Science.gov

Sample records for accurate radiative transfer

  1. GORRAM: Introducing accurate operational-speed radiative transfer Monte Carlo solvers

    NASA Astrophysics Data System (ADS)

    Buras-Schnell, Robert; Schnell, Franziska; Buras, Allan

    2016-06-01

    We present a new approach for solving the radiative transfer equation in horizontally homogeneous atmospheres. The motivation was to develop a fast yet accurate radiative transfer solver to be used in operational retrieval algorithms for next generation meteorological satellites. The core component is the program GORRAM (Generator Of Really Rapid Accurate Monte-Carlo) which generates solvers individually optimized for the intended task. These solvers consist of a Monte Carlo model capable of path recycling and a representative set of photon paths. Latter is generated using the simulated annealing technique. GORRAM automatically takes advantage of limitations on the variability of the atmosphere. Due to this optimization the number of photon paths necessary for accurate results can be reduced by several orders of magnitude. For the shown example of a forward model intended for an aerosol satellite retrieval, comparison with an exact yet slow solver shows that a precision of better than 1% can be achieved with only 36 photons. The computational time is at least an order of magnitude faster than any other type of radiative transfer solver. Merely the lookup table approach often used in satellite retrieval is faster, but on the other hand suffers from limited accuracy. This makes GORRAM-generated solvers an eligible candidate as forward model in operational-speed retrieval algorithms and data assimilation applications. GORRAM also has the potential to create fast solvers of other integrable equations.

  2. A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Petkova, Margarita; Springel, Volker

    2011-08-01

    accurately deal with non-equilibrium effects. We discuss several tests of the new method, including shadowing configurations in two and three dimensions, ionized sphere expansion in static and dynamic density fields and the ionization of a cosmological density field. The tests agree favourably with analytical expectations and results based on other numerical radiative transfer approximations.

  3. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  4. Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region.

    PubMed

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K; Yang, Ping

    2016-10-10

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTM-SOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1  cm-1 resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10-3  mW/cm2/sr/cm-1 and the relative error is typically less than 0.2%.

  5. Fast and Accurate Radiative Transfer Calculations Using Principal Component Analysis for (Exo-)Planetary Retrieval Models

    NASA Astrophysics Data System (ADS)

    Kopparla, P.; Natraj, V.; Shia, R. L.; Spurr, R. J. D.; Crisp, D.; Yung, Y. L.

    2015-12-01

    Radiative transfer (RT) computations form the engine of atmospheric retrieval codes. However, full treatment of RT processes is computationally expensive, prompting usage of two-stream approximations in current exoplanetary atmospheric retrieval codes [Line et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT computations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those few optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Kopparla et al. [2015, in preparation] extended the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Here, we apply the PCA method to a some typical (exo-)planetary retrieval problems. Comparisons between the new model, called Universal Principal Component Analysis Radiative Transfer (UPCART) model, two-stream models and line-by-line RT models are performed, for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the top of the atmosphere for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and stellar and viewing geometries. We demonstrate that very accurate radiance and flux estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases, as compared to a numerically exact line-by-line RT model. The accuracy is enhanced when the results are convolved to typical instrument resolutions. The operational speed and accuracy of UPCART can be further improved by optimizing binning schemes and parallelizing the codes, work

  6. Fast and accurate techniques of treating the radiative transfer problem under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry; Doicu, Adrian; Trautmann, Thomas; Loyola, Diego

    As a massive amount of spectral information is expected from the new generation of European atmospheric sensors Sentinel 5 Precursor, Sentinel 4 and Sentinel 5, a fast processing of the data in the UV-VIS spectral domain, is required. Trace gas retrievals from nadir sounding instruments are hindered by the presence of clouds. Our research is focused on the developing of a robust and accurate algorithm for treating clouds in the radiative transfer models (RTM). For this reason we have implemented an acceleration technique based on dimensionality reduction algorithms. We obtained the speed improvement of about 8 times. For operational reasons clouds can be considered as an optically homogeneous layer. In the independent pixel approximation, radiative transfer computations involving cloudy scenes require two separate calls to the RTM, one call for a clear sky scenario, the other for an atmosphere containing clouds. We present two novel methods for RTM performance enhancement with particular application to trace gas retrievals under cloudy conditions. Both methods are based on reusing results from clear-sky RTM calculations to speed up corresponding calculations for the cloud-filled scenario. Also, for satellite instruments with a high spatial resolution, it is important to account for the sub-pixel cloud inhomogeneities, or at least, to assess their effect on the radiances at the top of the atmosphere, and in particular, on the retrieval results. This assessment is probabilistic since the detailed structure of the clouds is unknown and only a small number of statistical properties are given. In this regard, we have designed a stochastic model for the solar radiation problem and a molecular atmosphere with its underlying surface. The model allows the computation of the mean radiance at the top of the atmosphere as it is intended to be used for trace gas retrievals. The efficiency of the stochastic model is lower, because we have to solve a two-dimensional problem

  7. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  8. Retrieving the Molecular Composition of Planet-Forming Material: An Accurate Non-LTE Radiative Transfer Code for JWST

    NASA Astrophysics Data System (ADS)

    Pontoppidan, Klaus

    Based on the observed distributions of exoplanets and dynamical models of their evolution, the primary planet-forming regions of protoplanetary disks are thought to span distances of 1-20 AU from typical stars. A key observational challenge of the next decade will be to understand the links between the formation of planets in protoplanetary disks and the chemical composition of exoplanets. Potentially habitable planets in particular are likely formed by solids growing within radii of a few AU, augmented by unknown contributions from volatiles formed at larger radii of 10-50 AU. The basic chemical composition of these inner disk regions is characterized by near- to far-infrared (2-200 micron) emission lines from molecular gas at temperatures of 50-1500 K. A critical step toward measuring the chemical composition of planet-forming regions is therefore to convert observed infrared molecular line fluxes, profiles and images to gas temperatures, densities and molecular abundances. However, current techniques typically employ approximate radiative transfer methods and assumptions of local thermodynamic equilibrium (LTE) to retrieve abundances, leading to uncertainties of orders of magnitude and inconclusive comparisons to chemical models. Ultimately, the scientific impact of the high quality spectroscopic data expected from the James Webb Space Telescope (JWST) will be limited by the availability of radiative transfer tools for infrared molecular lines. We propose to develop a numerically accurate, non-LTE 3D line radiative transfer code, needed to interpret mid-infrared molecular line observations of protoplanetary and debris disks in preparation for the James Webb Space Telescope (JWST). This will be accomplished by adding critical functionality to the existing Monte Carlo code LIME, which was originally developed to support (sub)millimeter interferometric observations. In contrast to existing infrared codes, LIME calculates the exact statistical balance of arbitrary

  9. Accurate reconstruction of the optical parameter distribution in participating medium based on the frequency-domain radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Qiao, Yao-Bin; Qi, Hong; Zhao, Fang-Zhou; Ruan, Li-Ming

    2016-12-01

    Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in the present work. The forward model of FD-RTE is solved via the finite volume method (FVM). The regularization term formatted by the generalized Gaussian Markov random field model is used in the objective function to overcome the ill-posed nature of the inverse problem. The multi-start conjugate gradient (MCG) method is employed to search the minimum of the objective function and increase the efficiency of convergence. A modified adjoint differentiation technique using the collimated radiative intensity is developed to calculate the gradient of the objective function with respect to the optical parameters. All simulation results show that the proposed reconstruction algorithm based on FD-RTE can obtain the accurate distributions of absorption and scattering coefficients. The reconstructed images of the scattering coefficient have less errors than those of the absorption coefficient, which indicates the former are more suitable to probing the inner structure. Project supported by the National Natural Science Foundation of China (Grant No. 51476043), the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).

  10. Accurately Modelling the Absorption of a Mixture of Gases at Low- to Medium-resolution in Exoplanetary and Brown Dwarf Atmospheric Radiative Transfer Calculations

    NASA Astrophysics Data System (ADS)

    Garland, Ryan; Irwin, Patrick Gerard Joseph

    2016-10-01

    Exoplanetary and brown dwarf atmospheres are extremely diverse environments ranging over many different temperatures, pressures, and compositions. In order to model the spectra produced by the these objects, a commonplace approach in exoplanetary science is to use cross-sections of individual gases to quickly calculate the atmospheric opacities. However, when combining multiple gases with non-monochromatic absorption coefficients, the multiplication property of transmission does not hold. The resulting spectra are hence unreliable. Extensive work was carried out on Solar System radiative transfer models to find an efficient alternative to line-by-line calculations of opacity which was more accurate than combining cross-sections, resulting in many band models and the correlated-k method. Here we illustrate the effect of using cross-sections to model typical brown dwarf and exoplanetary atmospheres (e.g. HD189733b), and compare them to the spectra calculated using the correlated-k method. We verify our correlated-k method using a line-by-line model. For the same objects, we also present the effects of pressure broadening on the resulting spectra. Considering both the method of calculation (i.e. cross-section or correlated-k) and the treatment of pressure broadening, we show that the differences in the spectra are immediately obvious and hugely significant. Entire spectral features can appear or disappear, changing the morphology of the spectra. For the inspected brown dwarfs, these spectral features can vary by up to three orders of magnitude in luminosity. For our exoplanets, the transit depth can vary by up to 1%. We conclude that each effect would change the retrieved system parameters (i.e. temperature and abundances) considerably.

  11. Accurate Quantification of Ionospheric State Based on Comprehensive Radiative Transfer Modeling and Optimal Inversion of the OI 135.6-nm Emission

    NASA Astrophysics Data System (ADS)

    Qin, J.; Kamalabadi, F.; Makela, J. J.; Meier, R. J.

    2015-12-01

    Remote sensing of the nighttime OI 135.6-nm emission represents the primary means of quantifying the F-region ionospheric state from optical measurements. Despite its pervasive use for studying aeronomical processes, the interpretation of these emissions as a proxy for ionospheric state remains ambiguous in that the relative contributions of radiative recombination and mutual neutralization to the production and, especially, the effects of scattering and absorption on the transport of the 135.6-nm emissions have not been fully quantified. Moreover, an inversion algorithm, which is robust to varying ionospheric structures under different geophysical conditions, is yet to be developed for statistically optimal characterization of the ionospheric state. In this work, as part of the NASA ICON mission, we develop a comprehensive radiative transfer model from first principle to investigate the production and transport of the nighttime 135.6-nm emissions. The forward modeling investigation indicates that under certain conditions mutual neutralization can contribute up to ~38% to the 135.6-nm emissions. Moreover, resonant scattering and pure absorption can reduce the brightness observed in the limb direction by ~40% while enhancing the brightness in the nadir direction by ~25%. Further analysis shows that without properly addressing these effects in the inversion process, the peak electron density in the F-region ionosphere (NmF2) can be overestimated by up to ~24%. To address these issues, an inversion algorithm that properly accounts for the above-mentioned effects is proposed for accurate quantification of the ionospheric state using satellite measurements. The ill-posedness due to the intrinsic presence of noise in real data is coped with by incorporating proper regularizations that enforce either global smoothness or piecewise smoothness of the solution. Application to model-generated data with different signal-to-noise ratios show that the algorithm has achieved

  12. Fast multilevel radiative transfer

    NASA Astrophysics Data System (ADS)

    Paletou, Frédéric; Léger, Ludovick

    2007-01-01

    The vast majority of recent advances in the field of numerical radiative transfer relies on approximate operator methods better known in astrophysics as Accelerated Lambda-Iteration (ALI). A superior class of iterative schemes, in term of rates of convergence, such as Gauss-Seidel and Successive Overrelaxation methods were therefore quite naturally introduced in the field of radiative transfer by Trujillo Bueno & Fabiani Bendicho (1995); it was thoroughly described for the non-LTE two-level atom case. We describe hereafter in details how such methods can be generalized when dealing with non-LTE unpolarised radiation transfer with multilevel atomic models, in monodimensional geometry.

  13. Utrecht Radiative Transfer Courses

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2003-01-01

    The Utrecht course ``The Generation and Transport of Radiation'' teaches basic radiative transfer to second-year students. It is a much-expanded version of the first chapter of Rybicki & Lightman's ``Radiative Processes in Astrophysics''. After this course, students understand why intensity is measured per steradian, have an Eddington-Barbier feel for optically thick line formation, and know that scattering upsets LTE. The text is a computer-aided translation by Ruth Peterson of my 1992 Dutch-language course. My aim is to rewrite this course in non-computer English and make it web-available at some time. In the meantime, copies of the Peterson translation are made yearly at Uppsala -- ask them, not me. Eventually it should become a textbook. The Utrecht course ``Radiative Transfer in Stellar Atmospheres'' is a 30-hour course for third-year students. It treats NLTE line formation in plane-parallel stellar atmospheres at a level intermediate between the books by Novotny and Boehm-Vitense, and Mihalas' ``Stellar Atmospheres''. After this course, students appreciate that epsilon is small, that radiation can heat or cool, and that computers have changed the field. This course is web-available since 1995 and is regularly improved -- but remains incomplete. Eventually it should become a textbook. The three Utrecht exercise sets ``Stellar Spectra A: Basic Line Formation'', ``Stellar Spectra B: LTE Line Formation'', and ``Stellar Spectra C: NLTE Line Formation'' are IDL-based computer exercises for first-year, second-year, and third-year students, respectively. They treat spectral classification, Saha-Boltzmann population statistics, the curve of growth, the FAL-C solar atmosphere model, the role of H-minus in the solar continuum, LTE formation of Fraunhofer lines, inversion tactics, the Feautrier method, classical lambda iteration, and ALI computation. The first two sets are web-available since 1998; the third will follow. Acknowledgement. Both courses owe much to previous

  14. Radiative Transfer in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Graziani, L.; Aiello, S.; Belleni-Morante, A.; Cecchi-Pestellini, C.

    2008-09-01

    Abstract Protoplanetary disks are the precursors of planetary systems. All building materials needed to assembly the planetary systems are supplied by these reservoirs, including many organic molecules [1,2]. Thus, the physical and chemical properties in Protoplanetary disks set the boundary conditions for the formation and evolution of planets and other solar system bodies. In standard radiative scenario structure and chemistry of protoplanetary disks depend strongly on the nature of central star around which they formed. The dust temperature is manly set by the stellar luminosity, while the chemistry of the whole disk depends on the UV and X ray fluxes [3,4,6,8]. Therefore, a knowledge as accurate as possible of the radiative transfer (RT) inside disks is a prerequisite for their modelling. Actually, real disks are complex, stratified and inhomogeneous environments requiring a detailed dust mixture modelling and the ability to follow the radiation transfer across radial and vertical gradients. Different energetic processes as the mass accretion processes onto the star surface, the viscous dissipative heating dominating the midplane region, and the flared atmospheres radiation reprocessing, have a significant role in the disk structuring [4,5,8]. During the last 10 years many authors suggested various numerical and analytical techniques to resolve the disk temperature structure providing vertical temperature profiles and disk SED databases [4,6]. In this work we present the results of our semi analytical and numerical model solving the radiative transfer problem in two separate interesting disk regions: 1) Disk atmospheres at large radius, r > 10 AU. 2) Vertical disk structure over 1 < r < 10 AU and 10 < r < 100 AU. A simplified analytical approach based on P-N approximation [7] for a rectified disk surface (suitable for limited range of r) is compared and contrasted with a more accurate Monte Carlo integration [5]. Our code can handle arbitrary dust

  15. LRAT: Lightning Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Phanord, Dieudonne D.

    1993-01-01

    In this report, we extend to cloud physics the work done for single and multiple scattering of electromagnetic waves. We consider the scattering of light, visible or infrared, by a spherical cloud represented by a statistically homogeneous ensemble of configurations of N identical spherical water droplets whose centers are uniformly distributed in its volume V. The ensemble is specified by the average number rho of scatterers in unit volume and by rho f(R) with f(R) as the distribution function for separations R of pairs. The incident light, vector-phi(sub 0) a plane electromagnetic wave with harmonic time dependence, is from outside the cloud. The propagation parameter kappa(sub 0) and the index of refraction eta(sub 0) determine physically the medium outside the distribution of scatterers. We solve the interior problem separately to obtain the bulk parameters for the scatterer equivalent to the ensemble of spherical droplets. With the interior solution or the equivalent medium approach, the multiple scattering problem is reduced to that of an equivalent single scatterer excited from outside illumination. A dispersion relation which determines the bulk propagation parameter K and the bulk index of refraction eta of the cloud is given in terms of the vector equivalent scattering amplitude vector-G and the dyadic scattering amplitude tilde-g of the single object in isolation. Based on this transfer model we will have the ability to consider clouds composed of inhomogeneous distribution of water and/or ice particles and we will be able to take into account particle size distributions within the cloud. We will also be able to study the effects of cloud composition (i.e., particle shape, size, composition, orientation, location) on the polarization of the single or the multiple scattered waves. Finally, this study will provide a new starting point for studying the problem of lightning radiative transfer.

  16. Radiative transfer dynamo effect

    NASA Astrophysics Data System (ADS)

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-01

    Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  17. Radiative transfer dynamo effect

    DOE PAGES

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-17

    Here, magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  18. Auroral resonance line radiative transfer

    SciTech Connect

    Gladstone, G.R. )

    1992-02-01

    A model is developed for simulating the two-dimensional radiative transfer of resonance line emissions in auroras. The method of solution utilizes Fourier decomposition of the horizontal dependence in the intensity field so that the two-dimensional problem becomes a set of one-dimensional problems having different horizontal wavenumbers. The individual one-dimensional problems are solved for using a Feautrier-type solution of the differential-integral form of the radiative transfer equation. In the limit as the horizontal wavenumber becomes much larger than the local line-center extinction coefficient, the scattering integral becomes considerably simplified, and the final source function is evaluated in closed form. The two-dimensional aspects of the model are tested against results for nonresonance radiative transfer studies, and the resonance line part of the model is tested against results of existing plane-parallel resonance line radiative transfer codes. Finally, the model is used to simulate the intensity field of O{sub I} 1,304{angstrom} for hard and soft auroras of various Gaussian horizontal widths. The results demonstrate the importance of considering the effects of two-dimensional radiative transfer when analyzing auroral resonance line data.

  19. Radiative transfer in spherical atmospheres

    NASA Astrophysics Data System (ADS)

    Kalkofen, W.; Wehrse, R.

    A method for defining spherical model atmospheres in radiative/convective and hydrostatic equilibrium is presented. A finite difference form is found for the transfer equation and a matrix operator is developed as the discrete space analog (in curvilinear coordinates) of a formal integral in plane geometry. Pressure is treated as a function of temperature. Flux conservation is maintained within the energy equation, although the correct luminosity transport must be assigned for any given level of the atmosphere. A perturbed integral operator is used in a complete linearization of the transfer and constraint equations. Finally, techniques for generating stable solutions in economical computer time are discussed.

  20. RRTM: A rapid radiative transfer model

    SciTech Connect

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A.

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  1. Nonlinear response matrix methods for radiative transfer. [Radiative transfer

    SciTech Connect

    Miller, W.F. Jr.; Lewis, E.E.

    1987-01-01

    A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs.

  2. High-Precision Direct Method for the Radiative Transfer Problems

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Hou, Su-Qing; Yang, Ping; Wu, Kai-Su

    2013-06-01

    It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for integral part respectively, a new high-precision numerical scheme, which has 4-order local truncation error, is obtained. Subsequently, a numerical example for radiative transfer equation is carried out, and the calculation results show that the new numerical scheme is more accurate.

  3. Radiative transfer effects in primordial hydrogen recombination

    SciTech Connect

    Ali-Haiemoud, Yacine; Hirata, Christopher M.; Grin, Daniel

    2010-12-15

    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of cosmic microwave background anisotropies. Lyman transitions, in particular the Lyman-{alpha} line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, we compute the impact of some radiative transfer effects that were previously ignored, or for which previous treatments were incomplete. First, the effect of Thomson scattering in the vicinity of the Lyman-{alpha} line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-{alpha} line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Second, the importance of high-lying, nonoverlapping Lyman transitions is assessed. It is shown that escape from lines above Ly{gamma} and frequency diffusion in Ly{beta} and higher lines can be neglected without loss of accuracy. Third, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.

  4. A more accurate nonequilibrium air radiation code - NEQAIR second generation

    NASA Technical Reports Server (NTRS)

    Moreau, Stephane; Laux, Christophe O.; Chapman, Dean R.; Maccormack, Robert W.

