chemical shifts linearly decrease with the reduction of the average Si/Al-O-T bond angle. Conversely, 27Al and 29Si NMR parameters are much less sensitive to the connectivity with triple bridging oxygen atoms, precluding their indirect detection from 27Al and 29Si NMR.

  6. Quantum chemical modelling of ``green'' luminescence in ABO perovskites

    NASA Astrophysics Data System (ADS)

    Eglitis, R. I.; Kotomin, E. A.; Borstel, G.

    2002-06-01

    The origin of the intrinsic excitonic (``green'') luminescence in ABO3 perovskites remains a hot topic over the last quarter of a century. We suggest as a theoretical interpretation for the ``green'' luminescence in these crystals, the recombination of electron and hole polarons forming a charge transfer vibronic exciton. In order to check quantitatively the proposed model, we performed quantum chemical calculations using the Intermediate Neglect of Differential Overlap (INDO) method combined with the periodic defect model. The luminescence energies calculated for four perovskite crystals are found to be in good agreement with experimental data.

  7. Formation and thermodynamics of gaseous germanium and tin vanadates: a mass spectrometric and quantum chemical study.

    PubMed

    Shugurov, S M; Panin, A I; Lopatin, S I; Emelyanova, K A

    2015-06-01

    The stabilities of gaseous germanium and tin vanadates were confirmed by high temperature mass spectrometry, and its structures were determined by quantum chemical calculations. A number of gas-phase reactions involving these gaseous salts were studied. On the basis of the equilibrium constants, the standard formation enthalpies of gaseous GeV2O6 (-1520 ± 42 kJ mol(-1)) and SnV2O6 (-1520 ± 43 kJ mol(-1)) were determined at a temperature of 298 K. PMID:25947046

  8. Quantum chemical mechanism in parasitic reaction of AlGaN alloys formation

    NASA Astrophysics Data System (ADS)

    Makino, Osamu; Nakamura, Koichi; Tachibana, Akitomo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    2000-06-01

    The mechanism of parasitic reactions among trimethylaluminum (TMA), trimethylgallium (TMG), and NH 3 in atmospheric pressure (AP) MOVPE for growth of AlGaN is theoretically studied using the quantum chemical method. The calculations show that metal-nitrogen chain growth reaction easily proceeds through the successive reactions of 'complex formation with NH 3' and 'CH 4 elimination by the bimolecular mechanism'. Additionally, a parasitic reaction in APMOVPE using other raw material is also investigated. The calculated result shows that small change of raw material raises activation energy of parasitic reaction, and, thus, the parasitic reaction is suppressed. This result suggests a way to improve APMOVPE by a suitable choice of substituent.

  9. Quantum-chemical study of electronically excited states of protolytic forms of vanillic acid

    NASA Astrophysics Data System (ADS)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Y.

    2015-12-01

    The paper describes an analysis of possible ways of deactivation of electronically excited states of 4-hydroxy- 3-methoxy-benzoic acid (vanillic acid) and its protolytic forms with the use of quantum-chemical methods INDO/S (intermediate neglect of differential overlap with a spectroscopic parameterization) and MEP (molecular electrostatic potential). The ratio of radiative and non-radiative deactivation channels of the electronic excitation energy is established. The rate constants of photophysical processes (internal and intercombination conversions) occurring after the absorption of light in these forms are evaluated.

  10. The molecular structure of barium dibromide: an electron diffraction and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Hargittai, Magdolna; Kolonits, Mária; Schultz, György

    2001-06-01

    The molecular structure of barium dibromide was determined by gas-phase electron diffraction, ab initio quantum chemical calculations, and joint electron diffraction/vibratonal spectroscopic analyses. All techniques yield consistently an unambiguously bent geometry. The following geometrical parameters were obtained: rg(Ba-Br) 2.911±0.006 Å, re(Ba-Br) 2.899±0.007 Å, ∠ aBr-Ba-Br 137.0±2.5° and ∠ eBr-Ba-Br 137.1±4.9°.

  11. Under proper control, oxidation of proteins with known chemical structure provides an accurate and absolute method for the determination of their molar concentration.

    PubMed

    Guermant, C; Azarkan, M; Smolders, N; Baeyens-Volant, D; Nijs, M; Paul, C; Brygier, J; Vincentelli, J; Looze, Y

    2000-01-01

    Oxidation at 120 degrees C of inorganic and organic (including amino acids, di- and tripeptides) model compounds by K(2)Cr(2)O(7) in the presence of H(2)SO(4) (mass fraction: 0.572), Ag(2)SO(4) (catalyst), and HgSO(4) results in the quantitative conversion of their C-atoms into CO(2) within 24 h or less. Under these stressed, well-defined conditions, the S-atoms present in cysteine and cystine residues are oxidized into SO(3) while, interestingly, the oxidation states of all the other (including the N-) atoms normally present in a protein do remain quite unchanged. When the chemical structure of a given protein is available, the total number of electrons the protein is able to transfer to K(2)Cr(2)O(7) and thereof, the total number of moles of Cr(3+) ions which the protein is able to generate upon oxidation can be accurately calculated. In such cases, unknown protein molar concentrations can thus be determined through straightforward spectrophotometric measurements of Cr(3+) concentrations. The values of molar absorption coefficients for several well-characterized proteins have been redetermined on this basis and observed to be in excellent agreement with the most precise values reported in the literature, which fully assesses the validity of the method. When applied to highly purified proteins of known chemical structure (more generally of known atomic composition), this method is absolute and accurate (+/-1%). Furthermore, it is well adapted to series measurements since available commercial kits for chemical oxygen demand (COD) measurements can readily be adapted to work under the experimental conditions recommended here for the protein assay. PMID:10610688

  12. Quantum Chemical Simulations Reveal Acetylene-Based Growth Mechanisms in the Chemical Vapor Deposition Synthesis of Carbon Nanotubes

    SciTech Connect

    Eres, Gyula; Wang, Ying; Gao, Xingfa; Qian, Hu-Jun; Ohta, Yasuhito; Wu, Xiaona; Morokuma, Keiji; Irle, Stephan

    2014-01-01

    Nonequilibrium quantum chemical molecular dynamics (QM/MD) simulation of early stages in the nucleation process of carbon nanotubes from acetylene feedstock on an Fe38 cluster was performed based on the density-functional tight-binding (DFTB) potential. Representative chemical reactions were studied by complimentary static DFTB and density functional theory (DFT) calculations. Oligomerization and cross-linking reactions between carbon chains were found as the main reaction pathways similar to that suggested in previous experimental work. The calculations highlight the inhibiting effect of hydrogen for the condensation of carbon ring networks, and a propensity for hydrogen disproportionation, thus enriching the hydrogen content in already hydrogen-rich species and abstracting hydrogen content in already hydrogen-deficient clusters. The ethynyl radical C2H was found as a reactive, yet continually regenerated species, facilitating hydrogen transfer reactions across the hydrocarbon clusters. The nonequilibrium QM/MD simulations show the prevalence of a pentagon-first nucleation mechanism where hydrogen may take the role of one arm of an sp2 carbon Y-junction. The results challenge the importance of the metal carbide formation for SWCNT cap nucleation in the VLS model and suggest possible alternative routes following hydrogen-abstraction acetylene addition (HACA)-like mechanisms commonly discussed in combustion synthesis.

  13. Quantum chemical study of Co3+ spin states in LaCoO3

    NASA Astrophysics Data System (ADS)

    Siurakshina, L.; Paulus, B.; Yushankhai, V.; Sivachenko, E.

    2010-03-01

    Ab initio quantum-chemical cluster calculations are performed for the perovskite LaCoO3. The main concern is to calculate the energy level ordering of different spin states of Co3+, which is an issue of great controversy for many years. The calculations performed for the trigonal lattice structure at T = 5 K and 300 K, with the structural data taken from experiment, display that the low-spin (LS, S = 0) ground state is separated from the first excited high-spin (HS, S = 2) state by a gap <100 meV, while the intermediate-spin (IS, S = 1) state is located at much higher energy ≈0.5 eV. We suggest that the local lattice relaxation around the Co3+ ion excited to the HS state and the spin-orbit coupling reduce the spin gap to a value 10 meV. Coupling of the IS state to the Jahn-Teller local lattice distortion is found to be rather strong and reduces its energy position to a value of 200 div 300 meV. Details of the quantum-chemical cluster calculation procedure and the obtained results are extensively discussed and compared with those reported earlier by other authors.

  14. Quantum Chemical and Docking Insights into Bioavailability Enhancement of Curcumin by Piperine in Pepper.

    PubMed

    Patil, Vaishali M; Das, Sukanya; Balasubramanian, Krishnan

    2016-05-26

    We combine quantum chemical and molecular docking techniques to provide new insights into how piperine molecule in various forms of pepper enhances bioavailability of a number of drugs including curcumin in turmeric for which it increases its bioavailability by a 20-fold. We have carried out docking studies of quantum chemically optimized piperine structure binding to curcumin, CYP3A4 in cytochrome P450, p-Glycoprotein and UDP-glucuronosyltransferase (UGT), the enzyme responsible for glucuronosylation, which increases the solubility of curcumin. All of these studies establish that piperine binds to multiple sites on the enzymes and also intercalates with curcumin forming a hydrogen bonded complex with curcumin. The conjugated network of double bonds and the presence of multiple charge centers of piperine offer optimal binding sites for piperine to bind to enzymes such as UDP-GDH, UGT, and CYP3A4. Piperine competes for curcumin's intermolecular hydrogen bonding and its stacking propensity by hydrogen bonding with enolic proton of curcumin. This facilitates its metabolic transport, thereby increasing its bioavailability both through intercalation into curcumin layers through intermolecular hydrogen bonding, and by inhibiting enzymes that cause glucuronosylation of curcumin. PMID:27111639

  15. Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs

    NASA Astrophysics Data System (ADS)

    Chia, A.; Tan, K. C.; Pawela, Ł.; Kurzyński, P.; Paterek, T.; Kaszlikowski, D.

    2016-03-01

    Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013), 10.1063/1.4844355], in contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010), 10.1016/j.cplett.2010.01.063]. The standard radical-pair reaction has conventionally been described by either a normalized density operator incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states. Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.

  16. Effect of chemical fixatives on accurate preservation of Escherichia coli and Bacillus subtilis structure in cells prepared by freeze-substitution

    SciTech Connect

    Graham, L.L.; Beveridge, T.J. )

    1990-04-01

    Five chemical fixatives were evaluated for their ability to accurately preserve bacterial ultrastructure during freeze-substitution of select Escherichia coli and Bacillus subtilis strains. Radioisotopes were specifically incorporated into the peptidoglycan, lipopolysaccharide, and nucleic acids of E. coli SFK11 and W7 and into the peptidoglycan and RNA of B. subtilis 168 and W23. The ease of extraction of radiolabels, as assessed by liquid scintillation counting during all stages of processing for freeze-substitution, was used as an indicator of cell structural integrity and retention of cellular chemical composition. Subsequent visual examination by electron microscopy was used to confirm ultrastructural conformation. The fixatives used were: 2% (wt/vol) osmium tetroxide and 2% (wt/vol) uranyl acetate; 2% (vol/vol) glutaraldehyde and 2% (wt/vol) uranyl acetate; 2% (vol/vol) acrolein and 2% (wt/vol) uranyl acetate; 2% (wt/vol) gallic acid; and 2% (wt/vol) uranyl acetate. All fixatives were prepared in a substitution solvent of anhydrous acetone. Extraction of cellular constituents depended on the chemical fixative used. A combination of 2% osmium tetroxide-2% uranyl acetate or 2% gallic acid alone resulted in optimum fixation as ascertained by least extraction of radiolabels. In both gram-positive and gram-negative organisms, high levels of radiolabel were detected in the processing fluids in which 2% acrolein-2% uranyl acetate, 2% glutaraldehyde-2% uranyl acetate, or 2% uranyl acetate alone were used as fixatives. Ultrastructural variations were observed in cells freeze-substituted in the presence of different chemical fixatives. We recommend the use of osmium tetroxide and uranyl acetate in acetone for routine freeze-substitution of eubacteria, while gallic acid is recommended for use when microanalytical processing necessitates the omission of osmium.

  17. Computer simulations of local anesthetic mechanisms: Quantum chemical investigation of procaine

    SciTech Connect

    Smith, Jeremy C; Bondar, A.N.; Suhai, Sandor; Frangopol, P.T.

    2007-02-01

    A description at the atomic level of detail of the interaction between local anesthetics, lipid membranes and membrane proteins, is essential for understanding the mechanism of local anesthesia. The importance of performing computer simulations to decipher the mechanism of local anesthesia is discussed here in the context of the current status of understanding of the local anesthetics action. As a first step towards accurate simulations of the interaction between local anesthetics, proteins, lipid and water molecules, here we use quantum mechanical methods to assess the charge distribution and structural properties of procaine in the presence and in the absence of water molecules. The calculations indicate that, in the absence of hydrogen-bonding water molecules, protonated procaine strongly prefers a compact structure enabled by intramolecular hydrogen bonding. In the presence of water molecules the torsional energy pro?le of procaine is modified, and hydrogen bonding to water molecules is favored relative to intra-molecular hydrogen bonding.

  18. Efficient Implementation of Many-body Quantum Chemical Methods on the Intel Xeon Phi Coprocessor

    SciTech Connect

    Apra, Edoardo; Klemm, Michael; Kowalski, Karol

    2014-12-01

    This paper presents the implementation and performance of the highly accurate CCSD(T) quantum chemistry method on the Intel Xeon Phi coprocessor within the context of the NWChem computational chemistry package. The widespread use of highly correlated methods in electronic structure calculations is contingent upon the interplay between advances in theory and the possibility of utilizing the ever-growing computer power of emerging heterogeneous architectures. We discuss the design decisions of our implementation as well as the optimizations applied to the compute kernels and data transfers between host and coprocessor. We show the feasibility of adopting the Intel Many Integrated Core Architecture and the Intel Xeon Phi coprocessor for developing efficient computational chemistry modeling tools. Remarkable scalability is demonstrated by benchmarks. Our solution scales up to a total of 62560 cores with the concurrent utilization of Intel Xeon processors and Intel Xeon Phi coprocessors.

  19. Quantum Chemical-Based Protocol for the Rational Design of Covalent Inhibitors.

    PubMed

    Schirmeister, Tanja; Kesselring, Jochen; Jung, Sascha; Schneider, Thomas H; Weickert, Anastasia; Becker, Johannes; Lee, Wook; Bamberger, Denise; Wich, Peter R; Distler, Ute; Tenzer, Stefan; Johé, Patrick; Hellmich, Ute A; Engels, Bernd

    2016-07-13

    We propose a structure-based protocol for the development of customized covalent inhibitors. Starting from a known inhibitor, in the first and second steps appropriate substituents of the warhead are selected on the basis of quantum mechanical (QM) computations and hybrid approaches combining QM with molecular mechanics (QM/MM). In the third step the recognition unit is optimized using docking approaches for the noncovalent complex. These predictions are finally verified by QM/MM or molecular dynamic simulations. The applicability of our approach is successfully demonstrated by the design of reversible covalent vinylsulfone-based inhibitors for rhodesain. The examples show that our approach is sufficiently accurate to identify compounds with the desired properties but also to exclude nonpromising ones. PMID:27347738

  20. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling.

    PubMed

    Ahuactzin-Pérez, Miriam; Tlecuitl-Beristain, Saúl; García-Dávila, Jorge; González-Pérez, Manuel; Gutiérrez-Ruíz, María Concepción; Sánchez, Carmen

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (Xmax), biodegradation constant of DEHP (k), half-life (t1/2) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000mg/L). The greatest μ and the largest Xmax occurred in media supplemented with 1000mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000mg/L) within 60h of growth. The k and t1/2 were 0.024h(-1) and 28h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC-MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. PMID:27277206

  1. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    NASA Astrophysics Data System (ADS)

    Xu, Zhongnan; Joshi, Yogesh V.; Raman, Sumathy; Kitchin, John R.

    2015-04-01

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  2. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    SciTech Connect

    Xu, Zhongnan; Kitchin, John R.; Joshi, Yogesh V.; Raman, Sumathy

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  3. A quantitative quantum-chemical analysis tool for the distribution of mechanical force in molecules

    SciTech Connect

    Stauch, Tim; Dreuw, Andreas

    2014-04-07

    The promising field of mechanochemistry suffers from a general lack of understanding of the distribution and propagation of force in a stretched molecule, which limits its applicability up to the present day. In this article, we introduce the JEDI (Judgement of Energy DIstribution) analysis, which is the first quantum chemical method that provides a quantitative understanding of the distribution of mechanical stress energy among all degrees of freedom in a molecule. The method is carried out on the basis of static or dynamic calculations under the influence of an external force and makes use of a Hessian matrix in redundant internal coordinates (bond lengths, bond angles, and dihedral angles), so that all relevant degrees of freedom of a molecule are included and mechanochemical processes can be interpreted in a chemically intuitive way. The JEDI method is characterized by its modest computational effort, with the calculation of the Hessian being the rate-determining step, and delivers, except for the harmonic approximation, exact ab initio results. We apply the JEDI analysis to several example molecules in both static quantum chemical calculations and Born-Oppenheimer Molecular Dynamics simulations in which molecules are subject to an external force, thus studying not only the distribution and the propagation of strain in mechanically deformed systems, but also gaining valuable insights into the mechanochemically induced isomerization of trans-3,4-dimethylcyclobutene to trans,trans-2,4-hexadiene. The JEDI analysis can potentially be used in the discussion of sonochemical reactions, molecular motors, mechanophores, and photoswitches as well as in the development of molecular force probes.

  4. A quantitative quantum-chemical analysis tool for the distribution of mechanical force in molecules

    NASA Astrophysics Data System (ADS)

    Stauch, Tim; Dreuw, Andreas

    2014-04-01

    The promising field of mechanochemistry suffers from a general lack of understanding of the distribution and propagation of force in a stretched molecule, which limits its applicability up to the present day. In this article, we introduce the JEDI (Judgement of Energy DIstribution) analysis, which is the first quantum chemical method that provides a quantitative understanding of the distribution of mechanical stress energy among all degrees of freedom in a molecule. The method is carried out on the basis of static or dynamic calculations under the influence of an external force and makes use of a Hessian matrix in redundant internal coordinates (bond lengths, bond angles, and dihedral angles), so that all relevant degrees of freedom of a molecule are included and mechanochemical processes can be interpreted in a chemically intuitive way. The JEDI method is characterized by its modest computational effort, with the calculation of the Hessian being the rate-determining step, and delivers, except for the harmonic approximation, exact ab initio results. We apply the JEDI analysis to several example molecules in both static quantum chemical calculations and Born-Oppenheimer Molecular Dynamics simulations in which molecules are subject to an external force, thus studying not only the distribution and the propagation of strain in mechanically deformed systems, but also gaining valuable insights into the mechanochemically induced isomerization of trans-3,4-dimethylcyclobutene to trans,trans-2,4-hexadiene. The JEDI analysis can potentially be used in the discussion of sonochemical reactions, molecular motors, mechanophores, and photoswitches as well as in the development of molecular force probes.

  5. Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials

    NASA Astrophysics Data System (ADS)

    Nadarajah, A.; Smith, T.; Könenkamp, R.

    2012-12-01

    We report a nanowire-quantum-dot-polymer solar cell consisting of a chemically treated CdSe quantum dot film deposited on n-type ZnO nanowires. The electron and hole collecting contacts are a fluorine-doped tin-oxide/zinc oxide layer and a P3HT/Au layer. This device architecture allows for enhanced light absorption and an efficient collection of photogenerated carriers. A detailed analysis of the chemical treatment of the quantum dots, their deposition, and the necessary annealing processes are discussed. We find that the surface treatment of CdSe quantum dots with pyridine, and the use of 1,2-ethanedithiol (EDT) ligands, critically improves the device performance. Annealing at 380 °C for 2 h is found to cause a structural conversion of the CdSe from its initial isolated quantum dot arrangement into a polycrystalline film with excellent surface conformality, thereby resulting in a further enhancement of device performance. Moreover, long-term annealing of 24 h leads to additional increases in device efficiency. Our best conversion efficiency reached for this type of cell is 3.4% under 85 mW cm-2 illumination.

  6. Characteristics of the complexing of chitosan with sodium dodecyl sulfate, according to IR spectroscopy data and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    Shilova, S. V.; Romanova, K. A.; Galyametdinov, Yu. G.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-06-01

    The complexing of protonated chitosan with dodecyl sulfate ions in water solutions is studied using IR spectroscopy data and quantum-chemical calculations. It is established that the electrostatic interaction between the protonated amino groups of chitosan and dodecyl sulfate ions is apparent in the IR spectrum as a band at 833 cm-1. The need to consider the effect the solvent has on the formation of hydrogen-bound ion pairs [CTS+ ṡ C12H25O 3 - ] is shown via a quantum-chemical simulation of the equilibrium geometry and the energy characteristics of complexing and hydration.

  7. Toward the realization of a compact chemical sensor platform using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2015-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while maintaining a minimal package size. Current sensors, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy, employed in a sensor format, has shown enormous potential to address these ever-changing threats, while maintaining a compact sensor design. In order to realize the advantage of photoacoustic sensor miniaturization, light sources of comparable size are required. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. Results have demonstrated that utilizing a tunable QCL with a MEMS-scale photoacoustic cell produces favorable detection limits (ppb levels) for chemical targets (e.g., dimethyl methyl phosphonate (DMMP), vinyl acetate, 1,4-dioxane). Although our chemical sensing research has benefitted from the broad tuning capabilities of QCLs, the limitations of these sources must be considered. Current commercially available tunable systems are still expensive and obviously geared more toward laboratory operation, not fielding. Although the laser element itself is quite small, the packaging, power supply, and controller remain logistical burdens. Additionally, operational features such as continuous wave (CW) modulation and laser output powers while maintaining wide tunability are not yet ideal for a variety of sensing applications. In this paper, we will discuss our continuing evaluation of QCL technology as it matures

  8. Quantum Dot and Polymer Composite Cross-Reactive Array for Chemical Vapor Detection.

    PubMed

    Bright, Collin J; Nallon, Eric C; Polcha, Michael P; Schnee, Vincent P

    2015-12-15

    A cross-reactive chemical sensing array was made from CdSe Quantum Dots (QDs) and five different organic polymers by inkjet printing to create segmented fluorescent composite regions on quartz substrates. The sensor array was challenged with exposures from two sets of analytes, including one set of 14 different functionalized benzenes and one set of 14 compounds related to security concerns, including the explosives trinitrotoluene (TNT) and ammonium nitrate. The array was broadly responsive to analytes with different chemical functionalities due to the multiple sensing mechanisms that altered the QDs' fluorescence. The sensor array displayed excellent discrimination between members within both sets. Classification accuracy of more than 93% was achieved, including the complete discrimination of very similar dinitrobenzene isomers and three halogenated, substituted benzene compounds. The simple fabrication, broad responsivity, and high discrimination capacity of this type of cross-reactive array are ideal qualities for the development of sensors with excellent sensitivity to chemical and explosive threats while maintaining low false alarm rates. PMID:26548712

  9. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 2-benzothiazole acetonitrile.

    PubMed

    Arjunan, V; Thillai Govindaraja, S; Jose, Sujin P; Mohan, S

    2014-07-15

    The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm(-1) respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers derived theoretically by B3LYP gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The (1)H (400 MHz; CDCl3) and (13)C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra are also recorded. The electronic properties, the energies of the highest occupied and lowest unoccupied molecular orbitals are measured by DFT approach. The kinetic stability of the molecule has been determined from the frontier molecular orbital energy gap. The charges of the atoms and the structure-chemical reactivity relations of the compound are determined by its chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. The non-linear optical properties of the compound have been discussed by measuring the polarisability and hyperpolarisability tensors. PMID:24662754

  10. Structure activity studies of an analgesic drug tapentadol hydrochloride by spectroscopic and quantum chemical methods

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-11-01

    Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.

  11. Experimental and Quantum-Chemical Study of Electronically Excited States of Protolytic Isovanillin Species

    NASA Astrophysics Data System (ADS)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Yu.

    2014-05-01

    Methods of electronic spectroscopy and quantum chemistry are used to compare protolytic vanillin and isovanillin species. Three protolytic species: anion, cation, and neutral are distinguished in the ground state of the examined molecules. Vanillin and isovanillin in the ground state in water possess identical spectral characteristics: line positions and intensities in the absorption spectra coincide. Minima of the electrostatic potential demonstrate that the deepest isomer minimum is observed on the carbonyl oxygen atom. However, investigations of the fluorescence spectra show that the radiative properties of isomers differ. An analysis of results of quantum-chemical calculations demonstrate that the long-wavelength ππ* transition in the vanillin absorption spectra is formed due to electron charge transfer from the phenol part of the molecule to oxygen atoms of the methoxy and carbonyl groups, and in the isovanillin absorption spectra, it is formed only on the oxygen atom of the methoxy group. The presence of hydroxyl and carbonyl groups in the structure of the examined molecules leads to the fact that isovanillin in the ground S0 state, the same as vanillin, possesses acidic properties, whereas in the excited S1 state, they possess basic properties. A comparison of the рKа values of aqueous solutions demonstrates that vanillin possesses stronger acidic and basic properties in comparison with isovanillin.

  12. Quantum Chemical Analysis of MHC-Peptide Interactions for Vaccine Design

    PubMed Central

    Agudelo, W.A; Patarroyo, M.E

    2010-01-01

    The development of an adequate immune response against pathogens is mediated by molecular interactions between different cell types. Among them, binding of antigenic peptides to the Major Histocompatibility Complex (MHC) molecule expressed on the membrane of antigen presenting cells (APCs), and their subsequent recognition by the T cell receptor have been demonstrated to be crucial for developing an adequate immune response. The present review compiles computational quantum chemistry studies about the electrostatic potential variations induced on the MHC binding region by peptide’s amino acids, carried out with the aim of describing MHC–peptide binding interactions. The global idea is that the electrostatic potential can be represented in terms of a series expansion (charge, dipole, quadrupole, hexadecapole, etc.) whose three first terms provide a good local approximation to the molecular electrostatic ‘landscape’ and to the variations induced on such landscape by targeted modifications on the residues of the antigenic peptide. Studies carried out in four MHC class II human allele molecules, which are the most representative alleles of their corresponding haplotypes, showed that each of these molecules have conserved as well as specific electrostatic characteristics, which can be correlated at a good extent with the peptide binding profiles reported experimentally for these molecules. The information provided by such characteristics would help increase our knowledge about antigen binding and presentation, and could ultimately contribute to developing a logical and rational methodology for designing chemically synthesized, multi-antigenic, subunit-based vaccines, through the application of quantum chemistry methods. PMID:20394575

  13. A quantum chemical perspective on (6-4) photolesion repair by photolyases.

    PubMed

    Dreuw, Andreas; Faraji, Shirin

    2013-12-14

    (6-4)-Photolyases are fascinating enzymes which repair (6-4)-DNA photolesions utilizing light themselves. It is well known that upon initial photo-excitation of an antenna pigment an electron is transferred from an adjacent FADH(-) cofactor to the photolesion initiating repair, i.e. restoration of the original undamaged DNA bases. Concerning the molecular details of this amazing repair mechanism, the early steps of energy transfer and catalytic electron generation are well understood, the terminal repair mechanism, however, is still a matter of ongoing debate. In this perspective article, recent results of quantum chemical investigations are presented, and their meaning for the repair mechanism under natural conditions is outlined. Consequences of natural light conditions, temperature and thermal equilibration are highlighted when issues like the initial protonation state of the relevant histidines and the lesion, or the direction of electron transfer are discussed. PMID:24145385

  14. Quantum-chemical and picosecond investigations of excited states of thioindigoid dyes

    SciTech Connect

    Fabian, Yu.; Krysanov, S.A.; Alfimov, M.V.

    1987-11-01

    The thioindigoid dyes are convenient objects for studying reverse trans-cis photoisomerization. This is due to the extensive use of nanosecond photolysis. In this work, in order to interpret some new absorption bands, the authors compare the results of quantum-chemical and picosecond investigations of solutions of the trans isomers of thioindigo and a perinaphthothioindigoid dye. A double-beam optical system, which makes it possible to record the kinetics of the variation of the induced absorption in the range from several picoseconds to 5 nsec, was used for the real-time scanning of the continuum instead of an echelon. The spectroscopic properties of the thioindigoid chromophore can be understood in the framework of standard calculations by the Pariser-Parr-Pople method.

  15. Wavy carbon: A new series of carbon structures explored by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Ohno, Koichi; Satoh, Hiroko; Iwamoto, Takeaki; Tokoyama, Hiroaki; Yamakado, Hideo

    2015-10-01

    A new carbon family adopting wavy structures has been found by quantum chemical calculations. The key motif of this family is a condensed four-membered ring. Periodically wavy-carbon sheets (wavy-Cn sheets, n = 2, 6, and 8) as well as wavy-C36 tube were found to be very similar to the previously reported prism-Cn carbon tubes (n = 5, 6, and 8) in several respects, including the relative energies per one carbon atom with respect to graphene, CC bond lengths, and CCC bond angles. Because of very high relative energies with respect to graphene (206-253 kJ mol-1), the wavy-carbons may behave as energy reserving materials.

  16. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    NASA Technical Reports Server (NTRS)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  17. Quantum chemical investigations on the nonradiative deactivation pathways of cytosine derivatives.

    PubMed

    Nakayama, Akira; Yamazaki, Shohei; Taketsugu, Tetsuya

    2014-10-01

    The nonradiative deactivation pathways of cytosine derivatives (cytosine, 5-fluorocytosine, 5-methylcytosine, and 1-methycytosine) and their tautomers are investigated by quantum chemical calculations, and the substituent effects on the deactivation process are examined. The MS-CASPT2 method is employed in the excited-state geometry optimization and also in the search for conical intersection points, and the potential energy profiles connecting the Franck-Condon point, excited-state minimum energy structures, and the conical intersection points are investigated. Our calculated vertical and adiabatic excitation energies are in quite good agreement with the experimental results, and the relative barrier heights leading to the conical intersections are correlated with the experimentally observed excite-state lifetimes, where the calculated barrier heights are in the order of cytosine < 5-methylcytosine < 5-fluorocytosine. PMID:25178384

  18. Methodological aspects of the quantum-chemical description of interface dipoles at tetrathiafulvalene∕tetracyanoquinodimethane interfaces.

    PubMed

    Van Regemorter, T; Guillaume, M; Fuchs, A; Lennartz, C; Geskin, V; Beljonne, D; Cornil, J

    2012-11-01

    The formation of dipoles at interfaces between organic semiconductors is expected to play a significant role in the operation of organic-based devices, though the electronic processes at their origin have still to be clearly elucidated. Quantum-chemical calculations can prove very useful to shed light on such electronic interfacial phenomena provided that a suitable theoretical approach is used. In this context, we have performed calculations on small vertical stacks of TTF-TCNQ molecules, first at the CAS-MRCI level to validate the use of single-determinantal approaches, then at the MP2 level set as a benchmark. Various density functional theory (DFT) functionals have then been applied to larger stacks, showing that long-range corrected functionals are required to reproduce MP2 results taken as benchmark. Finally, the use of periodic boundary conditions at the DFT level points to the huge impact of depolarization effects between adjacent stacks. PMID:23145743

  19. Methodological aspects of the quantum-chemical description of interface dipoles at tetrathiafulvalene/tetracyanoquinodimethane interfaces

    NASA Astrophysics Data System (ADS)

    Van Regemorter, T.; Guillaume, M.; Fuchs, A.; Lennartz, C.; Geskin, V.; Beljonne, D.; Cornil, J.

    2012-11-01

    The formation of dipoles at interfaces between organic semiconductors is expected to play a significant role in the operation of organic-based devices, though the electronic processes at their origin have still to be clearly elucidated. Quantum-chemical calculations can prove very useful to shed light on such electronic interfacial phenomena provided that a suitable theoretical approach is used. In this context, we have performed calculations on small vertical stacks of TTF-TCNQ molecules, first at the CAS-MRCI level to validate the use of single-determinantal approaches, then at the MP2 level set as a benchmark. Various density functional theory (DFT) functionals have then been applied to larger stacks, showing that long-range corrected functionals are required to reproduce MP2 results taken as benchmark. Finally, the use of periodic boundary conditions at the DFT level points to the huge impact of depolarization effects between adjacent stacks.

  20. Prism-C2n carbon dimer, trimer, and nano-sheets: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Ohno, Koichi; Satoh, Hiroko; Iwamoto, Takeaki

    2015-07-01

    Quantum chemical calculations have predicted the existence of a new carbon family with double-layered structures formed by arranging prism-C2n (n = 6, 8, and 12) units. Theoretical explorations of potential energy surfaces suggest the lowest barriers of the reaction channels to be ca. 30 kJ mol-1 for a D2h prism-C16 dimer and a D3h prism-C24 trimer. Geometry optimizations under periodic boundary conditions yield some prism-C2n sheets composed of CC single bonds of ca. 0.15-0.16 nm. The relative energies per one atom with respect to graphene are 90-160 kJ mol-1. Van der Waals thickness is estimated to be ca. 0.5 nm.

  1. Robust large-gap quantum spin Hall insulators in chemically decorated arsenene films

    NASA Astrophysics Data System (ADS)

    Wang, Dongchao; Chen, Li; Shi, Changmin; Wang, Xiaoli; Cui, Guangliang; Zhang, Pinhua; Chen, Yeqing

    2016-03-01

    Based on first-principles calculations, we propose one new category of two-dimensional topological insulators (2D TIs) in chemically functionalized (-CH3 and -OH) arsenene films. The results show that the surface decorated arsenene (AsCH3 and AsOH) films are intrinsic 2D TIs with sizeable bulk gap. The bulk energy gaps are 0.184 eV, and 0.304 eV in AsCH3 and AsOH films, respectively. Such large bulk gaps make them suitable to realize quantum spin Hall effect in an experimentally accessible temperature regime. Topologically helical edge states in these systems are desirable for dissipationless transport. Moreover, we find that the topological properties in these systems are robust against mechanical deformation by exerting biaxial strain. These novel 2D TIs with large bulk gaps are potential candidate in future electronic devices with ultralow dissipation.

  2. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    SciTech Connect

    Song, Yu Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire; Bhat, Rajaram; Zah, Chung-En

    2014-11-03

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1−x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4 μm, with a peak responsivity of up to ∼100 μA/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140 K.

  3. Property and quantum chemical investigation of poly(ethyl α-cyanoacrylate)

    NASA Astrophysics Data System (ADS)

    Zhou, Yahong; Bei, Fengli; Ji, Haiyan; Yang, Xujie; Lu, Lude; Wang, Xin

    2005-03-01

    The poly(ethyl α-cyanoacrylate) (PEtCNA) was synthesized by anionic polymerization. With the composed PEtCNA, its IR spectrum, 1HNMR spectrum and configuration are measured. Meanwhile, molecular geometry, electronic structure, IR spectrum and thermodynamic property of reactant and transition state on the reaction potential energy level of ethyl α-cyanoacrylate with hydroxyl have been completely optimized and calculated for the first time by the density functional theory DFT-B3LYP method and on the level of 6-31+G* group. The order of 10 10 s -1 of initiating rate constant in gas phase was obtained for the reaction. These were reported the quantum chemical calculation results so as to deepen researches on the relationship between structure and properties.

  4. Unpolarized and polarized Raman spectroscopy of nylon-6 polymorphs: a quantum chemical approach.

    PubMed

    Milani, Alberto

    2015-03-01

    Exploiting the very recent potentialities of state-of-the-art quantum chemical simulations of crystalline solids, unpolarized Raman spectra of α and γ polymorphs of Nylon-6 obtained through periodic density functional theory calculations are presented for the first time. The computed spectra are compared with the experimental spectra reported in the literature and allow a detailed interpretation to be proposed of the patterns observed, identifying unambiguous Raman marker bands of the different phases. The calculations of single crystal directional intensities gave the further possibility to predict the polarization properties of the Raman spectra of these polymorphs: considering in particular the α phase, polarized Raman spectra have been computed and showed a very good agreement with measurements previously reported for uniaxially oriented samples. PMID:25686634

  5. Low temperature regulated growth of PbS quantum dots by wet chemical method

    SciTech Connect

    Kumar, Hitanshu Barman, P. B.; Singh, Ragini Raj; Bind, Umesh Chandra

    2015-08-28

    Narrow size distribution with regulated synthesis of lead sulfide (PbS) quantum dots (QDs) was achieved through wet chemical method. Different concentrations of 2-mercaptoethanol (capping agent) were used for tailoring the QDs size. Transmission electron microscopy and X-ray diffraction studies revealed that the QDs have mean diameters between 6 to 15 nm. The optical absorption spectra were compared to the predictions of a theoretical model for the electronic structure. The theory agrees well with experiment for QDs larger than 7 nm, but for smaller dots there is some deviation from the theoretical predictions. Consequently, the produced particles are having monodispersity, good water solubility, stability and may be good arguments to be biologically compatible due to the use of 2-mercaptoethanol.

