Science.gov

Sample records for accurate quantum monte

  1. Practical Schemes for Accurate Forces in Quantum Monte Carlo.

    PubMed

    Moroni, S; Saccani, S; Filippi, C

    2014-11-11

    While the computation of interatomic forces has become a well-established practice within variational Monte Carlo (VMC), the use of the more accurate Fixed-Node Diffusion Monte Carlo (DMC) method is still largely limited to the computation of total energies on structures obtained at a lower level of theory. Algorithms to compute exact DMC forces have been proposed in the past, and one such scheme is also put forward in this work, but remain rather impractical due to their high computational cost. As a practical route to DMC forces, we therefore revisit here an approximate method, originally developed in the context of correlated sampling and named here the Variational Drift-Diffusion (VD) approach. We thoroughly investigate its accuracy by checking the consistency between the approximate VD force and the derivative of the DMC potential energy surface for the SiH and C2 molecules and employ a wide range of wave functions optimized in VMC to assess its robustness against the choice of trial function. We find that, for all but the poorest wave function, the discrepancy between force and energy is very small over all interatomic distances, affecting the equilibrium bond length obtained with the VD forces by less than 0.004 au. Furthermore, when the VMC forces are approximate due to the use of a partially optimized wave function, the DMC forces have smaller errors and always lead to an equilibrium distance in better agreement with the experimental value. We also show that the cost of computing the VD forces is only slightly larger than the cost of calculating the DMC energy. Therefore, the VD approximation represents a robust and efficient approach to compute accurate DMC forces, superior to the VMC counterparts.

  2. Thermochemistry and Charge Delocalization in Cyclization Reactions Using Accurate Quantum Monte Carlo Calculations

    NASA Astrophysics Data System (ADS)

    Saritas, Kayahan; Grossman, Jeffrey C.

    2015-03-01

    Molecules that undergo pericyclic isomerization reactions find interesting optical and energy storage applications, because of their usually high quantum yields, large spectral shifts and small structural changes upon light absorption. These reactions induce a drastic change in the conjugated structure such that substituents that become a part of the conjugated system upon isomerization can play an important role in determining properties such as enthalpy of isomerization and HOMO-LUMO gap. Therefore, theoretical investigations dealing with such systems should be capable of accurately capturing the interplay between electron correlation and exchange effects. In this work, we examine the dihydroazulene isomerization as an example conjugated system. We employ the highly accurate quantum Monte Carlo (QMC) method to predict thermochemical properties and to benchmark results from density functional theory (DFT) methods. Although DFT provides sufficient accuracy for similar systems, in this particular system, DFT predictions of ground state and reaction paths are inconsistent and non-systematic errors arise. We present a comparison between QMC and DFT results for enthalpy of isomerization, HOMO-LUMO gap and charge densities with a range of DFT functionals.

  3. Accurate band gaps of semiconductors and insulators from Quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Nazarov, Roman; Hood, Randolph; Morales, Miguel

    2015-03-01

    Ab initio calculations are useful tools in developing materials with targeted band gaps for semiconductor industry. Unfortunately, the main workhorse of ab initio calculations - density functional theory (DFT) in local density approximation (LDA) or generalized gradient approximation (GGA) underestimates band gaps. Several approaches have been proposed starting from empirical corrections to more elaborate exchange-correlation functionals to deal with this problem. But none of these work well for the entire range of semiconductors and insulators. Deficiencies of DFT as a mean field method can be overcome using many-body techniques. Quantum Monte Carlo (QMC) methods can obtain a nearly exact numerical solutions of both total energies and spectral properties. Diffusion Monte Carlo (DMC), the most widely used QMC method, has been shown to provide gold standard results for different material properties, including spectroscopic constants of dimers and clusters, equation of state for solids, accurate descriptions of defects in metals and insulators. To test DMC's accuracy in a wider range of semiconductors and insulators we have computed band gaps of several semiconductors and insulators. We show that DMC can provide superior agreement with experiment compared with more traditional DFT approaches including high level exchange-correlation functionals (e.g. HSE).

  4. Properties of Solar Thermal Fuels by Accurate Quantum Monte Carlo Calculations

    NASA Astrophysics Data System (ADS)

    Saritas, Kayahan; Ataca, Can; Grossman, Jeffrey C.

    2014-03-01

    Efficient utilization of the sun as a renewable and clean energy source is one of the major goals of this century due to increasing energy demand and environmental impact. Solar thermal fuels are materials that capture and store the sun's energy in the form of chemical bonds, which can then be released as heat on demand and charged again. Previous work on solar thermal fuels faced challenges related to the cyclability of the fuel over time, as well as the need for higher energy densities. Recently, it was shown that by templating photoswitches onto carbon nanostructures, both high energy density as well as high stability can be achieved. In this work, we explore alternative molecules to azobenzene in such a nano-templated system. We employ the highly accurate quantum Monte Carlo (QMC) method to predict the energy storage potential for each molecule. Our calculations show that in many cases the level of accuracy provided by density functional theory (DFT) is sufficient. However, in some cases, such as dihydroazulene, the drastic change in conjugation upon light absorption causes the DFT predictions to be inconsistent and incorrect. For this case, we compare our QMC results for the geometric structure, band gap and reaction enthalpy with different DFT functionals.

  5. Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo.

    PubMed

    Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia

    2016-03-01

    We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-cluster methods, which is here applied to the active space to select the orbitals to correlate and construct the important transitions. The excitations are further grouped into classes, which are ordered in importance and can be systematically included in the Jastrow-Slater wave function to ensure a balanced description of all states of interest. We assess the performance of the proposed wave function in the calculation of vertical excitation energies and excited-state geometry optimization of retinal models whose π → π* state has a strong intramolecular charge-transfer character. We find that our multiresonance wave functions recover the reference values of the total energies of the ground and excited states with only a small number of excitations and that the same expansion can be flexibly used at very different geometries. Furthermore, significant computational saving can also be gained in the orbital optimization step by selectively mixing occupied and virtual orbitals based on spatial considerations without loss of accuracy on the excitation energy. Our multiresonance wave functions are therefore compact, accurate, and very promising for the calculation of multiple excited states of different character in large molecules.

  6. Toward Accurate Reaction Energetics for Molecular Line Growth at Surface: Quantum Monte Carlo and Density Functional Theory Calculations

    SciTech Connect

    Kanai, Y; Takeuchi, N

    2009-10-14

    We revisit the molecular line growth mechanism of styrene on the hydrogenated Si(001) 2x1 surface. In particular, we investigate the energetics of the radical chain reaction mechanism by means of diffusion quantum Monte Carlo (QMC) and density functional theory (DFT) calculations. For the exchange correlation (XC) functional we use the non-empirical generalized-gradient approximation (GGA) and meta-GGA. We find that the QMC result also predicts the intra dimer-row growth of the molecular line over the inter dimer-row growth, supporting the conclusion based on DFT results. However, the absolute magnitudes of the adsorption and reaction energies, and the heights of the energy barriers differ considerably between the QMC and DFT with the GGA/meta-GGA XC functionals.

  7. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  8. Quantum Gibbs ensemble Monte Carlo

    SciTech Connect

    Fantoni, Riccardo; Moroni, Saverio

    2014-09-21

    We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of {sup 4}He in two dimensions.

  9. Quantum Monte Carlo with known sign structures

    NASA Astrophysics Data System (ADS)

    Nilsson, Johan

    We investigate the merits of different Hubbard-Stratonovich transformations (including fermionic ones) for the description of interacting fermion systems, focusing on the single band Hubbard model as a model system. In particular we revisit an old proposal of Batrouni and Forcrand (PRB 48, 589 1993) for determinant quantum Monte Carlo simulations, in which the signs of all configurations is known beforehand. We will discuss different ways that this knowledge can be used to make more accurate predictions and simulations.

  10. Quantum Monte Carlo for vibrating molecules

    SciTech Connect

    Brown, W.R. |

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H{sub 2}O and C{sub 3} vibrational states, using 7 PES`s, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H{sub 2}O and C{sub 3}. In order to construct accurate trial wavefunctions for C{sub 3}, the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C{sub 3} the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C{sub 3} PES`s suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies.

  11. Quantum Monte Carlo for atoms and molecules

    SciTech Connect

    Barnett, R.N.

    1989-11-01

    The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H{sub 2}, LiH, Li{sub 2}, and H{sub 2}O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li{sub 2}, and H{sub 2}O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions.

  12. MontePython: Implementing Quantum Monte Carlo using Python

    NASA Astrophysics Data System (ADS)

    Nilsen, Jon Kristian

    2007-11-01

    We present a cross-language C++/Python program for simulations of quantum mechanical systems with the use of Quantum Monte Carlo (QMC) methods. We describe a system for which to apply QMC, the algorithms of variational Monte Carlo and diffusion Monte Carlo and we describe how to implement theses methods in pure C++ and C++/Python. Furthermore we check the efficiency of the implementations in serial and parallel cases to show that the overhead using Python can be negligible. Program summaryProgram title: MontePython Catalogue identifier: ADZP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 49 519 No. of bytes in distributed program, including test data, etc.: 114 484 Distribution format: tar.gz Programming language: C++, Python Computer: PC, IBM RS6000/320, HP, ALPHA Operating system: LINUX Has the code been vectorised or parallelized?: Yes, parallelized with MPI Number of processors used: 1-96 RAM: Depends on physical system to be simulated Classification: 7.6; 16.1 Nature of problem: Investigating ab initio quantum mechanical systems, specifically Bose-Einstein condensation in dilute gases of 87Rb Solution method: Quantum Monte Carlo Running time: 225 min with 20 particles (with 4800 walkers moved in 1750 time steps) on 1 AMD Opteron TM Processor 2218 processor; Production run for, e.g., 200 particles takes around 24 hours on 32 such processors.

  13. Quantum Monte Carlo Endstation for Petascale Computing

    SciTech Connect

    Lubos Mitas

    2011-01-26

    NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13

  14. Chemical accuracy from quantum Monte Carlo for the benzene dimer.

    PubMed

    Azadi, Sam; Cohen, R E

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods. PMID:26374029

  15. Chemical accuracy from quantum Monte Carlo for the benzene dimer

    SciTech Connect

    Azadi, Sam; Cohen, R. E.

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  16. Chemical accuracy from quantum Monte Carlo for the benzene dimer.

    PubMed

    Azadi, Sam; Cohen, R E

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  17. Interaction picture density matrix quantum Monte Carlo

    SciTech Connect

    Malone, Fionn D. Lee, D. K. K.; Foulkes, W. M. C.; Blunt, N. S.; Shepherd, James J.; Spencer, J. S.

    2015-07-28

    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.

  18. Interaction picture density matrix quantum Monte Carlo.

    PubMed

    Malone, Fionn D; Blunt, N S; Shepherd, James J; Lee, D K K; Spencer, J S; Foulkes, W M C

    2015-07-28

    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.

  19. Quantum Monte Carlo Calculations of Symmetric Nuclear Matter

    SciTech Connect

    Gandolfi, Stefano; Pederiva, Francesco; Fantoni, Stefano; Schmidt, Kevin E.

    2007-03-09

    We present an accurate numerical study of the equation of state of nuclear matter based on realistic nucleon-nucleon interactions by means of auxiliary field diffusion Monte Carlo (AFDMC) calculations. The AFDMC method samples the spin and isospin degrees of freedom allowing for quantum simulations of large nucleonic systems and represents an important step forward towards a quantitative understanding of problems in nuclear structure and astrophysics.

  20. Quantum Monte Carlo calculations of symmetric nuclear matter.

    PubMed

    Gandolfi, Stefano; Pederiva, Francesco; Fantoni, Stefano; Schmidt, Kevin E

    2007-03-01

    We present an accurate numerical study of the equation of state of nuclear matter based on realistic nucleon-nucleon interactions by means of auxiliary field diffusion Monte Carlo (AFDMC) calculations. The AFDMC method samples the spin and isospin degrees of freedom allowing for quantum simulations of large nucleonic systems and represents an important step forward towards a quantitative understanding of problems in nuclear structure and astrophysics.

  1. Fast quantum Monte Carlo on a GPU

    NASA Astrophysics Data System (ADS)

    Lutsyshyn, Y.

    2015-02-01

    We present a scheme for the parallelization of quantum Monte Carlo method on graphical processing units, focusing on variational Monte Carlo simulation of bosonic systems. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent utilization of the accelerator. The CUDA code is provided along with a package that simulates liquid helium-4. The program was benchmarked on several models of Nvidia GPU, including Fermi GTX560 and M2090, and the Kepler architecture K20 GPU. Special optimization was developed for the Kepler cards, including placement of data structures in the register space of the Kepler GPUs. Kepler-specific optimization is discussed.

  2. Experimental Monte Carlo Quantum Process Certification

    NASA Astrophysics Data System (ADS)

    Steffen, L.; da Silva, M. P.; Fedorov, A.; Baur, M.; Wallraff, A.

    2012-06-01

    Experimental implementations of quantum information processing have now reached a level of sophistication where quantum process tomography is impractical. The number of experimental settings as well as the computational cost of the data postprocessing now translates to days of effort to characterize even experiments with as few as 8 qubits. Recently a more practical approach to determine the fidelity of an experimental quantum process has been proposed, where the experimental data are compared directly with an ideal process using Monte Carlo sampling. Here, we present an experimental implementation of this scheme in a circuit quantum electrodynamics setup to determine the fidelity of 2-qubit gates, such as the CPHASE and the CNOT gate, and 3-qubit gates, such as the Toffoli gate and two sequential CPHASE gates.

  3. Novel Quantum Monte Carlo Approaches for Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Rubenstein, Brenda M.

    Quantum Monte Carlo methods are a powerful suite of techniques for solving the quantum many-body problem. By using random numbers to stochastically sample quantum properties, QMC methods are capable of studying low-temperature quantum systems well beyond the reach of conventional deterministic techniques. QMC techniques have likewise been indispensible tools for augmenting our current knowledge of superfluidity and superconductivity. In this thesis, I present two new quantum Monte Carlo techniques, the Monte Carlo Power Method and Bose-Fermi Auxiliary-Field Quantum Monte Carlo, and apply previously developed Path Integral Monte Carlo methods to explore two new phases of quantum hard spheres and hydrogen. I lay the foundation for a subsequent description of my research by first reviewing the physics of quantum liquids in Chapter One and the mathematics behind Quantum Monte Carlo algorithms in Chapter Two. I then discuss the Monte Carlo Power Method, a stochastic way of computing the first several extremal eigenvalues of a matrix too memory-intensive to be stored and therefore diagonalized. As an illustration of the technique, I demonstrate how it can be used to determine the second eigenvalues of the transition matrices of several popular Monte Carlo algorithms. This information may be used to quantify how rapidly a Monte Carlo algorithm is converging to the equilibrium probability distribution it is sampling. I next present the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm. This algorithm generalizes the well-known Auxiliary-Field Quantum Monte Carlo algorithm for fermions to bosons and Bose-Fermi mixtures. Despite some shortcomings, the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm represents the first exact technique capable of studying Bose-Fermi mixtures of any size in any dimension. In Chapter Six, I describe a new Constant Stress Path Integral Monte Carlo algorithm for the study of quantum mechanical systems under high pressures. While

  4. Interaction picture density matrix quantum Monte Carlo.

    PubMed

    Malone, Fionn D; Blunt, N S; Shepherd, James J; Lee, D K K; Spencer, J S; Foulkes, W M C

    2015-07-28

    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible. PMID:26233116

  5. Discovering correlated fermions using quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas K.; Ceperley, David M.

    2016-09-01

    It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior.

  6. Discovering correlated fermions using quantum Monte Carlo.

    PubMed

    Wagner, Lucas K; Ceperley, David M

    2016-09-01

    It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior. PMID:27518859

  7. Experimental Monte Carlo Quantum Process Certification

    NASA Astrophysics Data System (ADS)

    Steffen, Lars; Fedorov, Arkady; Baur, Matthias; Palmer da Silva, Marcus; Wallraff, Andreas

    2012-02-01

    Experimental implementations of quantum information processing have now reached a state, at which quantum process tomography starts to become impractical, since the number of experimental settings as well as the computational cost of the post processing required to extract the process matrix from the measurements scales exponentially with the number of qubits in the system. In order to determine the fidelity of an implemented process relative to the ideal one, a more practical approach called Monte Carlo quantum process certification was proposed in Ref. [1]. Here we present an experimental implementation of this scheme in a circuit quantum electrodynamics setup. Our system is realized with three superconducting transmon qubits coupled to a coplanar microwave resonator which is used for the joint-readout of the qubit states. We demonstrate an implementation of Monte Carlo quantum process certification and determine the fidelity of different two- and three-qubit gates such as cphase-, cnot-, 2cphase- and Toffoli-gates. The obtained results are compared with the values obtained from conventional process tomography and the errors of the obtained fidelities are determined. [4pt] [1] M. P. da Silva, O. Landon-Cardinal and D. Poulin, arXiv:1104.3835(2011)

  8. Applications of Maxent to quantum Monte Carlo

    SciTech Connect

    Silver, R.N.; Sivia, D.S.; Gubernatis, J.E. ); Jarrell, M. . Dept. of Physics)

    1990-01-01

    We consider the application of maximum entropy methods to the analysis of data produced by computer simulations. The focus is the calculation of the dynamical properties of quantum many-body systems by Monte Carlo methods, which is termed the Analytical Continuation Problem.'' For the Anderson model of dilute magnetic impurities in metals, we obtain spectral functions and transport coefficients which obey Kondo Universality.'' 24 refs., 7 figs.

  9. Quantum Monte Carlo Methods for First Principles Simulation of Liquid Water

    ERIC Educational Resources Information Center

    Gergely, John Robert

    2009-01-01

    Obtaining an accurate microscopic description of water structure and dynamics is of great interest to molecular biology researchers and in the physics and quantum chemistry simulation communities. This dissertation describes efforts to apply quantum Monte Carlo methods to this problem with the goal of making progress toward a fully "ab initio"…

  10. Quantum Monte Carlo calculations for light nuclei.

    SciTech Connect

    Wiringa, R. B.

    1998-10-23

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 40 different (J{pi}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  11. Chemical application of diffusion quantum Monte Carlo

    NASA Technical Reports Server (NTRS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1984-01-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.

  12. Quantum Monte Carlo Endstation for Petascale Computing

    SciTech Connect

    David Ceperley

    2011-03-02

    CUDA GPU platform. We restructured the CPU algorithms to express additional parallelism, minimize GPU-CPU communication, and efficiently utilize the GPU memory hierarchy. Using mixed precision on GT200 GPUs and MPI for intercommunication and load balancing, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core Xeon CPUs alone, while reproducing the double-precision CPU results within statistical error. We developed an all-electron quantum Monte Carlo (QMC) method for solids that does not rely on pseudopotentials, and used it to construct a primary ultra-high-pressure calibration based on the equation of state of cubic boron nitride. We computed the static contribution to the free energy with the QMC method and obtained the phonon contribution from density functional theory, yielding a high-accuracy calibration up to 900 GPa usable directly in experiment. We computed the anharmonic Raman frequency shift with QMC simulations as a function of pressure and temperature, allowing optical pressure calibration. In contrast to present experimental approaches, small systematic errors in the theoretical EOS do not increase with pressure, and no extrapolation is needed. This all-electron method is applicable to first-row solids, providing a new reference for ab initio calculations of solids and benchmarks for pseudopotential accuracy. We compared experimental and theoretical results on the momentum distribution and the quasiparticle renormalization factor in sodium. From an x-ray Compton-profile measurement of the valence-electron momentum density, we derived its discontinuity at the Fermi wavevector finding an accurate measure of the renormalization factor that we compared with quantum-Monte-Carlo and G0W0 calculations performed both on crystalline sodium and on the homogeneous electron gas. Our calculated results are in good agreement with the experiment. We have been studying the heat of formation for various Kubas complexes of molecular

  13. Quantum Monte Carlo methods for nuclear physics

    DOE PAGES

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  14. Quantum Monte Carlo methods for nuclear physics

    DOE PAGES

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  15. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  16. Performance of quantum Monte Carlo for calculating molecular bond lengths

    NASA Astrophysics Data System (ADS)

    Cleland, Deidre M.; Per, Manolo C.

    2016-03-01

    This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF. The most accurate MAD of 3 ± 2 × 10-3 Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10-3 Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.

  17. A pure-sampling quantum Monte Carlo algorithm

    SciTech Connect

    Ospadov, Egor; Rothstein, Stuart M.

    2015-01-14

    The objective of pure-sampling quantum Monte Carlo is to calculate physical properties that are independent of the importance sampling function being employed in the calculation, save for the mismatch of its nodal hypersurface with that of the exact wave function. To achieve this objective, we report a pure-sampling algorithm that combines features of forward walking methods of pure-sampling and reptation quantum Monte Carlo (RQMC). The new algorithm accurately samples properties from the mixed and pure distributions simultaneously in runs performed at a single set of time-steps, over which extrapolation to zero time-step is performed. In a detailed comparison, we found RQMC to be less efficient. It requires different sets of time-steps to accurately determine the energy and other properties, such as the dipole moment. We implement our algorithm by systematically increasing an algorithmic parameter until the properties converge to statistically equivalent values. As a proof in principle, we calculated the fixed-node energy, static α polarizability, and other one-electron expectation values for the ground-states of LiH and water molecules. These quantities are free from importance sampling bias, population control bias, time-step bias, extrapolation-model bias, and the finite-field approximation. We found excellent agreement with the accepted values for the energy and a variety of other properties for those systems.

  18. A pure-sampling quantum Monte Carlo algorithm

    NASA Astrophysics Data System (ADS)

    Ospadov, Egor; Rothstein, Stuart M.

    2015-01-01

    The objective of pure-sampling quantum Monte Carlo is to calculate physical properties that are independent of the importance sampling function being employed in the calculation, save for the mismatch of its nodal hypersurface with that of the exact wave function. To achieve this objective, we report a pure-sampling algorithm that combines features of forward walking methods of pure-sampling and reptation quantum Monte Carlo (RQMC). The new algorithm accurately samples properties from the mixed and pure distributions simultaneously in runs performed at a single set of time-steps, over which extrapolation to zero time-step is performed. In a detailed comparison, we found RQMC to be less efficient. It requires different sets of time-steps to accurately determine the energy and other properties, such as the dipole moment. We implement our algorithm by systematically increasing an algorithmic parameter until the properties converge to statistically equivalent values. As a proof in principle, we calculated the fixed-node energy, static α polarizability, and other one-electron expectation values for the ground-states of LiH and water molecules. These quantities are free from importance sampling bias, population control bias, time-step bias, extrapolation-model bias, and the finite-field approximation. We found excellent agreement with the accepted values for the energy and a variety of other properties for those systems.

  19. QWalk: A quantum Monte Carlo program for electronic structure

    SciTech Connect

    Wagner, Lucas K. Bajdich, Michal Mitas, Lubos

    2009-05-20

    We describe QWalk, a new computational package capable of performing quantum Monte Carlo electronic structure calculations for molecules and solids with many electrons. We describe the structure of the program and its implementation of quantum Monte Carlo methods. It is open-source, licensed under the GPL, and available at the web site (http://www.qwalk.org)

  20. Hybrid algorithms in quantum Monte Carlo

    SciTech Connect

    Esler, Kenneth P; Mcminis, Jeremy; Morales, Miguel A; Clark, Bryan K.; Shulenburger, Luke; Ceperley, David M

    2012-01-01

    With advances in algorithms and growing computing powers, quantum Monte Carlo (QMC) methods have become a leading contender for high accuracy calculations for the electronic structure of realistic systems. The performance gain on recent HPC systems is largely driven by increasing parallelism: the number of compute cores of a SMP and the number of SMPs have been going up, as the Top500 list attests. However, the available memory as well as the communication and memory bandwidth per element has not kept pace with the increasing parallelism. This severely limits the applicability of QMC and the problem size it can handle. OpenMP/MPI hybrid programming provides applications with simple but effective solutions to overcome efficiency and scalability bottlenecks on large-scale clusters based on multi/many-core SMPs. We discuss the design and implementation of hybrid methods in QMCPACK and analyze its performance on current HPC platforms characterized by various memory and communication hierarchies.

  1. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE PAGES

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  2. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.

    2016-02-01

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentials to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results also compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.

  3. Accurate characterization of Monte Carlo calculated electron beams for radiotherapy.

    PubMed

    Ma, C M; Faddegon, B A; Rogers, D W; Mackie, T R

    1997-03-01

    Monte Carlo studies of dose distributions in patients treated with radiotherapy electron beams would benefit from generalized models of clinical beams if such models introduce little error into the dose calculations. Methodology is presented for the design of beam models, including their evaluation in terms of how well they preserve the character of the clinical beam, and the effect of the beam models on the accuracy of dose distributions calculated with Monte Carlo. This methodology has been used to design beam models for electron beams from two linear accelerators, with either a scanned beam or a scattered beam. Monte Carlo simulations of the accelerator heads are done in which a record is kept of the particle phase-space, including the charge, energy, direction, and position of every particle that emerges from the treatment head, along with a tag regarding the details of the particle history. The character of the simulated beams are studied in detail and used to design various beam models from a simple point source to a sophisticated multiple-source model which treats particles from different parts of a linear accelerator as from different sub-sources. Dose distributions calculated using both the phase-space data and the multiple-source model agree within 2%, demonstrating that the model is adequate for the purpose of Monte Carlo treatment planning for the beams studied. Benefits of the beam models over phase-space data for dose calculation are shown to include shorter computation time in the treatment head simulation and a smaller disk space requirement, both of which impact on the clinical utility of Monte Carlo treatment planning.

  4. Quantum Monte Carlo using a Stochastic Poisson Solver

    SciTech Connect

    Das, D; Martin, R M; Kalos, M H

    2005-05-06

    Quantum Monte Carlo (QMC) is an extremely powerful method to treat many-body systems. Usually quantum Monte Carlo has been applied in cases where the interaction potential has a simple analytic form, like the 1/r Coulomb potential. However, in a complicated environment as in a semiconductor heterostructure, the evaluation of the interaction itself becomes a non-trivial problem. Obtaining the potential from any grid-based finite-difference method, for every walker and every step is unfeasible. We demonstrate an alternative approach of solving the Poisson equation by a classical Monte Carlo within the overall quantum Monte Carlo scheme. We have developed a modified ''Walk On Spheres'' algorithm using Green's function techniques, which can efficiently account for the interaction energy of walker configurations, typical of quantum Monte Carlo algorithms. This stochastically obtained potential can be easily incorporated within popular quantum Monte Carlo techniques like variational Monte Carlo (VMC) or diffusion Monte Carlo (DMC). We demonstrate the validity of this method by studying a simple problem, the polarization of a helium atom in the electric field of an infinite capacitor.

  5. Properties of reactive oxygen species by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} − N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  6. Properties of reactive oxygen species by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles. PMID:25005287

  7. Properties of reactive oxygen species by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3 - N4, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  8. Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias

    2015-01-01

    Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.

  9. Quantum Monte Carlo : not just for energy levels.

    SciTech Connect

    Nollett, K. M.; Physics

    2007-01-01

    Quantum Monte Carlo and realistic interactions can provide well-motivated vertices and overlaps for DWBA analyses of reactions. Given an interaction in vaccum, there are several computational approaches to nuclear systems, as you have been hearing: No-core shell model with Lee-Suzuki or Bloch-Horowitz for Hamiltonian Coupled clusters with G-matrix interaction Density functional theory, granted an energy functional derived from the interaction Quantum Monte Carlo - Variational Monte Carlo Green's function Monte Carlo. The last two work directly with a bare interaction and bare operators and describe the wave function without expanding in basis functions, so they have rather different sets of advantages and disadvantages from the others. Variational Monte Carlo (VMC) is built on a sophisticated Ansatz for the wave function, built on shell model like structure modified by operator correlations. Green's function Monte Carlo (GFMC) uses an operator method to project the true ground state out of a reasonable guess wave function.

  10. Recent Developments in Quantum Monte Carlo: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Aspuru-Guzik, Alan; Austin, Brian; Domin, Dominik; Galek, Peter T. A.; Handy, Nicholas; Prasad, Rajendra; Salomon-Ferrer, Romelia; Umezawa, Naoto; Lester, William A.

    2007-12-01

    The quantum Monte Carlo method in the diffusion Monte Carlo form has become recognized for its capability of describing the electronic structure of atomic, molecular and condensed matter systems to high accuracy. This talk will briefly outline the method with emphasis on recent developments connected with trial function construction, linear scaling, and applications to selected systems.

  11. Systematic study of finite-size effects in quantum Monte Carlo calculations of real metallic systems

    SciTech Connect

    Azadi, Sam Foulkes, W. M. C.

    2015-09-14

    We present a systematic and comprehensive study of finite-size effects in diffusion quantum Monte Carlo calculations of metals. Several previously introduced schemes for correcting finite-size errors are compared for accuracy and efficiency, and practical improvements are introduced. In particular, we test a simple but efficient method of finite-size correction based on an accurate combination of twist averaging and density functional theory. Our diffusion quantum Monte Carlo results for lithium and aluminum, as examples of metallic systems, demonstrate excellent agreement between all of the approaches considered.

  12. Spin-orbit interactions in electronic structure quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Melton, Cody A.; Zhu, Minyi; Guo, Shi; Ambrosetti, Alberto; Pederiva, Francesco; Mitas, Lubos

    2016-04-01

    We develop generalization of the fixed-phase diffusion Monte Carlo method for Hamiltonians which explicitly depends on particle spins such as for spin-orbit interactions. The method is formulated in a zero-variance manner and is similar to the treatment of nonlocal operators in commonly used static-spin calculations. Tests on atomic and molecular systems show that it is very accurate, on par with the fixed-node method. This opens electronic structure quantum Monte Carlo methods to a vast research area of quantum phenomena in which spin-related interactions play an important role.

  13. Quantum Monte Carlo of ThO2

    NASA Astrophysics Data System (ADS)

    Hu, Shuming; Mitas, Lubos

    2012-02-01

    Thorium dioxide solid is a unique optical and heat-resistant actinide material with large gap and cohesion. It is a diamagnet, unlike a number of other similar actinide oxides. We investigate the electronic structure of ThO2 using Density Functional Theory (DFT) and quantum Monte Carlo (QMC) methods. We adopt Stuttgart RLC and RSC effective core potentials (pseudopotentials) for the Th atom. In the DFT calculations, some of the properties are verified in all-electron calculations using the FLAPW techniques. Using the fixed-node diffusion Monte Carlo we calculate the ground state and several excited states from which we estimate the cohesion and the band gap. Simulation cells of several sizes are used to estimate/reduce the finite size effects. We compare the QMC results with recent DFT calculations with several types of functionals which include hybrids such as PBE0 and HSE. Insights from QMC calculations give us understanding of the correlations beyond the DFT approaches and pave the way for accurate electronic structure calculations of other actinide materials.

  14. Efficient and accurate modelling of quantum nanostructures

    NASA Astrophysics Data System (ADS)

    Ayad, Marina; Obayya, Salah S. A.; Swillam, Mohamed A.

    2016-03-01

    An efficient sensitivity analysis approach for quantum nanostructures is proposed. The imaginary time propagation method (ITP) is utilized to solve the Time Dependent Schrödinger's Equation (TDSE). Using this method, an extraction of all the modes and their sensitivity with respect to all the design parameters have been performed with minimal computational effort. The sensitivity analysis is performed using the Adjoint Variable Method (AVM) and results are comparable to those obtained using Central Finite Difference Method (CFD) applied directly on the response level.

  15. Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.

  16. Path-integral Monte Carlo study of asymmetric quantum quadrupolar rotors with fourth-order propagators

    NASA Astrophysics Data System (ADS)

    Park, Sungjin; Shin, Hyeondeok; Kwon, Yongkyung

    2012-08-01

    The recently-proposed fourth-order propagator based on the multi-product expansion has been applied to path-integral Monte Carlo calculations for asymmetric quantum quadruploar rotors fixed at face-centered cubic lattice sites. The rotors are observed to undergo an orientational orderdisorder phase transition at a low temperature when the electric quadrupole-quadrupole interaction is strong enough. At intermediate interaction strength, a further decrease of temperature after the first transition to the ordered phase results in a reentrant transition back to the disordered phase. The theoretical phase diagram of these asymmetric rotors determined by using fourth-order path-integral Monte Carlo calculations is found to be in good quantitative agreement with the experimental one for solid hydrogen deuteride. This leads us to conclude that the fourth-order propagator can be effectively implemented for an accurate path-integral Monte Carlo calculation of a quantum many-body system with rotational degrees of freedom.

  17. Quantum Monte Carlo Calculations Applied to Magnetic Molecules

    SciTech Connect

    Engelhardt, Larry

    2006-01-01

    We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these

  18. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo

    SciTech Connect

    Overy, Catherine; Blunt, N. S.; Shepherd, James J.; Booth, George H.; Cleland, Deidre; Alavi, Ali

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.

  19. Monte Carlo simulation of quantum Zeno effect in the brain

    NASA Astrophysics Data System (ADS)

    Georgiev, Danko

    2015-12-01

    Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.

  20. Quantum Monte Carlo calculations of magnetic couplings in cuprates

    NASA Astrophysics Data System (ADS)

    Foyevtsova, Kateryna; Krogel, Jaron; Kim, Jeongnim; Reboredo, Fernando

    2014-03-01

    Spin excitations are generally believed to play a fundamental role in the mechanism of high temperature superconductivity in cuprates. However, accurate description of the cuprates' magnetic properties and, in particular, calculation of spin exchange couplings have been a long-standing challenge to the electronic structure theory. While the quantum-mechanically more rigorous cluster methods suffer from finite-size effects, the density functional theory approach, on the other hand, is ambiguous due to a rich variety of approximations to the exchange-correlation functional available which often give very different numbers for the spin exchange constants. For example, in some cuprates the theoretically predicted values of the nearest-neighbor superexchange range from 1 eV (local density approximation) to 0.05 eV (periodic unrestricted Hartree Fock) [C. de Graaf et al, PRB 63 014404 (2000)]. We compute spin exchange constants with the fixed-node diffusion Monte Carlo method (FN-DMC). In one-dimensional cuprates, we find that the FN-DMC computed nearest-neighbor spin superexchange is in an excellent agreement with experiment. This both demonstrates that FN-DMC is capable of describing properly the magnetism of strongly correlated oxides as well as positions this technique as the method of choice for theoretical parameterization of spin models. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  1. Cohesion energetics of carbon allotropes: Quantum Monte Carlo study

    SciTech Connect

    Shin, Hyeondeok; Kang, Sinabro; Koo, Jahyun; Lee, Hoonkyung; Kwon, Yongkyung; Kim, Jeongnim

    2014-03-21

    We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp{sup 3}-bonded diamond, sp{sup 2}-bonded graphene, sp–sp{sup 2} hybridized graphynes, and sp-bonded carbyne. The computed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values determined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases systematically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of γ-graphyne, the most energetically stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experimental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally, we conclude that the cohesive energy of a newly proposed graphyne can be accurately estimated with the carbon–carbon bond energies determined from the cohesive energies of graphene and three different graphynes considered here.

  2. Cohesion Energetics of Carbon Allotropes: Quantum Monte Carlo Study

    SciTech Connect

    Shin, Hyeondeok; Kang, Sinabro; Koo, Jahyun; Lee, Hoonkyung; Kim, Jeongnim; Kwon, Yongkyung

    2014-01-01

    We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp3-bonded diamond, sp2-bonded graphene, sp-sp2 hybridized graphynes, and sp-bonded carbyne. The comput- ed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values de- termined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases system- atically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of -graphyne, the most energetically- stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experi- mental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally we conclude that the cohesive energy of a newly-proposed two-dimensional carbon network can be accurately estimated with the carbon-carbon bond energies determined from the cohesive energies of graphene and three different graphynes.

  3. Quantum Monte Carlo Simulation of condensed van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; Anatole von Lilienfeld, O.

    2012-02-01

    Van der Waals forces are as ubiquitous as infamous. While post-Hartree-Fock methods enable accurate estimates of these forces in molecules and clusters, they remain elusive for dealing with many-electron condensed phase systems. We present Quantum Monte Carlo [1,2] results for condensed van der Waals systems. Interatomic many-body contributions to cohesive energies and bulk modulus will be discussed. Numerical evidence is presented for crystals of rare gas atoms, and compared to experiments and methods [3]. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.[4pt] [1] J. Kim, K. Esler, J. McMinis and D. Ceperley, SciDAC 2010, J. of Physics: Conference series, Chattanooga, Tennessee, July 11 2011 [0pt] [2] QMCPACK simulation suite, http://qmcpack.cmscc.org (unpublished)[0pt] [3] O. A. von Lillienfeld and A. Tkatchenko, J. Chem. Phys. 132 234109 (2010)

  4. Reagents for Electrophilic Amination: A Quantum Monte CarloStudy

    SciTech Connect

    Amador-Bedolla, Carlos; Salomon-Ferrer, Romelia; Lester Jr.,William A.; Vazquez-Martinez, Jose A.; Aspuru-Guzik, Alan

    2006-11-01

    Electroamination is an appealing synthetic strategy toconstruct carbon-nitrogen bonds. We explore the use of the quantum MonteCarlo method and a proposed variant of the electron-pair localizationfunction--the electron-pair localization function density--as a measureof the nucleophilicity of nitrogen lone-pairs as a possible screeningprocedure for electrophilic reagents.

  5. Quantum Monte Carlo simulation with a black hole

    NASA Astrophysics Data System (ADS)

    Benić, Sanjin; Yamamoto, Arata

    2016-05-01

    We perform quantum Monte Carlo simulations in the background of a classical black hole. The lattice discretized path integral is numerically calculated in the Schwarzschild metric and in its approximated metric. We study spontaneous symmetry breaking of a real scalar field theory. We observe inhomogeneous symmetry breaking induced by an inhomogeneous gravitational field.

  6. Bayesian methods, maximum entropy, and quantum Monte Carlo

    SciTech Connect

    Gubernatis, J.E.; Silver, R.N. ); Jarrell, M. )

    1991-01-01

    We heuristically discuss the application of the method of maximum entropy to the extraction of dynamical information from imaginary-time, quantum Monte Carlo data. The discussion emphasizes the utility of a Bayesian approach to statistical inference and the importance of statistically well-characterized data. 14 refs.

  7. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  8. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    DOE PAGES

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lowermore » temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.« less

  9. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    SciTech Connect

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lower temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.

  10. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Cohen, R. E.

    2016-08-01

    We studied the low-pressure (0-10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P21/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P21/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.

  11. Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.

    One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.

  12. Quantum Monte Carlo calculations for point defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Hennig, Richard

    2010-03-01

    Point defects in silicon have been studied extensively for many years. Nevertheless the mechanism for self diffusion in Si is still debated. Direct experimental measurements of the selfdiffusion in silicon are complicated by the lack of suitable isotopes. Formation energies are either obtained from theory or indirectly through the analysis of dopant and metal diffusion experiments. Density functional calculations predict formation energies ranging from 3 to 5 eV depending on the approximations used for the exchange-correlation functional [1]. Analysis of dopant and metal diffusion experiments result in similar broad range of diffusion activation energies of 4.95 [2], 4.68 [3], 2.4 eV [4]. Assuming a migration energy barrier of 0.1-0.3 eV [5], the resulting experimental interstitial formation energies range from 2.1 - 4.9 eV. To answer the question of the formation energy of Si interstitials we resort to a many-body description of the wave functions using quantum Monte Carlo (QMC) techniques. Previous QMC calculations resulted in formation energies for the interstitials of around 5 eV [1,6]. We present a careful analysis of all the controlled and uncontrolled approximations that affect the defect formation energies in variational and diffusion Monte Carlo calculations. We find that more accurate trial wave functions for QMC using improved Jastrow expansions and most importantly a backflow transformation for the electron coordinates significantly improve the wave functions. Using zero-variance extrapolation, we predict interstitial formation energies in good agreement with hybrid DFT functionals [1] and recent GW calculations [7]. [4pt] [1] E. R. Batista, J. Heyd, R. G. Hennig, B. P. Uberuaga, R. L. Martin, G. E. Scuseria, C. J. Umrigar, and J. W. Wilkins. Phys. Rev. B 74, 121102(R) (2006).[0pt] [2] H. Bracht, E. E. Haller, and R. Clark-Phelps, Phys. Rev. Lett. 81, 393 (1998). [0pt] [3] A. Ural, P. B. Griffin, and J. D. Plummer, Phys. Rev. Lett. 83, 3454 (1999). [0pt

  13. Valence-bond quantum Monte Carlo algorithms defined on trees.

    PubMed

    Deschner, Andreas; Sørensen, Erik S

    2014-09-01

    We present a class of algorithms for performing valence-bond quantum Monte Carlo of quantum spin models. Valence-bond quantum Monte Carlo is a projective T=0 Monte Carlo method based on sampling of a set of operator strings that can be viewed as forming a treelike structure. The algorithms presented here utilize the notion of a worm that moves up and down this tree and changes the associated operator string. In quite general terms, we derive a set of equations whose solutions correspond to a whole class of algorithms. As specific examples of this class of algorithms, we focus on two cases. The bouncing worm algorithm, for which updates are always accepted by allowing the worm to bounce up and down the tree, and the driven worm algorithm, where a single parameter controls how far up the tree the worm reaches before turning around. The latter algorithm involves only a single bounce where the worm turns from going up the tree to going down. The presence of the control parameter necessitates the introduction of an acceptance probability for the update. PMID:25314561

  14. Applying Quantum Monte Carlo to the Electronic Structure Problem

    NASA Astrophysics Data System (ADS)

    Powell, Andrew D.; Dawes, Richard

    2016-06-01

    Two distinct types of Quantum Monte Carlo (QMC) calculations are applied to electronic structure problems such as calculating potential energy curves and producing benchmark values for reaction barriers. First, Variational and Diffusion Monte Carlo (VMC and DMC) methods using a trial wavefunction subject to the fixed node approximation were tested using the CASINO code.[1] Next, Full Configuration Interaction Quantum Monte Carlo (FCIQMC), along with its initiator extension (i-FCIQMC) were tested using the NECI code.[2] FCIQMC seeks the FCI energy for a specific basis set. At a reduced cost, the efficient i-FCIQMC method can be applied to systems in which the standard FCIQMC approach proves to be too costly. Since all of these methods are statistical approaches, uncertainties (error-bars) are introduced for each calculated energy. This study tests the performance of the methods relative to traditional quantum chemistry for some benchmark systems. References: [1] R. J. Needs et al., J. Phys.: Condensed Matter 22, 023201 (2010). [2] G. H. Booth et al., J. Chem. Phys. 131, 054106 (2009).

  15. Valence-bond quantum Monte Carlo algorithms defined on trees.

    PubMed

    Deschner, Andreas; Sørensen, Erik S

    2014-09-01

    We present a class of algorithms for performing valence-bond quantum Monte Carlo of quantum spin models. Valence-bond quantum Monte Carlo is a projective T=0 Monte Carlo method based on sampling of a set of operator strings that can be viewed as forming a treelike structure. The algorithms presented here utilize the notion of a worm that moves up and down this tree and changes the associated operator string. In quite general terms, we derive a set of equations whose solutions correspond to a whole class of algorithms. As specific examples of this class of algorithms, we focus on two cases. The bouncing worm algorithm, for which updates are always accepted by allowing the worm to bounce up and down the tree, and the driven worm algorithm, where a single parameter controls how far up the tree the worm reaches before turning around. The latter algorithm involves only a single bounce where the worm turns from going up the tree to going down. The presence of the control parameter necessitates the introduction of an acceptance probability for the update.

  16. Continuous-time quantum Monte Carlo impurity solvers

    NASA Astrophysics Data System (ADS)

    Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias

    2011-04-01

    Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as

  17. Quantum Monte Carlo methods for nuclei.

    SciTech Connect

    Wiringa, R. B.; Physics

    2008-01-01

    A major goal in nuclear physics is to understand how nuclear binding, structure, and reactions can be described from the underlying interactions between individual nucleons. We want to compute the properties of an A-nucleon system as an A-body problem with free-space nuclear interactions that describe nucleon-nucleon (NN) scattering and the two-nucleon bound-state. Properties of interest for a given nucleus include the ground-state binding energy, excitation spectrum, one- and two-nucleon density and momentum distributions, electromagnetic moments and transitions. They also wish to describe the interactions of nuclei with electrons, neutrinos, pions, nucleons, and other nuclei. Such calculations can provide a standard of comparison to test whether sub-nucleonic effects, such as explicit quark degrees of freedom, must be invoked to explain an observed phenomenon. they can also be used to evaluate nuclear matrix elements needed for some test of the standard model, and to predict reaction rates that are difficult or impossible to measure in the laboratory. For example, all the astrophysical reactions that contribute to the Big Bang or to solar energy production should be amenable to such ab initio calculations. To achieve this goal, they must both determine reasonable Hamiltonians to be used and devise reliable many-body methods to evaluate them. Significant progress has been made in the past decade on both fronts, with the development of a number of potential models that accurately reproduce NN elastic scattering data, and a variety of advanced many-body methods. In practice, to reproduce experimental energies and transitions, it appears necessary to add many-nucleon forces to the Hamiltonian and electroweak charge and current operators beyond the basic single-nucleon terms. While testing their interactions and currents against experiment, it is also important to test the many-body methods against each other to ensure that any approximations made are not biasing the

  18. Sign Learning Kink-based (SiLK) Quantum Monte Carlo for molecular systems

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyao; Hall, Randall W.; Löffler, Frank; Kowalski, Karol; Bhaskaran-Nair, Kiran; Jarrell, Mark; Moreno, Juana

    2016-01-01

    The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H2O, N2, and F2 molecules. The method is based on Feynman's path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of other quantum chemical methods and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.