    1992-01-01

    Two experiments, one an equilibrium flow in a plasma torch at Stanford, the other a nonequilibrium flow in a SDIO/IST Bow-Shock-Ultra-Violet missile flight, have provided the basis for modifying, enhancing, and testing the well-known radiation code, NEQAIR. The original code, herein termed NEQAIR1, lacked computational efficiency, accurate data for some species and the flexibility to handle a variety of species. The modified code, herein termed NEQAIR2, incorporates recent findings in the spectroscopic and radiation models. It can handle any number of species and radiative bands in a gas whose thermodynamic state can be described by up to four temperatures. It provides a new capability of computing very fine spectra in a reasonable CPU time, while including transport phenomena along the line of sight and the characteristics of instruments that were used in the measurements. Such a new tool should allow more accurate testing and diagnosis of the different physical models used in numerical simulations of radiating, low density, high energy flows.

  5. Stochastic Radiative transfer and real cloudiness

    SciTech Connect

    Evans, F.

    1995-09-01

    Plane-parallel radiative transfer modeling of clouds in GCMs is thought to be an inadequate representation of the effects of real cloudiness. A promising new approach for studying the effects of cloud horizontal inhomogeneity is stochastic radiative transfer, which computes the radiative effects of ensembles of cloud structures described by probability distributions. This approach is appropriate because cloud information is inherently statistical, and it is the mean radiative effect of complex 3D cloud structure that is desired. 2 refs., 1 fig.

  6. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  7. A study of Monte Carlo radiative transfer through fractal clouds

    SciTech Connect

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P.

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  8. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  9. Radiative heat transfer in porous uranium dioxide

    SciTech Connect

    Hayes, S.L.

    1992-12-01

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  10. Spectrally-Invariant Approximation Within Atmospheric Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2011-01-01

    Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These "spectrally invariant relationships" are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in clouddominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction. and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with ID radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.

  11. Discontinuous finite element method for vector radiative transfer

    NASA Astrophysics Data System (ADS)

    Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping

    2017-03-01

    The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.

  12. Validation of the Poisson Stochastic Radiative Transfer Model

    NASA Technical Reports Server (NTRS)

    Zhuravleva, Tatiana; Marshak, Alexander

    2004-01-01

    A new approach to validation of the Poisson stochastic radiative transfer method is proposed. In contrast to other validations of stochastic models, the main parameter of the Poisson model responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by matching measurements and calculations of the direct solar radiation. If the measurements of the direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that allows the stochastic model to accurately approximate the average measurements of surface downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade model are taken as a prototype of real measurements.

  13. Angular radiation transfer in inhomogeneous dispersive media

    NASA Astrophysics Data System (ADS)

    Saad, E. A.; El Ghazaly, A. A.; Krim, M. S. Abdel

    1988-10-01

    The equation of radiative transfer for an inhomogeneous dispersive finite medium subject to general boundary conditions is solved. The Padé approximation technique is used to calculate the angular distribution of radiation. Numerical results for the [0/1] Padé approximant lead to numerical results that compare with the exact results.

  14. Radiation heat transfer shapefactors for combustion systems

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Johansson, O.; Abrous, A.

    1987-01-01

    The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.

  15. A Non-Radiative Transfer Approach to Radiometric Vicarious Calibration

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Holekamp, Kara; Pagnutti, Mary; Stanley, Thomas

    2007-01-01

    TOA (top-of-atmosphere) radiance from high-spatial-resolution satellite imagery systems is important for a wide variety of research and applications. Many research initiatives require data with absolute radiometric accuracy better than a few percent. The conversion of satellite digital numbers to radiance depends on accurate radiometric calibration. A common method for determining and validating radiometric calibrations is to rely upon vicarious calibration approaches. Historically, vicarious calibration methods use radiative transfer codes with ground-based atmosphere and surface reflectance or radiance inputs for estimating TOA radiance values. These TOA radiance values are compared against the satellite digital numbers to determine the radiometric calibration. However, the radiative transfer codes used depend on many assumptions about the aerosol properties and the atmospheric point spread function. A measurement-based atmospheric radiance estimation approach for high-spatial-resolution, multispectral, visible/near-infrared sensors is presented that eliminates the use of radiative transfer codes and many of the underlying assumptions. A comparison between the radiative transfer and non-radiative transfer approaches is made.

  16. Calibrating GPS With TWSTFT For Accurate Time Transfer

    DTIC Science & Technology

    2008-12-01

    and O. Koudelka, 2008, “Time transfer with nanosecond accuracy for the realization of International Atomic Time,” Metrologia , 45, 185- 198. [4] Z...468-475. [7] Z. Jiang, 2008, “Towards a TWSTFT Network Time Transfer,” Metrologia , 45, S6-S11.

  17. Session on modeling of radiative transfer processes

    NASA Technical Reports Server (NTRS)

    Flatau, Piotr

    1993-01-01

    The session on modeling of radiative transfer processes is reviewed. Six critical issues surfaced in the discussion concerning scale-interactive radiative processes relevent to the mesoscale convective systems (MCS's). These issues are the need to expand basic knowledge of how MCS's influence climate through extensive cloud shields and increased humidity in the upper troposphere; to improve radiation parameterizations used in mesoscale and General Circulation Model (GCM) models; to improve our basic understanding of the influence of radiation on MCS dynamics due to diabatic heating, production of condensate, and vertical and horizontal heat fluxes; to quantify our understanding of radiative impacts of MCS's on the surface and free atmosphere energy budgets; to quantify and identify radiative and microphysical processes important in the evolution of MCS's; and to improve the capability to remotely sense MCS radiative properties from space and ground-based systems.

  18. Quantitative photoacoustic tomography based on the radiative transfer equation.

    PubMed

    Yao, Lei; Sun, Yao; Jiang, Huabei

    2009-06-15

    We describe a method for quantitative photoacoustic tomography (PAT) based on the radiative transfer equation (RTE) coupled with the Helmholtz photoacoustic wave equation. This RTE-based quantitative PAT allows for accurate recovery of absolute absorption coefficient images of heterogeneous media and provides significantly improved image reconstruction for the cases where the photon diffusion approximation may fail. The method and associated finite element reconstruction algorithm are validated using a series of tissuelike phantom experiments.

  19. Radiative transfer in moving media : basic mathematical methods for radiative transfer in spherically symmetrical moving media

    NASA Astrophysics Data System (ADS)

    Sen, K. K., Wilson, S. J.

    The advancement of observational techniques over the years has led to the discovery of a large number of stars exhibiting complex spectral structures, thus necessitating the search for new techniques and methods to study radiative transfer in such stars with moving envelopes. This led to the introduction of the concept of "photon escape probability" and the wisdom of expressing the transfer equations in "comoving frames" (CMF). Radiative transfer problems in spherically moving media form a branch of mathematical physics which uses mathematics of a very distinctive kind. Radiative Transfer in Moving Media records the basic mathematical methodologies, both analytical and numerical, developed for solving radiation transfer problems in spherically symmetric moving media, in the consideration of macroscopic velocity fields only. Part I contains the basic notions of radiation-matter interaction in participating media and constructs the relevant transfer equations to be solved in the subsequent chapters. Part II considers the basic mathematical methods for solving the transfer problems in extensive moving atmospheres when it is observed in the lab frame. Part III introduces the analytical and numerical methods for solving radiative transfer problems in spherically symmetric moving atmospheres when expressed in the comoving frame. This book is addressed to graduate students and researchers in Astrophysics, in particular to those studying radiative transfer in stellar atmospheres.

  20. EFFICIENT THREE-DIMENSIONAL NLTE DUST RADIATIVE TRANSFER WITH SKIRT

    SciTech Connect

    Baes, Maarten; Verstappen, Joris; De Looze, Ilse; Fritz, Jacopo; Saftly, Waad; Vidal Perez, Edgardo; Stalevski, Marko; Valcke, Sander

    2011-10-01

    We present an updated version of SKIRT, a three-dimensional (3D) Monte Carlo radiative transfer code developed to simulate dusty galaxies. The main novel characteristics of the SKIRT code are the use of a stellar foam to generate random positions, an efficient combination of eternal forced scattering and continuous absorption, and a new library approach that links the radiative transfer code to the DustEM dust emission library. This approach enables a fast, accurate, and self-consistent calculation of the dust emission of arbitrary mixtures of transiently heated dust grains and polycyclic aromatic hydrocarbons, even for full 3D models containing millions of dust cells. We have demonstrated the accuracy of the SKIRT code through a set of simulations based on the edge-on spiral galaxy UGC 4754. The models we ran were gradually refined from a smooth, two-dimensional, local thermal equilibrium (LTE) model to a fully 3D model that includes non-LTE (NLTE) dust emission and a clumpy structure of the dusty interstellar medium. We find that clumpy models absorb UV and optical radiation less efficiently than smooth models with the same amount of dust, and that the dust in clumpy models is on average both cooler and less luminous. Our simulations demonstrate that, given the appropriate use of optimization techniques, it is possible to efficiently and accurately run Monte Carlo radiative transfer simulations of arbitrary 3D structures of several million dust cells, including a full calculation of the NLTE emission by arbitrary dust mixtures.

  1. SKIRT: Stellar Kinematics Including Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Dejonghe, Herwig; Davies, Jonathan

    2011-09-01

    SKIRT is a radiative transfer code based on the Monte Carlo technique. The name SKIRT, acronym for Stellar Kinematics Including Radiative Transfer, reflects the original motivation for its creation: it has been developed to study the effects of dust absorption and scattering on the observed kinematics of dusty galaxies. In a second stage, the SKIRT code was extended with a module to self-consistently calculate the dust emission spectrum under the assumption of local thermal equilibrium. This LTE version of SKIRT has been used to model the dust extinction and emission of various types of galaxies, as well as circumstellar discs and clumpy tori around active galactic nuclei. A new, extended version of SKIRT code can perform efficient 3D radiative transfer calculations including a self-consistent calculation of the dust temperature distribution and the associated FIR/submm emission with a full incorporation of the emission of transiently heated grains and PAH molecules.

  2. An Improved Radiative Transfer Model for Climate Calculations

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications, we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  3. Efficient vector radiative transfer calculations in vertically inhomogeneous cloudy atmospheres.

    PubMed

    van Diedenhoven, Bastiaan; Hasekamp, Otto P; Landgraf, Jochen

    2006-08-10

    Accurate radiative transfer calculations in cloudy atmospheres are generally time consuming, limiting their practical use in satellite remote sensing applications. We present a model to efficiently calculate the radiative transfer of polarized light in atmospheres that contain homogeneous cloud layers. This model combines the Gauss-Seidel method, which is efficient for inhomogeneous cloudless atmospheres, with the doubling method, which is efficient for homogeneous cloud layers. Additionally to reduce the computational effort for radiative transfer calculations in absorption bands, the cloud reflection and transmission matrices are interpolated over the absorption and scattering optical thicknesses within the cloud layer. We demonstrate that the proposed radiative transfer model in combination with this interpolation technique is efficient for the simulation of satellite measurements for inhomogeneous atmospheres containing one homogeneous cloud layer. For example, the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) measurements in the oxygen A band (758-773 nm) and the Hartley-Huggins ozone band (295-335 nm) with a spectral resolution of 0.4 nm can be simulated for these atmospheres within 1 min on a 2.8 GHz PC with an accuracy better than 0.1%.

  4. Application of stochastic radiative transfer to remote sensing of vegetation

    NASA Astrophysics Data System (ADS)

    Shabanov, Nikolay V.

    2002-01-01

    The availability of high quality remote sensing data during the past decade provides an impetus for the development of methods that facilitate accurate retrieval of structural and optical properties of vegetation required for the study of global vegetation dynamics. Empirical and statistical methods have proven to be quite useful in many applications, but they often do not shed light on the underlying physical processes. Approaches based on radiative transfer and the physics of matter-energy interaction are therefore required to gain insight into the mechanisms responsible for signal generation. The goal of this dissertation is the development of advanced methods based on radiative transfer for the retrieval of biophysical information from satellite data. Classical radiative transfer theory is applicable to homogeneous vegetation and is generally inaccurate in characterizing the radiation regime in natural vegetation communities, such as forests or woodlands. A stochastic approach to radiative transfer was introduced in this dissertation to describe the radiation regime in discontinuous vegetation canopies. The resulting stochastic model was implemented and tested with field data and Monte Carlo simulations. The effect of gaps on radiation fluxes in vegetation canopies was quantified analytically and compared to classical representations. Next, the stochastic theory was applied to vegetation remote sensing in two case studies. First, the radiative transfer principles underlying an algorithm for leaf area index (LAI) retrieval were studied with data from Harvard Forest. The classical expression for uncollided radiation was modified according to stochastic principles to explain radiometric measurements and vegetation structure. In the second case study, vegetation dynamics in the northern latitudes inferred from the Pathfinder Advanced Very High-Resolution Radiometer Land data were investigated. The signatures of interannual and seasonal variation recorded in the

  5. Tests of Exoplanet Atmospheric Radiative Transfer Codes

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph; Challener, Ryan; DeLarme, Emerson; Cubillos, Patricio; Blecic, Jasmina; Foster, Austin; Garland, Justin

    2016-10-01

    Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. In the process of writing our own code, we became aware of several others with artifacts of unknown origin and even outright errors in their spectra. We present a series of tests to verify atmospheric radiative-transfer codes. These include: simple, single-line line lists that, when combined with delta-function abundance profiles, should produce a broadened line that can be verified easily; isothermal atmospheres that should produce analytically-verifiable blackbody spectra at the input temperatures; and model atmospheres with a range of complexities that can be compared to the output of other codes. We apply the tests to our own code, Bayesian Atmospheric Radiative Transfer (BART) and to several other codes. The test suite is open-source software. We propose this test suite as a standard for verifying current and future radiative transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  6. Groups in the radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Nikoghossian, Arthur

    2016-11-01

    The paper presents a group-theoretical description of radiation transfer in inhomogeneous and multi-component atmospheres with the plane-parallel geometry. It summarizes and generalizes the results obtained recently by the author for some standard transfer problems of astrophysical interest with allowance of the angle and frequency distributions of the radiation field. We introduce the concept of composition groups for media with different optical and physical properties. Group representations are derived for two possible cases of illumination of a composite finite atmosphere. An algorithm for determining the reflectance and transmittance of inhomogeneous and multi-component atmospheres is described. The group theory is applied also to determining the field of radiation inside an inhomogeneous atmosphere. The concept of a group of optical depth translations is introduced. The developed theory is illustrated with the problem of radiation diffusion with partial frequency distribution assuming that the inhomogeneity is due to depth-variation of the scattering coefficient. It is shown that once reflectance and transmittance of a medium are determined, the internal field of radiation in the source-free atmosphere is found without solving any new equations. The transfer problems for a semi-infinite atmosphere and an atmosphere with internal sources of energy are discussed. The developed theory allows to derive summation laws for the mean number of scattering events underwent by the photons in the course of diffusion in the atmosphere.

  7. Sunrise: Radiation transfer through interstellar dust

    NASA Astrophysics Data System (ADS)

    Jonsson, Patrik

    2013-03-01

    Sunrise is a Monte Carlo radiation transfer code for calculating absorption and scattering of light to study the effects of dust in hydrodynamic simulations of interacting galaxies. It uses an adaptive mesh refinement grid to describe arbitrary geometries of emitting and absorbing/scattering media, with spatial dynamical range exceeding 104; it can efficiently generate images of the emerging radiation at arbitrary points in space and spectral energy distributions of simulated galaxies run with the Gadget, Gasoline, Arepo, Enzo or ART codes. In addition to the monochromatic radiative transfer typically used by Monte Carlo codes, Sunrise can propagate a range of wavelengths simultaneously. This "polychromatic" algorithm gives significant improvements in efficiency and accuracy when spectral features are calculated.

  8. Viktor V. Sobolev and radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Nagirner, Dmitrij I.

    2016-11-01

    Invited review A detailed review of V.V. Sobolev's contributions to the theory of radiative transfer is presented. First, the basic problems of the theory of monochromatic scattering are formulated, which were introduced and solved approximately by the founders of the theory (E. Milne, A. Eddington, and others). Then the fundamental contribution by academician V.A. Ambartsumian, Sobolev's scientific adviser, to the analytical radiative transfer theory is summarized. Academician V.V. Sobolev continued and profoundly developed this theory. He pioneered new areas of the theory of multiple light scattering: the scattering of polarized radiation; the theory of a time-dependent radiation field; and the scattering in inhomogeneous media, in plane-parallel media with reflecting boundaries, and in media expanding with a velocity gradient. He proposed new approximate methods for solving the problems of anisotropic monochromatic scattering as well as scattering in spectral lines in stationary and expanding media which are still in use today. The most important Sobolev's contribution was to the exact analytical theory of radiative transfer. He proposed the probability method to solve radiative transfer problems and the probabilistic treatment of scattering processes; he introduced and justified the approximation of CFR in spectral lines; he developed the resolvent method for the exact solution to the basic integral equation describing monochromatic scattering and scattering in spectral lines; and he developed the theory of anisotropic scattering to analytic perfection. V.V. Sobolev applied these solutions to the interpretation of observation data for many astrophysical objects: photometric, polarimetric, and spectral characteristics of planetary atmospheres; spectra of stationary and non-stationary stars; and polarization of X-ray sources and quasars. V.V. Sobolev coauthored several papers with his students. The publications by Sobolev's disciples that continued his research

  9. Infrared radiative energy transfer in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1991-01-01

    Analyses and numerical procedures are presented to investigate the radiative interactions in various energy transfer processes in gaseous systems. Both gray and non-gray radiative formulations for absorption and emission by molecular gases are presented. The gray gas formulations are based on the Planck mean absorption coefficient and the non-gray formulations are based on the wide band model correlations for molecular absorption. Various relations for the radiative flux and divergence of radiative flux are developed. These are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The procedure developed was applied to several realistic problems. Results of selected studies are presented.

  10. Modeling of Radiative Transfer in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    VonAllmen, Paul; Turner, Neal

    2007-01-01

    This program implements a spectral line, radiative transfer tool for interpreting Spitzer Space Telescope observations by matching them with models of protostellar disks for improved understanding of planet and star formation. The Spitzer Space Telescope detects gas phase molecules in the infrared spectra of protostellar disks, with spectral lines carrying information on the chemical composition of the material from which planets form. Input to the software includes chemical models developed at JPL. The products are synthetic images and spectra for comparison with Spitzer measurements. Radiative transfer in a protostellar disk is primarily affected by absorption and emission processes in the dust and in molecular gases such as H2, CO, and HCO. The magnitude of the optical absorption and emission is determined by the population of the electronic, vibrational, and rotational energy levels. The population of the molecular level is in turn determined by the intensity of the radiation field. Therefore, the intensity of the radiation field and the population of the molecular levels are inter-dependent quantities. To meet the computational challenges of solving for the coupled radiation field and electronic level populations in disks having wide ranges of optical depths and spatial scales, the tool runs in parallel on the JPL Dell Cluster supercomputer with C++ and Fortran compiler with a Message Passing Interface. Because this software has been developed on a distributed computing platform, the modeling of systems previously beyond the reach of available computational resources is possible.

  11. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  12. Enhancing radiative energy transfer through thermal extraction

    NASA Astrophysics Data System (ADS)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  13. Efficient stream distributions in radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1974-01-01

    This paper discusses a new, computationally-efficient method for approximating the integro-differential equation of radiative transfer with a finite set of coupled differential equations for discrete streams. The method uses recommended spatial distributions of streams that are quite different from those typically used in that they are based on the symmetry of several regular Platonic solids. To facilitate the use of such distributions, an explicit, one-parameter relationship between the physical radiance and the abstract stream is formulated. The parameter is used to determine the minimum number of streams required in the radiative transfer model. Accuracy and computational efficiency are shown to be served best by choosing a stream distribution that is invariant to a large number of three space rotations. For various values of the above-mentioned parameter, the resulting recommended stream distribution is shown to be more computationally efficient than more conventional stream distributions. Finally, the incorporation of polarization in the stream definition is described.

  14. Statistical concepts in radiative transfer through inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Lindsey, C.; Jefferies, J. T.

    1990-01-01

    The theory of radiative transfer in inhomogeneous media is extended to handle transfer for scale lengths small compared to the scale size of the inhomogeneity. This is called the microscopic domain of inhomogeneous radiative transfer. A concept called the vector intensity distribution is introduced to characterize the statistical properties of radiation in various species of medium. Radiative transfer in an inhomogeneous atmosphere is expressed in terms of the evolution of this vector intensity distribution and its various moments along the optical path.

  15. Radiative transfer in a plane stratified dielectric

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T., Jr.

    1975-01-01

    A model is developed for calculating radiative transfer in a stratified dielectric. This model is used to show that the reflectivity of a stratified dielectric is primarily determined by gradients in the real part of the refractive index over distances on the order of 1/10 wavelength in the medium. The effective temperature of the medium is determined by the thermodynamic temperature profile over distances of the order delta T.