  6. Chemical changes accompanying facet degradation of AlGaAs quantum well lasers

    NASA Astrophysics Data System (ADS)

    Houle, F. A.; Neiman, D. L.; Tang, W. C.; Rosen, H. J.

    1992-11-01

    Detailed measurements are reported using high-resolution scanning Auger microscopy of the chemical state of uncoated quantum well (QW) laser facets after brief and intermediate operating times. Analyses or uncoated facets which have suffered catastrophic optical damage (COD) under various operating conditions are described. The data show clearly that initial facet compositions are variable and far from ideal. After operation for as little as 2-10 min, the composition of the facet regions of the active/graded index and cladding layer change markedly, but no single type of change can be linked to COD. In particular, facet oxidation is not uniform or extensive, and facets which suffer COD are not necessarily more oxidized than those which have not. Composition changes are not limited to the facet surface, indicating that elemental redistribution during laser operation is very fast. These results suggest that the process of facet degradation plays a complex role in laser degradation.

  7. Quantum chemical studies of the pyrrole-water and pyridine-water complexes

    NASA Astrophysics Data System (ADS)

    Martoprawiro, Muhamad A.; Bacskay, George B.

    An ab initio quantum chemical study of the hydrogen bonded binary complexes pyrrole-water and pyridine-water is reported. The calculations were performed largely at the MP2 level of theory using basis sets of double-zeta-plus polarization functions quality and focus on properties of the complexes such as molecular geometries, energies, harmonic vibrational frequencies, dipole moments and 14N nuclear quadrupole coupling constants. Where possible, the results of the calculations are compared with experimental data. In addition, the interaction potentials are studied in some detail, specifically with regard to basis set superposition and its effect on geometries, intermolecular vibrational frequencies and binding energies. The nature of interaction, i.e., the importance of electrostatic, Pauli repulsion, polarization, charge transfer and dispersion contributions to the hydrogen bond energies, as obtained in constrained spatial orbital variation analyses, is also discussed.

  8. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    NASA Astrophysics Data System (ADS)

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  9. A combined experimental and theoretical quantum chemical studies on 4-morpholinecarboxaldehyde

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Rani, T.; Santhanalakshmi, K.; Mohan, S.

    2011-09-01

    Extensive spectroscopic investigations have been carried out by recording the Fourier transform infrared (FTIR) and FT-Raman spectra and carrying out the theoretical quantum chemical studies on 4-morpholinecarboxaldehyde (4MC). From the ab initio and DFT analysis using HF, B3LYP and B3PW91 methods with 6-31G(d,p) and 6-311G++(d,p) basis sets the energies, structural, thermodynamical and vibrational characteristics of the compound were determined. The energy difference between the chair equatorial and chair axial conformers of 4MC have been calculated by density functional theory (DFT) method. The optimised geometrical parameters, theoretical wavenumbers and thermodynamic properties of the molecule were compared with the experimental values. The effect of carbonyl group on the characteristic frequencies of the morpholine ring has been analysed. The mixing of the fundamental modes with the help of potential energy distribution (PED) through normal co-ordinate analysis has been discussed.

  10. NMR Hyperfine Shifts in Blue Copper Proteins: A Quantum Chemical Investigation

    PubMed Central

    Zhang, Yong; Oldfield, Eric

    2009-01-01

    We present the results of the first quantum chemical investigations of 1H NMR hyperfine shifts in the blue copper proteins (BCPs): amicyanin, azurin, pseudoazurin, plastocyanin, stellacyanin, and rusticyanin. We find that very large structural models that incorporate extensive hydrogen bond networks, as well as geometry optimization, are required to reproduce the experimental NMR hyperfine shift results, the best theory vs experiment predictions having R2 = 0.94, a slope = 1.01, and a SD = 40.5 ppm (or ~4.7% of the overall ~860 ppm shift range). We also find interesting correlations between the hyperfine shifts and the bond and ring critical point properties computed using atoms-in-molecules theory, in addition to finding that hyperfine shifts can be well-predicted by using an empirical model, based on the geometry-optimized structures, which in the future should be of use in structure refinement. PMID:18314973

  11. Some new reaction pathways for the formation of cytosine in interstellar space - A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Gupta, V. P.; Tandon, Poonam; Mishra, Priti

    2013-03-01

    The detection of nucleic acid bases in carbonaceous meteorites suggests that their formation and survival is possible outside of the Earth. Small N-heterocycles, including pyrimidine, purines and nucleobases, have been extensively sought in the interstellar medium. It has been suggested theoretically that reactions between some interstellar molecules may lead to the formation of cytosine, uracil and thymine though these processes involve significantly high potential barriers. We attempted therefore to use quantum chemical techniques to explore if cytosine can possibly form in the interstellar space by radical-radical and radical-molecule interaction schemes, both in the gas phase and in the grains, through barrier-less or low barrier pathways. Results of DFT calculations for the formation of cytosine starting from some of the simple molecules and radicals detected in the interstellar space are being reported. Global and local descriptors such as molecular hardness, softness and electrophilicity, and condensed Fukui functions and local philicity indices were used to understand the mechanistic aspects of chemical reaction. The presence and nature of weak bonds in the molecules and transition states formed during the reaction process have been ascertained using Bader's quantum theory of atoms in molecules (QTAIMs). Two exothermic reaction pathways starting from propynylidyne (CCCH) and cyanoacetylene (HCCCN), respectively, have been identified. While the first reaction path is found to be totally exothermic, it involves a barrier of 12.5 kcal/mol in the gas phase against the lowest value of about 32 kcal/mol reported in the literature. The second path is both exothermic and barrier-less. The later has, therefore, a greater probability of occurrence in the cold interstellar clouds (10-50 K).

  12. On the utility of spectroscopic imaging as a tool for generating geometrically accurate MR images and parameter maps in the presence of field inhomogeneities and chemical shift effects.

    PubMed

    Bakker, Chris J G; de Leeuw, Hendrik; van de Maat, Gerrit H; van Gorp, Jetse S; Bouwman, Job G; Seevinck, Peter R

    2013-01-01

    Lack of spatial accuracy is a recognized problem in magnetic resonance imaging (MRI) which severely detracts from its value as a stand-alone modality for applications that put high demands on geometric fidelity, such as radiotherapy treatment planning and stereotactic neurosurgery. In this paper, we illustrate the potential and discuss the limitations of spectroscopic imaging as a tool for generating purely phase-encoded MR images and parameter maps that preserve the geometry of an object and allow localization of object features in world coordinates. Experiments were done on a clinical system with standard facilities for imaging and spectroscopy. Images were acquired with a regular spin echo sequence and a corresponding spectroscopic imaging sequence. In the latter, successive samples of the acquired echo were used for the reconstruction of a series of evenly spaced images in the time and frequency domain. Experiments were done with a spatial linearity phantom and a series of test objects representing a wide range of susceptibility- and chemical-shift-induced off-resonance conditions. In contrast to regular spin echo imaging, spectroscopic imaging was shown to be immune to off-resonance effects, such as those caused by field inhomogeneity, susceptibility, chemical shift, f(0) offset and field drift, and to yield geometrically accurate images and parameter maps that allowed object structures to be localized in world coordinates. From these illustrative examples and a discussion of the limitations of purely phase-encoded imaging techniques, it is concluded that spectroscopic imaging offers a fundamental solution to the geometric deficiencies of MRI which may evolve toward a practical solution when full advantage will be taken of current developments with regard to scan time reduction. This perspective is backed up by a demonstration of the significant scan time reduction that may be achieved by the use of compressed sensing for a simple phantom. PMID:22898694

  13. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.

    PubMed

    Zheng, Tianyu; Bott, Steven; Huo, Qun

    2016-08-24

    Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications. PMID:27472008

  14. LDRD final report on high power broadly tunable Mid-IR quantum cascade lasers for improved chemical species detection.

    SciTech Connect

    Wanke, Michael Clement; Hudgens, James J.; Fuller, Charles T.; Samora, Sally; Klem, John Frederick; Young, Erik W.

    2006-01-01

    The goal of our project was to examine a novel quantum cascade laser design that should inherently increase the output power of the laser while simultaneously providing a broad tuning range. Such a laser source enables multiple chemical species identification with a single laser and/or very broad frequency coverage with a small number of different lasers, thus reducing the size and cost of laser based chemical detection systems. In our design concept, the discrete states in quantum cascade lasers are replaced by minibands made of multiple closely spaced electron levels. To facilitate the arduous task of designing miniband-to-miniband quantum cascade lasers, we developed a program that works in conjunction with our existing modeling software to completely automate the design process. Laser designs were grown, characterized, and iterated. The details of the automated design program and the measurement results are summarized in this report.

  15. Chemical Potential for the Interacting Classical Gas and the Ideal Quantum Gas Obeying a Generalized Exclusion Principle

    ERIC Educational Resources Information Center

    Sevilla, F. J.; Olivares-Quiroz, L.

    2012-01-01

    In this work, we address the concept of the chemical potential [mu] in classical and quantum gases towards the calculation of the equation of state [mu] = [mu](n, T) where n is the particle density and "T" the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are…

  16. High-School Students' Conceptual Difficulties and Attempts at Conceptual Change: The Case of Basic Quantum Chemical Concepts

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Papaphotis, Georgios

    2009-01-01

    This study tested for deep understanding and critical thinking about basic quantum chemical concepts taught at 12th grade (age 17-18). Our aim was to achieve conceptual change in students. A quantitative study was conducted first (n = 125), and following this 23 selected students took part in semi-structured interviews either individually or in…

  17. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    NASA Astrophysics Data System (ADS)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  18. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    SciTech Connect

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  19. Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells.

    PubMed

    Tavakoli, Mohammad Mahdi; Simchi, Abdolreza; Fan, Zhiyong; Aashuri, Hossein

    2016-01-01

    We present a novel chemical procedure to prepare three-dimensional graphene networks (3DGNs) as a transparent conductive film to enhance the photovoltaic performance of PbS quantum-dot (QD) solar cells. It is shown that 3DGN electrodes enhance electron extraction, yielding a 30% improvement in performance compared with the conventional device. PMID:26514615

  20. Biochemical characterization of the castor bean ent-kaurene synthase(-like) family supports quantum chemical view of diterpene cyclization

    PubMed Central

    Jackson, Alana J.; Hershey, David M.; Chesnut, Taylor; Xu, Meimei; Peters, Reuben J.

    2014-01-01

    It has become apparent that plants have extensively diversified their arsenal of labdane-related diterpenoids (LRDs), in part via gene duplication and neo-functionalization of the ancestral ent-kaurene synthase (KS) required for gibberellin metabolism. For example, castor bean (Ricinus communis) was previously shown to produce an interesting set of biosynthetically related diterpenes, specifically ent-sandracopimaradiene, ent-beyerene, and ent-trachylobane, in addition to ent-kaurene, using four separate diterpene synthases, albeit these remain unidentified. Notably, despite mechanistic similarity of the underlying reaction to that catalyzed by KSs, ent-beyerene and ent-trachylobane synthases have not yet been identified. Given our interest in LRD biosynthesis, and the recent availability of the castor bean genome sequence, we applied a synthetic biology approach to biochemically characterize the four KS(-like) enzymes [KS(L)s] found in Ricinus communis [i.e., the RcKS(L)s]. In particular, using bacteria engineered to produce the relevant ent-copalyl diphosphate precursor and synthetic genes based on the predicted RcKS(L)s, although this ultimately required correction of a “splicing” error in one of the predicted genes, highlighting the dependence of such a synthetic biology approach on accurate gene sequences. Nevertheless, we can assign each of the four RcKS(L)s to one of the previously observed diterpene synthase activities, providing access to functionally novel enzymes. Intriguingly, the product distribution of the RcKS(L)s seems to support the distinct diterpene synthase reaction mechanism proposed by quantum chemical calculations, rather than the classically proposed pathway. PMID:24810014

  1. Quantum chemical study on the stability of honeybee queen pheromone against atmospheric factors.

    PubMed

    Shi, Rongwei; Liu, Fanglin

    2016-06-01

    The managed honeybee, Apis mellifera, has been experienced a puzzling event, termed as colony collapse disorder (CCD), in which worker bees abruptly disappear from their hives. Potential factors include parasites, pesticides, malnutrition, and environmental stresses. However, so far, no definitive relationship has been established between specific causal factors and CCD events. Here we theoretically test whether atmospheric environment could disturb the chemical communication between the queen and their workers in a colony. A quantum chemistry method has been used to investigate for the stability of the component of A. mellifera queen mandibular pheromone (QMP), (E)-9-keto-2-decenoic acid (9-ODA), against atmospheric water and free radicals. The results show that 9-ODA is less likely to react with water due to the high barrier heights (~36.5 kcal · mol(-1)) and very low reaction rates. However, it can easily react with triplet oxygen and hydroxyl radicals because of low or negative energy barriers. Thus, the atmospheric free radicals may disturb the chemical communication between the queen and their daughters in a colony. Our pilot study provides new insight for the cause of CCD, which has been reported throughout the world. PMID:27207255

  2. Spectroscopic studies and quantum chemical investigations of (3,4-dimethoxybenzylidene) propanedinitrile

    NASA Astrophysics Data System (ADS)

    Gupta, Ujval; Kumar, Vinay; Singh, Vivek K.; Kant, Rajni; Khajuria, Yugal

    2015-04-01

    The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800 nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity.

  3. Quantum Chemical Study of Raman Spectroscopy of Substituted Benzene Derivatives Adsorbed on Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Wu, De-Yin; Tian, Zhong-Qun

    2011-06-01

    Surface-enhanced Raman spectroscopy (SERS) can be applied to obtain the information of molecules at the noble metal surfaces. But there are a number of difficulties to clearly correlate Raman spectra with microscopic molecular structures on metal surfaces. The main reason is that it is difficult to characterize unambiguously the metal surface structures and the influence of the binding interaction on SERS signals of the probe molecules. According to the surface selection rule of SERS, the electromagnetic enhancement will not change relative Raman intensities of vibrational modes with the same irreducible representation. Therefore, the change of the relative Raman intensities of the total symmetric modes may only originate from the chemical enhancement. In order to understand how the chemical interaction modulates the Raman intensity of individual modes, it is necessary to systematically investigate the Raman spectra of probe molecules themselves and the dependence of SERS signals on the binding interaction, adsorption sites, excitation wavelengths and metal property. Some probe molecules, including aniline, 1,4-benzenediamine, p-aminothiophenol, benzyl chlorine, and 4,4^'-bipyridine are investigated based on quantum chemical calculations. Raman spectra of these molecules and their adsorbed species were predicted and compared with experimentally measured spectra. The metal surfaces were mimicked using the metallic cluster model, where the silver or gold surfaces were replaced by silver or gold clusters, respectively. The density functional theory approach was employed to obtain the optimized structures and vibrational spectra by combining all-electron basis sets of 6-311+G** for atoms in the molecules and the poseudopotential basis set of LANL2DZ for metal atoms. The vibrational frequency shift and the relative Raman intensity are related to the adsorption configuration of the probe molecules. For all these molecules, the ring breathing mode and the C-C stretching

  4. CRITIC2: A program for real-space analysis of quantum chemical interactions in solids

    NASA Astrophysics Data System (ADS)

    Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor

    2014-03-01

    We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum-chemical

  5. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    PubMed

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167

  6. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids

    PubMed Central

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167

  7. Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents.

    PubMed

    Wagle, Durgesh V; Deakyne, Carol A; Baker, Gary A

    2016-07-14

    We report quantum chemical calculations performed on three popular deep eutectic solvents (DESs) in order to elucidate the molecular interactions, charge transfer interactions, and thermodynamics associated with these systems. The DESs studied comprise 1:2 choline chloride/urea (reline), 1:2 choline chloride/ethylene glycol (ethaline), and 1:1 choline chloride/malonic acid (maloline). The excellent correlation between calculated and experimental vibrational spectra allowed for identification of dominant interactions in the DES systems. The DESs were found to be stabilized by both conventional hydrogen bonds and C-H···O/C-H···π interactions between the components. The hydrogen-bonding network established in the DES is clearly distinct from that which exists within the neat hydrogen-bond donor dimer. Charge decomposition analysis indicates significant charge transfer from choline and chloride to the hydrogen-bond donor with a higher contribution from the cation, and a density of states analysis confirms the direction of the charge transfer. Consequently, the sum of the bond orders of the choline-Cl(-) interactions in the DESs correlates directly with the melting temperatures of the DESs, a correlation that offers insight into the effect of the tuning of the choline-Cl(-) interactions by the hydrogen-bond donors on the physical properties of the DESs. Finally, the differences in the vibrational entropy changes upon DES formation are consistent with the trend in the overall entropy changes upon DES formation. PMID:27268431

  8. The (impossible?) formation of acetaldehyde on the grain surfaces: insights from quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Enrique-Romero, J.; Rimola, A.; Ceccarelli, C.; Balucani, N.

    2016-06-01

    Complex Organic Molecules (COMs) have been detected in the interstellar medium (ISM). However, it is not clear whether their synthesis occurs on the icy surfaces of interstellar grains or via a series of gas-phase reactions. As a test case of the COMs synthesis in the ISM, we present new quantum chemical calculations on the formation of acetaldehyde (CH3CHO) from the coupling of the HCO and CH3 radicals, both in gas phase and on water ice surfaces. The binding energies of HCO and CH3 on the amorphous water ice were also computed (2333 and 734 K, respectively). Results indicate that, in gas phase, the products could be either CH3CHO, CH4 + CO, or CH3OCH, depending on the relative orientation of the two radicals. However, on the amorphous water ice, only the CH4 + CO product is possible due to the geometrical constraints imposed by the water ice surface. Therefore, acetaldehyde cannot be synthesized by the CH3 + HCO coupling on the icy grains. We discuss the implications of these results and other cases, such as ethylene glycol and dimethyl ether, in which similar situations can occur, suggesting that formation of these molecules on the grain surfaces might be unlikely.

  9. Low-temperature EPR and quantum chemical study of lactone radical cations and their transformations

    NASA Astrophysics Data System (ADS)

    Naumov, S.; Janovský, I.; Knolle, W.; Mehnert, R.; Turin, D. A.

    2005-07-01

    Radical cations of a number of lactones ( β-butyro-, γ-butyro-, γ-valero-, δ-hexano-, δ-valero- and ɛ-capro-) were radiolytically generated in CF 3CCl 3 matrix and investigated by EPR spectroscopy. The primary radical cation of the 4-membered ring β-butyrolactone is unstable even at 77 K and undergoes spontaneous ring opening and fragmentation, leading to the deprotonated neutral (CH 2CHCH 2) rad radical. The stability of the primary carbonyl-centred radical cations of the 5-, 6- and 7-membered lactone rings towards intramolecular H-shift from the C1 in α-position to carbonyl oxygen depends primarily on the ring size, which determines the activation energy of the transformation and distance L(H-O) of the carbonyl oxygen to the nearest H-atom on the ring. The larger the ring, the smaller the L(H-O) and also activation energy of the H-shift, making the transformation of the primary radical cation more feasible. The quantum chemical calculations facilitated the interpretation of the EPR spectra of the secondary radical cations.

  10. Quantum chemical and experimental studies on polymorphism of antiviral drug Lamivudine

    NASA Astrophysics Data System (ADS)

    Ramkumaar, G. R.; Srinivasan, S.; Bhoopathy, T. J.; Gunasekaran, S.

    2012-12-01

    Lamivudine, is chemically known as [4-amino-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2-dihydropyrimidin-2-one], is an anti-HIV agent belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. Spectral characteristics of Lamivudine have been studied by methods of FTIR, NMR and quantum chemistry. The FTIR and spectra of Lamivudine was recorded in the regions 4000-400 cm-1. The thermal stability of Lamivudine was studied by the thermogravimetric analysis (TGA). The isotropic 13C-nuclear magnetic shielding constants of this compound were calculated by employing the direct implementation of the gauge including-atomic-orbital (GIAO) method at the HF and B3LYP density functional theory using 6-31G(d,p) basis set. The optimized molecular geometry, bond orders, harmonic vibrational spectrum of anhydrous and hydrated Lamivudine were calculated by restricted Hartree Fock and density functional B3LYP method with the 6-31G(d,p) basis set using Gaussian 03W program.

  11. Octafluorodirhenate(III) Revisited: Solid-State Preparation, Characterization, and Multiconfigurational Quantum Chemical Calculations.

    PubMed

    Mariappan Balasekaran, Samundeeswari; Todorova, Tanya K; Pham, Chien Thang; Hartmann, Thomas; Abram, Ulrich; Sattelberger, Alfred P; Poineau, Frederic

    2016-06-01

    A simple method for the high-yield preparation of (NH4)2[Re2F8]·2H2O has been developed that involves the reaction of (n-Bu4N)2[Re2Cl8] with molten ammonium bifluoride (NH4HF2). Using this method, the new salt [NH4]2[Re2F8]·2H2O was prepared in ∼90% yield. The product was characterized in solution by ultraviolet-visible light (UV-vis) and (19)F nuclear magnetic resonance ((19)F NMR) spectroscopies and in the solid-state by elemental analysis, powder X-ray diffraction (XRD), and infrared (IR) spectroscopy. Multiconfigurational CASSCF/CASPT2 quantum chemical calculations were performed to investigate the molecular and electronic structure, as well as the electronic absorption spectrum of the [Re2F8](2-) anion. The metal-metal bonding in the Re2(6+) unit was quantified in terms of effective bond order (EBO) and compared to that of its [Re2Cl8](2-) and [Re2Br8](2-) analogues. PMID:27171734

  12. Quantum Monte Carlo for large chemical systems: implementing efficient strategies for petascale platforms and beyond.

    PubMed

    Scemama, Anthony; Caffarel, Michel; Oseret, Emmanuel; Jalby, William

    2013-04-30

    Various strategies to implement efficiently quantum Monte Carlo (QMC) simulations for large chemical systems are presented. These include: (i) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), (ii) the possibility of keeping the memory footprint minimal, (iii) the important enhancement of single-core performance when efficient optimization tools are used, and (iv) the definition of a universal, dynamic, fault-tolerant, and load-balanced framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC=Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056, and 1731 electrons). Using 10-80 k computing cores of the Curie machine (GENCI-TGCC-CEA, France), QMC=Chem has been shown to be capable of running at the petascale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exascale platforms with a comparable level of efficiency is expected to be feasible. PMID:23288704

  13. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications.

    PubMed

    Christensen, Anders S; Kubař, Tomáš; Cui, Qiang; Elstner, Marcus

    2016-05-11

    Semiempirical (SE) methods can be derived from either Hartree-Fock or density functional theory by applying systematic approximations, leading to efficient computational schemes that are several orders of magnitude faster than ab initio calculations. Such numerical efficiency, in combination with modern computational facilities and linear scaling algorithms, allows application of SE methods to very large molecular systems with extensive conformational sampling. To reliably model the structure, dynamics, and reactivity of biological and other soft matter systems, however, good accuracy for the description of noncovalent interactions is required. In this review, we analyze popular SE approaches in terms of their ability to model noncovalent interactions, especially in the context of describing biomolecules, water solution, and organic materials. We discuss the most significant errors and proposed correction schemes, and we review their performance using standard test sets of molecular systems for quantum chemical methods and several recent applications. The general goal is to highlight both the value and limitations of SE methods and stimulate further developments that allow them to effectively complement ab initio methods in the analysis of complex molecular systems. PMID:27074247

  14. Structural studies on ethyl isovalerate by microwave spectroscopy and quantum chemical calculations.

    PubMed

    Mouhib, Halima; Jelisavac, Dragan; Sutikdja, Lilian W; Isaak, Elisabeth; Stahl, Wolfgang

    2011-01-20

    We observed the microwave spectrum of ethyl isovalerate by molecular beam Fourier transform microwave spectroscopy. The rotational and centrifugal distortion constants of the most abundant conformer were determined. Its structure was investigated by comparison of the experimental rotational constants with those obtained by ab initio methods. In a first step, the rotational constants of various conformers were calculated at the MP2/6-311++G** level of theory. Surprisingly, no agreement with the experimental results was found. Therefore, we concluded that in the case of ethyl isovalerate more advanced quantum chemical methods are required to obtain a reliable molecular geometry. Ab initio calculations carried out at MP3/6-311++G**, MP4/6-311++G**, and CCSD/6-311++G** levels and also density functional theory calculations using the B3LYP/6-311++G** method gave similar results for the rotational constants, but they were clearly distinct from those obtained at the MP2/6-311++G** level. With use of these more advanced methods, the rotational constants of the lowest energy conformer were in good agreement with those obtained from the microwave spectrum. PMID:21162564

  15. The vibration properties of the (n,0) boron nitride nanotubes from ab initio quantum chemical simulations

    NASA Astrophysics Data System (ADS)

    Erba, A.; Ferrabone, M.; Baima, J.; Orlando, R.; Rérat, M.; Dovesi, R.

    2013-02-01

    The vibration spectrum of single-walled zigzag boron nitride (BN) nanotubes is simulated with an ab initio periodic quantum chemical method. The trend towards the hexagonal monolayer (h-BN) in the limit of large tube radius R is explored for a variety of properties related to the vibrational spectrum: vibration frequencies, infrared intensities, oscillator strengths, and vibration contributions to the polarizability tensor. The (n,0) family is investigated in the range from n = 6 (24 atoms in the unit cell and tube radius R = 2.5 Å) to n = 60 (240 atoms in the cell and R = 24.0 Å). Simulations are performed using the CRYSTAL program which fully exploits the rich symmetry of this class of one-dimensional periodic systems: 4n symmetry operators for the general (n,0) tube. Three sets of infrared active phonon bands are found in the spectrum. The first one lies in the 0-600 cm-1 range and goes regularly to zero when R increases; the connection between these normal modes and the elastic and piezoelectric constants of h-BN is discussed. The second (600-800 cm-1) and third (1300-1600 cm-1) sets tend regularly, but with quite different speed, to the optical modes of the h-BN layer. The vibrational contribution of these modes to the two components (parallel and perpendicular) of the polarizability tensor is also discussed.

  16. Quantum chemical and experimental study of 1,2,4-trihydroxy-para-menthane

    NASA Astrophysics Data System (ADS)

    Rottmannová, Lenka; Lukeš, Vladimír; Ilčin, Michal; Fodran, Peter; Herich, Peter; Kožíšek, Jozef; Liptaj, Tibor; Klein, Erik

    2013-10-01

    The conformational analysis of the para-menthane (PM) and 1,2,4-trihydroxy-para-menthane (TPM) is performed using the quantum chemical density functional theory (DFT) and ab initio Møller-Plesset perturbation theory up to the second order (MP2). In TPM, three hydroxyl groups generate eight stereoisomers comparing to the four para-menthane stereoisomers. From the thermodynamics point of view, the most preferred conformations show the chair-shaped configuration of the cyclohexane ring. The obtained energy barriers for the isopropyl group rotation in the chair-shaped stereoisomers are between 35 and 45 kJ mol-1. The crystal structure as well as the solvated TPM stereoisomer isolated from the Tea tree oil, Melaleuca alternifolia (Maiden & Betche) Cheel, were investigated experimentally. Isolated stereoisomer corresponds to the most energetically preferred conformation and the calculated structural data agree very well with the results from the X-ray and nuclear magnetic resonance measurements. Finally, the influence of the conformation and the presence of the intramolecular hydrogen bonds on the homolytic Osbnd H bond dissociation enthalpies and proton affinities were also discussed with respect to the simple alcohols (methanol, iso-propanol, iso-pentanol, tert-butanol, cyclohexanol) and phenol.

  17. Synthesis, structural characterization and quantum chemical studies of silicon-containing benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Zaltariov, Mirela-Fernanda; Cojocaru, Corneliu; Shova, Sergiu; Sacarescu, Liviu; Cazacu, Maria

    2016-09-01

    The present paper is concerned with the synthesis and molecular structure investigation of two new benzoic acid derivatives having trimethylsilyl tails, 4-((trimethylsilyl)methoxy) and 4-(3-(trimethylsilyl)propoxy)benzoic acids. The structures of the novel compounds have been confirmed by X-ray crystallography, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H and 13C NMR). The theoretical studies of molecules were conducted by using the quantum chemical methods, such as Density Functional Theory (DFT B3LYP/6-31 + G**), Hartree-Fock (HF/6-31 + G**) and semiempirical computations (PM3, PM6 and PM7). The optimized molecular geometries have been found to be in good agreement with experimental structures resulted from the X-ray diffraction. The maximum electronic absorption bands observed at 272-287 nm (UV-vis spectra) have been assigned to π → π* transitions, which were in reasonable agreement with the time dependent density functional theory (TD-DFT) calculations. The computed vibrational frequencies by DFT method were assigned and compared with the experimental FTIR spectra. The mapped electrostatic potentials revealed the reactive sites, which corroborated the observation of the dimer supramolecular structures formed in the crystals by hydrogen-bonding. The energies of frontier molecular orbitals (HOMO and LUMO), energy gap, dipole moment and molecular descriptors for the new compounds were calculated and discussed.

  18. Humic Acid Metal Cation Interaction Studied by Spectromicroscopy Techniques in Combination with Quantum Chemical Calculations

    SciTech Connect

    Plaschke, M.; Rothe, J; Armbruster, M; Denecke, M; Naber, A; Geckeis, H

    2010-01-01

    Humic acids (HA) have a high binding capacity towards traces of toxic metal cations, thus affecting their transport in aquatic systems. Eu(III)-HA aggregates are studied by synchrotron-based scanning transmission X-ray microscopy (STXM) at the carbon K-edge and laser scanning luminescence microscopy (LSLM) at the {sup 5}D{sub 0} {yields} {sup 7}F{sub 1,2} fluorescence emission lines. Both methods provide the necessary spatial resolution in the sub-micrometre range to resolve characteristic aggregate morphologies: optically dense zones embedded in a matrix of less dense material in STXM images correspond to areas with increased Eu(III) luminescence yield in the LSLM micrographs. In the C 1s-NEXAFS of metal-loaded polyacrylic acid (PAA), used as a HA model compound, a distinct complexation effect is identified. This effect is similar to trends observed in the dense fraction of HA/metal cation aggregates. The strongest complexation effect is observed for the Zr(IV)-HA/PAA system. This effect is confirmed by quantum chemical calculations performed at the ab initio level for model complexes with different metal centres and complex geometries. Without the high spatial resolution of STXM and LSLM and without the combination of molecular modelling with experimental results, the different zones indicating a 'pseudo'-phase separation into strong complexing domains and weaker complexing domains of HA would never have been identified. This type of strategy can be used to study metal interaction with other organic material.

  19. Silicon Oxysulfide, OSiS: Rotational Spectrum, Quantum-Chemical Calculations, and Equilibrium Structure.

    PubMed

    Thorwirth, Sven; Mück, Leonie Anna; Gauss, Jürgen; Tamassia, Filippo; Lattanzi, Valerio; McCarthy, Michael C

    2011-06-01

    Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 Å and rSi-S = 1.9133 Å) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected finding is explained by the partial charges calculated for OSiS via a natural population analysis. The results suggest that electrostatic effects rather than multiple bonding are the key factors in determining bonding in this triatomic molecule. The data presented provide the spectroscopic information needed for radio astronomical searches for OSiS. PMID:26295414

  20. Construction of environment states in quantum-chemical density-matrix renormalization group calculations.

    PubMed

    Moritz, Gerrit; Reiher, Markus

    2006-01-21

    The application of the quantum-chemical density-matrix renormalization group (DMRG) algorithm is cumbersome for complex electronic structures with many active orbitals. The high computational cost is mainly due to the poor convergence of standard DMRG calculations. A factor which affects the convergence behavior of the calculations is the choice of the start-up procedure. In this start-up step matrix representations of operators have to be calculated in a guessed many-electron basis of the DMRG environment block. Different possibilities for the construction of these basis states exist, and we first compare four procedures to approximate the environment states using Slater determinants explicitly. These start-up procedures are applied to DMRG calculations on a sophisticated test system: the chromium dimer. It is found that the converged energies and the rate of convergence depend significantly on the choice of the start-up procedure. However, since already the most simple start-up procedure, which uses only the Hartree-Fock determinant, is comparatively good, Slater determinants, in general, appear not to be a good choice as approximate environment basis states for convergence acceleration. Based on extensive test calculations it is demonstrated that the computational cost can be significantly reduced if the number of total states m is successively increased. This is done in such a way that the environment states are built up stepwise from system states of previous truncated DMRG sweeps for slowly increasing m values. PMID:16438563

  1. Construction of environment states in quantum-chemical density-matrix renormalization group calculations

    NASA Astrophysics Data System (ADS)

    Moritz, Gerrit; Reiher, Markus

    2006-01-01

    The application of the quantum-chemical density-matrix renormalization group (DMRG) algorithm is cumbersome for complex electronic structures with many active orbitals. The high computational cost is mainly due to the poor convergence of standard DMRG calculations. A factor which affects the convergence behavior of the calculations is the choice of the start-up procedure. In this start-up step matrix representations of operators have to be calculated in a guessed many-electron basis of the DMRG environment block. Different possibilities for the construction of these basis states exist, and we first compare four procedures to approximate the environment states using Slater determinants explicitly. These start-up procedures are applied to DMRG calculations on a sophisticated test system: the chromium dimer. It is found that the converged energies and the rate of convergence depend significantly on the choice of the start-up procedure. However, since already the most simple start-up procedure, which uses only the Hartree-Fock determinant, is comparatively good, Slater determinants, in general, appear not to be a good choice as approximate environment basis states for convergence acceleration. Based on extensive test calculations it is demonstrated that the computational cost can be significantly reduced if the number of total states m is successively increased. This is done in such a way that the environment states are built up stepwise from system states of previous truncated DMRG sweeps for slowly increasing m values.

  2. Intramolecular hydrogen bonding in 5-nitrosalicylaldehyde: IR spectrum and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Moosavi-Tekyeh, Zainab; Taherian, Fatemeh; Tayyari, Sayyed Faramarz

    2016-05-01

    The structural parameters, and vibrational frequencies of 5-nitrosalicylaldehyde (5NSA) were studied by the FT-IR and Raman spectra and the quantum chemical calculations carried out at the B3LYP/6-311++G(d,p) level of theory in order to investigate the intramolecular hydrogen bonding (IHB) present in its structure. The strength and nature of IHB in the optimized structure of 5NSA were studied in detail by means of the atoms in molecules (AIM) and the natural bond orbital (NBO) approaches. The results obtained were then compared with the corresponding data for its parent molecule, salicylaldehyde (SA). Comparisons made between the geometrical structures for 5NSA and SA, their OH/OD stretching and out-of-plane bending modes, their enthalpies for the hydrogen bond, and their AIM parameters demonstrated a stronger H-bonding in 5NSA compared with that in SA. The calculated binding enthalpy (ΔHbind) for 5NSA was -10.92 kcal mol-1. The observed νOH and γOH appeared at about 3120 cm-1 and 786 cm-1 respectively. The stretching frequency shift of H-bond formation was 426 cm-1 which is consistent with ΔHbind and the strength of H-bond in 5NSA. The delocalization energies and electron delocalization indices derived by the NBO and AIM approaches indicate that the resonance effects were responsible for the stronger IHB in 5NSA than in SA.