  19. An accurate and simple quantum model for liquid water.

    PubMed

    Paesani, Francesco; Zhang, Wei; Case, David A; Cheatham, Thomas E; Voth, Gregory A

    2006-11-14

    The path-integral molecular dynamics and centroid molecular dynamics methods have been applied to investigate the behavior of liquid water at ambient conditions starting from a recently developed simple point charge/flexible (SPC/Fw) model. Several quantum structural, thermodynamic, and dynamical properties have been computed and compared to the corresponding classical values, as well as to the available experimental data. The path-integral molecular dynamics simulations show that the inclusion of quantum effects results in a less structured liquid with a reduced amount of hydrogen bonding in comparison to its classical analog. The nuclear quantization also leads to a smaller dielectric constant and a larger diffusion coefficient relative to the corresponding classical values. Collective and single molecule time correlation functions show a faster decay than their classical counterparts. Good agreement with the experimental measurements in the low-frequency region is obtained for the quantum infrared spectrum, which also shows a higher intensity and a redshift relative to its classical analog. A modification of the original parametrization of the SPC/Fw model is suggested and tested in order to construct an accurate quantum model, called q-SPC/Fw, for liquid water. The quantum results for several thermodynamic and dynamical properties computed with the new model are shown to be in a significantly better agreement with the experimental data. Finally, a force-matching approach was applied to the q-SPC/Fw model to derive an effective quantum force field for liquid water in which the effects due to the nuclear quantization are explicitly distinguished from those due to the underlying molecular interactions. Thermodynamic and dynamical properties computed using standard classical simulations with this effective quantum potential are found in excellent agreement with those obtained from significantly more computationally demanding full centroid molecular dynamics

  20. GORRAM: Introducing accurate operational-speed radiative transfer Monte Carlo solvers

    NASA Astrophysics Data System (ADS)

    Buras-Schnell, Robert; Schnell, Franziska; Buras, Allan

    2016-06-01

    We present a new approach for solving the radiative transfer equation in horizontally homogeneous atmospheres. The motivation was to develop a fast yet accurate radiative transfer solver to be used in operational retrieval algorithms for next generation meteorological satellites. The core component is the program GORRAM (Generator Of Really Rapid Accurate Monte-Carlo) which generates solvers individually optimized for the intended task. These solvers consist of a Monte Carlo model capable of path recycling and a representative set of photon paths. Latter is generated using the simulated annealing technique. GORRAM automatically takes advantage of limitations on the variability of the atmosphere. Due to this optimization the number of photon paths necessary for accurate results can be reduced by several orders of magnitude. For the shown example of a forward model intended for an aerosol satellite retrieval, comparison with an exact yet slow solver shows that a precision of better than 1% can be achieved with only 36 photons. The computational time is at least an order of magnitude faster than any other type of radiative transfer solver. Merely the lookup table approach often used in satellite retrieval is faster, but on the other hand suffers from limited accuracy. This makes GORRAM-generated solvers an eligible candidate as forward model in operational-speed retrieval algorithms and data assimilation applications. GORRAM also has the potential to create fast solvers of other integrable equations.

  1. Accurate fluorescence quantum yield determination by fluorescence correlation spectroscopy.

    PubMed

    Kempe, Daryan; Schöne, Antonie; Fitter, Jörg; Gabba, Matteo

    2015-04-01

    Here, we present a comparative method for the accurate determination of fluorescence quantum yields (QYs) by fluorescence correlation spectroscopy. By exploiting the high sensitivity of single-molecule spectroscopy, we obtain the QYs of samples in the microliter range and at (sub)nanomolar concentrations. Additionally, in combination with fluorescence lifetime measurements, our method allows the quantification of both static and collisional quenching constants. Thus, besides being simple and fast, our method opens up the possibility to photophysically characterize labeled biomolecules under application-relevant conditions and with low sample consumption, which is often important in single-molecule studies.

  2. Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters.

    PubMed

    Zagni, F; Cicoria, G; Lucconi, G; Infantino, A; Lodi, F; Marengo, M

    2014-12-01

    Accurate determination of calibration factors for radionuclide activity meters is crucial for quantitative studies and in the optimization step of radiation protection, as these detectors are widespread in radiopharmacy and nuclear medicine facilities. In this work we developed the Monte Carlo model of a widely used activity meter, using the Geant4 simulation toolkit. More precisely the "PENELOPE" EM physics models were employed. The model was validated by means of several certified sources, traceable to primary activity standards, and other sources locally standardized with spectrometry measurements, plus other experimental tests. Great care was taken in order to accurately reproduce the geometrical details of the gas chamber and the activity sources, each of which is different in shape and enclosed in a unique container. Both relative calibration factors and ionization current obtained with simulations were compared against experimental measurements; further tests were carried out, such as the comparison of the relative response of the chamber for a source placed at different positions. The results showed a satisfactory level of accuracy in the energy range of interest, with the discrepancies lower than 4% for all the tested parameters. This shows that an accurate Monte Carlo modeling of this type of detector is feasible using the low-energy physics models embedded in Geant4. The obtained Monte Carlo model establishes a powerful tool for first instance determination of new calibration factors for non-standard radionuclides, for custom containers, when a reference source is not available. Moreover, the model provides an experimental setup for further research and optimization with regards to materials and geometrical details of the measuring setup, such as the ionization chamber itself or the containers configuration.

  3. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  4. Infinite variance in fermion quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Shi, Hao; Zhang, Shiwei

    2016-03-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.

  5. Infinite variance in fermion quantum Monte Carlo calculations.

    PubMed

    Shi, Hao; Zhang, Shiwei

    2016-03-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling. PMID:27078480

  6. Minimising biases in full configuration interaction quantum Monte Carlo.

    PubMed

    Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W

    2015-03-14

    We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing step. PMID:25770522

  7. Quantum Monte Carlo calculations with chiral effective field theory interactions.

    PubMed

    Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A

    2013-07-19

    We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.

  8. Monte Carlo sampling from the quantum state space. I

    NASA Astrophysics Data System (ADS)

    Shang, Jiangwei; Seah, Yi-Lin; Khoon Ng, Hui; Nott, David John; Englert, Berthold-Georg

    2015-04-01

    High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the standard strategies of rejection sampling, importance sampling, and Markov-chain sampling can be adapted to this context, where the samples must obey the constraints imposed by the positivity of the statistical operator. For illustration, we generate sample points in the probability space of qubits, qutrits, and qubit pairs, both for tomographically complete and incomplete measurements. We use these samples for various purposes: establish the marginal distribution of the purity; compute the fractional volume of separable two-qubit states; and calculate the size of regions with bounded likelihood.

  9. Quantum Monte Carlo Assessment of the Relevance of Electronic Correlations in Defects and EOS in Metals

    SciTech Connect

    Hood, R Q; Williamson, A J; Dubois, J L; Reboredo, F A

    2008-02-07

    We have developed a highly accurate computational capability to calculate the equation of state (EOS) and defect formation energies of metallic systems. We are using a newly developed algorithm that enables the study of metallic systems with quantum Monte Carlo (QMC) methods. To date, technical limitations have restricted the application of QMC methods to semiconductors, insulators and the homogeneous electron gas. Using this new 'QMC for metals' we can determine, for the first time, the significance of correlation effects in the EOS and in the formation energies of point defects, impurities, surfaces and interfaces in metallic systems. These calculations go beyond the state-of-the-art accuracy which is currently obtained with Density Functional Theory approaches. Such benchmark calculations can provide more accurate predictions for the EOS and the formation energies of vacancies and interstitials in simple metals. These are important parameters in determining the mechanical properties as well as the micro-structural evolution of metals in irradiated materials or under extreme conditions. We describe the development of our 'QMC for metals' code, which has been adapted to run efficiently on a variety of computer architectures including BG/L. We present results of the first accurate quantum Monte Carlo calculation of an EOS of a realistic metallic system that goes beyond the homogeneous electron gas.

  10. Correlated wavefunction quantum Monte Carlo approach to solids

    SciTech Connect

    Louie, S.G.

    1992-10-01

    A method for calculating the electronic and structural properties of solids using correlated wavefunctions together with quantum Monte Carlo techniques is described. The approach retains the exact Coulomb interaction between the electrons and employs a many-electron wavefunction of the Jastrow-Slater form. Several examples are given to illustrate the utility of the method. Topics discussed include the cohesive properties of bulk semiconductors, the magnetic-field- induced Wigner crystal in two dimensions, and the magnetic structure of bcc hydrogen. Landau level mixing is shown to be important in determining the transition between the fractional quantum Hall liquid and the Wigner crystal. Information on electron correlations such as the pair correlation functions which are not accessible to one- electron theories is also obtained. 24 refs, 5 figs, 1 tab.

  11. Quantum Monte-Carlo Study of Electron Correlation in Heterostructure Quantum Dots

    SciTech Connect

    Mei-Yin Chou

    2006-11-12

    The goal of this project is to study electron correlation in a confined geometry (quantum dots) within the two-dimensional quantum well in the sandwiches of two semiconductor materials. For these systems one is able to tune the electronic properties by controlling the size and the electron number, creating tremendous potential for novel applications. Much effort in this emerging field has been devoted to producing entangled states that are required for quantum information processing. At the same time, new physical phenomena have emerged from these artificial structures. Adding electrons to a quantum dot is more complicated than filling up discrete energy levels due to electron correlation. Therefore, our project is focusing on employing the state-of-the-art quantum Monte Carlo methods to study the electron-electron interaction. A close examination of the breakdown of Hund's rules and electron localization has been conducted in our simulations. The results are summarized in this report.

  12. Interdimensional degeneracies in van der Waals clusters and quantum Monte Carlo computation of rovibrational states.

    PubMed

    Nightingale, M P; Moodley, Mervlyn

    2005-07-01

    Quantum Monte Carlo estimates of the spectrum of rotationally invariant states of noble gas clusters suggest interdimensional degeneracy in N-1 and N+1 spatial dimensions. We derive this property by mapping the Schrodinger eigenvalue problem onto an eigenvalue equation in which D appears as a continuous variable. We discuss implications for quantum Monte Carlo and dimensional scaling methods.

  13. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  14. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  15. Itinerant scenario for Fe pnictides: Comparison with quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Xing, Rui-Qi

    2016-04-01

    Recent applications of quantum Monte Carlo (QMC) technique to Fe-based superconductors opened a way to directly verify the applicability of the itinerant scenario for these systems. Fe-based superconductors undergo various instabilities upon lowering temperature (magnetism, superconductivity, nematicity/orbital order), and one can check whether the hierarchy of instabilities obtained within the itinerant approach is the same as in unbiased QMC simulations. In a recent paper [arXiv:1512.08523] the authors considered the simplest two-band model with interaction tailored to favor orbital order. The type of the orbital order found in QMC is different from the one found in earlier itinerant analysis. We report the results of our calculations within the itinerant scenario and argue that they are in perfect agreement with QMC.

  16. Neutron monitor generated data distributions in quantum variational Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kussainov, A. S.; Pya, N.

    2016-08-01

    We have assessed the potential applications of the neutron monitor hardware as random number generator for normal and uniform distributions. The data tables from the acquisition channels with no extreme changes in the signal level were chosen as the retrospective model. The stochastic component was extracted by fitting the raw data with splines and then subtracting the fit. Scaling the extracted data to zero mean and variance of one is sufficient to obtain a stable standard normal random variate. Distributions under consideration pass all available normality tests. Inverse transform sampling is suggested to use as a source of the uniform random numbers. Variational Monte Carlo method for quantum harmonic oscillator was used to test the quality of our random numbers. If the data delivery rate is of importance and the conventional one minute resolution neutron count is insufficient, we could always settle for an efficient seed generator to feed into the faster algorithmic random number generator or create a buffer.

  17. Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians

    NASA Astrophysics Data System (ADS)

    Ma, Fengjie; Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry

    2015-06-01

    We present a combination of a downfolding many-body approach with auxiliary-field quantum Monte Carlo (AFQMC) calculations for extended systems. Many-body calculations operate on a simpler Hamiltonian which retains material-specific properties. The Hamiltonian is systematically improvable and allows one to dial, in principle, between the simplest model and the original Hamiltonian. As a by-product, pseudopotential errors are essentially eliminated using frozen orbitals constructed adaptively from the solid environment. The computational cost of the many-body calculation is dramatically reduced without sacrificing accuracy. Excellent accuracy is achieved for a range of solids, including semiconductors, ionic insulators, and metals. We apply the method to calculate the equation of state of cubic BN under ultrahigh pressure, and determine the spin gap in NiO, a challenging prototypical material with strong electron correlation effects.

  18. Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians.

    PubMed

    Ma, Fengjie; Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry

    2015-06-01

    We present a combination of a downfolding many-body approach with auxiliary-field quantum Monte Carlo (AFQMC) calculations for extended systems. Many-body calculations operate on a simpler Hamiltonian which retains material-specific properties. The Hamiltonian is systematically improvable and allows one to dial, in principle, between the simplest model and the original Hamiltonian. As a by-product, pseudopotential errors are essentially eliminated using frozen orbitals constructed adaptively from the solid environment. The computational cost of the many-body calculation is dramatically reduced without sacrificing accuracy. Excellent accuracy is achieved for a range of solids, including semiconductors, ionic insulators, and metals. We apply the method to calculate the equation of state of cubic BN under ultrahigh pressure, and determine the spin gap in NiO, a challenging prototypical material with strong electron correlation effects. PMID:26196632

  19. Quantum Monte Carlo Treatment of the Charge Transfer and Diradical Electronic Character in a Retinal Chromophore Minimal Model

    PubMed Central

    2015-01-01

    The penta-2,4-dieniminium cation (PSB3) displays similar ground state and first excited state potential energy features as those of the retinal protonated Schiff base (RPSB) chromophore in rhodopsin. Recently, PSB3 has been used to benchmark several electronic structure methods, including highly correlated multireference wave function approaches, highlighting the necessity to accurately describe the electronic correlation in order to obtain reliable properties even along the ground state (thermal) isomerization paths. In this work, we apply two quantum Monte Carlo approaches, the variational Monte Carlo and the lattice regularized diffusion Monte Carlo, to study the energetics and electronic properties of PSB3 along representative minimum energy paths and scans related to its thermal cis–trans isomerization. Quantum Monte Carlo is used in combination with the Jastrow antisymmetrized geminal power ansatz, which guarantees an accurate and balanced description of the static electronic correlation thanks to the multiconfigurational nature of the antisymmetrized geminal power term, and of the dynamical correlation, due to the presence of the Jastrow factor explicitly depending on electron–electron distances. Along the two ground state isomerization minimum energy paths of PSB3, CASSCF calculations yield wave functions having either charge transfer or diradical character in proximity of the two transition state configurations. Here, we observe that at the quantum Monte Carlo level of theory, only the transition state with charge transfer character can be located. The conical intersection, which becomes highly sloped, is observed only if the path connecting the two original CASSCF transition states is extended beyond the diradical one, namely by increasing the bond-length-alternation (BLA). These findings are in good agreement with the results obtained by MRCISD+Q calculations, and they demonstrate the importance of having an accurate description of the static and

  20. Quantum Monte Carlo Treatment of the Charge Transfer and Diradical Electronic Character in a Retinal Chromophore Minimal Model.

    PubMed

    Zen, Andrea; Coccia, Emanuele; Gozem, Samer; Olivucci, Massimo; Guidoni, Leonardo

    2015-03-10

    The penta-2,4-dieniminium cation (PSB3) displays similar ground state and first excited state potential energy features as those of the retinal protonated Schiff base (RPSB) chromophore in rhodopsin. Recently, PSB3 has been used to benchmark several electronic structure methods, including highly correlated multireference wave function approaches, highlighting the necessity to accurately describe the electronic correlation in order to obtain reliable properties even along the ground state (thermal) isomerization paths. In this work, we apply two quantum Monte Carlo approaches, the variational Monte Carlo and the lattice regularized diffusion Monte Carlo, to study the energetics and electronic properties of PSB3 along representative minimum energy paths and scans related to its thermal cis–trans isomerization. Quantum Monte Carlo is used in combination with the Jastrow antisymmetrized geminal power ansatz, which guarantees an accurate and balanced description of the static electronic correlation thanks to the multiconfigurational nature of the antisymmetrized geminal power term, and of the dynamical correlation, due to the presence of the Jastrow factor explicitly depending on electron–electron distances. Along the two ground state isomerization minimum energy paths of PSB3, CASSCF calculations yield wave functions having either charge transfer or diradical character in proximity of the two transition state configurations. Here, we observe that at the quantum Monte Carlo level of theory, only the transition state with charge transfer character can be located. The conical intersection, which becomes highly sloped, is observed only if the path connecting the two original CASSCF transition states is extended beyond the diradical one, namely by increasing the bond-length-alternation (BLA). These findings are in good agreement with the results obtained by MRCISD+Q calculations, and they demonstrate the importance of having an accurate description of the static and

  1. Quantum Monte Carlo Treatment of the Charge Transfer and Diradical Electronic Character in a Retinal Chromophore Minimal Model.

    PubMed

    Zen, Andrea; Coccia, Emanuele; Gozem, Samer; Olivucci, Massimo; Guidoni, Leonardo

    2015-03-10

    The penta-2,4-dieniminium cation (PSB3) displays similar ground state and first excited state potential energy features as those of the retinal protonated Schiff base (RPSB) chromophore in rhodopsin. Recently, PSB3 has been used to benchmark several electronic structure methods, including highly correlated multireference wave function approaches, highlighting the necessity to accurately describe the electronic correlation in order to obtain reliable properties even along the ground state (thermal) isomerization paths. In this work, we apply two quantum Monte Carlo approaches, the variational Monte Carlo and the lattice regularized diffusion Monte Carlo, to study the energetics and electronic properties of PSB3 along representative minimum energy paths and scans related to its thermal cis–trans isomerization. Quantum Monte Carlo is used in combination with the Jastrow antisymmetrized geminal power ansatz, which guarantees an accurate and balanced description of the static electronic correlation thanks to the multiconfigurational nature of the antisymmetrized geminal power term, and of the dynamical correlation, due to the presence of the Jastrow factor explicitly depending on electron–electron distances. Along the two ground state isomerization minimum energy paths of PSB3, CASSCF calculations yield wave functions having either charge transfer or diradical character in proximity of the two transition state configurations. Here, we observe that at the quantum Monte Carlo level of theory, only the transition state with charge transfer character can be located. The conical intersection, which becomes highly sloped, is observed only if the path connecting the two original CASSCF transition states is extended beyond the diradical one, namely by increasing the bond-length-alternation (BLA). These findings are in good agreement with the results obtained by MRCISD+Q calculations, and they demonstrate the importance of having an accurate description of the static and

  2. Aneesu-Rahman Prize Lecture: The ``sign problem'' in Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ceperley, D. M.

    1998-03-01

    Quantum simulation methods have been quite successful in giving exact results for certain systems, primarily bosons(Ceperley, D.M. , Rev. Mod. Phys. 67), 279 (1995).. Use of the same techniques in general quantum systems leads to the so-called ``sign problem''; the results are correct but the methods are very inefficient. There are two important questions to ask of a proposed method. Given enough computer time can arbitrarily accurate results be obtained? If so, how long does it take to achieve a given error? There are several methods (released-node or transient estimate) that are exact; the difficulty is in finding a method which also scales well with the number of quantum degrees of freedom. Exact methods, in general, scale exponentially with the number of fermions and in the inverse temperature (or accuracy). At root, the fact that wavefunction is complex or changes sign, gives rise to the poor scaling and the ``sign problem.'' It is not the fermion nature of the system, per se, that causes the difficulty. The desired state is not the absolute ground state. Methods which cancel random walks from positive and negative regions have also been limited to quite small systems because they scale poorly. There are a variety of approximate simulation methods which do scale well, such as variational Monte Carlo, and a variety of fixed-node methods (restricted Path Integral Monte Carlo at non-zero temperature and constrained path methods for lattice models) which fix only boundary conditions not the sampling function. For many systems, the variational and fixed-node methods can be very accurate. The lecture notes and references are on my group's homepage.

  3. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations

    SciTech Connect

    Dinpajooh, Mohammadhasan; Bai, Peng; Allan, Douglas A.; Siepmann, J. Ilja

    2015-09-21

    Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor–liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields T{sub c} = 1.3128 ± 0.0016, ρ{sub c} = 0.316 ± 0.004, and p{sub c} = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρ{sub t} ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using r{sub cut} = 3.5σ yield T{sub c} and p{sub c} that are higher by 0.2% and 1.4% than simulations with r{sub cut} = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that r{sub cut} = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard

  4. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Bai, Peng; Allan, Douglas A.; Siepmann, J. Ilja

    2015-09-01

    Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor-liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields Tc = 1.3128 ± 0.0016, ρc = 0.316 ± 0.004, and pc = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρt ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using rcut = 3.5σ yield Tc and pc that are higher by 0.2% and 1.4% than simulations with rcut = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that rcut = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard-core square-well particles with various ranges of the

  5. Quantum Monte Carlo simulation of spin-polarized H

    SciTech Connect

    Markic, L. Vranjes; Boronat, J.; Casulleras, J.

    2007-02-01

    The ground-state properties of spin polarized hydrogen H{down_arrow} are obtained by means of diffusion Monte Carlo calculations. Using the most accurate to date ab initio H{down_arrow}-H{down_arrow} interatomic potential we have studied its gas phase, from the very dilute regime until densities above its freezing point. At very small densities, the equation of state of the gas is very well described in terms of the gas parameter {rho}a{sup 3}, with a the s-wave scattering length. The solid phase has also been studied up to high pressures. The gas-solid phase transition occurs at a pressure of 173 bar, a much higher value than suggested by previous approximate descriptions.

  6. Correlation effects in quantum spin-Hall insulators: a quantum Monte Carlo study.

    PubMed

    Hohenadler, M; Lang, T C; Assaad, F F

    2011-03-11

    We consider the Kane-Mele model supplemented by a Hubbard U term. The phase diagram is mapped out using projective auxiliary field quantum Monte Carlo simulations. The quantum spin liquid of the Hubbard model is robust against weak spin-orbit interaction, and is not adiabatically connected to the spin-Hall insulating state. Beyond a critical value of U>U(c) both states are unstable toward magnetic ordering. In the quantum spin-Hall state we study the spin, charge, and single-particle dynamics of the helical Luttinger liquid by retaining the Hubbard interaction only on a ribbon edge. The Hubbard interaction greatly suppresses charge currents along the edge and promotes edge magnetism but leaves the single-particle signatures of the helical liquid intact.

  7. Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions

    NASA Astrophysics Data System (ADS)

    Nielsen, Jens; d'Avezac, Mayeul; Hetherington, James; Stamatakis, Michail

    2013-12-01

    Ab initio kinetic Monte Carlo (KMC) simulations have been successfully applied for over two decades to elucidate the underlying physico-chemical phenomena on the surfaces of heterogeneous catalysts. These simulations necessitate detailed knowledge of the kinetics of elementary reactions constituting the reaction mechanism, and the energetics of the species participating in the chemistry. The information about the energetics is encoded in the formation energies of gas and surface-bound species, and the lateral interactions between adsorbates on the catalytic surface, which can be modeled at different levels of detail. The majority of previous works accounted for only pairwise-additive first nearest-neighbor interactions. More recently, cluster-expansion Hamiltonians incorporating long-range interactions and many-body terms have been used for detailed estimations of catalytic rate [C. Wu, D. J. Schmidt, C. Wolverton, and W. F. Schneider, J. Catal. 286, 88 (2012)]. In view of the increasing interest in accurate predictions of catalytic performance, there is a need for general-purpose KMC approaches incorporating detailed cluster expansion models for the adlayer energetics. We have addressed this need by building on the previously introduced graph-theoretical KMC framework, and we have developed Zacros, a FORTRAN2003 KMC package for simulating catalytic chemistries. To tackle the high computational cost in the presence of long-range interactions we introduce parallelization with OpenMP. We further benchmark our framework by simulating a KMC analogue of the NO oxidation system established by Schneider and co-workers [J. Catal. 286, 88 (2012)]. We show that taking into account only first nearest-neighbor interactions may lead to large errors in the prediction of the catalytic rate, whereas for accurate estimates thereof, one needs to include long-range terms in the cluster expansion.

  8. A Monte Carlo Method for Making the SDSS u-Band Magnitude More Accurate

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Du, Cuihua; Zuo, Wenbo; Jing, Yingjie; Wu, Zhenyu; Ma, Jun; Zhou, Xu

    2016-10-01

    We develop a new Monte Carlo-based method to convert the Sloan Digital Sky Survey (SDSS) u-band magnitude to the south Galactic Cap of the u-band Sky Survey (SCUSS) u-band magnitude. Due to the increased accuracy of SCUSS u-band measurements, the converted u-band magnitude becomes more accurate compared with the original SDSS u-band magnitude, in particular at the faint end. The average u-magnitude error (for both SDSS and SCUSS) of numerous main-sequence stars with 0.2\\lt g-r\\lt 0.8 increases as the g-band magnitude becomes fainter. When g = 19.5, the average magnitude error of the SDSS u is 0.11. When g = 20.5, the average SDSS u error rises to 0.22. However, at this magnitude, the average magnitude error of the SCUSS u is just half as much as that of the SDSS u. The SDSS u-band magnitudes of main-sequence stars with 0.2\\lt g-r\\lt 0.8 and 18.5\\lt g\\lt 20.5 are converted, therefore the maximum average error of the converted u-band magnitudes is 0.11. The potential application of this conversion is to derive a more accurate photometric metallicity calibration from SDSS observations, especially for the more distant stars. Thus, we can explore stellar metallicity distributions either in the Galactic halo or some stream stars.

  9. Quantum Monte Carlo with very large multideterminant wavefunctions.

    PubMed

    Scemama, Anthony; Applencourt, Thomas; Giner, Emmanuel; Caffarel, Michel

    2016-07-01

    An algorithm to compute efficiently the first two derivatives of (very) large multideterminant wavefunctions for quantum Monte Carlo calculations is presented. The calculation of determinants and their derivatives is performed using the Sherman-Morrison formula for updating the inverse Slater matrix. An improved implementation based on the reduction of the number of column substitutions and on a very efficient implementation of the calculation of the scalar products involved is presented. It is emphasized that multideterminant expansions contain in general a large number of identical spin-specific determinants: for typical configuration interaction-type wavefunctions the number of unique spin-specific determinants Ndetσ ( σ=↑,↓) with a non-negligible weight in the expansion is of order O(Ndet). We show that a careful implementation of the calculation of the Ndet -dependent contributions can make this step negligible enough so that in practice the algorithm scales as the total number of unique spin-specific determinants,  Ndet↑+Ndet↓, over a wide range of total number of determinants (here, Ndet up to about one million), thus greatly reducing the total computational cost. Finally, a new truncation scheme for the multideterminant expansion is proposed so that larger expansions can be considered without increasing the computational time. The algorithm is illustrated with all-electron fixed-node diffusion Monte Carlo calculations of the total energy of the chlorine atom. Calculations using a trial wavefunction including about 750,000 determinants with a computational increase of ∼400 compared to a single-determinant calculation are shown to be feasible. © 2016 Wiley Periodicals, Inc.

  10. Quantum Monte Carlo Algorithms for Diagrammatic Vibrational Structure Calculations

    NASA Astrophysics Data System (ADS)

    Hermes, Matthew; Hirata, So

    2015-06-01

    Convergent hierarchies of theories for calculating many-body vibrational ground and excited-state wave functions, such as Møller-Plesset perturbation theory or coupled cluster theory, tend to rely on matrix-algebraic manipulations of large, high-dimensional arrays of anharmonic force constants, tasks which require large amounts of computer storage space and which are very difficult to implement in a parallel-scalable fashion. On the other hand, existing quantum Monte Carlo (QMC) methods for vibrational wave functions tend to lack robust techniques for obtaining excited-state energies, especially for large systems. By exploiting analytical identities for matrix elements of position operators in a harmonic oscillator basis, we have developed stochastic implementations of the size-extensive vibrational self-consistent field (MC-XVSCF) and size-extensive vibrational Møller-Plesset second-order perturbation (MC-XVMP2) theories which do not require storing the potential energy surface (PES). The programmable equations of MC-XVSCF and MC-XVMP2 take the form of a small number of high-dimensional integrals evaluated using Metropolis Monte Carlo techniques. The associated integrands require independent evaluations of only the value, not the derivatives, of the PES at many points, a task which is trivial to parallelize. However, unlike existing vibrational QMC methods, MC-XVSCF and MC-XVMP2 can calculate anharmonic frequencies directly, rather than as a small difference between two noisy total energies, and do not require user-selected coordinates or nodal surfaces. MC-XVSCF and MC-XVMP2 can also directly sample the PES in a given approximation without analytical or grid-based approximations, enabling us to quantify the errors induced by such approximations.

  11. Quantum Monte Carlo with very large multideterminant wavefunctions.

    PubMed

    Scemama, Anthony; Applencourt, Thomas; Giner, Emmanuel; Caffarel, Michel

    2016-07-01

    An algorithm to compute efficiently the first two derivatives of (very) large multideterminant wavefunctions for quantum Monte Carlo calculations is presented. The calculation of determinants and their derivatives is performed using the Sherman-Morrison formula for updating the inverse Slater matrix. An improved implementation based on the reduction of the number of column substitutions and on a very efficient implementation of the calculation of the scalar products involved is presented. It is emphasized that multideterminant expansions contain in general a large number of identical spin-specific determinants: for typical configuration interaction-type wavefunctions the number of unique spin-specific determinants Ndetσ ( σ=↑,↓) with a non-negligible weight in the expansion is of order O(Ndet). We show that a careful implementation of the calculation of the Ndet -dependent contributions can make this step negligible enough so that in practice the algorithm scales as the total number of unique spin-specific determinants,  Ndet↑+Ndet↓, over a wide range of total number of determinants (here, Ndet up to about one million), thus greatly reducing the total computational cost. Finally, a new truncation scheme for the multideterminant expansion is proposed so that larger expansions can be considered without increasing the computational time. The algorithm is illustrated with all-electron fixed-node diffusion Monte Carlo calculations of the total energy of the chlorine atom. Calculations using a trial wavefunction including about 750,000 determinants with a computational increase of ∼400 compared to a single-determinant calculation are shown to be feasible. © 2016 Wiley Periodicals, Inc. PMID:27302337

  12. Auxiliary-field quantum Monte Carlo calculations of the molybdenum dimer.

    PubMed

    Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry

    2016-06-28

    Chemical accuracy is difficult to achieve for systems with transition metal atoms. Third row transition metal atoms are particularly challenging due to strong electron-electron correlation in localized d-orbitals. The Cr2 molecule is an outstanding example, which we previously treated with highly accurate auxiliary-field quantum Monte Carlo (AFQMC) calculations [W. Purwanto et al., J. Chem. Phys. 142, 064302 (2015)]. Somewhat surprisingly, computational description of the isoelectronic Mo2 dimer has also, to date, been scattered and less than satisfactory. We present high-level theoretical benchmarks of the Mo2 singlet ground state (X(1)Σg (+)) and first triplet excited state (a(3)Σu (+)), using the phaseless AFQMC calculations. Extrapolation to the complete basis set limit is performed. Excellent agreement with experimental spectroscopic constants is obtained. We also present a comparison of the correlation effects in Cr2 and Mo2. PMID:27369514

  13. An auxiliary-field quantum Monte Carlo study of the chromium dimer

    SciTech Connect

    Purwanto, Wirawan Zhang, Shiwei; Krakauer, Henry

    2015-02-14

    The chromium dimer (Cr{sub 2}) presents an outstanding challenge for many-body electronic structure methods. Its complicated nature of binding, with a formal sextuple bond and an unusual potential energy curve (PEC), is emblematic of the competing tendencies and delicate balance found in many strongly correlated materials. We present an accurate calculation of the PEC and ground state properties of Cr{sub 2}, using the auxiliary-field quantum Monte Carlo (AFQMC) method. Unconstrained, exact AFQMC calculations are first carried out for a medium-sized but realistic basis set. Elimination of the remaining finite-basis errors and extrapolation to the complete basis set limit are then achieved with a combination of phaseless and exact AFQMC calculations. Final results for the PEC and spectroscopic constants are in excellent agreement with experiment.

  14. Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model

    NASA Astrophysics Data System (ADS)

    Bonnard, J.; Juillet, O.

    2016-04-01

    The present paper intends to present an extension of the constrained-path quantum Monte Carlo approach allowing to reconstruct non-yrast states in order to reach the complete spectroscopy of nuclei within the interacting shell model. As in the yrast case studied in a previous work, the formalism involves a variational symmetry-restored wave function assuming two central roles. First, it guides the underlying Brownian motion to improve the efficiency of the sampling. Second, it constrains the stochastic paths according to the phaseless approximation to control sign or phase problems that usually plague fermionic QMC simulations. Proof-of-principle results in the sd valence space are reported. They prove the ability of the scheme to offer remarkably accurate binding energies for both even- and odd-mass nuclei irrespective of the considered interaction.

  15. Benchmarking exchange-correlation functionals for hydrogen at high pressures using quantum Monte Carlo

    SciTech Connect

    Clay, Raymond C.; Mcminis, Jeremy; McMahon, Jeffrey M.; Pierleoni, Carlo; Ceperley, David M.; Morales, Miguel A.

    2014-05-01

    The ab initio phase diagram of dense hydrogen is very sensitive to errors in the treatment of electronic correlation. Recently, it has been shown that the choice of the density functional has a large effect on the predicted location of both the liquid-liquid phase transition and the solid insulator-to-metal transition in dense hydrogen. To identify the most accurate functional for dense hydrogen applications, we systematically benchmark some of the most commonly used functionals using quantum Monte Carlo. By considering several measures of functional accuracy, we conclude that the van der Waals and hybrid functionals significantly outperform local density approximation and Perdew-Burke-Ernzerhof. We support these conclusions by analyzing the impact of functional choice on structural optimization in the molecular solid, and on the location of the liquid-liquid phase transition.

  16. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures

    PubMed Central

    Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.

    2015-01-01

    Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251

  17. Auxiliary-field quantum Monte Carlo calculations of the molybdenum dimer

    NASA Astrophysics Data System (ADS)

    Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry

    2016-06-01

    Chemical accuracy is difficult to achieve for systems with transition metal atoms. Third row transition metal atoms are particularly challenging due to strong electron-electron correlation in localized d-orbitals. The Cr2 molecule is an outstanding example, which we previously treated with highly accurate auxiliary-field quantum Monte Carlo (AFQMC) calculations [W. Purwanto et al., J. Chem. Phys. 142, 064302 (2015)]. Somewhat surprisingly, computational description of the isoelectronic Mo2 dimer has also, to date, been scattered and less than satisfactory. We present high-level theoretical benchmarks of the Mo2 singlet ground state (X1Σg+) and first triplet excited state (a3Σu+), using the phaseless AFQMC calculations. Extrapolation to the complete basis set limit is performed. Excellent agreement with experimental spectroscopic constants is obtained. We also present a comparison of the correlation effects in Cr2 and Mo2.

  18. Energy density matrix formalism for interacting quantum systems: Quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.; Kim, Jeongnim; Reboredo, Fernando A.

    2014-07-01

    We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single-particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground-state quantum Monte Carlo techniques implemented in the qmcpack simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences shows a quantitative connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground-state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides an avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.

  19. Quantum Monte Carlo study of magnetic impurity in bilayer grephene

    NASA Astrophysics Data System (ADS)

    Sun, J. H.; Hu, F. M.; Tang, H. K.; Lin, Hai-Qing

    2012-02-01

    It is expected to observe many different properties in bilayer graphene when compared with single layer graphene due to the differences in crystal structure. Additionally, bilayer system offers a freedom of inducing a gap in the energy band by applying a shift in the electrochemical potential to two graphene layers. In this work, we study the magnetic properties of an Anderson magnetic adatom in Bernal stacking bilayer graphene and compare the results with those of single layer counterpart. Several different cases such as different adatom position and different potential bias of two layers are studied using the quantum Monte Carlo method. In all the cases, we find that the impurity local magnetic moment can be switched between relatively large and small values by tuning the chemical potential. We apply MaxEnT method to compute impurity spectral density and find its behavior to differ from that of an impurity in a single layer graphene. We also calculate various correlation functions and make comparisons.

  20. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo.

    PubMed

    Clay, Raymond C; Morales, Miguel A

    2015-06-21

    Multideterminant wavefunctions, while having a long history in quantum chemistry, are increasingly being used in highly accurate quantum Monte Carlo calculations. Since the accuracy of QMC is ultimately limited by the quality of the trial wavefunction, multi-Slater determinants wavefunctions offer an attractive alternative to Slater-Jastrow and more sophisticated wavefunction ansatz for several reasons. They can be efficiently calculated, straightforwardly optimized, and systematically improved by increasing the number of included determinants. In spite of their potential, however, the convergence properties of multi-Slater determinant wavefunctions with respect to orbital set choice and excited determinant selection are poorly understood, which hinders the application of these wavefunctions to large systems and solids. In this paper, by performing QMC calculations on the equilibrium and stretched carbon dimer, we find that convergence of the recovered correlation energy with respect to number of determinants can depend quite strongly on basis set and determinant selection methods, especially where there is strong correlation. We demonstrate that properly chosen orbital sets and determinant selection techniques from quantum chemistry methods can dramatically reduce the required number of determinants (and thus the computational cost) to reach a given accuracy, which we argue shows clear need for an automatic QMC-only method for selecting determinants and generating optimal orbital sets. PMID:26093546

  1. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo

    SciTech Connect

    Clay, Raymond C.; Morales, Miguel A.

    2015-06-21

    Multideterminant wavefunctions, while having a long history in quantum chemistry, are increasingly being used in highly accurate quantum Monte Carlo calculations. Since the accuracy of QMC is ultimately limited by the quality of the trial wavefunction, multi-Slater determinants wavefunctions offer an attractive alternative to Slater-Jastrow and more sophisticated wavefunction ansatz for several reasons. They can be efficiently calculated, straightforwardly optimized, and systematically improved by increasing the number of included determinants. In spite of their potential, however, the convergence properties of multi-Slater determinant wavefunctions with respect to orbital set choice and excited determinant selection are poorly understood, which hinders the application of these wavefunctions to large systems and solids. In this paper, by performing QMC calculations on the equilibrium and stretched carbon dimer, we find that convergence of the recovered correlation energy with respect to number of determinants can depend quite strongly on basis set and determinant selection methods, especially where there is strong correlation. We demonstrate that properly chosen orbital sets and determinant selection techniques from quantum chemistry methods can dramatically reduce the required number of determinants (and thus the computational cost) to reach a given accuracy, which we argue shows clear need for an automatic QMC-only method for selecting determinants and generating optimal orbital sets.

  2. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Clay, Raymond C.; Morales, Miguel A.

    2015-06-01

    Multideterminant wavefunctions, while having a long history in quantum chemistry, are increasingly being used in highly accurate quantum Monte Carlo calculations. Since the accuracy of QMC is ultimately limited by the quality of the trial wavefunction, multi-Slater determinants wavefunctions offer an attractive alternative to Slater-Jastrow and more sophisticated wavefunction ansatz for several reasons. They can be efficiently calculated, straightforwardly optimized, and systematically improved by increasing the number of included determinants. In spite of their potential, however, the convergence properties of multi-Slater determinant wavefunctions with respect to orbital set choice and excited determinant selection are poorly understood, which hinders the application of these wavefunctions to large systems and solids. In this paper, by performing QMC calculations on the equilibrium and stretched carbon dimer, we find that convergence of the recovered correlation energy with respect to number of determinants can depend quite strongly on basis set and determinant selection methods, especially where there is strong correlation. We demonstrate that properly chosen orbital sets and determinant selection techniques from quantum chemistry methods can dramatically reduce the required number of determinants (and thus the computational cost) to reach a given accuracy, which we argue shows clear need for an automatic QMC-only method for selecting determinants and generating optimal orbital sets.

  3. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Christov, Ivan P.

    2016-08-01

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.

  4. Quantum Monte Carlo for electronic structure: Recent developments and applications

    SciTech Connect

    Rodriquez, M. M.S.

    1995-04-01

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C{sub 2}H and C{sub 2}H{sub 2}. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included.

  5. Quantum Monte Carlo models of substitutional point defects in zinc oxide and zinc selenide

    NASA Astrophysics Data System (ADS)

    Yu, Jaehyung; Ertekin, Elif

    2015-03-01

    Introducing dopants into semiconductors allows manipulation of electrical and optical properties, useful for applications such as optoelectronics and photovoltaics. While first principles quantitative descriptions of the defects properties in semiconductors are critical to understanding and engineering dopants in semiconductors, obtaining accurate descriptions has proven challenging in the past. Here we demonstrate the use of quantum Monte Carlo (QMC) methods to describing the properties of point defects in zinc oxide and zinc selenide. Due to its direct treatment of electron correlation, the QMC method is capable of accurate calculation of band gaps and defect behaviors. We describe the energetics and potential barrier to forming gallium DX-center defects according to QMC in zinc selenide, and compare the description to those of conventional and hybrid DFT. We also use QMC to determine the defect transition levels for nitrogen defects in zinc oxide, and show that QMC obtains descriptions that are in good agreement with GW and beyond-DFT approaches. Our results demonstrate the importance of accurate descriptions of electron correlation in the calculation of defect properties of semiconductors.

  6. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    NASA Astrophysics Data System (ADS)

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Miguel A.

    2016-01-01

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though density-functional-theory-based first-principles methods have the potential to provide the accuracy and computational efficiency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quantification of the errors introduced. In this work, we present a quantum Monte Carlo (QMC) -based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures at thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC-based force estimators and use them to gain insight into how well the local liquid structure is captured by different density functionals. We find that TPSS, BLYP, and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative differences exhibited by the major classes of functionals, and we estimate the magnitudes of these effects when possible.

  7. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE PAGES

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  8. Quantum Monte Carlo Studies of Interaction-Induced Localization in Quantum Dots and Wires

    NASA Astrophysics Data System (ADS)

    Devrim Güçlü, A.

    2009-03-01

    We investigate interaction-induced localization of electrons in both quantum dots and inhomogeneous quantum wires using variational and diffusion quantum Monte Carlo methods. Quantum dots and wires are highly tunable systems that enable the study of the physics of strongly correlated electrons. With decreasing electronic density, interactions become stronger and electrons are expected to localize at their classical positions, as in Wigner crystallization in an infinite 2D system. (1) Dots: We show that the addition energy shows a clear progression from features associated with shell structure to those caused by commensurability of a Wigner crystal. This cross-over is, then, a signature of localization; it occurs near rs˜20. For higher values of rs, the configuration symmetry of the quantum dot becomes fully consistent with the classical ground state. (2) Wires: We study an inhomogeneous quasi-one-dimensional system -- a wire with two regions, one at low density and the other high. We find that strong localization occurs in the low density quantum point contact region as the gate potential is increased. The nature of the transition from high to low density depends on the density gradient -- if it is steep, a barrier develops between the two regions, causing Coulomb blockade effects. We find no evidence for ferromagnetic spin polarization for the range of parameters studied. The picture emerging here is in good agreement with the experimental measurements of tunneling between two wires. Collaborators: C. J. Umrigar (Cornell), Hong Jiang (Fritz Haber Institut), Amit Ghosal (IISER Calcutta), and H. U. Baranger (Duke).

  9. Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method

    NASA Astrophysics Data System (ADS)

    Sudheer, C. D.; Krishnan, S.; Srinivasan, A.; Kent, P. R. C.

    2013-02-01

    Diffusion Monte Carlo is a highly accurate Quantum Monte Carlo method for electronic structure calculations of materials, but it requires frequent load balancing or population redistribution steps to maintain efficiency on parallel machines. This step can be a significant factor affecting performance, and will become more important as the number of processing elements increases. We propose a new dynamic load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important feature of the new algorithm is that the load can be perfectly balanced with each process receiving at most one message. It is also optimal in the maximum size of messages received by any process. We also optimize its implementation to reduce network contention, a process facilitated by the low messaging requirement of the algorithm: a simple renumbering of the MPI ranks based on proximity and a space filling curve significantly improves the MPI Allgather performance. Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL show up to 30% improvement in performance on 120,000 cores. The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm may also be employed by any method with many near identical computational tasks that require load balancing.

  10. Quantum Monte Carlo calculations of neutron matter with chiral three-body forces

    DOE PAGES

    Tews, I.; Gandolfi, Stefano; Gezerlis, A.; Schwenk, A.

    2016-02-02

    Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic interactions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading order (N2LO). Chiral EFT naturally predicts consistent many-body forces. In this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the equation of state of neutron matter and for themore » energies and radii of neutron drops. Specifically, we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.« less

  11. Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method

    SciTech Connect

    Sudheer, C. D.; Krishnan, S.; Srinivasan, A.; Kent, P. R. C.

    2013-02-01

    Diffusion Monte Carlo is the most accurate widely used Quantum Monte Carlo method for the electronic structure of materials, but it requires frequent load balancing or population redistribution steps to maintain efficiency and avoid accumulation of systematic errors on parallel machines. The load balancing step can be a significant factor affecting performance, and will become more important as the number of processing elements increases. We propose a new dynamic load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important feature of the new algorithm is that the load can be perfectly balanced with each process receiving at most one message. It is also optimal in the maximum size of messages received by any process. We also optimize its implementation to reduce network contention, a process facilitated by the low messaging requirement of the algorithm. Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL showing up to 30% improvement in performance on 120,000 cores. The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm may also be employed by any method with many near identical computational tasks that requires load balancing.

  12. Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters

    SciTech Connect

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  13. Quantum Monte Carlo methods and lithium cluster properties

    SciTech Connect

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) [0.1981], 0.1895(9) [0.1874(4)], 0.1530(34) [0.1599(73)], 0.1664(37) [0.1724(110)], 0.1613(43) [0.1675(110)] Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) [0.0203(12)], 0.0188(10) [0.0220(21)], 0.0247(8) [0.0310(12)], 0.0253(8) [0.0351(8)] Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  14. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods.

    PubMed

    Ganesh, P; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A; Kent, Paul R C

    2014-12-01

    Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithium-carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches. PMID:26583215

  15. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    SciTech Connect

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.

  16. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods.

    PubMed

    Ganesh, P; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A; Kent, Paul R C

    2014-12-01

    Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithium-carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.

  17. An accurate, efficient algorithm for calculation of quantum transport in extended structures

    SciTech Connect

    Godin, T.J.; Haydock, R.

    1994-05-01

    In device structures with dimensions comparable to carrier inelastic scattering lengths, the quantum nature of carriers will cause interference effects that cannot be modeled by conventional techniques. The basic equations that govern these ``quantum`` circuit elements present significant numerical challenges. The authors describe the block recursion method, an accurate, efficient method for solving the quantum circuit problem. They demonstrate this method by modeling dirty inversion layers.