  16. Introductory Tools for Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Feldman, D.; Kuai, L.; Natraj, V.; Yung, Y.

    2006-12-01

    Satellite data are currently so voluminous that, despite their unprecedented quality and potential for scientific application, only a small fraction is analyzed due to two factors: researchers' computational constraints and a relatively small number of researchers actively utilizing the data. Ultimately it is hoped that the terabytes of unanalyzed data being archived can receive scientific scrutiny but this will require a popularization of the methods associated with the analysis. Since a large portion of complexity is associated with the proper implementation of the radiative transfer model, it is reasonable and appropriate to make the model as accessible as possible to general audiences. Unfortunately, the algorithmic and conceptual details that are necessary for state-of-the-art analysis also tend to frustrate the accessibility for those new to remote sensing. Several efforts have been made to have web- based radiative transfer calculations, and these are useful for limited calculations, but analysis of more than a few spectra requires the utilization of home- or server-based computing resources. We present a system that is designed to allow for easier access to radiative transfer models with implementation on a home computing platform in the hopes that this system can be utilized in and expanded upon in advanced high school and introductory college settings. This learning-by-doing process is aided through the use of several powerful tools. The first is a wikipedia-style introduction to the salient features of radiative transfer that references the seminal works in the field and refers to more complicated calculations and algorithms sparingly5. The second feature is a technical forum, commonly referred to as a tiki-wiki, that addresses technical and conceptual questions through public postings, private messages, and a ranked searching routine. Together, these tools may be able to facilitate greater interest in the field of remote sensing.

  17. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  18. Relativistic radiative transfer in relativistic spherical flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2017-02-01

    Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.

  19. ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD

    SciTech Connect

    Kurzeja, R.

    2009-09-09

    Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

  20. Critical ingredients of Type Ia supernova radiative-transfer modelling

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Hillier, D. John; Blondin, Stéphane; Khokhlov, Alexei

    2014-07-01

    We explore the physics of Type Ia supernova (SN Ia) light curves and spectra using the 1D non-local thermodynamic equilibrium (non-LTE) time-dependent radiative-transfer code CMFGEN. Rather than adjusting ejecta properties to match observations, we select as input one `standard' 1D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties of the ejecta on radiative-transfer modelling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an `opacity problem', characterized by the treatment of a large number of lines. We demonstrate that the key is to identify and treat important atomic processes consistently. This is not limited to treating line blanketing in non-LTE. We show that including forbidden-line transitions of metals, and in particular Co, is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation are also critical since they affect the colour evolution and the ΔM15 decline rate of our model. While impacting little the bolometric luminosity, a more complete treatment of decay routes leads to enhanced line blanketing, e.g. associated with 48Ti in the U and B bands. Overall, we find that SN Ia radiation properties are influenced in a complicated way by the atomic data we employ, so that obtaining converged results is a real challenge. Nonetheless, with our fully fledged CMFGEN model, we obtain good agreement with the golden standard Type Ia SN 2005cf in the optical and near-IR, from 5 to 60 d after explosion, suggesting that assuming spherical symmetry is not detrimental to SN Ia radiative-transfer modelling at these times. Multi-D effects no doubt matter, but they are perhaps less important than accurately treating the non-LTE processes that are crucial to obtain reliable temperature and ionization structures.

  1. Extending generalized Kubelka-Munk to three-dimensional radiative transfer.

    PubMed

    Sandoval, Christopher; Kim, Arnold D

    2015-08-10

    The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media.

  2. A Radiation Transfer Solver for Athena Using Short Characteristics

    NASA Astrophysics Data System (ADS)

    Davis, Shane W.; Stone, James M.; Jiang, Yan-Fei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  3. A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS

    SciTech Connect

    Davis, Shane W.; Stone, James M.; Jiang Yanfei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  4. Evaluation of three different radiative transfer equation solvers for combined conduction and radiation heat transfer

    NASA Astrophysics Data System (ADS)

    Sun, Yujia; Zhang, Xiaobing; Howell, John R.

    2016-11-01

    This work investigates the performance of P1 method, FVM and SP3 method for 2D combined conduction and radiation heat transfer problem. Results based on the Monte Carlo method coupled with the energy equation are used as the benchmark solutions. Effects of the conduction-radiation parameter and optical thickness are considered. Performance analyses in term of the accuracy of heat flux and temperature predictions and of computing time are presented and analyzed.

  5. Efficient Radiative Transfer Computations in the Atmosphere.

    DTIC Science & Technology

    1981-01-01

    absorptance, A = 1 - r , the net flux at level Z is given by equation (5) Net Flux, F (Z) = I - I, = B(Zsfc) -B(Ztop) A (ZtopZ) Zsfc - sft A (Z’,Z)dB(Z’) (5) ztop 11... F . Alyea, N. Phillips and R . Prinn, 1975; A three dimensional dynamical-chemical model of atmos- pheric ozone, J. Atmos. Sci., 32:170-194. 4...AD-ADO? 289 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH F /0 41/I EFFICIENT RADIATIVE TRANSFER COMPUTATIONS IN THE ATNOSI*ERE.fUI JAN 81 C R POSEY

  6. High-order solution methods for grey discrete ordinates thermal radiative transfer

    SciTech Connect

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-09-29

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.

  7. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE PAGES

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-09-29

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  8. Transfer of radiative heat through clothing ensembles.

    PubMed

    Lotens, W A; Pieters, A M

    1995-06-01

    A mathematical model was designed to calculate the temperature and dry heat transfer in the various layers of a clothing ensemble, and the total heat loss of a human who is irradiated for a certain fraction of his or her area. The clothing ensemble that is irradiated by an external heat source is considered to be composed of underclothing, trapped air, and outer fabric. The model was experimentally tested with heat balance methods, using subjects, varying the activity, wind, and radiation characteristics of the outer garment of two-layer ensembles. In two experiments the subjects could only give off dry heat because they were wrapped in plastic foil. The model appeared to be correct within about 1 degree C (rms error) and 10 Wm-2 (rms error). In a third experiment, sweat evaporation was also taken into account, showing that the resulting physiological heat load of 10 to 30% of the intercepted additional radiation is compensated by additional sweating. The resulting heat strain was rather mild. It is concluded that the mathematical model is a valid tool for the investigation of heat transfer through two-layer ensembles in radiant environments.

  9. Radiative Transfer and Retrievals in EOF Domain

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen; Smith, William L.; Schluessel, Peter

    2008-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) is a hyperspectral sensor with 8461 spectral channels and a nominal spectral resolution of 0.25 cm(sup -1). It is computationally intensive to perform radiative transfer calculations and inversions using all these channels. We will present a Principal Component-based Radiative Transfer Model (PCRTM) and a retrieval algorithm which perform all the necessary calculations in EOF domain. Since the EOFs are orthogonal to each other, only about 100 principal components are needed to represent the information content of the 8461 channels. The PCRTM provides the EOF coefficients and associated derivatives with respect to atmospheric and surface parameters needed by the inversion algorithm. The inversion algorithm is based on a non-linear Levenberg-Marquardt method with climatology covariance and a priori information as constraints. The retrieved parameters include atmospheric temperature, moisture and ozone profiles, cloud parameters, surface skin temperature, and surface emissivities. To make the retrieval system even more compact and stable. The atmospheric vertical profiles are compressed into the EOF space as well. The surface emissivities are also compressed into EOF space.

  10. Accurate bs and w testing important for crude-oil custody transfer

    SciTech Connect

    Williams, J. )

    1990-11-12

    This paper discusses how monitoring crude-oil sediment and water content at the field production site is essential in accurate crude-oil custody transfer operations. This is accomplished by manual methods, or on-line devices like capacitance, density, or energy-absorption analyzers. For custody-transfer purposes, sediment and water is determined by a test which follows one of the API manuals of petroleum measurement standards (MPMS). Typically, this test is conducted in the field by the field centrifuge method which, if performed properly, yields very accurate results. Laboratory tests can be performed, but sample handling becomes even more critical.

  11. Radiation energy transfer in RNA polymers

    NASA Astrophysics Data System (ADS)

    Kempner, E. S.; Salovey, R.; Bernstein, S. L.

    1996-11-01

    Ribozymes are a special class of polyribonucleotide (RNA) molecules which possess intrinsic catalytic activity, capable of cleaving nucleic acid substrates. RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. These RNAs were frozen and irradiated with high energy electrons. Surviving ribozyme activity was determined, using the ability of the irradiated ribozymes to cleave a labeled substrate. From the same irradiated samples, the amount of intact RNA remaining was determined following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity vs structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. It is concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule.

  12. Radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1992-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.

  13. Flare loop radiative hydrodynamics. III - Nonlocal radiative transfer effects

    NASA Technical Reports Server (NTRS)

    Canfield, R. C.; Fisher, G. H.; Mcclymont, A. N.

    1983-01-01

    The study has three goals. The first is to demonstrate that processes exist whose intrinsic nonlocal nature cannot be represented by local approximations. The second is to elucidate the physical nature and origins of these nonlocal processes. The third is to suggest that the methods and results described here may prove useful in constructing semiempirical models of the chromosphere by means more efficient than trial and error. Matrices are computed that describe the effect of a temperature perturbation at an arbitrary point in the loop on density, hydrogen ionized fraction, total radiative loss rate, and radiative loss rate of selected hydrogen lines and continua at all other points. It is found that the dominant nonlocal radiative transfer effects can be separated into flux divergence coefficient effects and upper level population effects. The former are most important when the perturbation takes place in a region of significant opacity. Upper level population effects arise in both optically thick and thin regions in response to nonlocal density, ionization, and interlocking effects.

  14. A stochastic formation of radiative transfer in clouds

    SciTech Connect

    Stephens, G.L.; Gabriel, P.M.

    1993-03-01

    The research carried out under this award dealt with issues involving deterministic radiative transfer, remote sensing, Stochastic radiative transfer, and parameterization of cloud optical properties. A number of different forms of radiative transfer models in one, two, and three dimensions were developed in an attempt to build an understanding of the radiative transfer in clouds with realistic spatial structure and to determine the key geometrical parameter that influence this transfer. The research conducted also seeks to assess the relative importance of these geometrical effects in contrast to microphysical effects of clouds. The main conclusion of the work is that geometry has a profound influence on all aspects of radiative transfer and the interpretation of this transfer. We demonstrate how this geometry can influence estimate of particle effective radius to the 30-50% level and also how geometry can significantly bias the remote sensing of cloud optical depth.

  15. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    NASA Astrophysics Data System (ADS)

    Hollstein, André; Fischer, Jürgen

    2012-05-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  16. Simulation of solar radiative transfer in cumulus clouds

    SciTech Connect

    Zuev, V.E.; Titov, G.A.

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  17. Accurate measurement method of Fabry-Perot cavity parameters via optical transfer function

    SciTech Connect

    Bondu, Francois; Debieu, Olivier

    2007-05-10

    It is shown how the transfer function from frequency noise to a Pound-Drever-Hall signal for a Fabry-Perot cavity can be used to accurately measure cavity length, cavity linewidth, mirror curvature, misalignments, laser beam shape mismatching with resonant beam shape, and cavity impedance mismatching with respect to vacuum.

  18. Multilevel Radiative Transfer with Partial Frequency Redistribution

    NASA Astrophysics Data System (ADS)

    Uitenbroek, H.

    2001-08-01

    A multilevel accelerated lambda iteration (MALI) method for radiative transfer calculations with partial frequency redistribution (PRD) is presented. The method, which is based on Rybicki & Hummer's complete frequency redistribution (CRD) formalism with full preconditioning, consistently accounts for overlapping radiative transitions. Its extension to PRD is implemented in a very natural way through the use of the Ψ operator operating on the emissivity rather than the commonly used Λ operator, which operates on the source function. Apart from requiring an additional inner computational loop to evaluate the PRD emission-line profiles with fixed population numbers, implementation of the presented method requires only a trivial addition of computer code. Since the presented method employs a diagonal operator, it is easily extended to different geometries. Currently, it has been implemented for one-, two-, and three-dimensional Cartesian grids and spherical symmetry. In all cases, the speed of convergence with PRD is very similar to that in CRD, with the former sometimes even surpassing the latter. Sample calculations exhibiting the favorable convergence behavior of the PRD code are presented in the case of the Ca II H and K lines, the Mg II h and k lines, and the hydrogen Lyα and Lyβ lines in a one-dimensional solar model and the Ca II resonance lines in a two-dimensional flux-sheet model.

  19. Radiative Transfer in a Scattering Spherical Atmosphere

    NASA Astrophysics Data System (ADS)

    Hong, S. S.; Park, Y.-S.; Kwon, S. M.; Park, C.; Weinberg, J. L.

    2002-03-01

    We have written a code called QDM_sca, which numerically solves the problem of radiative transfer in an anisotropically scattering, spherical atmosphere. First we formulate the problem as a second order differential equation of a quasi-diffusion type. We then apply a three-point finite differencing to the resulting differential equation and transform it to a tri-diagonal system of simultaneous linear equations. After boundary conditions are implemented in the tri-diagonal system, the QDM_sca radiative code fixes the field of specific intensity at every point in the atmosphere. As an application example, we used the code to calculate the brightness of atmospheric diffuse light(ADL) as a function of zenith distance, which plays a pivotal role in reducing the zodiacal light brightness from night sky observations. On the basis of this ADL calculation, frequent uses of effective extinction optical depth have been fully justified in correcting the atmospheric extinction for such extended sources as zodiacal light, integrated starlight and diffuse galactic light. The code will be available on request.

  20. Radiative Transfer Theory Verified by Controlled Laboratory Experiments

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur

    2013-01-01

    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

  1. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  2. A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium

    NASA Astrophysics Data System (ADS)

    Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand

    2014-05-01

    The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.

  3. Numerical Radiative Transfer and the Hydrogen Reionization of the Universe

    NASA Astrophysics Data System (ADS)

    Petkova, M.

    2011-03-01

    One of the most interesting questions in cosmology is to understand how the Universe evolved from its nearly uniform and simple state briefly after the Big Bang to the complex state we see around us today. In particular, we would like to explain how galaxies have formed, and why they have the properties that we observe in the local Universe. Computer simulations play a highly important role in studying these questions, because they allow one to follow the dynamical equations of gravity and hydrodynamics well into the non-linear regime of the growth of cosmic structures. The current generation of simulation codes for cosmological structure formation calculates the self-gravity of dark matter and cosmic gas, and the fluid dynamics of the cosmic gas, but radiation processes are typically not taken into account, or only at the level of a spatially uniform, externally imposed background field. However, we know that the radiation field has been highly inhomogeneous during certain phases of the growth of structure, and may have in fact provided important feedback effects for galaxy formation. In particular, it is well established that the diffuse gas in the universe was nearly fully neutral after recombination at very high redshift, but today this gas is highly ionized. Sometime during the evolution, a transition to the ionized state must have occurred, a process we refer to as reionization. The UV radiation responsible for this reionization is now permeating the universe and may in part explain why small dwarf galaxies have so low luminosities. It is therefore clear that accurate and self-consistent studies of galaxy formation and of the dynamics of the reionization process should ideally be done with simulation codes that directly include a treatment of radiative transfer, and that account for all relevant source and sink terms of the radiation. We present a novel numerical implementation of radiative transfer in the cosmological smoothed particle hydrodynamics (SPH

  4. Polar firn layering in radiative transfer models

    NASA Astrophysics Data System (ADS)

    Linow, Stefanie; Hoerhold, Maria

    2016-04-01

    For many applications in the geosciences, remote sensing is the only feasible method of obtaining data from large areas with limited accessibility. This is especially true for the cryosphere, where light conditions and cloud coverage additionally limit the use of optical sensors. Here, instruments operating at microwave frequencies become important, for instance in polar snow parameters / SWE (snow water equivalent) mapping. However, the interaction between snow and microwave radiation is a complex process and still not fully understood. RT (radiative transfer) models to simulate snow-microwave interaction are available, but they require a number of input parameters such as microstructure and density, which are partly ill-constrained. The layering of snow and firn introduces an additional degree of complexity, as all snow parameters show a strong variability with depth. Many studies on RT modeling of polar firn deal with layer variability by using statistical properties derived from previous measurements, such as the standard deviations of density and microstructure, to configure model input. Here, the variability of microstructure parameters, such as density and particle size, are usually assumed to be independent of each other. However, in the case of the firn pack of the polar ice sheets, we observe that microstructure evolution depends on environmental parameters, such as temperature and snow deposition. Accordingly, density and microstructure evolve together within the snow and firn. Based on CT (computer tomography) microstructure measurements of antarctic firn, we can show that: first, the variability of density and effective grain size are linked and can thus be implemented in the RT models as a coupled set of parameters. Second, the magnitude of layering is captured by the measured standard deviation. Based on high-resolution density measurements of an Antarctic firn core, we study the effect of firn layering at different microwave wavelengths. By means of

  5. Radiative Transfer in Primordial Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Adams, E.; Atreya, S.; Kuhn, W.

    2005-05-01

    In light of Huygens measurements, we present our improved model of thermal and photochemical evolution of Titan's atmosphere. Atreya et. al (1978) demonstrated that photolysis of ammonia on primordial Titan is capable of producing a nitrogen atmosphere substantially thicker than that measured by Voyager. E. Wilson (2001) carried this calculation one step further by including methane and water vapor explicitly in the ammonia photochemistry model, and arrived at a preliminary estimate of time required to accumulate different amounts of nitrogen. However, both models assumed an isothermal atmosphere. Since chemistry leading up to nitrogen occurs in the stratosphere, both the thermal structure and saturation effects are important for determining the time constants and amounts of nitrogen production. In this presentation, we discuss preliminary results of a radiative equilibrium model for the primordial middle and lower atmosphere of Titan. It includes CH4, NH3 and H2O in solar proportions for its initial composition, and CH4-CH4 pressure induced absorption, which presently controls the thermal structure in the troposphere. The temperature in the stratosphere is controlled by the haze, and we explore the effects of a haze layer at various altitudes for accelerating conversion of ammonia to nitrogen. Furthermore, we include the effects of enhanced solar flux during the T-Tauri phase, which could speed up both the loss of nitrogen and conversion of ammonia to nitrogen. We are in the process of coupling the radiative transfer model to a comprehensive photochemical model (Wilson and Atreya, 2004) to access the roles of trace species other than those included in this calculation.

  6. Application of ray tracing in radiation heat transfer

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1993-01-01

    This collection of presentation figures displays the capabilities of ray tracing for radiation propagation calculations as compared to an analytical approach. The goal is to introduce the terminology and solution process used in ray tracing, and provide insight into radiation heat transfer principles and analysis tools. A thermal analysis working environment is introduced that solves demanding radiation heat transfer problems based on ray tracing. This information may serve as a reference for designing and building ones own analysis environment.

  7. Studies of radiative transfer in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1986-01-01

    Schloerb and Claussen continued their analysis of the very high quality data set obtained on the 18 centimeter OH line from the Comet P/Halley with the NRAO 43 meter antenna. The high spectral resolution (0.22 km/sec) and high signal-to-noise of the OH spectra make them ideal for the study of kinematics in the coma. Synthetic profiles were initiated for comparison with the data. A vectorial model was developed using the Monte Carlo techniques originated by Combi and Delsemme. Analysis of the millimeter wavelength observations of HCN emission from P/Halley obtained throughout much of the recent apparition were continued using the University of Massachusetts 14 millimeter-wavelength (FCRAO) antenna. A detailed analysis of the HCN lineshpaes was performed over the last six months. The excitation of HCN in the coma was studied to obtain a detailed match to the observed spectra. The passive millimeter wave radiometer was used to probe the physical and chemical nature of comets from spacecraft. Work was continued on an improved theory of radiative transfer for rough and porous surfaces, such as the regoliths of satellites, asteroids, and comets.

  8. Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2000-01-01

    This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.

  9. Radiative transfer in atmosphere-sea ice-ocean system

    SciTech Connect

    Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S.C.

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  10. DELO-BEZIER FORMAL SOLUTIONS OF THE POLARIZED RADIATIVE TRANSFER EQUATION

    SciTech Connect

    De la Cruz Rodriguez, J.; Piskunov, N.

    2013-02-10

    We present two new accurate and efficient methods to compute the formal solution of the polarized radiative transfer equation. In this work, the source function and the absorption matrix are approximated using quadratic and cubic Bezier spline interpolants. These schemes provide second- and third-order approximations, respectively, and do not suffer from erratic behavior of the polynomial approximation (overshooting). The accuracy and the convergence of the new method are studied along with other popular solutions of the radiative transfer equation, using stellar atmospheres with strong gradients in the line-of-sight velocity and in the magnetic-field vector.