  3. Viability of pyrite pulled metabolism in the ‘iron-sulfur world’ theory: Quantum chemical assessment

    NASA Astrophysics Data System (ADS)

    Michalkova, Andrea; Kholod, Yana; Kosenkov, Dmytro; Gorb, Leonid; Leszczynski, Jerzy

    2011-04-01

    The viability of pyrite-pulled metabolism in the 'iron-sulfur world' theory was assessed using a simple model of iron-nickel sulfide (Fe-Ni-S) surface and data obtained from quantum chemical calculations. We have investigated how the individual reactions in the carbon fixation cycle (carboxylic acids formation) on an Fe-Ni-S surface could have operated to produce carboxylic acids from carbon oxide and water. The proposed model cycle reveals how the individual reactions might have functioned and provides the thermodynamics of each step of the proposed pathway. The feasibility of individual reactions, as well the whole cycle was considered. The reaction of acetic acid production from CH 3SH and CO on an Fe-Ni sulfide surface was revealed to be endergonic with a few partial steps having positive Gibbs free energy. On the other hand, the pyrite formation was found to be slightly exergonic. The significance of the catalytic activity of transition metal sulfides in generation of acetic acid was shown. The Gibbs free energy values indicate that the acetic acid synthesis is unfavorable to proceed on the studied Fe-Ni-S model under simulated conditions. The importance of these results in terms of a primordial chemistry on iron-nickel sulfide surfaces is discussed.

  4. Quantum chemical modeling of humic acid/air equilibrium partitioning of organic vapors.

    PubMed

    Niederer, Christian; Goss, Kai-Uwe

    2007-05-15

    Classical approaches for predicting soil organic matter partition coefficients of organic compounds require a calibration with experimental partition data and, for good accuracy, experimental compound descriptors. In this study we evaluate the quantum chemical model COSMO-RS in its COSMOtherm implementation for the prediction of about 200 experimental Leonardite humic acid/air partition coefficients without calibration or experimental compound descriptors, but simply based on molecular structures. For this purpose a Leonardite Humic Acid model monomer limited to 31 carbon atoms was derived from 13C NMR analysis, elemental analysis, and acidic function analysis provided in the literature. Altogether the COSMOtherm calculations showed a good performance and we conclude that it may become a very promising tool for the prediction of sorption in soil organic matter for compounds for which the molecular structure is the only reliable information available. COSMOtherm can be expected to be very robust with respectto new and complex compound structures because its calculations are based on a fundamental assessment of the underlying intermolecular forces. In contrast, other empirical models that are also based on the molecular structure of the sorbate have an application domain that is limited by their calibration data set that is often unknown to the user. PMID:17547191

  5. Molecular geometry of 2-nitrotoluene from gas phase electron diffraction and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Shishkov, Igor F.; Vilkov, Lev V.; Kovács, Attila; Hargittai, István

    1998-04-01

    The molecular geometry of 2-nitrotoluene has been determined by gas phase electron diffraction and quantum chemical computations at the MP2/6-31G∗ and Becke3-Lee-Yang-Parr (B3-LYP)/6-31G∗ levels of theory. Computed differences in CC bond lengths were utilized as constraints in the electron diffraction structure analysis. The scaled B3-LYP/6-31G∗ force field was used to generate the initial set of vibrational amplitudes. The electron diffraction study yielded the following bond lengths ( rg) and bond angles: C 1C 2, 1.405(8) Å; NO, 1.231(3) Å; C 1C 7, 1.508(8) Å; CN, 1.490(9) Å; C 7C 1C 2, 127.3(7)°; NC 2C 3, 113.8(6)°; C 1C 2C 3, 124.2(9)°; C 6C 1C 2, 114.8(6)°; C 5C 6C 1, 123.1(10)°; O-N-O, 124.9(3)°; ϕ(CN), 38(1)°. The structural features of the molecule point to steric interactions prevailing between the methyl and nitro groups.

  6. Quantum chemical and experimental studies on the structure and vibrational spectra of an alkaloid-Corlumine

    NASA Astrophysics Data System (ADS)

    Mishra, Rashmi; Joshi, Bhawani Datt; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha

    2014-01-01

    The study concentrates on an important natural product, phthalide isoquinoline alkaloid Corlumine (COR) [(6R)-6-[(1S)-1,2,3,4-Tetrahydro-6,7-dimethoxy-2-methylisoquinolin-1-yl] furo [3,4-e]-1,3-benzodioxol-8(6H)-one] well known to exhibit spasmolytic and GABA antagonist activity. It was fully characterized by a variety of experimental methods including vibrational spectroscopy (IR and Raman), thermal analysis (DSC), UV and SEM. For a better interpretation and analysis of the results quantum chemical calculations employing DFT were also performed. TD-DFT was employed to elucidate electronic properties for both gaseous and solvent environment using IEF-PCM model. Graphical representation of HOMO and LUMO would provide a valuable insight into the nature of reactivity and some of the structural and physical properties of the title molecule. The structure-activity relationship have been interpreted by mapping electrostatic potential surface (MEP), which is valuable information for the quality control of medicines and drug-receptor interactions. Stability of the molecule arising from hyper conjugative interactions, charge delocalisation has been analyzed using natural bond orbital (NBO) analysis. Computation of thermodynamical properties would help to have a deep insight into the molecule for further applications.

  7. Characterization of citrate capped gold nanoparticle-quercetin complex: Experimental and quantum chemical approach

    NASA Astrophysics Data System (ADS)

    Pal, Rajat; Panigrahi, Swati; Bhattacharyya, Dhananjay; Chakraborti, Abhay Sankar

    2013-08-01

    Quercetin and several other bioflavonoids possess antioxidant property. These biomolecules can reduce the diabetic complications, but metabolize very easily in the body. Nanoparticle-mediated delivery of a flavonoid may further increase its efficacy. Gold nanoparticle is used by different groups as vehicle for drug delivery, as it is least toxic to human body. Prior to search for the enhanced efficacy, the gold nanoparticle-flavonoid complex should be prepared and well characterized. In this article, we report the interaction of gold nanoparticle with quercetin. The interaction is confirmed by different biophysical techniques, such as Scanning Electron Microscope (SEM), Circular Dichroism (CD), Fourier-Transform InfraRed (FT-IR) spectroscopy and Thermal Gravimetric Analysis (TGA) and cross checked by quantum chemical calculations. These studies indicate that gold clusters are covered by citrate groups, which are hydrogen bonded to the quercetin molecules in the complex. We have also provided evidences how capping is important in stabilizing the gold nanoparticle and further enhances its interaction with other molecules, such as drugs. Our finding also suggests that gold nanoparticle-quercetin complex can pass through the membranes of human red blood cells.

  8. Effect of the Titanium Nanoparticle on the Quantum Chemical Characterization of the Liquid Sodium Nanofluid.

    PubMed

    Suzuki, Ai; Bonnaud, Patrick; Williams, Mark C; Selvam, Parasuraman; Aoki, Nobutoshi; Miyano, Masayuki; Miyamoto, Akira; Saito, Jun-ichi; Ara, Kuniaki

    2016-04-14

    Suspension state of a titanium nanoparticle in the liquid sodium was quantum chemically characterized by comparing physical characteristics, viz., electronic state, viscosity, and surface tension, with those of liquid sodium. The exterior titanium atoms on the topmost facet of the nanoparticle were found to constitute a stable Na-Ti layer, and the Brownian motion of a titanium nanoparticle could be seen in tandem with the surrounding sodium atoms. An electrochemical gradient due to the differences in electronegativity of both titanium and sodium causes electron flow from liquid sodium atoms to a titanium nanoparticle, Ti + Na → Ti(δ-) + Na(δ+), making the exothermic reaction possible. In other words, the titanium nanoparticle takes a role as electron-reservoir by withdrawing free electrons from sodium atoms and makes liquid sodium electropositive. The remaining electrons in the liquid sodium still make Na-Na bonds and become more stabilized. With increasing size of the titanium nanoparticle, the deeper electrostatic potential, the steeper electric field, and the larger Debye atmosphere are created in the electric double layer shell. Owing to electropositive sodium-to-sodium electrostatic repulsion between the external shells, naked titanium nanoparticles cannot approach each other, thus preventing the agglomeration. PMID:27008416

  9. Multi-reference vs. single-reference quantum chemical methods in surface hopping dynamics

    NASA Astrophysics Data System (ADS)

    Lischka, Hans

    2015-03-01

    The reliability of quantum chemical methods plays a critical role in performing reliable nonadiabatic dynamics simulations. Unfortunately, the methods for computing excited states including larger regions of the energy surfaces are still computationally expensive or need support from higher level methods. In this talk the capabilities of multireference (MR) versus single reference (SR) methods will be discussed. In terms of SR approaches we focus our attention on the second-order algebraic diagrammatic construction method (ADC(2)). In addition to the direct calculation of nonadiabatic coupling vectors also the method of computing wavefunction overlaps between consecutive time steps is used. Several interesting examples are discussed such as the charge transfer between π systems and the photodecativation of adenine. In the latter example an extensive comparison of the results concerning deactivation pathways and decay times is given for different methods including multireference configuration interaction, ADC(2) and time-dependent density functional theory (TDDFT) using various functionals. The surface hopping dynamics simulations are performed on the basis of the public domain program system NEWTON-X

  10. Quantum chemical calculations to reveal the relationship between the chemical structure and the fluorescence characteristics of phenylquinolinylethynes and phenylisoquinolinylethynes derivatives, and to predict their relative fluorescence intensity.

    PubMed

    Riahi, Siavash; Beheshti, Abolghasem; Ganjali, Mohammad Reza; Norouzi, Parviz

    2009-12-01

    In this paper the relationship between the chemical structure and fluorescence characteristics of 30 phenylquinolinylethyne (PhQE), and phenylisoquinolinylethyne (PhIE) derivatives compounds employing ab initio calculations have been elucidated. Quantum chemical calculations (6-31G) were carried out to obtain: the optimized geometry, energy levels, charges and dipole moments of these compounds, in the singlet (steady and excited states) and triplet states. The relationship between quantum chemical descriptors, and wavelength of maximum excitation and emission indicated that these two parameters have the most correlation with quantum chemical hardness (eta). Also, stokes shift has the most correlation with the square of difference between the maximum of positive charges in the singlet steady and singlet excited states. The quantitative structure-property relationship (QSPR) of PhQE and PhIE was studied for relative fluorescence intensity (RFI). The genetic algorithm (GA) was applied to select the variables that resulted in the best-fit models. After the variable selection, multiple linear regression (MLR) and support vector machine (SVM) were both utilized to construct linear and non-linear QSPR models, respectively. The SVM model demonstrated a better performance than that of the MLR model. The route mean square error (RMSE) in the training and the test sets for the SVM model was 0.195 and 0.324, and the correlation coefficients were 0.965 and 0.960, respectively, thus revealing the reliability of this model. The resulting data indicated that SVM could be used as a powerful modeling tool for QSPR studies. According to the best of our knowledge, this is the first research on QSPR studies to predict RFI for a series of PhQE and PhIE derivative compounds using SVM. PMID:19854100

  11. Continuum and Quantum-Chemical Modeling of Oxygen Reduction on the Cathode in a Solid Oxide Fuel Cell

    SciTech Connect

    Choi, Yongman; Mebane, David S.; Wang, Jeng-Han; Liu, Meilin

    2009-10-08

    Solid oxide fuel cells (SOFCs) have several advantages over other types of fuels cells such as high-energy efficiency and excellent fuel flexibility. To be economically competitive, however, new materials with extraordinary transport and catalytic properties must be developed to dramatically improve the performance while reducing the cost. This article reviews recent advancements in understanding oxygen reduction on various cathode materials using phenomenological and quantum chemical approaches in order to develop novel cathode materials with high catalytic activity toward oxygen reduction. We summarize a variety of results relevant to understanding the interactions between O2 and cathode materials at the molecular level as predicted using quantum-chemical cal-culations and probed using in situ surface vibrational spectroscopy. It is hoped that this in-depth understanding may provide useful insights into the design of novel cath-ode materials for a new generation of SOFCs.

  12. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-04-01

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.

  13. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration.

    PubMed

    Kozuch, Sebastian; Shaik, Sason

    2008-07-01

    A combined kinetic-quantum chemical model is developed with the goal of estimating in a straightforward way the turnover frequency (TOF) of catalytic cycles, based on the state energies obtained by quantum chemical calculations. We describe how the apparent activation energy of the whole cycle, so-called energetic span (delta E), is influenced by the energy levels of two species: the TOF determining transition state (TDTS) and the TOF determining intermediate (TDI). Because these key species need not be adjoining states, we conclude that for catalysis there are no rate-determining steps, only rate determining states. In addition, we add here the influence of reactants concentrations. And, finally, the model is applied to the Haber-Bosch process of ammonia synthesis, for which we show how to calculate which catalyst will be the most effective under specific reagents conditions. PMID:18537227

  14. Accurate theoretical chemistry with coupled pair models.

    PubMed

    Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan

    2009-05-19

    Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now

  15. Quantum chemical characterization of zwitterionic structures: Supramolecular complexes for modifying the wettability of oil-water-limestone system.

    PubMed

    Lopez-Chavez, Ernesto; Garcia-Quiroz, Alberto; Gonzalez-Garcia, Gerardo; Orozco-Duran, Gabriela E; Zamudio-Rivera, Luis S; Martinez-Magadan, José M; Buenrostro-Gonzalez, Eduardo; Hernandez-Altamirano, Raul

    2014-06-01

    In this work, we present a quantum chemical study pertaining to some supramolecular complexes acting as wettability modifiers of oil-water-limestone system. The complexes studied are derived from zwitterionic liquids of the types N'-alkyl-bis, N-alquenil, N-cycloalkyl, N-amyl-bis-beta amino acid or salts acting as sparkling agents. We studied two molecules of zwitterionic liquids (ZL10 and ZL13), HOMO and LUMO levels, and the energy gap between them, were calculated, as well as the electron affinity (EA) and ionization potential (IP), chemical potential, chemical hardness, chemical electrophilicity index and selectivity descriptors such Fukui indices. In this work, electrochemical comparison was realized with cocamidopropyl betaine (CPB), which is a structure zwitterionic liquid type, nowadays widely applied in enhanced recovery processes. PMID:24907932

  16. Full-dimensional quantum calculations of vibrational levels of NH4+ and isotopomers on an accurate ab initio potential energy surface

    DOE PAGESBeta

    Hua -Gen Yu; Han, Huixian; Guo, Hua

    2016-03-29

    Vibrational energy levels of the ammonium cation (NH4+) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4+ and ND4+ exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm–1.

  17. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.

    PubMed

    Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L

    2009-07-14

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol. PMID:19603962

  18. Chemical reaction dynamics of PeCB and TCDD decomposition: A tight-binding quantum chemical molecular dynamics study with first-principles parameterization

    NASA Astrophysics Data System (ADS)

    Suzuki, Ai; Selvam, Parasuraman; Kusagaya, Tomonori; Takami, Seiichi; Kubo, Momoji; Imamura, Akira; Miyamoto, Akira

    The decomposition reaction dynamics of 2,3,4,4',5-penta-chlorinated biphenyl (2,3,4,4',5-PeCB), 3,3',4,4',5-penta-chlorinated biphenyl (3,3',4,4',5-PeCB), and 2,3,7,8-tetra-chlorinated dibenzo-p-dioxin (2,3,7,8-TCDD) was clarified for the first time at atomic and electronic levels, using our novel tight-binding quantum chemical molecular dynamics method with first-principles parameterization. The calculation speed of our new method is over 5000 times faster than that of the conventional first-principles molecular dynamics method. We confirmed that the structure, energy, and electronic states of the above molecules calculated by our new method are quantitatively consistent with those by first-principles calculations. After the confirmation of our methodology, we investigated the decomposition reaction dynamics of the above molecules and the calculated dynamic behaviors indicate that the oxidation of the 2,3,4,4',5-PeCB, 3,3',4,4',5-PeCB, and 2,3,7,8-TCDD proceeds through an epoxide intermediate, which is in good agreement with the previous experimental reports and consistent with our static density functional theory calculations. These results proved that our new tight-binding quantum chemical molecular dynamics method with first-principles parameterization is an effective tool to clarify the chemical reaction dynamics at reaction temperatures.

  19. Electronic transitions in liquid amides studied by using attenuated total reflection far-ultraviolet spectroscopy and quantum chemical calculations.

    PubMed

    Morisawa, Yusuke; Yasunaga, Manaka; Fukuda, Ryoichi; Ehara, Masahiro; Ozaki, Yukihiro

    2013-10-21

    Attenuated total reflection far-ultraviolet (ATR-FUV) spectra in the 140-260 nm region were measured for several types of liquid amides (formamide, FA; N-methylformamide, NMF; N-methylacetamide, NMA; N,N-dimethylformamide, NdMF; and N,N-dimethylacetamide, NdMA) to investigate their electronic transitions in the FUV region. The spectra were compared with the corresponding gas-phase spectra to examine the shift in the major absorption band in the 180-200 nm region going from the gas phase to the liquid phase, and it was found that the peak shift was dependent on the particular amide. FA and NMF, which exhibit intermolecular C=O[ellipsis...H-N hydrogen bonding, show a large shift of ~0.60 eV to lower energy; however, NMA, which also exhibits hydrogen bonding, shows only a small shift. In NdMF and NdMA, C=O groups seem to be coupled, which results in a small peak shift. Two types of quantum chemical calculations, time-dependent density functional theory (TD-DFT) and symmetry-adapted-cluster configuration interaction (SAC-CI) method, were performed to elucidate the origin of the shifts and the band assignments. The shift estimated by the monomer and dimer models with TD-DFT reproduced well the observed shift from the gas phase to the liquid phase. This suggests that the intermolecular hydrogen-bonding interaction significantly affects the magnitude of the shift. The many-body effects were also considered using the larger cluster models (trimer to pentamer). The energy shift calculated using SAC-CI with the monomer and the state-specific polarizable continuum model was also accurate, indicating that the nonlinear polarization effect appears to be important. As for the band assignments, it was found that though the major band can be mainly attributed to the π-π* transition, several types of Rydberg transitions also exist in its vicinity and mixing of orbitals with the same symmetry occurs. The number and type of Rydberg transitions in the spectra depend upon the type of

  20. Electronic transitions in liquid amides studied by using attenuated total reflection far-ultraviolet spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Morisawa, Yusuke; Yasunaga, Manaka; Fukuda, Ryoichi; Ehara, Masahiro; Ozaki, Yukihiro

    2013-10-01

    Attenuated total reflection far-ultraviolet (ATR-FUV) spectra in the 140-260 nm region were measured for several types of liquid amides (formamide, FA; N-methylformamide, NMF; N-methylacetamide, NMA; N,N-dimethylformamide, NdMF; and N,N-dimethylacetamide, NdMA) to investigate their electronic transitions in the FUV region. The spectra were compared with the corresponding gas-phase spectra to examine the shift in the major absorption band in the 180-200 nm region going from the gas phase to the liquid phase, and it was found that the peak shift was dependent on the particular amide. FA and NMF, which exhibit intermolecular C=O…H-N hydrogen bonding, show a large shift of ˜0.60 eV to lower energy; however, NMA, which also exhibits hydrogen bonding, shows only a small shift. In NdMF and NdMA, C=O groups seem to be coupled, which results in a small peak shift. Two types of quantum chemical calculations, time-dependent density functional theory (TD-DFT) and symmetry-adapted-cluster configuration interaction (SAC-CI) method, were performed to elucidate the origin of the shifts and the band assignments. The shift estimated by the monomer and dimer models with TD-DFT reproduced well the observed shift from the gas phase to the liquid phase. This suggests that the intermolecular hydrogen-bonding interaction significantly affects the magnitude of the shift. The many-body effects were also considered using the larger cluster models (trimer to pentamer). The energy shift calculated using SAC-CI with the monomer and the state-specific polarizable continuum model was also accurate, indicating that the nonlinear polarization effect appears to be important. As for the band assignments, it was found that though the major band can be mainly attributed to the π-π* transition, several types of Rydberg transitions also exist in its vicinity and mixing of orbitals with the same symmetry occurs. The number and type of Rydberg transitions in the spectra depend upon the type of amide

  1. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    PubMed

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  2. Chemically differentiating ascorbate-mediated dissolution of quantum dots in cell culture media

    NASA Astrophysics Data System (ADS)

    Su, Cheng-Kuan; Sun, Yuh-Chang

    2013-02-01

    To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule.To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be

  3. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Kundu, Pronab; Chattopadhyay, Nitin

    2016-06-01

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2'-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN2) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ∗ or the ππ∗ absorption band, respectively. Together with the fluorescence bands, the LN2 studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G∗∗ level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S1 and the T1 states - one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S2) state. This is ascribed to the proximity of the minimum of the PEC of the S2 state and the hill-top of the PEC of the S1 state.

  4. Revealing halogen bonding interactions with anomeric systems: an ab initio quantum chemical studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2015-02-01

    A computational study has been performed using MP2 and CCSD(T) methods on a series of O⋯X (X=Br, Cl and I) halogen bonds to evaluate the strength and characteristic of such highly directional noncovalent interactions. The study has been carried out on a series of dimeric complexes formed between interhalogen compounds (such as BrF, BrCl and BrI) and oxygen containing electron donor molecule. The existence and consequences of the anomeric effect of the electron donor molecule has also been investigated through an exploration of halogen bonding interactions in this halogen bonded complexes. The ab initio quantum chemical calculations have been employed to study both the nature and directionality of the halogen molecules toward the sp(3) oxygen atom in anomeric systems. The presence of anomeric nO→σ*CN interaction involves a dominant role for the availability of the axial and equatorial lone pairs of donor O atom to participate with interhalogen compounds in the halogen-bonded complexes. The energy difference between the axial and equatorial conformers with interhalogen compounds reaches up to 4.60 kJ/mol, which however depends upon the interacting halogen atoms and its attaching atoms. The energy decomposition analysis further suggests that the total halogen bond interaction energies are mainly contributed by the attractive electrostatic and dispersion components. The role of substituents attached with the halogen atoms has also been evaluated in this study. With the increase of halogen atom size and the positive nature of σ-hole, the halogen atom interacted more with the electron donor atom and the electrostatic contribution to the total interaction energy enhances appreciably. Further, noncovalent interaction (NCI) studies have been carried out to locate the noncovalent halogen bonding interactions in real space. PMID:25522359

  5. Theoretical prediction of hydrogen-bond basicity pKBHX using quantum chemical topology descriptors.

    PubMed

    Green, Anthony J; Popelier, Paul L A

    2014-02-24

    Hydrogen bonding plays an important role in the interaction of biological molecules and their local environment. Hydrogen-bond strengths have been described in terms of basicities by several different scales. The pKBHX scale has been developed with the interests of medicinal chemists in mind. The scale uses equilibrium constants of acid···base complexes to describe basicity and is therefore linked to Gibbs free energy. Site specific data for polyfunctional bases are also available. The pKBHX scale applies to all hydrogen-bond donors (HBDs) where the HBD functional group is either OH, NH, or NH+. It has been found that pKBHX can be described in terms of a descriptor defined by quantum chemical topology, ΔE(H), which is the change in atomic energy of the hydrogen atom upon complexation. Essentially the computed energy of the HBD hydrogen atom correlates with a set of 41 HBAs for five common HBDs, water (r2=0.96), methanol (r2=0.95), 4-fluorophenol (r2=0.91), serine (r2=0.93), and methylamine (r2=0.97). The connection between experiment and computation was strengthened with the finding that there is no relationship between ΔE(H) and pKBHX when hydrogen fluoride was used as the HBD. Using the methanol model, pKBHX predictions were made for an external set of bases yielding r2=0.90. Furthermore, the basicities of polyfunctional bases correlate with ΔE(H), giving r2=0.93. This model is promising for the future of computation in fragment-based drug design. Not only has a model been established that links computation to experiment, but the model may also be extrapolated to predict external experimental pKBHX values. PMID:24460383

  6. Quantum Chemical Study on ·Cl-Initiated Atmospheric Degradation of Monoethanolamine.

    PubMed

    Xie, Hong-Bin; Ma, Fangfang; Wang, Yuanfang; He, Ning; Yu, Qi; Chen, Jingwen

    2015-11-17

    Recent findings on the formation of ·Cl in continental urban areas necessitate the consideration of ·Cl initiated degradation when assessing the fate of volatile organic pollutants. Monoethanolamine (MEA) is considered as a potential atmospheric pollutant since it is a benchmark and widely utilized solvent in a leading CO2 capture technology. Especially, ·Cl may have specific interactions with the N atom of MEA, which could make the MEA + ·Cl reaction have different pathways and products from those of the MEA + ·OH reaction. Hence, ·Cl initiated reactions with MEA were investigated by a quantum chemical method [CCSD(T)/aug-cc-pVTZ//MP2/6-31+G(3df,2p)] and kinetics modeling. Results show that the overall rate constant for ·Cl initiated H-abstraction of MEA is 5 times faster than that initiated by ·OH, and the tropospheric lifetimes of MEA will be overestimated by 6-46% when assuming that [·Cl]/[·OH] = 1-10% if the role of ·Cl is ignored. The MEA + ·Cl reaction exclusively produces MEA-N that finally transforms into several products including mutagenic nitramine and carcinogenic nitrosamine via further reactions with O2/NOx, and the contribution of ·Cl to their formation is about 25-250% of that of ·OH. Thus, it is necessary to consider ·Cl initiated tropospheric degradation of MEA for its risk assessment. PMID:26495768

  7. Study of polymorphism in imatinib mesylate: A quantum chemical approach using electronic and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Srivastava, Anubha; Joshi, B. D.; Tandon, Poonam; Ayala, A. P.; Bansal, A. K.; Grillo, Damián

    2013-02-01

    Imatinib mesylate, 4-(4-methyl-piperazin-1-ylmethyl)-N-u[4-methyl-3-(4-pyridin-3-yl)pyrimidine-2-ylamino)phenyl]benzamide methanesulfonate is a therapeutic drug that is approved for the treatment of chronic myelogeneous leukemia (CML) and gastrointestinal stromal tumors (GIST). It is known that imatinib mesylate exists in two polymorphic forms α and β. However, β-form is more stable than the α-form. In this work, we present a detailed vibrational spectroscopic investigation of β-form by using FT-IR and FT-Raman spectra. These data are supported by quantum mechanical calculations using DFT employing 6-311G(d,p) basis set, which allow us to characterize completely the vibrational spectra of this compound. The FT-IR spectrum of α-form has also been discussed. The importance of hydrogen-bond formation in the molecular packing arrangements of both forms has been examined with the vibrational shifts observed due to polymorphic changes. The red shift of the NH stretching bands in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond. The UV-vis spectroscopic studies along with the HOMO-LUMO analysis of both polymorphs (α and β) were performed and their chemical activity has been discussed. The TD-DFT method was used to calculate the electronic absorption spectra in the gas phase as well as in the solvent environment using IEF-PCM model and 6-31G basis set. Finally, the results obtained complements to the experimental findings.

  8. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies.

    PubMed

    Kundu, Pronab; Chattopadhyay, Nitin

    2016-06-21

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2'-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN2) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ(∗) or the ππ(∗) absorption band, respectively. Together with the fluorescence bands, the LN2 studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G(∗∗) level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S1 and the T1 states-one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S2) state. This is ascribed to the proximity of the minimum of the PEC of the S2 state and the hill-top of the PEC of the S1 state. PMID:27334172

  9. Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.

    PubMed

    Busch, Anna; González-García, Núria; Lendvay, György; Olzmann, Matthias

    2015-07-16

    The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions. PMID:25853321

  10. Chemical Control of Lead Sulfide Quantum Dot Shape, Self-Assembly, and Charge Transport

    NASA Astrophysics Data System (ADS)

    McPhail, Martin R.

    Lead(II) sulfide quantum dots (PbS QDs) are a promising excitonic material for numerous application that require that control of fluxes of charge and energy at nanoscale interfaces, such as solar energy conversion, photo- and electrocatalysis, light emitting diodes, chemical sensing, single-electron logic elements, field effect transistors, and photovoltaics. PbS QDs are particularly suitable for photonics applications because they exhibit size-tunable band-edge absorption and fluorescence across the entire near-infrared spectrum, undergo efficient multi-exciton generation, exhibit a long radiative lifetime, and possess an eight-fold degenerate ground-state. The effective integration of PbS QDs into these applications requires a thorough understanding of how to control their synthesis, self-assembly, and charge transport phenomena. In this document, I describe a series of experiments to elucidate three levels of chemical control on the emergent properties of PbS QDs: (1) the role of surface chemistry in controlling PbS QD shape during solvothermal synthesis, (2) the role of QD shape and ligand functionalization in self-assembly at a liquid-air interface, and (3) the role of QD packing structure on steady-state conductivity and transient current dynamics. At the synthetic level (1), I show that the final shape and surface chemistry of PbS QDs is highly sensitive to the formation of organosulfur byproducts by commonly used sulfur reagents. The insight into PbS QD growth gained from this work is then developed to controllably tune PbS QD shape from cubic to octahedral to hexapodal while maintaining QD size. At the following level of QD self-assembly (2), I show how QD size and shape dictate packing geometry in extended 2D arrays and how this packing can be controllably interrupted in mixed monolayers. I also study the role of ligand structure on the reorganization of QD arrays at a liquid-air interface and find that the specific packing defects in QD arrays vary

  11. Rotational spectra of rare isotopic species of fluoroiodomethane: Determination of the equilibrium structure from rotational spectroscopy and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    Puzzarini, Cristina; Cazzoli, Gabriele; López, Juan Carlos; Alonso, José Luis; Baldacci, Agostino; Baldan, Alessandro; Stopkowicz, Stella; Cheng, Lan; Gauss, Jürgen

    2012-07-01

    Supported by accurate quantum-chemical calculations, the rotational spectra of the mono- and bi-deuterated species of fluoroiodomethane, CHDFI and CD2FI, as well as of the 13C-containing species, 13CH2FI, were recorded for the first time. Three different spectrometers were employed, a Fourier-transform microwave spectrometer, a millimeter/submillimter-wave spectrometer, and a THz spectrometer, thus allowing to record a huge portion of the rotational spectrum, from 5 GHz up to 1.05 THz, and to accurately determine the ground-state rotational and centrifugal-distortion constants. Sub-Doppler measurements allowed to resolve the hyperfine structure of the rotational spectrum and to determine the complete iodine quadrupole-coupling tensor as well as the diagonal elements of the iodine spin-rotation tensor. The present investigation of rare isotopic species of CH2FI together with the results previously obtained for the main isotopologue [C. Puzzarini, G. Cazzoli, J. C. López, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, J. Chem. Phys. 134, 174312 (2011);, 10.1063/1.3583498 G. Cazzoli, A. Baldacci, A. Baldan, and C. Puzzarini, Mol. Phys. 109, 2245 (2011)], 10.1080/00268976.2011.609142 enabled us to derive a semi-experimental equilibrium structure for fluoroiodomethane by means of a least-squares fit procedure using the available experimental ground-state rotational constants together with computed vibrational corrections. Problems related to the missing isotopic substitution of fluorine and iodine were overcome thanks to the availability of an accurate theoretical equilibrium geometry (computed at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations).

  12. High Color-Purity Green, Orange, and Red Light-Emitting Didoes Based on Chemically Functionalized Graphene Quantum Dots.

    PubMed

    Kwon, Woosung; Kim, Young-Hoon; Kim, Ji-Hee; Lee, Taehyung; Do, Sungan; Park, Yoonsang; Jeong, Mun Seok; Lee, Tae-Woo; Rhee, Shi-Woo

    2016-01-01

    Chemically derived graphene quantum dots (GQDs) to date have showed very broad emission linewidth due to many kinds of chemical bondings with different energy levels, which significantly degrades the color purity and color tunability. Here, we show that use of aniline derivatives to chemically functionalize GQDs generates new extrinsic energy levels that lead to photoluminescence of very narrow linewidths. We use transient absorption and time-resolved photoluminescence spectroscopies to study the electronic structures and related electronic transitions of our GQDs, which reveals that their underlying carrier dynamics is strongly related to the chemical properties of aniline derivatives. Using these functionalized GQDs as lumophores, we fabricate light-emitting didoes (LEDs) that exhibit green, orange, and red electroluminescence that has high color purity. The maximum current efficiency of 3.47 cd A(-1) and external quantum efficiency of 1.28% are recorded with our LEDs; these are the highest values ever reported for LEDs based on carbon-nanoparticle phosphors. This functionalization of GQDs with aniline derivatives represents a new method to fabricate LEDs that produce natural color. PMID:27048887

  13. High Color-Purity Green, Orange, and Red Light-Emitting Didoes Based on Chemically Functionalized Graphene Quantum Dots

    PubMed Central

    Kwon, Woosung; Kim, Young-Hoon; Kim, Ji-Hee; Lee, Taehyung; Do, Sungan; Park, Yoonsang; Jeong, Mun Seok; Lee, Tae-Woo; Rhee, Shi-Woo

    2016-01-01

    Chemically derived graphene quantum dots (GQDs) to date have showed very broad emission linewidth due to many kinds of chemical bondings with different energy levels, which significantly degrades the color purity and color tunability. Here, we show that use of aniline derivatives to chemically functionalize GQDs generates new extrinsic energy levels that lead to photoluminescence of very narrow linewidths. We use transient absorption and time-resolved photoluminescence spectroscopies to study the electronic structures and related electronic transitions of our GQDs, which reveals that their underlying carrier dynamics is strongly related to the chemical properties of aniline derivatives. Using these functionalized GQDs as lumophores, we fabricate light-emitting didoes (LEDs) that exhibit green, orange, and red electroluminescence that has high color purity. The maximum current efficiency of 3.47 cd A−1 and external quantum efficiency of 1.28% are recorded with our LEDs; these are the highest values ever reported for LEDs based on carbon-nanoparticle phosphors. This functionalization of GQDs with aniline derivatives represents a new method to fabricate LEDs that produce natural color. PMID:27048887

  14. High Color-Purity Green, Orange, and Red Light-Emitting Didoes Based on Chemically Functionalized Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Kwon, Woosung; Kim, Young-Hoon; Kim, Ji-Hee; Lee, Taehyung; Do, Sungan; Park, Yoonsang; Jeong, Mun Seok; Lee, Tae-Woo; Rhee, Shi-Woo

    2016-04-01

    Chemically derived graphene quantum dots (GQDs) to date have showed very broad emission linewidth due to many kinds of chemical bondings with different energy levels, which significantly degrades the color purity and color tunability. Here, we show that use of aniline derivatives to chemically functionalize GQDs generates new extrinsic energy levels that lead to photoluminescence of very narrow linewidths. We use transient absorption and time-resolved photoluminescence spectroscopies to study the electronic structures and related electronic transitions of our GQDs, which reveals that their underlying carrier dynamics is strongly related to the chemical properties of aniline derivatives. Using these functionalized GQDs as lumophores, we fabricate light-emitting didoes (LEDs) that exhibit green, orange, and red electroluminescence that has high color purity. The maximum current efficiency of 3.47 cd A‑1 and external quantum efficiency of 1.28% are recorded with our LEDs; these are the highest values ever reported for LEDs based on carbon-nanoparticle phosphors. This functionalization of GQDs with aniline derivatives represents a new method to fabricate LEDs that produce natural color.

  15. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions.

    PubMed

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-10

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, (13)C and (1)H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data. PMID:24967544

  16. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions

    NASA Astrophysics Data System (ADS)

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-01

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, 13C and 1H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data.

  17. Stabilization, Injection and Control of Quantum Cascade Lasers, and Their Appli-cation to Chemical Sensing in the Infrared

    SciTech Connect

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.

    2004-12-01

    Quantum cascade lasers (QCLs) are a relatively new type of semiconductor laser operating in the mid- to long-wave infrared. These monopolar multilayered quantum well structures can be fabricated to operate anywhere between 3.5 microns and 20 microns, which includes the molecular fingerprint region of the in-frared. This makes them an ideal choice for infrared chemical sensing, a topic of great interest at present. Frequency stabilization and injection locking increase the utility of QCLs. We present results of locking quantum cascade lasers to optical cavities, achieving relative linewidths down to 5.6 Hz. We report injec-tion locking of one distributed feedback grating QCL with light from a similar QCL, demonstrating capture ranges of up to ±500 MHz, and suppression of amplitude modulation by up to 49 dB. We also present various cavity-enhanced chemical sensors employing the frequency stabilization techniques developed, in-cluding the resonant sideband technique known as Nice-Ohms. Sensitivities of 9.7 x 10-11 cm-1 Hz-1/2 have been achieved in nitrous oxide.