  18. Chaotic versus nonchaotic stochastic dynamics in Monte Carlo simulations: a route for accurate energy differences in N-body systems.

    PubMed

    Assaraf, Roland; Caffarel, Michel; Kollias, A C

    2011-04-15

    We present a method to efficiently evaluate small energy differences of two close N-body systems by employing stochastic processes having a stability versus chaos property. By using the same random noise, energy differences are computed from close trajectories without reweighting procedures. The approach is presented for quantum systems but can be applied to classical N-body systems as well. It is exemplified with diffusion Monte Carlo simulations for long chains of hydrogen atoms and molecules for which it is shown that the long-standing problem of computing energy derivatives is solved. PMID:21568537

  19. Communication: Excited states, dynamic correlation functions and spectral properties from full configuration interaction quantum Monte Carlo.

    PubMed

    Booth, George H; Chan, Garnet Kin-Lic

    2012-11-21

    In this communication, we propose a method for obtaining isolated excited states within the full configuration interaction quantum Monte Carlo framework. This method allows for stable sampling with respect to collapse to lower energy states and requires no uncontrolled approximations. In contrast with most previous methods to extract excited state information from quantum Monte Carlo methods, this results from a modification to the underlying propagator, and does not require explicit orthogonalization, analytic continuation, transient estimators, or restriction of the Hilbert space via a trial wavefunction. Furthermore, we show that the propagator can directly yield frequency-domain correlation functions and spectral functions such as the density of states which are difficult to obtain within a traditional quantum Monte Carlo framework. We demonstrate this approach with pilot applications to the neon atom and beryllium dimer.

  20. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.

    PubMed

    Paganetti, H; Jiang, H; Lee, S Y; Kooy, H M

    2004-07-01

    Monte Carlo dosimetry calculations are essential methods in radiation therapy. To take full advantage of this tool, the beam delivery system has to be simulated in detail and the initial beam parameters have to be known accurately. The modeling of the beam delivery system itself opens various areas where Monte Carlo calculations prove extremely helpful, such as for design and commissioning of a therapy facility as well as for quality assurance verification. The gantry treatment nozzles at the Northeast Proton Therapy Center (NPTC) at Massachusetts General Hospital (MGH) were modeled in detail using the GEANT4.5.2 Monte Carlo code. For this purpose, various novel solutions for simulating irregular shaped objects in the beam path, like contoured scatterers, patient apertures or patient compensators, were found. The four-dimensional, in time and space, simulation of moving parts, such as the modulator wheel, was implemented. Further, the appropriate physics models and cross sections for proton therapy applications were defined. We present comparisons between measured data and simulations. These show that by modeling the treatment nozzle with millimeter accuracy, it is possible to reproduce measured dose distributions with an accuracy in range and modulation width, in the case of a spread-out Bragg peak (SOBP), of better than 1 mm. The excellent agreement demonstrates that the simulations can even be used to generate beam data for commissioning treatment planning systems. The Monte Carlo nozzle model was used to study mechanical optimization in terms of scattered radiation and secondary radiation in the design of the nozzles. We present simulations on the neutron background. Further, the Monte Carlo calculations supported commissioning efforts in understanding the sensitivity of beam characteristics and how these influence the dose delivered. We present the sensitivity of dose distributions in water with respect to various beam parameters and geometrical misalignments

  1. Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes: The unpolarized case

    NASA Astrophysics Data System (ADS)

    Dornheim, T.; Groth, S.; Schoof, T.; Hann, C.; Bonitz, M.

    2016-05-01

    In a recent publication [S. Groth et al., Phys. Rev. B 93, 085102 (2016), 10.1103/PhysRevB.93.085102], we have shown that the combination of two complementary quantum Monte Carlo approaches, namely configuration path integral Monte Carlo [T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015), 10.1103/PhysRevLett.115.130402] and permutation blocking path integral Monte Carlo [T. Dornheim et al., New J. Phys. 17, 073017 (2015), 10.1088/1367-2630/17/7/073017], allows for the accurate computation of thermodynamic properties of the spin-polarized uniform electron gas over a wide range of temperatures and densities without the fixed-node approximation. In the present work, we extend this concept to the unpolarized case, which requires nontrivial enhancements that we describe in detail. We compare our simulation results with recent restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013), 10.1103/PhysRevLett.110.146405] for different energy contributions and pair distribution functions and find, for the exchange correlation energy, overall better agreement than for the spin-polarized case, while the separate kinetic and potential contributions substantially deviate.

  2. Algorithmic differentiation and the calculation of forces by quantum Monte Carlo.

    PubMed

    Sorella, Sandro; Capriotti, Luca

    2010-12-21

    We describe an efficient algorithm to compute forces in quantum Monte Carlo using adjoint algorithmic differentiation. This allows us to apply the space warp coordinate transformation in differential form, and compute all the 3M force components of a system with M atoms with a computational effort comparable with the one to obtain the total energy. Few examples illustrating the method for an electronic system containing several water molecules are presented. With the present technique, the calculation of finite-temperature thermodynamic properties of materials with quantum Monte Carlo will be feasible in the near future.

  3. Renyi entanglement entropy of interacting fermions calculated using the continuous-time quantum Monte Carlo method.

    PubMed

    Wang, Lei; Troyer, Matthias

    2014-09-12

    We present a new algorithm for calculating the Renyi entanglement entropy of interacting fermions using the continuous-time quantum Monte Carlo method. The algorithm only samples the interaction correction of the entanglement entropy, which by design ensures the efficient calculation of weakly interacting systems. Combined with Monte Carlo reweighting, the algorithm also performs well for systems with strong interactions. We demonstrate the potential of this method by studying the quantum entanglement signatures of the charge-density-wave transition of interacting fermions on a square lattice.

  4. An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism

    NASA Astrophysics Data System (ADS)

    Sellier, J. M.; Nedjalkov, M.; Dimov, I.

    2015-05-01

    The Wigner formulation of quantum mechanics is a very intuitive approach which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. In this review, our aim is to provide a detailed introduction to this theory along with a Monte Carlo method for the simulation of time-dependent quantum systems evolving in a phase-space. This work consists of three main parts. First, we introduce the Wigner formalism, then we discuss in detail the Wigner Monte Carlo method and, finally, we present practical applications. In particular, the Wigner model is first derived from the Schrödinger equation. Then a generalization of the formalism due to Moyal is provided, which allows to recover important mathematical properties of the model. Next, the Wigner equation is further generalized to the case of many-body quantum systems. Finally, a physical interpretation of the negative part of a quasi-distribution function is suggested. In the second part, the Wigner Monte Carlo method, based on the concept of signed (virtual) particles, is introduced in detail for the single-body problem. Two extensions of the Wigner Monte Carlo method to quantum many-body problems are introduced, in the frameworks of time-dependent density functional theory and ab-initio methods. Finally, in the third and last part of this paper, applications to single- and many-body problems are performed in the context of quantum physics and quantum chemistry, specifically focusing on the hydrogen, lithium and boron atoms, the H2 molecule and a system of two identical Fermions. We conclude this work with a discussion on the still unexplored directions the Wigner Monte Carlo method could take in the next future.

  5. Comparing Vibrationally Averaged Nuclear Shielding Constants by Quantum Diffusion Monte Carlo and Second-Order Perturbation Theory.

    PubMed

    Ng, Yee-Hong; Bettens, Ryan P A

    2016-03-01

    Using the method of modified Shepard's interpolation to construct potential energy surfaces of the H2O, O3, and HCOOH molecules, we compute vibrationally averaged isotropic nuclear shielding constants ⟨σ⟩ of the three molecules via quantum diffusion Monte Carlo (QDMC). The QDMC results are compared to that of second-order perturbation theory (PT), to see if second-order PT is adequate for obtaining accurate values of nuclear shielding constants of molecules with large amplitude motions. ⟨σ⟩ computed by the two approaches differ for the hydrogens and carbonyl oxygen of HCOOH, suggesting that for certain molecules such as HCOOH where big displacements away from equilibrium happen (internal OH rotation), ⟨σ⟩ of experimental quality may only be obtainable with the use of more sophisticated and accurate methods, such as quantum diffusion Monte Carlo. The approach of modified Shepard's interpolation is also extended to construct shielding constants σ surfaces of the three molecules. By using a σ surface with the equilibrium geometry as a single data point to compute isotropic nuclear shielding constants for each descendant in the QDMC ensemble representing the ground state wave function, we reproduce the results obtained through ab initio computed σ to within statistical noise. Development of such an approach could thereby alleviate the need for any future costly ab initio σ calculations.

  6. Quantum Monte Carlo benchmark of exchange-correlation functionals for bulk water

    SciTech Connect

    Morales, Miguel A; Gergely, John; McMinis, Jeremy; McMahon, Jeffrey; Kim, Jeongnim; Ceperley, David M.

    2014-01-01

    The accurate description of the thermodynamic and dynamical properties of liquid water from first-principles is a very important challenge to the theoretical community. This represents not only a critical test of the predictive capabilities of first-principles methods, but it will also shed light into the microscopic properties of such an important substance. Density Functional Theory, the main workhorse in the field of first-principles methods, has been so far unable to properly describe water and its unusual properties in the liquid state. With the recent introduction of exact exchange and an improved description of dispersion interaction, the possibility of an accurate description of the liquid is finally within reach. Unfortunately, there is still no way to systematically improve exchange-correlation functionals and the number of available functionals is very large. In this article we use highly accurate quantum Monte Carlo calculations to benchmark a selection of exchange-correlation functionals typically used in Density Functional Theory simulations of bulk water. This allows us to test the predictive capabilities of these functionals in water, giving us a way not only to choose optimal functionals for first-principles simulations, but also giving us a route for the optimization of the functionals for the system at hand. We compare and contrast the importance of different features of functionals, including the hybrid component, the vdW component, and their importance within different aspects of the PES. In addition, we test a recently introduce scheme that combines Density Functional Theory with Coupled Cluster Calculations through a Many-Body expansion of the energy, in order to correct the inaccuracies in the description of short range interactions in the liquid.

  7. Quantum and Molecular Mechanical (QM/MM) Monte Carlo Techniques for Modeling Condensed-Phase Reactions

    PubMed Central

    Jorgensen, Wiliiam L.

    2014-01-01

    A recent review (Acc. Chem. Res. 2010, 43:142–151) examined our use and development of a combined quantum and molecular mechanical (QM/MM) technique for modelling organic and enzymatic reactions. Advances included the PDDG/PM3 semiempirical QM (SQM) method, computation of multi-dimensional potentials of mean force (PMF), incorporation of on-the-fly QM in Monte Carlo simulations, and a polynomial quadrature method for rapidly treating proton-transfer reactions. The current article serves as a follow up on our progress. Highlights include new reactions, alternative SQM methods, a polarizable OPLS force field, and novel solvent environments, e.g., “on water” and room temperature ionic liquids. The methodology is strikingly accurate across a wide range of condensed-phase and antibody-catalyzed reactions including substitution, decarboxylation, elimination, isomerization, and pericyclic classes. Comparisons are made to systems treated with continuum-based solvents and ab initio or density functional theory (DFT) methods. Overall, the QM/MM methodology provides detailed characterization of reaction paths, proper configurational sampling, several advantages over implicit solvent models, and a reasonable computational cost. PMID:25431625

  8. A deterministic alternative to the full configuration interaction quantum Monte Carlo method.

    PubMed

    Tubman, Norm M; Lee, Joonho; Takeshita, Tyler Y; Head-Gordon, Martin; Whaley, K Birgitta

    2016-07-28

    Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr2 molecule. We demonstrate for systems like Cr2 that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C2. PMID:27475353

  9. A deterministic alternative to the full configuration interaction quantum Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Tubman, Norm M.; Lee, Joonho; Takeshita, Tyler Y.; Head-Gordon, Martin; Whaley, K. Birgitta

    2016-07-01

    Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr2 molecule. We demonstrate for systems like Cr2 that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C2.

  10. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo.

    PubMed

    Kersten, J A F; Booth, George H; Alavi, Ali

    2016-08-01

    The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses and compares two contrasting "universal" explicitly correlated approaches that fit into the FCIQMC framework: the [2]R12 method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mEh to 3-4 mEh. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach. PMID:27497549

  11. Diffusion Quantum Monte Carlo predictions for bulk MnNiO3

    NASA Astrophysics Data System (ADS)

    Mitra, Chandrima; Krogel, Jaron; Reboredo, Fernando A.

    MnNiO3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photo-catalyst. However, there is no experimental report on critical quantities like its band gap or its bulk modulus. Recent theoretical predictions with standard functionals, such as PBE +U and HSE show large discrepancies in the band-gaps (about 1.23 eV), depending on the nature of the functional used. Hence, there is clearly a need for an accurate quantitative prediction of the band-gap in order to decide its usefulness as a photo-catalyst. In this work, we present Diffusion Quantum Monte Carlo (DMC) study of the bulk properties of MnNiO3. This includes the quasiparticle band gap for the two spin channels, the equilibrium lattice parameter and the bulk modulus. The DMC approach has already been shown to achieve excellent agreement with experimental results for other oxides such as ZnO NiO and Fe2O3. To our knowledge, MnNiO3 is the first case where this theory is applied before experiments are done. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  12. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kersten, J. A. F.; Booth, George H.; Alavi, Ali

    2016-08-01

    The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses and compares two contrasting "universal" explicitly correlated approaches that fit into the FCIQMC framework: the [2]R12 method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mEh to 3-4 mEh. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.

  13. Quantum and Molecular Mechanical (QM/MM) Monte Carlo Techniques for Modeling Condensed-Phase Reactions.

    PubMed

    Acevedo, Orlando; Jorgensen, Wiliiam L

    2014-09-01

    A recent review (Acc. Chem. Res. 2010, 43:142-151) examined our use and development of a combined quantum and molecular mechanical (QM/MM) technique for modelling organic and enzymatic reactions. Advances included the PDDG/PM3 semiempirical QM (SQM) method, computation of multi-dimensional potentials of mean force (PMF), incorporation of on-the-fly QM in Monte Carlo simulations, and a polynomial quadrature method for rapidly treating proton-transfer reactions. The current article serves as a follow up on our progress. Highlights include new reactions, alternative SQM methods, a polarizable OPLS force field, and novel solvent environments, e.g., "on water" and room temperature ionic liquids. The methodology is strikingly accurate across a wide range of condensed-phase and antibody-catalyzed reactions including substitution, decarboxylation, elimination, isomerization, and pericyclic classes. Comparisons are made to systems treated with continuum-based solvents and ab initio or density functional theory (DFT) methods. Overall, the QM/MM methodology provides detailed characterization of reaction paths, proper configurational sampling, several advantages over implicit solvent models, and a reasonable computational cost. PMID:25431625

  14. Quantum Monte Carlo Simulations of Adulteration Effect on Bond Alternating Spin=1/2 Chain

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Xu, Zhaoxin; Ying, Heping; Dai, Jianhui; Crompton, Peter

    The S=1/2 Heisenberg chain with bond alternation and randomness of antiferromagnetic (AFM) and ferromagnetic (FM) interactions is investigated by quantum Monte Carlo simulations of loop/cluster algorithm. Our results have shown interesting finite temperature magnetic properties of this model. The relevance of our study to former investigation results is discussed.

  15. Monte-Carlo Quantum Chemistry of Biogene Amines. Laser and Neutron Capture Effects

    SciTech Connect

    Glushkov, A. V.; Malinovskaya, S. V.; Khetselius, O. Yu.; Loboda, A. V.

    2009-03-09

    Monte-Carlo quantum calculation of the cluster consisting of the serotonine ST (histamine HM) molecules and 100 molecules of water is carried out. It is found that the zwitterion appears as expected to be strongly favoured with respect to neutral molecule. The perspective possibilities of laser and neutron capture action on different biomolecules are indicated.

  16. Monte-Carlo Quantum Chemistry of Biogene Amines. Laser and Neutron Capture Effects

    NASA Astrophysics Data System (ADS)

    Glushkov, A. V.; Malinovskaya, S. V.; Khetselius, O. Yu.; Loboda, A. V.

    2009-03-01

    Monte-Carlo quantum calculation of the cluster consisting of the serotonine ST (histamine HM) molecules and 100 molecules of water is carried out. It is found that the zwitterion appears as expected to be strongly favoured with respect to neutral molecule. The perspective possibilities of laser and neutron capture action on different biomolecules are indicated.

  17. Communication: Variation after response in quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Neuscamman, Eric

    2016-08-01

    We present a new method for modeling electronically excited states that overcomes a key failing of linear response theory by allowing the underlying ground state ansatz to relax in the presence of an excitation. The method is variational, has a cost similar to ground state variational Monte Carlo, and admits both open and periodic boundary conditions. We present preliminary numerical results showing that, when paired with the Jastrow antisymmetric geminal power ansatz, the variation-after-response formalism delivers accuracies for valence and charge transfer single excitations on par with equation of motion coupled cluster, while surpassing coupled cluster's accuracy for excitations with significant doubly excited character.

  18. Quantum Monte Carlo Simulation of Overpressurized Liquid {sup 4}He

    SciTech Connect

    Vranjes, L.; Boronat, J.; Casulleras, J.; Cazorla, C.

    2005-09-30

    A diffusion Monte Carlo simulation of superfluid {sup 4}He at zero temperature and pressures up to 275 bar is presented. Increasing the pressure beyond freezing ({approx}25 bar), the liquid enters the overpressurized phase in a metastable state. In this regime, we report results of the equation of state and the pressure dependence of the static structure factor, the condensate fraction, and the excited-state energy corresponding to the roton. Along this large pressure range, both the condensate fraction and the roton energy decrease but do not become zero. The roton energies obtained are compared with recent experimental data in the overpressurized regime.

  19. Communication: Variation after response in quantum Monte Carlo.

    PubMed

    Neuscamman, Eric

    2016-08-28

    We present a new method for modeling electronically excited states that overcomes a key failing of linear response theory by allowing the underlying ground state ansatz to relax in the presence of an excitation. The method is variational, has a cost similar to ground state variational Monte Carlo, and admits both open and periodic boundary conditions. We present preliminary numerical results showing that, when paired with the Jastrow antisymmetric geminal power ansatz, the variation-after-response formalism delivers accuracies for valence and charge transfer single excitations on par with equation of motion coupled cluster, while surpassing coupled cluster's accuracy for excitations with significant doubly excited character.

  20. Communication: Variation after response in quantum Monte Carlo.

    PubMed

    Neuscamman, Eric

    2016-08-28

    We present a new method for modeling electronically excited states that overcomes a key failing of linear response theory by allowing the underlying ground state ansatz to relax in the presence of an excitation. The method is variational, has a cost similar to ground state variational Monte Carlo, and admits both open and periodic boundary conditions. We present preliminary numerical results showing that, when paired with the Jastrow antisymmetric geminal power ansatz, the variation-after-response formalism delivers accuracies for valence and charge transfer single excitations on par with equation of motion coupled cluster, while surpassing coupled cluster's accuracy for excitations with significant doubly excited character. PMID:27586897

  1. Krylov-Projected Quantum Monte Carlo Method.

    PubMed

    Blunt, N S; Alavi, Ali; Booth, George H

    2015-07-31

    We present an approach to the calculation of arbitrary spectral, thermal, and excited state properties within the full configuration interaction quzantum Monte Carlo framework. This is achieved via an unbiased projection of the Hamiltonian eigenvalue problem into a space of stochastically sampled Krylov vectors, thus, enabling the calculation of real-frequency spectral and thermal properties and avoiding explicit analytic continuation. We use this approach to calculate temperature-dependent properties and one- and two-body spectral functions for various Hubbard models, as well as isolated excited states in ab initio systems. PMID:26274406

  2. A Hardware-Accelerated Quantum Monte Carlo framework (HAQMC) for N-body systems

    NASA Astrophysics Data System (ADS)

    Gothandaraman, Akila; Peterson, Gregory D.; Warren, G. Lee; Hinde, Robert J.; Harrison, Robert J.

    2009-12-01

    1 consisting of a dual-core, dualprocessor AMD Opteron 2.2 GHz with a Xilinx Virtex-4 (V4LX160) or Xilinx Virtex-II Pro (XC2VP50) FPGA per node. We use the compute node with the Xilinx Virtex-4 FPGA Operating system: Red Hat Enterprise Linux OS Has the code been vectorised or parallelized?: Yes Classification: 6.1 Nature of problem: Quantum Monte Carlo is a practical method to solve the Schrödinger equation for large many-body systems and obtain the ground-state properties of such systems. This method involves the sampling of a number of configurations of atoms and averaging the properties of the configurations over a number of iterations. We are interested in applying the QMC method to obtain the energy and other properties of highly quantum clusters, such as inert gas clusters. Solution method: The proposed framework provides a combined hardware-software approach, in which the QMC simulation is performed on the host processor, with the computationally intensive functions such as energy and trial wave function computations mapped onto the field-programmable gate array (FPGA) logic device attached as a co-processor to the host processor. We perform the QMC simulation for a number of iterations as in the case of our original software QMC approach, to reduce the statistical uncertainty of the results. However, our proposed HAQMC framework accelerates each iteration of the simulation, by significantly reducing the time taken to calculate the ground-state properties of the configurations of atoms, thereby accelerating the overall QMC simulation. We provide a generic interpolation framework that can be extended to study a variety of pure and doped atomic clusters, irrespective of the chemical identities of the atoms. For the FPGA implementation of the properties, we use a two-region approach for accurately computing the properties over the entire domain, employ deep pipelines and fixed-point for all our calculations guaranteeing the accuracy required for our simulation.

  3. Quantum Monte Carlo estimation of complex-time correlations for the study of the ground-state dynamic structure function

    SciTech Connect

    Rota, R.; Casulleras, J.; Mazzanti, F.; Boronat, J.

    2015-03-21

    We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function.

  4. Ab initio molecular dynamics with noisy forces: Validating the quantum Monte Carlo approach with benchmark calculations of molecular vibrational properties

    SciTech Connect

    Luo, Ye Sorella, Sandro; Zen, Andrea

    2014-11-21

    We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.

  5. Quantum Monte Carlo estimation of complex-time correlations for the study of the ground-state dynamic structure function.

    PubMed

    Rota, R; Casulleras, J; Mazzanti, F; Boronat, J

    2015-03-21

    We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function. PMID:25796238

  6. Benchmark study of the two-dimensional Hubbard model with auxiliary-field quantum Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Qin, Mingpu; Shi, Hao; Zhang, Shiwei

    2016-08-01

    Ground-state properties of the Hubbard model on a two-dimensional square lattice are studied by the auxiliary-field quantum Monte Carlo method. Accurate results for energy, double occupancy, effective hopping, magnetization, and momentum distribution are calculated for interaction strengths of U /t from 2 to 8, for a range of densities including half-filling and n =0.3 ,0.5 ,0.6 ,0.75 , and 0.875 . At half-filling, the results are numerically exact. Away from half-filling, the constrained path Monte Carlo method is employed to control the sign problem. Our results are obtained with several advances in the computational algorithm, which are described in detail. We discuss the advantages of generalized Hartree-Fock trial wave functions and its connection to pairing wave functions, as well as the interplay with different forms of Hubbard-Stratonovich decompositions. We study the use of different twist angle sets when applying the twist averaged boundary conditions. We propose the use of quasirandom sequences, which improves the convergence to the thermodynamic limit over pseudorandom and other sequences. With it and a careful finite size scaling analysis, we are able to obtain accurate values of ground-state properties in the thermodynamic limit. Detailed results for finite-sized systems up to 16 ×16 are also provided for benchmark purposes.

  7. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2014-01-16

    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.

  8. On the accurate direct computation of the isothermal compressibility for normal quantum simple fluids: application to quantum hard spheres.

    PubMed

    Sesé, Luis M

    2012-06-28

    A systematic study of the direct computation of the isothermal compressibility of normal quantum fluids is presented by analyzing the solving of the Ornstein-Zernike integral (OZ2) equation for the pair correlations between the path-integral necklace centroids. A number of issues related to the accuracy that can be achieved via this sort of procedure have been addressed, paying particular attention to the finite-N effects and to the definition of significant error bars for the estimates of isothermal compressibilities. Extensive path-integral Monte Carlo computations for the quantum hard-sphere fluid (QHS) have been performed in the (N, V, T) ensemble under temperature and density conditions for which dispersion effects dominate the quantum behavior. These computations have served to obtain the centroid correlations, which have been processed further via the numerical solving of the OZ2 equation. To do so, Baxter-Dixon-Hutchinson's variational procedure, complemented with Baumketner-Hiwatari's grand-canonical corrections, has been used. The virial equation of state has also been obtained and several comparisons between different versions of the QHS equation of state have been made. The results show the reliability of the procedure based on isothermal compressibilities discussed herein, which can then be regarded as a useful and quick means of obtaining the equation of state for fluids under quantum conditions involving strong repulsive interactions.

  9. Random Number Generation for Petascale Quantum Monte Carlo

    SciTech Connect

    Ashok Srinivasan

    2010-03-16

    The quality of random number generators can affect the results of Monte Carlo computations, especially when a large number of random numbers are consumed. Furthermore, correlations present between different random number streams in a parallel computation can further affect the results. The SPRNG software, which the author had developed earlier, has pseudo-random number generators (PRNGs) capable of producing large numbers of streams with large periods. However, they had been empirically tested on only thousand streams earlier. In the work summarized here, we tested the SPRNG generators with over a hundred thousand streams, involving over 10^14 random numbers per test, on some tests. We also tested the popular Mersenne Twister. We believe that these are the largest tests of PRNGs, both in terms of the numbers of streams tested and the number of random numbers tested. We observed defects in some of these generators, including the Mersenne Twister, while a few generators appeared to perform well. We also corrected an error in the implementation of one of the SPRNG generators.

  10. Quantum Monte Carlo studies of relativistic effects in light nuclei

    SciTech Connect

    J. L. Forest; V. R. Pandharipande; A. Arriaga

    1998-05-01

    Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energy, two- and three-body potentials and their boost corrections. In this work the authors use the variational Monte Carlo method to study two kinds of relativistic effects in the binding energy of {sup 3}H and {sup 4}He. The first is due to the nonlocalities in the relativistic kinetic energy and relativistic one-pion exchange potential (OPEP), and the second is from boost interaction. The OPEP contribution is reduced by about 15% by the relativistic nonlocality, which may also have significant effects on pion exchange currents. However, almost all of this reduction is canceled by changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding energy is very small. The boost interactions, on the other hand, give repulsive contributions of 0.4 (1.9) MeV in {sup 3}H ({sup 4}He) and account for 37% of the phenomenological part of the three-nucleon interaction needed in the nonrelativistic Hamiltonians.

  11. Global-View Coefficients: A Data Management Solution for Parallel Quantum Monte Carlo Applications

    SciTech Connect

    Niu, Qingpeng; Dinan, James

    2013-01-01

    Quantum Monte Carlo (QMC) applications perform simulation with respect to an initial state of the quantum mechanical system, which is often captured by using a cubic B-spline basis. This representation is stored as a read-only table of coefficients, and accesses to the table are generated at random as part of the Monte Carlo simulation. Current QMC applications, such as QWalk and QMCPACK, replicate this table at every process or node, which limits scalability because increasing the number of processors does not enable larger systems to be run. We present a partitioned global address space (PGAS) approach to transparently managing this data using Global Arrays in a manner that allows the memory of multiple nodes to be aggregated. We develop an automated data management system that significantly reduces communication overheads, enabling new capabilities for QMC codes. Experimental results with QWalk and QMCPACK demonstrate the effectiveness of the data management system.

  12. Communication: Fixed-node errors in quantum Monte Carlo: Interplay of electron density and node nonlinearities

    SciTech Connect

    Rasch, Kevin M.; Hu, Shuming; Mitas, Lubos

    2014-01-28

    We elucidate the origin of large differences (two-fold or more) in the fixed-node errors between the first- vs second-row systems for single-configuration trial wave functions in quantum Monte Carlo calculations. This significant difference in the valence fixed-node biases is studied across a set of atoms, molecules, and also Si, C solid crystals. We show that the key features which affect the fixed-node errors are the differences in electron density and the degree of node nonlinearity. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems, provide new perspectives on the origins of the fixed-node biases in calculations of molecular and condensed systems, and carry implications for pseudopotential constructions for heavy elements.

  13. Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Wei, Z. C.; Wu, Congjun; Li, Yi; Zhang, Shiwei; Xiang, T.

    2016-06-01

    The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion systems. We examine this problem with a new perspective based on the Majorana reflection positivity and Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the fermion sign problem. Our proof provides a unified description for all the interacting lattice fermion models previously known to be free of the sign problem based on the auxiliary field quantum Monte Carlo method. It also allows us to identify a number of new sign-problem-free interacting fermion models including, but not limited to, lattice fermion models with repulsive interactions but without particle-hole symmetry, and interacting topological insulators with spin-flip terms.

  14. Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations.

    PubMed

    Wei, Z C; Wu, Congjun; Li, Yi; Zhang, Shiwei; Xiang, T

    2016-06-24

    The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion systems. We examine this problem with a new perspective based on the Majorana reflection positivity and Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the fermion sign problem. Our proof provides a unified description for all the interacting lattice fermion models previously known to be free of the sign problem based on the auxiliary field quantum Monte Carlo method. It also allows us to identify a number of new sign-problem-free interacting fermion models including, but not limited to, lattice fermion models with repulsive interactions but without particle-hole symmetry, and interacting topological insulators with spin-flip terms. PMID:27391709

  15. Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo

    SciTech Connect

    Santana, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; Reboredo, Fernando A.; Kent, Paul R. C.

    2015-04-28

    We have applied the many-body ab initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure and the energetics of the oxygen vacancy, zinc interstitial, and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory (DFT) approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O{sub 2}, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.

  16. Towards prediction of correlated material properties using quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas

    Correlated electron systems offer a richness of physics far beyond noninteracting systems. If we would like to pursue the dream of designer correlated materials, or, even to set a more modest goal, to explain in detail the properties and effective physics of known materials, then accurate simulation methods are required. Using modern computational resources, quantum Monte Carlo (QMC) techniques offer a way to directly simulate electron correlations. I will show some recent results on a few extremely challenging materials including the metal-insulator transition of VO2, the ground state of the doped cuprates, and the pressure dependence of magnetic properties in FeSe. By using a relatively simple implementation of QMC, at least some properties of these materials can be described truly from first principles, without any adjustable parameters. Using the QMC platform, we have developed a way of systematically deriving effective lattice models from the simulation. This procedure is particularly attractive for correlated electron systems because the QMC methods treat the one-body and many-body components of the wave function and Hamiltonian on completely equal footing. I will show some examples of using this downfolding technique and the high accuracy of QMC to connect our intuitive ideas about interacting electron systems with high fidelity simulations. The work in this presentation was supported in part by NSF DMR 1206242, the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program under Award Number FG02-12ER46875, and the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088. Computing resources were provided by a Blue Waters Illinois grant and INCITE PhotSuper and SuperMatSim allocations.

  17. Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo

    DOE PAGES

    Santana Palacio, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; Kent, Paul R.; Reboredo, Fernando A.

    2015-04-28

    We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy asmore » a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.« less

  18. Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo

    SciTech Connect

    Santana Palacio, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; Kent, Paul R.; Reboredo, Fernando A.

    2015-04-28

    We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.

  19. Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; Kent, Paul R. C.; Reboredo, Fernando A.

    2015-04-01

    We have applied the many-body ab initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure and the energetics of the oxygen vacancy, zinc interstitial, and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory (DFT) approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.

  20. Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo.

    PubMed

    Santana, Juan A; Krogel, Jaron T; Kim, Jeongnim; Kent, Paul R C; Reboredo, Fernando A

    2015-04-28

    We have applied the many-body ab initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure and the energetics of the oxygen vacancy, zinc interstitial, and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory (DFT) approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV. PMID:25933782

  1. Accurate Energy Spectrum for the Quantum Yang-Mills Mechanics with Nonlinear Color Oscillations

    NASA Astrophysics Data System (ADS)

    Pedram, Pouria

    2015-01-01

    Yang-Mills theory as the foundation for quantum chromodynamics is a non-Abelian gauge theory with self-interactions between vector particles. Here, we study the Yang-Mills Hamiltonian with nonlinear color oscillations in the absence of external sources corresponding to the group SU(2). In the quantum domain, we diagonalize the Hamiltonian using the optimized trigonometric basis expansion method and find accurate energy eigenvalues and eigenfunctions for one and two degrees of freedom. We also compare our results with the semiclassical solutions.

  2. Flat-histogram methods in quantum Monte Carlo simulations: Application to the t-J model

    NASA Astrophysics Data System (ADS)

    Diamantis, Nikolaos G.; Manousakis, Efstratios

    2016-09-01

    We discuss that flat-histogram techniques can be appropriately applied in the sampling of quantum Monte Carlo simulation in order to improve the statistical quality of the results at long imaginary time or low excitation energy. Typical imaginary-time correlation functions calculated in quantum Monte Carlo are subject to exponentially growing errors as the range of imaginary time grows and this smears the information on the low energy excitations. We show that we can extract the low energy physics by modifying the Monte Carlo sampling technique to one in which configurations which contribute to making the histogram of certain quantities flat are promoted. We apply the diagrammatic Monte Carlo (diag-MC) method to the motion of a single hole in the t-J model and we show that the implementation of flat-histogram techniques allows us to calculate the Green's function in a wide range of imaginary-time. In addition, we show that applying the flat-histogram technique alleviates the “sign”-problem associated with the simulation of the single-hole Green's function at long imaginary time.

  3. TRIQS/CTHYB: A continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems

    NASA Astrophysics Data System (ADS)

    Seth, Priyanka; Krivenko, Igor; Ferrero, Michel; Parcollet, Olivier

    2016-03-01

    We present TRIQS/CTHYB, a state-of-the art open-source implementation of the continuous-time hybridisation expansion quantum impurity solver of the TRIQS package. This code is mainly designed to be used with the TRIQS library in order to solve the self-consistent quantum impurity problem in a multi-orbital dynamical mean field theory approach to strongly-correlated electrons, in particular in the context of realistic electronic structure calculations. It is implemented in C++ for efficiency and is provided with a high-level Python interface. The code ships with a new partitioning algorithm that divides the local Hilbert space without any user knowledge of the symmetries and quantum numbers of the Hamiltonian. Furthermore, we implement higher-order configuration moves and show that such moves are necessary to ensure ergodicity of the Monte Carlo in common Hamiltonians even without symmetry-breaking.

  4. Introducing QMC/MMpol: Quantum Monte Carlo in Polarizable Force Fields for Excited States.

    PubMed

    Guareschi, Riccardo; Zulfikri, Habiburrahman; Daday, Csaba; Floris, Franca Maria; Amovilli, Claudio; Mennucci, Benedetta; Filippi, Claudia

    2016-04-12

    We present for the first time a quantum mechanics/molecular mechanics scheme which combines quantum Monte Carlo with the reaction field of classical polarizable dipoles (QMC/MMpol). In our approach, the optimal dipoles are self-consistently generated at the variational Monte Carlo level and then used to include environmental effects in diffusion Monte Carlo. We investigate the performance of this hybrid model in describing the vertical excitation energies of prototypical small molecules solvated in water, namely, methylenecyclopropene and s-trans acrolein. Two polarization regimes are explored where either the dipoles are optimized with respect to the ground-state solute density (polGS) or different sets of dipoles are separately brought to equilibrium with the states involved in the electronic transition (polSS). By comparing with reference supermolecular calculations where both solute and solvent are treated quantum mechanically, we find that the inclusion of the response of the environment to the excitation of the solute leads to superior results than the use of a frozen environment (point charges or polGS), in particular, when the solute-solvent coupling is dominated by electrostatic effects which are well recovered in the polSS condition. QMC/MMpol represents therefore a robust scheme to treat important environmental effects beyond static point charges, combining the accuracy of QMC with the simplicity of a classical approach. PMID:26959751

  5. Entanglement and the fermion sign problem in auxiliary field quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Broecker, Peter; Trebst, Simon

    2016-08-01

    Quantum Monte Carlo simulations of fermions are hampered by the notorious sign problem whose most striking manifestation is an exponential growth of sampling errors with the number of particles. With the sign problem known to be an NP-hard problem and any generic solution thus highly elusive, the Monte Carlo sampling of interacting many-fermion systems is commonly thought to be restricted to a small class of model systems for which a sign-free basis has been identified. Here we demonstrate that entanglement measures, in particular the so-called Rényi entropies, can intrinsically exhibit a certain robustness against the sign problem in auxiliary-field quantum Monte Carlo approaches and possibly allow for the identification of global ground-state properties via their scaling behavior even in the presence of a strong sign problem. We corroborate these findings via numerical simulations of fermionic quantum phase transitions of spinless fermions on the honeycomb lattice at and below half filling.

  6. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  7. Quantum Monte Carlo algorithms for electronic structure at the petascale; the endstation project

    SciTech Connect

    Esler, Kenneth P; Kim, Jeongnim; Ceperley, David M; Purwanto, Wirawan; Walter, Eric J; Krakauer, Henry; Zhang, Shiwei; Kent, Paul R; Hennig, Richard G; Bajdich, Michal; Kolorenc, Jindrich; Mitas, Lubos; Srinivasan, Ashok

    2008-01-01

    Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schroedinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size. This accuracy and scalability has enabled scientific discovery across a broad spectrum of disciplines. The current methods perform very efficiently at the terascale. The quantum Monte Carlo Endstation project is a collaborative effort among researchers in the field to develop a new generation of algorithms, and their efficient implementations, which will take advantage of the upcoming petaflop architectures. Some aspects of these developments are discussed here. These tools will expand the accuracy, efficiency and range of QMC applicability and enable us to tackle challenges which are currently out of reach. The methods will be applied to several important problems including electronic and structural properties of water, transition metal oxides, nanosystems and ultracold atoms.

  8. Quantum Monte Carlo algorithms for electronic structure at the petascale; the endstation project.

    SciTech Connect

    Kim, J; Ceperley, D M; Purwanto, W; Walter, E J; Krakauer, H; Zhang, S W; Kent, P.R. C; Hennig, R G; Umrigar, C; Bajdich, M; Kolorenc, J; Mitas, L; Srinivasan, A

    2008-10-01

    Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrodinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size. This accuracy and scalability has enabled scientific discovery across a broad spectrum of disciplines. The current methods perform very efficiently at the terascale. The quantum Monte Carlo Endstation project is a collaborative effort among researchers in the field to develop a new generation of algorithms, and their efficient implementations, which will take advantage of the upcoming petaflop architectures. Some aspects of these developments are discussed here. These tools will expand the accuracy, efficiency and range of QMC applicability and enable us to tackle challenges which are currently out of reach. The methods will be applied to several important problems including electronic and structural properties of water, transition metal oxides, nanosystems and ultracold atoms.

  9. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE PAGES

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  10. Hybrid quantum-classical Monte Carlo study of a molecule-based magnet

    NASA Astrophysics Data System (ADS)

    Henelius, P.; Fishman, R. S.

    2008-12-01

    Using a Monte Carlo (MC) method, we study an effective model for the Fe(II)Fe(III) bimetallic oxalates. Within a hybrid quantum-classical MC algorithm, the Heisenberg S=2 and S'=5/2 spins on the Fe(II) and Fe(III) sites are updated using a quantum MC loop while the Ising-type orbital angular momenta on the Fe(II) sites are updated using a single-spin classical MC flip. The effective field acting on the orbital angular momenta depends on the quantum state of the system. We find that the mean-field phase diagram for the model is surprisingly robust with respect to fluctuations. In particular, the region displaying two compensation points shifts and shrinks but remains finite.

  11. Ising nematic quantum critical point in a metal: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Lederer, Samuel

    The Ising nematic quantum critical point (QCP) associated with the zero temperature transition from a symmetric to a nematic metal is an exemplar of metallic quantum criticality. We have carried out a minus sign-free quantum Monte Carlo study of this QCP for a two dimensional lattice model with sizes up to 24 × 24 sites. The system remains non-superconducting down to the lowest accessible temperatures. The results exhibit critical scaling behavior over the accessible ranges of temperature, (imaginary) time, and distance. This scaling behavior has remarkable similarities with recently measured properties of the Fe-based superconductors proximate to their putative nematic QCP. With Yoni Schattner, Steven A. Kivelson, and Erez Berg.

  12. Torsional diffusion Monte Carlo: A method for quantum simulations of proteins

    NASA Astrophysics Data System (ADS)

    Clary, David C.

    2001-06-01

    The quantum diffusion Monte Carlo (DMC) method is extended to the treatment of coupled torsional motions in proteins. A general algorithm and computer program has been developed by interfacing this torsional-DMC method with all-atom force-fields for proteins. The method gives the zero-point energy and atomic coordinates averaged over the coupled torsional motions in the quantum ground state of the protein. Application of the new algorithm is made to the proteins gelsolin (356 atoms and 142 torsions) and gp41-HIV (1101 atoms and 452 torsions). The results indicate that quantum-dynamical effects are important for the energies and geometries of typical proteins such as these.

  13. Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals.

    PubMed

    Berg, Erez; Metlitski, Max A; Sachdev, Subir

    2012-12-21

    The quantum theory of antiferromagnetism in metals is necessary for our understanding of numerous intermetallic compounds of widespread interest. In these systems, a quantum critical point emerges as external parameters (such as chemical doping) are varied. Because of the strong coupling nature of this critical point and the "sign problem" plaguing numerical quantum Monte Carlo (QMC) methods, its theoretical understanding is still incomplete. Here, we show that the universal low-energy theory for the onset of antiferromagnetism in a metal can be realized in lattice models, which are free from the sign problem and hence can be simulated efficiently with QMC. Our simulations show Fermi surface reconstruction and unconventional spin-singlet superconductivity across the critical point. PMID:23258893

  14. The accuracy of diffusion quantum Monte Carlo simulations in the determination of molecular equilibrium structures

    NASA Astrophysics Data System (ADS)

    Lu, Shih-I.

    2004-12-01

    For a test set of 17 first-row small molecules, the equilibrium structures are calculated with Ornstein-Uhlenbeck diffusion quantum Monte Carlo simulations guiding by trial wave functions constructed from floating spherical Gaussian orbitals and spherical Gaussian geminals. To measure performance of the Monte Carlo calculations, the mean deviation, the mean absolute deviation, the maximum absolute deviation, and the standard deviation of Monte Carlo calculated equilibrium structures with respect to empirical equilibrium structures are given. This approach is found to yield results having a uniformly high quality, being consistent with empirical equilibrium structures and surpassing calculated values from the coupled cluster model with single, double, and noniterative triple excitations [CCSD(T)] with the basis sets of cc-pCVQZ and cc-pVQZ. The nonrelativistic equilibrium atomization energies are also presented to assess performance of the calculated methods. The mean absolute deviations regarding experimental atomization energy are 0.16 and 0.21 kcal/mol for the Monte Carlo and CCSD(T)/cc-pCV(56)Z calculations, respectively.

  15. Quantum Monte-Carlo simulation of spin-one antiferromagnets with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Wierschem, Keola; Nishida, Yusuke; Batista, Cristian; Sengupta, Pinaki

    2013-03-01

    We study a spin-one Heisenberg model with uniaxial single-ion anisotropy, D, and Zeeman coupling to a magnetic field, B, parallel to the symmetry axis. We compute the (D / J , B / J) quantum phase diagram for square and simple cubic lattices by combining analytical and Quantum Monte Carlo approaches, and find a transition between XY-antiferromagnetic and ferronematic phases that spontaneously break the U(1) symmetry of the model. In the language of bosonic gases, this is a transition between a Bose-Einstein condensate (BEC) of single bosons and a BEC of pairs. For the efficient simulation of ferronematic phase, we developed and implemented a new multi-discontinuity algorithm based on the directed-loop algorithm. The ordinary quantum Monte-Carlo methods fall into freezing problems when we apply them to this system at large D / J and finite B / J ~ 1 . The new method does not suffer from the freezing problems. This research used resources of the NERSCC (DOE Contract No. DE-AC02-05CH11231). Work at LANL was performed under the auspices of a J. Robert Oppenheimer Fellowship and the U.S. DOE contract No. DE-AC52-06NA25396 through the LDRD program.

  16. Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems

    NASA Astrophysics Data System (ADS)

    Suwa, Hidemaro

    2013-03-01

    We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad

  17. Electron density of states of Fe-based superconductors: Quantum trajectory Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Kashurnikov, V. A.; Krasavin, A. V.; Zhumagulov, Ya. V.

    2016-03-01

    The spectral and total electron densities of states in two-dimensional FeAs clusters, which simulate iron-based superconductors, have been calculated using the generalized quantum Monte Carlo algorithm within the full two-orbital model. Spectra have been reconstructed by solving the integral equation relating the Matsubara Green's function and spectral density by the method combining the gradient descent and Monte Carlo algorithms. The calculations have been performed for clusters with dimensions up to 10 × 10 FeAs cells. The profiles of the Fermi surface for the entire Brillouin zone have been presented in the quasiparticle approximation. Data for the total density of states near the Fermi level have been obtained. The effect of the interaction parameter, size of the cluster, and temperature on the spectrum of excitations has been studied.

  18. Diffusion quantum Monte Carlo study of martensitic phase transition energetics: The case of phosphorene

    NASA Astrophysics Data System (ADS)

    Reeves, Kyle G.; Yao, Yi; Kanai, Yosuke

    2016-09-01

    Recent technical advances in dealing with finite-size errors make quantum Monte Carlo methods quite appealing for treating extended systems in electronic structure calculations, especially when commonly used density functional theory (DFT) methods might not be satisfactory. We present a theoretical study of martensitic phase transition energetics of a two-dimensional phosphorene by employing diffusion Monte Carlo (DMC) approach. The DMC calculation supports DFT prediction of having a rather diffusive barrier that is characterized by having two transition states, in addition to confirming that the so-called black and blue phases of phosphorene are essentially degenerate. At the same time, the DFT calculations do not provide the quantitative accuracy in describing the energy changes for the martensitic phase transition even when hybrid exchange-correlation functional is employed. We also discuss how mechanical strain influences the stabilities of the two phases of phosphorene.