  11. Application of the spectrally integrated Voigt function to line-by-line radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Quine, B. M.; Abrarov, S. M.

    2013-09-01

    We show that a new approach based on the spectrally integrated Voigt function (SIVF) enables the computation of line-by-line (LBL) radiative transfer at reduced spectral resolution without loss of accuracy. The algorithm provides rapid and accurate computation of area under the Voigt function in a way that preserves spectral radiance and, consequently, radiant intensity. The error analysis we provide shows the high-accuracy of the proposed SIVF approximations. A comparison of the performance of the method with that of the traditional LBL approach is presented. Motivations for the use and advantage of the SIVF as a replacement for conventional line function computations in radiative transfer are discussed.

  12. Coupling Between Turbulent Boundary Layer and Radiative Heat Transfer Under Engine-Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Sircar, A.; Paul, C.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.

    2016-11-01

    The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive CFD models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating conditions typical of heavy-duty CI engines, radiative emission can be as high as 40% of the wall heat losses, that molecular gas radiation can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number. NSF, DOE.

  13. Enabling Radiative Transfer on AMR grids in CRASH

    NASA Astrophysics Data System (ADS)

    Hariharan, N.; Graziani, L.; Ciardi, B.; Miniati, F.; Bungartz, H.-J.

    2017-01-01

    We introduce CRASH-AMR, a new version of the cosmological Radiative Transfer (RT) code CRASH, enabled to use refined grids. This new feature allows us to attain higher resolution in our RT simulations and thus to describe more accurately ionisation and temperature patterns in high density regions. We have tested CRASH-AMR by simulating the evolution of an ionised region produced by a single source embedded in gas at constant density, as well as by a more realistic configuration of multiple sources in an inhomogeneous density field. While we find an excellent agreement with the previous version of CRASH when the AMR feature is disabled, showing that no numerical artifact has been introduced in CRASH-AMR, when additional refinement levels are used the code can simulate more accurately the physics of ionised gas in high density regions. This result has been attained at no computational loss, as RT simulations on AMR grids with maximum resolution equivalent to that of a uniform cartesian grid can be run with a gain of up to 60% in computational time.

  14. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P. J.

    2014-10-01

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  15. Polarization : Proving ground for methods in radiative transfer.

    NASA Astrophysics Data System (ADS)

    Nagendra, K. N.; Anusha, L. S.; Sampoorna, M.

    Polarization of solar lines arises due to illumination of radiating atom by anisotropic (limb darkened/brightened) radiation. Modelling the polarized spectra of the Sun and stars requires solution of the line radiative transfer problem in which the relevant polarizing physical mechanisms are incorporated. The purpose of this paper is to describe in what different ways the polarization state of the radiation `complicates' the numerical methods originally designed for scalar radiative transfer. We present several interesting situations involving the solution of polarized line transfer to prove our point. They are (i) Comparison of the polarized approximate lambda iteration (PALI) methods with new approaches like Bi-conjugate gradient method that is faster, (ii) Polarized Hanle scattering line radiative transfer in random magnetic fields, (iii) Difficulties encountered in incorporating polarized partial frequency redistribution (PRD) matrices in line radiative transfer codes, (iv) Technical difficulties encountered in handling polarized specific intensity vector, some components of which are sign changing, (v) Proving that scattering polarization is indeed a boundary layer phenomenon. We provide credible benchmarks in each of the above studies. We show that any new numerical methods can be tested in the best possible way, when it is extended to include polarization state of the radiation field in line scattering.

  16. Radiative Transfer Model for Translucent Slab Ice on Mars

    NASA Astrophysics Data System (ADS)

    Andrieu, F.; Schmidt, F.; Douté, S.; Schmitt, B.; Brissaud, O.

    2016-09-01

    We developed a radiative transfer model that simulates in VIS/NIR the bidirectional reflectance of a contaminated slab layer of ice overlaying a granular medium, under geometrical optics conditions to study martian ices.

  17. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect

    Im, K H; Ahluwalia, R K

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  18. Numerical system utilising a Monte Carlo calculation method for accurate dose assessment in radiation accidents.

    PubMed

    Takahashi, F; Endo, A

    2007-01-01

    A system utilising radiation transport codes has been developed to derive accurate dose distributions in a human body for radiological accidents. A suitable model is quite essential for a numerical analysis. Therefore, two tools were developed to setup a 'problem-dependent' input file, defining a radiation source and an exposed person to simulate the radiation transport in an accident with the Monte Carlo calculation codes-MCNP and MCNPX. Necessary resources are defined by a dialogue method with a generally used personal computer for both the tools. The tools prepare human body and source models described in the input file format of the employed Monte Carlo codes. The tools were validated for dose assessment in comparison with a past criticality accident and a hypothesized exposure.

  19. Heat transfer augmentation of a car radiator using nanofluids

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.

    2014-05-01

    The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.

  20. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    SciTech Connect

    Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  1. Radiative Transfer Effects on the Colors of RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Davis, C. G.

    The methods of Davis and Cox (1980), are applied to a series of models described by Bono and Stellingwerf(1994) to determine the colors of RR Lyrae stars. Convection is ignored and the radiation flow is treated by a complete variable Eddington, multi-frequency dependent radiative transfer approximation.

  2. Radiative Transfer Effects on the Colors of RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Davis, C. G.

    The methods of Davis & Cox (1980), are applied to a series of models described by Bono & Stellingwerf(1994), to determine the colors of RR Lyrae stars. Convection is ignored and the radiative flow is treated by a complete variable Eddington multi-frequency group radiative transfer approximation.

  3. Accurate Time/Frequency Transfer Method Using Bi-Directional WDM Transmission

    NASA Technical Reports Server (NTRS)

    Imaoka, Atsushi; Kihara, Masami

    1996-01-01

    An accurate time transfer method is proposed using b-directional wavelength division multiplexing (WDM) signal transmission along a single optical fiber. This method will be used in digital telecommunication networks and yield a time synchronization accuracy of better than 1 ns for long transmission lines over several tens of kilometers. The method can accurately measure the difference in delay between two wavelength signals caused by the chromatic dispersion of the fiber in conventional simple bi-directional dual-wavelength frequency transfer methods. We describe the characteristics of this difference in delay and then show that the accuracy of the delay measurements can be obtained below 0.1 ns by transmitting 156 Mb/s times reference signals of 1.31 micrometer and 1.55 micrometers along a 50 km fiber using the proposed method. The sub-nanosecond delay measurement using the simple bi-directional dual-wavelength transmission along a 100 km fiber with a wavelength spacing of 1 nm in the 1.55 micrometer range is also shown.

  4. Radiation Transfer in the Atmosphere: Scattering

    NASA Technical Reports Server (NTRS)

    Mishchenko, M.; Travis, L.; Lacis, Andrew A.

    2014-01-01

    Sunlight illuminating the Earth's atmosphere is scattered by gas molecules and suspended particles, giving rise to blue skies, white clouds, and optical displays such as rainbows and halos. By scattering and absorbing the shortwave solar radiation and the longwave radiation emitted by the underlying surface, cloud and aerosol particles strongly affect the radiation budget of the terrestrial climate system. As a consequence of the dependence of scattering characteristics on particle size, morphology, and composition, scattered light can be remarkably rich in information on particle properties and thus provides a sensitive tool for remote retrievals of macro- and microphysical parameters of clouds and aerosols.

  5. Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.; Bolte, J.; Patzer, A. B. C.

    2016-11-01

    The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.

  6. General Relativistic Radiative Transfer: Applications to Black-Hole Systems

    NASA Technical Reports Server (NTRS)

    Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan

    2007-01-01

    We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.

  7. CRETE: Comet RadiativE Transfer and Excitation

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Wilson, Thomas G.

    2016-12-01

    CRETE (Comet RadiativE Transfer and Excitation) is a one-dimensional water excitation and radiation transfer code for sub-millimeter wavelengths based on the RATRAN code (ascl:0008.002). The code considers rotational transitions of water molecules given a Haser spherically symmetric distribution for the cometary coma and produces FITS image cubes that can be analyzed with tools like MIRIAD (ascl:1106.007). In addition to collisional processes to excite water molecules, the effect of infrared radiation from the Sun is approximated by effective pumping rates for the rotational levels in the ground vibrational state.

  8. Development of highly accurate approximate scheme for computing the charge transfer integral

    NASA Astrophysics Data System (ADS)

    Pershin, Anton; Szalay, Péter G.

    2015-08-01

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  9. Development of highly accurate approximate scheme for computing the charge transfer integral.

    PubMed

    Pershin, Anton; Szalay, Péter G

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  10. Development of highly accurate approximate scheme for computing the charge transfer integral

    SciTech Connect

    Pershin, Anton; Szalay, Péter G.

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  11. Radiative heat transfer estimation in pipes with various wall emissivities

    NASA Astrophysics Data System (ADS)

    Robin, Langebach; Christoph, Haberstroh

    2017-02-01

    Radiative heat transfer is usually of substantial importance in cryogenics when systems are designed and thermal budgeting is carried out. However, the contribution of pipes is commonly assumed to be comparably low since the warm and cold ends as well as their cross section are fairly small. Nevertheless, for a first assessment of each pipe rough estimates are always appreciated. In order to estimate the radiative heat transfer with traditional “paper and pencil“ methods there is only one analytical case available in literature – the case of plane-parallel plates. This case can only be used to calculate the theoretical lower and the upper asymptotic values of the radiative heat transfer, since pipe wall radiation properties are not taken into account. For this paper we investigated the radiative heat transfer estimation in pipes with various wall emissivities with the help of numerical simulations. Out of a number of calculation series we could gain an empirical extension for the used approach of plane-parallel plates. The model equation can be used to carry out enhanced paper and pencil estimations for the radiative heat transfer through pipes without demanding numerical simulations.

  12. Radiative transfer in finite participating atmospheric aerosol media

    NASA Astrophysics Data System (ADS)

    Degheidy, A. R.; Elgarayhi, A.; Sallah, M.; Shaaban, S. M.

    2014-01-01

    The properties of radiation transfer through a plane-parallel atmospheric aerosol medium has been studied. It has been done by employing Mie theory to calculate the radiation transfer scattering parameters of the medium in the form of extinction, scattering, and absorption efficiencies. Then, the equation of radiative transfer through a plane-parallel atmosphere of aerosol has been solved for partial heat fluxes using two different analytical techniques, namely, the Variational Pomraning -Eddington approximation and Galerkin technique. Average efficiencies over log-normal and modified gamma size distributions are calculated. Therefore, the radiative properties of Carbon, Anthracite, Bituminous, Lignite, and Fly ash have been calculated. The obtained numerical results show very good agreement with each other in addition to the previous published work.

  13. Radiative heat transfer in low-dimensional systems -- microscopic mode

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  14. User's Manual: Routines for Radiative Heat Transfer and Thermometry

    NASA Technical Reports Server (NTRS)

    Risch, Timothy K.

    2016-01-01

    Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.

  15. A Model of Radiative and Conductive Energy Transfer in Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce

    1996-01-01

    The thermal regime in planetary regoliths involves three processes: propagation of visible radiation, propagation of thermal radiation, and thermal conduction. The equations of radiative transfer and heat conduction are formulated for particulate media composed of anisotropically scattering particles. Although the equations are time dependent, only steady state problems are considered in this paper. Using the two-stream approximation, solutions are obtained for two cases: a layer of powder heated from below and an infinitely thick regolith illuminated by visible radiation. Radiative conductivity, subsurface temperature gradients, and the solid state greenhouse effect all appear intrinsically in the solutions without ad hoc additions. Although the equations are nonlinear, approximate analytic solutions that are accurate to a few percent are obtained. Analytic expressions are given for the temperature distribution, the optical and thermal radiance distributions, the hemispherical albedo, the hemispherical emissivity, and the directional emissivity. Additional applications of the new model to three problems of interest in planetary regoliths are presented by Hapke.

  16. Verification of snowpack radiation transfer models using actinometry

    NASA Astrophysics Data System (ADS)

    Phillips, Gavin J.; Simpson, William R.

    2005-04-01

    Actinometric measurements of photolysis rate coefficients within artificial snow have been used to test calculations of these coefficients by two radiative transfer models. The models used were based upon the delta-Eddington method or the discrete ordinate method, as implemented in the tropospheric ultraviolet and visible snow model, and were constrained by irradiance measurements and light attenuation profiles within the artificial snow. Actinometric measurements of the photolysis rate coefficient were made by observing the unimolecular conversion of 2-nitrobenzaldehyde (NBA) to its photoproduct under ultraviolet irradiation. A control experiment using liquid solutions of NBA determined that the quantum yield for conversion was ϕ = 0.41 ± 0.04 (±2σ). Measured photolysis rate coefficients in the artificial snow are enhanced in the near-surface layer, as predicted in the model calculations. The two models yielded essentially identical results for the depth-integrated photolysis rate coefficient of NBA, and their results quantitatively agreed with the actinometric measurements within the experimental precision of the measurement (±10%, ±2σ). The study shows that these models accurately determine snowpack actinic fluxes. To calculate in-snow photolysis rates for a molecule of interest, one must also have knowledge of the absorption spectrum and quantum yield for the specific photoprocess in addition to the actinic flux. Having demonstrated that the actinic flux is well determined by these models, we find that the major remaining uncertainty in prediction of snowpack photochemical rates is the measurement of these molecular photophysical properties.

  17. Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian

    2015-10-01

    Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.

  18. Advanced Doubling Adding Method for Radiative Transfer in Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Liu, Quanhua; Weng, Fuzhong

    2006-12-01

    The doubling adding method (DA) is one of the most accurate tools for detailed multiple-scattering calculations. The principle of the method goes back to the nineteenth century in a problem dealing with reflection and transmission by glass plates. Since then the doubling adding method has been widely used as a reference tool for other radiative transfer models. The method has never been used in operational applications owing to tremendous demand on computational resources from the model. This study derives an analytical expression replacing the most complicated thermal source terms in the doubling adding method. The new development is called the advanced doubling adding (ADA) method. Thanks also to the efficiency of matrix and vector manipulations in FORTRAN 90/95, the advanced doubling adding method is about 60 times faster than the doubling adding method. The radiance (i.e., forward) computation code of ADA is easily translated into tangent linear and adjoint codes for radiance gradient calculations. The simplicity in forward and Jacobian computation codes is very useful for operational applications and for the consistency between the forward and adjoint calculations in satellite data assimilation.

  19. An Iterative Phase-Space Explicit Discontinuous Galerkin Method for Stellar Radiative Transfer in Extended Atmospheres

    SciTech Connect

    de Almeida, V.F.

    2004-01-28

    A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicularly to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiative intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiative intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.

  20. A Fast Radiative Transfer Parameterization Under Cloudy Condition in Solar Spectral Region

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Liu, X.; Yang, P.; Wang, C.

    2014-12-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) system, which is proposed and developed by NASA, will directly measure the Earth's thermal infrared spectrum (IR), the spectrum of solar radiation reflected by the Earth and its atmosphere (RS), and radio occultation (RO). IR, RS, and RO measurements provide information on the most critical but least understood climate forcings, responses, and feedbacks associated with the vertical distribution of atmospheric temperature and water vapor, broadband reflected and emitted radiative fluxes, cloud properties, surface albedo, and surface skin temperature. To perform Observing System Simulation Experiments (OSSE) for long term climate observations, accurate and fast radiative transfer models are needed. The principal component-based radiative transfer model (PCRTM) is one of the efforts devoted to the development of fast radiative transfer models for simulating radiances and reflecatance observed by various hyperspectral instruments. Retrieval algorithm based on PCRTM forward model has been developed for AIRS, NAST, IASI, and CrIS. It is very fast and very accurate relative to the training radiative transfer model. In this work, we are extending PCRTM to UV-VIS-near IR spectral region. To implement faster cloudy radiative transfer calculations, we carefully investigated the radiative transfer process under cloud condition. The cloud bidirectional reflectance was parameterized based on off-line 36-stream multiple scattering calculations while few other lookup tables were generated to describe the effective transmittance and reflectance of the cloud-clear-sky coupling system in solar spectral region. The bidirectional reflectance or the irradiance measured by satellite may be calculated using a simple fast radiative transfer model providing the type of cloud (ice or water), optical depth of the cloud, optical depth of both atmospheric trace gases above and below clouds, particle size of the cloud, as well

  1. Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.

  2. Radiative interactions in transient energy transfer in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1985-01-01

    Analyses and numerical procedures are presented to investigate the radiative interactions in transient energy transfer processes in gaseous systems. The nongray radiative formulations are based on the wide-band model correlations for molecular absorption. Various relations for the radiative flux are developed; these are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The methods presented in this study can be extended easily to investigate the radiative interactions in realistic flows of hydrogen-air species in the scramjet engine.

  3. Algorithm for solving the equation of radiative transfer in the frequency domain.

    PubMed

    Ren, Kui; Abdoulaev, Gassan S; Bal, Guillaume; Hielscher, Andreas H

    2004-03-15

    We present an algorithm that provides a frequency-domain solution of the equation of radiative transfer (ERT) for heterogeneous media of arbitrary shape. Although an ERT is more accurate than a diffusion equation, no ERT code for the widely employed frequency-domain case has been developed to date. In this work the ERT is discretized by a combination of discrete-ordinate and finite-volume methods. Two numerical simulations are presented.

  4. An Infrared Radiative Transfer Parameterization For A Venus General Circulation Model

    NASA Astrophysics Data System (ADS)

    Eymet, Vincent; Fournier, R.; Lebonnois, S.; Bullock, M. A.; Dufresne, J.; Hourdin, F.

    2006-09-01

    A new 3-dimensional General Circulation Model (GCM) of Venus'atmosphere is curently under development at the Laboratoire de Meteorologie Dynamique, in the context of the Venus-Express mission. Special attention was devoted to the parameterization of infrared radiative transfer: this parameterization has to be both very fast and sufficiently accurate in order to provide valid results over extented periods of time. We have developped at the Laboratoire d'Energetique a Monte-Carlo code for computing reference radiative transfer results for optically thick inhomogeneous scattering planetary atmospheres over the IR spectrum. This code (named KARINE) is based on a Net-Exchange Rates formulation, and uses a k-distribution spectral model. The Venus spectral data, that was compiled at the Southwest Research Institute, accounts for gaseous absorption and scattering, typical clouds absorption and scattering, as well as CO2 and H2O absorption continuums. We will present the Net-Exchange Rates matrix that was computed using the Monte-Carlo approach. We will also show how this matrix has been used in order to produce a first-order radiative transfer parameterization that is used in the LMD Venus GCM. In addition, we will present how the proposed radiative transfer model was used in a simple convective-radiative equilibrium model in order to reproduce the main features of Venus' temperature profile.

  5. Toward a new radiative-transfer-based model for remote sensing of terrestrial surface albedo.

    PubMed

    Cui, Shengcheng; Zhen, Xiaobing; Wang, Zhen; Yang, Shizhi; Zhu, WenYue; Li, Xuebin; Huang, Honghua; Wei, Heli

    2015-08-15

    This Letter formulates a simple yet accurate radiative-transfer-based theoretical model to characterize the fraction of radiation reflected by terrestrial surfaces. Emphasis is placed on the concept of inhomogeneous distribution of the diffuse sky radiation function (DSRF) and multiple interaction effects (MIE). Neglecting DSRF and MIE produces a -1.55% mean relative bias in albedo estimates. The presented model can elucidate the impact of DSRF on the surface volume scattering and geometry-optical scattering components, respectively, especially for slant illuminations with solar zenith angles (SZA) larger than 50°. Particularly striking in the comparisons between our model and ground-based observations is the achievement of the agreement level, indicating that our model can effectively resolve the longstanding issue in accurately estimating albedo at extremely large SZAs and is promising for land-atmosphere interactions studies.

  6. RRTMGP: A fast and accurate radiation code for the next decade

    NASA Astrophysics Data System (ADS)

    Mlawer, E. J.; Pincus, R.; Wehe, A.; Delamere, J.