  18. Quantum-chemical analyses of aromaticity, UV spectra, and NMR chemical shifts in plumbacyclopentadienylidenes stabilized by Lewis bases.

    PubMed

    Kawamura, Toshiaki; Abe, Minori; Saito, Masaichi; Hada, Masahiko

    2014-04-30

    We carried out a series of zeroth-order regular approximation (ZORA)-density functional theory (DFT) and ZORA-time-dependent (TD)-DFT calculations for molecular geometries, NMR chemical shifts, nucleus-independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2 ((t) BuMe2 Si)2 C4 PbL1 L2 (L1, L2 = tetrahydrofuran, Pyridine, N-heterocyclic carbene), and their model molecules. We mainly discussed the Lewis-base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n-Huckel rule is applied to the fractional π-electron number. The calculated (13)C- and (207)Pb-NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the (13)C-NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the (207)Pb-NMR chemical shifts and J[Pb-C] but also in the (13)C-NMR chemical shifts of carbons adjacent to the lead atom. PMID:24643814

  19. Chemical sensing with nanoparticles as optical reporters: from noble metal nanoparticles to quantum dots and upconverting nanoparticles.

    PubMed

    Deng, Wei; Goldys, Ewa M

    2014-11-01

    A wide variety of biological and medical analyses are based on the use of optical signals to report specific molecular events. Thanks to advances in nanotechnology, various nanostructures have been extensively used as optical reporters in bio- and chemical assays. This review describes recent progress in chemical sensing using noble metal nanoparticles (gold and silver), quantum dots and upconverting nanoparticles. It provides insights into various nanoparticle-based sensing strategies including fluorescence/luminescence resonance energy transfer nanoprobes as well as activatable probes sensitive to specific changes in the biological environment. Finally we list some research challenges to be overcome in order to accelerate the development of applications of nanoparticle bio- and chemical sensors. PMID:25170528

  20. Experimental and quantum chemical studies of a novel synthetic prenylated chalcone

    PubMed Central

    2013-01-01

    Background Chalcones are ubiquitous natural compounds with a wide variety of reported biological activities, including antitumoral, antiviral and antimicrobial effects. Furthermore, chalcones are being studied for its potential use in organic electroluminescent devices; therefore the description of their spectroscopic properties is important to elucidate the structure of these molecules. One of the main techniques available for structure elucidation is the use of Nuclear Magnetic Resonance Spectroscopy (NMR). Accordingly, the prediction of the NMR spectra in this kind of molecules is necessary to gather information about the influence of substituents on their spectra. Results A novel substituted chalcone has been synthetized. In order to identify the functional groups present in the new synthesized compound and confirm its chemical structure, experimental and theoretical 1H-NMR and 13C-NMR spectra were analyzed. The theoretical molecular structure and NMR spectra were calculated at both the Hartree-Fock and Density Functional (meta: TPSS; hybrid: B3LYP and PBE1PBE; hybrid meta GGA: M05-2X and M06-2X) levels of theory in combination with a 6-311++G(d,p) basis set. The structural parameters showed that the best method for geometry optimization was DFT:M06-2X/6-311++G(d,p), whereas the calculated bond angles and bond distances match experimental values of similar chalcone derivatives. The NMR calculations were carried out using the Gauge-Independent Atomic Orbital (GIAO) formalism in a DFT:M06-2X/6-311++G(d,p) optimized geometry. Conclusion Considering all HF and DFT methods with GIAO calculations, TPSS and PBE1PBE were the most accurate methods used for calculation of 1H-NMR and 13C-NMR chemical shifts, which was almost similar to the B3LYP functional, followed in order by HF, M05-2X and M06-2X methods. All calculations were done using the Gaussian 09 software package. Theoretical calculations can be used to predict and confirm the structure of substituted chalcones

  1. Base-catalyzed reactions of environmentally relevant N-chloro-piperidines. A quantum-chemical study.

    PubMed

    Šakić, Davor; Zipse, Hendrik; Vrček, Valerije

    2011-06-01

    Electronic structure methods have been applied to calculate the gas and aqueous phase reaction energies for base-induced rearrangements of N-chloropiperidine, N-chloro-3-(hydroxymethyl)piperidine, and N-chloro-4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine. These derivatives have been selected as representative models for studying the chemical fate of environmentally relevant chloramines. The performance of different computational methods (MP2, MP4, QCISD, B3LYP and B2PLYP) for calculating the thermochemistry of rearrangement reactions was assessed. The latter method produces energies similar to those obtained at G3B3(+) level, which themselves have been tested against experimental results. Experimental energy barriers and enthalpies for ring inversion, nitrogen inversion and dehydrochlorination reactions in N-chloropiperidine have been accurately reproduced when solvent effects have been included. It was also found that the combined use of continuum solvation models (e.g. CPCM) and explicit consideration of a single water molecule is sufficient to properly describe the water-assisted rearrangement of N-chlorinated compounds in basic media. In the case of N-chloro-4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine, which represents the chlorinated metabolite of the antidepressant paroxetine, several different reactions (intramolecular addition, substitution, and elimination reactions) have been investigated. Transition state structures for these processes have been located together with minimum energy structures of conceivable products. Imine 4A is predicted to be the most stable reaction product, closely followed by imine 4B and oxazinane 8, while formation of isoxazolidine 7 is much less favourable. Calculated reaction barriers in aqueous solution are quite similar for all four processes, the lowest barrier being predicted for the formation of imine 4A. PMID:21503305

  2. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement.

    PubMed

    Borbulevych, Oleg; Martin, Roger I; Tickle, Ian J; Westerhoff, Lance M

    2016-04-01

    Gaining an understanding of the protein-ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states. A novel scoring method, called XModeScore, is described which enumerates the possible protomeric/tautomeric modes, refines each mode against X-ray diffraction data with the semiempirical quantum-mechanics (PM6) Hamiltonian and scores each mode using a combination of energetic strain (or ligand strain) and rigorous statistical analysis of the difference electron-density distribution. It is shown that using XModeScore it is possible to consistently distinguish the correct bound protomeric/tautomeric modes based on routine X-ray data, even at lower resolutions of around 3 Å. These X-ray results are compared with the results obtained from much more expensive and laborious neutron diffraction studies for three different examples: tautomerism in the acetazolamide ligand of human carbonic anhydrase II (PDB entries 3hs4 and 4k0s), tautomerism in the 8HX ligand of urate oxidase (PDB entries 4n9s and 4n9m) and the protonation states of the catalytic aspartic acid found within the active site of an aspartic protease (PDB entry 2jjj). In each case, XModeScore applied to the X-ray diffraction data is able to determine the correct protonation state as defined by the neutron diffraction data. The impact of QM-based refinement versus conventional

  3. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement

    PubMed Central

    Borbulevych, Oleg; Martin, Roger I.; Tickle, Ian J.; Westerhoff, Lance M.

    2016-01-01

    Gaining an understanding of the protein–ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states. A novel scoring method, called XModeScore, is described which enumerates the possible protomeric/tautomeric modes, refines each mode against X-ray diffraction data with the semiempirical quantum-mechanics (PM6) Hamiltonian and scores each mode using a combination of energetic strain (or ligand strain) and rigorous statistical analysis of the difference electron-density distribution. It is shown that using XModeScore it is possible to consistently distinguish the correct bound protomeric/tautomeric modes based on routine X-ray data, even at lower resolutions of around 3 Å. These X-ray results are compared with the results obtained from much more expensive and laborious neutron diffraction studies for three different examples: tautomerism in the acetazolamide ligand of human carbonic anhydrase II (PDB entries 3hs4 and 4k0s), tautomerism in the 8HX ligand of urate oxidase (PDB entries 4n9s and 4n9m) and the protonation states of the catalytic aspartic acid found within the active site of an aspartic protease (PDB entry 2jjj). In each case, XModeScore applied to the X-ray diffraction data is able to determine the correct protonation state as defined by the neutron diffraction data. The impact of QM-based refinement versus conventional

  4. Quantum chemical modelling of reactivity and selectivity of 1,2-dithiolanes towards retroviral and cellular zinc fingers

    NASA Astrophysics Data System (ADS)

    Topol, Igor A.; Nemukhin, Alexander V.; Burt, Stanley K.

    Interactions of 1,2-dithiolane species with zinc-containing sites, which mimic the zinc finger domains of retroviral and the cellular zinc finger proteins, have been investigated by quantum chemistry tools. According to the calculations, the immediate domains of zinc binding sites in the cellular and retroviral zinc fingers interact differently with such agents of the disulphide family. Thus, when approaching the model cellular-type domains, the molecules of 1,2-dithiolanes experience considerable potential barriers along the reaction path. However, these species react practically barrier-less with the model retroviral-type domains at the correlated DFT level. The results of the quantum chemical modelling provide firm support to the selectivity of 1,2-dithiolanes towards retroviral and cellular zinc fingers. This can be of great practical importance for the design of therapeutics that accomplish functional inactivation of the zinc fingers of the human immunodeficiency virus (HIV-1) retroviral type nucleocapsid protein NCp7.

  5. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  6. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    PubMed Central

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.; Merz, Kenneth M.; Westerhoff, Lance M.

    2014-01-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography. PMID:24816093

  7. Parameters for the RM1 Quantum Chemical Calculation of Complexes of the Trications of Thulium, Ytterbium and Lutetium

    PubMed Central

    Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.

    2016-01-01

    The RM1 quantum chemical model for the calculation of complexes of Tm(III), Yb(III) and Lu(III) is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications. PMID:27223475

  8. Terpenes in the gas phase: The structural conformation of S-(-)-perillaldehyde investigated by microwave spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Avilés Moreno, Juan Ramón; Partal Ureña, Francisco; López González, Juan Jesús; Huet, Thérèse R.

    2009-04-01

    S-(-)-perillaldehyde (C 10H 14O) has been characterized in the gas phase using a Fourier transform microwave spectroscopy experiment in a supersonic molecular beam. Two conformers - with the isopropenyl group in the equatorial position - have been detected and described by a set of molecular parameters including the principal rotational constants and the quartic centrifugal distortion parameters. Quantum chemical calculations indicate that a third conformer might not be observed due to relaxation processes in the jet. The gas phase results are compared with the liquid phase IR-Raman-VCD spectra. Our study shows that gas phase spectroscopy is a powerful tool for characterizing monoterpenes.

  9. Combined friction force microscopy and quantum chemical investigation of the tribotronic response at the propylammonium nitrate-graphite interface.

    PubMed

    Li, H; Atkin, R; Page, A J

    2015-06-28

    The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction. PMID:26027558

  10. Raman analysis of chemical substitution of Cd atoms by Hg in CdSe quantum dots and rods

    NASA Astrophysics Data System (ADS)

    Cherevkov, Sergei A.; Baranov, Alexander V.; Ushakova, Elena V.; Litvin, Alexander P.; Fedorov, Anatoly V.; Prudnikau, Anatol V.; Artemyev, Mikhail V.

    2016-01-01

    We investigate nanocrystals of ternary compounds CdXHg1-XSe with 0chemical composition and the frequencies of CdSe-like LO and the HgSe-like TO and LO-modes. It is shown that the crystalline structure of the original CdSe NCs used for Cd/Hg substitution, either zinc blende or wurtzite, strongly affects the structural properties of the resultant CdXHg1-XSe quantum dots and rods.

  11. Parameters for the RM1 Quantum Chemical Calculation of Complexes of the Trications of Thulium, Ytterbium and Lutetium.

    PubMed

    Filho, Manoel A M; Dutra, José Diogo L; Rocha, Gerd B; Simas, Alfredo M; Freire, Ricardo O

    2016-01-01

    The RM1 quantum chemical model for the calculation of complexes of Tm(III), Yb(III) and Lu(III) is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications. PMID:27223475

  12. Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Lin, Sheng-Chih; Lee, Yuh-Lang; Chang, Chi-Hsiu; Shen, Yu-Jen; Yang, Yu-Min

    2007-04-01

    Two methods, coupling self-assembled monolayer and chemical bath deposition (CBD), were utilized to assemble cadmium sulfide (CdS) quantum dots (QDs) onto mesoporous TiO2 films for dye-sensitized solar cell (DSSC) applications. Colloidal CdS QDs were first self-assembled on the TiO2 surface. CBD was then introduced to replenish the incorporated amount and increase the coverage ratio of CdS QDs on the TiO2 surface. The preassembled CdS QDs act as nucleation sites in the CBD process, forming a CdS nanofilm with an interfacial structure capable of inhibiting the recombination of injected electrons. An efficiency as high as 1.35% for the QD-sensitized DSSC was achieved using the present strategy.

  13. Micromechanical measurement of beating patterns in the quantum oscillatory chemical potential of InGaAs quantum wells due to spin-orbit coupling

    SciTech Connect

    Herzog, Florian Wilde, Marc A.; Heyn, Christian; Hardtdegen, Hilde; Schäpers, Thomas; Grundler, Dirk

    2015-08-31

    The quantum oscillatory magnetization M(B) and chemical potential μ(B) of a two-dimensional (2D) electron system provide important and complementary information about its ground state energy at low temperature T. We developed a technique that provides both quantities in the same cool-down process via a decoupled static operation and resonant excitation of a micromechanical cantilever. On InGaAs/InP heterostructures, we observed beating patterns in both M(B) and μ(B) attributed to spin-orbit interaction. A significantly enhanced sensitivity in μ enabled us to extract Rashba and Dresselhaus parameters with high accuracy. The technique is powerful for detailed investigations on the electronic properties of 2D materials.

  14. Kinetic isotope effect of the (16)O + (36)O2 and (18)O + (32)O2 isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study.

    PubMed

    Sun, Zhigang; Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-01

    The O + O2 isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the (18)O + (32)O2 and (16)O + (36)O2 reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the "reef" structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients. PMID:25956105

  15. Kinetic isotope effect of the 16O + 36O2 and 18O + 32O2 isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-01

    The O + O2 isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the 18O + 32O2 and 16O + 36O2 reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the "reef" structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients.

  16. [Quantum-chemical basics of pharmacokinetics (literary review and own investigations)].

    PubMed

    Chekman, I S; Horchakova, N O; Nebesna, T Iu; Kazakova, O O; Luk"ianchuk, V D; Bielienichev, I F; Zviagintseva, T V; Syrova, H O; Zagorodnyĭ, M I; Kravets', D S

    2012-01-01

    The work is devoted to the use of quantum-pharmacological approaches in pharmacokinetic investigations. The main objective of the pharmacological researches is to find new, more active and less toxic drugs. To date, such a search is carried out empirically. The current approach can not fully meet the needs of medicine in the new drugs, requires considerable time and financial costs and does not meet modern standards of bioethics. Quantum pharmacology leads to the synthesis of drugs with desired properties is much faster and more efficient. Computer prediction of pharmacokinetic and biopharmaceutical properties of biologically active substances can make 50-70% more effective development of original drugs. PMID:23356130

  17. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    NASA Astrophysics Data System (ADS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2012-07-01

    The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S1-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  18. Structure of the antiviral stavudine using quantum chemical methods: Complete conformational space analysis, 3D potential energy surfaces and solid state simulations

    NASA Astrophysics Data System (ADS)

    Alcolea Palafox, M.; Iza, N.

    2012-11-01

    The molecular structure and energy of the anti-HIV, 2',3'-didehydro-3'-deoxythymidine (D4T, stavudine or Zerit) nucleoside analogue was determined by using MP2, B3LYP and B971 quantum chemical methods. The global minimum was determined through 3D potential energy surfaces (PES). These surfaces were built by rotation of the exocyclic χ, γ and β torsional angles, in steps of 20°, and full optimization of the remaining parameters. As consequence 5832 geometries were final optimized. The search located 25 local minimum, 4 of which are by MP2 within a 2 kcal/mol electronic energy range of the global minimum. The whole conformational parameters as well as P, νmax were analyzed in all the stable conformers. The global minimum by MP2 corresponds to the calculated values of the exocyclic torsional angles: χ = -103.6°, β = 63.8° and γ = 60.6°. The results obtained are in accordance to those found in thymidine and in related anti-HIV nucleoside analogues. The effect of hydration on the two most stable conformers is analyzed by continuous and discrete models up to 20 water molecules. The solid state was also simulated. The dimer forms found in the crystal unit cell were accurately determined and they are in accordance to the X-ray data.

  19. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    NASA Astrophysics Data System (ADS)

    Pham, Chuyen V.; Krueger, Michael; Eck, Michael; Weber, Stefan; Erdem, Emre

    2014-03-01

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g = 2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  20. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason

    2015-01-01

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 μm) at a 10 Hz repetition rate. The sensor was designed for operation in multiple modes, including gas sensing within a multi-pass Heriott cell and intracavity absorption sensing using the ECQCL compliance voltage. In addition, the ECQCL compliance voltage was used to reduce effects of long-term drifts in the ECQCL output power. The sensor was characterized for noise, drift, and detection of chemicals including ammonia, methanol, ethanol, isopropanol, Freon- 134a, Freon-152a, and diisopropyl methylphosphonate (DIMP). We also present use of the sensor for mobile detection of ammonia downwind of cattle facilities, in which concentrations were recorded at 1-s intervals.

  1. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    PubMed

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets. PMID:24675610

  2. Unification of ground-state aromaticity criteria - structure, electron delocalization, and energy - in light of the quantum chemical topology.

    PubMed

    Badri, Zahra; Foroutan-Nejad, Cina

    2016-04-28

    In the present account we investigate a theoretical link between the bond length, electron sharing, and bond energy within the context of quantum chemical topology theories. The aromatic stabilization energy, ASE, was estimated from this theoretical link without using isodesmic reactions for the first time. The ASE values obtained from our method show a meaningful correlation with the number of electrons contributing to the aromaticity. This theoretical link demonstrates that structural, electronic, and energetic criteria of aromaticity - ground-state aromaticity - belong to the same class and guarantees that they assess the same property as aromaticity. Theory suggests that interatomic exchange-correlation potential, obtained from the theory of Interacting Quantum Atoms (IQA), is linearly connected to the delocalization index of Quantum Theory of Atoms in Molecules (QTAIM) and the bond length through a first order approximation. Our study shows that the relationship between energy, structure and electron sharing marginally deviates from the ideal linear form expected from the first order approximation. The observed deviation from linearity was attributed to a different contribution of exchange-correlation to the bond energy for the σ- and π-frameworks. Finally, we proposed two-dimensional energy-structure-based aromaticity indices in analogy to the electron sharing indices of aromaticity. PMID:26678719

  3. Chemical Reaction CO+OH(•) → CO2+H(•) Autocatalyzed by Carbon Dioxide: Quantum Chemical Study of the Potential Energy Surfaces.

    PubMed

    Masunov, Artëm E; Wait, Elizabeth; Vasu, Subith S

    2016-08-01

    The supercritical carbon dioxide medium, used to increase efficiency in oxy combustion fossil energy technology, may drastically alter both rates and mechanisms of chemical reactions. Here we investigate potential energy surface of the second most important combustion reaction with quantum chemistry methods. Two types of effects are reported: formation of the covalent intermediates and formation of van der Waals complexes by spectator CO2 molecule. While spectator molecule alter the activation barrier only slightly, the covalent bonding opens a new reaction pathway. The mechanism includes sequential covalent binding of CO2 to OH radical and CO molecule, hydrogen transfer from oxygen to carbon atoms, and CH bond dissociation. This reduces the activation barrier by 11 kcal/mol at the rate-determining step and is expected to accelerate the reaction rate. The finding of predicted catalytic effect is expected to play an important role not only in combustion but also in a broad array of chemical processes taking place in supercritical CO2 medium. It may open a new venue for controlling reaction rates for chemical manufacturing. PMID:27351778

  4. Chemical Principles Revisited: Perspectives on the Uncertainty Principle and Quantum Reality.

    ERIC Educational Resources Information Center

    Bartell, Lawrence S.

    1985-01-01

    Explicates an approach that not only makes the uncertainty seem more useful to introductory students but also helps convey the real meaning of the term "uncertainty." General topic areas addressed include probability amplitudes, rationale behind the uncertainty principle, applications of uncertainty relations, and quantum processes. (JN)

  5. Spectroscopic and quantum chemical correlation for structural evaluation, chemical reactivity and non-linear optical property investigation of two chalcone having pyrrole moiety: A comparative study

    NASA Astrophysics Data System (ADS)

    Singh, R. N.; Rawat, Poonam; Baboo, Vikas; Kumar, Yashvinder

    2015-04-01

    As part of study of pyrrole-chalcone, ethyl 4-[3-(4-chloro-phenyl)-acryloyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate (ECADPC) and ethyl 3,5-dimethyl-4-[3-(3-nitro-phenyl)-acryloyl]-1H-pyrrole-2-carboxylate (EDNAPC) have been synthesized by Claisen-Schmidt condensation using chloro- and nitro- substituted aromatic aldehyde and ethyl 3,5-dimetyl-4-acetyl-1H-pyrrole-2-carboxylate. The products were characterized by 1H NMR, UV-Visible, FT-IR spectroscopic methods and Quantum chemical calculations. Conformational analysis, normal mode frequencies and corresponding vibrational assignments based on potential energy distribution study revealed that ECADPC and EDNAPC exist in dimer form in solid state. 'Quantum theory of Atoms in molecules' (QTAIM) analysis has been performed to know the strength of intra- and intermolecular interactions. The UV-Visible spectra study reveals that the compounds are almost transparent in the visible region. Angular distribution of the probability density for population conformational analysis of ECADPC and EDNAPC are determined by analysis of the potential energy surface (PES). The calculated static first hyperpolarizability (β0) value for monomers of ECADPC and EDNAPC are 17.078 × 10-30 and 2.344 × 10-30 esu respectively, infers ECADPC to be more suitable for non-linear optical (NLO) response than EDNAPC. The electronic descriptors analysis predicts the nature of local reactive sites within the molecule.

  6. Complementing high-throughput X-ray powder diffraction data with quantum-chemical calculations: Application to piroxicam form III.

    PubMed

    Naelapää, Kaisa; van de Streek, Jacco; Rantanen, Jukka; Bond, Andrew D

    2012-11-01

    High-throughput crystallisation and characterisation platforms provide an efficient means to carry out solid-form screening during the pre-formulation phase. To determine the crystal structures of identified new solid phases, however, usually requires independent crystallisation trials to produce single crystals or bulk samples of sufficient quantity to carry out high-quality X-ray diffraction measurements. This process could be made more efficient by a robust procedure for crystal structure determination directly from high-throughput X-ray powder diffraction (XRPD) data. Quantum-chemical calculations based on dispersion-corrected density functional theory (DFT-D) have now become feasible for typical small organic molecules used as active pharmaceutical ingredients. We demonstrate how these calculations can be applied to complement high-throughput XRPD data by determining the crystal structure of piroxicam form III. These combined experimental/quantum-chemical methods can provide access to reliable structural information in the course of an intensive experimentally based solid-form screening activity or in other circumstances wherein single crystals might never be viable, for example, for polymorphs obtained only during high-energy processing such as spray drying or milling. PMID:22886472

  7. Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared.

    PubMed

    Taubman, Matthew S; Myers, Tanya L; Cannon, Bret D; Williams, Richard M

    2004-12-01

    Quantum cascade lasers (QCLs) are a relatively new type of semiconductor laser operating in the mid- to long-wave infrared. These monopolar multilayered quantum well structures can be fabricated to operate anywhere between 3.5 and 20 microm, which includes the molecular fingerprint region of the infrared. This makes them an ideal choice for infrared chemical sensing, a topic of great interest at present. Frequency stabilization and injection locking increase the utility of QCLs. We present results of locking QCLs to optical cavities, achieving relative linewidths down to 5.6 Hz. We report injection locking of one distributed feedback grating QCL with light from a similar QCL, demonstrating capture ranges of up to +/-500 MHz, and suppression of amplitude modulation by up to 49 dB. We also present various cavity-enhanced chemical sensors employing the frequency stabilization techniques developed, including the resonant sideband technique known as NICE-OHMS. Sensitivities of 9.7 x 10(-11) cm(-1) Hz(-1/2) have been achieved in pure nitrous oxide. PMID:15561632

  8. Prediction of Radical Scavenging Activities of Anthocyanins Applying Adaptive Neuro-Fuzzy Inference System (ANFIS) with Quantum Chemical Descriptors

    PubMed Central

    Jhin, Changho; Hwang, Keum Taek

    2014-01-01

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627

  9. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors.

    PubMed

    Jhin, Changho; Hwang, Keum Taek

    2014-01-01

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627

  10. Computational simulation of the effect of quantum chemical parameters on the molecular docking of HMG-CoA reductase drugs

    NASA Astrophysics Data System (ADS)

    Atlam, Faten M.; Awad, Mohamed K.; El-Bastawissy, Eman A.

    2014-10-01

    Density functional theory (B3LYP-6-31G(d)) was performed to study the effect of molecular and electronic structures, of 2-cyclopropyl-4-thiophenyl-quinoline mevalonolactones as potential hypocholesterolemic inhibitors, on their biological activities and discuss the correlation between the inhibition efficiency and quantum chemical parameters. Molecular docking was performed to investigate the mode of interactions between the investigated inhibitors and the active sites of the target Hydroxymethylglutaryl-Coenzyme A(HMG-CoA) reductase. The results could suggest further structural modifications to discover more potent and selective HMG-CoA reductase inhibitors. The catalytic active sites of HMGR have a positive electrostatic potential which is complemented with a negative electrostatic potential of the investigated drugs to form a stabilized complex. The presence of lipophobic groups, such as quinoline nucleus, cyclopropyl and substituted thiophenyl groups as well as a lactone moiety, is important for binding to the active sites. A good correlation between the experimental and theoretical data confirms that the quantum chemical methods and molecular docking studies are successful tools for enriching screening experiments aimed at the discovery of novel bioactive compounds.

  11. Quantum-chemical study and FTIR jet spectroscopy of CHCl(3)-NH(3) association in the gas phase.

    PubMed

    Hippler, Michael; Hesse, Susanne; Suhm, Martin A

    2010-11-01

    High level ab initio quantum chemical calculations have been performed on the association of chloroform with ammonia in the gas phase (counterpoise corrected MP2 and coupled-cluster CCSD(T) calculations with 6-311++G(d,p) basis functions). Minimum energy equilibrium structures have been found for CHCl(3)-NH(3) dimer, CHCl(3)-(NH(3))(2) trimer and CHCl(3)-(NH(3))(3) tetramer. Association is characterised by a CHN hydrogen bond between a chloroform and an ammonia molecule, with further ammonia units attached by hydrogen bonds to ammonia and by an electrostatic NHCl interaction to chloroform. Cooperative effects provide additional stabilisation. The complexes exhibit characteristic shifts of vibrational bands and change of IR intensity; in particular there is a pronounced progressive shift of the CH-stretching vibration towards lower wavenumber with each unit of ammonia attached in the complex. The shift is accompanied by an up to 600 fold increase in IR intensity. The experimental FTIR jet spectra have provided firm evidence of CHCl(3)-NH(3) association, with the clearest effects seen in the region of the CH-stretching vibration. First tentative assignments have been made based on the dependence of relative intensities of cluster features on the concentration of monomers, and assignments have been corroborated by the quantum chemical calculations. The present combined ab initio and FTIR spectroscopy study reveals the structure and energetics of cluster formation and intermolecular bonding in CHCl(3)-NH(3) association. PMID:20694238

  12. Wet chemical synthesis of quantum confined nanostructured tin oxide thin films by successive ionic layer adsorption and reaction technique

    SciTech Connect

    Murali, K.V.; Ragina, A.J.; Preetha, K.C.; Deepa, K.; Remadevi, T.L.

    2013-09-01

    Graphical abstract: - Highlights: • Quantum confined SnO{sub 2} thin films were synthesized at 80 °C by SILAR technique. • Film formation mechanism is discussed. • Films with snow like crystallite morphology offer high specific surface area. • The blue-shifted value of band gap confirmed the quantum confinement effect. • Present synthesis has advantages – low cost, low temperature and green friendly. - Abstract: Quantum confined nanostructured SnO{sub 2} thin films were synthesized at 353 K using ammonium chloride (NH{sub 4}Cl) and other chemicals by successive ionic layer adsorption and reaction technique. Film formation mechanism is discussed. Structural, morphological, optical and electrical properties were investigated and compared with the as-grown and annealed films fabricated without NH{sub 4}Cl solution. SnO{sub 2} films were polycrystalline with crystallites of tetragonal structure with grain sizes lie in the 5–8 nm range. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap of as-grown films confirmed the quantum confinement effect of grains. Refractive index of the films lies in the 2.1–2.3 range. Films prepared with NH{sub 4}Cl exhibit relatively lower resistivity of the order of 10{sup 0}–10{sup −1} Ω cm. The present synthesis has advantages such as low cost, low temperature and green friendly, which yields small particle size, large surface–volume ratio, and high crystallinity SnO{sub 2} films.

  13. Accurate fast method with high chemical yield for determination of uranium isotopes (234U, 235U, 238U) in granitic samples using alpha spectroscopy

    NASA Astrophysics Data System (ADS)

    Guirguis, Laila A.; Farag, Nagdy M.; Salim, Adham K.

    2015-03-01

    The present study aims to use the α-spectroscopy at Nuclear Materials Authority (NMA) of Egypt. A radiochemical technique for analysis uranium isotopes was carried out for ten mineralized granitic samples together with the International standards RGU-1 (IAEA) and St4 (NMA). Several steps of sample preparation, radiochemical separation and source preparation were performed before analysis. Uranium was separated from sample matrix with 0.2 M TOPO in cyclohexane as an extracting agent with a chemical yield 98.95% then uranium was purified from lanthanides and actinides present with 0.2 M TOA in xylene as an extracting agent. The pure fraction was electrodeposited on a mirror-polished copper disc from buffer solution (NaHSO4+H2SO4+NH4OH). Rectangle pt-electrode with an anode-cathode distance of 2 cm was used. Current was 900 mA and the electrodeposition time reach up to 120 min. The achieved results show that the chemical yield ranged between 87.9±6.8 and 98±8.6.

  14. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    NASA Astrophysics Data System (ADS)

    Prabhash, P. G.; Nair, Swapna S.

    2016-05-01

    Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coated copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.

  15. Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Olasunkanmi, Lukman O.; Kabanda, Mwadham M.; Ebenso, Eno E.

    2016-02-01

    The corrosion inhibition potential of four quinoxaline derivatives namely, 1-[3-(4-methylphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Me-4-PQPB), 1-(3-(4-methoxyphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl)butan-1-one (Mt-4-PQPB), 1-[3-(3-methoxyphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Mt-3-PQPB) and 1-[3-(2H-1,3-benzodioxol-5-yl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Oxo-1,3-PQPB) was studied for mild steel corrosion in 1 M HCl solution using electrochemical, spectroscopic techniques and quantum chemical calculations. The results of both potentiodynamic polarization and electrochemical impedance spectroscopic studies revealed that the compounds are mixed-type inhibitors and the order of corrosion inhibition efficiency at 100 ppm is Me-4-PQPB>Mt-3-PQPB>Oxo-1,3-PQPB>Mt-4-PQPB. Fourier transform infrared (FTIR) and ultraviolet-visible (UV-vis) spectroscopic analyses confirmed the presence of chemical interactions between the inhibitors and mild steel surface. The adsorption of the inhibitor molecules on mild steel surface was found to be both physisorption and chemisorption but predominantly chemisorption. The experimental data obey Langmuir adsorption isotherm. Scanning electron microscopy studies revealed the formation of protective films of the inhibitors on mild steel surface. Quantum chemical parameters obtained from density functional theory (DFT) calculations support experimental results.

  16. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    NASA Astrophysics Data System (ADS)

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Khan, Shamshad A.; Husain, M.; Zulfequar, M.

    2016-05-01

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  17. The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots.

    PubMed

    Askari, Sadegh; Svrcek, Vladmir; Maguire, Paul; Mariotti, Davide

    2015-12-22

    Hydrogenation in amorphous silicon quantum dots (QDs) has a dramatic impact on the corresponding optical properties and band energy structure, leading to a quantum-confined composite material with unique characteristics. The synthesis of a-Si:H QDs is demonstrated with an atmospheric-pressure plasma process, which allows for accurate control of a highly chemically reactive non-equilibrium environment with temperatures well below the crystallization temperature of Si QDs. PMID:26523743

  18. Describing the chemical bonding in C70 and C70O3 - A quantum chemical topology study

    NASA Astrophysics Data System (ADS)

    Bil, Andrzej; Latajka, Zdzisław; Hutter, Jürg; Morrison, Carole A.

    2014-03-01

    Cc-Cc and Ca-Cb bonds in C70 have dominant characteristics of double bonds, whereas the remaining six other types of bonds are single bonds with contributions from π-electron density. 'Single' bonds can act as active sites in chemical reactions which would typically require a multiple bond, such as addition of an ozone molecule, due to the fact that all adjacent bonds can serve as an efficient source of π-electron density. Thus any alteration in the electron density distribution following functionalization has far-reaching impact. We note that formation of the most stable ozonide isomer causes the smallest total perturbation in the electron density of the parent fullerene and C-C bond evolution correlates well with the shape of the minimum energy path for the ozone ring opening reaction on the fullerene surface. Finally, we observe that the O-O bond in C70O3 is protocovalent, and as such resembles the O-O bond in H2O2.

  19. Quantum chemical calculations of interatomic potentials for computer simulation of solids

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A comprehensive mathematical model by which the collective behavior of a very large number of atoms within a metal or alloy can accurately be simulated was developed. Work was done in order to predict and modify the strength of materials to suit our technological needs. The method developed is useful in studying atomic interactions related to dislocation motion and crack extension.

  20. Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium

    NASA Astrophysics Data System (ADS)

    Ebenso, Eno E.; Arslan, Taner; Kandemirli, Fatma; Caner, Necmettin; Love, Ian

    The density functional theory (DFT) at the B3LYP/6-31G (d,p) and B3LYP/6-311G(d,p) basis set levels and ab initio calculations using the HF/6-31G (d,p) and HF/6-311G(d,p) methods were performed on four rhodanine azosulpha drugs (namely 5-sulfadiazineazo-3-phenyl-2-thioxo-4-thiazolidinone, 5- sulfamethazineazo-3-phenyl-2-thioxo-4-thiazolidinone, 5-sulfadimethoxineazo-3-phenyl-2-thioxo- 4-thiazolidinone, and 5-sulfamethoxazoleazo-3-phenyl-2-thioxo-4-thiazolidinone) used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between the molecular structure of the rhodanine azosulpha drugs and inhibition efficiency(%IE). The quantum chemical parameters/descriptors, namely, EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), the energy difference (ΔE) between EHOMO and ELUMO, dipole moment (μ), electron affinity (A), ionization potential (I), the absolute electronegativity (X), absolute hardness (η), softness (σ), polarizability (α), the Mulliken charges, and the fraction of electrons (ΔN) transfer from inhibitors to iron, were calculated and correlated with the experimental %IE. Quantitative structure activity relationship (QSAR) approach has been used, and a composite index of some quantum chemical parameters/descriptors was performed to characterize the inhibition performance of the studied molecules. The results showed that the inhibition efficiency (%IE) of the rhodanine azo sulfa drugs studied was closely related to some of the quantum chemical parameters/descriptors but with varying degrees of correlation coefficient (R2). The %IE also increased with the increase in EHOMO and decrease in EHOMO-ELUMO; and the areas containing N atoms are the most possible sites for bonding to the metal iron surface by donating electrons to the metal. The HOMO orbitals consist of 61.73-63.04% double bonded S atom (7(S)), and most of the rest are concentrated on the rhodanine group; so, the

  1. A QUANTUM MECHANICAL STUDY OF STRUCTURAL AND ELECTRONIC DILUTION EFFECTS IN PARAMAGNETIC CHEMICAL EXCHANGE SATURATION TRANSFER AGENTS

    PubMed Central

    Miller, Whelton A.; Moore, Preston B.