  19. Simple and accurate quantification of quantum dots via single-particle counting.

    PubMed

    Zhang, Chun-yang; Johnson, Lawrence W

    2008-03-26

    Quantification of quantum dots (QDs) is essential to the quality control of QD synthesis, development of QD-based LEDs and lasers, functionalizing of QDs with biomolecules, and engineering of QDs for biological applications. However, simple and accurate quantification of QD concentration in a variety of buffer solutions and in complex mixtures still remains a critical technological challenge. Here, we introduce a new methodology for quantification of QDs via single-particle counting, which is conceptually different from established UV-vis absorption and fluorescence spectrum techniques where large amounts of purified QDs are needed and specific absorption coefficient or quantum yield values are necessary for measurements. We demonstrate that single-particle counting allows us to nondiscriminately quantify different kinds of QDs by their distinct fluorescence burst counts in a variety of buffer solutions regardless of their composition, structure, and surface modifications, and without the necessity of absorption coefficient and quantum yield values. This single-particle counting can also unambiguously quantify individual QDs in a complex mixture, which is practically impossible for both UV-vis absorption and fluorescence spectrum measurements. Importantly, the application of this single-particle counting is not just limited to QDs but also can be extended to fluorescent microspheres, quantum dot-based microbeads, and fluorescent nano rods, some of which currently lack efficient quantification methods.

  20. Feature Article: Understanding strongly correlated many-body systems with quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lavalle, Catia; Rigol, Marcos; Muramatsu, Alejandro

    2005-08-01

    The cover picture of the current issue, taken from the Feature Article [1], depicts the evolution of local density (a) and its quantum fluctuations (b) in trapped fermions on one-dimensional optical lattices. As the number of fermions in the trap is increased, figure (a) shows the formation of a Mott-insulating plateau (local density equal to one) whereas the quantum fluctuations - see figure (b) - are strongly suppressed, but nonzero. For a larger number of fermions new insulating plateaus appear (this time with local density equal to two), but no density fluctuations. Regions with non-constant density are metallic and exhibit large quantum fluctuations of the density.The first author Catia Lavalle is a Postdoc at the University of Stuttgart. She works in the field of strongly correlated quantum systems by means of Quantum Monte Carlo methods (QMC). While working on her PhD thesis at the University of Stuttgart, she developed a new QMC technique that allows to study dynamical properties of the t-J model.

  1. Quantum Monte Carlo simulation of a two-dimensional Bose gas

    SciTech Connect

    Pilati, S.; Boronat, J.; Casulleras, J.; Giorgini, S.

    2005-02-01

    The equation of state of a homogeneous two-dimensional Bose gas is calculated using quantum Monte Carlo methods. The low-density universal behavior is investigated using different interatomic model potentials, both finite ranged and strictly repulsive and zero ranged, supporting a bound state. The condensate fraction and the pair distribution function are calculated as a function of the gas parameter, ranging from the dilute to the strongly correlated regime. In the case of the zero-range pseudopotential we discuss the stability of the gaslike state for large values of the two-dimensional scattering length, and we calculate the critical density where the system becomes unstable against cluster formation.

  2. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    SciTech Connect

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.

  3. Monte Carlo sampling of Wigner functions and surface hopping quantum dynamics

    NASA Astrophysics Data System (ADS)

    Kube, Susanna; Lasser, Caroline; Weber, Marcus

    2009-04-01

    The article addresses the achievable accuracy for a Monte Carlo sampling of Wigner functions in combination with a surface hopping algorithm for non-adiabatic quantum dynamics. The approximation of Wigner functions is realized by an adaption of the Metropolis algorithm for real-valued functions with disconnected support. The integration, which is necessary for computing values of the Wigner function, uses importance sampling with a Gaussian weight function. The numerical experiments agree with theoretical considerations and show an error of 2-3%.

  4. Quantum Monte Carlo study of dipolar lattice bosons in the presence of random diagonal disorder

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara

    2015-05-01

    We report the results of our study of dipolar bosons in a two dimensional optical lattice in the presence of random diagonal disorders using Path Integral Quantum Monte Carlo simulations. We study the phase diagram at half filling which features three phases: superfluid, checkerboard solid and bose glass. We observe that, in contrast to the standard Bose-Hubbard model in presence of diagonal disorder, superfluidity is destroyed at considerable lower disorder strengths in favor of the Bose glass phase. Additionally we find that as the disorder strength increases, larger dipolar interaction is required in order to stabilize a checkerboard solid.

  5. A Monte Carlo-quantum mechanics study of a solvatochromic π* probe.

    PubMed

    Domínguez, Moisés; Rezende, Marcos Caroli

    2016-09-01

    The solvation and the solvatochromic behavior of 5-(dimethylamino)-5'-nitro-2,2'-bithiophene 1, the basis of a π* scale of solvent polarities, was investigated theoretically in toluene, dichloromethane, methanol and formamide with a Monte Carlo and quantum mechanics (QM/MM) iterative approach. The calculated transition energies of the solvatochromic band of 1, obtained as averages of statistically uncorrelated configurations, including the solute and explicit solvent molecules of the first solvation layer, besides showing good agreement with the experimental transitions, reproduced very well the positive solvatochromism of this probe in various solvents.

  6. Pair correlation functions of FeAs-based superconductors: Quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Kashurnikov, V. A.; Krasavin, A. V.

    2015-01-01

    The new generalized quantum continuous time world line Monte Carlo algorithm was developed to calculate pair correlation functions for two-dimensional FeAs-clusters modeling of iron-based superconductors within the framework of the two-orbital model. The analysis of pair correlations depending on the cluster size, temperature, interaction, and the type of symmetry of the order parameter is carried out. The data obtained for clusters with sizes up to 1 0x1 0 FeAs-cells favor the possibility of an effective charge carrier's attraction that is corresponding the A1g-symmetry, at some parameters of interaction.

  7. Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature.

    PubMed

    Anagnostopoulos, Konstantinos N; Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo

    2008-01-18

    We present the first Monte Carlo results for supersymmetric matrix quantum mechanics with 16 supercharges at finite temperature. The recently proposed nonlattice simulation enables us to include the effects of fermionic matrices in a transparent and reliable manner. The internal energy nicely interpolates the weak coupling behavior obtained by the high temperature expansion, and the strong coupling behavior predicted from the dual black-hole geometry. The Polyakov line asymptotes at low temperature to a characteristic behavior for a deconfined theory, suggesting the absence of a phase transition. These results provide highly nontrivial evidence for the gauge-gravity duality. PMID:18232852

  8. A study of potential energy curves from the model space quantum Monte Carlo method

    SciTech Connect

    Ohtsuka, Yuhki; Ten-no, Seiichiro

    2015-12-07

    We report on the first application of the model space quantum Monte Carlo (MSQMC) to potential energy curves (PECs) for the excited states of C{sub 2}, N{sub 2}, and O{sub 2} to validate the applicability of the method. A parallel MSQMC code is implemented with the initiator approximation to enable efficient sampling. The PECs of MSQMC for various excited and ionized states are compared with those from the Rydberg-Klein-Rees and full configuration interaction methods. The results indicate the usefulness of MSQMC for precise PECs in a wide range obviating problems concerning quasi-degeneracy.

  9. Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers

    SciTech Connect

    Matyas, Alpar; Lugli, Paolo; Jirauschek, Christian

    2013-01-07

    Using a generalized version of Fermi's golden rule, collisional broadening is self-consistently implemented into ensemble Monte Carlo carrier transport simulations, and its effect on the transport and optical properties of terahertz quantum cascade lasers is investigated. The inclusion of broadening yields improved agreement with the experiment, without a significant increase of the numerical load. Specifically, this effect is crucial for a correct modeling at low biases. In the lasing regime, broadening can lead to significantly reduced optical gain and output power, affecting the obtained current-voltage characteristics.

  10. Chiral 2N and 3N interactions and quantum Monte Carlo applications

    NASA Astrophysics Data System (ADS)

    Gezerlis, Alexandros

    2016-07-01

    Chiral Effective Field Theory (EFT) two- and three-nucleon forces are now widely employed. Since they were originally formulated in momentum space, these interactions were non-local, making them inaccessible to Quantum Monte Carlo (QMC) methods. We have recently derived a local version of chiral EFT nucleon-nucleon and three-nucleon interactions, which we also used in QMC calculations for neutron matter and light nuclei. In this contribution I go over the basics of local chiral EFT and then summarize recent results.

  11. Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with local interaction.

    PubMed

    Calcavecchia, Francesco; Holzmann, Markus

    2016-04-01

    We use the shadow wave function formalism as a convenient model to study the fermion sign problem affecting all projector quantum Monte Carlo methods in continuum space. We demonstrate that the efficiency of imaginary-time projection algorithms decays exponentially with increasing number of particles and/or imaginary-time propagation. Moreover, we derive an analytical expression that connects the localization of the system with the magnitude of the sign problem, illustrating this behavior through numerical results. Finally, we discuss the computational complexity of the fermion sign problem and methods for alleviating its severity. PMID:27176442

  12. Theory of finite size effects for electronic quantum Monte Carlo calculations of liquids and solids

    NASA Astrophysics Data System (ADS)

    Holzmann, Markus; Clay, Raymond C.; Morales, Miguel A.; Tubman, Norm M.; Ceperley, David M.; Pierleoni, Carlo

    2016-07-01

    Concentrating on zero temperature quantum Monte Carlo calculations of electronic systems, we give a general description of the theory of finite size extrapolations of energies to the thermodynamic limit based on one- and two-body correlation functions. We introduce effective procedures, such as using the potential and wave function split up into long and short range functions to simplify the method, and we discuss how to treat backflow wave functions. Then we explicitly test the accuracy of our method to correct finite size errors on example hydrogen and helium many-body systems and show that the finite size bias can be drastically reduced for even small systems.

  13. A Monte Carlo-quantum mechanics study of a solvatochromic π* probe.

    PubMed

    Domínguez, Moisés; Rezende, Marcos Caroli

    2016-09-01

    The solvation and the solvatochromic behavior of 5-(dimethylamino)-5'-nitro-2,2'-bithiophene 1, the basis of a π* scale of solvent polarities, was investigated theoretically in toluene, dichloromethane, methanol and formamide with a Monte Carlo and quantum mechanics (QM/MM) iterative approach. The calculated transition energies of the solvatochromic band of 1, obtained as averages of statistically uncorrelated configurations, including the solute and explicit solvent molecules of the first solvation layer, besides showing good agreement with the experimental transitions, reproduced very well the positive solvatochromism of this probe in various solvents. PMID:27553303

  14. Neutron matter with Quantum Monte Carlo: chiral 3N forces and static response

    DOE PAGES

    Buraczynski, M.; Gandolfi, S.; Gezerlis, A.; Schwenk, A.; Tews, I.

    2016-03-01

    Neutron matter is related to the physics of neutron stars and that of neutron-rich nuclei. Moreover, Quantum Monte Carlo (QMC) methods offer a unique way of solving the many-body problem non-perturbatively, providing feedback on features of nuclear interactions and addressing scenarios that are inaccessible to other approaches. Our contribution goes over two recent accomplishments in the theory of neutron matter: a) the fusing of QMC with chiral effective field theory interactions, focusing on local chiral 3N forces, and b) the first attempt to find an ab initio solution to the problem of static response.

  15. Competing collinear magnetic structures in superconducting FeSe by first-principles quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Busemeyer, Brian; Dagrada, Mario; Sorella, Sandro; Casula, Michele; Wagner, Lucas K.

    2016-07-01

    Resolving the interplay between magnetic interactions and structural properties in strongly correlated materials through a quantitatively accurate approach has been a major challenge in condensed-matter physics. Here we apply highly accurate first-principles quantum Monte Carlo (QMC) techniques to obtain structural and magnetic properties of the iron selenide (FeSe) superconductor under pressure. Where comparable, the computed properties are very close to the experimental values. Of potential ordered magnetic configurations, collinear spin configurations are the most energetically favorable over the explored pressure range. They become nearly degenerate in energy with bicollinear spin orderings at around 7 GPa, when the experimental critical temperature Tc is the highest. On the other hand, ferromagnetic, checkerboard, and staggered dimer configurations become relatively higher in energy as the pressure increases. The behavior under pressure is explained by an analysis of the local charge compressibility and the orbital occupation as described by the QMC many-body wave function, which reveals how spin, charge, and orbital degrees of freedom are strongly coupled in this compound. This remarkable pressure evolution suggests that stripelike magnetic fluctuations may be responsible for the enhanced Tc in FeSe and that higher Tc is associated with nearness to a crossover between collinear and bicollinear ordering.

  16. Multi-level quantum Monte Carlo wave functions for complex reactions: the decomposition of α-hydroxy-dimethylnitrosamine.

    PubMed

    Fracchia, Francesco; Filippi, Claudia; Amovilli, Claudio

    2014-01-01

    We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we develop a multilevel scheme to treat different regions of the molecule at different levels of the theory. As prototypical study case, we investigate the decomposition of α-hydroxy-dimethylnitrosamine, a carcinogenic metabolite of dimethylnitrosamine (NDMA), through a two-step mechanism of isomerization followed by a retro-ene reaction. We compute a reliable reaction path with the quadratic configuration interaction method and employ QMC for the calculation of the electronic energies. We show that the use of multideterminantal wave functions is very important to correctly describe the critical points of this PES within QMC, and that our multilevel J-LGVB approach is an effective tool to significantly reduce the cost of QMC calculations without loss of accuracy. As regards the complex PES of α-hydroxy-dimethylnitrosamine, the accurate energies computed with our approach allows us to confirm the validity of the two-step reaction mechanism of decomposition originally proposed within density functional theory, but with some important differences in the barrier heights of the individual steps.

  17. An accurate single-electron pump based on a highly tunable silicon quantum dot.

    PubMed

    Rossi, Alessandro; Tanttu, Tuomo; Tan, Kuan Yen; Iisakka, Ilkka; Zhao, Ruichen; Chan, Kok Wai; Tettamanzi, Giuseppe C; Rogge, Sven; Dzurak, Andrew S; Möttönen, Mikko

    2014-06-11

    Nanoscale single-electron pumps can be used to generate accurate currents, and can potentially serve to realize a new standard of electrical current based on elementary charge. Here, we use a silicon-based quantum dot with tunable tunnel barriers as an accurate source of quantized current. The charge transfer accuracy of our pump can be dramatically enhanced by controlling the electrostatic confinement of the dot using purposely engineered gate electrodes. Improvements in the operational robustness, as well as suppression of nonadiabatic transitions that reduce pumping accuracy, are achieved via small adjustments of the gate voltages. We can produce an output current in excess of 80 pA with experimentally determined relative uncertainty below 50 parts per million.

  18. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  19. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems. PMID:25877566

  20. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-01

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  1. Torsional path integral Monte Carlo method for the quantum simulation of large molecules

    NASA Astrophysics Data System (ADS)

    Miller, Thomas F.; Clary, David C.

    2002-05-01

    A molecular application is introduced for calculating quantum statistical mechanical expectation values of large molecules at nonzero temperatures. The Torsional Path Integral Monte Carlo (TPIMC) technique applies an uncoupled winding number formalism to the torsional degrees of freedom in molecular systems. The internal energy of the molecules ethane, n-butane, n-octane, and enkephalin are calculated at standard temperature using the TPIMC technique and compared to the expectation values obtained using the harmonic oscillator approximation and a variational technique. All studied molecules exhibited significant quantum mechanical contributions to their internal energy expectation values according to the TPIMC technique. The harmonic oscillator approximation approach to calculating the internal energy performs well for the molecules presented in this study but is limited by its neglect of both anharmonicity effects and the potential coupling of intramolecular torsions.

  2. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  3. Excited states from quantum Monte Carlo in the basis of Slater determinants

    SciTech Connect

    Humeniuk, Alexander; Mitrić, Roland

    2014-11-21

    Building on the full configuration interaction quantum Monte Carlo (FCIQMC) algorithm introduced recently by Booth et al. [J. Chem. Phys. 131, 054106 (2009)] to compute the ground state of correlated many-electron systems, an extension to the computation of excited states (exFCIQMC) is presented. The Hilbert space is divided into a large part consisting of pure Slater determinants and a much smaller orthogonal part (the size of which is controlled by a cut-off threshold), from which the lowest eigenstates can be removed efficiently. In this way, the quantum Monte Carlo algorithm is restricted to the orthogonal complement of the lower excited states and projects out the next highest excited state. Starting from the ground state, higher excited states can be found one after the other. The Schrödinger equation in imaginary time is solved by the same population dynamics as in the ground state algorithm with modified probabilities and matrix elements, for which working formulae are provided. As a proof of principle, the method is applied to lithium hydride in the 3-21G basis set and to the helium dimer in the aug-cc-pVDZ basis set. It is shown to give the correct electronic structure for all bond lengths. Much more testing will be required before the applicability of this method to electron correlation problems of interesting size can be assessed.

  4. Quantum critical point of Dirac fermions studied using efficient continuous-time projector quantum Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Iazzi, Mauro; Corboz, Philippe; Troyer, Matthias

    2015-03-01

    Quantum phase transition (QPT) of Dirac fermions is a fascinating topic both in condensed matter and in high energy physics. Besides its immediate connection to fundamental problems like mass generation and exotic phases of matter, it provides a common playground where state of the art numerical simulations can be crosschecked with various effective field theory predictions, thus deepen our understanding of both fields. The universality class of the QPT is fundamentally different from the usual bosonic field theory because of the coupling to the gapless fermionic mode at the critical point. We study lattice models with spinless and multi-flavor Dirac fermions using the newly developed efficient continuous-time projector quantum Monte Carlo method. Besides eliminating the Trotter error, the method also enables us to directly calculate derivative observables in a continuous range of interaction strengths, thus greatly enhancing the resolution of the quantum critical region. Compatible results are also obtained from infinite projected entangled-pair states calculations. We compare these numerical results with predictions of the Gross-Neveu theory and discuss their physical implications.

  5. Molecular Properties by Quantum Monte Carlo: An Investigation on the Role of the Wave Function Ansatz and the Basis Set in the Water Molecule

    PubMed Central

    Zen, Andrea; Luo, Ye; Sorella, Sandro; Guidoni, Leonardo

    2014-01-01

    Quantum Monte Carlo methods are accurate and promising many body techniques for electronic structure calculations which, in the last years, are encountering a growing interest thanks to their favorable scaling with the system size and their efficient parallelization, particularly suited for the modern high performance computing facilities. The ansatz of the wave function and its variational flexibility are crucial points for both the accurate description of molecular properties and the capabilities of the method to tackle large systems. In this paper, we extensively analyze, using different variational ansatzes, several properties of the water molecule, namely, the total energy, the dipole and quadrupole momenta, the ionization and atomization energies, the equilibrium configuration, and the harmonic and fundamental frequencies of vibration. The investigation mainly focuses on variational Monte Carlo calculations, although several lattice regularized diffusion Monte Carlo calculations are also reported. Through a systematic study, we provide a useful guide to the choice of the wave function, the pseudopotential, and the basis set for QMC calculations. We also introduce a new method for the computation of forces with finite variance on open systems and a new strategy for the definition of the atomic orbitals involved in the Jastrow-Antisymmetrised Geminal power wave function, in order to drastically reduce the number of variational parameters. This scheme significantly improves the efficiency of QMC energy minimization in case of large basis sets. PMID:24526929

  6. Molecular Properties by Quantum Monte Carlo: An Investigation on the Role of the Wave Function Ansatz and the Basis Set in the Water Molecule.

    PubMed

    Zen, Andrea; Luo, Ye; Sorella, Sandro; Guidoni, Leonardo

    2013-10-01

    Quantum Monte Carlo methods are accurate and promising many body techniques for electronic structure calculations which, in the last years, are encountering a growing interest thanks to their favorable scaling with the system size and their efficient parallelization, particularly suited for the modern high performance computing facilities. The ansatz of the wave function and its variational flexibility are crucial points for both the accurate description of molecular properties and the capabilities of the method to tackle large systems. In this paper, we extensively analyze, using different variational ansatzes, several properties of the water molecule, namely, the total energy, the dipole and quadrupole momenta, the ionization and atomization energies, the equilibrium configuration, and the harmonic and fundamental frequencies of vibration. The investigation mainly focuses on variational Monte Carlo calculations, although several lattice regularized diffusion Monte Carlo calculations are also reported. Through a systematic study, we provide a useful guide to the choice of the wave function, the pseudopotential, and the basis set for QMC calculations. We also introduce a new method for the computation of forces with finite variance on open systems and a new strategy for the definition of the atomic orbitals involved in the Jastrow-Antisymmetrised Geminal power wave function, in order to drastically reduce the number of variational parameters. This scheme significantly improves the efficiency of QMC energy minimization in case of large basis sets. PMID:24526929

  7. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    PubMed

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples.

  8. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    PubMed

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples. PMID:27498635

  9. Quantum Monte Carlo study of strange correlator in interacting topological insulators

    NASA Astrophysics Data System (ADS)

    Wu, Han-Qing; He, Yuan-Yao; You, Yi-Zhuang; Xu, Cenke; Meng, Zi Yang; Lu, Zhong-Yi

    2015-10-01

    Distinguishing the nontrivial symmetry-protected topological (SPT) phase from the trivial insulator phase in the presence of electron-electron interaction is an urgent question to the study of topological insulators, due to the fact that most of the topological indices defined for free electron systems are very likely unsuitable for interacting cases. In this work, we demonstrate that the strange correlator is a sensitive diagnosis to detect SPT states in interacting systems. Employing large-scale quantum Monte Carlo (QMC) simulations, we investigate the interaction-driven quantum phase transition in the Kane-Mele-Hubbard model. The transition from the quantum spin Hall insulator at weak interaction to an antiferromagnetic Mott insulator at strong interaction can be readily detected by the momentum space behavior of the strange correlator in single-particle, spin, and pairing sectors. The interaction effects on the symmetry-protected edge states in various sectors, i.e., the helical Luttinger liquid behavior, are well captured in the QMC measurements of strange correlators. Moreover, we demonstrate that the strange correlator is technically easier to implement in QMC and more robust in performance than other proposed numerical diagnoses for interacting topological states, as only static correlations are needed. The attempt in this work paves the way for using the strange correlator to study interaction-driven topological phase transitions in fermionic as well as bosonic systems.

  10. Quantum Monte Carlo study of strange correlator in interacting topological insulators

    NASA Astrophysics Data System (ADS)

    Wu, Han-Qing; He, Yuan-Yao; You, Yi-Zhuang; Xu, Cenke; Meng, Zi Yang; Lu, Zhong-Yi

    Distinguishing the nontrivial symmetry-protected topological (SPT) phase from the trivial insulator phase in the presence of electron-electron interaction is an urgent question to the study of topological insulators. In this work, we demonstrate that the strange correlator is a sensitive diagnosis to detect SPT states in interacting systems. Employing large-scale quantum Monte Carlo (QMC) simulations, we investigate the interaction-driven quantum phase transition in the Kane-Mele-Hubbard model. The transition from the quantum spin Hall insulator at weak interaction to an antiferromagnetic Mott insulator at strong interaction can be readily detected by the momentum space behavior of the strange correlator in single-particle, spin, and pairing sectors. The interaction e?ects on the symmetry-protected edge states in various sectors are well captured in the QMC measurements of strange correlators. Moreover, we demonstrate that the strange correlator is technically easier to implement in QMC and more robust in performance than other proposed numerical diagnoses for interacting topological states, as only static correlations are needed. The attempt in this work paves the way for using the strange correlator to study interaction-driven topological phase transitions.

  11. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-01

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems. PMID:26651397

  12. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach.

    PubMed

    Sansone, Giuseppe; Maschio, Lorenzo; Usvyat, Denis; Schütz, Martin; Karttunen, Antti

    2016-01-01

    The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems.

  13. Ab initio quantum Monte Carlo calculations of spin superexchange in cuprates: the benchmarking case of Ca2CuO3

    SciTech Connect

    Foyevtsova, Kateryna; Krogel, Jaron T; Kim, Jeongnim; Kent, Paul R; Dagotto, Elbio R; Reboredo, Fernando A

    2014-01-01

    In view of the continuous theoretical efforts aimed at an accurate microscopic description of the strongly correlated transition metal oxides and related materials, we show that with continuum quantum Monte Carlo (QMC) calculations it is possible to obtain the value of the spin superexchange coupling constant of a copper oxide in a quantitatively excellent agreement with experiment. The variational nature of the QMC total energy allows us to identify the best trial wave function out of the available pool of wave functions, which makes the approach essentially free from adjustable parameters and thus truly ab initio. The present results on magnetic interactions suggest that QMC is capable of accurately describing ground state properties of strongly correlated materials.

  14. Accurate non-adiabatic quantum dynamics from pseudospectral sampling of time-dependent Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Mazziotti, David A.

    2016-08-01

    Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. In this paper, we employ pseudospectral sampling of time-dependent Gaussian basis functions for the simulation of non-adiabatic dynamics. Unlike other methods, the pseudospectral Gaussian molecular dynamics tests the Schrödinger equation with N Dirac delta functions located at the centers of the Gaussian functions reducing the scaling of potential energy evaluations from O ( N 2 ) to O ( N ) . By projecting the Gaussian basis onto discrete points in space, the method is capable of efficiently and quantitatively describing the nonadiabatic population transfer and intra-surface quantum coherence. We investigate three model systems: the photodissociation of three coupled Morse oscillators, the bound state dynamics of two coupled Morse oscillators, and a two-dimensional model for collinear triatomic vibrational dynamics. In all cases, the pseudospectral Gaussian method is in quantitative agreement with numerically exact calculations. The results are promising for nonadiabatic molecular dynamics in molecular systems where strongly correlated ground or excited states require expensive electronic structure calculations.

  15. Energy benchmarks for methane-water systems from quantum Monte Carlo and second-order Møller-Plesset calculations.

    PubMed

    Gillan, M J; Alfè, D; Manby, F R

    2015-09-14

    The quantum Monte Carlo (QMC) technique is used to generate accurate energy benchmarks for methane-water clusters containing a single methane monomer and up to 20 water monomers. The benchmarks for each type of cluster are computed for a set of geometries drawn from molecular dynamics simulations. The accuracy of QMC is expected to be comparable with that of coupled-cluster calculations, and this is confirmed by comparisons for the CH4-H2O dimer. The benchmarks are used to assess the accuracy of the second-order Møller-Plesset (MP2) approximation close to the complete basis-set limit. A recently developed embedded many-body technique is shown to give an efficient procedure for computing basis-set converged MP2 energies for the large clusters. It is found that MP2 values for the methane binding energies and the cohesive energies of the water clusters without methane are in close agreement with the QMC benchmarks, but the agreement is aided by partial cancelation between 2-body and beyond-2-body errors of MP2. The embedding approach allows MP2 to be applied without loss of accuracy to the methane hydrate crystal, and it is shown that the resulting methane binding energy and the cohesive energy of the water lattice agree almost exactly with recently reported QMC values. PMID:26374005

  16. Simple Impurity Embedded in a Spherical Jellium: Approximations of Density Functional Theory compared to Quantum Monte Carlo Benchmarks

    SciTech Connect

    Bajdich, Michal; Kent, Paul R; Kim, Jeongnim; Reboredo, Fernando A

    2011-01-01

    We study the electronic structure of a spherical jellium in the presence of a central Gaussian impurity. We test how well the resulting inhomogeneity effects beyond spherical jellium are reproduced by several approximations of density functional theory (DFT). Four rungs of Perdew's ladder of DFT functionals, namely, local density approximation, generalized gradient approximation (GGA), meta-GGA, and orbital-dependent hybrid functionals are compared against our quantum Monte Carlo (QMC) benchmarks. We identify several distinct transitions in the ground state of the system as the electronic occupation changes between delocalized and localized states. We examine the parameter space of realistic densities (1{open_square}r{sub s}{open_square}5) and moderate depths of the Gaussian impurity (Z<7). The selected 18-electron system (with closed-shell ground state) presents 1d{yields}2s transitions, while the 30-electron system (with open-shell ground state) exhibits 1f{yields}2p transitions. For the former system, the accuracy for the transitions is clearly improving with increasing sophistication of functionals with meta-GGA and hybrid functionals having only small deviations from QMC. However, for the latter system, we find much larger differences for the underlying transitions between our pool of DFT functionals and QMC. We attribute these failures to an insufficiently accurate treatment of exchange by these functionals. Additionally, we amplify the inhomogeneity effects by creating the system with spherical shell, which leads to even larger errors in DFT approximations.

  17. Energy benchmarks for methane-water systems from quantum Monte Carlo and second-order Møller-Plesset calculations

    SciTech Connect

    Gillan, M. J.; Alfè, D.; Manby, F. R.

    2015-09-14

    The quantum Monte Carlo (QMC) technique is used to generate accurate energy benchmarks for methane-water clusters containing a single methane monomer and up to 20 water monomers. The benchmarks for each type of cluster are computed for a set of geometries drawn from molecular dynamics simulations. The accuracy of QMC is expected to be comparable with that of coupled-cluster calculations, and this is confirmed by comparisons for the CH{sub 4}-H{sub 2}O dimer. The benchmarks are used to assess the accuracy of the second-order Møller-Plesset (MP2) approximation close to the complete basis-set limit. A recently developed embedded many-body technique is shown to give an efficient procedure for computing basis-set converged MP2 energies for the large clusters. It is found that MP2 values for the methane binding energies and the cohesive energies of the water clusters without methane are in close agreement with the QMC benchmarks, but the agreement is aided by partial cancelation between 2-body and beyond-2-body errors of MP2. The embedding approach allows MP2 to be applied without loss of accuracy to the methane hydrate crystal, and it is shown that the resulting methane binding energy and the cohesive energy of the water lattice agree almost exactly with recently reported QMC values.

  18. Computation of dynamical correlation functions for many-fermion systems with auxiliary-field quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2016-08-01

    We address the calculation of dynamical correlation functions for many fermion systems at zero temperature, using the auxiliary-field quantum Monte Carlo method. The two-dimensional Hubbard hamiltonian is used as a model system. Although most of the calculations performed here are for cases where the sign problem is absent, the discussions are kept general for applications to physical problems when the sign problem does arise. We study the use of twisted boundary conditions to improve the extrapolation of the results to the thermodynamic limit. A strategy is proposed to drastically reduce finite size effects relying on a minimization among the twist angles. This approach is demonstrated by computing the charge gap at half filling. We obtain accurate results showing the scaling of the gap with the interaction strength U in two dimensions, connecting to the scaling of the unrestricted Hartree-Fock method at small U and Bethe ansatz exact result in one dimension at large U . An alternative algorithm is then proposed to compute dynamical Green functions and correlation functions which explicitly varies the number of particles during the random walks in the manifold of Slater determinants. In dilute systems, such as ultracold Fermi gases, this algorithm enables calculations with much more favorable complexity, with computational cost proportional to basis size or the number of lattice sites.

  19. Quantum Monte Carlo analysis of a charge ordered insulating antiferromagnet: The Ti4O7 Magneli phase

    DOE PAGES

    Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T.; Zhong, Xiaoling; Kent, Paul R. C.; Heinonen, Olle

    2016-06-07

    The Magneli phase Ti4O7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low- lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate Quantum Monte Carlo methods. We compare our results to those obtained from density functional theory- based methods that include approximate corrections for exchange and correlation. Our resultsmore » confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. Here, a detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.« less

  20. Cohesive energy and structural parameters of binary oxides of groups IIA and IIIB from diffusion quantum Monte Carlo

    DOE PAGES

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R. C.; Reboredo, Fernando A.

    2016-05-03

    We have applied the diffusion quantum Monte Carlo (DMC) method to calculate the cohesive energy and the structural parameters of the binary oxides CaO, SrO, BaO, Sc2O3, Y2O3 and La2O3. The aim of our calculations is to systematically quantify the accuracy of the DMC method to study this type of metal oxides. The DMC results were compared with local and semi-local Density Functional Theory (DFT) approximations as well as with experimental measurements. The DMC method yields cohesive energies for these oxides with a mean absolute deviation from experimental measurements of 0.18(2) eV, while with local and semi-local DFT approximations themore » deviation is 3.06 and 0.94 eV, respectively. For lattice constants, the mean absolute deviation in DMC, local and semi-local DFT approximations, are 0.017(1), 0.07 and 0.05 , respectively. In conclusion, DMC is highly accurate method, outperforming the local and semi-local DFT approximations in describing the cohesive energies and structural parameters of these binary oxides.« less

  1. Quantum Monte Carlo analysis of a charge ordered insulating antiferromagnet: the Ti4O7 Magnéli phase.

    PubMed

    Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T; Zhong, Xiaoliang; Kent, Paul R C; Heinonen, Olle

    2016-07-21

    The Magnéli phase Ti4O7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low-lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate quantum Monte Carlo methods. We compare our results to those obtained from density functional theory-based methods that include approximate corrections for exchange and correlation. Our results confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. A detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps. PMID:27334262

  2. The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations

    SciTech Connect

    Sellier, J.M. Dimov, I.

    2014-09-15

    The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practically unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.

  3. Itinerant Ferromagnetism of a Repulsive Atomic Fermi Gas: A Quantum Monte Carlo Study

    SciTech Connect

    Pilati, S.; Troyer, M.; Bertaina, G.; Giorgini, S.

    2010-07-16

    We investigate the phase diagram of a two-component repulsive Fermi gas at T=0 by means of quantum Monte Carlo simulations. Both purely repulsive and resonant attractive model potentials are considered in order to analyze the limits of the universal regime where the details of interatomic forces can be neglected. The equation of state of both balanced and unbalanced systems is calculated as a function of the interaction strength and the critical density for the onset of ferromagnetism is determined. The energy of the strongly polarized gas is calculated and parametrized in terms of the physical properties of repulsive polarons, which are relevant for the stability of the fully ferromagnetic state. Finally, we analyze the phase diagram in the interaction-polarization plane under the assumption that only phases with homogeneous magnetization can be produced.

  4. Fundamental High-Pressure Calibration from All-Electron Quantum Monte Carlo Calculations

    SciTech Connect

    Esler, K. P.; Cohen, R. E.; Militzer, B.; Kim, Jeongnim; Needs, R. J.; Towler, M. D.

    2010-05-07

    We develop an all-electron quantum Monte Carlo (QMC) method for solids that does not rely on pseudopotentials, and use it to construct a primary ultra-high-pressure calibration based on the equation of state of cubic boron nitride. We compute the static contribution to the free energy with the QMC method and obtain the phonon contribution from density functional theory, yielding a high-accuracy calibration up to 900 GPa usable directly in experiment. We compute the anharmonic Raman frequency shift with QMC simulations as a function of pressure and temperature, allowing optical pressure calibration. In contrast to present experimental approaches, small systematic errors in the theoretical EOS do not increase with pressure, and no extrapolation is needed. This all-electron method is applicable to first-row solids, providing a new reference for ab initio calculations of solids and benchmarks for pseudopotential accuracy.

  5. An excited-state approach within full configuration interaction quantum Monte Carlo

    SciTech Connect

    Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali

    2015-10-07

    We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available.

  6. Many-body effects on graphene conductivity: Quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Boyda, D. L.; Braguta, V. V.; Katsnelson, M. I.; Ulybyshev, M. V.

    2016-08-01

    Optical conductivity of graphene is studied using quantum Monte Carlo calculations. We start from a Euclidean current-current correlator and extract σ (ω ) from Green-Kubo relations using the Backus-Gilbert method. Calculations were performed both for long-range interactions and taking into account only the contact term. In both cases we vary interaction strength and study its influence on optical conductivity. We compare our results with previous theoretical calculations choosing ω ≈κ , thus working in the region of the plateau in σ (ω ) which corresponds to optical conductivity of Dirac quasiparticles. No dependence of optical conductivity on interaction strength is observed unless we approach the antiferromagnetic phase transition in the case of an artificially enhanced contact term. Our results strongly support previous theoretical studies that claimed very weak regularization of graphene conductivity.

  7. Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application.

    PubMed

    Blunt, N S; Smart, Simon D; Kersten, J A F; Spencer, J S; Booth, George H; Alavi, Ali

    2015-05-14

    We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling, where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas to produce explicitly correlated corrected FCIQMC energies for the beryllium dimer, for which stochastic errors on the order of wavenumber accuracy are achievable. PMID:25978883

  8. Quantum Monte Carlo simulation of the ferroelectric or ferrielectric nanowire with core shell morphology

    NASA Astrophysics Data System (ADS)

    Feraoun, A.; Zaim, A.; Kerouad, M.

    2016-09-01

    By using the Quantum Monte Carlo simulation; the electric properties of a nanowire, consisting of a ferroelectric core of spin-1/2 surrounded by a ferroelectric shell of spin-1/2 with ferro- or anti-ferroelectric interfacial coupling have been studied within the framework of the Transverse Ising Model (TIM). We have examined the effects of the shell coupling Js, the interfacial coupling JInt, the transverse field Ω, and the temperature T on the hysteresis behavior and on the electric properties of the system. The remanent polarization and the coercive field as a function of the transverse field and the temperature are examined. A number of characteristic behavior have been found such as the appearance of triple hysteresis loops for appropriate values of the system parameters.

  9. Auxiliary-field based trial wave functions in quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Chen; Rubenstein, Brenda; Morales, Miguel

    We propose a simple scheme for generating correlated multi-determinant trial wave functions for quantum Monte Carlo algorithms. The method is based on the Hubbard-Stratonovich transformation which decouples a two-body Jastrow-type correlator into one-body projectors coupled to auxiliary fields. We apply the technique to generate stochastic representations of the Gutzwiller wave function, and present benchmark resuts for the ground state energy of the Hubbard model in one dimension. Extensions of the proposed scheme to chemical systems will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, 15-ERD-013.

  10. Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application

    SciTech Connect

    Blunt, N. S. Kersten, J. A. F.; Smart, Simon D.; Spencer, J. S.; Booth, George H.; Alavi, Ali

    2015-05-14

    We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling, where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas to produce explicitly correlated corrected FCIQMC energies for the beryllium dimer, for which stochastic errors on the order of wavenumber accuracy are achievable.

  11. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit

    NASA Astrophysics Data System (ADS)

    Dornheim, Tobias; Groth, Simon; Sjostrom, Travis; Malone, Fionn D.; Foulkes, W. M. C.; Bonitz, Michael

    2016-10-01

    We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N =1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy Fxc of the macroscopic electron gas with an unprecedented accuracy of |Δ V |/|V |,|Δ Fxc|/|F |xc˜10-3 . A comparison of our new data to the recent parametrization of Fxc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.

  12. Lazy skip-lists: An algorithm for fast hybridization-expansion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Sémon, P.; Yee, Chuck-Hou; Haule, Kristjan; Tremblay, A.-M. S.

    2014-08-01

    The solution of a generalized impurity model lies at the heart of electronic structure calculations with dynamical mean field theory. In the strongly correlated regime, the method of choice for solving the impurity model is the hybridization-expansion continuous-time quantum Monte Carlo (CT-HYB). Enhancements to the CT-HYB algorithm are critical for bringing new physical regimes within reach of current computational power. Taking advantage of the fact that the bottleneck in the algorithm is a product of hundreds of matrices, we present optimizations based on the introduction and combination of two concepts of more general applicability: (a) skip lists and (b) fast rejection of proposed configurations based on matrix bounds. Considering two very different test cases with d electrons, we find speedups of ˜25 up to ˜500 compared to the direct evaluation of the matrix product. Even larger speedups are likely with f electron systems and with clusters of correlated atoms.

  13. Quantum Monte Carlo Studies of Bulk and Few- or Single-Layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Baczewski, Andrew; Zhu, Zhen; Guan, Jie; Tomanek, David

    2015-03-01

    The electronic and optical properties of phosphorus depend strongly on the structural properties of the material. Given the limited experimental information on the structure of phosphorene, it is natural to turn to electronic structure calculations to provide this information. Unfortunately, given phosphorus' propensity to form layered structures bound by van der Waals interactions, standard density functional theory methods provide results of uncertain accuracy. Recently, it has been demonstrated that Quantum Monte Carlo (QMC) methods achieve high accuracy when applied to solids in which van der Waals forces play a significant role. In this talk, we will present QMC results from our recent calculations on black phosphorus, focusing on the structural and energetic properties of monolayers, bilayers and bulk structures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  14. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE PAGES

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  15. Ground-state properties of LiH by reptation quantum Monte Carlo methods.

    PubMed

    Ospadov, Egor; Oblinsky, Daniel G; Rothstein, Stuart M

    2011-05-01

    We apply reptation quantum Monte Carlo to calculate one- and two-electron properties for ground-state LiH, including all tensor components for static polarizabilities and hyperpolarizabilities to fourth-order in the field. The importance sampling is performed with a large (QZ4P) STO basis set single determinant, directly obtained from commercial software, without incurring the overhead of optimizing many-parameter Jastrow-type functions of the inter-electronic and internuclear distances. We present formulas for the electrical response properties free from the finite-field approximation, which can be problematic for the purposes of stochastic estimation. The α, γ, A and C polarizability values are reasonably consistent with recent determinations reported in the literature, where they exist. A sum rule is obeyed for components of the B tensor, but B(zz,zz) as well as β(zzz) differ from what was reported in the literature. PMID:21445452

  16. Linear-scaling evaluation of the local energy in quantum MonteCarlo

    SciTech Connect

    Austin, Brian; Aspuru-Guzik, Alan; Salomon-Ferrer, Romelia; Lester Jr., William A.

    2006-02-11

    For atomic and molecular quantum Monte Carlo calculations, most of the computational effort is spent in the evaluation of the local energy. We describe a scheme for reducing the computational cost of the evaluation of the Slater determinants and correlation function for the correlated molecular orbital (CMO) ansatz. A sparse representation of the Slater determinants makes possible efficient evaluation of molecular orbitals. A modification to the scaled distance function facilitates a linear scaling implementation of the Schmidt-Moskowitz-Boys-Handy (SMBH) correlation function that preserves the efficient matrix multiplication structure of the SMBH function. For the evaluation of the local energy, these two methods lead to asymptotic linear scaling with respect to the molecule size.

  17. Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Sorella, Sandro; Gillan, Michael J.; Michaelides, Angelos; Alfè, Dario

    2016-06-01

    Diffusion Monte Carlo (DMC) simulations for fermions are becoming the standard for providing high-quality reference data in systems that are too large to be investigated via quantum chemical approaches. DMC with the fixed-node approximation relies on modifications of the Green's function to avoid singularities near the nodal surface of the trial wave function. Here we show that these modifications affect the DMC energies in a way that is not size consistent, resulting in large time-step errors. Building on the modifications of Umrigar et al. and DePasquale et al. we propose a simple Green's function modification that restores size consistency to large values of the time step, which substantially reduces time-step errors. This algorithm also yields remarkable speedups of up to two orders of magnitude in the calculation of molecule-molecule binding energies and crystal cohesive energies, thus extending the horizons of what is possible with DMC.

  18. Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis

    NASA Astrophysics Data System (ADS)

    Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M.

    2016-07-01

    Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.

  19. One-dimensional multicomponent Fermi gas in a trap: quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Matveeva, N.; Astrakharchik, G. E.

    2016-06-01

    A one-dimensional world is very unusual as there is an interplay between quantum statistics and geometry, and a strong short-range repulsion between atoms mimics Fermi exclusion principle, fermionizing the system. Instead, a system with a large number of components with a single atom in each, on the opposite acquires many bosonic properties. We study the ground-state properties of a multicomponent repulsive Fermi gas trapped in a harmonic trap by a fixed-node diffusion Monte Carlo method. The interaction between all components is considered to be the same. We investigate how the energetic properties (energy, contact) and correlation functions (density profile and momentum distribution) evolve as the number of components is changed. It is shown that the system fermionizes in the limit of strong interactions. Analytical expressions are derived in the limit of weak interactions within the local density approximation for an arbitrary number of components and for one plus one particle using an exact solution.

  20. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo.

    PubMed

    Filippi, Claudia; Assaraf, Roland; Moroni, Saverio

    2016-05-21

    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, in both all-electron and pseudopotential calculations. PMID:27208934

  1. Quantum Monte Carlo study of the reaction: C1 + CH3OH -->CH2OH+ HCl

    SciTech Connect

    Kollias, A.C.; Couronne, O.; Lester Jr., W.A.

    2003-12-01

    A theoretical study is reported of the Cl + CH{sub 3}OH {yields} CH{sub 2}OH + HCl reaction based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using a DMC trial function constructed as a product of Hartree-Fock and correlation functions, we have computed the barrier height, heat of reaction, atomization energies and heats of formation of reagents and products. The DMC heat of reaction, atomization energies, and heats of formation are found to agree with experiment to within the error bounds of computation and experiment. Moller-Plesset second order perturbation theory (MP2) and density functional theory, the latter in the B3LYP generalized gradient approximation, are found to overestimate the experimental heat of reaction. Intrinsic reaction coordinate calculations at the MP2 level of theory demonstrate that the reaction is predominantly direct, i.e., proceeds without formation of intermediates, which is consistent with a recent molecular beam experiment. The reaction barrier as determined from MP2 calculations is found to be 2.24 kcal/mol and by DMC it is computed to be 2.39(49) kcal/mol.

  2. Auxiliary-field quantum Monte Carlo simulations of neutron matter in chiral effective field theory.

    PubMed

    Wlazłowski, G; Holt, J W; Moroz, S; Bulgac, A; Roche, K J

    2014-10-31

    We present variational Monte Carlo calculations of the neutron matter equation of state using chiral nuclear forces. The ground-state wave function of neutron matter, containing nonperturbative many-body correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to about 340 neutrons interacting on a 10(3) discretized lattice. The evolution Hamiltonian is chosen to be attractive and spin independent in order to avoid the fermion sign problem and is constructed to best reproduce broad features of the chiral nuclear force. This is facilitated by choosing a lattice spacing of 1.5 fm, corresponding to a momentum-space cutoff of Λ=414  MeV/c, a resolution scale at which strongly repulsive features of nuclear two-body forces are suppressed. Differences between the evolution potential and the full chiral nuclear interaction (Entem and Machleidt Λ=414  MeV [L. Coraggio et al., Phys. Rev. C 87, 014322 (2013).