    2015-12-01

    Atmospheric radiative processes are key drivers of the Earth's climate and must be accurately represented in global circulations models (GCMs) to allow faithful simulations of the planet's past, present, and future. The radiation code RRTMG is widely utilized by global modeling centers for both climate and weather predictions, but it has become increasingly out-of-date. The code's structure is not well suited for the current generation of computer architectures and its stored absorption coefficients are not consistent with the most recent spectroscopic information. We are developing a new broadband radiation code for the current generation of computational architectures. This code, called RRTMGP, will be a completely restructured and modern version of RRTMG. The new code preserves the strengths of the existing RRTMG parameterization, especially the high accuracy of the k-distribution treatment of absorption by gases, but the entire code is being rewritten to provide highly efficient computation across a range of architectures. Our redesign includes refactoring the code into discrete kernels corresponding to fundamental computational elements (e.g. gas optics), optimizing the code for operating on multiple columns in parallel, simplifying the subroutine interface, revisiting the existing gas optics interpolation scheme to reduce branching, and adding flexibility with respect to run-time choices of streams, need for consideration of scattering, aerosol and cloud optics, etc. The result of the proposed development will be a single, well-supported and well-validated code amenable to optimization across a wide range of platforms. Our main emphasis is on highly-parallel platforms including Graphical Processing Units (GPUs) and Many-Integrated-Core processors (MICs), which experience shows can accelerate broadband radiation calculations by as much as a factor of fifty. RRTMGP will provide highly efficient and accurate radiative fluxes calculations for coupled global

  7. Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements.

    PubMed

    Kudryavtsev, Volodymyr; Sikor, Martin; Kalinin, Stanislav; Mokranjac, Dejana; Seidel, Claus A M; Lamb, Don C

    2012-03-01

    Single-pair Förster resonance energy transfer (spFRET) experiments using single-molecule burst analysis on a confocal microscope are an ideal tool to measure inter- and intramolecular distances and dynamics on the nanoscale. Different techniques have been developed to maximize the amount of information available in spFRET burst analysis experiments. Multiparameter fluorescence detection (MFD) is used to monitor a variety of fluorescence parameters simultaneously and pulsed interleaved excitation (PIE) employs direct excitation of the acceptor to probe its presence and photoactivity. To calculate accurate FRET efficiencies from spFRET experiments with MFD or PIE, several calibration measurements are usually required. Herein, we demonstrate that by combining MFD with PIE information regarding all calibration factors as well as an accurate determination of spFRET histograms can be performed in a single measurement. In addition, the quality of overlap of the different detection volumes as well as the detection of acceptor photophysics can be investigated with MFD-PIE. Bursts containing acceptor photobleaching can be identified and excluded from further investigation while bursts that contain FRET dynamics are unaffected by this analysis. We have employed MFD-PIE to accurately analyze the effects of nucleotides and substrate on the interdomain separation in DnaK, the major bacterial heat shock protein 70 (Hsp70). The interdomain distance increases from 47 Å in the ATP-bound state to 84 Å in the ADP-bound state and slightly contracts to 77 Å when a substrate is bound. This is in contrast to what was observed for the mitochondrial member of the Hsp70s, Ssc1, supporting the notion of evolutionary specialization of Hsp70s for different cellular functions in different organisms and cell organelles.

  8. Test problems in radiative transfer calculations

    SciTech Connect

    Shestakov, A. I.; Kershaw, D. S.; Zimmerman, G. B.

    1989-01-12

    Several test problems are presented for evaluating the radiation diffusion equations. For spatial transport schemes, 1-D problems with known analytic solutions are tested on 2-D domains with non-orthogonal meshes. It is shown that a scheme based on the Finite Element Method is insensitive to grid distortions when the diffusion term is dominant. Other test problems deal with Compton scattering, specifically the 1-D Fokker-Planck equation coupled to an equation describing the change in electron temperature. The test problems model the evolution of a Planckian radiation field as it equilibrates with the electrons. In all cases, the numerical results are compared with the analytic ones. 15 refs., 9 figs., 7 tabs.

  9. Radiation Heat Transfer Procedures for Space-Related Applications

    NASA Technical Reports Server (NTRS)

    Chai, John C.

    2000-01-01

    Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.

  10. Radiative Transfer Model for Contaminated Rough Surfaces

    DTIC Science & Technology

    2013-02-01

    transfer, reflectance, rough surface, BRDF, Kramers- Kronig , penetration depth, fill factor, infrared, LWIR, MWIR, absorption coefficient, scattering...can be obtained from the absorption coefficient via Equation 6 (below) and the real part may be obtained via Kramers- Kronig (KK) analysis,18 n = KK(k...expanded reference library with more than one reference spectrum per material. Kramers- Kronig Relations: The Kramers- Kronig relationship is a

  11. Radiative Transfer in Submerged Macrophyte Canopies

    DTIC Science & Technology

    2001-09-30

    the canopy in Monterey Bay , California and Lee Stocking Island, Bahamas. Years 3 and 4 continued to evaluate inherent optical properties of individual...both the clear waters of Lee Stocking Island, Bahamas and the much more turbid environment of Elkhorn Slough, in Monterey Bay (Fig. 1A, C). Since...data sets consisting of water column optical property observations of nearshore waters in Monterey Bay were transferred to J. Smart (APL, Johns

  12. A modified Henyey method for computing radiative transfer hydrodynamics

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1975-01-01

    The implicit hydrodynamic code of Kutter and Sparks (1972), which is limited to optically thick regions and employs the diffusion approximation for radiative transfer, is modified to include radiative transfer effects in the optically thin regions of a model star. A modified Henyey method is used to include the solution of the radiative transfer equation in this implicit code, and the convergence properties of this method are proven. A comparison is made between two hydrodynamic models of a classical Cepheid with a 12-day period, one of which was computed with the diffusion approximation and the other with the modified Henyey method. It is found that the two models produce nearly identical light and velocity curves, but differ in the fact that the former never has temperature inversions in the atmosphere while the latter does when sufficiently strong shocks are present.

  13. Radiative transfer theory for polarimetric remote sensing of pine forest

    NASA Technical Reports Server (NTRS)

    Hsu, C. C.; Han, H. C.; Shin, Robert T.; Kong, Jin AU; Beaudoin, A.; Letoan, T.

    1992-01-01

    The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. To take into account the clustered structures with the radiative transfer theory, the scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. Subsequently, the resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including the multi-scale structures, namely, trunks, primary and secondary branches, as well as needles, we interpret and simulate the polarimetric radar responses from pine forest for different frequencies and looking angles. The preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment.

  14. Partial moment entropy approximation to radiative heat transfer

    SciTech Connect

    Frank, Martin . E-mail: frank@mathematik.uni-kl.de; Dubroca, Bruno . E-mail: Bruno.Dubroca@math.u-bordeaux.fr; Klar, Axel . E-mail: klar@mathematik.uni-kl.de

    2006-10-10

    We extend the half moment entropy closure for the radiative heat transfer equations presented in Dubroca and Klar [B. Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 584-596] and Turpault et al. [R. Turpault, M. Frank, B. Dubroca, A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comput. Phys. 198 (2004) 363-371] to multi-D. To that end, we consider a partial moment system with general partitions of the unit sphere closed by an entropy minimization principle. We give physical and mathematical reasons for this choice of model and study its properties. Several numerical examples in different physical regimes are presented.

  15. Improvement and Application of Atmospheric Radiative Transfer Models for Prediction of the Climatic Effects of Aerosol

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications, we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  16. Improvement and Application of Atmospheric Radiative Transfer Models for Prediction of the Climatic Effects of Aerosol

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  17. A simplified scheme for computing radiation transfer in the troposphere

    NASA Technical Reports Server (NTRS)

    Katayama, A.

    1973-01-01

    A scheme is presented, for the heating of clear and cloudy air by solar and infrared radiation transfer, designed for use in tropospheric general circulation models with coarse vertical resolution. A bulk transmission function is defined for the infrared transfer. The interpolation factors, required for computing the bulk transmission function, are parameterized as functions of such physical parameters as the thickness of the layer, the pressure, and the mixing ratio at a reference level. The computation procedure for solar radiation is significantly simplified by the introduction of two basic concepts. The first is that the solar radiation spectrum can be divided into a scattered part, for which Rayleigh scattering is significant but absorption by water vapor is negligible, and an absorbed part for which absorption by water vapor is significant but Rayleigh scattering is negligible. The second concept is that of an equivalent cloud water vapor amount which absorbs the same amount of radiation as the cloud.

  18. Radiative heat transfer as a Landauer-Büttiker problem

    NASA Astrophysics Data System (ADS)

    Yap, Han Hoe; Wang, Jian-Sheng

    2017-01-01

    We study the radiative heat transfer between two semi-infinite half-spaces, bounded by conductive surfaces in contact with vacuum. This setup is interpreted as a four-terminal mesoscopic transport problem. The slabs and interfaces are viewed as bosonic reservoirs, coupled perfectly to a scattering center consisting of the two planes and vacuum. Using Rytov's fluctuational electrodynamics and assuming Kirchhoff's circuital law, we calculate the heat flow in each bath. This allows for explicit evaluation of a conductance matrix, from which one readily verifies Büttiker symmetry. Thus, radiative heat transfer in layered media with conductive interfaces becomes a Landauer-Büttiker transport problem.

  19. ARTIST: Adaptable Radiative Transfer Innovations for Submillimeter Telescopes

    NASA Astrophysics Data System (ADS)

    Jørgensen, Jes; Brinch, Christian; Girart, Josep Miquel; Padovani, Marco; Frau, Pau; Schaaf, Reinhold; Kuiper, Rolf; Bertoldi, Frank; Hogerheijde, Michiel; Juhasz, Attila; Vlemmings, Wouter

    2014-02-01

    ARTIST is a suite of tools for comprehensive multi-dimensional radiative transfer calculations of dust and line emission, as well as their polarization, to help interpret observations from submillimeter telescopes. The ARTIST package consists of LIME, a radiative transfer code that uses adaptive gridding allowing simulations of sources with arbitrary multi-dimensional (1D, 2D, 3D) and time-dependent structures, thus ensuring rapid convergence; the DustPol and LinePol tools for modeling the polarization of the line and dust emission; and an interface run from Python scripts that manages the interaction between a general model library and LIME, and a graphical interface to simulate images.

  20. Radiative heat transfer in coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-01-01

    A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.

  1. Radiative heat transfer in coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-09-01

    A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.

  2. Theory of heat transfer and hydraulic resistance of oil radiators

    NASA Technical Reports Server (NTRS)

    Mariamov, N B

    1942-01-01

    In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.

  3. Subgrid-scale model for radiative transfer in turbulent participating media

    NASA Astrophysics Data System (ADS)

    Soucasse, L.; Rivière, Ph.; Soufiani, A.

    2014-01-01

    The simulation of turbulent flows of radiating gases, taking into account all turbulence length scales with an accurate radiation transport solver, is computationally prohibitive for high Reynolds or Rayleigh numbers. This is particularly the case when the small structures are not optically thin. We develop in this paper a radiative transfer subgrid model suitable for the coupling with direct numerical simulations of turbulent radiating fluid flows. Owing to the linearity of the Radiative Transfer Equation (RTE), the emission source term is spatially filtered to define large-scale and subgrid-scale radiation intensities. The large-scale or filtered intensity is computed with a standard ray tracing method on a coarse grid, and the subgrid intensity is obtained analytically (in Fourier space) from the Fourier transform of the subgrid emission source term. A huge saving of computational time is obtained in comparison with direct ray tracing applied on the fine mesh. Model accuracy is checked for three 3D fluctuating temperature fields. The first field is stochastically generated and allows us to discuss the effects of the filtering level and of the optical thicknesses of the whole medium, of the integral length scale, and of the cutoff wave length. The second and third cases correspond respectively to turbulent natural convection of humid air in a cubical box, and to the flow of hot combustion products inside a channel. In all cases, the achieved accuracy on radiative powers and wall fluxes is about a few percents.

  4. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    SciTech Connect

    Wang, Yanhong; Wu, Jingzhi

    2016-02-15

    Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  5. Super-Eddington radiation transfer in soft gamma repeaters

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 10(exp 13) G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.

  6. Nonlocality of radiative transfer in continuous spectra and Bremsstrahlung radiation transport in hot dense plasmas

    SciTech Connect

    Ivanov, V. V.; Kukushkin, A. B.

    1997-05-05

    The importance of nonlocal effects in radiative transfer in continuous spectra is shown in numerical modelling of space profiles of plasma temperature and Bremsstrahlung total power losses in a layer of adiabatically compressed hot dense plasma, via comparing the results of the exact, integral equation formalism and widely used approach of radiation temperature diffusion with Rosseland mean diffusion coefficient.

  7. Fractional integration and radiative transfer in a multifractal atmosphere

    SciTech Connect

    Naud, C.; Schertzer, D.; Lovejoy, S.

    1996-04-01

    Recently, Cess et al. (1995) and Ramathan et al. (1995) cited observations which exhibit an anomalous absorption of cloudy skies in comparison with the value predicted by usual models and which thus introduce large uncertainties for climatic change assessments. These observation raise questions concerning the way general circulation models have been tuned for decades, relying on classical methods, of both radiative transfer and dynamical modeling. The observations also tend to demonstrate that homogeneous models are simply not relevant in relating the highly variable properties of clouds and radiation fields. However smoothed, the intensity of cloud`s multi-scattered radiation fields reflect this extreme variability.

  8. A modular radiative transfer program for gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Campbell, S. A.

    1977-01-01

    The fundamentals of a computer program, simulated monochromatic atmospheric radiative transfer (SMART), which calculates atmospheric path transmission, solar radiation, and thermal radiation in the 4.6 micrometer spectral region, are described. A brief outline of atmospheric absorption properties and line by line transmission calculations is explained in conjunction with an outline of the SMART computational procedures. Program flexibility is demonstrated by simulating the response of a gas filter correlation radiometer as one example of an atmospheric infrared sensor. Program limitations, input data requirements, program listing, and comparison of SMART transmission calculations are presented.

  9. Principal Component-Based Radiative Transfer Model (PCRTM) for Hyperspectral Sensors. Part I; Theoretical Concept

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen

    2005-01-01

    Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  10. Modeling radiative transfer in heterogeneous 3D vegetation canopies

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.; Demarez, V.; Pinel, Veronique; Zagolski, Francis

    1995-01-01

    The DART (discrete anisotropic radiative transfer) model simulates radiative transfer in heterogeneous 3-D scenes; here, a forest plantation. Similarly to Kimes model, the scene is divided into a rectangular cell matrix, i.e., a building block for simulating larger scenes. Cells are parallelipipedic. The scene encompasses different landscape features (i.e., trees with leaves and trunks, grass, water, and soil) with specific optical (reflectance, transmittance) and structural (LAI, LAD) characteristics. Radiation directions are subdivided into contiguous sectors with possibly uneven spacing. Topography, hot spot, and multiple interactions (scattering, attenuation) within cells are modeled. Two major steps are distinguished: (1) Illumination of cells by direct sun radiation. Actual locations of within cell scattering are determined for optimizing scattering computation. (2) Interception and scattering of previously scattered radiation. Diffuse atmospheric radiation is input at this level. Multiple scattering is represented with a spherical harmonic decomposition, for reducing data volume. The model iterates on step 2 for all cells, and stops with the energetic equilibrium. This model predicts the bi-directional reflectance factors of 3D canopies, with each scene component contribution; it was successfully tested with homogeneous covers. It gives also the radiation regime with canopies, and consequently some information about volume distribution of photosynthesis rates and primary production.

  11. Stochastic Radiative Transfer in Polar Mixed Phase Clouds

    NASA Astrophysics Data System (ADS)

    Brodie, J.; Veron, D. E.

    2004-12-01

    According to recent research, mixed phase clouds comprise one third of the overall annual cloud cover in the Arctic region. These clouds contain distinct regions of liquid water and ice, which have a different impact on radiation than single-phase clouds. Despite the prevalence of mixed phase clouds in the polar regions, many modern atmospheric general circulation models use single-phase clouds in their radiation routines. A stochastic approach to representating the transfer of shortwave radiation through a cloud layer where the distribution of the ice and liquid is governed by observed statistics is being assessed. Data from the Surface Heat Budget of the Arctic (SHEBA) program and the Atmospheric Radiation Measurement (ARM) program's North Slopes of Alaska Cloud and Radiation Testbed site will be used to determine the characteristic features of the cloud field and to evaluate the performance of this statistical model.

  12. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    SciTech Connect

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2015-03-15

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.

  13. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  14. A public code for general relativistic, polarised radiative transfer around spinning black holes

    NASA Astrophysics Data System (ADS)

    Dexter, Jason

    2016-10-01

    Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, GRTRANS, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in FORTRAN 90 and efficiently parallelises with OPENMP, and the full code and several components have PYTHON interfaces. We describe several tests which are used for verifiying the code, and we compare the results for polarised thin accretion disc and semi-analytic jet problems with those from the literature as examples of its use. Along the way, we provide accurate fitting functions for polarised synchrotron emission and transfer coefficients from thermal and power-law distribution functions, and compare results from numerical integration and quadrature solutions of the polarised radiative transfer equations. We also show that all transfer coefficients can play an important role in predicted images and polarisation maps of the Galactic centre black hole, Sgr A*, at submillimetre wavelengths.

  15. Mesoscopic near-field radiative heat transfer at low temperatures

    NASA Astrophysics Data System (ADS)

    Maasilta, Ilari; Geng, Zhuoran; Chaudhuri, Saumyadip; Koppinen, Panu

    2015-03-01

    Near-field radiative heat transfer has mostly been discussed at room temperatures and/or macroscopic scale geometries. Here, we discuss our recent theoretical and experimental advances in understanding near-field transfer at ultra-low temperatures below 1K. As the thermal wavelengths increase with lowering temperature, we show that with sensitive tunnel junction bolometers it is possible to study near-field transfer up to distances ~ 10 μm currently, even though the power levels are low. In addition, these type of experiments correspond to the extreme near-field limit, as the near-field region starts at ~ mm distances at 0.1 K, and could have theoretical power enhancement factors of the order of 1010. Preliminary results on heat transfer between two parallel metallic wires are presented. We also comment on possible areas were such heat transfer might be relevant, such as densely packed arrays of low-temperature detectors.

  16. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations

    SciTech Connect

    Sun, Wenjun; Jiang, Song; Xu, Kun; Li, Shu

    2015-12-01

    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP) scheme in all

  17. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    PubMed Central

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-01-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent. PMID:28338043

  18. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers.

    PubMed

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A

    2017-03-24

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter (90)Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  19. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    NASA Astrophysics Data System (ADS)

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-03-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  20. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect

    Veron, Dana E

    2009-03-12

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  1. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  2. Radiator standards for accurate IR calibrations in remote sensing based on heatpipe blackbodies

    NASA Astrophysics Data System (ADS)

    Hartmann, Juergen; Fischer, Joachim

    1999-09-01

    The demand of instrumentation in the field of remote sensing is increasing rapidly. For international compatibility, for reliable results and precise long-term investigation, necessary for example in the measurement of climatic trends, accurate traceability of the results to international standards or SI-units is mandatory. Additionally, interpretation of the results strongly requires a careful evaluation of the involved errors and the resulting uncertainties in order to allow for a rating of the obtained results. For that purpose quality assurance was introduced, not only for industrial fabrication, but also, and with increasing tendency, for industrial and scientific research. As an overview, the necessity and the possibilities of quality assurance in the area of remote sensing are discussed. Taking remote sensing of temperature as an example, the general approach is described. For that purpose, a description of heatpipe blackbodies used as standard radiation sources and of the apparatus for measuring the area of the beam limiting apertures is given. We also introduce the applied mathematical model for determination of the emissivity of the blackbodies, which crucially influenced the detected radiation temperature and the uncertainty. Finally the evaluation procedure of the uncertainties is described and a sophisticated estimation of the overall uncertainty is presented.

  3. Radiative transfer in a polluted urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  4. Near-field radiative heat transfer between metamaterial thin films.

    PubMed

    Basu, Soumyadipta; Francoeur, Mathieu

    2014-03-01

    We investigate near-field radiative heat transfer between two thin films made of metamaterials. The impact of film thickness on magnetic and electric surface polaritons (ESPs) is analyzed. It is found that the strength as well as the location of magnetic resonance does not change with film thickness until the film behaves as semi-infinite for the dielectric function chosen in this study. When the film is thinner than vacuum gap, both electric and magnetic polaritons contribute evenly to near-field radiative heat transfer. At larger film thicknesses, ESPs dominate heat transfer due to excitation of a larger number of modes. Results obtained from this study will facilitate applications of metamaterials as thin-film coatings for energy systems.

  5. A Fast Infrared Radiative Transfer Model for Overlapping Clouds

    NASA Technical Reports Server (NTRS)

    Niu, Jianguo; Yang, Ping; Huang, Huang-Lung; Davies, James E.; Li, Jun; Baum, Bryan A.; Hu, Yong X.

    2006-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: 1) clear-sky, 2) single-layered ice or water cloud, and 3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3 - 1179.5/cm) and the short-to-medium wave (SMW) band (1180.1 - 2228.9/cm). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD(F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model.