    2014-01-01

    We present a computational study of the effect of chemical modifications of the meta and para substituents in the coordinating pendant arm of a modified 1,4,7,10-tetraazacyclododecane-N, N’, N″, N‴-tetraamide (DOTAM) ligand on the Chemical Exchange Saturation Transfer (CEST) signal. Magnetic Resonance Imaging (MRI) is currently one of the most widely used techniques available. MRI has led to a new class of pharmaceuticals termed “imagining” or “contrast” agents. These agents usually work by incorporating lanthanide metals such as Gadolinium (Gd) and Europium (Eu). This allows the contrast agents to take advantage of the paramagnetic properties of the metals, which in turn enhances the signal detectable by MRI. The effect of simple electron-withdrawing (e.g., nitro) and electron-donating (e.g., methyl) substituents chemically attached to a modified chelate arm (pendant arm) is quantified by charge transfer interactions in the coordinated water-chelate system computed from quantum mechanics. This study attempts to reveal the origin of the substituent effect on the CEST signal and the electronic structure of the complex. We find that the extent of Charge Transfer (CT) depends on orbital orientations and overlaps. However, CT interactions occur simultaneously from all arms, which causes a dilution effect with respect to the pendant arm. PMID:25485283

  2. Standoff detection of explosives and chemical agents using broadly tuned external-cavity quantum cascade lasers (EC-QCLs)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Rayner, Timothy; Weida, Miles; Crivello, Salvatore; Day, Timothy

    2007-10-01

    Civilian soft targets such as transportation systems are being targeted by terrorists using IEDs and suicide bombers. Having the capability to remotely detect explosives, precursors and other chemicals would enable these assets to be protected with minimal interruption of the flow of commerce. Mid-IR laser technology offers the potential to detect explosives and other chemicals in real-time and from a safe standoff distance. While many of these agents possess "fingerprint" signatures in the mid-IR (i.e. in the 3-20 micron regime), their effective interrogation by a practical, field-deployable system has been limited by size, complexity, reliability and cost constraints of the base laser technology. Daylight Solutions has addressed these shortcomings by developing compact, portable, broadly tunable mid-IR laser sources based upon external-cavity quantum cascade technology. This technology is now being applied by Daylight in system level architectures for standoff and remote detection of explosives, precursors and chemical agents. Several of these architectures and predicted levels of performance will be presented.

  3. Accurate quantum chemical modelling of the separation of Eu(3+) from Am(3+)/Cm(3+) by liquid-liquid extraction with Cyanex272.

    PubMed

    Cao, Xiaoyan; Zhang, Jun; Weissmann, Daniel; Dolg, Michael; Chen, Xuebo

    2015-08-28

    The experimentally observed extraction complexes of trivalent lanthanide Eu(3+) and actinide Am(3+)/Cm(3+) cations with Cyanex272 [bis(2,4,4-trimethylpentyl) phosphinic acid, denoted as HC272] and Cyanex301 [bis(2,4,4-trimethylpentyl) dithiophosphinic acid, denoted as HC301] have been studied by using relativistic energy-consistent 4f- and 5f-in-core pseudopotentials for trivalent f elements, combined with density functional theory and a continuum solvation model. It has been found that, as a result of hydrogen bonding, HC272 exists primarily as a self-associated species, whereas HC301 is preferably a monomer. The calculations show that in case of all three M(3+) (M = Eu, Am, Cm) ions for HC272 the extraction complexes M[H(C272)2]3 are formed prior to M(C272)3, whereas for HC301 the extraction complexes M(C301)3 have priority over M[H(C301)2]3. The calculated M-O and M-S bond lengths and the M-P distances of these preferred extraction complexes agree very well with the available experimental data. The obtained changes of the Gibbs free energies in the liquid-liquid extraction reactions (1): Maqu(3+) + 3(HC272)2,org→ M[H(C272)2]3,org + 3Haqu(+) and (2): Maqu(3+) + 3HC301org→ M(C301)3,org + 3Haqu(+) agree with the experimentally observed thermodynamical priorities of HC272 and HC301, i.e., HC272 prefers Eu(3+) over Am(3+)/Cm(3+) and HC301 prefers Am(3+)/Cm(3+) over Eu(3+). The obtained changes of the Gibbs free energies in reaction (2) (Eu, 68.1 kJ mol(-1); Am, 46.5 kJ mol(-1)) agree quite well with the experimental findings (Eu, 63.3 kJ mol(-1); Am, 44.1 kJ mol(-1)). PMID:26203895

  4. Nonlinear absorption properties of AlGaAs/GaAs multiple quantum wells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lee, Hsing-Chung; Kost, A.; Kawase, M.; Hariz, A.; Dapkus, P. Daniel

    1988-01-01

    The nonlinear absorption properties of the excitonic resonances associated with multiple quantum wells (MQWs) in AlGaAs/GaAs grown by metalorganic chemical vapor deposition are reported. The dependence of the saturation properties on growth parameters, especially growth temperature, and the well width are described. The minimum measured saturation intensity for these materials is 250 W/sq cm, the lowest reported value to date. The low saturation intensities are the result of excellent minority carrier properties. A systematic study of minority carrier lifetimes in quantum wells are reported. Lifetimes range from 50-350 ns depending on growth temperature and well width. When corrected for lateral diffusion effects and the measured minority carrier lifetime, the saturation data suggest that saturation intensities as low as 2.3 W/sq cm can be achieved in this system. The first measurements of the dependence of the exciton area and the magnitude of the excitonic absorption on well width are prsented. The growth of MQW structures on transparent GaP substrates is demonstrated and the electroabsorption properties of these structures are reviewed.

  5. A comparative experimental and quantum chemical study on monomeric and dimeric structures of 3,5-dibromoanthranilic acid.

    PubMed

    Karabacak, Mehmet; Cinar, Mehmet

    2012-10-01

    This study presents the structural and spectroscopic characterization of 3,5-dibromoanthranilic acid with help of experimental techniques (FT-IR, FT-Raman, UV, NMR) and quantum chemical calculations. The vibrational spectra of title compound were recorded in solid state with FT-IR and FT-Raman in the range of 4000-400 and 4000-50 cm(-1), respectively. The vibrational frequencies were also computed using B3LYP method of DFT with 6-311++G(d,p) basis set. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The (1)H, (13)C and DEPT NMR spectra were recorded in DMSO solution and calculated by gauge-invariant atomic orbitals (GIAO) method. The UV absorption spectra of the compound were recorded in the range of 200-400 nm in ethanol, water and DMSO solutions. Solvent effects were calculated using time-dependent density functional theory and CIS method. The ground state geometrical structure of compound was predicted by B3LYP method and compared with the crystallographic structure of similar compounds. All calculations were made for monomeric and dimeric structure of compound. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties were performed. Mulliken atomic charges of neutral and anionic form of the molecule were computed and compared with anthranilic acid. PMID:22871548

  6. A comparative experimental and quantum chemical study on monomeric and dimeric structures of 3,5-dibromoanthranilic acid

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Cinar, Mehmet

    2012-10-01

    This study presents the structural and spectroscopic characterization of 3,5-dibromoanthranilic acid with help of experimental techniques (FT-IR, FT-Raman, UV, NMR) and quantum chemical calculations. The vibrational spectra of title compound were recorded in solid state with FT-IR and FT-Raman in the range of 4000-400 and 4000-50 cm-1, respectively. The vibrational frequencies were also computed using B3LYP method of DFT with 6-311++G(d,p) basis set. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The 1H, 13C and DEPT NMR spectra were recorded in DMSO solution and calculated by gauge-invariant atomic orbitals (GIAO) method. The UV absorption spectra of the compound were recorded in the range of 200-400 nm in ethanol, water and DMSO solutions. Solvent effects were calculated using time-dependent density functional theory and CIS method. The ground state geometrical structure of compound was predicted by B3LYP method and compared with the crystallographic structure of similar compounds. All calculations were made for monomeric and dimeric structure of compound. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties were performed. Mulliken atomic charges of neutral and anionic form of the molecule were computed and compared with anthranilic acid.

  7. Joint Raman spectroscopic and quantum chemical analysis of the vibrational features of Cs2RuO4

    PubMed Central

    Naji, M; Di Lemma, F; Kovács, A; Beneš, O; Manara, D; Colle, J-Y; Pagliosa, G; Raison, P; Konings, R J M

    2015-01-01

    The Raman spectroscopic characterization of the orthorhombic phase of Cs2RuO4 was carried out by means of group theory and quantum chemical analysis. Multiple models based on ruthenate (VI+) tetrahedra were tested, and characterization of all the active Raman modes was achieved. A comparison of Raman spectra of Cs2RuO4, Cs2MoO4, and Cs2WO4 was also performed. Raman laser heating induced a phase transition from an ordered to a disordered structure. The temperature-phase transition was calculated from the anti-Stokes/Stokes ratio and compared with the ones measured at macroscopic scale. The phase transition is connected with tilting and/or rotations of RuO4 tetrahedra, which lead to a disorder at the RuO4 sites. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd. PMID:26494941

  8. A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach

    SciTech Connect

    Taubman, Matthew S.; Myers, Tanya L.; Bernacki, Bruce E.; Stahl, Robert D.; Cannon, Bret D.; Schiffern, John T.; Phillips, Mark C.

    2012-04-01

    A multi-channel laser-based chemical sensor platform is presented, in which a modular architecture allows the exchange of complete sensor channels without disruption to overall operation. Each sensor channel contains custom optical and electronics packages, which can be selected to access laser wavelengths, interaction path lengths and modulation techniques optimal for a given application or mission. Although intended primarily to accommodate mid-infrared (MIR) external cavity quantum cascade lasers (ECQCLs)and astigmatic Herriott cells, channels using visible or near infrared (NIR) lasers or other gas cell architectures can also be used, making this a truly versatile platform. Analog and digital resources have been carefully chosen to facilitate small footprint, rapid spectral scanning, ow-noise signal recovery, failsafe autonomous operation, and in-situ chemometric data analysis, storage and transmission. Results from the demonstration of a two-channel version of this platform are also presented.

  9. In Vivo Anti-Leukemia, Quantum Chemical Calculations and ADMET Investigations of Some Quaternary and Isothiouronium Surfactants

    PubMed Central

    El-Henawy, Ahmed A.; Khowdiary, Manal M.; Badawi, Abdelfattah B.; Soliman, Hussein M.

    2013-01-01

    Anti-leukemia screening of previously prepared isothiouronium and quaternary salts was performed, and some salts exhibited promising activity as anticancer agents. Quantum chemical calculations were utilized to explore the electronic structure and stability of these compounds. Computational studies have been carried out at the PM3 semiempirical molecular orbitals level, to establish the HOMO-LUMO, IP and ESP mapping of these compounds. The ADMET properties were also studied to gain a clear view of the potential oral bioavailability of these compounds. The surface properties calculated included critical micelle concentration (CMC), maximum surface excess (Γmax), minimum surface area (Amin), free energy of micellization (ΔGomic) and adsorption (ΔGoads). PMID:24276171

  10. X-ray diffraction mapping of strain fields and chemical composition of SiGe:Si(001) quantum dot molecules

    SciTech Connect

    Leite, M. S.; Gray, J. L.; Hull, R.; Floro, J. A.; Magalhaes-Paniago, R.; Medeiros-Ribeiro, G.

    2006-03-15

    A variety of surface morphologies can be formed by controlling kinetic parameters during heteroepitaxial film growth. The system reported is a Si{sub 0.7}Ge{sub 0.3} film grown by molecular beam epitaxy at 550 deg. C and a 1 A/s deposition rate, producing quantum dot molecule (QDM) structures. These nanostructures are very uniform in size and shape, allowing strain mapping and chemical composition evaluation by means of anomalous x-ray diffraction in a grazing incidence geometry. Tensile and compressed regions coexist inside QDMs, in accordance with the finite-element calculations of lattice relaxation. The Ge content was found to vary significantly within the structures, and to be quite different from the nominal composition.

  11. Quantum-chemical calculations of bonding energy and the unit-cell parameters of crystalline magnesium difluoride

    SciTech Connect

    Iomin, L.M.; Buznik, V.M.

    1988-11-01

    Quantum-chemical calculations of the bonding energy of the crystal lattice, the unit-cell parameters, and the coordinates of the anions in crystalline magnesium difluoride have been performed in the framework of the Loewdin model. An expression for the energy of the three-particle interactions in rutile-like crystals has been obtained. The calculations were carried out in three successive approximations. A comparison with the experimental data shows that the best description of the interatomic interactions in rutile-like magnesium fluoride (in the framework of the Loewdin model) is achieved in an approximation which takes into account the non-Madelung interactions only in the first coordination sphere. Consideration of the short-range interactions with more distant ions worsens the agreement between theory and experiment.

  12. Quantum chemical MP2 results on some hydrates of cytosine: binding sites, energies and the first hydration shell.

    PubMed

    Fogarasi, Géza; Szalay, Péter G

    2015-11-28

    A detailed quantum chemical investigation was undertaken to obtain the structure and energetics of cytosine hydrates Cyt·nH2O, with n = 1 to 7. The MP2(fc)/aug-cc-pVDZ level was used as the standard, with some DFT (B3LYP) and coupled cluster calculations, as well as calculations with the aug-cc-pVTZ basis set added for comparison. In a systematic search for microhydrated forms of cytosine, we have found that several structures have not yet been reported in the literature. The energies of different isomers, as well as binding energies are compared. When predicting the stability of a complex, we suggest using a scheme where the water molecules are extracted from a finite model of bulk water. Finally, based on energetic data, we suggest a rational definition of the first hydration shell; with this definition, it contains just six water molecules. PMID:26487481

  13. 650-nm AlGaInP multiple-quantum-well lasers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Rong; Teng, Jing-Hua; Chua, Soo-Jin; Foo, Boon-Chin; Wang, Yan-Jun; Yuan, Hai-Rong; Yuan, Shu

    2003-07-01

    Using tertiarybutylphosphine (TBP) as phosphorus precursor, high-quality AlGaInP epilayers and AlGaInP/GaInP multiple-quantum-well (MQW) structures have been grown by metalorganic chemical vapor deposition. The photoluminescence results indicate that the AlGaInP materials are as good as those grown using PH3 in terms of optical quality. Finally, AlGaInP MQW red laser structures have been grown, and the electrically pumped AlGaInP red lasers grown by TBP have been demonstrated with the emission wavelength of 647 nm, indicating that TBP can be used to grow high-quality AlGaInP epilayers and AlGaInP-based red lasers, which presently is dominated by the highly toxic gas source PH3.

  14. Quantum chemical study of the reactions of Al, AlO and AlOH with H2O2

    NASA Astrophysics Data System (ADS)

    Sharipov, Alexander S.; Starik, Alexander M.

    2016-02-01

    Quantum chemical calculations with the use of hybrid density functional with perturbative second-order correlation and dispersion correction are carried out to study the reactions of Al, AlO and AlOH with the H2O2 molecule. The values of energy barriers are estimated by means of extrapolation to the basis set limit. The energetically favorable reaction pathways have been revealed during the examination of the potential energy surfaces. Complex character of the processes under study has been established. It has been found that the initial stages of the considered processes are barrierless. Appropriate rate constants for principal channels of the reactions under study have been estimated by using capture model and canonical variational theory. The Arrhenius approximations for these channels have been proposed for the temperature range T = 300-4000 K.

  15. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols

    NASA Astrophysics Data System (ADS)

    Golub, P.; Doroshenko, I.; Pogorelov, V.

    2014-05-01

    The specific peculiarities of alcohols such as heightened viscosity, boiling temperature and surface tension can be explained by the capability of their molecules to form relatively stable associates named clusters due to hydrogen bonding. In present work the stability of different chain-like and cyclic clusters of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol was investigated by means of quantum-chemical simulation and particular by recently developed DFT exchange-correlation functional M06-2X. The relative stability of the cluster structure was evaluated by the total energy per molecule at low temperatures (where all alcohols exist in solid state) and by the changing of the free Gibbs energy upon cluster formation at the room temperature. For the verification of revealed results the conformity of calculated IR spectra of the most stable cluster structures with the experimental IR spectra at different temperatures was analyzed.

  16. Estimation of the thermodynamic properties of functional groups and biomolecules using quantum chemical/statistical thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Chai, Weisin

    The scarcity and sustainability of energy sources have always been a concern while seeking for alternative fuels. Biofuels have drawn the attention of various researchers due to their abundancy and renewability. Understanding the physical and chemical properties of these molecules is essential to determining their potential as alternative fuels or fuel additives. In this work, the properties of these molecules are predicted through methods developed from quantum mechanics and statistical mechanics theories. The heats of formations are calculated with the Gaussian program and combined with the Benson group contribution method to predict the Benson parameters of unknown functional groups in a molecule. The methods developed are used to expand the Benson database and improve the practicability of the group contribution method. The heats of formations are also used to predict and correlate heat capacities across a range of temperatures and energy densities in this study.

  17. Coherent chemical kinetics as quantum walks. II. Radical-pair reactions in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Chia, A.; Górecka, A.; Kurzyński, P.; Paterek, T.; Kaszlikowski, D.

    2016-03-01

    We apply the quantum-walk approach proposed in the preceding paper [A. Chia et al., preceding paper, Phys. Rev. E 93, 032407 (2016), 10.1103/PhysRevE.93.032407] to a radical-pair reaction where realistic estimates for the intermediate transition rates are available. The well-known average hitting time from quantum walks can be adopted as a measure of how quickly the reaction occurs and we calculate this for varying degrees of dephasing in the radical pair. The time for the radical pair to react to a product is found to be independent of the amount of dephasing introduced, even in the limit of no dephasing where the transient population dynamics exhibits strong coherent oscillations. This can be seen to arise from the existence of a rate-limiting step in the reaction and we argue that in such examples, a purely classical model based on rate equations can be used for estimating the time scale of the reaction but not necessarily its population dynamics.

  18. Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications

    NASA Astrophysics Data System (ADS)

    Du, Yan; Guo, Shaojun

    2016-01-01

    Doping fluorescent carbon dots (DFCDs) with heteroatoms have recently become of great interest compared to traditional fluorescent materials because it provides a feasible and new way to tune the intrinsic properties of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) to achieve new applications for them in different fields. Since the first report on nitrogen (N) doped GQDs in 2012, more effort is being focused on exploring different procedures for making new types of DFCDs with different heteroatoms. This mini review will summarize recent research progress on DFCDs. It first reviews various doping categories achieved up to now, looking back on the synthesis method and comparing the differences in synthesis approaches between the DFCDs and the undoped ones. Then it focuses on the advances on how the doping affects the optical properties, especially DFCDs doped with N, which have been investigated the most. Finally, different applications of DFCDs involving bio-imaging, sensing, catalysis and photoelectronic devices will be discussed. This review will give new insights into how to use different synthetic methods for tuning the structure of DFCDs, understanding the correlation between the doping and properties, and achieving new applications.

  19. Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications.

    PubMed

    Du, Yan; Guo, Shaojun

    2016-02-01

    Doping fluorescent carbon dots (DFCDs) with heteroatoms have recently become of great interest compared to traditional fluorescent materials because it provides a feasible and new way to tune the intrinsic properties of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) to achieve new applications for them in different fields. Since the first report on nitrogen (N) doped GQDs in 2012, more effort is being focused on exploring different procedures for making new types of DFCDs with different heteroatoms. This mini review will summarize recent research progress on DFCDs. It first reviews various doping categories achieved up to now, looking back on the synthesis method and comparing the differences in synthesis approaches between the DFCDs and the undoped ones. Then it focuses on the advances on how the doping affects the optical properties, especially DFCDs doped with N, which have been investigated the most. Finally, different applications of DFCDs involving bio-imaging, sensing, catalysis and photoelectronic devices will be discussed. This review will give new insights into how to use different synthetic methods for tuning the structure of DFCDs, understanding the correlation between the doping and properties, and achieving new applications. PMID:26757977

  20. Electronic absorption spectra of imidazolium-based ionic liquids studied by far-ultraviolet spectroscopy and quantum chemical calculations.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji; Morisawa, Yusuke; Ozaki, Yukihiro

    2016-08-10

    Electronic absorption spectra of imidazolium-based ionic liquids were studied by far- and deep-ultraviolet spectroscopy and quantum chemical calculations. The absorption spectra in the 145-300 nm region of imidazolium-based ionic liquids, [Cnmim](+)[BF4](-) (n = 2, 4, 8) and [C4mim](+)[PF6](-), were recorded using our original attenuated total reflectance (ATR) system spectrometer. The obtained spectra had two definitive peaks at ∼160 and ∼210 nm. Depending on the number of carbon atoms in the alkyl side chain, the peak wavelength around 160 nm changed, while that around 210 nm remained at almost the same wavelength. Quantum chemical calculation results based on the time-dependent density functional theory (TD-DFT) also showed the corresponding peak shifts. In contrast, there was almost no significant difference between [C4mim](+)[BF4](-) and [C4mim](+)[PF6](-), which corresponded with our calculations. Therefore, it can be concluded that the absorption spectra in the 145-300 nm region are mainly determined by the cations when fluorine-containing anions are adopted. In addition, upon addition of organic solvent (acetonitrile) to [C4mim](+)[BF4](-), small peak shifts to the longer wavelength were revealed for both peaks at ∼160 and ∼210 nm. The peak shift in the deep-ultraviolet region (≤200 nm) in the presence of the solvent, which indicates the change of electronic states of the ionic liquid, was experimentally observed for the first time by using the ATR spectrometer. PMID:27471106

  1. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors

    PubMed Central

    2013-01-01

    Background In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Results Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. Conclusions A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation. PMID:24171724

  2. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone.

    PubMed

    Arjunan, V; Devi, L; Subbalakshmi, R; Rani, T; Mohan, S

    2014-09-15

    The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO's, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated. PMID:24792193

  3. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Devi, L.; Subbalakshmi, R.; Rani, T.; Mohan, S.

    2014-09-01

    The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G∗∗ and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO’s, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated.

  4. Remote explosive and chemical agent detection using broadly tunable mid-infrared external cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy; Weida, Miles; Pushkarsky, Michael; Day, Timothy

    2007-04-01

    Terrorists both with IEDs and suicide bombers are targeting civilian infrastructures such as transportation systems. Although explosive detection technologies exist and are used effectively in aviation, these technologies do not lend themselves well to protecting open architecture soft targets, as they are focused on a checkpoint form factor that limits throughput. However, remote detection of explosives and other chemicals would enable these kinds of targets to be protected without interrupting the flow of commerce. Tunable mid-IR laser technology offers the opportunity to detect explosives and other chemicals remotely and quickly. Most chemical compounds, including explosives, have their fundamental vibrational modes in the mid-infrared region (3 to 15μm). There are a variety of techniques that focus on examining interactions that have proven effective in the laboratory but could never work in the field due to complexity, size, reliability and cost. Daylight Solutions has solved these problems by integrating quantum cascade gain media into external tunable cavities. This has resulted in miniaturized, broadly tunable mid-IR laser sources. The laser sources have a capability to tune to +/- 5% of their center wavelength, which means they can sweep through an entire absorption spectrum to ensure very good detection and false alarm performance compared with fixed wavelength devices. These devices are also highly portable, operate at room temperature, and generate 10's to 100's of mW in optical power, in pulsed and continuous wave configurations. Daylight Solutions is in the process of developing a variety of standoff explosive and chemical weapon detection systems using this technology.

  5. Conceptual versus Algorithmic Learning in High School Chemistry: The Case of Basic Quantum Chemical Concepts--Part 2. Students' Common Errors, Misconceptions and Difficulties in Understanding

    ERIC Educational Resources Information Center

    Papaphotis, Georgios; Tsaparlis, Georgios

    2008-01-01

    Part 2 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught at twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used that were of two kinds: five questions that tested recall of knowledge or application of algorithmic procedures (type-A questions);…

  6. Quantitative structure-antibacterial activity relationship modeling using a combination of piecewise linear regression-discriminant analysis (I): Quantum chemical, topographic, and topological descriptors

    NASA Astrophysics Data System (ADS)

    Molina, Enrique; Estrada, Ernesto; Nodarse, Delvin; Torres, Luis A.; González, Humberto; Uriarte, Eugenio

    Time-dependent antibacterial activity of 2-furylethylenes using quantum chemical, topographic, and topological indices is described as inhibition of respiration in E. coli. A QSAR strategy based on the combination of the linear piecewise regression and the discriminant analysis is used to predict the biological activity values of strong and moderates antibacterial furylethylenes. The breakpoint in the values of the biological activity was detected. The biological activities of the compounds are described by two linear regression equations. A discriminant analysis is carried out to classify the compounds in one of the biological activity two groups. The results showed using different kind of descriptors were compared. In all cases the piecewise linear regression - discriminant analysis (PLR-DA) method produced significantly better QSAR models than the linear regression analysis. The QSAR models were validated using an external validation previously extracted from the original data. A prediction of reported antibacterial activity analysis was carried out showing dependence between the probability of a good classification and the experimental antibacterial activity. Statistical parameters showed the quality of quantum-chemical descriptors based models prediction in LDA having an accuracy of 0.9 and a C of 0.9. The best PLR-DA model explains more than 92% of the variance of experimental activity. Models with best prediction results were those based on quantum-chemical descriptors. An interpretation of quantum-chemical descriptors entered in models was carried out.

  7. Model of the catalytic mechanism of human aldose reductase based on quantum chemical calculations.

    SciTech Connect

    Cachau, R. C.; Howard, E. H.; Barth, P. B.; Mitschler, A. M.; Chevrier, B. C.; Lamour, V.; Joachimiak, A.; Sanishvili, R.; Van Zandt, M.; Sibley, E.; Moras, D.; Podjarny, A.; UPR de Biologie Structurale; National Cancer Inst.; Univ. Louis Pasteur; Inst. for Diabetes Discovery, Inc.

    2000-01-01

    Aldose Reductase is an enzyme involved in diabetic complications, thoroughly studied for the purpose of inhibitor development. The structure of an enzyme-inhibitor complex solved at sub-atomic resolution has been used to develop a model for the catalytic mechanism. This model has been refined using a combination of Molecular Dynamics and Quantum calculations. It shows that the proton donation, the subject of previous controversies, is the combined effect of three residues: Lys 77, Tyr 48 and His 110. Lys 77 polarises the Tyr 48 OH group, which donates the proton to His 110, which becomes doubly protonated. His 110 then moves and donates the proton to the substrate. The key information from the sub-atomic resolution structure is the orientation of the ring and the single protonafion of the His 110 in the enzyme-inhibitor complex. This model is in full agreement with all available experimental data.

  8. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1981-01-01

    The application of ab initio quantum mechanical approaches in the study of metal atom clusters requires simplifying techniques that do not compromise the reliability of the calculations. Various aspects of the implementation of the effective core potential (ECP) technique for the removal of the metal atom core electrons from the calculation were examined. The ECP molecular integral formulae were modified to bring out the shell characteristics as a first step towards fulfilling the increasing need to speed up the computation of the ECP integrals. Work on the relationships among the derivatives of the molecular integrals that extends some of the techniques pioneered by Komornicki for the calculation of the gradients of the electronic energy was completed and a formulation of the ECP approach that quite naturally unifies the various state-of-the-art "shape- and Hamiltonian-consistent" techniques was discovered.

  9. Potential Energy Surfaces for Reaction Catalyzed by Metalloenzymes from Quantum Chemical Computations

    NASA Astrophysics Data System (ADS)

    Leopoldini, Monica; Marino, Tiziana; Russo, Nino; Toscano, Marirosa

    For several decades quantum mechanical (QM) computational methods have been developed and refined so that it was possible to extend their applicability field enormously. Today, they are used generally to supplement experimental techniques because the theory also affords deeper understanding of molecular processes that cannot be obtained from experiments alone. Due to their favorable scaling when compared to the ab initiomethods, density functional theory (DFT) approach allows the treatment of very large systems such as the biomolecules. Thus, now it is possible, for instance, to study the difficult and critical reactions catalyzed by enzymes in biological systems. Here, a brief account of the studies performed on different metalloenzymes is given, focusing on methods and models used to describe their reaction mechanisms.

  10. Cyclic voltammetry as a sensitive method for in situ probing of chemical transformations in quantum dots.

    PubMed

    Osipovich, Nikolai P; Poznyak, Sergei K; Lesnyak, Vladimir; Gaponik, Nikolai

    2016-04-21

    The application of electrochemical methods for the characterization of colloidal quantum dots (QDs) attracts considerable attention as these methods may allow for monitoring of some crucial parameters, such as energetic levels of conduction and valence bands as well as surface traps and ligands under real conditions of colloidal solution. In the present work we extend the applications of cyclic voltammetry (CV) to in situ monitoring of degradation processes of water-soluble CdTe QDs. This degradation occurs under lowering of pH to the values around 5, i.e. under conditions relevant to bioimaging applications of these QDs, and is accompanied by pronounced changes of their photoluminescence. Observed correlations between characteristic features of CV diagrams and the fluorescence spectra allowed us to propose mechanisms responsible for evolution of the photoluminescence properties as well as degradation pathway of CdTe QDs at low pH. PMID:27025663

  11. Determination of enthalpies of formation of energetic molecules with composite quantum chemical methods

    DOE PAGESBeta

    Manaa, M. Riad; Fried, Laurence E.; Kuo, I-Feng W.

    2016-02-01

    We report gas-phase enthalpies of formation for the set of energetic molecules NTO, DADE, LLM-105, TNT, RDX, TATB, HMX, and PETN using the G2, G3, G4, and ccCA-PS3 quantum composite methods. Calculations for HMX and PETN hitherto represent the largest molecules attempted with these methods. G3 and G4 calculations are typically close to one another, with a larger difference found between these methods and ccCA-PS3. Furthermore there is significant uncertainty in experimental values, the mean absolute deviation between the average experimental value and calculations are 12, 6, 7, and 3 kcal/mol for G2, G3, G4, and ccCA-PS3, respectively.

  12. Determination of enthalpies of formation of energetic molecules with composite quantum chemical methods

    NASA Astrophysics Data System (ADS)

    Manaa, M. Riad; Fried, Laurence E.; Kuo, I.-Feng W.

    2016-03-01

    We report gas-phase enthalpies of formation for the set of energetic molecules NTO, DADE, LLM-105, TNT, RDX, TATB, HMX, and PETN using the G2, G3, G4, and ccCA-PS3 quantum composite methods. Calculations for HMX and PETN hitherto represent the largest molecules attempted with these methods. G3 and G4 calculations are typically close to one another, with a larger difference found between these methods and ccCA-PS3. Although there is significant uncertainty in experimental values, the mean absolute deviation between the average experimental value and calculations are 12, 6, 7, and 3 kcal/mol for G2, G3, G4, and ccCA-PS3, respectively.

  13. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  14. Studies on vibrational, NMR spectra and quantum chemical calculations of N-Succinopyridine: An organic nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Kannan, V.; Thirupugalmani, K.; Brahadeeswaran, S.

    2013-10-01

    Single crystals of N-Succinopyridine (NSP) have been grown from water using solution growth method by isothermal solvent evaporation technique. The solid state Fourier Transform Infrared (FTIR) spectrum of the grown crystal shows a broad absorption extending from 3450 down to 400 cm-1, due to H-bond vibrations and other characteristic vibrations. Fourier Transform Raman (FT-Raman) spectrum of NSP single crystal shows Raman intensities ranging from 3100 to 100 cm-1 due the characteristics vibrations of functional groups present in NSP. The proton and carbon positions of NSP have been described by 1H and 13C NMR spectrum respectively. Ab initio quantum chemical calculations on NSP have been performed by density functional theory (DFT) calculations using B3LYP method with 6-311++G(d,p) basis set. The predicted first hyperpolarizability is found to be 1.29 times greater than that of urea and suggests that the title compound could be an attractive material for nonlinear optical applications. The calculated HOMO-LUMO energies show that charge transfers occur within the molecule and other related molecular properties. Molecular properties such as Mulliken population analysis, thermodynamic functions and perturbation theory energy analysis have also been reported. Electrostatic potential map (ESP) of NSP obtained by electron density isosurface provided the information about the size, shape, charge density distribution and site of chemical reactivity of the title molecule. The molecular stability and bond strength have been investigated through the Natural Bond Orbital (NBO) analysis.

  15. Very narrow SiGe/Si quantum wells deposited by low-temperature atmospheric pressure chemical vapor deposition

    SciTech Connect

    Gruetzmacher, D.A.; Sedgwick, T.O.; Northrop, G.A.

    1993-05-01

    The optical, structural, and electrical properties of very narrow SiGe quantum wells grown by {open_quotes}ultra-clean{close_quotes} atmospheric pressure chemical vapor deposition (APCVD) are investigated. X-ray reflectivity data reveal abrupt interfaces with a root-mean-square roughness of not more than 0.2 nm. For the first time narrow (4.3 meV) excitonic photoluminescence (PL) spectra were obtained from APCVD grown samples containing SiGe wells with 12.5% to 32.5% Ge. For the narrowest wells PL doublets are observed which are attributed to atomic steps at the SiGe/Si interfaces. The Pl and x-ray diffractometry data show that process deposition control for well and barrier width is within the monolayer range. Resonant tunneling diodes fabricated with 2.5-mm-wide Si{sub 0.75}Ge{sub 0.25} wells show world record peak to valley ratios of 4.2. Magneto-transport measurements performed at high magnetic fields of two-dimensional hole gases exhibit pronounced Hall plateaus and well-defined Shubnikov de Hass oscillations, indicating high material quality. The results give evidence that atmospheric pressure chemical vapor deposition, which relies on gas switching sequences of the reactive gases in a hydrogen ambience, is able to produce interface abruptness comparable if not better than reported by any other technique. 22 refs., 7 figs.

  16. Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Taubman, Matthew S.; Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Myers, Tanya L.

    2010-01-01

    We describe the performance of a sensor system designed for simultaneous detection of multiple chemicals with both broad and narrow absorption features. The sensor system consists of a broadly tunable external cavity quantum cascade laser (ECQCL), multi-pass Herriott cell, and custom low-noise electronics. The ECQCL features a fast wavelength tuning rate of 2265 cm-1/s (15660 nm/s) over the range of 1150-1270 cm-1 (7.87-8.70 μm), which permits detection of molecules with broad absorption features and dynamic concentrations, while the 0.2 cm-1 spectral resolution of the ECQCL system allows measurement of small molecules with atmospherically broadened absorption lines. High-speed amplitude modulation and low-noise electronics are used to improve the ECQCL performance for direct absorption measurements. We demonstrate simultaneous detection of Freon-134a (1,1,1,2-tetrafluoroethane), ammonia (NH3), and nitrous oxide (N2O) at low-ppb concentrations in field measurements of atmospheric chemical releases from a point source.

  17. Design and Performance of a Sensor System for Detection of Multiple Chemicals Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Taubman, Matthew S.; Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Myers, Tanya L.

    2010-01-23

    We describe the performance of a sensor system designed for simultaneous detection of multiple chemicals with both broad and narrow absorption features. The sensor system consists of a broadly tunable external cavity quantum cascade laser (ECQCL), multi-pass Herriott cell, and custom low-noise electronics. The ECQCL features a rapid wavelength tuning rate of 2265 cm 1/s (15660 nm/s) over its tuning range of 1150-1270 cm 1 (7.87-8.70 μm), which permits detection of molecules with broad absorption features and dynamic concentrations, while the 0.2 cm-1 spectral resolution of the ECQCL system allows measurement of small molecules with atmospherically broadened absorption lines. High-speed amplitude modulation and low-noise electronics are used to improve the ECQCL performance for direct absorption measurements. We demonstrate simultaneous detection of Freon-134a (1,1,1,2-tetrafluoroethane), ammonia (NH3), and nitrous oxide (N2O) at low-ppb concentrations in field measurements of atmospheric chemical releases from a point source.

  18. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    SciTech Connect

    Pham, Chuyen V.; Krueger, Michael E-mail: emre.erdem@physchem.uni-freiburg.de; Eck, Michael; Weber, Stefan; Erdem, Emre E-mail: emre.erdem@physchem.uni-freiburg.de

    2014-03-31

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g = 2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  19. B36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis

    NASA Astrophysics Data System (ADS)

    Shahbazi Kootenaei, Amirhossein; Ansari, Goodarz

    2016-08-01

    Pristine carbon nanotubes and graphene show great sensitivity toward several lethal gases but cannot identify some extremely toxic chemicals such as formaldehyde (HCOH). Recent successful synthesis of all-boron graphene-like sheets attracted strong interest in exploring their possible applications. Herein, we inspected the potential application of B36 borophene sheet as a sensor for HCOH detection, using density functional theory computations. Different theoretical levels including B97D and Minnesota 06 functionals with different basis sets were employed. It was predicted that the electrical conductivity of B36 borophene significantly increases at the presence of HCOH molecules, thereby generating an electrical signal. The electrical signal is increased by increasing the number of adsorbed HCOH molecules, indicating that this sensor is sensitive to the concentration (or pressure) of HCOH gas. These results suggest that the pristine borophene may be used in the HCOH chemical sensors.