  3. State-of-the-art molecular applications of full configuration interaction quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Thomas, Robert; Overy, Catherine; Shepherd, James; Booth, George; Alavi, Ali

    2013-03-01

    Full configuration interaction quantum Monte Carlo (FCIQMC)1 and its initiator adaptation (i-FCIQMC)2 provide, in principle, exact (FCI) energies via a population dynamics algorithm of an ensemble of discrete, signed walkers in Slater-determinant space. We demonstrate that a novel choice of reference state has the potential to widen the scope of this already versatile method, and corroborate the finding that an extension of the algorithm to allow non-integer walkers can yield significantly reduced stochastic error without a commensurate increase in computational cost3. New applications of FCIQMC to transition-metal systems of general and biological interest are presented, many of which have, to date, posed serious challenges for traditional quantum chemical methods 45. 1 G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys., 131, 054106 (2009) 2 D. M. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys., 132, 041103 (2010) 3 F. R. Petruzielo, A. A. Holmes, H. J. Changlani, M. P. Nightingale and C. J. Umrigar, arXiv:1207.6138 4 N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 125, 074110 (2006) 5 C. J. Cramer, M. Wloch, P. Piecuch, C. Puzzarini and L. Gagliardi, J. Phys. Chem. A, 110, 1991 (2006)

  4. Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data

    NASA Astrophysics Data System (ADS)

    Jarrell, Mark; Gubernatis, J. E.

    1996-05-01

    We present a way to use Bayesian statistical inference and the principle of maximum entropy to analytically continue imaginary-time quantum Monte Carlo data. We supply the details that are lacking in the seminal literature but are important for the motivated reader to understand the assumptions and approximations embodied in these methods. First, we summarize the general relations between quantum correlation functions and spectral densities. We then review the basic principles, formalism, and philosophy of Bayesian inference and discuss the application of this approach in the context of the analytic continuation problem. Next, we present a detailed case study for the symmetric, infinite-dimension Anderson Hamiltonian. We chose this Hamiltonian because the qualitative features of its spectral density are well established and because a particularly convenient algorithm exists to produce the imaginary-time Green's function data. Shown are all the intermediate steps of data and solution qualification. The importance of careful data preparation and error propagation in the analytic continuation is discussed in the context of this example. Then, we review the different physical systems and physical quantities to which these, or related, procedures have been applied. Finally, we describe other features concerning the application of our methods, their possible improvement, and areas for additional study.

  5. Use of the Sumudu transform to extract response functions from Quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Pederiva, Francesco; Roggero, Alessandro; Orlandini, Giuseppina

    2014-07-01

    We review an ab-initio method for calculating the dynamical structure function of an interacting many-body quantum system. The method consists in coupling a generalized integral transform approach with imaginary time Quantum Monte Carlo calculations. The strength of the method has been tested on the excitation spectrum of bulk atomic 4He. The peculiar form of the kernel as a representation of the delta-function has allowed to minimize the ill-posedness of the integral transform inversion. In fact it has been possible to obtain, at a considerable degree of reliability, both position and width of the collective excitations in the maxon-roton region, as well as the second collective peak. What we stress here is the ability of such a 4-function-like kernel, for which one can control position and width, to maintain in the transformed space the characteristics of the collective structures. The application to the coherent and incoherent density excitation spectrum of liquid 4He is discussed.

  6. An accurate quantum expression of the z-dipole matrix element between nearby Rydberg parabolic states and the correspondence principle

    NASA Astrophysics Data System (ADS)

    Dewangan, D. P.

    2008-01-01

    We give an exact quantum formula for the z-component of the dipole matrix element between parabolic states of a hydrogen atom in terms of the Jacobi polynomials. The formula extends the range of numerical computation to larger values of the parabolic quantum numbers for which computation from the standard textbook formula, which is in terms of the hypergeometric functions, is defined. We obtain an accurate quantum expression of the z-dipole matrix element in terms of the ordinary Bessel functions for transition between nearby Rydberg parabolic states. We derive for the first time the formula of the z-dipole matrix element of the correspondence principle method directly from the quantum expression, and in the process of derivation, clarify the nature of classical-quantum correspondence. The expressions obtained in this work solve the problem of computation of the z-dipole matrix element of hydrogen to a large extent.

  7. A quantum accurate waveform synthesizer as a voltage reference for an electronic primary thermometer

    NASA Astrophysics Data System (ADS)

    Pollarolo, Alessio; Benz, Samuel; Rogalla, Horst; Dresselhaus, Paul

    2014-03-01

    We are using a quantum voltage noise source (QVNS) for use as an intrinsically accurate voltage reference for a new type of electronic temperature standard. In Johnson Noise Thermometry (JNT) the noise of a resistor is used to measure temperature or Boltzmann's constant k, because the Nyquist equation =4kTR Δf shows that the power spectral density is proportional to k, temperature T, resistance R and measurement bandwidth Δf . The QVNS is a digital to analog converter used to synthesize a voltage waveform that resembles pseudo-random noise comparable in amplitude to the resistor noise. The signal generated is a frequency comb of harmonics tones that are equally spaced in frequency, all having identical amplitudes but random phases. The QVNS is an array superconducting Josephson junctions that are biased with a pulsed waveform clocked at 10 GHz. The accuracy of the voltage waveform derives from the identical voltage pulses produced by each junction that are perfectly quantized because their time-integrals are always equal to flux quantum h/2 e. The time-dependent output voltage waveform is determined by the number of pulses and their density in time. The measurement electronics exploits cross-correlation techniques to reduce the uncorrelated measurement noise so as to reveal the resistor noise, both of which are on the order of 2 nV/ √Hz. With this technique we have measured k with an uncertainty of about one part in 105, which we hope to improve by another order of magnitude with further research.

  8. Communication: Toward an improved control of the fixed-node error in quantum Monte Carlo: The case of the water molecule.

    PubMed

    Caffarel, Michel; Applencourt, Thomas; Giner, Emmanuel; Scemama, Anthony

    2016-04-21

    All-electron Fixed-node DiffusionMonte Carlo calculations for the nonrelativistic ground-state energy of the water molecule at equilibrium geometry are presented. The determinantal part of the trial wavefunction is obtained from a selected Configuration Interaction calculation[Configuration Interaction using a Perturbative Selection done Iteratively (CIPSI) method] including up to about 1.4 × 10(6) of determinants. Calculations are made using the cc-pCVnZ family of basis sets, with n = 2 to 5. In contrast with most quantum Monte Carlo works no re-optimization of the determinantal part in presence of a Jastrow is performed. For the largest cc-pCV5Z basis set the lowest upper bound for the ground-state energy reported so far of -76.437 44(18) is obtained. The fixed-node energy is found to decrease regularly as a function of the cardinal numbern and the Complete Basis Set limit associated with exact nodes is easily extracted. The resulting energy of -76.438 94(12) - in perfect agreement with the best experimentally derived value - is the most accurate theoretical estimate reported so far. We emphasize that employing selected configuration interactionnodes of increasing quality in a given family of basis sets may represent a simple, deterministic, reproducible, and systematic way of controlling the fixed-node error in diffusionMonte Carlo.

  9. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    SciTech Connect

    Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  10. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  11. Automated generation of quantum-accurate classical interatomic potentials for metals and semiconductors

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan; Foiles, Stephen; Schultz, Peter; Swiler, Laura; Trott, Christian; Tucker, Garritt

    2013-03-01

    Molecular dynamics (MD) is a powerful condensed matter simulation tool for bridging between macroscopic continuum models and quantum models (QM) treating a few hundred atoms, but is limited by the accuracy of available interatomic potentials. Sound physical and chemical understanding of these interactions have resulted in a variety of concise potentials for certain systems, but it is difficult to extend them to new materials and properties. The growing availability of large QM data sets has made it possible to use more automated machine-learning approaches. Bartók et al. demonstrated that the bispectrum of the local neighbor density provides good regression surrogates for QM models. We adopt a similar bispectrum representation within a linear regression scheme. We have produced potentials for silicon and tantalum, and we are currently extending the method to III-V compounds. Results will be presented demonstrating the accuracy of these potentials relative to the training data, as well as their ability to accurately predict material properties not explicitly included in the training data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy Nat. Nuclear Security Admin. under Contract DE-AC04-94AL85000.

  12. Speeding Up and Quantifying Approximation Error in Continuum Quantum Monte Carlo Solid-State Calculations

    NASA Astrophysics Data System (ADS)

    Parker, William David

    Quantum theory has successfully explained the mechanics of much of the microscopic world. However, Schrodinger's equations are difficult to solve for many-particle systems. Mean-field theories such as Hartree-Fock and density functional theory account for much of the total energy of electronic systems but fail on the crucial correlation energy that predicts solid cohesion and material properties. Monte Carlo methods solve differential and integral equations with error independent of the number of dimensions in the problem. Variational Monte Carlo (VMC) applies the variational principle to optimize the wave function used in the Monte Carlo integration of Schrodinger's time-independent equation. Diffusion Monte Carlo (DMC) represents the wave function by electron configurations diffusing stochastically in imaginary time to the ground state. Approximations in VMC and DMC make the problem tractable but introduce error in parameter-controlled and uncontrolled ways. The many-electron wave function consists of single-particle orbitals. The orbitals are combined in a functional form to account for electron exchange and correlation. Plane waves are a convenient basis for the orbitals. However, plane-wave orbitals grow in evaluation cost with basis-set completeness and system size. To speed up the calculation, polynomials approximate the plane-wave sum. Four polynomial methods tested are: Lagrange interpolation, pp-spline interpolation, B-spline interpolation and B-spline approximation. The polynomials all increase speed by an order of the number of particles. B-spline approximation most consistently maintains accuracy in the seven systems tested. However, polynomials increase the memory needed by a factor of two to eight. B-spline approximation with a separate approximation for the Laplacian of the orbitals increases the memory by a factor of four over plane waves. Polynomial-based orbitals enable larger calculations and careful examination of error introduced by

  13. Quantum Monte Carlo calculation of the binding energy of the beryllium dimer

    SciTech Connect

    Deible, Michael J.; Kessler, Melody; Gasperich, Kevin E.; Jordan, Kenneth D.

    2015-08-28

    The accurate calculation of the binding energy of the beryllium dimer is a challenging theoretical problem. In this study, the binding energy of Be{sub 2} is calculated using the diffusion Monte Carlo (DMC) method, using single Slater determinant and multiconfigurational trial functions. DMC calculations using single-determinant trial wave functions of orbitals obtained from density functional theory calculations overestimate the binding energy, while DMC calculations using Hartree-Fock or CAS(4,8), complete active space trial functions significantly underestimate the binding energy. In order to obtain an accurate value of the binding energy of Be{sub 2} from DMC calculations, it is necessary to employ trial functions that include excitations outside the valence space. Our best estimate DMC result for the binding energy of Be{sub 2}, obtained by using configuration interaction trial functions and extrapolating in the threshold for the configurations retained in the trial function, is 908 cm{sup −1}, only slightly below the 935 cm{sup −1} value derived from experiment.

  14. Retrodictive derivation of the radical-ion-pair master equation and Monte Carlo simulation with single-molecule quantum trajectories.

    PubMed

    Kritsotakis, M; Kominis, I K

    2014-10-01

    Radical-ion-pair reactions, central in photosynthesis and the avian magnetic compass mechanism, have been recently shown to be a paradigm system for applying quantum information science in a biochemical setting. The fundamental quantum master equation describing radical-ion-pair reactions is still under debate. Here we use quantum retrodiction to formally refine the theory put forward in the paper by Kominis [I. K. Kominis, Phys. Rev. E 83, 056118 (2011)]. We also provide a rigorous analysis of the measure of singlet-triplet coherence required for deriving the radical-pair master equation. A Monte Carlo simulation with single-molecule quantum trajectories supports the self-consistency of our approach. PMID:25375535

  15. Retrodictive derivation of the radical-ion-pair master equation and Monte Carlo simulation with single-molecule quantum trajectories

    NASA Astrophysics Data System (ADS)

    Kritsotakis, M.; Kominis, I. K.

    2014-10-01

    Radical-ion-pair reactions, central in photosynthesis and the avian magnetic compass mechanism, have been recently shown to be a paradigm system for applying quantum information science in a biochemical setting. The fundamental quantum master equation describing radical-ion-pair reactions is still under debate. Here we use quantum retrodiction to formally refine the theory put forward in the paper by Kominis [I. K. Kominis, Phys. Rev. E 83, 056118 (2011), 10.1103/PhysRevE.83.056118]. We also provide a rigorous analysis of the measure of singlet-triplet coherence required for deriving the radical-pair master equation. A Monte Carlo simulation with single-molecule quantum trajectories supports the self-consistency of our approach.

  16. Convergence of the variational parameter without convergence of the energy in Quantum Monte Carlo (QMC) calculations using the Stochastic Gradient Approximation

    NASA Astrophysics Data System (ADS)

    Nissenbaum, Daniel; Lin, Hsin; Barbiellini, Bernardo; Bansil, Arun

    2009-03-01

    To study the performance of the Stochastic Gradient Approximation (SGA) for variational Quantum Monte Carlo methods, we have considered lithium nano-clusters [1] described by Hartree-Fock wavefunctions multiplied by two-body Jastrow factors with a single variational parameter b. Even when the system size increases, we have shown the feasibility of obtaining an accurate value of b that minimizes the energy without an explicit calculation of the energy itself. The present SGA algorithm is so efficient because an analytic gradient formula is used and because the statistical noise in the gradient is smaller than in the energy [2]. Interestingly, in this scheme the absolute value of the gradient is less important than the sign of the gradient. Work supported in part by U.S. DOE. [1] D. Nissenbaum et al., Phys. Rev. B 76, 033412 (2007). [2] A. Harju, J. Low. Temp. Phys. 140, 181 (2005).

  17. Accurate determination of the Gibbs energy of Cu-Zr melts using the thermodynamic integration method in Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Harvey, J.-P.; Gheribi, A. E.; Chartrand, P.

    2011-08-01

    The design of multicomponent alloys used in different applications based on specific thermo-physical properties determined experimentally or predicted from theoretical calculations is of major importance in many engineering applications. A procedure based on Monte Carlo simulations (MCS) and the thermodynamic integration (TI) method to improve the quality of the predicted thermodynamic properties calculated from classical thermodynamic calculations is presented in this study. The Gibbs energy function of the liquid phase of the Cu-Zr system at 1800 K has been determined based on this approach. The internal structure of Cu-Zr melts and amorphous alloys at different temperatures, as well as other physical properties were also obtained from MCS in which the phase trajectory was modeled by the modified embedded atom model formalism. A rigorous comparison between available experimental data and simulated thermo-physical properties obtained from our MCS is presented in this work. The modified quasichemical model in the pair approximation was parameterized using the internal structure data obtained from our MCS and the precise Gibbs energy function calculated at 1800 K from the TI method. The predicted activity of copper in Cu-Zr melts at 1499 K obtained from our thermodynamic optimization was corroborated by experimental data found in the literature. The validity of the amplitude of the entropy of mixing obtained from the in silico procedure presented in this work was analyzed based on the thermodynamic description of hard sphere mixtures.

  18. Study of Atoms and Molecules with Auxiliary-Field Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Purwanto, Wirawan; Suewattana, Malliga; Krakauer, Henry; Zhang, Shiwei; Walter, Eric J.

    2006-03-01

    We study the ground-state properties of second-row atoms and molecules using the phaseless auxiliary-field quantum Monte Carlo (AF QMC) method. This method projects the many-body ground state from a trial wave function by means of random walks in the Slater-determinant space. We use a single Slater-determinant trial wave function obtained from density-functional theory (DFT) or Hartree-Fock (HF) calculations. The calculations were done with a plane-wave basis and supercells with periodic boundary condition. We investigate the finite-size effects and the accuracy of pseudopotentials within DFT, HF, and AF QMC frameworks. Pseudopotentials generated from both LDA (OPIUM) and HF are employed. We find that the many-body QMC calculations show a greater sensitivity to the accuracy of the pseudopotentials. With reliable pseudopotentials, the ionization potentials and dissociation energies obtained using AF QMC are in excellent agreement with the experimental results. S. Zhang and H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003) http://opium.sourceforge.net I. Ovcharenko, A. Aspuru-Guzik, and W. A. Lester, J. Chem. Phys. 114, 7790 (2001)

  19. Quantum Monte Carlo calculation of the singlet--triplet splitting in methylene

    SciTech Connect

    Reynolds, P.J.; Dupuis, M.; Lester W.A. Jr.

    1985-02-15

    The fixed-node quantum Monte Carlo (QMC) method is used to calculate the total energy of CH/sub 2/ in the /sup 3/B/sub 1/ and /sup 1/A/sub 1/ states. For both states, the best QMC variationally bounded energies lie more than 15 kcal/mol (0.024 h) below the best previous variational calculations. Subtracting these energies to obtain the singlet--triplet splitting yields T/sub e/ = 9.4 +- 2.2 kcal/mol. Adjusting for zero-point energies and relativistic effects, we obtain T/sub 0/ = 8.9 +- 2.2 kcal/mol. This result is in excellent agreement with the recent direct measurements of McKellar et al. of T/sub 0/ = 9.05 +- 0.06 kcal/mol, and of Leopold et al. of approx.9 kcal/mol, as well as with recent threoretical investigations which indicate an energy gap of 9--11 kcal/mol. We summarize the QMC method, discuss a possible scheme for iteratively correcting the procedure, and note that the present results were obtained using only single determinant functions for both states, in contrast to conventional ab initio approaches which must use at least two configurations to properly describe the singlet state.

  20. Quantum Monte Carlo for large chemical systems: implementing efficient strategies for petascale platforms and beyond.

    PubMed

    Scemama, Anthony; Caffarel, Michel; Oseret, Emmanuel; Jalby, William

    2013-04-30

    Various strategies to implement efficiently quantum Monte Carlo (QMC) simulations for large chemical systems are presented. These include: (i) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), (ii) the possibility of keeping the memory footprint minimal, (iii) the important enhancement of single-core performance when efficient optimization tools are used, and (iv) the definition of a universal, dynamic, fault-tolerant, and load-balanced framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC=Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056, and 1731 electrons). Using 10-80 k computing cores of the Curie machine (GENCI-TGCC-CEA, France), QMC=Chem has been shown to be capable of running at the petascale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exascale platforms with a comparable level of efficiency is expected to be feasible.

  1. Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics.

    PubMed

    Hanada, Masanori; Miwa, Akitsugu; Nishimura, Jun; Takeuchi, Shingo

    2009-05-01

    In the string-gauge duality it is important to understand how the space-time geometry is encoded in gauge theory observables. We address this issue in the case of the D0-brane system at finite temperature T. Based on the duality, the temporal Wilson loop W in gauge theory is expected to contain the information of the Schwarzschild radius RSch of the dual black hole geometry as log(W)=RSch/(2pialpha'T). This translates to the power-law behavior log(W)=1.89(T/lambda 1/3)-3/5, where lambda is the 't Hooft coupling constant. We calculate the Wilson loop on the gauge theory side in the strongly coupled regime by performing Monte Carlo simulations of supersymmetric matrix quantum mechanics with 16 supercharges. The results reproduce the expected power-law behavior up to a constant shift, which is explainable as alpha' corrections on the gravity side. Our conclusion also demonstrates manifestly the fuzzball picture of black holes. PMID:19518857

  2. Quantum monte carlo study of the energetics of small hydrogenated and fluoride lithium clusters.

    PubMed

    Moreira, N L; Brito, B G A; Rabelo, J N Teixeira; Cândido, Ladir

    2016-06-30

    An investigation of the energetics of small lithium clusters doped either with a hydrogen or with a fluorine atom as a function of the number of lithium atoms using fixed-node diffusion quantum Monte Carlo (DMC) simulation is reported. It is found that the binding energy (BE) for the doped clusters increases in absolute values leading to a more stable system than for the pure ones in excellent agreement with available experimental measurements. The BE increases for pure, remains almost constant for hydrogenated, and decreases rapidly toward the bulk lithium for the fluoride as a function of the number of lithium atoms in the clusters. The BE, dissociation energy as well as the second difference in energy display a pronounced odd-even oscillation with the number of lithium atoms. The electron correlation inverts the odd-even oscillation pattern for the doped in comparison with the pure clusters and has an impact of 29%-83% to the BE being higher in the pure cluster followed by the hydrogenated and then by the fluoride. The dissociation energy and the second difference in energy indicate that the doped cluster Li3 H is the most stable whereas among the pure ones the more stable are Li2 , Li4 , and Li6 . The electron correlation energy is crucial for the stabilization of Li3 H. © 2016 Wiley Periodicals, Inc. PMID:26992447

  3. Quantum Monte Carlo simulations of Ti4 O7 Magnéli phase

    NASA Astrophysics Data System (ADS)

    Benali, Anouar; Shulenburger, Luke; Krogel, Jaron; Zhong, Xiaoliang; Kent, Paul; Heinonen, Olle

    2015-03-01

    Ti4O7 is ubiquitous in Ti-oxides. It has been extensively studied, both experimentally and theoretically in the past decades using multiple levels of theories, resulting in multiple diverse results. The latest DFT +SIC methods and state of the art HSE06 hybrid functionals even propose a new anti-ferromagnetic state at low temperature. Using Quantum Monte Carlo (QMC), as implemented in the QMCPACK simulation package, we investigated the electronic and magnetic properties of Ti4O7 at low (120K) and high (298K) temperatures and at different magnetic states. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. L.S, J.K and P.K were supported through Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE) Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  4. Frozen-Orbital and Downfolding Calculations with Auxiliary-Field Quantum Monte Carlo.

    PubMed

    Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry

    2013-11-12

    We describe the implementation of the frozen-orbital and downfolding approximations in the auxiliary-field quantum Monte Carlo (AFQMC) method. These approaches can provide significant computational savings, compared to fully correlating all of the electrons. While the many-body wave function is never explicit in AFQMC, its random walkers are Slater determinants, whose orbitals may be expressed in terms of any one-particle orbital basis. It is therefore straightforward to partition the full N-particle Hilbert space into active and inactive parts to implement the frozen-orbital method. In the frozen-core approximation, for example, the core electrons can be eliminated in the correlated part of the calculations, greatly increasing the computational efficiency, especially for heavy atoms. Scalar relativistic effects are easily included using the Douglas-Kroll-Hess theory. Using this method, we obtain a way to effectively eliminate the error due to single-projector, norm-conserving pseudopotentials in AFQMC. We also illustrate a generalization of the frozen-orbital approach that downfolds high-energy basis states to a physically relevant low-energy sector, which allows a systematic approach to produce realistic model Hamiltonians to further increase efficiency for extended systems.

  5. Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo

    SciTech Connect

    Thomas, Robert E.; Overy, Catherine; Opalka, Daniel; Alavi, Ali; Knowles, Peter J.; Booth, George H.

    2015-08-07

    Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation.

  6. Quantum Monte Carlo Method for Heavy Atomic and Molecular Systems with Spin-Orbit Interactions

    NASA Astrophysics Data System (ADS)

    Melton, Cody; Mitas, Lubos

    We present a new quantum Monte Carlo (QMC) method that can treat spin-orbit and other types of spin-depentent interactions explicitly. It is based on generalization of the fixed-phase and projection of the nonlocal operators with spinor trial wave functions. For testing the method we calculate several atomic and molecular systems such as Bi, W, Pb, PbH and PbO, some of them with both large- and small-core pseudopotentials. We validate the quality of the results against other correlated methods such as configuration interaction in two-component formalism. We find excellent agreement with extrapolated values for the total energies and we are able to reliably reproduce experimental values of excitation energies, electron affinity and molecular binding. We show that in order to obtain the agreement with experimental values the explicit inclusion of the spin-orbit interactions is crucial. U.S. D.O.E. grant de-sc0012314 and NERSC Contract No. DE-AC02-05CH11231.

  7. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    DOE PAGES

    Kung, Y. F.; Chen, C. -C.; Wang, Yao; Huang, E. W.; Nowadnick, E. A.; Moritz, B.; Scalettar, R. T.; Johnston, S.; Devereaux, T. P.

    2016-04-29

    Here, we characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understandingmore » of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less

  8. Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations

    SciTech Connect

    Kelly, Aaron; Markland, Thomas E.; Brackbill, Nora

    2015-03-07

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  9. Accurate nonadiabatic quantum dynamics on the cheap: making the most of mean field theory with master equations.

    PubMed

    Kelly, Aaron; Brackbill, Nora; Markland, Thomas E

    2015-03-01

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  10. Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30.

    PubMed

    Adidharma, Hertanto; Tan, Sugata P

    2016-07-01

    Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T(∗) ≤ 1.20) and high densities (0.96 ≤ ρ(∗) ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe the properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.

  11. Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30

    NASA Astrophysics Data System (ADS)

    Adidharma, Hertanto; Tan, Sugata P.

    2016-07-01

    Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T∗ ≤ 1.20) and high densities (0.96 ≤ ρ∗ ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe the properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.

  12. Accurate heteronuclear J-coupling measurements in dilute spin systems using the multiple-quantum filtered J-resolved experiment.

    PubMed

    Martineau, Charlotte; Fayon, Franck; Legein, Christophe; Buzaré, Jean-Yves; Silly, Gilles; Massiot, Dominique

    2007-07-14

    A new solid-state MAS NMR experiment is proposed to accurately measure heteronuclear (19)F-(207)Pb J-coupling constants, even though these couplings are not visible on high speed (19)F 1D MAS spectra; in particular, we demonstrate that the J-resolved experiment combined with scalar multiple-quantum filtering considerably improves the resolution of J-multiplet patterns for dilute spin systems. PMID:17594032

  13. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    NASA Astrophysics Data System (ADS)

    Floris, Franca Maria; Filippi, Claudia; Amovilli, Claudio

    2014-01-01

    We investigate here the vertical n → π* and π → π* transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π* case and also improve considerably the shift for the π → π* transition.

  14. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water

    SciTech Connect

    Floris, Franca Maria Amovilli, Claudio; Filippi, Claudia

    2014-01-21

    We investigate here the vertical n → π{sup *} and π → π{sup *} transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π{sup *} case and also improve considerably the shift for the π → π{sup *} transition.

  15. Monte Carlo-quantum mechanics study of magnetic properties of hydrogen peroxide in liquid water.

    PubMed

    Caputo, María Cristina; Provasi, Patricio F; Benitez, Lucía; Georg, Herbert C; Canuto, Sylvio; Coutinho, Kaline

    2014-08-14

    A theoretical study of magnetic properties of hydrogen peroxide in water has been carried out by means of Monte Carlo simulation and quantum mechanics calculations. The solvent effects were evaluated in supermolecular structures generated by simulations in the NPT ensemble. The solute-solvent structure was analyzed in terms of radial distribution functions, and the solute-solvent hydrogen bonds were identified with geometric and energetic criteria. Approximately three water molecules are hydrogen bonded to H2O2 (0.6 and 0.8 in each hydrogen and oxygen atom, respectively, of the H2O2). Although, on average, both hydroxyls of the peroxide are equivalent, the distribution of hydrogen-bonded water molecules is highly asymmetric. Analyzing the statistics of the hydrogen bonds, we identify that only 34% of the configurations give symmetric distributions around the two hydroxyls of the H2O2 simultaneously. The magnetic shieldings and the indirect spin-spin coupling constants were calculated at the B3LYP/aug-cc-pVTZ and aug-cc-pVTZ-J computational level. We find that the solvent shields the oxygen and unshields the hydrogen atoms of the peroxide (+5.5 and -2.9 ppm, respectively), with large fluctuation from configuration to configuration in the oxygen case, an effect largely accounted for in terms of a single hydrogen bond with H2O2 as the proton donor. The most sensitive coupling in the presence of the solvent is observed to be the one-bond J(O,H).

  16. Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: acrolein in water.

    PubMed

    Floris, Franca Maria; Filippi, Claudia; Amovilli, Claudio

    2014-01-21

    We investigate here the vertical n → π(*) and π → π(*) transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π(*) case and also improve considerably the shift for the π → π(*) transition.

  17. Creation of a GUI for Zori, a Quantum Monte Carlo program, usingRappture

    SciTech Connect

    Olivares-Amaya, R.; Salomon Ferrer, R.; Lester Jr., W.A.; Amador-Bedolla, C.

    2007-12-01

    In their research laboratories, academic institutions produce some of the most advanced software for scientific applications. However, this software is usually developed only for local application in the research laboratory or for method development. In spite of having the latest advances in the particular field of science, such software often lacks adequate documentation and therefore is difficult to use by anyone other than the code developers. As such codes become more complex, so typically do the input files and command statements necessary to operate them. Many programs offer the flexibility of performing calculations based on different methods that have their own set of variables and options to be specified. Moreover, situations can arise in which certain options are incompatible with each other. For this reason, users outside the development group can be unaware of how the program runs in detail. The opportunity can be lost to make the software readily available outside of the laboratory of origin. This is a long-standing problem in scientific programming. Rappture, Rapid Application Infrastructure [1], is a new GUI development kit that enables a developer to build an I/O interface for a specific application. This capability enables users to work only with the generated GUI and avoids the problem of the user needing to learn details of the code. Further, it reduces input errors by explicitly specifying the variables required. Zori, a quantum Monte Carlo (QMC) program, developed by the Lester group at the University of California, Berkeley [2], is one of the few free tools available for this field. Like many scientific computer packages, Zori suffers from the problems described above. Potential users outside the research group have acquired it, but some have found the code difficult to use. Furthermore, new members of the Lester group usually have to take considerable time learning all the options the code has to offer before they can use it successfully. In

  18. Quantum Monte Carlo Simulation of Vibrational Frequency Shifts of CO in Solid para-HYDROGEN

    NASA Astrophysics Data System (ADS)

    Wang, Lecheng; Le Roy, Robert; Roy, Pierre-Nicholas

    2014-06-01

    Stimulated by Fajardo's remarkable study of the rovibrational spectra of CO isotopologues trapped in solid para-hydrogen, we have performed quantum Monte Carlo simulations to predict his observed vibrational frequency shifts and inertial rotational constants using 2-body potentials based on the best available models for the pH_2-pH_2 and CO-pH_2, potential energy functions. We started by fitting an analytic `Morse/Long-Range' (MLR) function to the 1D ``adiabaic hindered rotor" version of Hinde's 5D pH_2-pH_2 potential developed by Faruk et al. We then modified it to take account of many-body effects by scaling it until it yielded the correct equilibrium lattice parameters for the fcc and hcp structures of pure solid para-hydrogen. A CO molecule was then placed at different interstitial or substitution sites in large equilibrated fcc or hcp para-hydrogen lattices, and the structural and dynamical behaviors of the micro-solvation environment around CO were simulated with a PIMC algorithm using a 2D effective pH_2-CO potential based on the 5D H_2--CO potential energy surface recently reported by Li et al., with a lattice sum of values of the 2D CO vibrational difference potential being use to predict the vibrational frequency shift. The effective rotational constants Beff for CO in different solid para-hydrogen structures were also calculated and compared with the experimental observations and with predicted Beff values for CO in large-sized para-hydrogen--CO clusters. M. E. Fajardo, J. Phys. Chem. A 117, 13504 (2013). R. Hinde, J. Chem. Phys., 128, 154308 (2008). H. Li, X-L. Zhang, R.J. Le Roy, and P.-N. Roy, J. Chem. Phys. 139, 164315 (2013). R.J. Le Roy, C.C. Haugen, J. Tao and Hui Li, Mol. Phys., 109, 435 (2011) N. Faruk, R.J. Le Roy, and P.-N. Roy, J. Chem. Phys. (submitted December 2013). Y. Mizumoto and Y. Ohtsuki, Chem. Phys. Lett. 501, 304 (2011).

  19. Binding and Diffusion of Lithium in Graphite: Quantum Monte-Carlo benchmarks and validation of van der Waals density functional methods

    NASA Astrophysics Data System (ADS)

    Kent, Paul; Ganesh, Panchapakesan; Yoon, Mina; Kim, Jeongnim; Reboredo, Fernando

    2013-03-01

    Benchmark diffusion quantum monte-carlo (DMC) studies of the adsorption and diffusion of atomic lithium in graphite are compared with density functional theory (DFT) calculations using several van der Waals methods. The charge transfer is captured adequately with conventional local density functionals. At fixed geometries, these yield surprisingly accurate energetics. In unconstrained geometries, van der Waals corrections are required to correctly reproduce graphite and lithium binding. We find that the empirical method of Grimme et al. only gives correct diffusion barriers when the Li polarizability is reduced to nearly zero, consistent with the charge transfer in the solid-state environment. The Tkatchenko-Scheffler scheme captures the polarizability reduction, yielding accurate results at low computational cost. The self-consistent vdw-DF2 functional yields the best overall results but at increased cost. Slight differences in barrier heights remain with all the DFT approaches compared to the DMC. These results establish a hierarchy of modeling approaches for the lithium-carbon system. Partially supported by the Fluid Interface Reactions, Structures and Transport Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  20. Accurate determination of the temperature dependent thermalization coefficient (Q) in InAs/AlAsSb quantum wells

    NASA Astrophysics Data System (ADS)

    Esmaielpour, Hamidreza; Tang, Jinfeng; Whiteside, Vincent R.; Vijeyaragunathan, Sangeetha; Mishima, Tetsuya D.; Santos, Michael B.; Sellers, Ian R.

    2015-03-01

    We present an investigation of hot carriers in InAs/AlAsSb quantum wells as a practical candidate for a hot carrier solar cell absorber. The thermalization coefficient (Q) of the sample is investigated using continuous wave photoluminescence (PL). The Q is accurately determined through transfer matrix calculations of the absorption, analysis of the power density, penetration depth, diffusion, and recombination rates using a combination of simulation and empirical methods. A precise measurement of laser spot size is important in order to determine the absorbed power density. Simulations were performed based on our PL geometry in order to calculate the excitation spot size, which was compared with experiment by measurements using variable diameter pinholes to determine beam radius. Here, these techniques are described, in addition to, the temperature dependent hot carrier dynamics and phonon mediated thermalization coefficient for the InAs/AlAsSb quantum well structure.

  1. Quantum Monte Carlo study of long-range transverse-field Ising models on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Humeniuk, Stephan

    2016-03-01

    Motivated by recent experiments with a Penning ion trap quantum simulator, we perform numerically exact Stochastic Series Expansion quantum Monte Carlo simulations of long-range transverse-field Ising models on a triangular lattice for different decay powers α of the interactions. The phase boundary for the ferromagnet is obtained as a function of α . For antiferromagnetic interactions, there is strong indication that the transverse field stabilizes a clock ordered phase with sublattice magnetization (M ,-M/2 ,-M/2 ) with unsaturated M <1 in a process known as "order by disorder" similar to the nearest-neighbor antiferromagnet on the triangular lattice. Connecting the known limiting cases of nearest-neighbor and infinite-range interactions, a semiquantitative phase diagram is obtained. Magnetization curves for the ferromagnet for experimentally relevant system sizes and with open boundary conditions are presented.

  2. Recent developments in quantum Monte Carlo simulations with applications for cold gases.

    PubMed

    Pollet, Lode

    2012-09-01

    This is a review of recent developments in Monte Carlo methods in the field of ultracold gases. For bosonic atoms in an optical lattice we discuss path-integral Monte Carlo simulations with worm updates and show the excellent agreement with cold atom experiments. We also review recent progress in simulating bosonic systems with long-range interactions, disordered bosons, mixtures of bosons and spinful bosonic systems. For repulsive fermionic systems, determinantal methods at half filling are sign free, but in general no sign-free method exists. We review the developments in diagrammatic Monte Carlo for the Fermi polaron problem and the Hubbard model, and show the connection with dynamical mean-field theory. We end the review with diffusion Monte Carlo for the Stoner problem in cold gases.

  3. Fast and accurate Monte Carlo modeling of a kilovoltage X-ray therapy unit using a photon-source approximation for treatment planning in complex media

    PubMed Central

    Zeinali-Rafsanjani, B.; Mosleh-Shirazi, M. A.; Faghihi, R.; Karbasi, S.; Mosalaei, A.

    2015-01-01

    To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL), percentage depth doses (PDDs) and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs) placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam. PMID:26170553

  4. Magnetic ``three states of matter'' in two and three dimensions: a quantum Monte Carlo study of the extended toric codes

    NASA Astrophysics Data System (ADS)

    Kamiya, Yoshitomo

    The possibility of quantum spin liquids, characterized by nontrivial entanglement properties or a topological nonlocal order parameter, has long been debated both theoretically and experimentally. Since candidate systems (e.g., frustrated quantum magnets or 5 d transition metal oxides) may host other competing phases including conventional magnetic ordered phases, it is natural to ask what types of global phase diagrams can be anticipated depending on coupling constants, temperature, dimensionality, etc. In this talk, by considering an extension of the Kitaev toric code Hamiltonians by Ising interactions on 2D (square) and 3D (cubic) lattices, I will present thermodynamic phase diagrams featuring magnetic ``three states of matter,'' namely, quantum spin liquid, paramagnetic, and magnetically ordered phases (analogous to liquid, gas, and solid, respectively, in conventional matter) obtained by unbiased quantum Monte Carlo simulations [YK, Y. Kato, J. Nasu, and Y. Motome, PRB 92, 100403(R) (2015)]. We find that the ordered phase borders on the spin liquid around the exactly solvable point by a discontinuous transition line in 3D, while it grows continuously from the quantum critical point in 2D. In both cases, peculiar proximity effects to the nearby spin liquid phases are observed at high temperature even when the ground state is magnetically ordered. Such proximity effects include flux-shrinking and a tricritical behavior in 3D and a ``fractionalization'' of the order parameter field at the quantum critical point in 2D, both of which can be detected by measuring critical exponents. Work done in collaboration with Yasuyuki Kato, Joji Nasu, and Yukitoshi Motome.

  5. When do perturbative approaches accurately capture the dynamics of complex quantum systems?

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.

    2016-06-01

    Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model.

  6. When do perturbative approaches accurately capture the dynamics of complex quantum systems?

    PubMed Central

    Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.

    2016-01-01

    Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model. PMID:27335176

  7. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry.

    PubMed

    Ryde, Ulf

    2007-02-14

    The use of molecular mechanics calculations to supplement experimental data in standard X-ray crystallography and NMR refinements is discussed and it is shown that structures can be locally improved by the use of quantum chemical calculations. Such calculations can also be used to interpret the structures, e.g. to decide the protonation state of metal-bound ligands. They have shown that metal sites in crystal structures are frequently photoreduced or disordered, which makes the interpretation of the structures hard. Similar methods can be used for EXAFS refinements to obtain a full atomic structure, rather than a set of metal-ligand distances.

  8. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Mo, Yuxiang

    2016-08-01

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.

  9. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.

    PubMed

    Tao, Jianmin; Mo, Yuxiang

    2016-08-12

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.

  10. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.

    PubMed

    Tao, Jianmin; Mo, Yuxiang

    2016-08-12

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals. PMID:27563956

  11. Statistical Exploration of Electronic Structure of Molecules from Quantum Monte-Carlo Simulations

    SciTech Connect

    Prabhat, Mr; Zubarev, Dmitry; Lester, Jr., William A.

    2010-12-22

    In this report, we present results from analysis of Quantum Monte Carlo (QMC) simulation data with the goal of determining internal structure of a 3N-dimensional phase space of an N-electron molecule. We are interested in mining the simulation data for patterns that might be indicative of the bond rearrangement as molecules change electronic states. We examined simulation output that tracks the positions of two coupled electrons in the singlet and triplet states of an H2 molecule. The electrons trace out a trajectory, which was analyzed with a number of statistical techniques. This project was intended to address the following scientific questions: (1) Do high-dimensional phase spaces characterizing electronic structure of molecules tend to cluster in any natural way? Do we see a change in clustering patterns as we explore different electronic states of the same molecule? (2) Since it is hard to understand the high-dimensional space of trajectories, can we project these trajectories to a lower dimensional subspace to gain a better understanding of patterns? (3) Do trajectories inherently lie in a lower-dimensional manifold? Can we recover that manifold? After extensive statistical analysis, we are now in a better position to respond to these questions. (1) We definitely see clustering patterns, and differences between the H2 and H2tri datasets. These are revealed by the pamk method in a fairly reliable manner and can potentially be used to distinguish bonded and non-bonded systems and get insight into the nature of bonding. (2) Projecting to a lower dimensional subspace ({approx}4-5) using PCA or Kernel PCA reveals interesting patterns in the distribution of scalar values, which can be related to the existing descriptors of electronic structure of molecules. Also, these results can be immediately used to develop robust tools for analysis of noisy data obtained during QMC simulations (3) All dimensionality reduction and estimation techniques that we tried seem to

  12. Quantum analysis of a bandpass Purcell filter for accurate qubit readout

    NASA Astrophysics Data System (ADS)

    Sete, Eyob A.; Martinis, John M.; Korotkov, Alexander N.

    2015-03-01

    In a circuit QED setup the readout fidelity of a superconducting qubit is partially limited by the qubit relaxation through the resonator into a transmission line, which is also known as the Purcell effect. One way to suppress this effect is to employ a filter, which impedes microwave propagation at the qubit frequency. We present a quantum analysis for the bandpass Purcell filter that was recently realized by E. Jeffrey et al. [1]. Using experimental parameters, we show that the bandpass filter suppresses the qubit relaxation rate by two orders of magnitude while keeping the measurement rate the same. We also show that in the presence of a microwave drive the qubit relaxation rate further decreases with increasing drive strength.

  13. Quantum Dynamics of Vinylidene Photodetachment on an Accurate Global Acetylene-Vinylidene Potential Energy Surface.

    PubMed

    Guo, Lifen; Han, Huixian; Ma, Jianyi; Guo, Hua

    2015-08-01

    Vinylidene is a high-energy isomer of acetylene, and the rearrangement of bonds in the two species serves as a prototype for isomerization reactions. Here, a full-dimensional quantum mechanical study of the vinylidene vibration is carried out on a recently developed global acetylene-vinylidene potential energy surface by simulating the photodetachment dynamics of the vinylidene anion. Several low-lying vibrational levels of the anion were first determined on a new ab initio based potential energy surface, and their photoelectron spectra were obtained within the Condon approximation. The vibrational features of the vinylidene isomer are found to agree well with the experiment in both positions and intensities, validating the global acetylene-vinylidene potential energy surface.

  14. Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

    PubMed Central

    Madebene, Bruno; Ulusoy, Inga; Mancera, Luis; Scribano, Yohann; Chulkov, Sergey

    2011-01-01

    Summary We present a theoretical framework for the computation of anharmonic vibrational frequencies for large systems, with a particular focus on determining adsorbate frequencies from first principles. We give a detailed account of our local implementation of the vibrational self-consistent field approach and its correlation corrections. We show that our approach is both robust, accurate and can be easily deployed on computational grids in order to provide an efficient computational tool. We also present results on the vibrational spectrum of hydrogen fluoride on pyrene, on the thiophene molecule in the gas phase, and on small neutral gold clusters. PMID:22003450

  15. How Iron-Containing Proteins Control Dioxygen Chemistry: A Detailed Atomic Level Description Via Accurate Quantum Chemical and Mixed Quantum Mechanics/Molecular Mechanics Calculations.

    SciTech Connect

    Friesner, Richard A.; Baik, Mu-Hyun; Gherman, Benjamin F.; Guallar, Victor; Wirstam, Maria E.; Murphy, Robert B.; Lippard, Stephen J.

    2003-03-01

    Over the past several years, rapid advances in computational hardware, quantum chemical methods, and mixed quantum mechanics/molecular mechanics (QM/MM) techniques have made it possible to model accurately the interaction of ligands with metal-containing proteins at an atomic level of detail. In this paper, we describe the application of our computational methodology, based on density functional (DFT) quantum chemical methods, to two diiron-containing proteins that interact with dioxygen: methane monooxygenase (MMO) and hemerythrin (Hr). Although the active sites are structurally related, the biological function differs substantially. MMO is an enzyme found in methanotrophic bacteria and hydroxylates aliphatic C-H bonds, whereas Hr is a carrier protein for dioxygen used by a number of marine invertebrates. Quantitative descriptions of the structures and energetics of key intermediates and transition states involved in the reaction with dioxygen are provided, allowing their mechanisms to be compared and contrasted in detail. An in-depth understanding of how the chemical identity of the first ligand coordination shell, structural features, electrostatic and van der Waals interactions of more distant shells control ligand binding and reactive chemistry is provided, affording a systematic analysis of how iron-containing proteins process dioxygen. Extensive contact with experiment is made in both systems, and a remarkable degree of accuracy and robustness of the calculations is obtained from both a qualitative and quantitative perspective.

  16. Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system

    NASA Astrophysics Data System (ADS)

    Kennedy, Catherine A.; Stancescu, Maria; Marriott, Robert A.; White, Mary Anne

    2007-02-01

    A commercial instrument for determination of heat capacities of solids from ca. 400 K to 0.4 K, the physical property measurement system from Quantum Design, has been used to determine the heat capacities of a standard samples (sapphire [single crystal] and copper). We extend previous tests of the PPMS in three important ways: to temperatures as low as 0.4 K; to samples with poor thermal conductivity; to compare uncertainty with accuracy. We find that the accuracy of heat capacity determinations can be within 1% for 5 K < T < 300 K and 5% for 0.7 K < T < 5 K. Careful attention should be paid to the relative uncertainty for each data point, as determined from multiple measurements. While we have found that it is possible in some circumstances to obtain excellent results by measurement of samples that contribute more than ca. 1/3 to the total heat capacity, there is no "ideal" sample mass and sample geometry also is an important consideration. In fact, our studies of pressed pellets of zirconium tungstate, a poor thermal conductor, show that several samples of different masses should be determined for the highest degree of certainty.

  17. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations.

    PubMed

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online. PMID:25770527

  18. Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.; Lomakina, Ekaterina I.

    2009-08-01

    Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6±0.2 kcal mol-1. In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.

  19. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    SciTech Connect

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10{sup 3}-10{sup 5} molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  20. Accurate quantum dynamics calculations using symmetrized Gaussians on a doubly dense Von Neumann lattice

    SciTech Connect

    Halverson, Thomas; Poirier, Bill

    2012-12-14

    In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004); and ibid. 121, 1704 (2004)], a new method was introduced for performing exact quantum dynamics calculations. The method uses a 'weylet' basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality-the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions).