  6. Polarized radiative transfer considering thermal emission in semitransparent media

    NASA Astrophysics Data System (ADS)

    Ben, Xun; Yi, Hong-Liang; Tan, He-Ping

    2014-09-01

    The characteristics of the polarization must be considered for a complete and correct description of radiation transfer in a scattering medium. Observing and identifying the polarizition characteristics of the thermal emission of a hot semitransparent medium have a major significance to analyze the optical responses of the medium for different temperatures. In this paper, a Monte Carlo method is developed for polarzied radiative transfer in a semitransparent medium. There are mainly two kinds of mechanisms leading to polarization of light: specular reflection on the Fresnel boundary and scattering by particles. The determination of scattering direction is the key to solve polarized radiative transfer problem using the Monte Carlo method. An optimized rejection method is used to calculate the scattering angles. In the model, the treatment of specular reflection is also considered, and in the process of tracing photons, the normalization must be applied to the Stokes vector when scattering, reflection, or transmission occurs. The vector radiative transfer matrix (VRTM) is defined and solved using Monte Carlo strategy, by which all four Stokes elements can be determined. Our results for Rayleigh scattering and Mie scattering are compared well with published data. The accuracy of the developed Monte Carlo method is shown to be good enough for the solution to vector radiative transfer. Polarization characteristics of thermal emission in a hot semitransparent medium is investigated, and results show that the U and V parameters of Stokes vector are equal to zero, an obvious peak always appear in the Q curve instead of the I curve, and refractive index has a completely different effect on I from Q.

  7. Realistic three-dimensional radiative transfer simulations of observed precipitation

    NASA Astrophysics Data System (ADS)

    Adams, I. S.; Bettenhausen, M. H.

    2013-12-01

    Remote sensing observations of precipitation typically utilize a number of instruments on various platforms. Ground validation campaigns incorporate ground-based and airborne measurements to characterize and study precipitating clouds, while the precipitation measurement constellation envisioned by the Global Precipitation Measurement (GPM) mission includes measurements from differing space-borne instruments. In addition to disparities such as frequency channel selection and bandwidth, measurement geometry and resolution differences between observing platforms result in inherent inconsistencies between data products. In order to harmonize measurements from multiple passive radiometers, a framework is required that addresses these differences. To accomplish this, we have implemented a flexible three-dimensional radiative transfer model. As its core, the radiative transfer model uses the Atmospheric Radiative Transfer Simulator (ARTS) version 2 to solve the radiative transfer equation in three dimensions using Monte Carlo integration. Gaseous absorption is computed with MonoRTM and formatted into look-up tables for rapid processing. Likewise, scattering properties are pre-computed using a number of publicly available codes, such as T-Matrix and DDSCAT. If necessary, a melting layer model can be applied to the input profiles. Gaussian antenna beams estimate the spatial resolutions of the passive measurements, and realistic bandpass characteristics can be included to properly account for the spectral response of the simulated instrument. This work presents three-dimensional simulations of WindSat brightness temperatures for an oceanic rain event sampled by the Tropical Rainfall Measuring Mission (TRMM) satellite. The 2B-31 combined Precipitation Radar / TRMM Microwave Imager (TMI) retrievals provide profiles that are the input to the radiative transfer model. TMI brightness temperatures are also simulated. Comparisons between monochromatic, pencil beam simulations and

  8. HELIOS: A new open-source radiative transfer code

    NASA Astrophysics Data System (ADS)

    Malik, Matej; Grosheintz, Luc; Lukas Grimm, Simon; Mendonça, João; Kitzmann, Daniel; Heng, Kevin

    2015-12-01

    I present the new open-source code HELIOS, developed to accurately describe radiative transfer in a wide variety of irradiated atmospheres. We employ a one-dimensional multi-wavelength two-stream approach with scattering. Written in Cuda C++, HELIOS uses the GPU’s potential of massive parallelization and is able to compute the TP-profile of an atmosphere in radiative equilibrium and the subsequent emission spectrum in a few minutes on a single computer (for 60 layers and 1000 wavelength bins).The required molecular opacities are obtained with the recently published code HELIOS-K [1], which calculates the line shapes from an input line list and resamples the numerous line-by-line data into a manageable k-distribution format. Based on simple equilibrium chemistry theory [2] we combine the k-distribution functions of the molecules H2O, CO2, CO & CH4 to generate a k-table, which we then employ in HELIOS.I present our results of the following: (i) Various numerical tests, e.g. isothermal vs. non-isothermal treatment of layers. (ii) Comparison of iteratively determined TP-profiles with their analytical parametric prescriptions [3] and of the corresponding spectra. (iii) Benchmarks of TP-profiles & spectra for various elemental abundances. (iv) Benchmarks of averaged TP-profiles & spectra for the exoplanets GJ1214b, HD189733b & HD209458b. (v) Comparison with secondary eclipse data for HD189733b, XO-1b & Corot-2b.HELIOS is being developed, together with the dynamical core THOR and the chemistry solver VULCAN, in the group of Kevin Heng at the University of Bern as part of the Exoclimes Simulation Platform (ESP) [4], which is an open-source project aimed to provide community tools to model exoplanetary atmospheres.-----------------------------[1] Grimm & Heng 2015, ArXiv, 1503.03806[2] Heng, Lyons & Tsai, Arxiv, 1506.05501Heng & Lyons, ArXiv, 1507.01944[3] e.g. Heng, Mendonca & Lee, 2014, ApJS, 215, 4H[4] exoclime.net

  9. Development and applications of radiative transfer models for unpolarized and polarized light

    NASA Astrophysics Data System (ADS)

    Lin, Zhenyi

    Radiative transfer models play an important role in satellite remote sensing of the atmosphere and the underlying surface including the ocean as well as for studying the energy budget of the Earth. Proper analysis of radiance and polarized radiation measurements rely on accurate and reliable radiative transfer models. Among the various numerical approaches developed to solve the radiative transfer equation, the ones based on the discrete-ordinate method, DISORT, as well as its polarized (vector) version VDISORT, have led to quite successful radiative transfer models that have been widely applied as forward models for the simulation of radiative transfer in coupled atmosphere-ocean media. In this dissertation, we first discuss new developments of DISORT and VDISORT, and review the relevant radiative transfer theory behind the upgraded algorithms. We then proceed to discuss applications of radiative transfer simulations that make use of each model. The upgrade of DISORT discussed in this thesis includes in the following improvements: (1) enhanced computational efficiency, accuracy and stability; (2) implementation new lower boundary conditions to simulate reflection from realistic (rough) land and ocean surfaces; (3) a revised treatment of the single-scattering correction. Numerical results are provided to demonstrate and quantify the improvements in accuracy and efficiency by comparing previous and upgraded versions of the numerical codes. One challenging problem in remote sensing applications is the simulation of ocean glint reflectance, which is reflected solar radiation from a wind-roughened ocean surface. For geometries close to specular reflection the glint signal is sufficiently strong that it may saturate the sensor, and even when saturation does not occur correct simulation of this signal is a difficult problem. In an exciting new application, we show for the first time that glint radiances in the near infrared spectral range simulated with the upgraded

  10. Coupling radiative heat transfer in participating media with other heat transfer modes

    SciTech Connect

    Tencer, John; Howell, John R.

    2015-09-28

    The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

  11. Preliminary results of a three-dimensional radiative transfer model

    SciTech Connect

    O`Hirok, W.

    1995-09-01

    Clouds act as the primary modulator of the Earth`s radiation at the top of the atmosphere, within the atmospheric column, and at the Earth`s surface. They interact with both shortwave and longwave radiation, but it is primarily in the case of shortwave where most of the uncertainty lies because of the difficulties in treating scattered solar radiation. To understand cloud-radiative interactions, radiative transfer models portray clouds as plane-parallel homogeneous entities to ease the computational physics. Unfortunately, clouds are far from being homogeneous, and large differences between measurement and theory point to a stronger need to understand and model cloud macrophysical properties. In an attempt to better comprehend the role of cloud morphology on the 3-dimensional radiation field, a Monte Carlo model has been developed. This model can simulate broadband shortwave radiation fluxes while incorporating all of the major atmospheric constituents. The model is used to investigate the cloud absorption anomaly where cloud absorption measurements exceed theoretical estimates and to examine the efficacy of ERBE measurements and cloud field experiments. 3 figs.

  12. SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Altay, Gabriel; Croft, Rupert A. C.; Pelupessy, Inti

    2011-03-01

    SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer, is designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from computer graphics applications allows for the acceleration of the raytracing component. We present the algorithms used in SPHRAY and verify the code by performing all the test problems detailed in the recent Radiative Transfer Comparison Project of Iliev et. al. The Fortran 90 source code for SPHRAY and example SPH density fields are made available online.

  13. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  14. Implications of a quadratic stream definition in radiative transfer theory.

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1972-01-01

    An explicit definition of the radiation-stream concept is stated and applied to approximate the integro-differential equation of radiative transfer with a set of twelve coupled differential equations. Computational efficiency is enhanced by distributing the corresponding streams in three-dimensional space in a totally symmetric way. Polarization is then incorporated in this model. A computer program based on the model is briefly compared with a Monte Carlo program for simulation of horizon scans of the earth's atmosphere. It is found to be considerably faster.

  15. Fire Intensity Data for Validation of the Radiative Transfer Equation

    SciTech Connect

    Blanchat, Thomas K.; Jernigan, Dann A.

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  16. Accurate determination of screw position in treating fifth metatarsal base fractures to shorten radiation exposure time

    PubMed Central

    Wang, Xu; Zhang, Chao; Wang, Chen; Huang, Jia Zhang; Ma, Xin

    2016-01-01

    INTRODUCTION Anatomical markers can help to guide lag screw placement during surgery for internal fixation of fifth metatarsal base fractures. This study aimed to identify the optimal anatomical markers and thus reduce radiation exposure. METHODS A total of 50 patients in Huashan Hospital, Shanghai, China, who underwent oblique foot radiography in the lateral position were randomly selected. The angles between the fifth metatarsal axis and cuboid articular surface were measured to determine the optimal lag screw placement relative to anatomical markers. RESULTS The line connecting the styloid process of the fifth metatarsal base with the second metatarsophalangeal (MTP) joint intersected with the fifth metatarsal base fracture line at an angle of 86.85° ± 5.44°. The line connecting the fifth metatarsal base styloid with the third and fourth MTP joints intersected with the fracture line at angles of 93.28° ± 5.24° and 100.95° ± 5.00°, respectively. The proximal articular surface of the fifth metatarsal base intersected with the line connecting the styloid process of the fifth metatarsal base with the second, third and fourth MTP joints at angles of 24.02° ± 4.77°, 30.79° ± 4.53° and 38.08° ± 4.54°, respectively. CONCLUSION The fifth metatarsal base styloid and third MTP joint can be used as anatomical markers for lag screw placement in fractures involving the fifth tarsometatarsal joint. The connection line, which is normally perpendicular to the fracture line, provides sufficient mechanical stability to facilitate accurate screw placement. The use of these anatomical markers could help to reduce unnecessary radiation exposure for patients and medical staff. PMID:26767892

  17. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-03

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  18. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  19. Advanced Computational Methods for Thermal Radiative Heat Transfer

    SciTech Connect

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  20. Non Grey Radiative Transfer in the Photospheric Convection: Validity of the Eddington Approximation

    NASA Astrophysics Data System (ADS)

    Bach, Kiehunn

    2016-02-01

    The aim of this study is to describe the physical processes taking place in the solar photosphere. Based on 3D hydrodynamic simulations including a detailed radiation transfer scheme, we investigate thermodynamic structures and radiation fields in solar surface convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. Particularly, a non-grey radiative transfer incorporating the opacity distribution function was considered in our calculations. In addition, we evaluate the classical approximations that are usually adopted in the one-dimensional stellar structure models. We numerically reconfirm that radiation fields are well represented by the asymptotic characteristics of the Eddington approximation (the diffusion limit and the streaming limit). However, this classical approximation underestimates radiation energy in the shallow layers near the surface, which implies that a reliable treatment of the non-grey line opacities is crucial for the accurate description of the photospheric convection phenomenon.

  1. Radiative Heat Transfer and Turbulence-Radiation Interactions in a Heavy-Duty Diesel Engine

    NASA Astrophysics Data System (ADS)

    Paul, C.; Sircar, A.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.

    2016-11-01

    Radiation in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method. DOE, NSF.

  2. Radiative transfer theory for polarimetric remote sensing of pine forest

    NASA Technical Reports Server (NTRS)

    Hsu, C. C.; Han, H. C.; Shin, R. T.; Kong, J. A.; Beaudoin, A.; Le Toan, T.

    1992-01-01

    The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. The scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. The resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including multiscale structures (trunks, primary and secondary branches, and needles), polarimetric radar responses from pine forest for different frequencies and looking angles are interpreted and simulated. Preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment.

  3. Application of nonlinear Krylov acceleration to radiative transfer problems

    SciTech Connect

    Till, A. T.; Adams, M. L.; Morel, J. E.

    2013-07-01

    The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)

  4. BACKWARD AND FORWARD MONTE CARLO METHOD IN POLARIZED RADIATIVE TRANSFER

    SciTech Connect

    Yong, Huang; Guo-Dong, Shi; Ke-Yong, Zhu

    2016-03-20

    In general, the Stocks vector cannot be calculated in reverse in the vector radiative transfer. This paper presents a novel backward and forward Monte Carlo simulation strategy to study the vector radiative transfer in the participated medium. A backward Monte Carlo process is used to calculate the ray trajectory and the endpoint of the ray. The Stocks vector is carried out by a forward Monte Carlo process. A one-dimensional graded index semi-transparent medium was presented as the physical model and the thermal emission consideration of polarization was studied in the medium. The solution process to non-scattering, isotropic scattering, and the anisotropic scattering medium, respectively, is discussed. The influence of the optical thickness and albedo on the Stocks vector are studied. The results show that the U, V-components of the apparent Stocks vector are very small, but the Q-component of the apparent Stocks vector is relatively larger, which cannot be ignored.

  5. Applicaton of radiative transfer theory to microwave transmission medium calibrations

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1982-01-01

    Precise determinations of the transmission medium loss and noise temperature contribution which are important to the performance characterization of low noise microwave receiving systems and thermal noise standards are discussed. Tropospheric loss is frequently inferred from microwave radiometer noise temperature measurements. Interpretation of these measurements requires an inversion of the radiative transfer integral equation. This is inconvenient even with computer techniques. Solutions of a rapidly convergent power series of the radiative transfer equations are presented. This solution is applicable to a low loss medium with either uniform or nonuniform loss distributions. A four layer atmosphere model is investigated to demonstrate the accuracy of the solution relative to the model. Applications include thermal noise standards and single- and dual-frequency water radiometers.

  6. Radiative charge transfer in collisions of C with He+

    NASA Astrophysics Data System (ADS)

    Babb, James F.; McLaughlin, B. M.

    2017-02-01

    Radiative charge exchange collisions between a carbon atom {{C}}({}3P) and a helium ion {{He}}+({}2S), both in their ground state, are investigated theoretically. Detailed quantum chemistry calculations are carried out to obtain potential energy curves and transition dipole matrix elements for doublet and quartet molecular states of the HeC+ cation. Radiative charge transfer cross sections and rate coefficients are calculated and are found at thermal and lower energies to be large compared to those for direct charge transfer. The present results might be applicable to modelling the complex interplay of [{{C}} {{II}}] (or {{{C}}}+), {{C}}, and {CO} at the boundaries of interstellar photon dominated regions and in x-ray dominated regions, where the abundance of {{He}}+ affects the abundance of {CO}.

  7. Interpreting snowpack radiometry using currently existing microwave radiative transfer models

    NASA Astrophysics Data System (ADS)

    Kang, Do-Hyuk; Tang, Shurun; Kim, Edward J.

    2015-10-01

    A radiative transfer model (RTM) to calculate the snow brightness temperatures (Tb) is a critical element in terrestrial snow parameter retrieval from microwave remote sensing observations. The RTM simulates the Tb based on a layered snow by solving a set of microwave radiative transfer equations. Even with the same snow physical inputs to drive the RTM, currently existing models such as Microwave Emission Model of Layered Snowpacks (MEMLS), Dense Media Radiative Transfer (DMRT-QMS), and Helsinki University of Technology (HUT) models produce different Tb responses. To backwardly invert snow physical properties from the Tb, differences from RTMs are first to be quantitatively explained. To this end, this initial investigation evaluates the sources of perturbations in these RTMs, and reveals the equations where the variations are made among the three models. Modelling experiments are conducted by providing the same but gradual changes in snow physical inputs such as snow grain size, and snow density to the 3 RTMs. Simulations are conducted with the frequencies consistent with the Advanced Microwave Scanning Radiometer- E (AMSR-E) at 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz. For realistic simulations, the 3 RTMs are simultaneously driven by the same snow physics model with the meteorological forcing datasets and are validated against the snow insitu samplings from the CLPX (Cold Land Processes Field Experiment) 2002-2003, and NoSREx (Nordic Snow Radar Experiment) 2009-2010.

  8. Interpreting snowpack radiometry using currently existing microwave radiative transfer models

    NASA Astrophysics Data System (ADS)

    Kang, D. H.; Tan, S.; Kim, E. J.

    2015-12-01

    A radiative transfer model (RTM) to calculate a snow brightness temperature (Tb) is a critical element to retrieve terrestrial snow from microwave remote sensing observations. The RTM simulates the Tb based on a layered snow by solving a set of microwave radiative transfer formulas. Even with the same snow physical inputs used for the RTM, currently existing models such as Microwave Emission Model of Layered Snowpacks (MEMLS), Dense Media Radiative Transfer (DMRT-Tsang), and Helsinki University of Technology (HUT) models produce different Tb responses. To backwardly invert snow physical properties from the Tb, the differences from the RTMs are to be quantitatively explained. To this end, the paper evaluates the sources of perturbations in the RTMs, and reveals the equations where the variations are made among three models. Investigations are conducted by providing the same but gradual changes in snow physical inputs such as snow grain size, and snow density to the 3 RTMs. Simulations are done with the frequencies consistent with the Advanced Microwave Scanning Radiometer-E (AMSR-E) at 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz. For realistic simulations, the 3 RTMs are simultaneously driven by the same snow physics model with the meteorological forcing datasets and are validated from the snow core samplings from the CLPX (Cold Land Processes Field Experiment) 2002-2003, and NoSREx (Nordic Snow Radar Experiment) 2009-2010.

  9. Millimeter wave radiative transfer studies for precipitation measurements

    NASA Technical Reports Server (NTRS)

    Vivekanandan, J.; Evans, Frank

    1989-01-01

    Scattering calculations using the discrete dipole approximation and vector radiative transfer calculations were performed to model multiparameter radar return and passive microwave emission for a simple model of a winter storm. The issue of dendrite riming was addressed by computing scattering properties of thin ice disks with varying bulk density. It was shown that C-band multiparameter radar contains information about particle density and the number concentration of the ice particles. The radiative transfer modeling indicated that polarized multifrequency passive microwave emission may be used to infer some properties of ice hydrometers. Detailed radar modeling and vector radiative transfer modeling is in progress to enhance the understanding of simultaneous radar and radiometer measurements, as in the case of the proposed TRMM field program. A one-dimensional cloud model will be used to simulate the storm structure in detail and study the microphysics, such as size and density. Multifrequency polarized radiometer measurements from the SSMI satellite instrument will be analyzed in relation to dual-frequency and dual-polarization radar measurements.

  10. Radiative transfer solution for rugged and heterogeneous scene observations.

    PubMed

    Miesch, C; Briottet, X; Kerr, Y H; Cabot, F

    2000-12-20

    A physical algorithm is developed to solve the radiative transfer problem in the solar reflective spectral domain. This new code, Advanced Modeling of the Atmospheric Radiative Transfer for Inhomogeneous Surfaces (AMARTIS), takes into account the relief, the spatial heterogeneity, and the bidirectional reflectances of ground surfaces. The resolution method consists of first identifying the irradiance and radiance components at ground and sensor levels and then modeling these components separately, the rationale being to find the optimal trade off between accuracy and computation times. The validity of the various assumptions introduced in the AMARTIS model are checked through comparisons with a reference Monte Carlo radiative transfer code for various ground scenes: flat ground with two surface types, a linear sand dune landscape, and an extreme mountainous configuration. The results show a divergence of less than 2% between the AMARTIS code and the Monte Carlo reference code for the total signals received at satellite level. In particular, it is demonstrated that the environmental and topographic effects are properly assessed by the AMARTIS model even for situations in which the effects become dominant.