  20. Development of Accurate Chemical Equilibrium Models for the Hanford Waste Tanks: The System Na-Ca-Sr-OH-CO3-NO3-EDTA-HEDTA-H2O from 25 to 75°C

    SciTech Connect

    Felmy, Andrew R.; Mason, Marvin J.; Qafoku, Odeta; Dixon, David A.

    2005-04-19

    This symposium manuscript describes the development of an accurate aqueous thermodynamic model for predicting the speciation of Sr in the waste tanks at the Hanford site. A systematic approach is described that details the studies performed to define the most important inorganic and organic complexation reactions as well as the effects of other important metal ions that compete with Sr for complexation reactions with the chelates. By using this approach we were able to define a reduced set of inorganic complexation, organic complexation, and competing metal reactions that best represent the much more complex waste tank chemical system. A summary is presented of the final thermodynamic model for the system Na-Ca-Sr-OH-CO3-NO3-EDTA-HEDTA-H2O from 25 to 75 ºC that was previously published in a variety of sources. Previously unpublished experimental data are also given for the competing metal Ni as well for certain chemical systems, Na-Sr-CO3-PO4-H2O, and for the solubility of amorphous iron hydroxide in the presence of several organic chelating agents. These data were not used in model development but were key to the final selection of the specific chemical systems prioritized for detailed study.

  1. Quantum origins of the Iczkowski-Margrave model of chemical potential

    SciTech Connect

    Valone, Steven M

    2010-01-01

    Charge flow in materials is controlled at the atomistic level through some model of the chemical potential, such as the Iczkowski-Margrave (IM) model. This model is built largely on heuristic arguments. Here a model Hamiltonian is constructed at the atomistic level commensurate with the IM model. Essential properties of the model Hamiltonian are presented, including a possible revision of the charge dependence in the IM model. Transitional properties of the model are shown to be central to regulating charge flow.

  2. New insight into the formation of nitrogen sulfide: a quantum chemical study.

    PubMed

    Pereira, Priscila S S; Macedo, Luiz G M; Pimentel, André S

    2010-01-14

    We studied the chemical mechanism for the formation of (2)NS in the interstellar medium was by using the CCSD/6-311++G(d,p) and CCSD(T)/6-311++G(3df,3pd) levels of theory. To the best of our knowledge, this is the first detailed study of the chemical mechanism for the formation of (2)NS. Several reactions proposed in this article are spin-forbidden. They were treated with the Landau-Zener theory and by the MRCI methodology. The following reactions paths proposed in this article are energetically favorable: (1) (1)NH + (2)SH --> cis-(2)HNSH --> TS1 --> trans-(2)HNSH --> TS2 --> (2)H(2)NS --> TS3 --> (2)NS + H(2) and (2) (4)N + (1)SH --> (1)NSH --> TS13 --> (1)HNS --> (2)NS + (2)H. However, the latter reaction, (4)N + (1)SH --> (1)NSH, is spin-forbidden, and its probability of occuring (p(sh)) is zero. The chemical mechanism for the formation of (2)NS in the interstellar medium is now presented in more detail, which is of great importance. PMID:20000609

  3. Atomistic Mechanisms of Chemical Mechanical Polishing of a Cu Surface in Aqueous H2O2: Tight-Binding Quantum Chemical Molecular Dynamics Simulations.

    PubMed

    Kawaguchi, Kentaro; Ito, Hiroshi; Kuwahara, Takuya; Higuchi, Yuji; Ozawa, Nobuki; Kubo, Momoji

    2016-05-11

    We applied our original chemical mechanical polishing (CMP) simulator based on the tight-binding quantum chemical molecular dynamics (TB-QCMD) method to clarify the atomistic mechanism of CMP processes on a Cu(111) surface polished with a SiO2 abrasive grain in aqueous H2O2. We reveal that the oxidation of the Cu(111) surface mechanically induced at the friction interface is a key process in CMP. In aqueous H2O2, in the first step, OH groups and O atoms adsorbed on a nascent Cu surface are generated by the chemical reactions of H2O2 molecules. In the second step, at the friction interface between the Cu surface and the abrasive grain, the surface-adsorbed O atom intrudes into the Cu bulk and dissociates the Cu-Cu bonds. The dissociation of the Cu-Cu back-bonds raises a Cu atom from the surface that is mechanically sheared by the abrasive grain. In the third step, the raised Cu atom bound to the surface-adsorbed OH groups is removed from the surface by the generation and desorption of a Cu(OH)2 molecule. In contrast, in pure water, there are no geometrical changes in the Cu surface because the H2O molecules do not react with the Cu surface, and the abrasive grain slides smoothly on the planar Cu surface. The comparison between the CMP simulations in aqueous H2O2 and pure water indicates that the intrusion of a surface-adsorbed O atom into the Cu bulk is the most important process for the efficient polishing of the Cu surface because it induces the dissociation of the Cu-Cu bonds and generates raised Cu atoms that are sheared off by the abrasive grain. Furthermore, density functional theory calculations show that the intrusion of the surface-adsorbed O atoms into the Cu bulk has a high activation energy of 28.2 kcal/mol, which is difficult to overcome at 300 K. Thus, we suggest that the intrusion of surface-adsorbed O atoms into the Cu bulk induced by abrasive grains at the friction interface is a rate-determining step in the Cu CMP process. PMID:27092706

  4. Tight-binding quantum chemical molecular dynamics simulations for the elucidation of chemical reaction dynamics in SiC etching with SF6/O2 plasma.

    PubMed

    Ito, Hiroshi; Kuwahara, Takuya; Kawaguchi, Kentaro; Higuchi, Yuji; Ozawa, Nobuki; Kubo, Momoji

    2016-03-21

    We used our etching simulator [H. Ito et al., J. Phys. Chem. C, 2014, 118, 21580-21588] based on tight-binding quantum chemical molecular dynamics (TB-QCMD) to elucidate SiC etching mechanisms. First, the SiC surface is irradiated with SF5 radicals, which are the dominant etchant species in experiments, with the irradiation energy of 300 eV. After SF5 radicals bombard the SiC surface, Si-C bonds dissociate, generating Si-F, C-F, Si-S, and C-S bonds. Then, etching products, such as SiS, CS, SiFx, and CFx (x = 1-4) molecules, are generated and evaporated. In particular, SiFx is the main generated species, and Si atoms are more likely to vaporize than C atoms. The remaining C atoms on SiC generate C-C bonds that may decrease the etching rate. Interestingly, far fewer Si-Si bonds than C-C bonds are generated. We also simulated SiC etching with SF3 radicals. Although the chemical reaction dynamics are similar to etching with SF5 radicals, the etching rate is lower. Next, to clarify the effect of O atom addition on the etching mechanism, we also simulated SiC etching with SF5 and O radicals/atoms. After bombardment with SF5 radicals, Si-C bonds dissociate in a similar way to the etching without O atoms. In addition, O atoms generate many C-O bonds and COy (y = 1-2) molecules, inhibiting the generation of C-C bonds. This indicates that O atom addition improves the removal of C atoms from SiC. However, for a high O concentration, many C-C and Si-Si bonds are generated. When the O atoms dissociate the Si-C bonds and generate dangling bonds, the O atoms terminate only one or two dangling bonds. Moreover, at high O concentrations there are fewer S and F atoms to terminate the dangling bonds than at low O concentration. Therefore, few dangling bonds of dissociated Si and C atoms are terminated, and they form many Si-Si and C-C bonds. Furthermore, we propose that the optimal O concentration is 50-60% because both Si and C atoms generate many etching products producing fewer C

  5. Determination of absolute configuration in chiral solvents with nuclear magnetic resonance. A combined molecular dynamics/quantum chemical study.

    PubMed

    Kessler, Jiří; Dračínský, Martin; Bouř, Petr

    2015-05-28

    Nuclear magnetic resonance (NMR) spectroscopy is omnipresent in chemical analysis. However, chirality of a molecule can only be detected indirectly by NMR, e.g., by monitoring its interaction with another chiral object. In the present study, we investigate the spectroscopic behavior of chiral molecules placed into a chiral solvent. In this case, the solvent-solute interaction is much weaker, but the application range of such NMR analysis is wider than for a specific chemical shift agent. Two alcohols and an amine were used as model systems, and differences in NMR chemical shifts dependent on the solute-solvent chirality combination were experimentally detected. Combined quantum mechanic/molecular mechanic (QM/MM) computations were applied to reveal the underlying solute-solvent interactions. NMR shielding was calculated using the density functional theory (DFT). While the experimental observations could not be reproduced quantitatively, the modeling provided a qualitative agreement and detailed insight into the essence of solvent-solute chiral interactions. The potentials of mean force (PMF) obtained using molecular dynamics (MD) and the weighted histogram analysis method (WHAM) indicate that the chiral interaction brings about differences in conformer ratios, which are to a large extent responsible for the NMR shifts. The MD results also predicted slight changes in the solvent structure, including the radial distribution function (RDF), to depend on the solvent/solute chirality combination. Apart from the conformer distribution, an effective average solvent electrostatic field was tested as another major factor contributing to the chiral NMR effect. The possibility to simulate spectral effects of chiral solvents from the first-principles opens up the way to NMR spectroscopic determination of the absolute configuration for a larger scale of compounds, including those not forming specific complexes. PMID:25411905

  6. Reliable Quantum Chemical Prediction of the Localized/Delocalized Character of Organic Mixed-Valence Radical Anions. From Continuum Solvent Models to Direct-COSMO-RS.

    PubMed

    Renz, Manuel; Kess, Martin; Diedenhofen, Michael; Klamt, Andreas; Kaupp, Martin

    2012-11-13

    A recently proposed quantum-chemical protocol for the description of the character of organic mixed-valence (MV) compounds, close from both sides to the localized/delocalized borderline, is evaluated and extended for a series of dinitroaryl radical anions 1-6. A combination of global hybrid functionals with exact-exchange admixtures of 35% (BLYP35) or 42% (BMK) with appropriate solvent modeling allows an essentially quantitative treatment of, for example, structural symmetry-breaking in Robin/Day class II systems, thermal electron transfer (ET) barriers, and intervalence charge-transfer (IV-CT) excitation energies, while covering also the delocalized class III cases. Global hybrid functionals with lower exact-exchange admixtures (e.g., B3LYP, M05, or M06) provide a too delocalized description, while functionals with higher exact-exchange admixtures (M05-2X, M06-2X) provide a too localized one. The B2PLYP double hybrid gives reasonable structures but far too small barriers in class II cases. The CAM-B3LYP range hybrid gives somewhat too high ET barriers and IV-CT energies, while the range hybrids ωB97X and LC-BLYP clearly exhibit too much exact exchange. Continuum solvent models describe the situation well in most aprotic solvents studied. The transition of 1,4-dinitrobenzene anion 1 from a class III behavior in aprotic solvents to a class II behavior in alcohols is not recovered by continuum solvent models. In contrast, it is treated faithfully by the novel direct conductor-like screening model for real solvents (D-COSMO-RS). The D-COSMO-RS approach, the TURBOMOLE implementation of which is reported, also describes accurately the increased ET barriers of class II systems 2 and 3 in alcohols as compared to aprotic solvents and can distinguish at least qualitatively between different aprotic solvents with identical or similar dielectric constants. The dominant role of the solvent environment for the ET character of these MV radical anions is emphasized, as in

  7. Luminescence properties of SiO{sub x}N{sub y} irradiated by IR laser 808 nm: The role of Si quantum dots and Si chemical environment

    SciTech Connect

    Ruggeri, Rosa; Neri, Fortunato; Sciuto, Antonella; Privitera, Vittorio; Spinella, Corrado; Mannino, Giovanni

    2012-01-23

    We investigated optical, structural, and chemical properties of SiO{sub x}N{sub y} layers irradiated by CW IR laser during a time lapse of few milliseconds. We observed tunable photoluminescence signal at room temperature in the range 750-950 nm, without Si/SiO{sub 2} phase separation, depending on the IR laser power irradiation. Furthermore, no photoluminescence signal was recorded when the IR laser power density was high enough to promote phase separation forming Si quantum dots. By chemical analysis the source of the luminescence signal has been identified in a change of silicon chemical environment induced by IR laser annealing inside the amorphous matrix.

  8. Combined Quantum Chemical/Raman Spectroscopic Analyses of Li+ Cation Solvation: Cyclic Carbonate Solvents - Ethylene Carbonate and Propylene Earbonate

    SciTech Connect

    Allen, Joshua L.; Borodin, Oleg; Seo, D. M.; Henderson, Wesley A.

    2014-12-01

    Combined computational/Raman spectroscopic analyses of ethylene carbonate (EC) and propylene carbonate (PC) solvation interactions with lithium salts are reported. It is proposed that previously reported Raman analyses of (EC)n-LiX mixtures have utilized faulty assumptions. In the present studies, density functional theory (DFT) calculations have provided corrections in terms of both the scaling factors for the solvent's Raman band intensity variations and information about band overlap. By accounting for these factors, the solvation numbers obtained from two different EC solvent bands are in excellent agreement with one another. The same analysis for PC, however, was found to be quite challenging. Commercially available PC is a racemic mixture of (S)- and (R)-PC isomers. Based upon the quantum chemistry calculations, each of these solvent isomers may exist as multiple conformers due to a low energy barrier for ring inversion, making deconvolution of the Raman bands daunting and inherently prone to significant error. Thus, Raman spectroscopy is able to accurately determine the extent of the EC...Li+ cation solvation interactions using the provided methodology, but a similar analysis of PC...Li+ cation solvation results in a significant underestimation of the actual solvation numbers.

  9. Mechanisms for the ozonolysis of ethene and propene: Reliability of quantum chemical predictions

    NASA Astrophysics Data System (ADS)

    Chan, Wai-To; Hamilton, I. P.

    2003-01-01

    Reactions of ozone with ethene and propene leading to primary ozonide (concerted and stepwise ozonolysis) or epoxide and singlet molecular oxygen (partial ozonolysis) are studied theoretically. The mechanism of concerted ozonolysis proceeds via a single transition structure which is a partial diradical. The transition structures and intermediates in the stepwise ozonolysis and partial ozonolysis mechanisms are singlet diradicals. Spin-restricted and unrestricted density functional methods are employed to calculate the structures of the closed-shell and diradical species. Although the partial diradicals exhibit moderate to pronounced instability in their RDFT and RHF solutions, RDFT is required to locate the transition structure for concerted ozonolysis. Spin projected fourth-order Møller-Plesset theory (PMP4) was used to correct the DFT energies. The calculated pre-exponential factors and activation energies for the concerted ozonolysis of ethene and propene are in good agreement with experimental values. However, the PMP4//DFT procedure incorrectly predicts the stepwise mechanism as the favored channel. UCCSD(T) predicts the concerted mechanism as the favored channel but significantly overestimates the activation energies. RCCSD(T) is found to be more accurate than UCCSD(T) for the calculation of the concerted mechanism but is not applicable to the diradical intermediates. The major difficulty in accurate prediction of the rate constant data for these reactions is the wide range of spin contamination for the reference UHF wave functions and UDFT solutions across the potential energy surface. The possibility of the partial ozonolysis mechanism being the source of epoxide observed in some experiments is discussed.

  10. Unexpected Giant-Gap Quantum Spin Hall Insulator in Chemically Decorated Plumbene Monolayer

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Chang-Wen; Ji, Wei-Xiao; Zhang, Run-Wu; Li, Sheng-Shi; Yan, Shi-Shen; Zhang, Bao-Min; Li, Ping; Wang, Pei-Ji

    2016-02-01

    Quantum spin Hall (QSH) effect of two-dimensional (2D) materials features edge states that are topologically protected from backscattering by time-reversal symmetry. However, the major obstacles to the application for QSH effect are the lack of suitable QSH insulators with a large bulk gap. Here, we predict a novel class of 2D QSH insulators in X-decorated plumbene monolayers (PbX; X = H, F, Cl, Br, I) with extraordinarily giant bulk gaps from 1.03 eV to a record value of 1.34 eV. The topological characteristic of PbX mainly originates from s-px,y band inversion related to the lattice symmetry, while the effect of spin-orbital coupling (SOC) is only to open up a giant gap. Their QSH states are identified by nontrivial topological invariant Z2 = 1, as well as a single pair of topologically protected helical edge states locating inside the bulk gap. Noticeably, the QSH gaps of PbX are tunable and robust via external strain. We also propose high-dielectric-constant BN as an ideal substrate for the experimental realization of PbX, maintaining its nontrivial topology. These novel QSH insulators with giant gaps are a promising platform to enrich topological phenomena and expand potential applications at high temperature.

  11. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  12. Quantum chemical study on surface complex structures of phosphate on gibbsite

    NASA Astrophysics Data System (ADS)

    Luengo, Carina V.; Castellani, Norberto J.; Ferullo, Ricardo M.

    2015-08-01

    Quantum mechanics calculations based on the density functional theory (DFT) were used to identify phosphate surface complexes on gibbsite at low and high pH. The different phosphate species were represented using the Al6(OH)18(H2O)6 cluster model considering four different geometries: monodentate mononuclear (Pmm), monodentate binuclear (Pmb), bidentate mononuclear (Pbm) and bidentate binuclear (Pbb). The corresponding adsorption reactions were modelled via ligand exchange between phosphate species and surface functional groups (hydroxyls and protonated hydroxyls at high and low pH, respectively). The theoretical results indicate that phosphate surface complexes are thermodynamically more favored at acid pH, in agreement with experimental evidences. The first step in these reactions, i.e., the generation of required aluminum vacant sites, was predicted to be particularly favorable when singly coordinated aquo groups are released. Stretching and bending vibrational frequencies associated with the different surface structures were calculated at both pH conditions. The corresponding values at low pH were found to be shifted to higher frequencies with respect to those ones at high pH. ATR-FTIR studies were also carried out. The resulting spectra are dominated by a strong band within the 800-840 cm-1 interval due to P-OH stretching modes. The corresponding peak appearing around 820 cm-1 at high pH is shifted to lower frequencies with respect to the position at low pH, a tendency well predicted by DFT calculations.

  13. Quantum chemical study on surface complex structures of phosphate on gibbsite.

    PubMed

    Luengo, Carina V; Castellani, Norberto J; Ferullo, Ricardo M

    2015-08-01

    Quantum mechanics calculations based on the density functional theory (DFT) were used to identify phosphate surface complexes on gibbsite at low and high pH. The different phosphate species were represented using the Al₆(OH)₁₈(H₂O)₆ cluster model considering four different geometries: monodentate mononuclear (Pmm), monodentate binuclear (Pmb), bidentate mononuclear (Pbm) and bidentate binuclear (Pbb). The corresponding adsorption reactions were modelled via ligand exchange between phosphate species and surface functional groups (hydroxyls and protonated hydroxyls at high and low pH, respectively). The theoretical results indicate that phosphate surface complexes are thermodynamically more favored at acid pH, in agreement with experimental evidences. The first step in these reactions, i.e., the generation of required aluminum vacant sites, was predicted to be particularly favorable when singly coordinated aquo groups are released. Stretching and bending vibrational frequencies associated with the different surface structures were calculated at both pH conditions. The corresponding values at low pH were found to be shifted to higher frequencies with respect to those ones at high pH. ATR-FTIR studies were also carried out. The resulting spectra are dominated by a strong band within the 800-840 cm(-1) interval due to P-OH stretching modes. The corresponding peak appearing around 820 cm(-1) at high pH is shifted to lower frequencies with respect to the position at low pH, a tendency well predicted by DFT calculations. PMID:25841151

  14. Unexpected Giant-Gap Quantum Spin Hall Insulator in Chemically Decorated Plumbene Monolayer

    PubMed Central

    Zhao, Hui; Zhang, Chang-wen; Ji, Wei-xiao; Zhang, Run-wu; Li, Sheng-shi; Yan, Shi-shen; Zhang, Bao-min; Li, Ping; Wang, Pei-ji

    2016-01-01

    Quantum spin Hall (QSH) effect of two-dimensional (2D) materials features edge states that are topologically protected from backscattering by time-reversal symmetry. However, the major obstacles to the application for QSH effect are the lack of suitable QSH insulators with a large bulk gap. Here, we predict a novel class of 2D QSH insulators in X-decorated plumbene monolayers (PbX; X = H, F, Cl, Br, I) with extraordinarily giant bulk gaps from 1.03 eV to a record value of 1.34 eV. The topological characteristic of PbX mainly originates from s-px,y band inversion related to the lattice symmetry, while the effect of spin-orbital coupling (SOC) is only to open up a giant gap. Their QSH states are identified by nontrivial topological invariant Z2 = 1, as well as a single pair of topologically protected helical edge states locating inside the bulk gap. Noticeably, the QSH gaps of PbX are tunable and robust via external strain. We also propose high-dielectric-constant BN as an ideal substrate for the experimental realization of PbX, maintaining its nontrivial topology. These novel QSH insulators with giant gaps are a promising platform to enrich topological phenomena and expand potential applications at high temperature. PMID:26833133

  15. ORBKIT: A modular python toolbox for cross-platform postprocessing of quantum chemical wavefunction data.

    PubMed

    Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe; Paulus, Beate; Hege, Hans-Christian; Schild, Axel

    2016-06-15

    ORBKIT is a toolbox for postprocessing electronic structure calculations based on a highly modular and portable Python architecture. The program allows computing a multitude of electronic properties of molecular systems on arbitrary spatial grids from the basis set representation of its electronic wavefunction, as well as several grid-independent properties. The required data can be extracted directly from the standard output of a large number of quantum chemistry programs. ORBKIT can be used as a standalone program to determine standard quantities, for example, the electron density, molecular orbitals, and derivatives thereof. The cornerstone of ORBKIT is its modular structure. The existing basic functions can be arranged in an individual way and can be easily extended by user-written modules to determine any other derived quantity. ORBKIT offers multiple output formats that can be processed by common visualization tools (VMD, Molden, etc.). Additionally, ORBKIT possesses routines to order molecular orbitals computed at different nuclear configurations according to their electronic character and to interpolate the wavefunction between these configurations. The program is open-source under GNU-LGPLv3 license and freely available at https://github.com/orbkit/orbkit/. This article provides an overview of ORBKIT with particular focus on its capabilities and applicability, and includes several example calculations. © 2016 Wiley Periodicals, Inc. PMID:27043934

  16. Effect of Chemicals on Morphology and Luminescence of CdSe Quantum Dots.

    PubMed

    Zhang, Xiao; Li, Xiaoyu; Zhang, Ruili; Yang, Ping

    2015-04-01

    CdSe quantum dots (QDs) with several morphologies were fabricated using various reaction sys- tems. In a trioctylamine (TOA) and octadecylphosphonic acid (ODPA) system, yellow-emitting (a photoluminescence (PL) peak wavelength of 583 nm) CdSe QDs revealed rod morphology and nar- row size distribution. When ODPA was replaced by tetradecylphosphonic acid (TDPA), red-emitting CdSe rods (a PL peak wavelength of 653 nm) with broad size distribution were fabricated. This is ascribed that the short carbon chain accelerated the growth of CdSe QDs. As a result, the use of ODPA resulted in CdSe QDs with high PL efficiency (3.1%). Furthermore, cubic-like CdSe QDs were created in a stearic acid (SA) and octadecene (ODE) reaction system. The PL efficiency of the QDs is low (0.2%). When hexadecylamine (HDA) was added in such SA and ODE reaction system, spherical CdSe QDs with narrow size distribution and high PL efficiency (3.4%) were prepared. PMID:26353513

  17. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.

    PubMed

    Aquilante, Francesco; Autschbach, Jochen; Carlson, Rebecca K; Chibotaru, Liviu F; Delcey, Mickaël G; De Vico, Luca; Fdez Galván, Ignacio; Ferré, Nicolas; Frutos, Luis Manuel; Gagliardi, Laura; Garavelli, Marco; Giussani, Angelo; Hoyer, Chad E; Li Manni, Giovanni; Lischka, Hans; Ma, Dongxia; Malmqvist, Per Åke; Müller, Thomas; Nenov, Artur; Olivucci, Massimo; Pedersen, Thomas Bondo; Peng, Daoling; Plasser, Felix; Pritchard, Ben; Reiher, Markus; Rivalta, Ivan; Schapiro, Igor; Segarra-Martí, Javier; Stenrup, Michael; Truhlar, Donald G; Ungur, Liviu; Valentini, Alessio; Vancoillie, Steven; Veryazov, Valera; Vysotskiy, Victor P; Weingart, Oliver; Zapata, Felipe; Lindh, Roland

    2016-02-15

    In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization. PMID:26561362

  18. Conformational analysis and intramolecular hydrogen bonding of cis-3-aminoindan-1-ol: a quantum chemical study.

    PubMed

    Kheffache, Djaffar; Guemmour, Hind; Dekhira, Azzedine; Benaboura, Ahmed; Ouamerali, Ourida

    2013-11-01

    In the present work, we carried out a conformational analysis of cis-3-aminoindan-1-ol and evaluated the role of the intramolecular hydrogen bond in the stabilization of various conformers using quantum mechanical DFT (B3LYP) and MP2 methods. On the basis of relative energies, we have found nine conformational minima, which can interchange through the ring-puckering and the internal rotation of the OH and NH2 groups on the five-membered ring. The intramolecular hydrogen bonds such as OH∙∙∙∙π, NH∙∙∙∙π, NH∙∙∙∙OH and HN∙∙∙∙HO are expected to be of critical importance for the conformational stabilities. The intramolecular interactions of the minima have been analyzed by calculation of electron density (ρ) and Laplacian (ρ) at the bond critical points (BCPs) using atoms-in-molecule (AIM) theory. The existence or absence of OH∙∙∙∙π and NH∙∙∙∙π in cis-3-aminoindan-1-ol remains unclear since the geometrical investigation has not been confirmed by topological criteria. The results of theoretical calculations demonstrate that this compound exists predominantly in one ring-puckering form stabilized by strong hydrogen bond HN∙∙∙∙HO Interaction. PMID:24026578

  19. Non-covalent interactions in ionic liquid ion pairs and ion pair dimers: a quantum chemical calculation analysis.

    PubMed

    Marekha, Bogdan A; Kalugin, Oleg N; Idrissi, Abdenacer

    2015-07-14

    Ionic liquids (ILs) being composed of bulky multiatomic ions reveal a plethora of non-covalent interactions which determine their microscopic structure. In order to establish the main peculiarities of these interactions in an IL-environment, we have performed quantum chemical calculations for a set of representative model molecular clusters. These calculations were coupled with advanced methods of analysis of the electron density distribution, namely, the quantum theory of atoms in molecules (QTAIM) and the non-covalent interaction (NCI; J. Am. Chem. Soc., 2010, 132, 6499) approaches. The former allows for profound quantitative characterization of non-covalent interactions between atoms while the latter gives an overview of spatial extent, delocalization, and relative strength of such interactions. The studied systems consist of 1-butyl-3-methylimidazolium (Bmim(+)) cations and different perfluorinated anions: tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)), trifluoromethanesulfonate (TfO(-)), and bis(trifluoromethanesulfonyl)imide (TFSI(-)). IL ion pairs and ion pair dimers were considered as model structures for the neat ILs and large aggregates. Weak electrostatic hydrogen bonding was found between the anions and the imidazolium ring hydrogen atoms of cations. Weaker but still appreciable hydrogen bonding was also noted for hydrogen atoms adjacent to the imidazolium ring alkyl groups of Bmim(+). The relative strength of the hydrogen bonding is higher in BmimTfO and BmimBF4 ILs than in BmimPF6 and BmimTFSI, whereas BmimTfO and BmimTFSI reveal higher sensitivity of hydrogen bonding at the different hydrogen atoms of the imidazolium ring. PMID:26059822

  20. Quantum chemical computations, vibrational spectroscopic analysis and antimicrobial studies of 2,3-Pyrazinedicarboxylic acid.

    PubMed

    Beaula, T Joselin; Packiavathi, A; Manimaran, D; Joe, I Hubert; Rastogi, V K; Jothy, V Bena

    2015-03-01

    Density Functional Theory (DFT) calculations at B3PW91 level with 6-311G (d) basis sets were carried out for 2,3-Pyrazinedicarboxylic acid (PDCA) to analyze in detail the equilibrium geometries and vibrational spectra. Calculations reveal that the optimized geometry closely resembles the experimental XRD data. Vibrational spectra were analyzed on the basis of potential energy distribution (PED) of each vibrational mode, which provides quantitative as well as qualitative interpretation of IR and Raman spectra. Information about size, shape, charge density distribution and site of chemical reactivity of the molecule were obtained by mapping electron density isosurface with the electrostatic potential surface (ESP). Based on optimized ground state geometries, NBO analysis was performed to study donor-acceptor (bond-antibond) interactions. TD-DFT analysis was also performed to calculate energies, oscillator strength of electronic singlet-singlet transitions and the absorption wavelengths. The (13)C and (1)H nuclear magnetic resonance (NMR) chemical shifts of the molecule in the ground state were calculated by gauge independent atomic orbital (GIAO) method and compared with the experimental values. PDCA was screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. Molecular docking was also performed for the different receptors. PMID:25544188

  1. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.

    2015-06-01

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.

  2. Quantum chemical computations, vibrational spectroscopic analysis and antimicrobial studies of 2,3-Pyrazinedicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Beaula, T. Joselin; Packiavathi, A.; Manimaran, D.; Joe, I. Hubert; Rastogi, V. K.; Jothy, V. Bena

    2015-03-01

    Density Functional Theory (DFT) calculations at B3PW91 level with 6-311G (d) basis sets were carried out for 2,3-Pyrazinedicarboxylic acid (PDCA) to analyze in detail the equilibrium geometries and vibrational spectra. Calculations reveal that the optimized geometry closely resembles the experimental XRD data. Vibrational spectra were analyzed on the basis of potential energy distribution (PED) of each vibrational mode, which provides quantitative as well as qualitative interpretation of IR and Raman spectra. Information about size, shape, charge density distribution and site of chemical reactivity of the molecule were obtained by mapping electron density isosurface with the electrostatic potential surface (ESP). Based on optimized ground state geometries, NBO analysis was performed to study donor-acceptor (bond-antibond) interactions. TD-DFT analysis was also performed to calculate energies, oscillator strength of electronic singlet-singlet transitions and the absorption wavelengths. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule in the ground state were calculated by gauge independent atomic orbital (GIAO) method and compared with the experimental values. PDCA was screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. Molecular docking was also performed for the different receptors.

  3. Conformational, structural, vibrational, electronic and quantum chemical investigations of cis-2-methoxycinnamic acid

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Anitha, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-01-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of cis-2-methoxycinnamic acid have been measured in the range 4000-400 and 4000-100 cm-1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP method utilising 6-311++G∗∗ and cc-pVTZ basis sets. The thermodynamic stability and chemical reactivity descriptors of the molecule have been determined. The exact environment of C and H of the molecule has been analysed by NMR spectroscopies through 1H and 13C NMR chemical shifts of the molecule. The energies of the frontier molecular orbitals have also been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from density functional theory (DFT) gradient calculations employing the B3LYP/6-311++G∗∗ and cc-pVTZ methods.

  4. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations.

    PubMed

    Nagabalasubramanian, P B; Periandy, S; Karabacak, Mehmet; Govindarajan, M

    2015-06-15

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100cm(-1). The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated. PMID:25795608

  5. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  6. Novel azobenzene precursors for NLO active polyuretanes: Synthesis, quantum chemical and experimental characterization

    NASA Astrophysics Data System (ADS)

    Jecs, E.; Kreicberga, J.; Kampars, V.; Jurgis, A.; Rutkis, M.

    2009-09-01

    For the development of electro optical active polyurethanes six new derivatives of 2-{(2-hydroxyethyl)-[4-(4-nitrophenylazo)phenyl]amino}ethanol and two of 2-{(2-hydroxyethyl)-[4-(5-nitropyridin-2-ylazo)phenyl]amino}ethanol were synthesized by azocoupling reaction. Molecular geometry, hyperpolarizability β FF and ground state dipole moment μ g were acquired by RHF ab initio (6-31G∗∗) calculations using HyperChem software package. To characterize NLO performance of synthesized azo compounds second order non linear coefficients d31 and d33 were measured as function of chromophore load in guest-host films (PMMA). Eight synthesized compounds can be grouped in four similar gross formula pairs (different position of octyloxy group) with almost equal μ g β FF product and different μ g values. At low chromophore concentrations higher dipole moment compounds perform better. Lower dipole moment compounds have better NLO efficiency at high chromophore loads. Accurate ranking of all chromophores, based on two-level model corrected zero frequency d33(0) values, was not viable due to overestimation of the dispersion factor.

  7. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1981-01-01

    A decomposition of the molecular energy is presented that is motivated by the atom superposition and electron delocalization physical model of chemical binding. The energy appears in physically transparent form consisting of a classical electrostatic interaction, a zero order two electron exchange interaction, a relaxation energy, and the atomic energies. Detailed formulae are derived in zero and first order of approximation. The formulation extends beyond first order to any chosen level of approximation leading, in principle, to the exact energy. The structure of this energy decomposition lends itself to the fullest utilization of the solutions to the atomic sub problems to simplify the calculation of the molecular energy. If nonlinear relaxation effects remain minor, the molecular energy calculation requires at most the calculation of two center, two electron integrals. This scheme thus affords the prospects of substantially reducing the computational effort required for the calculation of molecular energies.

  8. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-01

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  9. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    PubMed

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-01

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data. PMID:25736185

  10. Coupling quantum interpretative techniques: another look at chemical mechanisms in organic reactions

    PubMed Central

    Gillet, Natacha; Chaudret, Robin; Contreras-Garcίa, Julia; Yang, Weitao; Silvi, Bernard; Piquemal, Jean-Philip

    2012-01-01

    A cross ELF-NCI analysis is tested over prototypical organic reactions. The synergetic use of ELF and NCI enables the understanding of reaction mechanisms since each method can respectively identify regions of strong and weak electron pairing. Chemically intuitive results are recovered and enriched by the identification of new features. Non covalent interactions are found to foresee the evolution of the reaction from the initial steps. Within NCI, no topological catastrophe is observed as changes are continuous to such an extent that future reaction steps can be predicted from the evolution of the initial NCI critical points. Indeed, strong convergences through the reaction paths between ELF and NCI critical points enable to identify key interactions at the origin of the bond formation. VMD scripts enabling the automatic generation of movies depicting the cross NCI/ELF analysis along a reaction path (or following a Born-Oppenheimer molecular dynamics trajectory) are provided as S.I. PMID:23185140

  11. XRD, vibrational spectra and quantum chemical studies of an anticancer drug: 6-Mercaptopurine

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, S.; Athimoolam, S.; Sridhar, B.

    2015-07-01

    The single crystal of the hydrated anticancer drug, 6-Mercaptopurine (6-MP), has been grown by slow evaporation technique under room temperature. The structure was determined by single crystal X-ray diffraction. The vibrational spectral analysis was carried out using Laser Raman and FT-IR spectroscopy in the range of 3300-100 and 4000-400 cm-1. The single crystal X-ray studies shows that the crystal packing is dominated by N-H⋯O and O-H⋯N classical hydrogen bonds leading to a hydrogen bonded ensemble. This classical hydrogen bonds were further connected through O-H⋯S hydrogen bond to form two primary ring R44(16) and R44(12) motifs. These two primary ring motifs are interlinked with each other to build a ladder like structure. These ladders are connected through N-H⋯N hydrogen bond along c-axis of the unit cell through chain C(5) motifs. Further, the strength of the hydrogen bonds is studied through vibrational spectral measurements. The shifting of bands due to the intermolecular interactions was also analyzed in the solid crystalline state. Geometrical optimizations of the drug molecule were done by Density Functional Theory (DFT) using the B3LYP function and Hartree-Fock (HF) level with 6-311++G(d,p) basis set. The optimized molecular geometry and computed vibrational spectra are compared with experimental results which show significant agreement. The natural bond orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and intramolecular charge transfer (ICT). The chemical hardness, electro-negativity and chemical potential of the molecule are carried out by HOMO-LUMO plot. In which, the frontier orbitals has lower band gap value indicating the possible pharmaceutical activity of the molecule.