  1. Accurate quantum thermal rate constants for the three-dimensional H+H2 reaction

    NASA Astrophysics Data System (ADS)

    Park, Tae Jun; Light, J. C.

    1989-07-01

    The rate constants for the three-dimensional H+H2 reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface are calculated using Pack-Parker hyperspherical (APH) coordinates and a C2v symmetry adapted direct product discrete variable representation (DVR). The C2v symmetry decomposition and the parity decoupling on the basis are performed for the internal coordinate χ. The symmetry decomposition results in a block diagonal representation of the flux and Hamiltonian operators. The multisurface flux is introduced to represent the multichannel reactive flux. The eigenvalues and eigenvectors of the J=0 internal Hamiltonian are obtained by sequential diagonalization and truncation. The individual symmetry blocks of the flux operator are propagated by the corresponding blocks of the Hamiltonian, and the J=0 rate constant k0(T) is obtained as a sum of the rate constants calculated for each block. k0(T) is compared with the exact k0(T) obtained from thermal averaging of the J=0 reaction probabilities; the errors are within 5%-20% up to T=1500 K. The sequential diagonalization-truncation method reduces the size of the Hamiltonian greatly, but the resulting Hamiltonian matrix still describes the time evolution very accurately. For the J≠0 rate constant calculations, the truncated internal Hamiltonian eigenvector basis is used to construct reduced (JKJ) blocks of the Hamiltonian. The individual (JKJ) blocks are diagonalized neglecting Coriolis coupling and treating the off-diagonal KJ±2 couplings by second order perturbation theory. The full wave function is parity decoupled. The rate constant is obtained as a sum over J of (2J+1)kJ(T). The time evolution of the flux for J≠0 is again very accurately described to give a well converged rate constant.

  2. Using quantum Monte Carlo for the interaction of water with carbon and BN based substrates and assessing exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Al-Hamdani, Yasmine; Alfe, Dario; von Lilienfeld, O. Anatole; Michaelides, Angelos

    The interaction of water with the pure surfaces, graphene and hexagonal boron nitride (h- BN), has received a lot of attention because of interesting phenomena exhibited by these systems and their promising potential applications in clean energy, water purification, hydrogen storage, and bio-sensing. BN doped graphene can also now be made, opening the way to carefully designed hybrid materials. However, much of the fundamental mechanisms regarding the interaction between these surfaces and water is still not well understood. We use quantum Monte Carlo to establish accurate benchmarks for water on a number of carbonaceous and BN based substrates, including 2-dimensional periodic surfaces, for which van der Waals interactions play a key role. The benchmarks are then used to test and understand various exchange-correlation functionals in density functional theory. We find that the physisorption of water is poorly described in terms of the adsorption site and the interaction energy by a range of different classes of exchange- correlation functionals, including some that account for dispersion, and we show where these inadequacies might come from.

  3. Path-Integral Monte Carlo Study on a Droplet of a Dipolar Bose–Einstein Condensate Stabilized by Quantum Fluctuation

    NASA Astrophysics Data System (ADS)

    Saito, Hiroki

    2016-05-01

    Motivated by recent experiments [H. Kadau et al., Nature (London) 530, 194 (2016); I. Ferrier-Barbut et al., arXiv:1601.03318] and theoretical prediction (F. Wächtler and L. Santos, arXiv:1601.04501), the ground state of a dysprosium Bose-Einstein condensate with strong dipole-dipole interaction is studied by the path-integral Monte Carlo method. It is shown that quantum fluctuation can stabilize the condensate against dipolar collapse.

  4. Triplet p + ip pairing correlations in the doped Kane-Mele-Hubbard model: A quantum Monte Carlo study

    DOE PAGES

    Ma, Tianxing; Lin, Hai-Qing; Gubernatis, James E.

    2015-09-01

    By using the constrained-phase quantum Monte Carlo method, we performed a systematic study of the pairing correlations in the ground state of the doped Kane-Mele-Hubbard model on a honeycomb lattice. We find that pairing correlations with d + id symmetry dominate close to half filling, but pairing correlations with p+ip symmetry dominate as hole doping moves the system below three-quarters filling. We correlate these behaviors of the pairing correlations with the topology of the Fermi surfaces of the non-interacting problem. We also find that the effective pairing correlation is enhanced greatly as the interaction increases, and these superconducting correlations aremore » robust against varying the spin-orbit coupling strength. Finally, our numerical results suggest a possible way to realize spin triplet superconductivity in doped honeycomb-like materials or ultracold atoms in optical traps.« less

  5. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.

    PubMed

    Inglis, Stephen; Melko, Roger G

    2013-01-01

    We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.

  6. Triplet p + ip pairing correlations in the doped Kane-Mele-Hubbard model: A quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Ma, Tianxing; Lin, Hai-Qing; Gubernatis, J. E.

    2015-08-01

    By using the constrained-phase quantum Monte Carlo method, we performed a systematic study of the pairing correlations in the ground state of the doped Kane-Mele-Hubbard model on a honeycomb lattice. We find that pairing correlations with d + id symmetry dominate close to half-filling, but pairing correlations with p + ip symmetry dominate as hole doping moves the system below three-quarters filling. We correlate these behaviors of the pairing correlations with the topology of the Fermi surfaces of the non-interacting problem. We also find that the effective pairing correlation is enhanced greatly as the interaction increases, and these superconducting correlations are robust against varying the spin-orbit coupling strength. Our numerical results suggest a possible way to realize spin triplet superconductivity in doped honeycomb-like materials or ultracold atoms in optical traps.

  7. Quantum Monte Carlo Calculation for the Equation of State of MgSiO3 perovskite at high pressures

    NASA Astrophysics Data System (ADS)

    Lin, Yangzheng; Cohen, R. E.; Driver, Kevin P.; Militzer, Burkhard; Shulenburger, Luke; Kim, Jeongnim

    2014-03-01

    Magnesium silicate (MgSiO3) is among the most abundant minerals in the Earth's mantle. Its phase behavior under high pressure has important implications for the physical properties of deep Earth and the core-mantle boundary. A number of experiments and density functional theory calculations have studied perovskite and its transition to the post-perovskite phase. Here, we present our initial work on the equation of state of perovskite at pressures up to 200 GPa using quantum Monte Carlo (QMC), a benchmark ab initio method. Our QMC calculations optimize electron correlation by using a Slater-Jastrow type wave function with a single determinant comprised of single-particle orbitals extracted from fully converged DFT calculations. The equation of state obtained from QMC calculations agrees with experimental data. E-mail: rcohen@carnegiescience.edu; This work is supported by NSF.

  8. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    NASA Astrophysics Data System (ADS)

    Zhuang, Gui-lin; Chen, Wu-lin; Zheng, Jun; Yu, Hui-you; Wang, Jian-guo

    2012-08-01

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H3SIDA) and Ln(NO3)3 (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd3+ ions for anti-anti and syn-anti carboxylate bridges are -1.0×10-3 and -5.0×10-3 cm-1, respectively, which reveals weak antiferromagnetic interaction in 4.

  9. Quantum Mechanical Single Molecule Partition Function from PathIntegral Monte Carlo Simulations

    SciTech Connect

    Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian

    2006-10-01

    An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.

  10. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    SciTech Connect

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  11. Fermionic quantum criticality in honeycomb and π -flux Hubbard models: Finite-size scaling of renormalization-group-invariant observables from quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Parisen Toldin, Francesco; Hohenadler, Martin; Assaad, Fakher F.; Herbut, Igor F.

    2015-04-01

    We numerically investigate the critical behavior of the Hubbard model on the honeycomb and the π -flux lattice, which exhibits a direct transition from a Dirac semimetal to an antiferromagnetically ordered Mott insulator. We use projective auxiliary-field quantum Monte Carlo simulations and a careful finite-size scaling analysis that exploits approximately improved renormalization-group-invariant observables. This approach, which is successfully verified for the three-dimensional XY transition of the Kane-Mele-Hubbard model, allows us to extract estimates for the critical couplings and the critical exponents. The results confirm that the critical behavior for the semimetal to Mott insulator transition in the Hubbard model belongs to the Gross-Neveu-Heisenberg universality class on both lattices.

  12. Characterization and Monte Carlo simulation of single ion Geiger mode avalanche diodes integrated with a quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Sharma, Peter; Abraham, J. B. S.; Ten Eyck, G.; Childs, K. D.; Bielejec, E.; Carroll, M. S.

    Detection of single ion implantation within a nanostructure is necessary for the high yield fabrication of implanted donor-based quantum computing architectures. Single ion Geiger mode avalanche (SIGMA) diodes with a laterally integrated nanostructure capable of forming a quantum dot were fabricated and characterized using photon pulses. The detection efficiency of this design was measured as a function of wavelength, lateral position, and for varying delay times between the photon pulse and the overbias detection window. Monte Carlo simulations based only on the random diffusion of photo-generated carriers and the geometrical placement of the avalanche region agrees qualitatively with device characterization. Based on these results, SIGMA detection efficiency appears to be determined solely by the diffusion of photo-generated electron-hole pairs into a buried avalanche region. Device performance is then highly dependent on the uniformity of the underlying silicon substrate and the proximity of photo-generated carriers to the silicon-silicon dioxide interface, which are the most important limiting factors for reaching the single ion detection limit with SIGMA detectors. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  13. Variational Monte Carlo study of chiral spin liquid in quantum antiferromagnet on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Hu, Wenjun; Gong, Shoushu; Sheng, Donna; Donna Sheng Team

    We investigate the Heisenberg model with chiral coupling on the triangular lattice by using Gutzwiller projected fermionic states and the variational Monte Carlo technique. As the chiral coupling grows, a gapped spin liquid with non-trivial magnetic fluxes and nonzero chiral order is stabilized. Furthermore, we calculate the topological Chern number and the degeneracy of the ground state, both of which lead us to identify this flux state as the chiral spin liquid with C = 1 / 2 fractionalized Chern number. Finally, we add spatial anisotropy in the model to study the effects for the chiral order.

  14. Electronic structure of solid FeO at high pressures by quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Kolorenč, Jindřich; Mitas, Lubos

    2010-02-01

    We determine equation of state of stoichiometric FeO by employing the diffusion Monte Carlo method. The fermionic nodes of the many-body wave function are fixed by a single Slater determinant of one-particle orbitals extracted from spin-unrestricted Kohn-Sham equations utilizing a hybrid exchange-correlation functional. The calculated ambient pressure properties agree very well with available experimental data. At approximately 65 GPa, the atomic lattice is found to change from the rocksalt B1 to the NiAs-type inverse B8 structure.

  15. BCS-BEC crossover in two dimensions: A quantum Monte Carlo study

    SciTech Connect

    Bertaina, G.

    2012-09-26

    We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluidity to Bose-Einstein condensation (BEC) in a two-dimensional Fermi gas at T= 0 using the fixed-node diffusion Monte Carlo method. We calculate the equation of state and the gap parameter as a function of the interaction strength, observing large deviations compared to mean-field predictions. In the BEC regime our results show the important role of dimer-dimer and atom-dimer interaction effects that are completely neglected in the mean-field picture. We also consider the highly polarized gas and the competition between a polaronic and a molecular picture.

  16. Electronic states of Al and Al{sub 2} using quantum Monte Carlo with an effective core potential

    SciTech Connect

    Greeff, C.W.; Lester, W.A. Jr.; Hammond, B.L.

    1996-02-01

    The diffusion Monte Carlo method is applied in conjunction with an ab initio effective core potential to compute energies of some neutral and charged states of Al and Al{sub 2}. The computed ionization potentials, electron affinities and dissociation energies differ from measured values by at most a few hundredths of eV. The computed dissociation energy of Al{sub 2} agrees with the most extensive CI calculations. It appears that our dissociation energy for Al{sup {minus}}{sub 2} is the most accurate to date. The quality of the results indicates that the use of the pseudopotential is not an important limitation on the accuracy of these calculations. Variational wavefunctions with Boys-Handy correlation functions are found to give more than 70{percent} of the correlation energy with 8 optimized parameters. These optimized trial functions are used together with numerical integration to localize the pseudopotential. {copyright} {ital 1996 American Institute of Physics.}

  17. Quantum Monte Carlo calculation of the equation of state of neutron matter

    SciTech Connect

    Gandolfi, S.; Illarionov, A. Yu.; Schmidt, K. E.; Pederiva, F.; Fantoni, S.

    2009-05-15

    We calculated the equation of state of neutron matter at zero temperature by means of the auxiliary field diffusion Monte Carlo (AFDMC) method combined with a fixed-phase approximation. The calculation of the energy was carried out by simulating up to 114 neutrons in a periodic box. Special attention was given to reducing finite-size effects at the energy evaluation by adding to the interaction the effect due to the truncation of the simulation box, and by performing several simulations using different numbers of neutrons. The finite-size effects due to kinetic energy were also checked by employing the twist-averaged boundary conditions. We considered a realistic nuclear Hamiltonian containing modern two- and three-body interactions of the Argonne and Urbana family. The equation of state can be used to compare and calibrate other many-body calculations and to predict properties of neutron stars.

  18. Microscopic distribution functions, structure, and kinetic energy of liquid and solid neon: quantum Monte Carlo simulations.

    PubMed

    Neumann, Martin; Zoppi, Marco

    2002-03-01

    We have performed extensive path integral Monte Carlo simulations of liquid and solid neon, in order to derive the kinetic energy as well as the single-particle and pair distribution functions of neon atoms in the condensed phases. From the single-particle distribution function n(r) one can derive the momentum distribution and thus obtain an independent estimate of the kinetic energy. The simulations have been carried out using mostly the semiempirical HFD-C2 pair potential by Aziz et al. [R. A. Aziz, W. J. Meath, and A. R. Allnatt, Chem. Phys. 79, 295 (1983)], but, in a few cases, we have also used the Lennard-Jones potential. The differences between the potentials, as measured by the properties investigated, are not very large, especially when compared with the actual precision of the experimental data. The simulation results have been compared with all the experimental information that is available from neutron scattering. The overall agreement with the experiments is very good.

  19. Self-healing diffusion quantum Monte Carlo algorithms: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Reboredo, F. A.; Kent, P. R. C.; Tiago, M. L.; Hood, R. Q.

    2009-03-01

    We present a method to obtain the fixed node ground state wave function from an importance sampling Diffusion Monte Carlo (DMC) run. The fixed node ground state wave-function is altered to obtain an improved trial wave-function for the next DMC run. The theory behind this approach will be discussed. Two iterative algorithms are presented and validated in a model system by direct comparison with full configuration interaction (CI) wave functions and energies. We find that the trial wave-function is systematically improved. The scalar product of the trial wave-function with the CI result converges to 1 even starting from wave-functions orthogonal to the CI ground state. Similarly, the DMC total energy and density converges to the CI result. In the optimization process we find an optimal non-interacting nodal potential of density-functional-like form. An extension to a model system with full Coulomb interactions demonstrates that we can obtain the exact Kohn-Sham effective potential from the DMC data. Subsequently we apply our method to real molecules such as benzene and find that we can improve the ground state energy as compared with the single determinant result even starting from random wave-functions. Results for other molecular systems and comparison with alternative methods will be presented.

  20. Reaction pathways by quantum Monte Carlo: Insight on the torsion barrier of 1,3-butadiene, and the conrotatory ring opening of cyclobutene

    PubMed Central

    Barborini, Matteo; Guidoni, Leonardo

    2014-01-01

    Quantum Monte Carlo (QMC) methods are used to investigate the intramolecular reaction pathways of 1,3-butadiene. The ground state geometries of the three conformers s-trans, s-cis, and gauche, as well as the cyclobutene structure are fully optimised at the variational Monte Carlo (VMC) level, obtaining an excellent agreement with the experimental results and other quantum chemistry high level calculations. Transition state geometries are also estimated at the VMC level for the s-trans to gauche torsion barrier of 1,3-butadiene and for the conrotatory ring opening of cyclobutene to the gauche-1,3-butadiene conformer. The energies of the conformers and the reaction barriers are calculated at both variational and diffusional Monte Carlo levels providing a precise picture of the potential energy surface of 1,3-butadiene and supporting one of the two model profiles recently obtained by Raman spectroscopy [Boopalachandran et al., J. Phys. Chem. A 115, 8920 (2011)]. Considering the good scaling of QMC techniques with the system’s size, our results also demonstrate how variational Monte Carlo calculations can be applied in the future to properly investigate the reaction pathways of large and correlated molecular systems. PMID:23249005

  1. Accurate Characterization of the Peptide Linkage in the Gas Phase: A Joint Quantum-Chemical and Rotational Spectroscopy Study of the Glycine Dipeptide Analogue.

    PubMed

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Largo, Laura; Peña, Isabel; Cabezas, Carlos; Alonso, José Luis

    2014-02-01

    Accurate structures of aminoacids in the gas phase have been obtained by joint microwave and quantum-chemical investigations. However, the structure and conformational behavior of α-aminoacids once incorporated into peptide chains are completely different and have not yet been characterized with the same accuracy. To fill this gap, we present here an accurate characterization of the simplest dipeptide analogue (N-acetyl-glycinamide) involving peptidic bonds. State-of-the-art quantum-chemical computations are complemented by a comprehensive study of the rotational spectrum using a combination of Fourier transform microwave spectroscopy with laser ablation. The coexistence of the C7 and C5 conformers has been proved and energetically as well as spectroscopically characterized. This joint theoretical-experimental investigation demonstrated the feasibility of obtaining accurate structures for flexible small biomolecules, thus paving the route to the elucidation of the inherent behavior of peptides.

  2. Quantum partition functions of composite particles in a hydrogen-helium plasma via path integral Monte Carlo

    SciTech Connect

    Wendland, D.; Ballenegger, V.; Alastuey, A.

    2014-11-14

    We compute two- and three-body cluster functions that describe contributions of composite entities, like hydrogen atoms, ions H{sup −}, H{sub 2}{sup +}, and helium atoms, and also charge-charge and atom-charge interactions, to the equation of state of a hydrogen-helium mixture at low density. A cluster function has the structure of a truncated virial coefficient and behaves, at low temperatures, like a usual partition function for the composite entity. Our path integral Monte Carlo calculations use importance sampling to sample efficiently the cluster partition functions even at low temperatures where bound state contributions dominate. We also employ a new and efficient adaptive discretization scheme that allows one not only to eliminate Coulomb divergencies in discretized path integrals, but also to direct the computational effort where particles are close and thus strongly interacting. The numerical results for the two-body function agree with the analytically known quantum second virial coefficient. The three-body cluster functions are compared at low temperatures with familiar partition functions for composite entities.

  3. Auxiliary-field quantum Monte Carlo study of first- and second-row post-d elements

    NASA Astrophysics Data System (ADS)

    Al-Saidi, W. A.; Krakauer, Henry; Zhang, Shiwei

    2006-10-01

    A series of calculations for the first- and second-row post-d elements (Ga-Br and In-I) are presented using the phaseless auxiliary-field quantum Monte Carlo (AF QMC) method. This method is formulated in a Hilbert space defined by any chosen one-particle basis and maps the many-body problem into a linear combination of independent-particle solutions with external auxiliary fields. The phase/sign problem is handled approximately by the phaseless formalism using a trial wave function, which in our calculations was chosen to be the Hartree-Fock solution. We used the consistent correlated basis sets of Peterson et al. [J. Chem. Phys. 119, 11099 (2003); 119, 11113 (2003)], which employ a small-core relativistic pseudopotential. The AF QMC results are compared with experiment and with those from density functional (generalized gradient approximation and B3LYP) and CCSD(T) calculations. The AF QMC total energies agree with CCSD(T) to within a few millihartrees across the systems and over several basis sets. The calculated atomic electron affinities, ionization energies, and spectroscopic properties of dimers are, at large basis sets, in excellent agreement with experiment.

  4. Quantum Monte Carlo simulation of antiferromagnetic spin ladder (C5H12N)2CuBr4

    NASA Astrophysics Data System (ADS)

    Freitas, Augusto S.

    2016-07-01

    In this paper I present a Quantum Monte Carlo (QMC) study of the magnetic properties of an antiferromagnetic spin ladder (C5H12N)2CuBr4. This compound is the prototype of the Heisenberg model for a two leg spin ladder in the presence of an external magnetic field. The susceptibility phase diagram has a rounded peak in the vicinity of T=7.4 K, obeys Troyer's law for low temperatures, and Curie's law for high temperatures. I also study the susceptibility diagram in low temperatures and I found the spin gap Δ=9.26 K, in good concordance with the experimental value, 9.5 K. In high field, I present a diagram of magnetization as a function of temperature. In the vicinity of a critical field, Hci, the magnetization scales with T1/2 and this result was found also in the QMC simulation. In all the results, there is a very good concordance with the experimental data. I also show in this paper that the spin gap is null and the susceptibility is proportional to T for low temperatures when relatively high values of the ladders' coupling is taken in account.

  5. Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO

    DOE PAGES

    Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.

    2015-10-28

    We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To studymore » defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. Lastly, these results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy. (C) 2015 AIP Publishing LLC.« less

  6. Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO

    SciTech Connect

    Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.

    2015-10-28

    We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To study defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy.

  7. Post-DFT methods for Earth materials: Quantum Monte Carlo simulations of (Mg,Fe)O (Invited)

    NASA Astrophysics Data System (ADS)

    Driver, K. P.; Militzer, B.; Cohen, R. E.

    2013-12-01

    (Mg,Fe)O is a major mineral phase in Earth's lower mantle that plays a key role in determining the structural and dynamical properties of deep Earth. A pressure-induced spin-pairing transition of Fe has been the subject of numerous theoretical and experimental studies due to the consequential effects on lower mantle physics. The standard density functional theory (DFT) method does not treat strongly correlated electrons properly and results can have dependence on the choice of exchange-correlation functional. DFT+U, offers significant improvement over standard DFT for treating strongly correlated electrons. Indeed, DFT+U calculations and experiments have narrowed the ambient spin-transition between 40-60 GPa in (Mg,Fe)O. However, DFT+U, is not an ideal method due to dependence on Hubbard U parameter among other approximations. In order to further clarify details of the spin transition, it is necessary to use methods that explicitly treat effects of electron exchange and correlation, such as quantum Monte Carlo (QMC). Here, we will discuss methods of going beyond standard DFT and present QMC results on the (Mg,Fe)O elastic properties and spin-transition pressure in order to benchmark DFT+U results.

  8. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    SciTech Connect

    Lin, J. Y. Y.; Aczel, Adam A; Abernathy, Douglas L; Nagler, Stephen E; Buyers, W. J. L.; Granroth, Garrett E

    2014-01-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  9. Improved measurement scheme of the self energy in the worm-sampled hybridization-expansion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Han, Mancheon; Lee, Choong-Ki; Choi, Hyoung Joon

    Hybridization-expansion continuous-time quantum Monte Carlo (CT-HYB) is a popular approach in real material researches because it allows to deal with non-density-density-type interaction. In the conventional CT-HYB, we measure Green's function and find the self energy from the Dyson equation. Because one needs to compute the inverse of the statistical data in this approach, obtained self energy is very sensitive to statistical noise. For that reason, the measurement is not reliable except for low frequencies. Such an error can be suppressed by measuring a special type of higher-order correlation function and is implemented for density-density-type interaction. With the help of the recently reported worm-sampling measurement, we developed an improved self energy measurement scheme which can be applied to any type of interactions. As an illustration, we calculated the self energy for the 3-orbital Hubbard-Kanamori-type Hamiltonian with our newly developed method. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2015-C3-039)

  10. Variational Monte Carlo study of chiral spin liquid in quantum antiferromagnet on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Jun; Gong, Shou-Shu; Sheng, D. N.

    2016-08-01

    By using Gutzwiller projected fermionic wave functions and variational Monte Carlo technique, we study the spin-1 /2 Heisenberg model with the first-neighbor (J1), second-neighbor (J2), and additional scalar chiral interaction JχSi.(Sj×Sk) on the triangular lattice. In the nonmagnetic phase of the J1-J2 triangular model with 0.08 ≲J2/J1≲0.16 , recent density-matrix renormalization group (DMRG) studies [Zhu and White, Phys. Rev. B 92, 041105(R) (2015), 10.1103/PhysRevB.92.041105 and Hu, Gong, Zhu, and Sheng, Phys. Rev. B 92, 140403(R) (2015), 10.1103/PhysRevB.92.140403] find a possible gapped spin liquid with the signal of a competition between a chiral and a Z2 spin liquid. Motivated by the DMRG results, we consider the chiral interaction JχSi.(Sj×Sk) as a perturbation for this nonmagnetic phase. We find that with growing Jχ, the gapless U(1) Dirac spin liquid, which has the best variational energy for Jχ=0 , exhibits the energy instability towards a gapped spin liquid with nontrivial magnetic fluxes and nonzero chiral order. We calculate topological Chern number and ground-state degeneracy, both of which identify this flux state as the chiral spin liquid with fractionalized Chern number C =1 /2 and twofold topological degeneracy. Our results indicate a positive direction to stabilize a chiral spin liquid near the nonmagnetic phase of the J1-J2 triangular model.

  11. Instantons and scaling of the transitions rates in Quantum Monte Carlo simulations of thermally-assisted quantum tunneling in spin systems

    NASA Astrophysics Data System (ADS)

    Smelyanskiy, Vadim; Jiang, Zhang; Boixo, Sergio; Issakov, Sergei; Mazzola, Guglielmo; Troyer, Matthias; Neven, Hartmut

    We study analytically and numerically the dynamics of the quantum Monte Carlo (QMC) algorithm to simulate thermally-assisted tunneling in mean-field spin models without conservation of total spin. We use Kramers escape rate theory to calculate the scaling of the QMC time with the problem size to simulate the tunneling transitions. We develop path-integral instanton approach in coherent state and Suzuki-Trotter representations to calculate the escape rate and most probable escape path in QMC dynamics. Analtytical results are in a good agreement with numerical studies. We identify the class of models where the exponent in the scaling of the QMC time is the same as that in physical tunneling but the pre-factor depends very significantly on the QMC path representation. We propose the classes of problems where QMC can fail to simulate tunneling efficiently. The work of GM and MT has been supported by the Swiss National Science Foundation through the National Competence Center in Research QSIT and by ODNI, IARPA via MIT Lincoln Laboratory Air Force Contract No. FA8721-05-C-0002.

  12. A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels.

    PubMed

    Bachir, Alexia I; Kolin, David L; Heinze, Katrin G; Hebert, Benedict; Wiseman, Paul W

    2008-06-14

    Fluctuation-based fluorescence correlation techniques are widely used to study dynamics of fluorophore labeled biomolecules in cells. Semiconductor quantum dots (QDs) have been developed as bright and photostable fluorescent probes for various biological applications. However, the fluorescence intermittency of QDs, commonly referred to as "blinking", is believed to complicate quantitative correlation spectroscopy measurements of transport properties, as it is an additional source of fluctuations that contribute on a wide range of time scales. The QD blinking fluctuations obey power-law distributions so there is no single characteristic fluctuation time for this phenomenon. Consequently, it is highly challenging to separate fluorescence blinking fluctuations from those due to transport dynamics. Here, we quantify the bias introduced by QD blinking in transport measurements made using fluctuation methods. Using computer simulated image time series of diffusing point emitters with set "on" and "off" time emission characteristics, we show that blinking results in a systematic overestimation of the diffusion coefficients measured with correlation analysis when a simple diffusion model is used to fit the time correlation decays. The relative error depends on the inherent blinking power-law statistics, the sampling rate relative to the characteristic diffusion time and blinking times, and the total number of images in the time series. This systematic error can be significant; moreover, it can often go unnoticed in common transport model fits of experimental data. We propose an alternative fitting model that incorporates blinking and improves the accuracy of the recovered diffusion coefficients. We also show how to completely eliminate the bias by applying k-space image correlation spectroscopy, which completely separates the diffusion and blinking dynamics, and allows the simultaneous recovery of accurate diffusion coefficients and QD blinking probability distribution

  13. Combined rate equation and Monte Carlo studies of electron transport in a GaAs/Al0.45Ga0.55As quantum-cascade laser

    NASA Astrophysics Data System (ADS)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2012-11-01

    Comparison of the Monte Carlo and rate equation methods as applied to the study of electron transport in a mid-infrared quantum cascade laser structure initially proposed by Page et al (2001 Appl. Phys. Lett. 78 3529) is presented for a range of realistic injector doping levels. An analysis of the difference between these two methods is given. It is suggested that justified approximations of the rate equation method, originated by imposing Fermi-Dirac statistics and the same electron effective temperature for each of the energy sub-bands, can be interpreted as partial inclusion of electron-electron interactions. Results of the rate equation method may be used as good initial conditions for a more precise Monte Carlo simulation. An algorithm combining rate equation and Monte Carlo simulations is examined. A reasonable agreement between the introduced method and a fully self-consistent resolution of Monte Carlo and Schrödinger coupled with Poisson equations is demonstrated. The computation time may be reduced when the combined algorithm is used.

  14. Spin Density Distribution in Open-Shell Transition Metal Systems: A Comparative Post-Hartree-Fock, Density Functional Theory, and Quantum Monte Carlo Study of the CuCl2 Molecule.

    PubMed

    Caffarel, Michel; Giner, Emmanuel; Scemama, Anthony; Ramírez-Solís, Alejandro

    2014-12-01

    We present a comparative study of the spatial distribution of the spin density of the ground state of CuCl2 using Density Functional Theory (DFT), quantum Monte Carlo (QMC), and post-Hartree-Fock wave function theory (WFT). A number of studies have shown that an accurate description of the electronic structure of the lowest-lying states of this molecule is particularly challenging due to the interplay between the strong dynamical correlation effects in the 3d shell and the delocalization of the 3d hole over the chlorine atoms. More generally, this problem is representative of the difficulties encountered when studying open-shell metal-containing molecular systems. Here, it is shown that qualitatively different results for the spin density distribution are obtained from the various quantum-mechanical approaches. At the DFT level, the spin density distribution is found to be very dependent on the functional employed. At the QMC level, Fixed-Node Diffusion Monte Carlo (FN-DMC) results are strongly dependent on the nodal structure of the trial wave function. Regarding wave function methods, most approaches not including a very high amount of dynamic correlation effects lead to a much too high localization of the spin density on the copper atom, in sharp contrast with DFT. To shed some light on these conflicting results Full CI-type (FCI) calculations using the 6-31G basis set and based on a selection process of the most important determinants, the so-called CIPSI approach (Configuration Interaction with Perturbative Selection done Iteratively) are performed. Quite remarkably, it is found that for this 63-electron molecule and a full CI space including about 10(18) determinants, the FCI limit can almost be reached. Putting all results together, a natural and coherent picture for the spin distribution is proposed. PMID:26583212

  15. Spin Density Distribution in Open-Shell Transition Metal Systems: A Comparative Post-Hartree-Fock, Density Functional Theory, and Quantum Monte Carlo Study of the CuCl2 Molecule.

    PubMed

    Caffarel, Michel; Giner, Emmanuel; Scemama, Anthony; Ramírez-Solís, Alejandro

    2014-12-01

    We present a comparative study of the spatial distribution of the spin density of the ground state of CuCl2 using Density Functional Theory (DFT), quantum Monte Carlo (QMC), and post-Hartree-Fock wave function theory (WFT). A number of studies have shown that an accurate description of the electronic structure of the lowest-lying states of this molecule is particularly challenging due to the interplay between the strong dynamical correlation effects in the 3d shell and the delocalization of the 3d hole over the chlorine atoms. More generally, this problem is representative of the difficulties encountered when studying open-shell metal-containing molecular systems. Here, it is shown that qualitatively different results for the spin density distribution are obtained from the various quantum-mechanical approaches. At the DFT level, the spin density distribution is found to be very dependent on the functional employed. At the QMC level, Fixed-Node Diffusion Monte Carlo (FN-DMC) results are strongly dependent on the nodal structure of the trial wave function. Regarding wave function methods, most approaches not including a very high amount of dynamic correlation effects lead to a much too high localization of the spin density on the copper atom, in sharp contrast with DFT. To shed some light on these conflicting results Full CI-type (FCI) calculations using the 6-31G basis set and based on a selection process of the most important determinants, the so-called CIPSI approach (Configuration Interaction with Perturbative Selection done Iteratively) are performed. Quite remarkably, it is found that for this 63-electron molecule and a full CI space including about 10(18) determinants, the FCI limit can almost be reached. Putting all results together, a natural and coherent picture for the spin distribution is proposed.

  16. Accurate and efficient radiation transport in optically thick media -- by means of the Symbolic Implicit Monte Carlo method in the difference formulation

    SciTech Connect

    Szoke, A; Brooks, E D; McKinley, M; Daffin, F

    2005-03-30

    The equations of radiation transport for thermal photons are notoriously difficult to solve in thick media without resorting to asymptotic approximations such as the diffusion limit. One source of this difficulty is that in thick, absorbing media thermal emission is almost completely balanced by strong absorption. In a previous publication [SB03], the photon transport equation was written in terms of the deviation of the specific intensity from the local equilibrium field. We called the new form of the equations the difference formulation. The difference formulation is rigorously equivalent to the original transport equation. It is particularly advantageous in thick media, where the radiation field approaches local equilibrium and the deviations from the Planck distribution are small. The difference formulation for photon transport also clarifies the diffusion limit. In this paper, the transport equation is solved by the Symbolic Implicit Monte Carlo (SIMC) method and a comparison is made between the standard formulation and the difference formulation. The SIMC method is easily adapted to the derivative source terms of the difference formulation, and a remarkable reduction in noise is obtained when the difference formulation is applied to problems involving thick media.

  17. Dynamic Cluster Quantum Monte Carlo Simulations of a Two-Dimensional Hubbard Model with Stripelike Charge-Density-Wave Modulations: Interplay between Inhomogeneities and the Superconducting State

    SciTech Connect

    Maier, Thomas A; Alvarez, Gonzalo; Summers, Michael Stuart; Schulthess, Thomas C

    2010-01-01

    Using dynamic cluster quantum Monte Carlo simulations, we study the superconducting behavior of a 1=8 doped two-dimensional Hubbard model with imposed unidirectional stripelike charge-density-wave modulation. We find a significant increase of the pairing correlations and critical temperature relative to the homogeneous system when the modulation length scale is sufficiently large. With a separable form of the irreducible particle-particle vertex, we show that optimized superconductivity is obtained for a moderate modulation strength due to a delicate balance between the modulation enhanced pairing interaction, and a concomitant suppression of the bare particle-particle excitations by a modulation reduction of the quasiparticle weight.

  18. Quantum chemical approach for condensed-phase thermochemistry (III): Accurate evaluation of proton hydration energy and standard hydrogen electrode potential

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atsushi; Nakai, Hiromi

    2016-04-01

    Gibbs free energy of hydration of a proton and standard hydrogen electrode potential were evaluated using high-level quantum chemical calculations. The solvent effect was included using the cluster-continuum model, which treated short-range effects by quantum chemical calculations of proton-water complexes, and the long-range effects by a conductor-like polarizable continuum model. The harmonic solvation model (HSM) was employed to estimate enthalpy and entropy contributions due to nuclear motions of the clusters by including the cavity-cluster interactions. Compared to the commonly used ideal gas model, HSM treatment significantly improved the contribution of entropy, showing a systematic convergence toward the experimental data.

  19. Conformations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane: are ab initio quantum chemistry predictions accurate?

    NASA Astrophysics Data System (ADS)

    Smith, Grant D.; Jaffe, Richard L.; Yoon, Do. Y.

    1998-06-01

    High-level ab initio quantum chemistry calculations are shown to predict conformer populations of 1,2-dimethoxypropane and 5-methoxy-1,3-dioxane that are consistent with gas-phase NMR vicinal coupling constant measurements. The conformational energies of the cyclic ether 5-methoxy-1,3-dioxane are found to be consistent with those predicted by a rotational isomeric state (RIS) model based upon the acyclic analog 1,2-dimethoxypropane. The quantum chemistry and RIS calculations indicate the presence of strong attractive 1,5 C(H 3)⋯O electrostatic interactions in these molecules, similar to those found in 1,2-dimethoxyethane.

  20. MO-A-BRD-10: A Fast and Accurate GPU-Based Proton Transport Monte Carlo Simulation for Validating Proton Therapy Treatment Plans

    SciTech Connect

    Wan Chan Tseung, H; Ma, J; Beltran, C

    2014-06-15

    Purpose: To build a GPU-based Monte Carlo (MC) simulation of proton transport with detailed modeling of elastic and non-elastic (NE) protonnucleus interactions, for use in a very fast and cost-effective proton therapy treatment plan verification system. Methods: Using the CUDA framework, we implemented kernels for the following tasks: (1) Simulation of beam spots from our possible scanning nozzle configurations, (2) Proton propagation through CT geometry, taking into account nuclear elastic and multiple scattering, as well as energy straggling, (3) Bertini-style modeling of the intranuclear cascade stage of NE interactions, and (4) Simulation of nuclear evaporation. To validate our MC, we performed: (1) Secondary particle yield calculations in NE collisions with therapeutically-relevant nuclei, (2) Pencil-beam dose calculations in homogeneous phantoms, (3) A large number of treatment plan dose recalculations, and compared with Geant4.9.6p2/TOPAS. A workflow was devised for calculating plans from a commercially available treatment planning system, with scripts for reading DICOM files and generating inputs for our MC. Results: Yields, energy and angular distributions of secondaries from NE collisions on various nuclei are in good agreement with the Geant4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%–2mm for 70–230 MeV pencil-beam dose distributions in water, soft tissue, bone and Ti phantoms is 100%. The pass rate at 2%–2mm for treatment plan calculations is typically above 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is around 20s for 1×10{sup 7} proton histories. Conclusion: Our GPU-based proton transport MC is the first of its kind to include a detailed nuclear model to handle NE interactions on any nucleus. Dosimetric calculations demonstrate very good agreement with Geant4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil

  1. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods.

    PubMed

    Kapil, V; VandeVondele, J; Ceriotti, M

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

  2. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods

    NASA Astrophysics Data System (ADS)

    Kapil, V.; VandeVondele, J.; Ceriotti, M.

    2016-02-01

    The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

  3. Synergies from using higher order symplectic decompositions both for ordinary differential equations and quantum Monte Carlo methods

    SciTech Connect

    Matuttis, Hans-Georg; Wang, Xiaoxing

    2015-03-10

    Decomposition methods of the Suzuki-Trotter type of various orders have been derived in different fields. Applying them both to classical ordinary differential equations (ODEs) and quantum systems allows to judge their effectiveness and gives new insights for many body quantum mechanics where reference data are scarce. Further, based on data for 6 × 6 system we conclude that sampling with sign (minus-sign problem) is probably detrimental to the accuracy of fermionic simulations with determinant algorithms.

  4. Multi-electron systems in strong magnetic fields II: A fixed-phase diffusion quantum Monte Carlo application based on trial functions from a Hartree-Fock-Roothaan method

    NASA Astrophysics Data System (ADS)

    Boblest, S.; Meyer, D.; Wunner, G.

    2014-11-01

    We present a quantum Monte Carlo application for the computation of energy eigenvalues for atoms and ions in strong magnetic fields. The required guiding wave functions are obtained with the Hartree-Fock-Roothaan code described in the accompanying publication (Schimeczek and Wunner, 2014). Our method yields highly accurate results for the binding energies of symmetry subspace ground states and at the same time provides a means for quantifying the quality of the results obtained with the above-mentioned Hartree-Fock-Roothaan method. Catalogue identifier: AETV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 72 284 No. of bytes in distributed program, including test data, etc.: 604 948 Distribution format: tar.gz Programming language: C++. Computer: Cluster of 1-˜500 HP Compaq dc5750. Operating system: Linux. Has the code been vectorized or parallelized?: Yes. Code includes MPI directives. RAM: 500 MB per node Classification: 2.1. External routines: Boost::Serialization, Boost::MPI, LAPACK BLAS Nature of problem: Quantitative modelings of features observed in the X-ray spectra of isolated neutron stars are hampered by the lack of sufficiently large and accurate databases for atoms and ions up to the last fusion product iron, at high magnetic field strengths. The predominant amount of line data in the literature has been calculated with Hartree-Fock methods, which are intrinsically restricted in precision. Our code is intended to provide a powerful tool for calculating very accurate energy values from, and thereby improving the quality of, existing Hartree-Fock results. Solution method: The Fixed-phase quantum Monte Carlo method is used in combination with guiding functions obtained in Hartree

  5. Extending the molecular size in accurate quantum-chemical calculations: the equilibrium structure and spectroscopic properties of uracil.

    PubMed

    Puzzarini, Cristina; Barone, Vincenzo

    2011-04-21

    The equilibrium structure of uracil has been investigated using both theoretical and experimental data. With respect to the former, quantum-chemical calculations at the coupled-cluster level in conjunction with a triple-zeta basis set have been carried out. Extrapolation to the basis set limit, performed employing the second-order Møller-Plesset perturbation theory, and inclusion of core-correlation and diffuse-function corrections have also been considered. Based on the available rotational constants for various isotopic species together with corresponding computed vibrational corrections, the semi-experimental equilibrium structure of uracil has been determined for the first time. Theoretical and semi-experimental structures have been found in remarkably good agreement, thus pointing out the limitations of previous experimental determinations. Molecular and spectroscopic properties of uracil have then been studied by means of the composite computational approach introduced for the molecular structure evaluation. Among the results achieved, we mention the revision of the dipole moment. On the whole, it has been proved that the computational procedure presented is able to provide parameters with the proper accuracy to support experimental investigations of large molecules of biological interest.

  6. Accurate Ab Initio Quantum Mechanics Simulations of Bi2Se3 and Bi2Te3 Topological Insulator Surfaces.

    PubMed

    Crowley, Jason M; Tahir-Kheli, Jamil; Goddard, William A

    2015-10-01

    It has been established experimentally that Bi2Te3 and Bi2Se3 are topological insulators, with zero band gap surface states exhibiting linear dispersion at the Fermi energy. Standard density functional theory (DFT) methods such as PBE lead to large errors in the band gaps for such strongly correlated systems, while more accurate GW methods are too expensive computationally to apply to the thin films studied experimentally. We show here that the hybrid B3PW91 density functional yields GW-quality results for these systems at a computational cost comparable to PBE. The efficiency of our approach stems from the use of Gaussian basis functions instead of plane waves or augmented plane waves. This remarkable success without empirical corrections of any kind opens the door to computational studies of real chemistry involving the topological surface state, and our approach is expected to be applicable to other semiconductors with strong spin-orbit coupling.

  7. Equations of state and stability of MgSiO3 perovskite and post-perovskite phases from quantum Monte Carlo simulations

    SciTech Connect

    Lin, Yangzheng; Cohen, Ronald E.; Stackhouse, Stephen; Driver, Kevin P.; Militzer, Burkhard; Shulenburger, Luke; Kim, Jeongnim

    2014-11-10

    In this study, we have performed quantum Monte Carlo (QMC) simulations and density functional theory calculations to study the equations of state of MgSiO3 perovskite (Pv, bridgmanite) and post-perovskite (PPv) up to the pressure and temperature conditions of the base of Earth's lower mantle. The ground-state energies were derived using QMC simulations and the temperature-dependent Helmholtz free energies were calculated within the quasiharmonic approximation and density functional perturbation theory. The equations of state for both phases of MgSiO3 agree well with experiments, and better than those from generalized gradient approximation calculations. The Pv-PPv phase boundary calculated from our QMC equations of state is also consistent with experiments, and better than previous local density approximation calculations. Lastly, we discuss the implications for double crossing of the Pv-PPv boundary in the Earth.

  8. Equations of state and stability of MgSiO3 perovskite and post-perovskite phases from quantum Monte Carlo simulations

    DOE PAGES

    Lin, Yangzheng; Cohen, Ronald E.; Stackhouse, Stephen; Driver, Kevin P.; Militzer, Burkhard; Shulenburger, Luke; Kim, Jeongnim

    2014-11-10

    In this study, we have performed quantum Monte Carlo (QMC) simulations and density functional theory calculations to study the equations of state of MgSiO3 perovskite (Pv, bridgmanite) and post-perovskite (PPv) up to the pressure and temperature conditions of the base of Earth's lower mantle. The ground-state energies were derived using QMC simulations and the temperature-dependent Helmholtz free energies were calculated within the quasiharmonic approximation and density functional perturbation theory. The equations of state for both phases of MgSiO3 agree well with experiments, and better than those from generalized gradient approximation calculations. The Pv-PPv phase boundary calculated from our QMC equationsmore » of state is also consistent with experiments, and better than previous local density approximation calculations. Lastly, we discuss the implications for double crossing of the Pv-PPv boundary in the Earth.« less

  9. Using full configuration interaction quantum Monte Carlo in a seniority zero space to investigate the correlation energy equivalence of pair coupled cluster doubles and doubly occupied configuration interaction

    NASA Astrophysics Data System (ADS)

    Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-03-01

    Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure.

  10. Investigating Disjoint Non-Kekulé Diradicals with Quantum Monte Carlo: The Tetramethyleneethane Molecule through the Jastrow Antisymmetrized Geminal Power Wave Function.

    PubMed

    Barborini, Matteo; Coccia, Emanuele

    2015-12-01

    Disjoint non-Kekulé molecules are diradicals that present two independent radical centers and can violate Hund's rule, according to which the ground state should have triplet spin symmetry. The prototype of this class of systems is the tetramethyleneethane (TME) molecule for which indeed ion photoelectron spectroscopy (IPS) experiments revealed the singlet (1)A state to be more stable than the triplet (3)Bu. In this work we investigate the potential energy curves of the two spin states of TME and of the two anionic states of TME(-) ((2)A and (2)B1) as a function of the torsion of the central dihedral angle, with quantum Monte Carlo methods and a Jastrow Antisymmetrized Geminal Power wave function. Through ab initio geometrical optimizations we study the possible structural interconversions between the states, finding results which are in full agreement with the IPS experimental data.

  11. Triplet p + ip pairing correlations in the doped Kane-Mele-Hubbard model: A quantum Monte Carlo study

    SciTech Connect

    Ma, Tianxing; Lin, Hai-Qing; Gubernatis, James E.