  11. TWILIGHT: A Cellular Framework for Three-Dimensional Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Khatami, David; Madore, Barry

    2015-01-01

    We describe a new framework for solving three-dimensional radiative transfer of arbitrary geometries, including a full characterisation of the wavelength-dependent anisotropic scattering, absorption, and thermal reemission of light by dust. By adopting a cellular approach to discretising the light and dust, the problem can be efficiently solved through a fully deterministic iterative process. As a proof of concept we present TWILIGHT, our implementation of the cellular approach, in order to demonstrate and benchmark the new method. TWILIGHT simultaneously renders over one hundred unique images of a given environment with no additional slowdown, enabling a close study of inclination effects of three-dimensional dust geometries. In addition to qualitative rendering tests, TWILIGHT is successfully tested against two Monte-Carlo radiative transfer benchmarks, producing similar brightness profiles at varying inclinations. With the proof-of-concept established, we describe the improvements and current developments underway using the cellular framework, including a technique to resolve the subgrid physics of dust radiative transfer from micron-scale grain models to kiloparsec-sized dust environments.

  12. Broyden's method for the solution of the multilevel non-LTE radiation transfer problem

    NASA Astrophysics Data System (ADS)

    Nicolas, S.; Bigarré, L.; Paletou, F.

    2011-03-01

    This study concerns the fast and accurate solution of multilevel non-LTE radiation transfer problems. We propose and evaluate an alternative iterative scheme to the classical MALI method. Our study is instead based on the application of Broyden's method for the solution of nonlinear systems of equations. Comparative tests, in 1D plane-parallel geometry, of the popular MALI method and our alternative method are discussed. The Broyden method is typically 4.5 times faster than MALI. This makes it also fairly competitive with the Gauss-Seidel and Successive Over-Relaxation methods developed after MALI.

  13. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  14. Study of multi-dimensional radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, S. N.

    1993-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical arrow band model with an exponential-tailed inverse intensity distribution. Consideration of spectral correlation results in some distinguishing features of the Monte Carlo formulations. Validation of the Monte Carlo formulations has been conducted by comparing results of this method with other solutions. Extension of a one-dimensional problem to a multi-dimensional problem requires some special treatments in the Monte Carlo analysis. Use of different assumptions results in different sets of Monte Carlo formulations. The nongray narrow band formulations provide the most accurate results.

  15. Line-by-line radiative transfer model for infrared spectrum of AERI

    NASA Astrophysics Data System (ADS)

    Lee, Kwang-Mog; Park, Joong-Hyun; Ahn, Myoung-Hwan; Ou, Mi-Lim; Kim, Yoonjae

    2012-05-01

    Infrared radiance spectra measured in space or on the ground have been used for many applications, such as the retrieval of atmospheric temperature and humidity profiles. The Korean Meteorological Administration (KMA) recently installed an Atmospheric Emitted Radiance Interferometer (AERI) system at the Korea Global Atmosphere Watch Center (36°32'N, 125°19'E) in Anmyondo to measure the downward radiance spectra on the ground. For further utilization of such interferometeric radiance measurements, an accurate line-by-line radiative transfer model is required. This study introduces a line-by-line radiative transfer model developed at Kyungpook National University (KNU_LBL) and presents comparisons of spectra simulated using the KNU_LBL model and measured by the AERI system, that is installed inside a secure container. When compared with the Atmospheric and Environmental Research (AER) radiative transfer codes, the KNU_LBL model provides nearly identical spectra for various model atmospheres. The simulated spectra are also in good agreement with the AERI spectra for clear sky conditions, and a further improvement is made when taking into account of the emissions and absorption by CO2 and H2O for the light path inside the container, even though the path is short.

  16. Evaluation of Maximum Entropy Moment Closure for Solution To Radiative Heat Transfer Equation

    NASA Astrophysics Data System (ADS)

    Fan, Doreen

    The maximum entropy moment closure for the two-moment approximation of the radiative transfer equation is presented. The resulting moment equations, known as the M1 model, are solved using a finite-volume method with adaptive mesh refinement (AMR) and two Riemann-solver based flux function solvers: a Roe-type and a Harten-Lax van Leer (HLL) solver. Three different boundary schemes are also presented and discussed. When compared to the discrete ordinates method (DOM) in several representative one- and two-dimensional radiation transport problems, the results indicate that while the M1 model cannot accurately resolve multi-directional radiation transport occurring in low-absorption media, it does provide reasonably accurate solutions, both qualitatively and quantitatively, when compared to the DOM predictions in most of the test cases involving either absorbing-emitting or scattering media. The results also show that the M1 model is computationally less expensive than DOM for more realistic radiation transport problems involving scattering and complex geometries.

  17. Contributions of the ARM Program to Radiative Transfer Modeling for Climate and Weather Applications

    NASA Technical Reports Server (NTRS)

    Mlawer, Eli J.; Iacono, Michael J.; Pincus, Robert; Barker, Howard W.; Oreopoulos, Lazaros; Mitchell, David L.

    2016-01-01

    Accurate climate and weather simulations must account for all relevant physical processes and their complex interactions. Each of these atmospheric, ocean, and land processes must be considered on an appropriate spatial and temporal scale, which leads these simulations to require a substantial computational burden. One especially critical physical process is the flow of solar and thermal radiant energy through the atmosphere, which controls planetary heating and cooling and drives the large-scale dynamics that moves energy from the tropics toward the poles. Radiation calculations are therefore essential for climate and weather simulations, but are themselves quite complex even without considering the effects of variable and inhomogeneous clouds. Clear-sky radiative transfer calculations have to account for thousands of absorption lines due to water vapor, carbon dioxide, and other gases, which are irregularly distributed across the spectrum and have shapes dependent on pressure and temperature. The line-by-line (LBL) codes that treat these details have a far greater computational cost than can be afforded by global models. Therefore, the crucial requirement for accurate radiation calculations in climate and weather prediction models must be satisfied by fast solar and thermal radiation parameterizations with a high level of accuracy that has been demonstrated through extensive comparisons with LBL codes. See attachment for continuation.

  18. Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries

    NASA Technical Reports Server (NTRS)

    Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.

    2013-01-01

    Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.

  19. Accurate patient dosimetry of kilovoltage cone-beam CT in radiation therapy

    SciTech Connect

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

    2008-03-15

    The increased utilization of x-ray imaging in image-guided radiotherapy has dramatically improved the radiation treatment and the lives of cancer patients. Daily imaging procedures, such as cone-beam computed tomography (CBCT), for patient setup may significantly increase the dose to the patient's normal tissues. This study investigates the dosimetry from a kilovoltage (kV) CBCT for real patient geometries. Monte Carlo simulations were used to study the kV beams from a Varian on-board imager integrated into the Trilogy accelerator. The Monte Carlo calculated results were benchmarked against measurements and good agreement was obtained. The authors developed a novel method to calibrate Monte Carlo simulated beams with measurements using an ionization chamber in which the air-kerma calibration factors are obtained from an Accredited Dosimetry Calibration Laboratory. The authors have introduced a new Monte Carlo calibration factor, f{sub MCcal}, which is determined from the calibration procedure. The accuracy of the new method was validated by experiment. When a Monte Carlo simulated beam has been calibrated, the simulated beam can be used to accurately predict absolute dose distributions in the irradiated media. Using this method the authors calculated dose distributions to patient anatomies from a typical CBCT acquisition for different treatment sites, such as head and neck, lung, and pelvis. Their results have shown that, from a typical head and neck CBCT, doses to soft tissues, such as eye, spinal cord, and brain can be up to 8, 6, and 5 cGy, respectively. The dose to the bone, due to the photoelectric effect, can be as much as 25 cGy, about three times the dose to the soft tissue. The study provides detailed information on the additional doses to the normal tissues of a patient from a typical kV CBCT acquisition. The methodology of the Monte Carlo beam calibration developed and introduced in this study allows the user to calculate both relative and absolute

  20. Three Dimensional Radiative Transfer In Tropical Deep Convective Clouds.

    NASA Astrophysics Data System (ADS)

    di Giuseppe, F.

    In this study the focus is on the interaction between short-wave radiation with a field of tropical deep convective events generated using a 3D cloud resolving model (CRM) to assess the significance of 3D radiative transport (3DRT). It is not currently un- derstood what magnitude of error is involved when a two stream approximation is used to describe the radiative transfer through such a cloud field. It seems likely that deep convective clouds could be the most complex to represent, and that the error in neglecting horizontal transport could be relevant in these cases. The field here con- sidered has an extention of roughly 90x90 km, approximately equivalent to the grid box dimension of many global models. The 3DRT results are compared both with the calculations obtained by an Independent Pixel Approximation (IPA) approch and by the Plane Parallel radiative scheme (PP) implemented in ECMWF's Forecast model. The differences between the three calculations are used to assess both problems in current GCM's representation of radiative heating and inaccuracies in the dynamical response of CRM simulations due to the Independent Column Approximation (ICA). The understanding of the mechanisms involved in the main 3DRT/1D differences is the starting point for the future attempt to develop a parameterization procedure.

  1. Radiative heat transfer analysis in modern rocket combustion chambers

    NASA Astrophysics Data System (ADS)

    Goebel, Florian; Kniesner, Björn; Frey, Manuel; Knab, Oliver; Mundt, Christian

    2014-06-01

    Radiative heat transfer is analyzed for subscale and fullscale rocket combustion chambers for H2/O2 and CH4/O2 combustion using the P1 radiation transport model in combination with various Weighted Sum of Gray Gases Models (WSGGMs). The influence of different wall emissivities, as well as the results using different WSGGMs, the size of the combustion chamber and the coupling of radiation and fluid dynamics, is investigated. Using rather simple WSGGMs for homogeneous systems yields similar results as using sophisticated models. With models for nonhomogeneous systems the radiative wall heat flux (RWHF) decreases by 25-30 % for H2/O2 combustion and by almost 50 % for CH4/O2 combustion. Enlarging the volume of the combustion chamber increases the RWHF. The influence of radiation on the flow field is found to be negligible. The local ratio of RWHF to total wall heat flux shows a maximum of 9-10 % for H2/O2 and 8 % for CH4/O2 combustion. The integrated heat load ratio is around 3 % for H2/O2 and 2.5 % for CH4/O2 combustion. With WSGGMs for nonhomogeneous systems, the local ratio decreases to 5 % (H2/O2) and 3 % (CH4/O2) while the integrated ratio is only 2 % (H2/O2) and 1.3 % (CH4/O2).

  2. Strongly coupled near-field radiative and conductive heat transfer between planar bodies

    NASA Astrophysics Data System (ADS)

    Messina, Riccardo; Jin, Weiliang; Rodriguez, Alejandro W.

    2016-09-01

    We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on geometric and material parameters and not so crucially on operating temperatures. Our findings exploit rigorous calculations based on a closed-form expression for the heat flux between two plates separated by vacuum gaps d and subject to arbitrary temperature profiles, along with an approximate but accurate analytical treatment of coupled conduction-radiation in this geometry. We find that these effects can be prominent in typical materials (e.g., silica and sapphire) at separations of tens of nanometers, and can play an even larger role in metal oxides, which exhibit moderate conductivities and enhanced radiative properties. Broadly speaking, these predictions suggest that the impact of RHT on thermal conduction, and vice versa, could manifest itself as a limit on the possible magnitude of RHT at the nanoscale, which asymptotes to a constant (the conductive transfer rate when the gap is closed) instead of diverging at short separations.

  3. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  4. Generalized source Finite Volume Method for radiative transfer equation in participating media

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Xu, Chuan-Long; Wang, Shi-Min

    2017-03-01

    Temperature monitoring is very important in a combustion system. In recent years, non-intrusive temperature reconstruction has been explored intensively on the basis of calculating arbitrary directional radiative intensities. In this paper, a new method named Generalized Source Finite Volume Method (GSFVM) was proposed. It was based on radiative transfer equation and Finite Volume Method (FVM). This method can be used to calculate arbitrary directional radiative intensities and is proven to be accurate and efficient. To verify the performance of this method, six test cases of 1D, 2D, and 3D radiative transfer problems were investigated. The numerical results show that the efficiency of this method is close to the radial basis function interpolation method, but the accuracy and stability is higher than that of the interpolation method. The accuracy of the GSFVM is similar to that of the Backward Monte Carlo (BMC) algorithm, while the time required by the GSFVM is much shorter than that of the BMC algorithm. Therefore, the GSFVM can be used in temperature reconstruction and improvement on the accuracy of the FVM.

  5. Evaluating radiative transfer schemes treatment of vegetation canopy architecture in land surface models

    NASA Astrophysics Data System (ADS)

    Braghiere, Renato; Quaife, Tristan; Black, Emily

    2016-04-01

    Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical

  6. Computing Radiative Transfer in a 3D Medium

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  7. Conjugate conductive, convective, and radiative heat transfer in rocket engines

    SciTech Connect

    Naraghi, M.H.N.; DeLise, J.C.

    1995-12-31

    A comprehensive conductive, convective and radiative model for thermal analysis of rocket thrust chambers and nozzles is presented. In this model, the rocket thrust chamber and nozzle are subdivided into a number of stations along the longitudinal direction. At each station a finite element scheme is used to evaluate wall temperature distribution. The hot-gas-side convective heat transport is evaluated by numerically solving the compressible boundary layer equations and the radiative fluxes are evaluated by implementing an exchange factor scheme. The convective heat flux in the cooling channel is modeled based on the existing closed form correlations for rocket cooling channels. The conductive, convective and radiative processes are conjugated through an iterative procedure. The hot-gas-side heat transfer coefficients evaluated based on this model are compared to the experimental results reported in the literature. The computed convective heat transfer coefficients agree very well with experimental data for most of the engine except the throat where a discrepancy of approximately 20% exists. The model is applied to a typical regeneratively cooled rocket engine and the resulting wall temperature and heat flux distribution are presented.

  8. Radiative charge transfer and association in slow Li- + H collisions

    NASA Astrophysics Data System (ADS)

    Lin, Xiaohe; Peng, Yigeng; Wu, Yong; Wang, Jianguo; Janev, Ratko; Shao, Bin

    2017-02-01

    Aims: The radiative charge transfer and association processes in Li- + H collisions are studied in the 10-10-10 eV center-of-mass energy range. Methods: we carried out total and ν-resolved state-selective cross sections have been carried out by using the fully quantum, optical potential, and semiclassical methods. Results: In the energy region below 0.8 eV, the radiative association process is the dominant decay channel, while radiative charge transfer dominates at higher energies. Rich resonance structures are observed in the cross sections of both processes in the 0.1-1.5 eV energy range; These structures are associated with the quasi-bound states below the top of the centrifugal barrier of the effective potential in the entrance channel for specific vibrational and angular momentum states. It is found that with the increase of collision energy, the resonances occur for higher angular momentum states and lower vibrational states. Besides the cross sections for the studied processes we also present their reaction rate coefficients in the 10-6-106K temperature range.

  9. A study on radiative transfer effects in 3-D cloudy atmosphere using satellite data

    NASA Astrophysics Data System (ADS)

    Okata, M.; Nakajima, T.; Suzuki, K.; Inoue, T.; Nakajima, T. Y.; Okamoto, H.

    2017-01-01

    This study evaluates 3-D cloud effects on the radiation budget with a combined use of active sensor cloud profiling radar/CloudSat and imager Moderate Resolution Imaging Spectroradiometer/Aqua data on the A-train. An algorithm is devised for constructing 3-D cloud fields based on satellite-observed cloud information. The 3-D cloud fields thus constructed are used to calculate the broadband solar and thermal radiative fluxes with a 3-D radiative transfer code developed by the authors. The aim of this study is to investigate the effects of cloud morphology on solar radiative transfer in cloudy atmosphere. For this purpose, 3-D cloud fields are constructed with the new satellite-based method, to which full 3D-RT (radiative transfer) simulations are applied. The simulated 3-D radiation fields are then used to examine and quantify errors of existing typical plane-parallel approximations, i.e., Plane-Parallel Approximation, Independent Pixel Approximation and Tilted Independent Pixel Approximation. Such 3D-RT simulations also serve to address another objective of this study, i.e., to devise an accurate approximation and to characterize the observed specific 3D-RT effects by the cloud morphology based on knowledge of idealized 3D-RT effects. We introduce a modified approach based on an optimum value of diffusivity factor to better approximate the radiative fluxes for arbitrary solar zenith angle determined from the results of 3-D radiative transfer simulations to redeem the overcorrections of these approximations for large solar zenith angles (SZAs). This new approach, called Slant path Independent Pixel Approximation, is found to be better than other approximations when SZA is large for some cloud cases. Based on the SZA dependence of the errors of these approximations relative to 3-D computations, satellite-observed real cloud cases are found to fall into either of three types of different morphologies, i.e., isolated cloud type, upper cloud-roughened type and lower

  10. PORTA: A Massively Parallel Code for 3D Non-LTE Polarized Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Štěpán, J.

    2014-10-01

    The interpretation of the Stokes profiles of the solar (stellar) spectral line radiation requires solving a non-LTE radiative transfer problem that can be very complex, especially when the main interest lies in modeling the linear polarization signals produced by scattering processes and their modification by the Hanle effect. One of the main difficulties is due to the fact that the plasma of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem of generation and transfer of polarized radiation in realistic three-dimensional stellar atmospheric models. Here we present PORTA, a computer program we have developed for solving, in three-dimensional (3D) models of stellar atmospheres, the problem of the generation and transfer of spectral line polarization taking into account anisotropic radiation pumping and the Hanle and Zeeman effects in multilevel atoms. The numerical method of solution is based on a highly convergent iterative algorithm, whose convergence rate is insensitive to the grid size, and on an accurate short-characteristics formal solver of the Stokes-vector transfer equation which uses monotonic Bezier interpolation. In addition to the iterative method and the 3D formal solver, another important feature of PORTA is a novel parallelization strategy suitable for taking advantage of massively parallel computers. Linear scaling of the solution with the number of processors allows to reduce the solution time by several orders of magnitude. We present useful benchmarks and a few illustrations of applications using a 3D model of the solar chromosphere resulting from MHD simulations. Finally, we present our conclusions with a view to future research. For more details see Štěpán & Trujillo Bueno (2013).

  11. Effect of superconductivity on near-field radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Králík, Tomáš; Musilová, Věra; Fořt, Tomáš; Srnka, Aleš

    2017-02-01

    Near-field (NF) radiative heat transfer (RHT) over vacuum space between bodies can exceed the far-field (FF) heat transfer by orders of magnitude. A large portion of the heat flux transferred between metals in NF is at very low frequencies, much lower than in FF. Thus a strong effect of superconductivity on NF RHT can be expected even at radiation temperatures above the superconducting critical temperature, where nearly no effect in FF is observed. We have examined experimentally the RHT between plane-parallel surfaces of niobium. Up to a fivefold decrease in NF heat flux was observed when the colder sample passed from the normal to the superconducting state. We found that a maximum decrease occurs at sample spacings ten times shorter than the spacing of crossover between the NF and FF heat flux, being ≈1000/T (μm). Applying Polder's and Van Hove's relations for NF RHT and BCS theory of superconductivity, we explain this effect and show the roles of transversal electric and magnetic modes in the steep decrease of heat flux below the critical temperature and the subsequent flux saturation at low temperatures.

  12. Three-dimensional radiative transfer on a massively parallel computer

    NASA Technical Reports Server (NTRS)

    Vath, H. M.

    1994-01-01

    We perform 3D radiative transfer calculations in non-local thermodynamic equilibrium (NLTE) in the simple two-level atom approximation on the Mas-Par MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. On such a machine, all processors execute the same command at a given time, but on different data. To make radiative transfer calculations efficient, we must re-consider the numerical methods and storage of data. To solve the transfer equation, we adopt the short characteristic method and examine different acceleration methods to obtain the source function. We use the ALI method and test local and non-local operators. Furthermore, we compare the Ng and the orthomin methods of acceleration. We also investigate the use of multi-grid methods to get fast solutions for the NLTE case. In order to test these numerical methods, we apply them to two problems with and without periodic boundary conditions.