  12. Quantum chemical study of ternary mixtures of: HNO3:H2SO4:H2O

    NASA Astrophysics Data System (ADS)

    Verdes, M. A.; Gómez, P. C.; Gálvez, O.

    2009-04-01

    Water, nitric acid and sulfuric acid are important atmospheric species as individual species and as hydrogen-bonded aggregates involved in many physical-chemical processes both superficial and bulk. The importance of heterogeneous chemical reactions taking place on ice surfaces, either solid water or solid water plus nitric or sulfuric acid, is well established now in relation to the ozone-depleting mechanisms. Also the importance of liquid droplets formed by HNO3.H2SO4.H2O as components of PSC was soon recognized [1-3]. Finally the physical properties of finely divided aqueous systems is an interesting and active field of research in which theoretical information on the microphysical domain systems may help to understand and rationalize the wealth of experimental information. This can also be the initial step in the study of more complex mixtures with higher amounts of water or variable proportions of their constituents. This kind of calculations have been successfully performed in the past[4]. We present here our results on the structure and spectroscopic and thermodynamic properties of the energy-lowest lying structures among those thermodynamically stable formed by linking the acids plus water. The calculations have been carried out by means of DFT methods (in particular the successful B3LYP) using different basis sets that contain appropriate sets of polarization and diffuse functions up to quadruple-Z quality (Dunninǵs aug-cc-pVQZ). Careful assessment of the dependability of the methodology used has been carried out. This work has been supported by the Spanish Ministry of Education, Projects FIS2007-61686 and CTQ2008-02578/BQU References: [1] Carslaw, K. S. et al.: Geophys. Res. Lett. 21, 2479-2482, 1994 [2] Drdla, K. Et al. :Geophys. Res. Lett. 21, 2473-2478, 1994 [3] Tabazadeh, A. et al.: Geophys. Res. Lett 21, 1619-1622, 1994 [4] Escribano, R et al.: J. J. Chem. Phys A 2003, 107, 652.

  13. Quantum chemical and molecular dynamics study of the coordination of Th(IV) in aqueous solvent.

    PubMed

    Réal, Florent; Trumm, Michael; Vallet, Valérie; Schimmelpfennig, Bernd; Masella, Michel; Flament, Jean-Pierre

    2010-12-01

    In this work, we investigate the solvation of tetravalent thorium Th(IV) in aqueous solution using classical molecular dynamics simulations at the 10 ns scale and based on polarizable force-field approaches, which treat explicitly the covalent character of the metal-water interaction (and its inherent cooperative character). We have carried out a thorough analysis of the accuracy of the ab initio data that we used to adjust the force-field parameters. In particular, we show that large atomic basis sets combined with wave function-based methods (such as the MP2 level) have to be preferred to density functional theory when investigating Th(IV)/water aggregates in gas phase. The information extracted from trajectories in solution shows a well-structured Th(IV) first hydration shell formed of 8.25 ± 0.2 water molecules and located at about 2.45 ± 0.02 Å and a second shell of 17.5 ± 0.5 water molecules at about 4.75 Å. Concerning the first hydration sphere, our results correspond to the lower bounds of experimental estimates (which range from 8 to 12.7); however, they are in very good agreement with the average of existing experimental data, 2.45 ± 0.02 Å. All our results demonstrate the predictable character of the proposed approach, as well as the need of accounting explicitly for the cooperative character of charge-transfer phenomena affecting the Th(IV)/water interaction to build up reliable and accurate force-field approaches devoted to such studies. PMID:21070066

  14. Quantum Chemical Design of Doped Ca2MnAlO(5+δ) as Oxygen Storage Media.

    PubMed

    Ling, Chen; Zhang, Ruigang; Jia, Hongfei

    2015-07-01

    Brownmillerite Ca2MnAlO5 has an exceptional capability to robustly adsorb half-molecules of oxygen and form Ca2MnAlO5.5. To utilize this unique property to regulate oxygen-involved reactions, it is crucial to match the oxygen release-intake equilibrium with targeted reaction conditions. Here we perform a comprehensive investigation of the strategy of tuning the oxygen storage property of Ca2MnAlO5 through chemical doping. For undoped Ca2MnAlO5+δ, our first-principles calculation predicts that the equilibrium temperature at a pressure of 1 atm of O2 is 848 K, which is in excellent agreement with experimental results. Furthermore, the doping of alkaline earth ions at the Ca site, trivalent ions at the Al site, and 3d transition metal ions at the Mn site is analyzed. By the doping of 12.5% of Ga, V, and Ti, the equilibrium temperature shifts to high values by approximately 110-270 K, while by the doping of 12.5% of Fe, Sr, and Ba, the equilibrium temperature is lowered by approximately 20-210 K. The doping of these elements is thermodynamically stable, and doping other elements including Mg, Sc, Y, Cr, Co, and Ni generates metastable compounds. The doping of a higher content of Fe, however, lowers the oxygen storage capacity. Finally, on the basis of our calculated data, we prove that the formation energetics of nondilute interacting oxygen vacancy in doped Ca2MnAlO5.5 scale linearly with a simple descriptor, the oxygen p-band position relative to the Fermi level. The higher-oxygen p-band position leads to a lower vacancy formation energy and thus a lower oxygen release temperature. Understanding such a relationship between fundamental quantum chemical properties and macroscopic properties paves the road to the design and optimization of novel functional oxides. PMID:26066573

  15. A QSAR for the Mutagenic Potencies of Twelve 2-Amino-trimethylimidazopyridine Isomers: Structural, Quantum Chemical,and Hydropathic Factors

    SciTech Connect

    Knize, M G; Hatch, F T; Tanga, M J; Lau, E V; Colvin, M E

    2005-04-23

    An isomeric series of heterocyclic amines related to one found in heated muscle meats was investigated for properties that predict their measured mutagenic potency. Eleven of the 12 possible 2-amino-trimethylimidazopyridine (TMIP) isomers were tested for mutagenic potency in the Ames/Salmonella test with bacterial strain TA98, and resulted in a 600-fold range in potency. Structural, quantum chemical and hydropathic data were calculated on the parent molecules and the corresponding nitrenium ions of all of the tested isomers to establish models for predicting the potency of the unknown isomer. The regression model accounting for the largest fraction of the total variance in mutagenic potency contains four predictor variables: dipole moment, a measure of the gap between amine LUMO and HOMO energies, percent hydrophilic surface, and energy of amine LUMO. The most important determinants of high mutagenic potency in these amines are: (1) a small dipole moment, (2) the combination of b-face ring fusion and N3-methyl group, and (3) a lower calculated energy of the {pi} electron system. Based on predicted potency from the average of five models, the isomer not yet synthesized and tested is expected to have a mutagenic potency of 0.84 revertants/{micro}g in test strain TA98.

  16. Quantum chemical prediction of redox reactivity and degradation pathways for aqueous phase contaminants: an example with HMPA.

    PubMed

    Blotevogel, Jens; Borch, Thomas; Desyaterik, Yury; Mayeno, Arthur N; Sale, Tom C

    2010-08-01

    Models used to predict the fate of aqueous phase contaminants are often limited by their inability to address the widely varying redox conditions in natural and engineered systems. Here, we present a novel approach based on quantum chemical calculations that identifies the thermodynamic conditions necessary for redox-promoted degradation and predicts potential degradation pathways. Hexamethylphosphoramide (HMPA), a widely used solvent and potential groundwater contaminant, is used as a test case. Its oxidation is estimated to require at least iron-reducing conditions at low to neutral pH and nitrate-reducing conditions at high pH. Furthermore, the transformation of HMPA by permanganate is predicted to proceed through sequential N-demethylation. Experimental validation based on LC/TOF-MS analysis confirms the predicted pathways of HMPA oxidation by permanganate to phosphoramide via the formation of less methylated as well as singly and multiply oxygenated reaction intermediates. Pathways predicted to be thermodynamically or kinetically unfavorable are similarly absent in the experimental studies. Our newly developed methodology will enable scientists and engineers to estimate the favorability of contaminant degradation at a specific field site, suitable approaches to enhance degradation, and the persistence of a contaminant and its reaction intermediates. PMID:20608732

  17. Rotational Spectroscopy and Quantum Chemical Calculations of a Fruit Ester: the Microwave Spectrum of n-BUTYL Acetate

    NASA Astrophysics Data System (ADS)

    Attig, T.; Sutikdja, L. W.; Kannengiesser, R.; Stahl, W.; Kleiner, I.

    2013-06-01

    In the course of our studies on a number of aliphatic ester molecules and natural substances, the rotational spectrum of n-butyl acetate (CH_{3}-COO-C_4H_9) has been recorded for the first time in the 10-13.5 GHz frequency range, using the MB-FTMW spectrometer in Aachen, with an instrumental uncertainty of a few kHz for unblended lines. Three conformers were observed. The main conformer with C_{1} symmetry has a strong spectrum. The other two conformers have C_{s} and C_{1} symmetries. Their intensities are considerably weaker. The quantum chemical calculations of specific conformers were carried out at the MP2/6-311++G(d,p) level, and for the main conformer different levels of theory were calculated. To analyze the internal rotation of the acetyl methyl groups the codes XIAM (based on the Combined Axis Method) and BELGI (based on the Rho-Axis-Method) were used to model the large amplitude motion. The molecular structures of the three conformers were determined and the values of the experimental rotational constants were compared with those obtained by ab initio methods. For all conformers torsional barriers of approximately 100 cm^{-1} were found. This study is part of a larger project which aims at determining the lowest energy conformers and their structures of organic esters and ketones which are of interest for flavour or perfume synthetic applications. Project partly supported by the PHC PROCOPE 25059YB

  18. Equilibrium structure and relative stability of glyceraldehyde conformers: Gas-phase electron diffraction (GED) and quantum-chemical studies

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Atavin, Evgenii G.; Rykov, Anatolii N.; Popov, Evgenii V.; Vilkov, Lev V.

    2009-11-01

    For the first time, the five dimensional (5-D) analysis of potential energy surface (PES) from quantum-chemical calculations was carried out to predict reliably the various glyceraldehyde (GLA) conformers. 36 conformers with relative stabilities up to 38 kJ/mol were found in the B3LYP approximation. According to results of MP2/cc-pVQZ calculations, the molecule exists at the experimental temperature of 388 K as a mixture of five conformers in the ratio I:II:III:IV:V = 63:18:4:10:5. Contrary to the theoretical conclusion of Lovas et al., the conformer IV is predicted to be more stable than the conformer III. Our result can explain why the conformer IV could be detected in the microwave (MW) spectroscopic experiment by Lovas et al., whereas the conformer III could not. For the first time, thermal-average and equilibrium structural parameters of GLA (main conformer) have been determined from gas-phase electron diffraction (GED) data. Vibrational corrections to the experimental bond lengths were determined using quadratic and cubic force constants from high-level ab initio calculations (MP2/cc-pVTZ). It was shown that the experimental intensities are sensitive to the contribution of the second conformer (27(15)%). Rotational constants calculated from MP2/cc-pVQZ geometries were found to be in excellent agreement with the experimental rotational constants corrected for anharmonic effects.

  19. Chemically synthesized CdSe quantum dots inhibit growth of human lung carcinoma cells via ROS generation

    PubMed Central

    Jigyasu, Aditya Kumar; Siddiqui, Sahabjada; Lohani, Mohatashim; Khan, Irfan Ali; Arshad, Md

    2016-01-01

    Quantum dots (QDs), semiconducting materials have potential applications in the field of electronic and biomedical applications including cancer therapy. In present study, cadmium selenide (CdSe) QDs were synthesized by chemical method. Octadecene was used as non-coordinating solvent which facilitated the formation of colloidal solutions of nanoparticles. CdSe QDs were characterized by UV-vis spectrometer and transmission electron microscope (TEM). The size measured by TEM was varied between 2-5 nm depending upon temperature. The cytotoxic activity of QDs was monitored by MTT assay, nuclear condensation, ROS activity and DNA fragmentation assay on human lung epithelial A549 cell line. Cells were treated with different concentrations of varying size of CdSe QDs for 24 h. CdSe QDs induced significant (p < 0.05) dose dependent cytotoxicity and this was comparable to the sizes of particles. Smaller particles were more cytotoxic to the large particles. Fluorescence microscopic analysis revealed that QDs induced oxidative stress generating significant ROS level and consequently, induced nuclear condensation and DNA fragmentation. Study suggested the cytotoxicity of CdSe QDs via ROS generation and DNA fragmentation depending upon particles size. PMID:27047318

  20. The chemical mechanism of the limonene ozonolysis reaction in the SOA formation: A quantum chemistry and direct dynamic study

    NASA Astrophysics Data System (ADS)

    Sun, Tingli; Wang, Yudong; Zhang, Chenxi; Sun, Xiaomin; Wang, Wenxing

    2011-03-01

    The ozonolysis of limonene is one of the most important processes for secondary organic aerosol formation and a detailed understanding of the atmospheric chemistry of d-limonene is highly urgent. In this paper, the reaction of d-limonene with O 3 has been studied using high level molecular orbital theory. A detailed description of the possible ozonolysis mechanism in the presence of H 2O or NO is provided. The main products obtained are keto-limonene, limononic acid and 7OH-lim, which are low vapor pressure compounds. On the basis of the quantum chemical information, the direct dynamic calculation is performed and the rate constants are calculated over a temperature range of 200˜800 K using the transition state theory and canonical varitional transition state theory with small-curvature tunneling effect. The four-parameter formula of rate constants with the temperature is fitted and the lifetimes of the reaction species in the troposphere are estimated according to the rate constants, which can provide helpful information to the model simulation study.

  1. Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi.

    PubMed

    Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S

    2014-03-11

    Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications. PMID:26580169

  2. Vibrational and quantum chemical investigation of cyclization of thiosemicarbazide group in 1-benzoyl-4-phenyl-3-thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Gautam, Priyanka; Prakash, Om; Dani, R. K.; Singh, N. K.; Singh, Ranjan K.

    2014-11-01

    1-Benzoyl-4-phenyl-3-thiosemicarbazide (H3bpt) was treated with acid - base in one sequence and base - acid in other sequence, both of which lead to ring formation of thiosemicarbazide group, giving N-phenyl-5-phenyl-1,3,4-thiadiazol-2-amine (Hppta) in the first case and 4,5-diphenyl-2,4-dihydro-1,2,4-triazole-3-thione (Hdptt) in the second case. The primary (H3bpt) as well as the resulting compounds (Hppta & Hdptt) has been characterized by elemental analyses, NMR, FTIR and Raman spectroscopic techniques. The quantum chemical calculations of the compounds are performed using DFT/B3LYP/6311G(d,p) method for geometry optimizations and also for prediction of the molecular properties. The cyclization is confirmed by disappearance of many bands belonging to the open chain subgroups of H3bpt such as; Nsbnd H stretching, Nsbnd H bending, Csbnd N stretching, Nsbnd H puckering, Cdbnd O stretching etc. The ring formation of 1-benzoyl-4-phenyl-3-thiosemicarbazide (H3bpt) has been further confirmed by the appearance of many bands belonging to the closed ring of thiosemicarbazide in the resulting compounds Hppta and Hdptt.

  3. Multicolor Quantum Dot-Based Chemical Nose for Rapid and Array-Free Differentiation of Multiple Proteins.

    PubMed

    Xu, Qinfeng; Zhang, Yihong; Tang, Bo; Zhang, Chun-yang

    2016-02-16

    Nanomaterial-based differential sensors (e.g., chemical nose) have shown great potential for identification of multiple proteins because of their modulatable recognition and transduction capability but with the limitation of array separation, single-channel read-out, and long incubation time. Here, we develop a multicolor quantum dot (QD)-based multichannel sensing platform for rapid identification of multiple proteins in an array-free format within 1 min. A protein-binding dye of bromophenol blue (BPB) is explored as an efficient reversible quencher of QDs, and the mixture of BPB with multicolor QDs may generate the quenched QD-BPB complexes. The addition of proteins will disrupt the QD-BPB complexes as a result of the competitive protein-BPB binding, inducing the separation of BPB from the QDs and the generation of distinct fluorescence patterns. The multicolor patterns may be collected at a single-wavelength excitation and differentiated by a linear discriminant analysis (LDA). This multichannel sensing platform allows for the discrimination of ten proteins and seven cell lines with the fastest response rate reported to date, holding great promise for rapid and high-throughput medical diagnostics. PMID:26759896

  4. Understanding ground- and excited-state properties of perylene tetracarboxylic acid bisimide crystals by means of quantum chemical computations.

    PubMed

    Zhao, Hong-Mei; Pfister, Johannes; Settels, Volker; Renz, Manuel; Kaupp, Martin; Dehm, Volker C; Würthner, Frank; Fink, Reinhold F; Engels, Bernd

    2009-11-01

    Quantum chemical protocols explaining the crystal structures and the visible light absorption properties of 3,4:9,10-perylene tetracarboxylic acid bisimide (PBI) derivates are proposed. Dispersion-corrected density functional theory has provided an intermolecular potential energy of PBI dimers showing several energetically low-lying minima, which corresponds well with the packing of different PBI dyes in the solid state. While the dispersion interaction is found to be crucial for the binding strength, the minimum structures of the PESs are best explained by electrostatic interactions. Furthermore, a method is introduced, which reproduces the photon energies at the absorption maxima of PBI pigments within 0.1 eV. It is based on time-dependent Hartree-Fock (TD-HF) excitation energies calculated for PBI dimers with the next-neighbor arrangement in the pigment and incorporates crystal packing effects. This success provides clear evidence that the electronically excited states, which determine the color of these pigments, have no significant charge-transfer character. The developed protocols can be applied in a routine manner to understand and to predict the properties of such pigments, which are important materials for organic solar cells and (opto-)electronic devices. PMID:19860479

  5. Nitrogen-Containing Analog of Dibenzoylmethanate of Boron Difluoride: Luminescence, Structure, Quantum Chemical Modeling, and Delay Fluorescence.

    PubMed

    Fedorenko, Elena V; Тretyakova, Galina O; Mirochnik, Anatolii G; Beloliptsev, Anton Yu; Svistunova, Irina V; Sazhnikov, Viacheslav A; Atabekyan, Levon S

    2016-09-01

    Boron difluoride of 3-amino-1,3-diphenyl-2-propene-1-onate (1) has been synthesized and its crystal structure has been determined. The comparative studies of 1 and its oxygen analog 1,3-diphenyl-1,3-dionate (dibenzoylmethanate) of boron difluoride (2) have been performed using the methods of stationary and time-resolved spectroscopy and quantum chemical modeling. It was established that at the transition from solutions to crystals, a bathochromic shift of the spectra and a significant increase of luminescence intensity of 1 take place. The luminescent properties of solutions of 1 and 2 are similar. The peculiarities of crystal packings of 1 and 2 are responsible for differences in crystals luminescent properties. For crystals of 2, one observes the luminescence of J-aggregates and excimers, while for 1, in which a dimer is an elementary structural fragment, only the excimer luminescence is registered. A delayed excimer fluorescence of the P-type was observed for crystals of 1 and 2 at room temperature. The intensity of the delayed fluorescence of 1 is 300-fold higher than that of 2. Graphical Abstract Luminescence of J-aggregates and the formation of excimers in crystals of 1 and 2. PMID:27422696

  6. Conformational analysis of tert-butyl acetate using a combination of microwave spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Yueyue; Mouhib, Halima; Li, Guohua; Kleiner, Isabelle; Stahl, Wolfgang

    2016-04-01

    tert-Butyl acetate was investigated using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy. The microwave spectrum was recorded in the frequency range from 8.00 to 15.75 GHz. Due to its rather rigid frame, the molecule possesses only two conformers: one of Cs symmetry and one of C1 symmetry that appears as a pair of enantiomers. The Cs conformer is the most abundant in the supersonic jet and according to ab initio calculations at the MP2/6-311++G(d, p) level of theory it is 46 kJ/mol lower in energy than the C1 conformer. Here, we report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, for which a set of rotational and centrifugal distortion constants, as well as the barrier to internal rotation of the acetyl methyl group were determined with high accuracy. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we were able to determine a barrier height of about 113 cm-1 and subsequently compare the molecular parameters obtained from these two codes.

  7. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations.

    PubMed

    Suhasini, M; Sailatha, E; Gunasekaran, S; Ramkumaar, G R

    2015-04-15

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the (13)C and (1)H NMR chemical shifts of Carbamazepine. PMID:25682215

  8. Maximizing the dielectric response of molecular thin films via quantum chemical design.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2014-12-23

    Developing high-capacitance organic gate dielectrics is critical for advances in electronic circuitry based on unconventional semiconductors. While high-dielectric constant molecular substances are known, the mechanism of dielectric response and the fundamental chemical design principles are not well understood. Using a plane-wave density functional theory formalism, we show that it is possible to map the atomic-scale dielectric profiles of molecule-based materials while capturing important bulk characteristics. For molecular films, this approach reveals how basic materials properties such as surface coverage density, molecular tilt angle, and π-system planarity can dramatically influence dielectric response. Additionally, relatively modest molecular backbone and substituent variations can be employed to substantially enhance film dielectric response. For dense surface coverages and proper molecular alignment, conjugated hydrocarbon chains can achieve dielectric constants of >8.0, more than 3 times that of analogous saturated chains, ∼2.5. However, this conjugation-related dielectric enhancement depends on proper molecular orientation and planarization, with enhancements up to 60% for proper molecular alignment with the applied field and an additional 30% for conformations such as coplanarity in extended π-systems. Conjugation length is not the only determinant of dielectric response, and appended polarizable high-Z substituents can increase molecular film response more than 2-fold, affording estimated capacitances of >9.0 μF/cm2. However, in large π-systems, polar substituent effects are substantially attenuated. PMID:25415650

  9. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-04-01

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.

  10. Synthesis of diosgenin p-nitrobenzoate by Steglich method, its crystal structure and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Sethi, Arun; Bhatia, Akriti; Shukla, Dolly; Kumar, Abhinav; Sonker, Ravi; Prakash, Rohit; Bhatia, Gitika

    2012-11-01

    In the present study, a novel one pot synthetic route for the synthesis of diosgenin p-nitrobenzoate (2) is described from cheap, commercially available naturally occurring sapogenin-diosgenin. The molecular geometry, IR frequencies, Gauge-including atomic orbital (GIAO), 1H and 13C NMR chemical shifts of compound 2 has been calculated in the ground state by using the Hartree-Fock (HF) and density functional method (DFT/B3LYP) using 6-31G(d,p) basis set. The structure of diosgenin p-nitrobenzoate (2) has been confirmed by single crystal X-ray diffraction. The compound crystallizes in monoclinic form having space group P21 with cell parameters a = 7.719(2) Å, b = 8.425(2) Å and c = 22.578(6) Å, α = 90.00, β = 98.46 and γ = 90.00. The oxygen atoms O5 and O4 of the nitro and carbonyl ester, respectively display weak intermolecular N1sbnd O5⋯H7' and C1'dbnd O4⋯H4' interactions having dimensions of 2.61 and 2.59 Å, respectively to form intricate 1D network. The study of the electronic properties such as HOMO and LUMO energy were performed using time dependent DFT (TD-DFT) calculations. The calculated HOMO and LUMO energy values indicate that charge transfer takes place within the molecule. The compound was screened for cytotoxicity and anti-adipogenic activity.

  11. Molecular structure, spectroscopic assignments and other quantum chemical calculations of anticancer drugs - A review.

    PubMed

    Ghasemi, A S; Deilam, M; Sharifi-Rad, J; Ashrafi, F; Hoseini-Alfatemi, S M

    2015-01-01

    In many texts, both theoretical and experimental studies on molecular structure and spectroscopic assignments of anticancer medicines have been reported. Molecular geometry parameters have been experimentally obtained by x-ray structure determination method and optimized using computational chemistry method like density functional theory. In this review, we consider calculations based on density function theory at B3LYP/6-31G (d,p) and B3LYP/6-311++G (d,p) levels of theory. Based on optimized geometric parameters of the molecules, molecular structures (length of bonds, bond angles and torsion angles) and vibrational assignments have been obtained. Molecular stability and bond strength have been investigated by applying natural bond orbital (NBO) analysis. Other molecular properties such as mulliken population analysis, thermodynamic properties and polarizabitities of these drugs have been reported. Calculated energies of HOMO and LUMO show that charge transfer occurs in the molecular. Information about the size, shape, charge density distribution and site of molecular chemical reactivity has been obtained by mapping electron density isosurface of electrostatic and compared with experiment data. PMID:26638891

  12. The mechanism for proton pumping in cytochrome c oxidase from an electrostatic and quantum chemical perspective.

    PubMed

    Blomberg, Margareta R A; Siegbahn, Per E M

    2012-04-01

    The mechanism for proton pumping in cytochrome c oxidase in the respiratory chain, has for decades been one of the main unsolved problems in biochemistry. However, even though several different suggested mechanisms exist, many of the steps in these mechanisms are quite similar and constitute a general consensus framework for discussing proton pumping. When these steps are analyzed, at least three critical gating situations are found, and these points are where the suggested mechanisms in general differ. The requirements for gating are reviewed and analyzed in detail, and a mechanism is suggested, where solutions for all the gating situations are formulated. This mechanism is based on an electrostatic analysis of a kinetic experiment fior the O to E transition. The key component of the mechanism is a positively charged transition state. An electron on heme a opens the gate for proton transfer from the N-side to a pump loading site (PLS). When the negative charge of the electron is compensated by a chemical proton, the positive transition state prevents backflow from the PLS to the N-side at the most critical stage of the pumping process. The mechanism has now been tested by large model DFT calculations, and these calculations give strong support for the suggested mechanism. PMID:21978537

  13. The spectroscopic and quantum chemical studies of 3,4-difluoroaniline.

    PubMed

    Kose, Etem; Karabacak, Mehmet; Atac, Ahmet

    2015-05-15

    Spectroscopic and structural investigations of 3,4-difluoroaniline molecule are presented by using experimental (FT-IR, FT-Raman, (1)H and (13)C NMR, and UV-Vis) techniques and theoretical (DFT approach) calculations. FT-IR and FT-Raman spectra of 3,4-difluoroaniline molecule are recorded in the region 4000-400cm(-1) and 3500-10cm(-1) in the liquid phase, respectively. The NMR chemical shifts ((1)H and (13)C) are recorded in chloroform-d solution. The UV absorption spectra of 3,4-difluoroaniline dissolved in ethanol and water are recorded in the range of 200-400nm. Experimental results are supported with the following theoretical calculations; the optimized geometry and vibrational (FT-IR and FT-Raman) spectra are carried out by DFT (B3LYP)/6-311++G(d,p) basis set calculations. The nuclear magnetic resonance spectra ((1)H and (13)C NMR) are obtained by using the gauge-invariant atomic orbital method. Moreover, electronic characteristics, such as HOMO and LUMO energies, density of state diagrams, and molecular electrostatic potential surface are investigated. Nonlinear optical properties and thermodynamic features are also outlined theoretically. An excellent correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the molecule. Thus, this work leads to a deep understanding of the characteristics of di-substituted aniline derivatives. PMID:25733254

  14. The spectroscopic and quantum chemical studies of 3,4-difluoroaniline

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Karabacak, Mehmet; Atac, Ahmet

    2015-05-01

    Spectroscopic and structural investigations of 3,4-difluoroaniline molecule are presented by using experimental (FT-IR, FT-Raman, 1H and 13C NMR, and UV-Vis) techniques and theoretical (DFT approach) calculations. FT-IR and FT-Raman spectra of 3,4-difluoroaniline molecule are recorded in the region 4000-400 cm-1 and 3500-10 cm-1 in the liquid phase, respectively. The NMR chemical shifts (1H and 13C) are recorded in chloroform-d solution. The UV absorption spectra of 3,4-difluoroaniline dissolved in ethanol and water are recorded in the range of 200-400 nm. Experimental results are supported with the following theoretical calculations; the optimized geometry and vibrational (FT-IR and FT-Raman) spectra are carried out by DFT (B3LYP)/6-311++G(d,p) basis set calculations. The nuclear magnetic resonance spectra (1H and 13C NMR) are obtained by using the gauge-invariant atomic orbital method. Moreover, electronic characteristics, such as HOMO and LUMO energies, density of state diagrams, and molecular electrostatic potential surface are investigated. Nonlinear optical properties and thermodynamic features are also outlined theoretically. An excellent correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the molecule. Thus, this work leads to a deep understanding of the characteristics of di-substituted aniline derivatives.

  15. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol.

    PubMed

    Moorthi, P P; Gunasekaran, S; Swaminathan, S; Ramkumaar, G R

    2015-02-25

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule. PMID:25233034

  16. Quantum chemical and statistical study of megazol-derived compounds with trypanocidal activity

    NASA Astrophysics Data System (ADS)

    Rosselli, F. P.; Albuquerque, C. N.; da Silva, A. B. F.

    In this work we performed a structure-activity relationship (SAR) study with the aim to correlate molecular properties of the megazol compound and 10 of its analogs with the biological activity against Trypanosoma cruzi (trypanocidal or antichagasic activity) presented by these molecules. The biological activity indication was obtained from in vitro tests and the molecular properties (variables or descriptors) were obtained from the optimized chemical structures by using the PM3 semiempirical method. It was calculated ˜80 molecular properties selected among steric, constitutional, electronic, and lipophilicity properties. In order to reduce dimensionality and investigate which subset of variables (descriptors) would be more effective in classifying the compounds studied, according to their degree of trypanocidal activity, we employed statistical methodologies (pattern recognition and classification techniques) such as principal component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN), and discriminant function analysis (DFA). These methods showed that the descriptors molecular mass (MM), energy of the second lowest unoccupied molecular orbital (LUMO+1), charge on the first nitrogen at substituent 2 (qN'), dihedral angles (D1 and D2), bond length between atom C4 and its substituent (L4), Moriguchi octanol-partition coefficient (MLogP), and length-to-breadth ratio (L/Bw) were the variables responsible for the separation between active and inactive compounds against T. cruzi. Afterwards, the PCA, KNN, and DFA models built in this work were used to perform trypanocidal activity predictions for eight new megazol analog compounds.

  17. Analysis of Intermolecular Interactions Using Calculated Molecular Properties: AN AB Initio Quantum Chemical Study

    NASA Astrophysics Data System (ADS)

    Brinck, Nils Tore

    complementary nature of the two properties V({bf r}) and |{I}({bf r}). The hydrogen-bond-donating and -accepting abilities of the hydrides can be rationalized in terms of their surface electrostatic potentials. However accurate determination of acidities requires that both properties be considered. Good dual parameter relationships between gas phase or solution acidities and V_{S,min} and |{I}_{S,min} have been found.

  18. Quantum Chemical Studies of the Substituent Effect on the Reaction of Carbonyl Oxime with Amine.

    PubMed

    Kaya, Yunus

    2016-07-21

    The reaction of the two different substitue carbonyl oximes (isonitrosoacetylnaphthaline, inanH and nitro-isonitrosoacetophenone, ninapH) with two different amines (1-phenylethanol amine, pea, and ethanol amine, ea) was carried out and characterized by elemental analyses, IR, and (1)H and (13)C NMR spectroscopic methods. As a result of these experimental studies, two different levels for all reactions were determined: (I) formation of imine oxime and (II) rearrangement of imine oxime or formation of amido alcohol. After a mechanism was suggested for all of these reactions, the reaction mechanism of carbonyl oxime with amine was first studied by means of the B3LYP/6-311G(d,p) method. Because of the deficiency of density functional theory (DFT) on dispersion effects, the wB97X-D/6-311G(d,p) method, which includes dispersion correction, was used to obtain the reaction heat and free energy barriers to explain why the formation (imine oxime) and unexpected rearrangement products (amido alcohol) occurred or did not occur. The statistical thermodynamic method was used to obtain the changes in thermodynamic properties of the studied molecules between 100 and 500 K. From a kinetic viewpoint, the slowest step of the reactions is the IN1-TS2-IN2 step, which determines the steps of the reaction kinetics. In addition, spectroscopic properties such as vibrational and NMR chemical shifts were studied for all of the molecules. The frontier molecular orbitals (FMOs), highest occupied molecular orbitals (HOMOs), and lowest unoccupied molecular orbitals (LUMOs) were monitored for all of the molecules. PMID:27362286

  19. Nitrosyl Iodide, Ino: Millimeter-Wave Spectroscopy Guided by AB Initio Quantum Chemical Computation

    NASA Astrophysics Data System (ADS)

    Bailleux, Stephane; Duflot, Denis; Aiba, Shohei; Ozeki, Hiroyuki

    2015-06-01

    In the series of the nitrosyl halides, XNO (where X = {F, Cl, Br, I}), the millimeter-wave spectrum of INO remains so far unknown. We report our investigation on the first high-resolution rotational spectroscopy of nitrosyl iodide, INO. One of the motivation for this work comes from the growing need in developing a more complete understanding of atmospheric chemistry, especially halogen and nitrogen oxides chemistry that adversely impacts ozone levels. In the family of the nitrogen oxyhalides such as nitrosyl (XNO), nitryl (XNO), nitrite (XONO), and nitrate (XON0_2) halides, those with X = {F, Cl, Br} have been well studied, both theoretically and experimentally. However, relatively little is known about the iodine-containing analogues, although they also are of potential importance in tropospheric chemistry. In 1991, the Fourier-transform IR spectroscopic detection of INO, INO_2 and IONO_2 in the gas phase has been reported The INO molecule was generated by in situ mixing continuously I_2 and NO in a 50-cm long reaction glass tube whose outlet was connected to the absorption cell using a teflon tube. At the time of writing this abstract, 68 μ_a-type transitions (K_a = 0-10), all weak, have been successfully assigned. The hyperfine structures due to both I and N nuclei will also be presented. S.B. and D.D. acknowledge support from the Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-005 of the Programme d'Investissement d'Avenir. I. Barnes, K. H. Becker and J. Starcke, J. Phys. Chem. 1991, 95, 9736-9740.

  20. Molecular structure analysis and spectroscopic characterization of carbimazole with experimental (FT-IR, FT-Raman and UV-Vis) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Gnanasambandan, T.; Gunasekaran, S.; Seshadri, S.

    2013-11-01

    The complete vibrational assignment and analysis of the fundamental modes of carbimazole (CBZ) was carried out using the experimental FTIR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G(d,p) and 6-311++G(d,p) basis sets. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as electric dipole moment and first hyperpolarizability of CBZ have been computed using B3LYP quantum chemical calculation. Finally, the Mulliken population analysis on atomic charges of the title compound has been calculated.

  1. The threshold photoelectron spectroscopy of the cis- and trans- 1-chloro 2-fluoro-ethene isomers: an experimental and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Locht, R.; Dehareng, D.; Leyh, B.

    2014-09-01

    The threshold photoelectron spectra (TPES) of the two vicinal isomers of the 1,2-C2H2FCl molecule have been investigated in the 9-24 eV energy range using synchrotron radiation. Eight (for the cis-isomer) or nine (for the trans-isomer) bands have been observed and the corresponding ionization energies have been determined. The spectroscopic assignments are based on high level quantum chemical ab initio calculations for both isomers. Most of the observed spectral features could be interpreted. For both species the first three TPES bands exhibit a rich vibrational structure. Vibrational energies were determined and assignments were also supported by quantum chemical calculations of vibrational wavenumbers for these three ionic states of both isomers.

  2. Synthesis of a new 1,2,3,4,5-pentasubstituted cyclohexanol and determining its stereochemistry by NMR spectroscopy and quantum-chemical calculations.

    PubMed

    Mamedov, Ibrahim; Abbasoglu, Rza; Bayramov, Musa; Maharramov, Abel

    2016-04-01

    The presence of substituents in cyclohexane can influence to the ratio of conformers; for some cases, the boat form is preferable. The new six-membered cyclohexanol derivative 2 has been obtained by the synthesis of (E)-1-(bromophenyl)-3-phenylpropen-2-one (1). The NMR and quantum-chemical conformational analysis for the 2 have carried out, and its possible mechanism of formation was given. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26939987

  3. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium

    PubMed Central

    Ebenso, Eno E.; Isabirye, David A.; Eddy, Nnabuk O.