    2015-09-01

    By using the constrained-phase quantum Monte Carlo method, we performed a systematic study of the pairing correlations in the ground state of the doped Kane-Mele-Hubbard model on a honeycomb lattice. We find that pairing correlations with d + id symmetry dominate close to half filling, but pairing correlations with p+ip symmetry dominate as hole doping moves the system below three-quarters filling. We correlate these behaviors of the pairing correlations with the topology of the Fermi surfaces of the non-interacting problem. We also find that the effective pairing correlation is enhanced greatly as the interaction increases, and these superconducting correlations are robust against varying the spin-orbit coupling strength. Finally, our numerical results suggest a possible way to realize spin triplet superconductivity in doped honeycomb-like materials or ultracold atoms in optical traps.

  12. The isotropic nuclear magnetic shielding constants of acetone in supercritical water: a sequential Monte Carlo/quantum mechanics study including solute polarization.

    PubMed

    Fonseca, Tertius L; Coutinho, Kaline; Canuto, Sylvio

    2008-07-21

    The nuclear isotropic shielding constants sigma((17)O) and sigma((13)C) of the carbonyl bond of acetone in water at supercritical (P=340.2 atm and T=673 K) and normal water conditions have been studied theoretically using Monte Carlo simulation and quantum mechanics calculations based on the B3LYP6-311++G(2d,2p) method. Statistically uncorrelated configurations have been obtained from Monte Carlo simulations with unpolarized and in-solution polarized solute. The results show that solvent effects on the shielding constants have a significant contribution of the electrostatic interactions and that quantitative estimates for solvent shifts of shielding constants can be obtained modeling the water molecules by point charges (electrostatic embedding). In supercritical water, there is a decrease in the magnitude of sigma((13)C) but a sizable increase in the magnitude of sigma((17)O) when compared with the results obtained in normal water. It is found that the influence of the solute polarization is mild in the supercritical regime but it is particularly important for sigma((17)O) in normal water and its shielding effect reflects the increase in the average number of hydrogen bonds between acetone and water. Changing the solvent environment from normal to supercritical water condition, the B3LYP6-311++G(2d,2p) calculations on the statistically uncorrelated configurations sampled from the Monte Carlo simulation give a (13)C chemical shift of 11.7+/-0.6 ppm for polarized acetone in good agreement with the experimentally inferred result of 9-11 ppm.

  13. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects

    NASA Astrophysics Data System (ADS)

    Hangele, Tim; Dolg, Michael; Hanrath, Michael; Cao, Xiaoyan; Schwerdtfeger, Peter

    2012-06-01

    Energy-consistent two-component semi-local pseudopotentials for the superheavy elements with atomic numbers 111-118 have been adjusted to fully relativistic multi-configuration Dirac-Hartree-Fock calculations based on the Dirac-Coulomb Hamiltonian, including perturbative corrections for the frequency-dependent Breit interaction in the Coulomb gauge and lowest-order quantum electrodynamic effects. The pseudopotential core includes 92 electrons corresponding to the configuration [Xe]4f 145d105f 14. The parameters for the elements 111-118 were fitted by two-component multi-configuration Hartree-Fock calculations in the intermediate coupling scheme to the total energies of 267 up to 797 J levels arising from 31 up to 62 nonrelativistic configurations, including also anionic and highly ionized states, with mean absolute errors clearly below 0.02 eV for averages corresponding to nonrelativistic configurations. Primitive basis sets for one- and two-component pseudopotential calculations have been optimized for the ground and excited states and exhibit finite basis set errors with respect to the finite-difference Hartree-Fock limit below 0.01 and 0.02 eV, respectively. General contraction schemes have been applied to obtain valence basis sets of polarized valence double- to quadruple-zeta quality. Results of atomic test calculations in the intermediate coupling scheme at the Fock-space coupled-cluster level are in good agreement with those of corresponding fully relativistic all-electron calculations based on the Dirac-Coulomb-Breit Hamiltonian. The results demonstrate besides the well-known need of a relativistic treatment at the Dirac-Coulomb level also the necessity to include higher-order corrections for the superheavy elements.

  14. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects.

    PubMed

    Hangele, Tim; Dolg, Michael; Hanrath, Michael; Cao, Xiaoyan; Schwerdtfeger, Peter

    2012-06-01

    Energy-consistent two-component semi-local pseudopotentials for the superheavy elements with atomic numbers 111-118 have been adjusted to fully relativistic multi-configuration Dirac-Hartree-Fock calculations based on the Dirac-Coulomb Hamiltonian, including perturbative corrections for the frequency-dependent Breit interaction in the Coulomb gauge and lowest-order quantum electrodynamic effects. The pseudopotential core includes 92 electrons corresponding to the configuration [Xe]4f(14)5d(10)5f(14). The parameters for the elements 111-118 were fitted by two-component multi-configuration Hartree-Fock calculations in the intermediate coupling scheme to the total energies of 267 up to 797 J levels arising from 31 up to 62 nonrelativistic configurations, including also anionic and highly ionized states, with mean absolute errors clearly below 0.02 eV for averages corresponding to nonrelativistic configurations. Primitive basis sets for one- and two-component pseudopotential calculations have been optimized for the ground and excited states and exhibit finite basis set errors with respect to the finite-difference Hartree-Fock limit below 0.01 and 0.02 eV, respectively. General contraction schemes have been applied to obtain valence basis sets of polarized valence double- to quadruple-zeta quality. Results of atomic test calculations in the intermediate coupling scheme at the Fock-space coupled-cluster level are in good agreement with those of corresponding fully relativistic all-electron calculations based on the Dirac-Coulomb-Breit Hamiltonian. The results demonstrate besides the well-known need of a relativistic treatment at the Dirac-Coulomb level also the necessity to include higher-order corrections for the superheavy elements. PMID:22697528

  15. A DPF Analysis Yields Quantum Mechanically Accurate Analytic Potential Energy Functions for the a ^1Σ^+ and X ^1Σ^+ States of NaH

    NASA Astrophysics Data System (ADS)

    Le Roy, Robert J.; Walji, Sadru; Sentjens, Katherine

    2013-06-01

    Alkali hydride diatomic molecules have long been the object of spectroscopic studies. However, their small reduced mass makes them species for which the conventional semiclassical-based methods of analysis tend to have the largest errors. To date, the only quantum-mechanically accurate direct-potential-fit (DPF) analysis for one of these molecules was the one for LiH reported by Coxon and Dickinson. The present paper extends this level of analysis to NaH, and reports a DPF analysis of all available spectroscopic data for the A ^1Σ^+-X ^1Σ^+ system of NaH which yields analytic potential energy functions for these two states that account for those data (on average) to within the experimental uncertainties. W.C. Stwalley, W.T. Zemke and S.C. Yang, J. Phys. Chem. Ref. Data {20}, 153-187 (1991). J.A. Coxon and C.S. Dickinson, J. Chem. Phys. {121}, 8378 (2004).

  16. The nature and role of quantized transition states in the accurate quantum dynamics of the reaction O + H2 yields OH + H

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Friedman, Ronald S.; Lynch, Gillian C.; Truhlar, Donald G.; Schwenke, David W.

    1993-01-01

    Accurate quantum mechanical dynamics calculations are reported for the reaction probabilities of O(3P) + H2 yields OH + H with zero total angular momentum on a single potential energy surface. The results show that the reactive flux is gated by quantized transition states up to the highest energy studied, which corresponds to a total energy of 1.90 eV. The quantized transition states are assigned and compared to vibrationally adiabatic barrier maxima; their widths and transmission coefficients are determined; and they are classified as variational, supernumerary of the first kind, and supernumerary of the second kind. Their effects on state-selected and state-to-state reactivity are discussed in detail.

  17. Monte Carlo simulation of a quantum noise limited Čerenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging

    SciTech Connect

    Teymurazyan, A.; Rowlands, J. A.; Pang, G.

    2014-04-15

    Purpose: Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) Čerenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. Methods: Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on Čerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-rays and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Čerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (∼1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. Results: A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. Conclusions: Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not require an

  18. Highly Accurate Quantum-Chemical Calculations for the Interstellar Molecules C_3 and l-C_3H^+

    NASA Astrophysics Data System (ADS)

    Botschwina, Peter; Schröder, Benjamin; Stein, Christopher; Sebald, Peter; Oswald, Rainer

    2014-06-01

    Composite potential energy surfaces with coupled-cluster contributions up to CCSDTQP were constructed for C_3 and l-C_3H^+ and used in the calculation of spectroscopic properties. The use of very large AO basis sets and the consideration of higher-order correlation beyond CCSD(T) is of utmost importance for C_3 in order to arrive at quantitative spectroscopic data. The first detection of l-C_3H^+ in the interstellar medium was reported by Pety et al., who attributed 9 radio lines observed in the horsehead photodissociation region to that species. That assignment was questioned by the recent theoretical work of Huang et al. However, our more accurate calculations are well in support of the original assignment. The calculated ground-state rotational constant is B_0 = 11248 MHz, only 0.03% off from the radio astronomical value of 11244.9512±0.0015 MHz. The ratio of centrifugal distortion constants D_0(exp.)/D_e(theor.) of 1.8 is quite large, but reasonable in comparison with C_3O and C_3. J. Pety, P. Gratier, V. Guzmán, E. Roueff, M. Gerin et al., Astron. Astrophys. 2012, A68, 1-8. X. Huang, R. C. Fortenberry, T. J. Lee, Astrophys. J. Lett. 2013, 768:L25, 1-5. P. Botschwina, R. Oswald, J. Chem. Phys. 2008, 129, 044305

  19. Quantum Monte Carlo study of hard-core bosons in a pyrochlore lattice with six-site ring-exchange interactions

    NASA Astrophysics Data System (ADS)

    Tieman, Catherine; Rousseau, Valery

    Highly frustrated quantum systems on lattices can exhibit a wide variety of phases. In addition to the usual Mott insulating and superfluid phases, these systems can also produce some so-called ``exotic phases'', such as super-solid and valence-bond-solid phases. An example of particularly frustrated lattice is the pyrochlore structure, which is formed by corner-sharing tetrahedrons. Many real materials adopt this structure, for instance the crystal Cd2 Re2O7 , which exhibits superconducting properties. However, the complex structure of these materials combined with the complexity of the dominant interactions that describe them makes their analytical study difficult. Also, approximate methods, such as mean-field theory, fail to give a correct description of these systems. In this work, we report on the first exact quantum Monte Carlo study of a model of hard-core bosons in a pyrochlore lattice with six-site ring-exchange interactions, using the Stochastic Green Function (SGF) algorithm. We analyze the superfluid density and the structure factor as functions of the filling and ring-exchange interaction strength, and we map out the ground state phase diagram.

  20. Combined Monte Carlo and quantum mechanics study of the hydration of the guanine-cytosine base pair.

    PubMed

    Coutinho, Kaline; Ludwig, Valdemir; Canuto, Sylvio

    2004-06-01

    We present a computer simulation study of the hydration of the guanine-cytosine (GC) hydrogen-bonded complex. Using first principles density-functional theory, with gradient-corrected exchange-correlation and Monte Carlo simulation, we include thermal contribution, structural effects, solvent polarization, and the water-water and water-GC hydrogen bond interaction to show that the GC interaction in an aqueous environment is weakened to about 70% of the value obtained for an isolated complex. We also analyze in detail the preferred hydration sites of the GC pair and show that on the average it makes around five hydrogen bonds with water.

  1. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.

    PubMed

    Wang, Yimin; Braams, Bastiaan J; Bowman, Joel M; Carter, Stuart; Tew, David P

    2008-06-14

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.

  2. Quantum Monte Carlo Study of the Ground-State Properties of a Fermi Gas in the BCS-BEC Crossover

    SciTech Connect

    Giorgini, S.; Astrakharchik, G. E.; Boronat, J.; Casulleras, J.

    2006-11-07

    The ground-state properties of a two-component Fermi gas with attractive short-range interactions are calculated using the fixed-node diffusion Monte Carlo method. The interaction strength is varied over a wide range by tuning the value of the s-wave scattering length of the two-body potential. We calculate the ground-state energy per particle and we characterize the equation of state of the system. Off-diagonal long-range order is investigated through the asymptotic behavior of the two-body density matrix. The condensate fraction of pairs is calculated in the unitary limit and on both sides of the BCS-BEC crossover.

  3. Magnetic and pairing properties of a two-orbital model for the pnictide superconductors: a quantum Monte Carlo study.

    PubMed

    Liu, Guang-Kun; Huang, Zhong-Bing; Wang, Yong-Jun

    2014-08-13

    Using the constrained-path Monte Carlo method, a two-orbital model for the pnictide superconductors is studied at half filling and in both the electron- and hole-doped cases. At half filling, a stable (π, 0)/(0, π) magnetic order is explicitly observed and the system tends to be in an orthomagnetic order rather than the striped antiferromagnetic order on increasing the Coulomb repulsion U. In the electron-doped case, the (π, 0)/(0, π) magnetic order is enhanced upon doping and suppressed eventually and a s(±) pairing state dominates all the possible nearest-neighbour-bond pairings. Whereas in the hole-doped case, the magnetic order is straightforwardly suppressed and two nearly degenerate A(1g) and B(1g) intraband pairings become the dominant ones. PMID:25029986

  4. Quantum Monte Carlo for the x-ray absorption spectrum of pyrrole at the nitrogen K-edge

    SciTech Connect

    Zubarev, Dmitry Yu.; Austin, Brian M.; Lester, William A. Jr.

    2012-04-14

    Fixed-node diffusion Monte Carlo (FNDMC) is used to simulate the x-ray absorption spectrum of a gas-phase pyrrole molecule at the nitrogen K-edge. Trial wave functions for core-excited states are constructed from ground-state Kohn-Sham determinants substituted with singly occupied natural orbitals from configuration interaction with single excitations calculations of the five lowest valence-excited triplet states. The FNDMC ionization potential (IP) is found to lie within 0.3 eV of the experimental value of 406.1 {+-} 0.1 eV. The transition energies to anti-bonding virtual orbitals match the experimental spectrum after alignment of IP values and agree with the existing assignments.

  5. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies.

    PubMed

    Singh, Ambrish; Lin, Yuanhua; Quraishi, Mumtaz A; Olasunkanmi, Lukman O; Fayemi, Omolola E; Sasikumar, Yesudass; Ramaganthan, Baskar; Bahadur, Indra; Obot, Ime B; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-08-18

    The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  6. Accurate detection of on-state quantum dot and biomolecules in a microfluidic flow with single-molecule two-color coincidence detection.

    PubMed

    Zhang, Chun-Yang; Yang, Kun

    2010-05-01

    Due to their unique optical and electronic properties, quantum dots (QDs) have been widely used in a variety of biosensors for sensitive detection of biomarkers and small molecules. However, single QD exhibits dynamic fluctuation of fluorescence intensity (i.e., blinking) with the transition between on and off states, which adversely influences the development of QD-based optical biosensors. Therefore, the methods for efficient evaluation of on-state QD are especially important and highly desirable. In this paper, a novel and unique approach based on single-molecule two-color coincidence detection is developed to simply and accurately evaluate the on-state QDs in a microfluidic flow. Our results demonstrate that improved QDs in the on state are detected in a microfluidic flow in comparison with that in the Brownian motion state, thus paving the way to the development of single QD-based biosensors for sensitive detection of low-abundance biomolecules. This single-molecule two-color coincidence detection has been applied for the homegeneous detection of nucleic acids in a microfluidic flow with the detection sensitivity of 5.0 fM.

  7. The calculation of accurate 17O hyperfine coupling constants in the hydroxyl radical: A difficult problem for current quantum chemical methods

    NASA Astrophysics Data System (ADS)

    Wetmore, Stacey D.; Eriksson, Leif A.; Boyd, Russell J.

    1998-12-01

    The hyperfine coupling constants (HFCCs) in the hydroxyl radical are investigated through comparison of results obtained from a variety of quantum chemical methods. The couplings obtained from the multi-reference configuration interaction (MRCI) wave function, built upon the restricted open-shell Hartree-Fock (ROHF) reference determinant, are investigated in terms of the basis set, the configuration selection energy threshold, and the size of the reference space. Overall results which converge to the experimental couplings are obtained for hydrogen, but not for oxygen. In particular, the MRCI method shows no improvement over density functional theory (the B3LYP functional), for the calculation of Aiso(17O). On the other hand, results in excellent agreement with experiment are obtained through the use of the quadratic configuration interaction (QCISD) method based on the unrestricted HF (UHF) reference determinant with the identical basis sets. Examination of UHF and ROHF based coupled-cluster methods, CCSD and CCSD(T), indicates that once a high enough level of electron correlation is included, the oxygen HFCC is independent of the form of the reference determinant. Unlike the ROHF-CCSD method, which yields reliable results once the effects of triple excitations have been taken into account, the MRCI wave function cannot easily be adjusted to account for the inadequacies of the ROHF reference determinant in order to accurately predict 17O HFCCs.

  8. Valence-bond crystal in the extended kagome spin-(1)/(2) quantum Heisenberg antiferromagnet: A variational Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Iqbal, Yasir; Becca, Federico; Poilblanc, Didier

    2011-03-01

    The highly frustrated spin-(1)/(2) quantum Heisenberg model with both nearest (J1) and next-nearest (J2) neighbor exchange interactions is revisited by using an extended variational space of projected wave functions that are optimized with state-of-the-art methods. Competition between modulated valence-bond crystals (VBCs) proposed in the literature and the Dirac spin liquid (DSL) is investigated. We find that the addition of a small ferromagnetic next-nearest-neighbor exchange coupling |J2|>0.09J1 leads to stabilization of a 36-site unit cell VBC, although the DSL remains a local minimum of the variational parameter landscape. This implies that the VBC is not trivially connected to the DSL; instead it possesses a nontrivial flux pattern and large dimerization.

  9. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study.

    PubMed

    Adriano Junior, L; Fonseca, T L; Castro, M A

    2016-06-21

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller-Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to the gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.

  10. Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO

    SciTech Connect

    Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.

    2015-10-28

    We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To study defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. Lastly, these results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy. (C) 2015 AIP Publishing LLC.

  11. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study

    NASA Astrophysics Data System (ADS)

    Adriano Junior, L.; Fonseca, T. L.; Castro, M. A.

    2016-06-01

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller-Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to the gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.

  12. The Numerical Comparison of Magnetic Susceptibility and Heat Capacity of TMNIN with the Result of a Quantum Monte Carlo Method for the Haldane System

    NASA Astrophysics Data System (ADS)

    Ito, Masakazu; Mito, Masaki; Deguchi, Hiroyuki; Takeda, Kazuyoshi

    1994-03-01

    The measurements of magnetic heat capacity and susceptibility of one-dimensional S=1 antiferromagnet (CH3)4NNi(NO2)3 (TMNIN) have been carried out in order to make comparison with the theoretical results of a quantum Monte Carlo method for the Haldane system. The results for the heat capacity, which show a broad maximum around 10 K, are well reproduced by the theory with the interaction J/k B=-12.0±1.0 K in the temperature range T>0.2\\mid J\\mid S(S+1)/k_B. The low temperature heat capacity exhibits an exponential decay with gap energy Δ/k B=5.3±0.2 K, which gives {\\mitΔ}=0.44\\mid J\\mid , in contrast to the linear dependence on temperature as in the case for half integer spin. The residual magnetic entropy below 0.7 K is estimated to be 0.07% of Nk B ln 3, which denies the possibility of three-dimensional ordering of the spin system at lower temperatures. The observed susceptibility also agrees with the theory with J/k B=-10.9 K and g=2.02 in the whole temperature region, when we take the effect from the finite length of the chains into consideration.

  13. Quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be with meson-exchange currents derived from chiral effective field theory

    SciTech Connect

    Pastore, S.; Wiringa, Robert B.; Pieper, Steven C.; Schiavilla, Rocco

    2014-08-01

    We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.

  14. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    PubMed

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement

  15. Part i: Lie-Backlund Theory and Linearization of Differential Equations. Part II: Monte Carlo Simulations of 1-D Quantum Spin Models.

    NASA Astrophysics Data System (ADS)

    Cullen, John J.

    Part I begins with an account of groups of Lie -Back-lund (L-B) tangent transformations; it is then shown that L-B symmetry operators depending on integrals (nonlocal variables), such as discussed by Konopelchenko and Mokhnachev (1979), are related by change of variables to the L-B operators which involve no more than derivatives. A general method is set down for transforming a given L-B operator into a new one, by any invertible transformation depending on (. . ., D(,x)('-1) u, u, u(,x), . . .). It is shown that once a given differential equation admits a L-B operator, there is in general a very large number of related ("secondary") equations which admit the same operator. The L-B Theory involving nonlocal variables is used to characterize group theoretically the linearization both of the Burgers equation, u(,t) + uu(,x) - u(,xx) = 0, and of the o.d.e. u(,xx) + (omega)('2)(x)u + Ku('-3) = 0. Secondary equations are found to play an important role in understanding the group theoretical background to the linearization of differential equations. Part II deals with Monte Carlo simulations of the l-d quantum Heisenberg and XY-models, using an approach suggested by Suzuki (1976). The simulation is actually carried out on a 2-d, m x N, Isinglike system, equivalent to the original N-spin quantum system when m (--->) (INFIN). The results for m (LESSTHEQ) 10 and kT/(VBAR)J(VBAR) (GREATERTHEQ) .0125 are good enough to show that the method is generally applicable to quantum spin models; however some difficulties caused by singular bonding in the classical lattice (Wiesler 1982) and by the generation of unwanted states have to be taken into account in practice. The finite-size scaling method of Fisher and Ferdinard is adapted for use near T = 0 in the ferromagnetic Heisenberg model; applied to the simulation data it shows that the low temperature susceptibiltiy behaves at T('-(gamma)), where (gamma) = 1.32 (+OR-) 10%. Also, simple and potentially useful finite-size scaling

  16. Comparison of the completely renormalized equation-of-motion coupled-cluster and Quantum Monte Carlo results for the low-lying electronic states of methylene

    NASA Astrophysics Data System (ADS)

    Gour, Jeffrey R.; Piecuch, Piotr; Włoch, Marta

    2010-10-01

    The left-eigenstate completely renormalized (CR) equation-of-motion (EOM) coupled-cluster (CC) method with singles, doubles, and non-iterative triples, abbreviated as CR-EOMCC(2,3) [M. Włoch et al., Mol. Phys. 104, 2149 (2006); P. Piecuch et al., Int. J. Quantum Chem. 109, 3268 (2009)], and the companion ground-state CR-CC(2,3) methodology [P. Piecuch and M. Włoch, J. Chem. Phys. 123, 224105 (2005); P. Piecuch et al., Chem. Phys. Lett. 418, 467 (2006)] are used to determine the total electronic and adiabatic excitation energies corresponding to the ground and lowest three excited states of methylene. The emphasis is on comparing the CR-CC(2,3)/CR-EOMCC(2,3) results obtained with the large correlation-consistent basis sets of the aug-cc-pCV xZ (x = T, Q, 5) quality and the corresponding complete basis set (CBS) limits with the recently published variational and diffusion Quantum Monte Carlo (QMC) data [P. Zimmerman et al., J. Chem. Phys. 131, 124103 (2009)]. It is demonstrated that the CBS CR-CC(2,3)/CR-EOMCC(2,3) results are in very good agreement with the best QMC, i.e. diffusion MC (DMC) data, with errors in the total and adiabatic excitation energies of all calculated states on the order of a few millihartree and less than 0.1 eV, respectively, even for the challenging, strongly multi-reference C 1 A 1 state for which the basic EOMCC approach with singles and doubles completely fails. The agreement between the CBS CR-CC(2,3)/CR-EOMCC(2,3) and variational MC (VMC) results for the total energies is not as good as in the DMC case, but the excitation energies resulting from the CBS CR-CC(2,3)/CR-EOMCC(2,3) and VMC calculations agree very well.

  17. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz

    NASA Astrophysics Data System (ADS)

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco; Sorella, Sandro; Casula, Michele

    2015-06-01

    We study the ionization energy, electron affinity, and the π → π∗ (1La) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the 1La excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral 1La excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  18. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz

    SciTech Connect

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco Casula, Michele; Sorella, Sandro

    2015-06-07

    We study the ionization energy, electron affinity, and the π → π{sup ∗} ({sup 1}L{sub a}) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the {sup 1}L{sub a} excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral {sup 1}L{sub a} excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  19. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    NASA Astrophysics Data System (ADS)

    Al-Hamdani, Yasmine S.; Ma, Ming; Alfè, Dario; von Lilienfeld, O. Anatole; Michaelides, Angelos

    2015-05-01

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  20. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo.

    PubMed

    Al-Hamdani, Yasmine S; Ma, Ming; Alfè, Dario; von Lilienfeld, O Anatole; Michaelides, Angelos

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT. PMID:25978876

  1. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    SciTech Connect

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos; Alfè, Dario; Lilienfeld, O. Anatole von

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  2. Estimation of beryllium ground state energy by Monte Carlo simulation

    SciTech Connect

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  3. Equations of state and phase transitions in (Mg,Fe)SiO3 perovskite and post-perovskites, position of the phase boundary and its double crossing, by Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.; Lin, Y.

    2015-12-01

    We have performed quantum Monte Carlo (QMC) simulations and density functional theory calculations to study the equations of state and phase transitions in (Mg,Fe)SiO3 perovskite (Pv, bridgmanite) and post-perovskite (PPv) .[1] The ground-state energies were derived using quantum QMC simulations and the temperature-dependent Helmholtz free energies were calculated within the quasiharmonic approximation and density functional perturbation theory. Quantum Monte Carlo (QMC) within Diffusion Monte Carlo (DMC) is a stochastic numerical solution of Schrödinger's equation within the fixed many-particle nodes obtained, in our case, from a determinant of DFT orbitals. Agreement with experiments is improved over DFT alone. Furthermore, we obtain statistical error bounds on the results, rather than the unconstrained errors of DFT. The Pv-PPv phase boundary calculated from our QMC equations of state is also consistent with experiments, and better than previous DFT computations. In order to understand the H-phase reported in (Mg,Fe)SiO3 [2], we have performed evolutionary structure searching for FeSiO3.[3] We find a new structure type which may be consistent with the experimental observations, but is a lower pressure, less dense, phase. We have built a thermodynamic model for (Mg,Fe)SiO3 perovskite as a function of P and T, and will discuss implications for the location of the phase boundary in D'' and its double crossing [4]. This work is supported by NSF and the ERC Advanced Grant ToMCaT. [1] Y. Lin, R. E. Cohen, S. Stackhouse, K. P. Driver, B. Militzer, L. Shulenburger, and J. Kim, Phys. Rev. B 90 (2014). [2] L. Zhang et al., Science 344, 877 (2014). [3] R. E. Cohen and Y. Lin, Phys. Rev. B 90 (2014). [4] J.W. Hernlund, C. Thomas and P.J. Tackley, Nature 434, 882 (2005).

  4. Self-healing diffusion quantum Monte Carlo algorithms: methods for direct reduction of the fermion sign error in electronic structure calculations

    SciTech Connect

    Reboredo, F A; Hood, R Q; Kent, P C

    2009-01-06

    We develop a formalism and present an algorithm for optimization of the trial wave-function used in fixed-node diffusion quantum Monte Carlo (DMC) methods. The formalism is based on the DMC mixed estimator of the ground state probability density. We take advantage of a basic property of the walker configuration distribution generated in a DMC calculation, to (i) project-out a multi-determinant expansion of the fixed node ground state wave function and (ii) to define a cost function that relates the interacting-ground-state-fixed-node and the non-interacting trial wave functions. We show that (a) locally smoothing out the kink of the fixed-node ground-state wave function at the node generates a new trial wave function with better nodal structure and (b) we argue that the noise in the fixed-node wave function resulting from finite sampling plays a beneficial role, allowing the nodes to adjust towards the ones of the exact many-body ground state in a simulated annealing-like process. Based on these principles, we propose a method to improve both single determinant and multi-determinant expansions of the trial wave function. The method can be generalized to other wave function forms such as pfaffians. We test the method in a model system where benchmark configuration interaction calculations can be performed and most components of the Hamiltonian are evaluated analytically. Comparing the DMC calculations with the exact solutions, we find that the trial wave function is systematically improved. The overlap of the optimized trial wave function and the exact ground state converges to 100% even starting from wave functions orthogonal to the exact ground state. Similarly, the DMC total energy and density converges to the exact solutions for the model. In the optimization process we find an optimal non-interacting nodal potential of density-functional-like form whose existence was predicted in a previous publication [Phys. Rev. B 77 245110 (2008)]. Tests of the method are

  5. Beyond transition state theory: accurate description of nuclear quantum effects on the rate and equilibrium constants of chemical reactions using Feynman path integrals.

    PubMed

    Vanícek, Jirí

    2011-01-01

    Nuclear tunneling and other nuclear quantum effects have been shown to play a significant role in molecules as large as enzymes even at physiological temperatures. I discuss how these quantum phenomena can be accounted for rigorously using Feynman path integrals in calculations of the equilibrium and kinetic isotope effects as well as of the temperature dependence of the rate constant. Because these calculations are extremely computationally demanding, special attention is devoted to increasing the computational efficiency by orders of magnitude by employing efficient path integral estimators.

  6. Bold Diagrammatic Monte Carlo Method Applied to Fermionized Frustrated Spins

    NASA Astrophysics Data System (ADS)

    Kulagin, S. A.; Prokof'ev, N.; Starykh, O. A.; Svistunov, B.; Varney, C. N.

    2013-02-01

    We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing—cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.

  7. Fully Coriolis-coupled quantum studies of the H + O2 (upsilon i = 0-2, j i = 0,1) --> OH + O reaction on an accurate potential energy surface: integral cross sections and rate constants.

    PubMed

    Lin, Shi Ying; Sun, Zhigang; Guo, Hua; Zhang, Dong Hui; Honvault, Pascal; Xie, Daiqian; Lee, Soo-Y

    2008-01-31

    We present accurate quantum calculations of the integral cross section and rate constant for the H + O2 --> OH + O combustion reaction on a recently developed ab initio potential energy surface using parallelized time-dependent and Chebyshev wavepacket methods. Partial wave contributions up to J = 70 were computed with full Coriolis coupling, which enabled us to obtain the initial state-specified integral cross sections up to 2.0 eV of the collision energy and thermal rate constants up to 3000 K. The integral cross sections show a large reaction threshold due to the quantum endothermicity of the reaction, and they monotonically increase with the collision energy. As a result, the temperature dependence of the rate constant is of the Arrhenius type. In addition, it was found that reactivity is enhanced by reactant vibrational excitation. The calculated thermal rate constant shows a significant improvement over that obtained on the DMBE IV potential, but it still underestimates the experimental consensus.

  8. Discrete Diffusion Monte Carlo for grey Implicit Monte Carlo simulations.

    SciTech Connect

    Densmore, J. D.; Urbatsch, T. J.; Evans, T. M.; Buksas, M. W.

    2005-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a hybrid transport-diffusion method for Monte Carlo simulations in diffusive media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Thus, DDMC produces accurate solutions while increasing the efficiency of the Monte Carlo calculation. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for grey Implicit Monte Carlo calculations. First, we employ a diffusion equation that is discretized in space but is continuous time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. In addition, we treat particles incident on an optically thick region using the asymptotic diffusion-limit boundary condition. This interface technique can produce accurate solutions even if the incident particles are distributed anisotropically in angle. Finally, we develop a method for estimating radiation momentum deposition during the DDMC simulation. With a set of numerical examples, we demonstrate the accuracy and efficiency of our improved DDMC method.

  9. Low temperature rate constants for the N + CN → N2 + C reaction: two-dimensional quantum capture calculations on an accurate potential energy surface.

    PubMed

    Ma, Jianyi; Guo, Hua; Dawes, Richard

    2012-09-21

    The title reaction is thought to be responsible for the production of molecular nitrogen in interstellar clouds. In this work, we report quantum capture calculations on a new two-dimensional potential energy surface determined by interpolating high-level ab initio data. The low-temperature rate constant calculated using a capture model is quite large and has a positive temperature dependence, in agreement with a recent experiment. The origin of the aforementioned behaviors of the rate constant is analyzed.

  10. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.

    PubMed

    Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L

    2009-07-14

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol.

  11. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.

    PubMed

    Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L

    2009-07-14

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol. PMID:19603962

  12. Full-dimensional quantum calculations of vibrational levels of NH4+ and isotopomers on an accurate ab initio potential energy surface

    DOE PAGES

    Hua -Gen Yu; Han, Huixian; Guo, Hua

    2016-03-29

    Vibrational energy levels of the ammonium cation (NH4+) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4+ and ND4+ exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm–1.

  13. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface.

    PubMed

    Yu, Hua-Gen; Han, Huixian; Guo, Hua

    2016-04-14

    Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).

  14. Quantum instanton approximation for thermal rate constants of chemical reactions

    NASA Astrophysics Data System (ADS)

    Miller, William H.; Zhao, Yi; Ceotto, Michele; Yang, Sandy

    2003-07-01

    A quantum mechanical theory for chemical reaction rates is presented which is modeled after the [semiclassical (SC)] instanton approximation. It incorporates the desirable aspects of the instanton picture, which involves only properties of the (SC approximation to the) Boltzmann operator, but corrects its quantitative deficiencies by replacing the SC approximation for the Boltzmann operator by the quantum Boltzmann operator, exp(-βĤ). Since a calculation of the quantum Boltzmann operator is feasible for quite complex molecular systems (by Monte Carlo path integral methods), having an accurate rate theory that involves only the Boltzmann operator could be quite useful. The application of this quantum instanton approximation to several one- and two-dimensional model problems illustrates its potential; e.g., it is able to describe thermal rate constants accurately (˜10-20% error) from high to low temperatures deep in the tunneling regime, and applies equally well to asymmetric and symmetric potentials.

  15. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    SciTech Connect

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.; Merz, Kenneth M. Jr; Westerhoff, Lance M.

    2014-05-01

    Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  16. Monte Carlo fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    Cong, Alexander X.; Hofmann, Matthias C.; Cong, Wenxiang; Xu, Yong; Wang, Ge

    2011-07-01

    Fluorescence microscopy allows real-time monitoring of optical molecular probes for disease characterization, drug development, and tissue regeneration. However, when a biological sample is thicker than 1 mm, intense scattering of light would significantly degrade the spatial resolution of fluorescence microscopy. In this paper, we develop a fluorescence microtomography technique that utilizes the Monte Carlo method to image fluorescence reporters in thick biological samples. This approach is based on an l0-regularized tomography model and provides an excellent solution. Our studies on biomimetic tissue scaffolds have demonstrated that the proposed approach is capable of localizing and quantifying the distribution of optical molecular probe accurately and reliably.

  17. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    SciTech Connect

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  18. Enhanced Constraints for Accurate Lower Bounds on Many-Electron Quantum Energies from Variational Two-Electron Reduced Density Matrix Theory

    NASA Astrophysics Data System (ADS)

    Mazziotti, David A.

    2016-10-01

    A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T 2 condition. Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T 2 condition will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.

  19. Accurate calculation of chemical shifts in highly dynamic H2@C60 through an integrated quantum mechanics/molecular dynamics scheme.

    PubMed

    Jiménez-Osés, Gonzalo; García, José I; Corzana, Francisco; Elguero, José

    2011-05-20

    A new protocol combining classical MD simulations and DFT calculations is presented to accurately estimate the (1)H NMR chemical shifts of highly mobile guest-host systems and their thermal dependence. This strategy has been successfully applied for the hydrogen molecule trapped into C(60) fullerene, an unresolved and challenging prototypical case for which experimental values have never been reproduced. The dependence of the final values on the theoretical method and their implications to avoid over interpretation of the obtained results are carefully described.

  20. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement.

    PubMed

    Borbulevych, Oleg; Martin, Roger I; Tickle, Ian J; Westerhoff, Lance M

    2016-04-01

    Gaining an understanding of the protein-ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states. A novel scoring method, called XModeScore, is described which enumerates the possible protomeric/tautomeric modes, refines each mode against X-ray diffraction data with the semiempirical quantum-mechanics (PM6) Hamiltonian and scores each mode using a combination of energetic strain (or ligand strain) and rigorous statistical analysis of the difference electron-density distribution. It is shown that using XModeScore it is possible to consistently distinguish the correct bound protomeric/tautomeric modes based on routine X-ray data, even at lower resolutions of around 3 Å. These X-ray results are compared with the results obtained from much more expensive and laborious neutron diffraction studies for three different examples: tautomerism in the acetazolamide ligand of human carbonic anhydrase II (PDB entries 3hs4 and 4k0s), tautomerism in the 8HX ligand of urate oxidase (PDB entries 4n9s and 4n9m) and the protonation states of the catalytic aspartic acid found within the active site of an aspartic protease (PDB entry 2jjj). In each case, XModeScore applied to the X-ray diffraction data is able to determine the correct protonation state as defined by the neutron diffraction data. The impact of QM-based refinement versus conventional

  1. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement

    PubMed Central

    Borbulevych, Oleg; Martin, Roger I.; Tickle, Ian J.; Westerhoff, Lance M.

    2016-01-01

    Gaining an understanding of the protein–ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states. A novel scoring method, called XModeScore, is described which enumerates the possible protomeric/tautomeric modes, refines each mode against X-ray diffraction data with the semiempirical quantum-mechanics (PM6) Hamiltonian and scores each mode using a combination of energetic strain (or ligand strain) and rigorous statistical analysis of the difference electron-density distribution. It is shown that using XModeScore it is possible to consistently distinguish the correct bound protomeric/tautomeric modes based on routine X-ray data, even at lower resolutions of around 3 Å. These X-ray results are compared with the results obtained from much more expensive and laborious neutron diffraction studies for three different examples: tautomerism in the acetazolamide ligand of human carbonic anhydrase II (PDB entries 3hs4 and 4k0s), tautomerism in the 8HX ligand of urate oxidase (PDB entries 4n9s and 4n9m) and the protonation states of the catalytic aspartic acid found within the active site of an aspartic protease (PDB entry 2jjj). In each case, XModeScore applied to the X-ray diffraction data is able to determine the correct protonation state as defined by the neutron diffraction data. The impact of QM-based refinement versus conventional

  2. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

    PubMed

    Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M

    2014-05-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  3. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    PubMed Central

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.; Merz, Kenneth M.; Westerhoff, Lance M.

    2014-01-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography. PMID:24816093

  4. Refinement of the experimental energy levels of higher {sup 2}D Rydberg states of the lithium atom with very accurate quantum mechanical calculations

    SciTech Connect

    Sharkey, Keeper L.; Bubin, Sergiy; Adamowicz, Ludwik

    2011-05-21

    Very accurate variational non-relativistic calculations are performed for four higher Rydberg {sup 2}D states (1s{sup 2}nd{sup 1}, n= 8, ..., 11) of the lithium atom ({sup 7}Li). The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions and finite nuclear mass is used. The exponential parameters of the Gaussians are optimized using the variational method with the aid of the analytical energy gradient determined with respect to those parameters. The results of the calculations allow for refining the experimental energy levels determined with respect to the {sup 2}S 1s{sup 2}2s{sup 1} ground state.

  5. Using multiple quantum coherence to increase the 15N resolution in a three-dimensional TROSY HNCO experiment for accurate PRE and RDC measurements.

    PubMed

    Hu, Kaifeng; Doucleff, Michaeleen; Clore, G Marius

    2009-10-01

    We present a new version of the 3D TROSY HNCO pulse scheme, referred to as HR-TROSY HNCO, with comparable resolution in the (15)N dimension to a 2D (1)H-(15)N HSQC experiment. In the conventional 3D TROSY HNCO, the constant time period (1/2J(NC) approximately 32 ms) severely limits the maximum resolution in the (15)N dimension. In the HR-TROSY HNCO experiment presented here, both constant time periods (approximately 32 ms each) for coherence forward and backward transfer between (15)N and (13)C' are utilized to double the (15)N evolution time. This leads to a dramatic enhancement in peak separation along the (15)N dimension, making the HR-TROSY HNCO an ideal pulse scheme for accurate paramagnetic relaxation enhancement and residual dipolar coupling measurements. PMID:19615926

  6. Proton Upset Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  7. Prediction of {sup 2}D Rydberg energy levels of {sup 6}Li and {sup 7}Li based on very accurate quantum mechanical calculations performed with explicitly correlated Gaussian functions

    SciTech Connect

    Bubin, Sergiy; Sharkey, Keeper L.; Adamowicz, Ludwik

    2013-04-28

    Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies of {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.

  8. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  9. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.

    PubMed

    Rorick, Amber; Michael, Matthew A; Yang, Liu; Zhang, Yong

    2015-09-01

    Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins.

  10. Hellman-Feynman operator sampling in diffusion Monte Carlo calculations.

    PubMed

    Gaudoin, R; Pitarke, J M

    2007-09-21

    Diffusion Monte Carlo (DMC) calculations typically yield highly accurate results in solid-state and quantum-chemical calculations. However, operators that do not commute with the Hamiltonian are at best sampled correctly up to second order in the error of the underlying trial wave function once simple corrections have been applied. This error is of the same order as that for the energy in variational calculations. Operators that suffer from these problems include potential energies and the density. This Letter presents a new method, based on the Hellman-Feynman theorem, for the correct DMC sampling of all operators diagonal in real space. Our method is easy to implement in any standard DMC code.

  11. Monte Carlo Benchmark

    2010-10-20

    The "Monte Carlo Benchmark" (MCB) is intended to model the computatiional performance of Monte Carlo algorithms on parallel architectures. It models the solution of a simple heuristic transport equation using a Monte Carlo technique. The MCB employs typical features of Monte Carlo algorithms such as particle creation, particle tracking, tallying particle information, and particle destruction. Particles are also traded among processors using MPI calls.

  12. Quantum Monte Carlo Computations of the (Mg1-XFeX) SiO3 Perovskite to Post-perovskite Phase Boundary

    NASA Astrophysics Data System (ADS)

    Lin, Yangzheng; Cohen, R. E.; Floris, Andrea; Shulenburger, Luke; Driver, Kevin P.

    We have computed total energies of FeSiO3 and MgSiO3[1 ] perovskite and post-perovskite using diffusion Monte Carlo with the qmcpack GPU code. In conjunction with DFT +U computations for intermediate compositions (Mg1-XFeX) SiO3 and phonons computed using density functional perturbation theory (DFPT) with the pwscf code, we have derived the chemical potentials of perovskite (Pv) and post-perovskite (PPv) (Mg1-XFeX) SiO3 and computed the binary phase diagram versus P, T, and X using a non-ideal solid solution model. The finite temperature effects were considered within quasi-harmonic approximation (QHA). Our results show that ferrous iron stabilizes PPv and lowers the Pv-PPv transition pressure, which is consistent with previous theoretical and some experimental studies. We will discuss the correlation between the Earth's D'' layer and the Pv to PPv phase boundary. Computations were performed on XSEDE machines, and on the Oak Ridge Leadership Computing Facility (OLCF) machine Titan under project CPH103geo of INCITE program E-mail: rcohen@carnegiescience.edu; This work is supported by NSF.

  13. Shell model Monte Carlo methods

    SciTech Connect

    Koonin, S.E.; Dean, D.J.

    1996-10-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of {gamma}-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs.

  14. Monte Carlo simulations on the Lefschetz thimble: Taming the sign problem

    NASA Astrophysics Data System (ADS)

    Cristoforetti, Marco; Di Renzo, Francesco; Mukherjee, Abhishek; Scorzato, Luigi

    2013-09-01

    We present the first practical Monte Carlo calculations of the recently proposed Lefschetz thimble formulation of quantum field theories. Our results provide strong evidence that the numerical sign problem that afflicts Monte Carlo calculations of models with complex actions can be softened significantly by changing the domain of integration to the Lefschetz thimble or approximations thereof. We study the interacting complex scalar field theory (relativistic Bose gas) in lattices of size up to 84 using a computationally inexpensive approximation of the Lefschetz thimble. Our results are in excellent agreement with known results. We show that—at least in the case of the relativistic Bose gas—the thimble can be systematically approached and the remaining residual phase leads to a much more tractable sign problem (if at all) than the original formulation. This is especially encouraging in view of the wide applicability—in principle—of our method to quantum field theories with a sign problem. We believe that this opens up new possibilities for accurate Monte Carlo calculations in strongly interacting systems of sizes much larger that previously possible.

  15. Valence-bond crystal in the extended Kagomé spin- 1 / 2 quantum Heisenberg antiferromagnet: A variational Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Becca, Federico; Iqbal, Yasir; Poilblanc, Didier

    2011-03-01

    The highly-frustrated spin- 1 / 2 quantum Heisenberg model with both nearest (J1) and next-nearest (J2) neighbor exchange interactions is revisited by using an extended variational space of projected wave functions that are optimized with state-of-the-art methods. Competition between modulated valence-bond crystals (VBC) proposed in the literature and the Dirac spin liquid (DSL) is investigated. We find that the addition of a small ferromagnetic next-nearest-neighbor exchange coupling |J2 | > 0.09J1 leads to stabilization of a 36-site unit cell VBC, although the DSL remains a local minimum of the variational parameter landscape. This implies that the VBC is not trivially connected to the DSL: instead it possesses a non-trivial flux pattern and large dimerization.

  16. About the collapse of the 3.3 μm CH stretching band with ionization in polycyclic aromatic hydrocarbons: Configuration interaction and quantum Monte Carlo studies of the CH fragment

    NASA Astrophysics Data System (ADS)

    Pauzat, Françoise; Pilmé, Julien; Toulouse, Julien; Ellinger, Yves

    2010-08-01

    The puzzling difference between the IR spectra of polycyclic aromatic hydrocarbons (PAHs) and those of the corresponding positive ions (PAHs+) is a well documented fact, although the basic reason for it is far from clear. In this report, the CH fragment, in its neutral and ionized forms is taken as a case study for investigating the collapse of the CH stretching vibration with ionization. A comprehensive study of the dipole moment function around the equilibrium geometries of the fragments using large scale configuration interaction and quantum Monte Carlo methods shows very different variations with the CH distance: a marked decrease for neutral CH(Π2) and a perfect stability for ionized CH+(Σ1+). These results are consistent with strong/weak intensities of the CH vibrations in the neutral/ionized PAHs, the key point being the presence, or not, of a hole in the π shell. A topological analysis of the electronic densities shows that the collapse of the CH stretching with ionization is directly linked to the compensation between the internal charge transfer contribution and the distortion of the electronic density within the CH bond.

  17. Thermodynamic properties of Th xU 1-xO 2 (0 < x < 1) based on quantum-mechanical calculations and Monte-Carlo simulations

    NASA Astrophysics Data System (ADS)

    Shuller, Lindsay C.; Ewing, Rodney C.; Becker, Udo

    2011-05-01

    Th xU 1-xO 2+y binary compositions occur in nature, uranothorianite, and as a mixed oxide nuclear fuel. As a nuclear fuel, important properties, such as the melting point, thermal conductivity, and the thermal expansion coefficient change as a function of composition. Additionally, for direct disposal of Th xU 1-xO 2, the chemical durability changes as a function of composition, with the dissolution rate decreasing with increasing thoria content. UO 2 and ThO 2 have the same isometric structure, and the ionic radii of 8-fold coordinated U 4+ and Th 4+ are similar (1.14 nm and 1.19 nm, respectively). Thus, this binary is expected to form a complete solid solution. However, atomic-scale measurements or simulations of cation ordering and the associated thermodynamic properties of the Th xU 1-xO 2 system have yet to be determined. A combination of density-functional theory, Monte-Carlo methods, and thermodynamic integration are used to calculate thermodynamic properties of the Th xU 1-xO 2 binary (Δ H mix, Δ G mix, Δ S mix, phase diagram). The Gibbs free energy of mixing (Δ G mix) shows a miscibility gap at equilibration temperatures below 1000 K (e.g., E exsoln = 0.13 kJ/(mol cations) at 750 K). Such a miscibility gap may indicate possible exsolution (i.e., phase separation upon cooling). A unique approach to evaluate the likelihood and kinetics of forming interfaces between U-rich and Th-rich has been chosen that compares the energy gain of forming separate phases with estimated energy losses of forming necessary interfaces. The result of such an approach is that the thermodynamic gain of phase separation does not overcome the increase in interface energy between exsolution lamellae for thin exsolution lamellae (10 Å). Lamella formation becomes energetically favorable with a reduction of the interface area and, thus, an increase in lamella thickness to >45 Å. However, this increase in lamellae thickness may be diffusion limited. Monte-Carlo simulations converge

  18. Coupled Electron-Ion Monte Carlo calculations of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Holzmann, Markus; Pierleoni, Carlo; Ceperley, David M.

    2005-07-01

    We present a new Monte Carlo method which couples Path Integral for finite temperature protons with Quantum Monte Carlo for ground state electrons, and we apply it to metallic hydrogen for pressures beyond molecular dissociation. This method fills the gap between high temperature electron-proton Path Integral and ground state Diffusion Monte Carlo methods. Our data exhibit more structure and higher melting temperatures of the proton crystal than Car-Parrinello Molecular Dynamics results using LDA. We further discuss the quantum motion of the protons and the zero temperature limit.

  19. Monte Carlo Example Programs

    2006-05-09

    The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.

  20. Ground State Geometries of Polyacetylene Chains from Many-Particle Quantum Mechanics.

    PubMed

    Barborini, Matteo; Guidoni, Leonardo

    2015-09-01

    Due to the crucial role played by electron correlation, the accurate determination of ground state geometries of π-conjugated molecules is still a challenge for many quantum chemistry methods. Because of the high parallelism of the algorithms and their explicit treatment of electron correlation effects, Quantum Monte Carlo calculations can offer an accurate and reliable description of the electronic states and of the geometries of such systems, competing with traditional quantum chemistry approaches. Here, we report the structural properties of polyacetylene chains H-(C₂H₂)(N)-H up to N = 12 acetylene units, by means of Variational Monte Carlo (VMC) calculations based on the multi-determinant Jastrow Antisymmetrized Geminal Power (JAGP) wave function. This compact ansatz can provide for such systems an accurate description of the dynamical electronic correlation as recently detailed for the 1,3-butadiene molecule [J. Chem. Theory Comput. 2015 11 (2), 508-517]. The calculated Bond Length Alternation (BLA), namely the difference between the single and double carbon bonds, extrapolates, for N → ∞, to a value of 0.0910(7) Å, compatible with the experimental data. An accurate analysis was able to distinguish between the influence of the multi-determinantal AGP expansion and of the Jastrow factor on the geometrical properties of the fragments. Our size-extensive and self-interaction-free results provide new and accurate ab initio references for the structures of the ground state of polyenes.

  1. Ground State Geometries of Polyacetylene Chains from Many-Particle Quantum Mechanics

    PubMed Central

    2015-01-01

    Due to the crucial role played by electron correlation, the accurate determination of ground state geometries of π-conjugated molecules is still a challenge for many quantum chemistry methods. Because of the high parallelism of the algorithms and their explicit treatment of electron correlation effects, Quantum Monte Carlo calculations can offer an accurate and reliable description of the electronic states and of the geometries of such systems, competing with traditional quantum chemistry approaches. Here, we report the structural properties of polyacetylene chains H–(C2H2)N–H up to N = 12 acetylene units, by means of Variational Monte Carlo (VMC) calculations based on the multi-determinant Jastrow Antisymmetrized Geminal Power (JAGP) wave function. This compact ansatz can provide for such systems an accurate description of the dynamical electronic correlation as recently detailed for the 1,3-butadiene molecule [J. Chem. Theory Comput. 2015 11 (2), 508–517]. The calculated Bond Length Alternation (BLA), namely the difference between the single and double carbon bonds, extrapolates, for N → ∞, to a value of 0.0910(7) Å, compatible with the experimental data. An accurate analysis was able to distinguish between the influence of the multi-determinantal AGP expansion and of the Jastrow factor on the geometrical properties of the fragments. Our size-extensive and self-interaction-free results provide new and accurate ab initio references for the structures of the ground state of polyenes. PMID:26405437

  2. Monte Carlo methods in ICF

    SciTech Connect

    Zimmerman, G.B.

    1997-06-24

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ion and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burns nd burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  3. Calibrated multi-subband Monte Carlo modeling of tunnel-FETs in silicon and III-V channel materials

    NASA Astrophysics Data System (ADS)

    Revelant, A.; Palestri, P.; Osgnach, P.; Selmi, L.

    2013-10-01

    We present a semiclassical model for Tunnel-FET (TFET) devices capable to describe band-to-band tunneling (BtBT) as well as far from equilibrium transport of the generated carriers. BtBT generation is implemented as an add-on into an existing multi-subband Monte Carlo (MSMC) transport simulator that accounts as well for the effects typical to alternative channel materials and high-κ dielectrics. A simple but accurate correction for the calculation of the BtBT generation rate to account for carrier confinement in the subbands is proposed and verified by comparison with full 2D quantum calculation.

  4. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  5. Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins.

    PubMed

    Li Manni, Giovanni; Smart, Simon D; Alavi, Ali

    2016-03-01

    A novel stochastic Complete Active Space Self-Consistent Field (CASSCF) method has been developed and implemented in the Molcas software package. A two-step procedure is used, in which the CAS configuration interaction secular equations are solved stochastically with the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) approach, while orbital rotations are performed using an approximated form of the Super-CI method. This new method does not suffer from the strong combinatorial limitations of standard MCSCF implementations using direct schemes and can handle active spaces well in excess of those accessible to traditional CASSCF approaches. The density matrix formulation of the Super-CI method makes this step independent of the size of the CI expansion, depending exclusively on one- and two-body density matrices with indices restricted to the relatively small number of active orbitals. No sigma vectors need to be stored in memory for the FCIQMC eigensolver--a substantial gain in comparison to implementations using the Davidson method, which require three or more vectors of the size of the CI expansion. Further, no orbital Hessian is computed, circumventing limitations on basis set expansions. Like the parent FCIQMC method, the present technique is scalable on massively parallel architectures. We present in this report the method and its application to the free-base porphyrin, Mg(II) porphyrin, and Fe(II) porphyrin. In the present study, active spaces up to 32 electrons and 29 orbitals in orbital expansions containing up to 916 contracted functions are treated with modest computational resources. Results are quite promising even without accounting for the correlation outside the active space. The systems here presented clearly demonstrate that large CASSCF calculations are possible via FCIQMC-CASSCF without limitations on basis set size.

  6. Diffusion Monte Carlo applied to weak interactions - hydrogen bonding and aromatic stacking in (bio-)molecular model systems

    NASA Astrophysics Data System (ADS)

    Fuchs, M.; Ireta, J.; Scheffler, M.; Filippi, C.

    2006-03-01

    Dispersion (Van der Waals) forces are important in many molecular phenomena such as self-assembly of molecular crystals or peptide folding. Calculating this nonlocal correlation effect requires accurate electronic structure methods. Usual density-functional theory with generalized gradient functionals (GGA-DFT) fails unless empirical corrections are added that still need extensive validation. Quantum chemical methods like MP2 and coupled cluster are more accurate, yet limited to rather small systems by their unfavorable computational scaling. Diffusion Monte Carlo (DMC) can provide accurate molecular total energies and remains feasible also for larger systems. Here we apply the fixed-node DMC method to (bio-)molecular model systems where dispersion forces are significant: (dimethyl-) formamide and benzene dimers, and adenine-thymine DNA base pairs. Our DMC binding energies agree well with data from coupled cluster (CCSD(T)), in particular for stacked geometries where GGA-DFT fails qualitatively and MP2 predicts too strong binding.

  7. Monte Carlo fundamentals

    SciTech Connect

    Brown, F.B.; Sutton, T.M.

    1996-02-01

    This report is composed of the lecture notes from the first half of a 32-hour graduate-level course on Monte Carlo methods offered at KAPL. These notes, prepared by two of the principle developers of KAPL`s RACER Monte Carlo code, cover the fundamental theory, concepts, and practices for Monte Carlo analysis. In particular, a thorough grounding in the basic fundamentals of Monte Carlo methods is presented, including random number generation, random sampling, the Monte Carlo approach to solving transport problems, computational geometry, collision physics, tallies, and eigenvalue calculations. Furthermore, modern computational algorithms for vector and parallel approaches to Monte Carlo calculations are covered in detail, including fundamental parallel and vector concepts, the event-based algorithm, master/slave schemes, parallel scaling laws, and portability issues.

  8. Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Bardenet, Rémi

    2013-07-01

    Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC) methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.

  9. Monte Carlo methods and applications in nuclear physics

    SciTech Connect

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.

  10. Practical fault tolerance for quantum circuits

    NASA Astrophysics Data System (ADS)

    Whitney, Mark Gregory

    Due to very high projected error rates, large scale quantum computers will require substantial fault tolerance just to maintain a minimum level of reliability. We present tools to better analyze the performance of large, fault tolerant quantum computer designs. We find that current uses of quantum error correction are overly conservative in mitigating the impact of gate errors and negligent of other error sources in quantum data communication and memory. We have developed circuit layout heuristics to generate detailed designs in trapped ion quantum computing technology. From these designs, we can extract much more accurate error models for a given application, including all gate, movement and idle errors on qubits. Using these extracted models, our flexible error simulation environment determines the overall failure probability of the design. Included in this simulation environment is a bit-parallel Monte Carlo technique that is 10 times faster than previous fault propagation simulations. This allows us to evaluate the reliability of designs that are an order of magnitude larger, in the same amount of time. Using this analysis framework to verify reliability, we have developed a linear programming-based optimization for error correction which decreases overall circuit resources by an order of magnitude. In some cases, our optimization actually improves overall system reliability by removing error correction. We combine this optimization with judicious quantum error correcting code selection to provide efficient designs for large quantum arithmetic kernels used in Shor's factorization algorithm. We show our optimized designs perform 2x to 100x better than previous works in terms of probabilistic area-delay product. Additionally, the area of our layout of a 1024-bit factoring using Shor's algorithm is 64cm2, a substantial improvement compared to the 0.9m2 state-of-the-art design from prior work. A design size reduction by this amount will make fabricating such an

  11. MORSE Monte Carlo code

    SciTech Connect

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described.

  12. Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm

    NASA Astrophysics Data System (ADS)

    Gubernatis, James

    2014-03-01

    A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.

  13. Symbolic implicit Monte Carlo

    SciTech Connect

    Brooks, E.D. III )

    1989-08-01

    We introduce a new implicit Monte Carlo technique for solving time dependent radiation transport problems involving spontaneous emission. In the usual implicit Monte Carlo procedure an effective scattering term in dictated by the requirement of self-consistency between the transport and implicitly differenced atomic populations equations. The effective scattering term, a source of inefficiency for optically thick problems, becomes an impasse for problems with gain where its sign is negative. In our new technique the effective scattering term does not occur and the excecution time for the Monte Carlo portion of the algorithm is independent of opacity. We compare the performance and accuracy of the new symbolic implicit Monte Carlo technique to the usual effective scattering technique for the time dependent description of a two-level system in slab geometry. We also examine the possibility of effectively exploiting multiprocessors on the algorithm, obtaining supercomputer performance using shared memory multiprocessors based on cheap commodity microprocessor technology. {copyright} 1989 Academic Press, Inc.

  14. Fragmented Molecular Orbital with Diffusion Monte Carlo for large molecular systems

    NASA Astrophysics Data System (ADS)

    Benali, Anouar; Pruitt, Spencer R.; Fedorov, Dmitri G.

    Performing accurate quantum mechanics (QM) calculations on larger and larger systems, while maintaining a high level of accuracy is an ongoing effort in many ab initio fields. Many different attempts have been made to develop highly scalable and accurate methods. The fragment molecular orbital (FMO) method is an ab initio method capable of taking advantage of modern supercomputers, such as the Blue Gene Q system Mira at the Argonne National Laboratory Leadership Computing Facility (ALCF). FMO is based on dividing molecules into fragments and performing ab initio calculations on fragments, their dimers and, optionally, trimers. This decomposition makes it possible to perform QM calculations of real size biological molecules. In contrast to many other fragment-based methods, the effect of the environment is rigorously accounted for by computing the electrostatic potential (ESP) due to remaining fragments that are not explicitly included in a given monomer, dimer, or trimer calculation. The use of highly accurate levels of theory, such as Diffusion Monte Carlo (DMC-QMC), in conjunction with FMO allows for the goal of highly scalable and accurate all electron calculations demonstrated in this study, on a variety of relevant systems (H2O)[3-6] and protein using GAMESS and QMCPACK.

  15. A self-consistent method for the generation of configuration interaction coefficients using variational Monte Carlo

    NASA Astrophysics Data System (ADS)

    Riley, Kevin E.; Anderson, James B.

    We have developed a new method for calculating configuration interaction coefficients for trial wavefunctions used in quantum Monte Carlo calculations of molecular structure. These numerical calculations can be carried out with optimized Jastrow functions included in the wavefunction. These calculations produce coefficients different from those obtained through methods using analytical integration without the Jastrow functions and lead to more accurate trial wavefunctions. We tested the method on the beryllium atom and found that the VMC energy obtained with improved coefficients (-14.6615 hartrees) was 0.9 millihartrees lower than the energy obtained using coefficients from analytical calculations (-14.6606 hartrees). This energy difference corresponds to about 1% of the correlation energy.

  16. Monte Carlo surface flux tallies

    SciTech Connect

    Favorite, Jeffrey A

    2010-11-19

    Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.

  17. Computer simulation of liquid-vapor coexistence of confined quantum fluids

    NASA Astrophysics Data System (ADS)

    Trejos, Víctor M.; Gil-Villegas, Alejandro; Martinez, Alejandro

    2013-11-01

    The liquid-vapor coexistence (LV) of bulk and confined quantum fluids has been studied by Monte Carlo computer simulation for particles interacting via a semiclassical effective pair potential Veff(r) = VLJ + VQ, where VLJ is the Lennard-Jones 12-6 potential (LJ) and VQ is the first-order Wigner-Kirkwood (WK-1) quantum potential, that depends on β = 1/kT and de Boer's quantumness parameter Λ = h/σ √{mɛ }, where k and h are the Boltzmann's and Planck's constants, respectively, m is the particle's mass, T is the temperature of the system, and σ and ɛ are the LJ potential parameters. The non-conformal properties of the system of particles interacting via the effective pair potential Veff(r) are due to Λ, since the LV phase diagram is modified by varying Λ. We found that the WK-1 system gives an accurate description of the LV coexistence for bulk phases of several quantum fluids, obtained by the Gibbs Ensemble Monte Carlo method (GEMC). Confinement effects were introduced using the Canonical Ensemble (NVT) to simulate quantum fluids contained within parallel hard walls separated by a distance Lp, within the range 2σ ⩽ Lp ⩽ 6σ. The critical temperature of the system is reduced by decreasing Lp and increasing Λ, and the liquid-vapor transition is not longer observed for Lp/σ < 2, in contrast to what has been observed for the classical system.

  18. Variational Monte Carlo method in the presence of spin-orbit interaction and its application to Kitaev and Kitaev-Heisenberg models

    NASA Astrophysics Data System (ADS)

    Kurita, Moyuru; Yamaji, Youhei; Morita, Satoshi; Imada, Masatoshi

    2015-07-01

    We propose an accurate variational Monte Carlo method applicable in the presence of the strong spin-orbit interactions. The algorithm is applicable even in a wider class of Hamiltonians that do not have the spin-rotational symmetry. Our variational wave functions consist of generalized Pfaffian-Slater wave functions that involve mixtures of singlet and triplet Cooper pairs, Jastrow-Gutzwiller-type projections, and quantum number projections. The generalized wave functions allow describing states including a wide class of symmetry-broken states, ranging from magnetic and/or charge ordered states to superconducting states and their fluctuations, on equal footing without any ad hoc ansatz for variational wave functions. We detail our optimization scheme for the generalized Pfaffian-Slater wave functions with complex-number variational parameters. Generalized quantum number projections are also introduced, which imposes the conservation of not only the momentum quantum number but also Wilson loops. As a demonstration of the capability of the present variational Monte Carlo method, the accuracy and efficiency is tested for the Kitaev and Kitaev-Heisenberg models, which lack the SU(2) spin-rotational symmetry except at the Heisenberg limit. The Kitaev model serves as a critical benchmark of the present method: The exact ground state of the model is a typical gapless quantum spin liquid far beyond the reach of simple mean-field wave functions. The newly introduced quantum number projections precisely reproduce the ground state degeneracy of the Kitaev spin liquids, in addition to their ground state energy. An application to a closely related itinerant model described by a multiorbital Hubbard model with the spin-orbit interaction also shows promising benchmark results. The strong-coupling limit of the multiorbital Hubbard model is indeed described by the Kitaev model. Our framework offers accurate solutions for the systems where strong electron correlation and spin

  19. Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs.

    PubMed

    Hansen, Michael G; Ernsting, Ingo; Vasilyev, Sergey V; Grisard, Arnaud; Lallier, Eric; Gérard, Bruno; Schiller, Stephan

    2013-11-01

    We demonstrate a robust and simple method for measurement, stabilization and tuning of the frequency of cw mid-infrared (MIR) lasers, in particular of quantum cascade lasers. The proof of principle is performed with a quantum cascade laser at 5.4 µm, which is upconverted to 1.2 µm by sum-frequency generation in orientation-patterned GaAs with the output of a standard high-power cw 1.5 µm fiber laser. Both the 1.2 µm and the 1.5 µm waves are measured by a standard Er:fiber frequency comb. Frequency measurement at the 100 kHz-level, stabilization to sub-10 kHz level, controlled frequency tuning and long-term stability are demonstrated.

  20. Comparison of cross sections from the quasi-classical trajectory method and the j(z)-conserving centrifugal sudden approximation with accurate quantum results for an atom-rigid nonlinear polyatomic collision

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1993-01-01

    We report the results of a series of calculations of state-to-state integral cross sections for collisions between O and nonvibrating H2O in the gas phase on a model nonreactive potential energy surface. The dynamical methods used include converged quantum mechanical scattering calculations, the j(z) conserving centrifugal sudden (j(z)-CCS) approximation, and quasi-classical trajectory (QCT) calculations. We consider three total energies 0.001, 0.002, and 0.005 E(h) and the nine initial states with rotational angular momentum less than or equal to 2 (h/2 pi). The j(z)-CCS approximation gives good results, while the QCT method can be quite unreliable for transitions to specific rotational sublevels. However, the QCT cross sections summed over final sublevels and averaged over initial sublevels are in better agreement with the quantum results.

  1. Quantum Simulations for Dense Matter

    SciTech Connect

    Ceperley, David M

    2010-06-07

    High pressure systems are important, for example, to understand the interiors of giant planets (Jupiter and Saturn), for experiments at NIF (the National Ignition Facility at Livermore) related to inertially confined fusion and for other interests of DOE. In this project, we are developing innovative simulation methods (Quantum Monte Carlo methods) to allow more accurate calculation of properties of systems under extreme conditions of pressure and temperature. These methods can use the power of current day supercomputers made of very many processors, starting from the basic equations of physics to model quantum phenomena important at the microscopic scale. During the grant period, we have settled two important questions of the physics of hydrogen and helium under extreme conditions. We have found the pressures and temperatures when hydrogen and helium mix together; this is important to understand the difference of the interiors of the planets Jupiter and Saturn. Secondly, we have shown that there exists a sharp transition as a function of pressure between molecular and atomic liquid hydrogen at temperatures below 2000K. This prediction can be confirmed with high pressure experiments.

  2. Quantum instanton evaluation of the kinetic isotope effects

    SciTech Connect

    Vanicek, Jiri; Miller, William H.; Castillo, Jesus F.; Aoiz, F.Javier

    2005-04-19

    A general quantum-mechanical method for computing kinetic isotope effects is presented. The method is based on the quantum instanton approximation for the rate constant and on the path integral Metropolis Monte-Carlo evaluation of the Boltzmann operator matrix elements. It computes the kinetic isotope effect directly, using a thermodynamic integration with respect to the mass of the isotope, thus avoiding the more computationally expensive process of computing the individual rate constants. The method is more accurate than variational transition-state theories or the semiclassical instanton method since it does not assume a single reaction path and does not use a semiclassical approximation of the Boltzmann operator. While the general Monte-Carlo implementation makes the method accessible to systems with a large number of atoms, we present numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope variants of the hydrogen exchange reaction H+H{sub 2} {yields} H{sub 2}+H. In all seven test cases, for temperatures between 250 K and 600 K, the error of the quantum instanton approximation for the kinetic isotope effects is less than {approx}10%.

  3. Vectorized Monte Carlo

    SciTech Connect

    Brown, F.B.

    1981-01-01

    Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes.

  4. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  5. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  6. Possible calcium centers for hydrogen storage applications: An accurate many-body study by AFQMC calculations with large basis sets

    NASA Astrophysics Data System (ADS)

    Purwanto, Wirawan; Krakauer, Henry; Zhang, Shiwei; Virgus, Yudistira

    2011-03-01

    Weak H2 physisorption energies present a significant challenge to first-principle theoretical modeling and prediction of materials for H storage. There has been controversy regarding the accuracy of DFT on systems involving Ca cations. We use the auxiliary-field quantum Monte Carlo (AFQMC) method to accurately predict the binding energy of Ca + , - 4{H}2 . AFQMC scales as Nbasis3and has demonstrated accuracy similar to or better than the gold-standard coupled cluster CCSD(T) method. We apply a modified Cholesky decomposition to achieve efficient Hubbard-Stratonovich transformation in AFQMC at large basis sizes. We employ the largest correlation consistent basis sets available, up to Ca/cc-pCV5Z, to extrapolate to the complete basis limit. The calculated potential energy curve exhibits binding with a double-well structure. Supported by DOE and NSF. Calculations were performed at OLCF Jaguar and CPD.

  7. Test of the quantum instanton approximation for thermal rate constants for some collinear reactions

    NASA Astrophysics Data System (ADS)

    Ceotto, Michele; Miller, William H.

    2004-04-01

    Two variants of the recently developed quantum instanton (QI) model for calculating thermal rate constants of chemical reactions are applied to several collinear atom-diatom reactions with various skew angles. The results show that the original QI version of the model is consistently more accurate than the "simplest" quantum instanton version (both being applied here with one "dividing surface") and thus to be preferred. Also, for these examples (as with other earlier applications) the QI results agree well with the correct quantum rates (to within ˜20% or better) for all temperatures >200 K, except for situations where dynamical corrections to transition state theory (i.e., "re-crossing" dynamics) are evident. (Since re-crossing effects are substantially reduced in higher dimensionality, this is not a cause for serious concern.) A procedure is also described which facilitates use of the METROPOLIS algorithm for evaluating all quantities that appear in the QI rate expression by Monte Carlo path integral methods.

  8. Monte Carlo algorithm for free energy calculation.

    PubMed

    Bi, Sheng; Tong, Ning-Hua

    2015-07-01

    We propose a Monte Carlo algorithm for the free energy calculation based on configuration space sampling. An upward or downward temperature scan can be used to produce F(T). We implement this algorithm for the Ising model on a square lattice and triangular lattice. Comparison with the exact free energy shows an excellent agreement. We analyze the properties of this algorithm and compare it with the Wang-Landau algorithm, which samples in energy space. This method is applicable to general classical statistical models. The possibility of extending it to quantum systems is discussed.

  9. Time-dependent wave packet quantum and quasi-classical trajectory study of He + H₂⁺, D₂⁺ → HeH⁺ + H, HeD⁺ + D reaction on an accurate FCI potential energy surface.

    PubMed

    Zhao, Juan; Luo, Yi

    2012-03-15

    The quantum scattering dynamics and quasi-classical trajectory (QCT) calculations have been carried out for the title reaction on an accurate potential energy surface (PES) computed using the full configuration interaction (FCI). On the basis of the PES, the integral cross-sections of He + H₂⁺ (v = 0-3, j = 1) → HeH⁺ + H reaction have been calculated, and the results are generally agreed with the experimental cross-sections obtained by Tang et al. [J. Chem. Phys. 2005, 122, 164301] after taking into account the experimental uncertainties, which proves the reliability of implementing dynamics calculations on the FCI PES. The reaction probability of He + D₂⁺ (v = 0-2, j = 0) → HeD⁺ + D reactions for total angular momentum J = 0 and the integral cross-section (ICS) have been calculated. The significant quantum effect has been explored by the comparison between the QCT reaction probabilities (or ICS) and the quantum mechanical (QM) reaction probabilities (or ICS), which may be attributed to the deep well in the PES of this light atoms system. Furthermore, the role of Coriolis coupling (CC) effects has also been found not important by the comparison between the CC calculation and the centrifugal sudden (CS) approximation calculation, except that the CC total cross-sections for the v = 1 and 2 states show the collision energy-dependent behaviors in the low-energy area, which are different from those based on the CS calculation.

  10. Monte Carlo neutrino oscillations

    SciTech Connect

    Kneller, James P.; McLaughlin, Gail C.

    2006-03-01

    We demonstrate that the effects of matter upon neutrino propagation may be recast as the scattering of the initial neutrino wave function. Exchanging the differential, Schrodinger equation for an integral equation for the scattering matrix S permits a Monte Carlo method for the computation of S that removes many of the numerical difficulties associated with direct integration techniques.

  11. Baseball Monte Carlo Style.

    ERIC Educational Resources Information Center

    Houser, Larry L.

    1981-01-01

    Monte Carlo methods are used to simulate activities in baseball such as a team's "hot streak" and a hitter's "batting slump." Student participation in such simulations is viewed as a useful method of giving pupils a better understanding of the probability concepts involved. (MP)

  12. Quantum thermodynamics of general quantum processes.

    PubMed

    Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-03-01

    Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics. PMID:25871066

  13. Exploiting Locality in Quantum Computation for Quantum Chemistry.

    PubMed

    McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-12-18

    Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

  14. Path Integral Monte Carlo Methods for Fermions

    NASA Astrophysics Data System (ADS)

    Ethan, Ethan; Dubois, Jonathan; Ceperley, David

    2014-03-01

    In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.

  15. Monte Carlo simulations of phosphate polyhedron connectivity in glasses

    SciTech Connect

    ALAM,TODD M.

    2000-01-01

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  16. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    SciTech Connect

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  17. Accurate Optical Reference Catalogs

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    2006-08-01

    Current and near future all-sky astrometric catalogs on the ICRF are reviewed with the emphasis on reference star data at optical wavelengths for user applications. The standard error of a Hipparcos Catalogue star position is now about 15 mas per coordinate. For the Tycho-2 data it is typically 20 to 100 mas, depending on magnitude. The USNO CCD Astrograph Catalog (UCAC) observing program was completed in 2004 and reductions toward the final UCAC3 release are in progress. This all-sky reference catalogue will have positional errors of 15 to 70 mas for stars in the 10 to 16 mag range, with a high degree of completeness. Proper motions for the about 60 million UCAC stars will be derived by combining UCAC astrometry with available early epoch data, including yet unpublished scans of the complete set of AGK2, Hamburg Zone astrograph and USNO Black Birch programs. Accurate positional and proper motion data are combined in the Naval Observatory Merged Astrometric Dataset (NOMAD) which includes Hipparcos, Tycho-2, UCAC2, USNO-B1, NPM+SPM plate scan data for astrometry, and is supplemented by multi-band optical photometry as well as 2MASS near infrared photometry. The Milli-Arcsecond Pathfinder Survey (MAPS) mission is currently being planned at USNO. This is a micro-satellite to obtain 1 mas positions, parallaxes, and 1 mas/yr proper motions for all bright stars down to about 15th magnitude. This program will be supplemented by a ground-based program to reach 18th magnitude on the 5 mas level.

  18. Kinetic isotope effect of the {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study

    SciTech Connect

    Sun, Zhigang Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-07

    The O + O{sub 2} isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the {sup 18}O + {sup 32}O{sub 2} and {sup 16}O + {sup 36}O{sub 2} reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the “reef” structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients.

  19. jTracker and Monte Carlo Comparison

    NASA Astrophysics Data System (ADS)

    Selensky, Lauren; SeaQuest/E906 Collaboration

    2015-10-01

    SeaQuest is designed to observe the characteristics and behavior of `sea-quarks' in a proton by reconstructing them from the subatomic particles produced in a collision. The 120 GeV beam from the main injector collides with a fixed target and then passes through a series of detectors which records information about the particles produced in the collision. However, this data becomes meaningful only after it has been processed, stored, analyzed, and interpreted. Several programs are involved in this process. jTracker (sqerp) reads wire or hodoscope hits and reconstructs the tracks of potential dimuon pairs from a run, and Geant4 Monte Carlo simulates dimuon production and background noise from the beam. During track reconstruction, an event must meet the criteria set by the tracker to be considered a viable dimuon pair; this ensures that relevant data is retained. As a check, a comparison between a new version of jTracker and Monte Carlo was made in order to see how accurately jTracker could reconstruct the events created by Monte Carlo. In this presentation, the results of the inquest and their potential effects on the programming will be shown. This work is supported by U.S. DOE MENP Grant DE-FG02-03ER41243.

  20. Monte Carlo simulation in statistical physics: an introduction

    NASA Astrophysics Data System (ADS)

    Binder, K., Heermann, D. W.

    Monte Carlo Simulation in Statistical Physics deals with the computer simulation of many-body systems in condensed-matter physics and related fields of physics, chemistry and beyond, to traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, probability distributions are calculated, allowing the estimation of the thermodynamic properties of various systems. This book describes the theoretical background to several variants of these Monte Carlo methods and gives a systematic presentation from which newcomers can learn to perform such simulations and to analyze their results. This fourth edition has been updated and a new chapter on Monte Carlo simulation of quantum-mechanical problems has been added. To help students in their work a special web server has been installed to host programs and discussion groups (http://wwwcp.tphys.uni-heidelberg.de). Prof. Binder was the winner of the Berni J. Alder CECAM Award for Computational Physics 2001.

  1. Monte Carlo Study of Real Time Dynamics on the Lattice

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Başar, Gökçe; Bedaque, Paulo F.; Vartak, Sohan; Warrington, Neill C.

    2016-08-01

    Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from a highly oscillatory phase of the path integral. In this Letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and, in principle, applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.

  2. Perturbation Monte Carlo methods for tissue structure alterations.

    PubMed

    Nguyen, Jennifer; Hayakawa, Carole K; Mourant, Judith R; Spanier, Jerome

    2013-01-01

    This paper describes an extension of the perturbation Monte Carlo method to model light transport when the phase function is arbitrarily perturbed. Current perturbation Monte Carlo methods allow perturbation of both the scattering and absorption coefficients, however, the phase function can not be varied. The more complex method we develop and test here is not limited in this way. We derive a rigorous perturbation Monte Carlo extension that can be applied to a large family of important biomedical light transport problems and demonstrate its greater computational efficiency compared with using conventional Monte Carlo simulations to produce forward transport problem solutions. The gains of the perturbation method occur because only a single baseline Monte Carlo simulation is needed to obtain forward solutions to other closely related problems whose input is described by perturbing one or more parameters from the input of the baseline problem. The new perturbation Monte Carlo methods are tested using tissue light scattering parameters relevant to epithelia where many tumors originate. The tissue model has parameters for the number density and average size of three classes of scatterers; whole nuclei, organelles such as lysosomes and mitochondria, and small particles such as ribosomes or large protein complexes. When these parameters or the wavelength is varied the scattering coefficient and the phase function vary. Perturbation calculations give accurate results over variations of ∼15-25% of the scattering parameters.

  3. Calibration and Monte Carlo modelling of neutron long counters

    NASA Astrophysics Data System (ADS)

    Tagziria, Hamid; Thomas, David J.

    2000-10-01

    The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivity of the Monte Carlo calculations for the efficiency of the De Pangher long counter to perturbations in density and cross-section of the polyethylene used in the construction has been investigated.

  4. Experimental signatures of quantum annealing

    NASA Astrophysics Data System (ADS)

    Boixo, Sergio

    2013-03-01

    Quantum annealing is a general strategy for solving optimization problems with the aid of quantum adiabatic evolution. How effective is rapid decoherence in precluding quantum effects in a quantum annealing experiment, and will engineered quantum annealing devices effectively perform classical thermalization when coupled to a decohering thermal environment? Using the D-Wave machine, we report experimental results for a simple problem which takes advantage of the fact that for quantum annealing the measurement statistics are determined by the energy spectrum along the quantum evolution, while in classical thermalization they are determined by the spectrum of the final Hamiltonian only. We establish an experimental signature which is consistent with quantum annealing, and at the same time inconsistent with classical thermalization, in spite of a decoherence timescale which is orders of magnitude shorter than the adiabatic evolution time. For larger and more difficult problems, we compare the measurements statistics of the D-Wave machine to large-scale numerical simulations of simulated annealing and simulated quantum annealing, implemented through classical and quantum Monte Carlo simulations. For our test cases the statistics of the machine are - within calibration uncertainties - indistinguishable from a simulated quantum annealer with suitably chosen parameters, but significantly different from a classical annealer. Work in collaboration with T. Albash, N. Chancellor, S. Isakov, D. Lidar, T. Roennow, F. Spedalieri, M. Troyer and Z. Wang.

  5. Spin-Ice State of the Quantum Heisenberg Antiferromagnet on the Pyrochlore Lattice.

    PubMed

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    2016-04-29

    We study the low-temperature physics of the SU(2)-symmetric spin-1/2 Heisenberg antiferromagnet on a pyrochlore lattice and find "fingerprint" evidence for the thermal spin-ice state in this frustrated quantum magnet. Our conclusions are based on the results of bold diagrammatic Monte Carlo simulations, with good convergence of the skeleton series down to the temperature T/J=1/6. The identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for the static structure factor between the quantum Heisenberg, classical Heisenberg, and Ising models at all accessible temperatures, and the characteristic bowtie pattern with pinch points observed at T/J=1/6. The dynamic structure factor at real frequencies (obtained by the analytic continuation of numerical data) is consistent with diffusive spinon dynamics at the pinch points. PMID:27176537

  6. Spin-Ice State of the Quantum Heisenberg Antiferromagnet on the Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Chen, Kun; Deng, Youjin; Prokof'ev, Nikolay; Svistunov, Boris

    2016-04-01

    We study the low-temperature physics of the SU(2)-symmetric spin-1 /2 Heisenberg antiferromagnet on a pyrochlore lattice and find "fingerprint" evidence for the thermal spin-ice state in this frustrated quantum magnet. Our conclusions are based on the results of bold diagrammatic Monte Carlo simulations, with good convergence of the skeleton series down to the temperature T /J =1 /6 . The identification of the spin-ice state is done through a remarkably accurate microscopic correspondence for the static structure factor between the quantum Heisenberg, classical Heisenberg, and Ising models at all accessible temperatures, and the characteristic bowtie pattern with pinch points observed at T /J =1 /6 . The dynamic structure factor at real frequencies (obtained by the analytic continuation of numerical data) is consistent with diffusive spinon dynamics at the pinch points.

  7. Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations.

    PubMed

    Hokr, Brett H; Bixler, Joel N; Elpers, Gabriel; Zollars, Byron; Thomas, Robert J; Yakovlev, Vladislav V; Scully, Marlan O

    2015-04-01

    Monte Carlo techniques are the gold standard for studying light propagation in turbid media. Traditional Monte Carlo techniques are unable to include wave effects, such as diffraction; thus, these methods are unsuitable for exploring focusing geometries where a significant ballistic component remains at the focal plane. Here, a method is presented for accurately simulating photon propagation at the focal plane, in the context of a traditional Monte Carlo simulation. This is accomplished by propagating ballistic photons along trajectories predicted by Gaussian optics until they undergo an initial scattering event, after which, they are propagated through the medium by a traditional Monte Carlo technique. Solving a known problem by building upon an existing Monte Carlo implementation allows this method to be easily implemented in a wide variety of existing Monte Carlo simulations, greatly improving the accuracy of those models for studying dynamics in a focusing geometry.

  8. Mesh Optimization for Monte Carlo-Based Optical Tomography

    PubMed Central

    Edmans, Andrew; Intes, Xavier

    2015-01-01

    Mesh-based Monte Carlo techniques for optical imaging allow for accurate modeling of light propagation in complex biological tissues. Recently, they have been developed within an efficient computational framework to be used as a forward model in optical tomography. However, commonly employed adaptive mesh discretization techniques have not yet been implemented for Monte Carlo based tomography. Herein, we propose a methodology to optimize the mesh discretization and analytically rescale the associated Jacobian based on the characteristics of the forward model. We demonstrate that this method maintains the accuracy of the forward model even in the case of temporal data sets while allowing for significant coarsening or refinement of the mesh. PMID:26566523

  9. Frost in Charitum Montes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-387, 10 June 2003

    This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle view of the Charitum Montes, south of Argyre Planitia, in early June 2003. The seasonal south polar frost cap, composed of carbon dioxide, has been retreating southward through this area since spring began a month ago. The bright features toward the bottom of this picture are surfaces covered by frost. The picture is located near 57oS, 43oW. North is at the top, south is at the bottom. Sunlight illuminates the scene from the upper left. The area shown is about 217 km (135 miles) wide.

  10. MCMini: Monte Carlo on GPGPU

    SciTech Connect

    Marcus, Ryan C.

    2012-07-25

    MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.

  11. Using Diffusion Monte Carlo to Probe the Rotationally Excited States of H_3^+ and its Isotopologues

    NASA Astrophysics Data System (ADS)

    Wellen, Bethany A.; Petit, Andrew S.; McCoy, Anne B.

    2011-06-01

    H3-ND_n^+ are among the most abundant polyatomic ions in the universe. Moreover, the deuterated isotopologues are thought to play a key role in the astrochemical reactions governing the H/D fractionation of "metallic" species in the interstellar medium. An accurate quantum mechanical treatment of these species, as well as any reactions involving them, requires a methodology capable of capturing their large fluxionality as well as the constraints, due to particle exchange symmetries, on their physically allowed rovibrational states. Diffusion Monte Carlo (DMC) has been shown to be a highly successful technique for treating quantum zero-point effects of very floppy molecules and clusters and our group has recently developed a fixed-node DMC methodology capable of including the effects of rotational excitation. Here, we report the results of DMC calculations of the rotationally excited states of H_3^+ and its isotopologues. In particular, comparison with converged variational calculations involving states with J ≤ 20 provides the most thorough test yet of the range of quantum states over which the assumptions underlying our rotationally excited state DMC methodology can be reliably applied. Finally, the implications of this work on our overall goal of using DMC based methodologies to map out the energetics of the reaction of H3-ND_n^+ with HD will be discussed. T. R. Geballe and T. Oka, Science 312, 1610 (2006) E. Hugo, O. Asvany, and S. Schlemmer, J. Chem. Phys. 130, 164302 (2009) A. S. Petit and A. B. McCoy, J. Phys. Chem. A 113, 12706 (2009)

  12. Fermion-induced quantum critical points: beyond Landau criterion

    NASA Astrophysics Data System (ADS)

    Yao, Hong; Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai

    According to Landau criterion, phase transitions must be first-order when cubic terms of order parameters in the Landau-Ginzburg free energy are allowed by symmetry. Here, from both renormalization group analysis and sign-problem-free quantum Monte Carlo simulations, we show that second-order quantum phase transitions can occur at such putatively-first-order quantum phase transitions in strongly-interacting Dirac semimetals in two spatial dimensions. Such type of Landau-criterion-violating quantum critical points are induced by massless fermionic modes at the quantum phase transitions. We call them ``fermion-induced quantum critical points''. From Majorana-quantum-Monte-Carlo simulations and renormalization analysis, we find that the critical exponentials at the kekule valence-bond-solid transition of the Dirac fermions on the honeycomb lattice are highly-nonclassical. We also discuss experimental signatures of the kekule quantum critical point which may be realized in graphene-like systems.

  13. Boiling point determination using adiabatic Gibbs ensemble Monte Carlo simulations: application to metals described by embedded-atom potentials.

    PubMed

    Gelb, Lev D; Chakraborty, Somendra Nath

    2011-12-14

    The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase.

  14. Quantum computing

    PubMed Central

    Li, Shu-Shen; Long, Gui-Lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi

    2001-01-01

    Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization. PMID:11562459

  15. Auxiliary Field Diffusion Monte Carlo Calculation of Nuclei with A{<=}40 with Tensor Interactions

    SciTech Connect

    Gandolfi, S.; Pederiva, F.

    2007-07-13

    We calculate the ground-state energy of {sup 4}He, {sup 8}He, {sup 16}O, and {sup 40}Ca using the auxiliary field diffusion Monte Carlo method in the fixed-phase approximation and the Argonne v{sub 6}{sup '} interaction which includes a tensor force. Comparison of our light nuclei results to those of Green's function Monte Carlo calculations shows the accuracy of our method for both open and closed-shell nuclei. We also apply it to {sup 16}O and {sup 40}Ca to show that quantum Monte Carlo methods are now applicable to larger nuclei.

  16. Coupled Electron-Ion Monte Carlo Calculations of Dense Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Pierleoni, Carlo; Ceperley, David M.; Holzmann, Markus

    2004-09-01

    We present an efficient new Monte Carlo method which couples path integrals for finite temperature protons with quantum Monte Carlo calculations for ground state electrons, and we apply it to metallic hydrogen for pressures beyond molecular dissociation. We report data for the equation of state for temperatures across the melting of the proton crystal. Our data exhibit more structure and higher melting temperatures of the proton crystal than do Car-Parrinello molecular dynamics results. This method fills the gap between high temperature electron-proton path integral and ground state diffusion Monte Carlo methods and should have wide applicability.

  17. Mathematical foundation of quantum annealing

    SciTech Connect

    Morita, Satoshi; Nishimori, Hidetoshi

    2008-12-15

    Quantum annealing is a generic name of quantum algorithms that use quantum-mechanical fluctuations to search for the solution of an optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundations of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence for both the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping.

  18. Monte Carlo tests of the ELIPGRID-PC algorithm

    SciTech Connect

    Davidson, J.R.

    1995-04-01

    The standard tool for calculating the probability of detecting pockets of contamination called hot spots has been the ELIPGRID computer code of Singer and Wickman. The ELIPGRID-PC program has recently made this algorithm available for an IBM{reg_sign} PC. However, no known independent validation of the ELIPGRID algorithm exists. This document describes a Monte Carlo simulation-based validation of a modified version of the ELIPGRID-PC code. The modified ELIPGRID-PC code is shown to match Monte Carlo-calculated hot-spot detection probabilities to within {plus_minus}0.5% for 319 out of 320 test cases. The one exception, a very thin elliptical hot spot located within a rectangular sampling grid, differed from the Monte Carlo-calculated probability by about 1%. These results provide confidence in the ability of the modified ELIPGRID-PC code to accurately predict hot-spot detection probabilities within an acceptable range of error.

  19. Towards a Model Selection Rule for Quantum State Tomography

    NASA Astrophysics Data System (ADS)

    Scholten, Travis; Blume-Kohout, Robin

    Quantum tomography on large and/or complex systems will rely heavily on model selection techniques, which permit on-the-fly selection of small efficient statistical models (e.g. small Hilbert spaces) that accurately fit the data. Many model selection tools, such as hypothesis testing or Akaike's AIC, rely implicitly or explicitly on the Wilks Theorem, which predicts the behavior of the loglikelihood ratio statistic (LLRS) used to choose between models. We used Monte Carlo simulations to study the behavior of the LLRS in quantum state tomography, and found that it disagrees dramatically with Wilks' prediction. We propose a simple explanation for this behavior; namely, that boundaries (in state space and between models) play a significant role in determining the distribution of the LLRS. The resulting distribution is very complex, depending strongly both on the true state and the nature of the data. We consider a simplified model that neglects anistropy in the Fisher information, derive an almost analytic prediction for the mean value of the LLRS, and compare it to numerical experiments. While our simplified model outperforms the Wilks Theorem, it still does not predict the LLRS accurately, implying that alternative methods may be necessary for tomographic model selection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE.

  20. NNLOPS accurate associated HW production

    NASA Astrophysics Data System (ADS)

    Astill, William; Bizon, Wojciech; Re, Emanuele; Zanderighi, Giulia

    2016-06-01

    We present a next-to-next-to-leading order accurate description of associated HW production consistently matched to a parton shower. The method is based on reweighting events obtained with the HW plus one jet NLO accurate calculation implemented in POWHEG, extended with the MiNLO procedure, to reproduce NNLO accurate Born distributions. Since the Born kinematics is more complex than the cases treated before, we use a parametrization of the Collins-Soper angles to reduce the number of variables required for the reweighting. We present phenomenological results at 13 TeV, with cuts suggested by the Higgs Cross section Working Group.