    2010-01-01

    Three thiosemicarbazides, namely 2-(2-aminophenyl)-N phenylhydrazinecarbothioamide (AP4PT), N,2-diphenylhydrazinecarbothioamide (D4PT) and 2-(2-hydroxyphenyl)-N-phenyl hydrazinecarbothioamide (HP4PT), were investigated as corrosion inhibitors for mild steel in H2SO4 solution using gravimetric and gasometric methods. The results revealed that they all inhibit corrosion and their % inhibition efficiencies (%IE) follow the order: AP4PT > HP4PT > D4PT. The %IE obtained from the gravimetric and gasometric experiments were in good agreement. The thermodynamic parameters obtained support a physical adsorption mechanism and the adsorption followed the Langmuir adsorption isotherm. Some quantum chemical parameters were calculated using different methods and correlated with the experimental %IE. Quantitative structure activity relationship (QSAR) approach was used on a composite index of some quantum chemical parameters to characterize the inhibition performance of the studied molecules. The results showed that the %IE were closely related to some of the quantum chemical parameters, but with varying degrees. The calculated/theoretical %IE of the molecules were found to be close to their experimental %IE. The local reactivity has been studied through the Fukui and condensed softness indices in order to predict both the reactive centers and to know the possible sites of nucleophilic and electrophilic attacks. PMID:20640164

  4. Synthesis, spectral, thermal, optical, electrical, mechanical and structural characterisations and quantum chemical study of 4-nitrophenol: Urea molecular adduct crystals

    NASA Astrophysics Data System (ADS)

    Muthuraja, P.; Sethuram, M.; Sethu Raman, M.; Dhandapani, M.; Amirthaganesan, G.

    2013-12-01

    Organic non-linear single crystals of 4-Nitrophenol: Urea Adduct (NPUA) have been grown by slow evaporation-solution growth technique. The elemental analysis of the compound satisfies the stoichiometric expectations. Vibrational frequencies of the grown crystals have been identified by using FT-IR analysis. The presence of different protons and carbon atoms of the grown adduct was ascertained by 1H and 13C NMR analyses. The UV-Visible spectroscopy study revealed that the grown crystal has excellent transmittance and has wide band gap in the visible province. The fluorescence emission spectrum has also been recorded. Photoconductivity studies confirm positive photoconductivity nature of the crystals. The crystal belongs to the triclinic system with space group P1. The complete structural analysis of the grown crystal has been done using single crystal X-ray diffraction technique. Thermogravimetry (TG), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) were carried out to characterise the thermal behaviour and stability of NPUA. Dielectric studies have been carried out at room temperature. Mechanical behaviour of NPUA was studied by Vickers's microhardness test. The nonlinear optical (NLO) activity test using a Q-switched and pulsed Nd: YAG laser confirms the generation of second harmonics. The Density Functional Theoretical (DFT) study affords further insight on the properties of the compound. Quantum Chemical Calculations (QCC) have been performed through DFT method at B3LYP/6-31G(d) level of theory. The optimised geometric parameters such as bond lengths, bond angles, dipole moment, optimisation energy and vibrational frequencies were reported and compared with the experimental data.

  5. X-ray, vibrational spectra and quantum chemical studies on a new semiorganic crystal: 4-Chloroanilinium perchlorate

    NASA Astrophysics Data System (ADS)

    Anitha, R.; Athimoolam, S.; Gunasekaran, M.; Anitha, K.

    2014-11-01

    A new semi-organic material 4-chloroanilinium perchlorate was synthesized and grown as a single crystal by slow evaporation solution growth technique. A good X-ray quality single crystal was selected from the grown crops and used for the single crystal diffraction studies. The asymmetric part of the unit cell contains a 4-chloroanilinium cation and a perchlorate anion. The protonation on the N site of the chloroaniline is confirmed from the CN bond distance and the deprotonation on perchloric acid is confirmed from ClO bond geometry. The molecular aggregations are stabilized through intricate three dimensional hydrogen bonding network formed by the classical NH⋯O hydrogen bonds. It form two infinite chains running along the b-axis of the unit cell which are cross-linked through another NH⋯O bond leading to alternate ring R44(12) motifs. These ring and chain motifs lead to alternate hydrophilic and hydrophobic layers along c-axis of the unit cell. The presence of different functional groups and the nature of their vibrations were identified in experimental vibrational studies through Infra-Red and Raman measurements in the range of 4000-400 cm-1. The optimized molecular structure, vibrational mode, computed spectra, molecular properties and NBO analysis of the 4-chloroanilinium perchlorate were found out by quantum chemical calculations with HF and DFT/B3LYP methods invoking 6-311++G(d,p) basis sets. Computed geometrical parameters and harmonic frequencies of fundamental, combination and overtone transitions were found in satisfactory agreement with the experimental data. The electronic properties such as HOMO and LUMO energies were carried out.

  6. Ab initio quantum chemical investigation of arsenic sulfide molecular diversity from As4S6 and As4

    NASA Astrophysics Data System (ADS)

    Kyono, Atsushi

    2013-10-01

    The structural diversity of arsenic sulfide molecules in compositions between As4S6 and As4 was investigated using ab initio quantum chemical calculations. The As4S6 molecule consists of four trigonal pyramid coordinations of As atoms bonding to three S atoms. In the As4S5 composition, only one type of molecular configuration corresponds to an uzonite-type molecule. In the As4S4 composition, two molecular configurations exist with realgar-type and pararealgar-type molecules. Three molecular configurations are in the As4S3 composition. The first configuration comprises trigonal pyramidal As atom coordinations of two types: bonding to two S atoms and one As atom, and bonding to one S atom and two As atoms. The second is the molecular configuration of dimorphite. The third comprises trigonal pyramidal As atom coordinations of two types: bonding to three As atoms, and bonding to one As atom and two S atoms. The As4S2 composition allows molecular configurations of two types. One is comprised of trigonal pyramidal As atom configurations of one type bonding to two As atoms and one S atom. The other comprises trigonal pyramidal As atom coordinations of three types: bonding to two S atoms and one As atoms, bonding to one S atom and two As atoms, and bonding to three As atoms. The As4S molecule has trigonal pyramidal As atom coordinations of two types: bonding to one S atom and two As atoms, and bonding to three As atoms. The As4S composition permits only one molecular configuration, which suggests that the mineral duranusite comprises the As4S molecular geometry. In all, ten molecular configurations are predicted in the molecular hierarchy of the arsenic sulfide binary system. The simulated Raman spectral profiles are helpful in searching for undiscovered arsenic sulfide minerals.

  7. Microwave and Quantum Chemical Study of Intramolecular Hydrogen Bonding in 2-Propenylhydrazine (H2C═CHCH2NHNH2).

    PubMed

    Møllendal, Harald; Samdal, Svein; Guillemin, Jean-Claude

    2016-01-28

    The microwave spectrum of 2-propenylhydrazine (H2C═CHCH2NHNH2) was studied in the 12-61 and 72-123 GHz spectral regions. A variety of intramolecular hydrogen bonds between one or more of the hydrogen atoms of the hydrazino group and the π-electrons are possible for this compound. Assignments of the spectra of four conformers, all of which are stabilized with intramolecular hydrogen bonds are reported. One hydrogen bond exists in two of these conformers, whereas the π-electrons are shared by two hydrogen atoms in the two other rotamers. Vibrationally excited-state spectra were assigned for three of the four conformers. The internal hydrogen bonds are weak, probably in the 3-6 kJ/mol range. A total of about 4400 transitions were assigned for these four forms. The microwave work was guided by quantum chemical calculations at the B3LYP/cc-pVTZ and CCSD/cc-pVTZ levels of theory. These calculations indicated that as many as 18 conformers may exist for 2-propenylhydrazine and 11 of these have either one or two intramolecular hydrogen bonds. The four conformers detected in this work are among the rotamers with the lowest CCSD electronic energies. The CCSD method predicts rotational constants that are very close to the experimental rotational constants. The B3LYP calculations yielded quartic centrifugal distortion constants that deviated considerably from their experimental counterparts in most cases. The calculation of vibration-rotation constants and sextic centrifugal distortion constants by the B3LYP method were generally found to be in poor agreement with the corresponding experimental constants. PMID:26696467

  8. Quantum chemical study of the photolysis mechanisms of sulfachloropyridazine and the influence of selected divalent metal ions.

    PubMed

    Shah, Shaheen; Zhang, Heming; Song, Xuedan; Hao, Ce

    2015-11-01

    Sulfonamides have been found in aquatic environments. Degradation of sulfachloropyridazine (SCP) mainly proceeds through direct and indirect photolysis in the aquatic environment. However, the mechanisms underlying the triplet photolysis of SCP and the influence of metal ions on the photolysis mechanism have not yet been fully explained. In this study, we elucidated the triplet photolysis mechanisms of SCP and the effects of three selected metal ions (Zn(2+), Ca(2+), and Cu(2+)) on the SCP photolysis mechanisms using quantum chemical calculation. Optimization of molecular structures and reaction pathways analysis of SCP were carried out at the B3LYP/6-31+G(d,p) level of theory. Two minimum energy pathways were investigated in the triplet photolysis of SCP. In Step 2 of Path-I, the photolysis product of SCP is a sulfur dioxide extrusion product, (4-(3-chloro-6-iminopyridazine-1(6H)-yl)aniline). The estimated activation energies of Step 2 and Step 3 of Path-I were much higher than in Path-II. Therefore, Path-II was found as the lowest energy pathway to obtain the SCP photoproducts, and Step 2 of Path-II was confirmed as the rate-determining step (RDS) in the photolysis mechanism of SCP. For the RDS of Path-II, computations with the three metal ions complexes (IM1-Cu(2+), IM1-Ca(2+), and IM1-Zn(2+)) show that the metal ions Cu(2+) and Ca(2+) promote triplet-sensitized photolysis of SCP by reducing the activation energy of RDS of Path-II, whereas Zn(2+) showed an inhibitory effect in photolysis of SCP by increasing the activation energy. PMID:26291757

  9. Luminescent studies of alloy Zn xCd 1- xSe quantum dots grown on ZnSe by metalorganic chemical vapor-phase deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Hark, S. K.

    2000-01-01

    Zn xCd 1- xSe alloy quantum dots (QDs) with x in the range 0-0.39 are grown by metalorganic chemical vapor-phase deposition on ZnSe. Cathodoluminescence (CL) and photoluminescence (PL) were used to study these self-assembled quantum dots. CL imaging and spectra show that clusters of QDs are efficient luminescent sites. A large red shift of the low-temperature PL peak energy of QDs, despite an increase in Zn, is attributed to a considerable increase in their size. This increase in size is consistent with the results of recent theoretical models. In forming the self-assembled QDs, mismatch strain is regarded as the fundamental driving force. When the strain changes, through a change in the composition of Zn xCd 1- xSe, QDs of a different size are obtained. A decrease in size, in turn, results in stronger quantum confinement effects. The size of the QDs is very sensitive to small changes of strain. Even a minute reduction in the zinc content of the QDs, achieved through a lengthening of growth interruptions, produces an observable blue shift of luminescence, as a result of the strengthening of the quantum confinement energy.

  10. Photovoltaic conversion of visible spectrum by GaP capped InP quantum dots grown on Si (100) by metalorganic chemical vapor deposition

    SciTech Connect

    Halder, Nripendra N.; Biswas, Pranab; Banerji, P. Nagabhushan, B.; Sarkar, Krishnendu; Chowdhury, Sisir; Chaudhuri, Arunava; Kundu, Souvik

    2015-01-05

    Growth of GaP capped strained InP quantum dots was carried out by metal organic chemical vapor deposition technique on Si (100) substrates to explore an alternative material system for photovoltaic conversion. Studies on reflectance spectroscopy show higher absorption of visible photons compared to scattering. Smooth and defect free interface provides low dark current with high rectification ratio. A solar cell made of five periods of quantum dots is found to provide a conversion efficiency of 4.18% with an open circuit voltage and short circuit current density of 0.52 V and 13.64 mA/cm{sup 2}, respectively, under AM 1.5 solar radiation.

  11. Do enantiomers of benzenesulfonic acid exist? Electron diffraction and quantum chemical study of molecular structure of benzenesulfonic acid

    NASA Astrophysics Data System (ADS)

    Giricheva, Nina I.; Girichev, Georgiy V.; Medvedeva, Yulia S.; Ivanov, Sergey N.; Petrov, Vyacheslav M.; Fedorov, Mikhail S.

    2012-09-01

    Molecular structure of benzenesulfonic acid was studied by gas-phase electron diffraction and quantum chemical (B3LYP/cc-pVTZ, МР2/cc-pVDZ, МР2/cc-pVTZ) methods. On the base of mass spectrometric analysis it was found that saturated vapor at Т = 396(9) K is represented by only molecular species, monomeric benzenesulfonic acid. Theoretical calculations showed that the molecule has two mirror conformers of C1 symmetry which can invert to each other via transition state of Cs symmetry by rotation of OH-group around Ssbnd O(H) bond. Both computational methods, B3LYP and MP2, resulted in the same structure of enantiomers; the MP2/cc-pVDZ calculations denoted a over-barrier transition between enantiomers at the temperature of electron diffraction experiment, while B3LYP and MP2 calculations with cc-pVTZ basis set estimated the barrier height to be comparable with the thermal energy value. Two geometric models of C1 and Cs symmetry were examined in gas electron diffraction structural analysis. It was established that the structure of C1 symmetry (Rf = 3.3%) demonstrated the best fit with GED data in comparison with Cs structure (Rf = 3.8%). In conformer of C1 symmetry an ordinary bond Ssbnd O(Н) is located almost orthogonal to benzene ring plane, and an Osbnd H bond practically eclipses one of Sdbnd O bonds of SO3H fragment. The following internuclear distances (Å) in benzenesulfonic acid were determined: rh1(Csbnd H)av = 1.116(6), rh1(Csbnd C)ср = 1.402(4), rh1(Csbnd S) = 1.770(5), rh1(Sdbnd O)av = 1.438(4), rh1(Ssbnd O) = 1.623(4), rh1(Osbnd H) = 0.870(17). Calculations of internal rotation potential functions and NBO-analysis of electron density distribution in a conformer and transition states between enantiomers were performed to establish the reasons of stability of the found asymmetric structure of the studied molecule. The structure of free molecule of benzenesulfonic acid was compared with that of molecular form in crystal.

  12. Hydrogen-bonded structures of pyrrole-solvent clusters: Infrared cavity ringdown spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshiteru; Honma, Kenji

    2009-02-01

    The hydrogen-bonded structures of pyrrole-solvent (H2O,CH3OH,C2H5OH) binary clusters were studied by the combination of experimental and theoretical techniques. Infrared cavity ringdown spectroscopy was applied to observe the NH and OH stretching vibrations of the clusters. The structures, binding energies, and normal modes of the binary clusters were obtained by quantum chemical calculations of the MP2/6-31+G(d,p) and B3LYP/6-311+G(d,p) levels. For the 1:1 clusters of pyrrole-H2O, pyrrole-CH3OH, and pyrrole-C2H5OH, the hydrogen-bonded NH stretching vibrations were observed at 3448, 3414, and 3408 cm-1, respectively. They were redshifted from the NH stretching vibration of the pyrrole monomer, and the amounts of the redshift were proportional to the proton affinities of the solvent molecules. MP2 level calculations revealed that the σ-type (NH⋯O) hydrogen-bonded structures had 7.6-9.0 kJ/mol larger binding energies than the π-type structures (OH⋯π electron cloud of pyrrole), and that the vibrational frequencies of the σ-type structures are consistent with the observed spectra. In addition to the 1:1 clusters, the NH or OH stretching vibrations of pyrrole-CH3OH binary clusters were observed at 3432 and 3549 cm-1. Among three optimized structures of the pyrrole-(CH3OH)2, the σ-π bridge pyrrole-(CH3OH)2 provided a reasonable agreement between the observed and calculated vibrational frequencies. For the pyrrole-H2O binary clusters, three new bands were observed at 3414, 3435, and 3541 cm-1. These bands are consistent with the calculated NH and OH stretching vibrations of the (pyrrole)2-H2O cluster, which has a closed cyclic hydrogen-bonded structure.

  13. Grading More Accurately

    ERIC Educational Resources Information Center

    Rom, Mark Carl

    2011-01-01

    Grades matter. College grading systems, however, are often ad hoc and prone to mistakes. This essay focuses on one factor that contributes to high-quality grading systems: grading accuracy (or "efficiency"). I proceed in several steps. First, I discuss the elements of "efficient" (i.e., accurate) grading. Next, I present analytical results…

  14. Investigation of the molecular structure of radical cation of s-trioxane: quantum chemical calculations and low-temperature EPR results

    NASA Astrophysics Data System (ADS)

    Janovský, I.; Naumov, S.; Knolle, W.; Mehnert, R.

    2003-06-01

    s-Trioxane radical cation was radiolytically generated in freon matrix and the changes of the EPR spectra with temperature, arising from conformational interconversion involving ring, were observed. The equilibration, leading to six equivalent protons (hfs splitting constant 5.9 mT) characteristic of the average planar geometry of the radical cation, occurs at ˜120 K in CF 3CCl 3. Supplementary experiments with 1,3-dioxane, which forms a radical cation with a similar electronic structure, were also performed. DFT quantum chemical calculations were used to support the experimental results.

  15. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    SciTech Connect

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg

    2015-07-14

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.

  16. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions.

    PubMed

    Dibetsoe, Masego; Olasunkanmi, Lukman O; Fayemi, Omolola E; Yesudass, Sasikumar; Ramaganthan, Baskar; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-01-01

    The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs) namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1), 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (Pc2), 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3) and 29H,31H-phthalocyanine (Pc4), and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1), 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2) and 2,3-naphthalocyanine (nP3) were investigated on the corrosion of aluminium (Al) in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR). Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I(-) ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR analysis on the

  17. Photodissociation of ultracold diatomic strontium molecules with quantum state control

    NASA Astrophysics Data System (ADS)

    McDonald, M.; McGuyer, B. H.; Apfelbeck, F.; Lee, C.-H.; Majewska, I.; Moszynski, R.; Zelevinsky, T.

    2016-07-01

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold 88Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter–wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  18. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    PubMed

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-01

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics. PMID:27383945

  19. Structural determination of complex natural products by quantum mechanical calculations of (13)C NMR chemical shifts: development of a parameterized protocol for terpenes.

    PubMed

    de Albuquerque, Ana Carolina Ferreira; Ribeiro, Daniel Joras; de Amorim, Mauro Barbosa

    2016-08-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important tools for determining the structures of organic molecules. Despite the advances made in this technique, revisions of erroneously established structures for natural products are still commonly published in the literature. In this context, the prediction of chemical shifts through ab initio and density functional theory (DFT) calculations has become a very powerful tool for assisting with the structural determination of complex organic molecules. In this work, we present the development of a protocol for (13)C chemical shift calculations of terpenes, a class of natural products that are widely distributed among plant species and are very important due to their biological and pharmacological activities. This protocol consists of GIAO-DFT calculations of chemical shifts and the application of a parameterized scaling factor in order to ensure accurate structural determination of this class of natural products. The application of this protocol to a set of five terpenes yielded accurate calculated chemical shifts, showing that this is a very attractive tool for the calculation of complex organic structures such as terpenes. PMID:27424297

  20. Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures.

    PubMed

    Chaisakul, Papichaya; Marris-Morini, Delphine; Isella, Giovanni; Chrastina, Daniel; Le Roux, Xavier; Gatti, Eleonora; Edmond, Samson; Osmond, Johann; Cassan, Eric; Vivien, Laurent

    2010-09-01

    We investigate the room-temperature quantum-confined Stark effect in Ge/SiGe multiple quantum wells (MQWs) grown by low-energy plasma-enhanced chemical vapor deposition. The active region is embedded in a p-i-n diode, and absorption spectra at different reverse bias voltages are obtained from optical transmission, photocurrent, and differential transmission measurements. The measurements provide accurate values of the fraction of light absorbed per well of the Ge/SiGe MQWs. Both Stark shift and reduction of exciton absorption peak are observed. Differential transmission indicates that there is no thermal contribution to these effects. PMID:20808367

  1. Accurate calculations of bound rovibrational states for argon trimer

    SciTech Connect

    Brandon, Drew; Poirier, Bill

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  2. Accurate calculations of bound rovibrational states for argon trimer.

    PubMed

    Brandon, Drew; Poirier, Bill

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar3), using the ScalIT suite of parallel codes. The Ar3 rovibrational energy levels are computed to a very high level of accuracy (10(-3) cm(-1) or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar3 are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar3 is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar3 may be found in the current literature-and only for the lowest-lying rotational excitations. PMID:25053315

  3. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  4. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  5. Chemical bonding and defect states of LPCVD grown silicon-rich Si{sub 3}N{sub 4} for quantum dot applications

    SciTech Connect

    Mohammed, Shakil Hinkle, Christopher L.; Nimmo, Michael T.; Malko, Anton V.

    2014-03-15

    Si-rich Si{sub 3}N{sub 4} (SRN) thin films were investigated to understand the various defect states present within the SRN that can lead to reduced performance in quantum dot based devices made of these materials. The SRN films, deposited by low pressure chemical vapor deposition followed by furnace anneals over a range of temperatures, were determined to be comprised of two distinct phase separated SRN regions with different compositions (precipitates within a host matrix). Photoluminescence (PL) spectra showed multiple peaks convoluted together within the visible and near-visible range. Depending on deposition and annealing conditions, the films displayed changes in PL peak intensities which were correlated with chemical bonding utilizing x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, spectroscopic ellipsometry, and capacitance–voltage measurements. It is found that the PL originates from defect-state to defect-state and band edge to defect-state electronic transitions.

  6. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    PubMed

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. PMID:26939077

  7. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift

    SciTech Connect

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-04-28

    We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  8. Selenium Chain Length Distribution in GexSe100-x Glasses: Insights from (77)Se NMR Spectroscopy and Quantum Chemical Calculations.

    PubMed

    Kaseman, Derrick C; Oliveira, Karina Moreira; Palazzo, Teresa; Sen, Sabyasachi

    2016-05-19

    The statistics of selenium chain length distribution in GexSe100-x glasses with 5 ≤ x ≤ 20 are investigated using a combination of high-resolution, two-dimensional (77)Se nuclear magnetic resonance (NMR) spectroscopy and quantum chemical calculations. This combined approach allows for the distinction of various selenium chain environments on the basis of subtle but systematic effects of next-nearest neighbors of Se atoms in -Se-Se-Se- linkages on the (77)Se chemical shift tensor parameters. Simulation of the experimental (77)Se NMR spectral line shapes indicates that Se chain speciation in these chalcogenide glasses follows the Flory-Schulz distribution, originally developed for organic chain polymers. PMID:27129100

  9. Comparison of cross sections from the quasi-classical trajectory method and the j(z)-conserving centrifugal sudden approximation with accurate quantum results for an atom-rigid nonlinear polyatomic collision

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1993-01-01

    We report the results of a series of calculations of state-to-state integral cross sections for collisions between O and nonvibrating H2O in the gas phase on a model nonreactive potential energy surface. The dynamical methods used include converged quantum mechanical scattering calculations, the j(z) conserving centrifugal sudden (j(z)-CCS) approximation, and quasi-classical trajectory (QCT) calculations. We consider three total energies 0.001, 0.002, and 0.005 E(h) and the nine initial states with rotational angular momentum less than or equal to 2 (h/2 pi). The j(z)-CCS approximation gives good results, while the QCT method can be quite unreliable for transitions to specific rotational sublevels. However, the QCT cross sections summed over final sublevels and averaged over initial sublevels are in better agreement with the quantum results.

  10. Molecular mechanism of NDMA formation from N,N-dimethylsulfamide during ozonation: quantum chemical insights into a bromide-catalyzed pathway.

    PubMed

    Trogolo, Daniela; Mishra, Brijesh Kumar; Heeb, Michèle B; von Gunten, Urs; Arey, J Samuel

    2015-04-01

    During ozonation of drinking water, the fungicide metabolite N,N-dimethylsulfamide (DMS) can be transformed into a highly toxic product, N-nitrosodimethylamine (NDMA). We used quantum chemical computations and stopped-flow experiments to evaluate a chemical mechanism proposed previously to describe this transformation. Stopped-flow experiments indicate a pK(a) = 10.4 for DMS. Experiments show that hypobromous acid (HOBr), generated by ozone oxidation of naturally occurring bromide, brominates the deprotonated DMS(-) anion with a near-diffusion controlled rate constant (7.1 ± 0.6 × 10(8) M(-1) s(-1)), forming Br-DMS(-) anion. According to quantum chemical calculations, Br-DMS has a pK(a) ∼ 9.0 and thus remains partially deprotonated at neutral pH. The anionic Br-DMS(-) bromamine can react with ozone with a high rate constant (10(5 ± 2.5) M(-1) s(-1)), forming the reaction intermediate (BrNO)(SO2)N(CH3)2(-). This intermediate resembles a loosely bound complex between an electrophilic nitrosyl bromide (BrNO) molecule and an electron-rich dimethylaminosulfinate ((SO2)N(CH3)2(-)) fragment, based on inspection of computed natural charges and geometric parameters. This fragile complex undergoes immediate (10(10 ± 2.5) s(-1)) reaction by two branches: an exothermic channel that produces NDMA, and an entropy-driven channel giving non-NDMA products. Computational results bring new insights into the electronic nature, chemical equilibria, and kinetics of the elementary reactions of this pathway, enabled by computed energies of structures that are not possible to access experimentally. PMID:25772586

  11. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor.

    PubMed

    Carl, Shaun A; Nguyen, Hue Minh Thi; Elsamra, Rehab M I; Nguyen, Minh Tho; Peeters, Jozef

    2005-03-15

    The rate coefficient of the gas-phase reaction C(2)H + H(2)O-->products has been experimentally determined over the temperature range 500-825 K using a pulsed laser photolysis-chemiluminescence (PLP-CL) technique. Ethynyl radicals (C(2)H) were generated by pulsed 193 nm photolysis of C(2)H(2) in the presence of H(2)O vapor and buffer gas N(2) at 15 Torr. The relative concentration of C(2)H radicals was monitored as a function of time using a CH* chemiluminescence method. The rate constant determinations for C(2)H + H(2)O were k(1)(550 K) = (2.3 +/- 1.3) x 10(-13) cm(3) s(-1), k(1)(770 K) =(7.2 +/- 1.4) x 10(-13) cm(3) s(-1), and k(1)(825 K) = (7.7 +/- 1.5) x 10(-13) cm(3) s(-1). The error in the only other measurement of this rate constant is also discussed. We have also characterized the reaction theoretically using quantum chemical computations. The relevant portion of the potential energy surface of C(2)H(3)O in its doublet electronic ground state has been investigated using density functional theory B3LYP6-311 + + G(3df,2p) and molecular orbital computations at the unrestricted coupled-cluster level of theory that incorporates all single and double excitations plus perturbative corrections for the triple excitations, along with the 6-311 + + G(3df,2p) basis set [(U)CCSD(T)6-311 + + G(3df,2p)] and using UCCSD(T)6-31G(d,p) optimized geometries. Five isomers, six dissociation products, and sixteen transition structures were characterized. The results confirm that the hydrogen abstraction producing C(2)H(2)+OH is the most facile reaction channel. For this channel, refined computations using (U)CCSD(T)6-311 + + G(3df,2p)(U)CCSD(T)6-311 + + G(d,p) and complete-active-space second-order perturbation theory/complete-active-space self-consistent-field theory (CASPT2/CASSCF) [B. O. Roos, Adv. Chem. Phys. 69, 399 (1987)] using the contracted atomic natural orbitals basis set (ANO-L) [J. Almlof and P. R. Taylor, J. Chem. Phys.86, 4070 (1987)] were performed, yielding zero

  12. Using Quantum Mechanics to Facilitate the Introduction of a Broad Range of Chemical Concepts to First-Year Undergraduate Students

    ERIC Educational Resources Information Center

    deSouza, Romualdo T.; Iyengar, Srinivasan S.

    2013-01-01

    A first-year undergraduate course that introduces students to chemistry through a conceptually detailed description of quantum mechanics is outlined. Quantization as arising from the confinement of a particle is presented and these ideas are used to introduce the reasons behind resonance, molecular orbital theory, degeneracy of electronic states,…

  13. Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates

    PubMed Central

    2015-01-01

    A major challenge for realizing quantum computation is finding suitable systems to embody quantum bits (qubits) and quantum gates (qugates) in a robust and scalable architecture. An emerging bottom-up approach uses the electronic spins of lanthanides. Universal qugates may then be engineered by arranging in a molecule two interacting and different lanthanide ions. Preparing heterometallic lanthanide species is, however, extremely challenging. We have discovered a method to obtain [LnLn′] complexes with the appropriate requirements. Compound [CeEr] is deemed to represent an ideal situation. Both ions have a doubly degenerate magnetic ground state and can be addressed individually. Their isotopes have mainly zero nuclear spin, which enhances the electronic spin coherence. The analogues [Ce2], [Er2], [CeY], and [LaEr] have also been prepared to assist in showing that [CeEr] meets the qugate requirements, as revealed through magnetic susceptibility, specific heat, and EPR. Molecules could now be used for quantum information processing. PMID:25203521

  14. An integrated experimental and quantum chemical study on the complexation properties of (9‧-fluorene)-spiro-5-hydantoin and its thioanalogue

    NASA Astrophysics Data System (ADS)

    Ahmedova, Anife; Marinova, Petja; Marinov, Marin; Stoyanov, Neyko

    2016-03-01

    The reactivities of (9‧-fluorene)-spiro-5-hydantoin and its thio-analogue with Cu(II) were studied in different reaction conditions and the formed products were characterized by spectroscopic methods (IR, NMR and/or EPR). It was found that unlike the 2,4-dithio- analogue, both the (9‧-fluorene)-spiro-5-hydantoin and its 2-thio derivative form Cu(II) complexes only in presence of a strong base. We identified the coordination mode of the ligands and the structure of the complexes through geometry optimization of different models and calculations of the corresponding spectroscopic parameters using ab initio quantum chemical methods. The comparison between the experimental and the theoretical data suggested monodentate coordination of the fluorene-hydantoin ligands after deprotonation of one amido group. Additional confirmations of this proposition were obtained from the experimental and DFT-calculated EPR parameters (g-factor and A-tensor), which allowed for determination of the most probable geometry of the complexes. We further employed the quantum chemical methods to explain the observed differences in the complexation abilities of variously spiro-5-substituted thio- and dithio-hydantoins, accounting for the structural effects on the electron density and acidity of the hydantoin ring.

  15. Quantum chemical analysis of the energy of proton transfer from phenol and chlorophenols to H2O in the gas phase and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Schüürmann, Gerrit

    1998-12-01

    Proton transfer energies of phenol and 14 chlorophenols with H2O as a base are analyzed in the gas phase and in solution using quantum chemical methods at the semiempirical and ab initio level of computation. The effect of aqueous solution was accounted for by applying the density functional theory (DFT) implementation of the conductor-like screening model (COSMO) as well as semiempirical continuum-solvation models. The results reveal substantial and systematic overestimations of the free energies of proton transfer as derived from experimental solution-phase pKa data. This can be traced back to both deficiencies in the current model parameterization as well as to limitations of the underlying gas-phase quantum chemical models, which is further illustrated by additional complete-basis-set (CBS) calculations for the proton transfer reaction with phenol. In contrast, the relative pKa trend is reflected well by COSMO-DFT calculations with correlation coefficients (adjusted for degrees of freedom) of 0.96. Decomposition of the dissociation energy in aqueous solution into a gas-phase term and a term summarizing the solvation contributions provides new insights into the effect of solvation on proton transfer energies, and yields mechanistic explanations for the observed differences in the gas-phase and solution-phase acidity orders of various subgroups of the compounds.

  16. Isomerism of Cyanomethanimine: Accurate Structural, Energetic, and Spectroscopic Characterization.

    PubMed

    Puzzarini, Cristina

    2015-11-25

    The structures, relative stabilities, and rotational and vibrational parameters of the Z-C-, E-C-, and N-cyanomethanimine isomers have been evaluated using state-of-the-art quantum-chemical approaches. Equilibrium geometries have been calculated by means of a composite scheme based on coupled-cluster calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The latter approach is proved to provide molecular structures with an accuracy of 0.001-0.002 Å and 0.05-0.1° for bond lengths and angles, respectively. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled-cluster theory, including up to single, double, triple, and quadruple excitations, and corrected for core-electron correlation and anharmonic zero-point vibrational energy, have been used to accurately determine relative energies and the Z-E isomerization barrier with an accuracy of about 1 kJ/mol. Vibrational and rotational spectroscopic parameters have been investigated by means of hybrid schemes that allow us to obtain rotational constants accurate to about a few megahertz and vibrational frequencies with a mean absolute error of ∼1%. Where available, for all properties considered, a very good agreement with experimental data has been observed. PMID:26529434

  17. The determination of the chemical composition profile of the GaAs/AlGaAs heterostructures designed for quantum cascade lasers by means of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Gaca, JarosŁaw; Wójcik, Marek; Bugajski, Maciej; Kosiel, Kamil

    2011-10-01

    The chemical composition profile of the GaAs/AlGaAs quantum cascade structures grown on (0 0 1) GaAs substrate by molecular beam epitaxy is studied by a synchrotron radiation high-resolution X-ray diffraction. The analysis is carried out for the whole structure as well for its parts. In order to determine some structural parameters, such as: the thickness and chemical composition of each layer making up the investigated structure, the profile of the interface between succeeding layers, and the preservation of the structure periodicity, the experimental X-ray diffraction profiles are compared with simulated ones calculated by means of Darwin dynamical theory of X-ray diffraction. It is shown that this method gives correct chemical composition profiles and allows for the evaluation of the deviations from the designed values of the structural parameters in most investigated cases. Limits of the method are discussed, especially by the determination of the chemical composition profile for thin heterostructures, such as those making active or injector regions.

  18. Detection of methylation, acetylation and glycosylation of protein residues by monitoring 13C chemical-shift changes: A quantum-chemical study

    PubMed Central

    Garay, Pablo G.; Martin, Osvaldo A.; Scheraga, Harold A.

    2016-01-01

    Post-translational modifications of proteins expand the diversity of the proteome by several orders of magnitude and have a profound effect on several biological processes. Their detection by experimental methods is not free of limitations such as the amount of sample needed or the use of destructive procedures to obtain the sample. Certainly, new approaches are needed and, therefore, we explore here the feasibility of using 13C chemical shifts of different nuclei to detect methylation, acetylation and glycosylation of protein residues by monitoring the deviation of the 13C chemical shifts from the expected (mean) experimental value of the non-modified residue. As a proof-of-concept, we used 13C chemical shifts, computed at the DFT-level of theory, to test this hypothesis. Moreover, as a validation test of this approach, we compare our theoretical computations of the 13Cε chemical-shift values against existing experimental data, obtained from NMR spectroscopy, for methylated and acetylated lysine residues with good agreement within ∼1 ppm. Then, further use of this approach to select the most suitable 13C-nucleus, with which to determine other modifications commonly seen, such as methylation of arginine and glycosylation of serine, asparagine and threonine, shows encouraging results. PMID:27547559

  19. Detection of methylation, acetylation and glycosylation of protein residues by monitoring (13)C chemical-shift changes: A quantum-chemical study.

    PubMed

    Garay, Pablo G; Martin, Osvaldo A; Scheraga, Harold A; Vila, Jorge A

    2016-01-01

    Post-translational modifications of proteins expand the diversity of the proteome by several orders of magnitude and have a profound effect on several biological processes. Their detection by experimental methods is not free of limitations such as the amount of sample needed or the use of destructive procedures to obtain the sample. Certainly, new approaches are needed and, therefore, we explore here the feasibility of using (13)C chemical shifts of different nuclei to detect methylation, acetylation and glycosylation of protein residues by monitoring the deviation of the (13)C chemical shifts from the expected (mean) experimental value of the non-modified residue. As a proof-of-concept, we used (13)C chemical shifts, computed at the DFT-level of theory, to test this hypothesis. Moreover, as a validation test of this approach, we compare our theoretical computations of the (13)Cε chemical-shift values against existing experimental data, obtained from NMR spectroscopy, for methylated and acetylated lysine residues with good agreement within ∼1 ppm. Then, further use of this approach to select the most suitable (13)C-nucleus, with which to determine other modifications commonly seen, such as methylation of arginine and glycosylation of serine, asparagine and threonine, shows encouraging results. PMID:27547559

  20. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.