  13. Coupled Convective and Radiative Heat Transfer Simulation for Urban Environments

    NASA Astrophysics Data System (ADS)

    Gracik, Stefan; Sadeghipour, Mostapha; Pitchurov, George; Liu, Jiying; Heidarinejad, Mohammad; Srebric, Jelena; Building Science Group, Penn State Team

    2013-11-01

    A building's surroundings affect its energy use. An analysis of building energy use needs to include the effects of its urban environment, as over half of the world's population now lives in cities. To correctly model the energy flow around buildings, an energy simulation needs to account for both convective and radiative heat transfer. This study develops a new model by coupling OpenFOAM and Radiance, open source packages for simulating computational fluid dynamics (CFD) and solar radiation, respectively. The model currently provides themo-fluid parameters including convective heat transfer coefficients, pressure coefficients, and solar heat fluxes that will be used as inputs for building energy simulations in a follow up study. The model uses Penn State campus buildings immersed in the atmospheric boundary layer flow as a case study to determine the thermo-fluid parameters around buildings. The results of this case study show that shadows can reduce the solar heat flux of a building's surface by eighty percent during a sunny afternoon. Convective heat transfer coefficients can vary by around fifty percent during a windy day.

  14. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  15. Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization

    PubMed Central

    Marelli, Damián; Baumgartner, Robert; Majdak, Piotr

    2015-01-01

    Head-related transfer functions (HRTFs) describe the acoustic filtering of incoming sounds by the human morphology and are essential for listeners to localize sound sources in virtual auditory displays. Since rendering complex virtual scenes is computationally demanding, we propose four algorithms for efficiently representing HRTFs in subbands, i.e., as an analysis filterbank (FB) followed by a transfer matrix and a synthesis FB. All four algorithms use sparse approximation procedures to minimize the computational complexity while maintaining perceptually relevant HRTF properties. The first two algorithms separately optimize the complexity of the transfer matrix associated to each HRTF for fixed FBs. The other two algorithms jointly optimize the FBs and transfer matrices for complete HRTF sets by two variants. The first variant aims at minimizing the complexity of the transfer matrices, while the second one does it for the FBs. Numerical experiments investigate the latency-complexity trade-off and show that the proposed methods offer significant computational savings when compared with other available approaches. Psychoacoustic localization experiments were modeled and conducted to find a reasonable approximation tolerance so that no significant localization performance degradation was introduced by the subband representation. PMID:26681930

  16. THE RADIATIVE TRANSFER OF SYNCHROTRON RADIATION THROUGH A COMPRESSED RANDOM MAGNETIC FIELD

    SciTech Connect

    Cawthorne, T. V.; Hughes, P. A.

    2013-07-01

    This paper examines the radiative transfer of synchrotron radiation in the presence of a magnetic field configuration resulting from the compression of a highly disordered magnetic field. It is shown that, provided Faraday rotation and circular polarization can be neglected, the radiative transfer equations for synchrotron radiation separate for this configuration, and the intensities and polarization values for sources that are uniform on large scales can be found straightforwardly in the case where opacity is significant. Although the emission and absorption coefficients must, in general, be obtained numerically, the process is much simpler than a full numerical solution to the transfer equations. Some illustrative results are given and an interesting effect, whereby the polarization increases while the magnetic field distribution becomes less strongly confined to the plane of compression, is discussed. The results are of importance for the interpretation of polarization near the edges of lobes in radio galaxies and of bright features in the parsec-scale jets of active galactic nuclei, where such magnetic field configurations are believed to exist.

  17. Adding method of delta-four-stream spherical harmonic expansion approximation for infrared radiative transfer parameterization

    NASA Astrophysics Data System (ADS)

    Wu, Kun; Zhang, Feng; Min, Jinzhong; Yu, Qiu-Run; Wang, Xin-Yue; Ma, Leiming

    2016-09-01

    The adding method, which could calculate the infrared radiative transfer (IRT) in inhomogeneous atmosphere with multiple layers, has been applied to δ -four-stream discrete-ordinates method (DOM). This scheme is referred as δ -4DDA. However, there is a lack of application for adding method of δ -four-stream spherical harmonic expansion approximation (SHM) to solve infrared radiative transfer through multiple layers. In this paper, the adding method for δ -four-stream SHM (δ -4SDA) will be obtained and the accuracy of it will be evaluated as well. The result of δ -4SDA in an idealized medium with homogeneous optical property is significantly more accurate than that of the adding method for δ -two-stream DOM (δ -2DDA). The relative errors of δ -2DDA can be over 15% in thin optical depths for downward emissivity, while errors of δ -4SDA are bounded by 2%. However, the result of δ -4SDA is slightly less accurate than that of δ -4DDA. In a radiation model with realistic atmospheric profile considering gaseous transmission, the accuracy for heating rate of δ -4SDA is significantly superior than that of δ -2DDA, especially for the cloudy sky. The accuracy for heating rate of δ -4SDA is slightly less accurate than that of δ -4DDA under water cloud conditions, while it is superior than that of δ -4DDA in ice cloud cases. Beside, the computational efficiency of δ -4SDA is higher than that of δ -4DDA.

  18. Radiative transfer modeling for quantifying lunar mineral abundance

    NASA Astrophysics Data System (ADS)

    Li, S.; Li, L.

    2010-12-01

    This work is part of our efforts for quantifying lunar surface minerals (agglutinate, clinopyroxene, orthopyroxene, plagioclase, olivine, ilmenite, and volcanic glass) from the lunar soil characterization consortium (LSCC) dataset with Hapke's radiative transfer model. We have implemented Hapke's radiative transfer model in the inverse mode in which instead of commonly used look-up table (LUT) Newton's theory was used to solve nonlinear questions for derivation of mineral absorption coefficients and estimation of mineral abundances. While the effects of temperature and surface roughness are incorporated into the implementation to improve the model performance for application of lunar spacecraft data, these effects are not considered in the current work because of the use of lab measured reflectance data. We first tested the inverse model with all samples of the LSCC dataset, the model showed poor performance, which is primarily degraded by samples with a high amount of SMFe. The model was then tested with relatively fresh samples (Is/FeO <= 50, totally 20 samples), and the results were compared with those resulting from genetic algorithm - partial least square models (GA-PLS). This comparison indicates radiative transfer modeling resulted in higher squared correlations and lower root mean square correlations than those from GA-PLS for all minerals (Figure 1). It is concluded that the inverse RTM is preferred over GA-PLS for deriving mineral information of lunar fresh samples. To apply this approach to lunar spacecraft data for mineral abundance estimation, the model needs to be improved for handling more mature lunar soil samples. Figure 1. Comparison of relative RMSE and r-squares of GA-PLS and inversion RTM results.

  19. Global sensitivity analysis of the radiative transfer model

    NASA Astrophysics Data System (ADS)

    Neelam, Maheshwari; Mohanty, Binayak P.

    2015-04-01

    With the recently launched Soil Moisture Active Passive (SMAP) mission, it is very important to have a complete understanding of the radiative transfer model for better soil moisture retrievals and to direct future research and field campaigns in areas of necessity. Because natural systems show great variability and complexity with respect to soil, land cover, topography, precipitation, there exist large uncertainties and heterogeneities in model input factors. In this paper, we explore the possibility of using global sensitivity analysis (GSA) technique to study the influence of heterogeneity and uncertainties in model inputs on zero order radiative transfer (ZRT) model and to quantify interactions between parameters. GSA technique is based on decomposition of variance and can handle nonlinear and nonmonotonic functions. We direct our analyses toward growing agricultural fields of corn and soybean in two different regions, Iowa, USA (SMEX02) and Winnipeg, Canada (SMAPVEX12). We noticed that, there exists a spatio-temporal variation in parameter interactions under different soil moisture and vegetation conditions. Radiative Transfer Model (RTM) behaves more non-linearly in SMEX02 and linearly in SMAPVEX12, with average parameter interactions of 14% in SMEX02 and 5% in SMAPVEX12. Also, parameter interactions increased with vegetation water content (VWC) and roughness conditions. Interestingly, soil moisture shows an exponentially decreasing sensitivity function whereas parameters such as root mean square height (RMS height) and vegetation water content show increasing sensitivity with 0.05 v/v increase in soil moisture range. Overall, considering the SMAPVEX12 fields to be water rich environment (due to higher observed SM) and SMEX02 fields to be energy rich environment (due to lower SM and wide ranges of TSURF), our results indicate that first order as well as interactions between the parameters change with water and energy rich environments.

  20. Fast radiative transfer using monochromatic look-up tables

    NASA Astrophysics Data System (ADS)

    Anthony Vincent, R.; Dudhia, Anu

    2017-01-01

    Line-by-line (LBL) methods of numerically solving the equations of radiative transfer can be inhibitingly slow. Operational trace gas retrieval schemes generally require much faster output than current LBL radiative transfer models can achieve. One option to speed up computation is to precalculate absorption cross sections for each absorbing gas on a fixed grid and interpolate. This work presents a general method for creating, compressing, and validating a set of individual look-up tables (LUTs) for the 11 most abundant trace gases to use the Reference Forward Model (RFM) to simulate radiances observed by the Infrared Atmospheric Sounding Interferometer (IASI) at a more operational pace. These LUTs allow the RFM to generate radiances more than 20 times faster than LBL mode and were rigorously validated for 80 different atmospheric scenarios chosen to represent variability indicative of Earth's atmosphere. More than 99% of all IASI simulated spectral channels had LUT interpolation errors of brightness temperature less than 0.02 K, several factors below the IASI noise level. Including a reduced spectral grid for radiative transfer speed up the computation by another factor of six at the expense of approximately doubling interpolation errors, still factors below IASI noise. Furthermore, a simple spectral compression scheme based upon linear interpolation is presented, which reduced the total LUT file size from 120 Gbytes to 5.6 Gbytes; a compression to just 4.4% of the original. These LUTs are openly available for use by the scientific community, whether using the RFM or to be incorporated into any forward model.

  1. A field test of a simple stochastic radiative transfer model

    SciTech Connect

    Byrne, N.

    1995-09-01

    The problem of determining the effect of clouds on the radiative energy balance of the globe is of well-recognized importance. One can in principle solve the problem for any given configuration of clouds using numerical techniques. This knowledge is not useful however, because of the amount of input data and computer resources required. Besides, we need only the average of the resulting solution over the grid scale of a general circulation model (GCM). Therefore, we are interested in estimating the average of the solutions of such fine-grained problems using only coarse grained data, a science or art called stochastic radiation transfer. Results of the described field test indicate that the stochastic description is a somewhat better fit to the data than is a fractional cloud cover model, but more data are needed. 1 ref., 3 figs.

  2. Radiative transfer for a three-dimensional raining cloud

    NASA Technical Reports Server (NTRS)

    Haferman, J. L.; Krajewski, W. F.; Smith, T. F.; Sanchez, A.

    1993-01-01

    Satellite-sensor-based microwave brightness temperatures for a three-dimensional raining cloud over a reflecting surface are computed by using a radiative transfer model based on the discrete-ordinates solution procedure. The three-dimensional model applied to a plane layer is validated by comparison with results from a one-dimensional model that is available in the literature. Results examining the effects of cloud height, rainfall rate, surface reflectance, rainfall footprint area, and satellite viewing position on one- and three-dimensional brightness temperature calculations are reported. The numerical experiments indicate that, under certain conditions, three-dimensional effects are significant in the analysis of satellite-sensor-based rainfall retrieval algorithms. The results point to the need to consider carefully three-dimensional effects as well as surface reflectance effects when interpreting satellite-measured radiation data.

  3. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  4. Introduction of acoustical diffraction in the radiative transfer method

    NASA Astrophysics Data System (ADS)

    Reboul, Emeline; Le Bot, Alain; Perret-Liaudet, Joël

    2004-07-01

    This Note presents an original approach to include diffraction in the radiative transfer method when applied to acoustics. This approach leads to a better spatial description of the acoustical energy. An energetic diffraction coefficient and some diffraction sources are introduced to model the diffraction phenomena. The amplitudes of these sources are determined by solving a linear sytem of equations resulting from the power balance between all acoustical sources. The approach is applied on bidimensional examples and gives good results except at geometrical boundaries. To cite this article: E. Reboul et al., C. R. Mecanique 332 (2004).

  5. A multilevel method for conductive-radiative heat transfer

    SciTech Connect

    Banoczi, J.M.; Kelley, C.T.

    1996-12-31

    We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.

  6. The diffusion approximation. An application to radiative transfer in clouds

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.; Barkstrom, B. R.

    1976-01-01

    It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.

  7. Odyssey: Ray tracing and radiative transfer in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Pu, Hung-Yi; Yun, Kiyun; Younsi, Ziri; Yoon, Suk-Jin

    2016-01-01

    Odyssey is a GPU-based General Relativistic Radiative Transfer (GRRT) code for computing images and/or spectra in Kerr metric describing the spacetime around a rotating black hole. Odyssey is implemented in CUDA C/C++. For flexibility, the namespace structure in C++ is used for different tasks; the two default tasks presented in the source code are the redshift of a Keplerian disk and the image of a Keplerian rotating shell at 340GHz. Odyssey_Edu, an educational software package for visualizing the ray trajectories in the Kerr spacetime that uses Odyssey, is also available.

  8. Retrieval of Martian dust properties by surface observations and radiative transfer models

    NASA Astrophysics Data System (ADS)

    Kemppinen, O.; Merikallio, S.; Crisp, D.; Harri, A.

    2013-12-01

    We present the investigations of the properties of Martian dust based on observed changes in atmospheric opacity and surface temperature by using fast and accurate radiative transfer models. We utilize large amounts of atmospheric data, such as the data from Viking Landers recently re-processed by Finnish Meteorological Institute, and select periods of time when there are sudden changes in the observed atmospheric opacity. Then, we will automatically fine-tune the dust and other optical parameters in a radiative transfer model and other models to reproduce the observed effect in the atmospheric temperature. This will result in a large number of required computations, which dictates that the models need to be computationally fast, while also being accurate and flexible. Due to these restrictions, we will be using the SMART model developed by Dr. David Crisp. As is usual for inverse problems with several free parameters, there will likely be an infinite number of possible solutions. We hope to limit the valid solution space by using a large amount of separate instances of opacity changes. We will also utilize a priori information based on the current knowledge of Martian dust to achieve additional accuracy on top of the purely computational approach.

  9. Radiative transfer in highly scattering materials - numerical solution and evaluation of approximate analytic solutions

    NASA Technical Reports Server (NTRS)

    Weston, K. C.; Reynolds, A. C., Jr.; Alikhan, A.; Drago, D. W.

    1974-01-01

    Numerical solutions for radiative transport in a class of anisotropically scattering materials are presented. Conditions for convergence and divergence of the iterative method are given and supported by computed results. The relation of two flux theories to the equation of radiative transfer for isotropic scattering is discussed. The adequacy of the two flux approach for the reflectance, radiative flux and radiative flux divergence of highly scattering media is evaluated with respect to solutions of the radiative transfer equation.

  10. The delta-Eddington approximation for radiative flux transfer

    NASA Technical Reports Server (NTRS)

    Joseph, J. H.; Wiscombe, W. J.; Weinman, J. A.

    1976-01-01

    Simple approximations, like the Eddington, are often incapable of coping with the highly asymmetric phase functions typical of particulate scattering. A simple yet accurate method called the delta-Eddington approximation is proposed for determining monochromatic radiative fluxes in an absorbing-scattering atmosphere. In this method, the governing phase function is approximated by a Dirac delta function forward scatter peak and a two-term expansion of the phase function. The fraction of scattering into the truncated forward peak is taken proportional to the square of the phase function asymmetry factor, which distinguishes the delta-Eddington approximation from others of similar nature. The transmission, reflection, and absorption predicted by the delta-Eddington approximation are compared with doubling method calculations for realistic ranges of optical depth, single-scattering albedo, surface albedo, sun angle and asymmetry factor. The approximation is shown to provide an accurate and analytically simple parameterization of radiation to replace the empirism currently encountered in many general circulation and climate models.

  11. Energy Transfer Based Nanocomposite Scintillator for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Aslam, Soha; Sahi, Sunil; Chen, Wei; Ma, Lun; Kenarangui, Rasool

    2014-09-01

    Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum

  12. Preliminary design for Arctic atmospheric radiative transfer experiments

    NASA Technical Reports Server (NTRS)

    Zak, B. D.; Church, H. W.; Stamnes, K.; Shaw, G.; Filyushkin, V.; Jin, Z.; Ellingson, R. G.; Tsay, S. C.

    1995-01-01

    If current plans are realized, within the next few years, an extraordinary set of coordinated research efforts focusing on energy flows in the Arctic will be implemented. All are motivated by the prospect of global climate change. SHEBA (Surface Energy Budget of the Arctic Ocean), led by the National Science Foundation (NSF) and the Office of Naval Research (ONR), involves instrumenting an ice camp in the perennial Arctic ice pack, and taking data for 12-18 months. The ARM (Atmospheric Radiation Measurement) North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) focuses on atmospheric radiative transport, especially in the presence of clouds. The NSA/AAO CART involves instrumenting a sizeable area on the North Slope of Alaska and adjacent waters in the vicinity of Barrow, and acquiring data over a period of about 10 years. FIRE (First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment) Phase 3 is a program led by the National Aeronautics and Space Administration (NASA) which focuses on Arctic clouds, and which is coordinated with SHEBA and ARM. FIRE has historically emphasized data from airborne and satellite platforms. All three program anticipate initiating Arctic data acquisition during spring, 1997. In light of his historic opportunity, the authors discuss a strawman atmospheric radiative transfer experimental plan that identifies which features of the radiative transport models they think should be tested, what experimental data are required for each type of test, the platforms and instrumentation necessary to acquire those data, and in general terms, how the experiments could be conducted. Aspects of the plan are applicable to all three programs.

  13. Suomi NPP VIIRS Striping Analysis using Radiative Transfer Model Calculations

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Cao, C.

    2015-12-01

    Modern satellite radiometers such as VIIRS have many detectors with slightly different relative spectral response (RSR). These differences can introduce artifacts such as striping in the imagery. In recent studies we have analyzed the striping pattern related to the detector level RSR difference in VIIRS Thermal Emissive Bands (TEB) M15 and M16, which includes line-by-line radiative transfer model (LBLRTM) detector level response study and onboard detector stability evaluation using the solar diffuser. Now we extend these analysis to the Reflective Solar Bands (RSB) using MODTRAN atmospheric radiative transfer model (RTM) for detector level radiance simulation. Previous studies analyzed the striping pattern in the images of VIIRS ocean color and reflectance in RSB, further studies about the root cause for striping are still needed. In this study, we will use the MODTRAN model at spectral resolution of 1 cm^-1 under different atmospheric conditions for VIIRS RSB, for example band M1 centered at 410nm which is used for Ocean Color product retrieval. The impact of detector level RSR difference, atmospheric dependency, and solar geometry on the striping in VIIRS SDR imagery will be investigated. The cumulative histogram method used successfully for the TEB striping analysis will be used to quantify the striping. These analysis help S-NPP and J1 to better understand the root cause for VIIRS image artifacts and reduce the uncertainties in geophysical retrievals to meet the user needs.

  14. Rabacus: A Python package for analytic cosmological radiative transfer calculations

    NASA Astrophysics Data System (ADS)

    Altay, G.; Wise, J. H.

    2015-04-01

    We describe RABACUS, a Python package for calculating the transfer of hydrogen ionizing radiation in simplified geometries relevant to astronomy and cosmology. We present example solutions for three specific cases: (1) a semi-infinite slab gas distribution in a homogeneous isotropic background, (2) a spherically symmetric gas distribution with a point source at the center, and (3) a spherically symmetric gas distribution in a homogeneous isotropic background. All problems can accommodate arbitrary spectra and density profiles as input. The solutions include a treatment of both hydrogen and helium, a self-consistent calculation of equilibrium temperatures, and the transfer of recombination radiation. The core routines are written in Fortran 90 and then wrapped in Python leading to execution speeds thousands of times faster than equivalent routines written in pure Python. In addition, all variables have associated units for ease of analysis. The software is part of the Python Package Index and the source code is available on Bitbucket at https://bitbucket.org/galtay/rabacus. In addition, installation instructions and a detailed users guide are available at http://pythonhosted.org//rabacus.

  15. Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    NASA Astrophysics Data System (ADS)

    Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.-P.; Gobron, N.; Kuusk, A.; Lavergne, T.; Leblanc, S.; Lewis, P. E.; Martin, E.; Mõttus, M.; North, P. R. J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Soler, C.; Thompson, R.; Verhoef, W.; Verstraete, M. M.; Xie, D.

    2007-05-01

    The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary basis. The first phase of RAMI focused on documenting the spread among radiative transfer (RT) simulations over a small set of primarily 1-D canopies. The second phase expanded the scope to include structurally complex 3-D plant architectures with and without background topography. Here sometimes significant discrepancies were noted which effectively prevented the definition of a reliable "surrogate truth," over heterogeneous vegetation canopies, against which other RT models could then be compared. The present paper documents the outcome of the third phase of RAMI, highlighting both the significant progress that has been made in terms of model agreement since RAMI-2 and the capability of/need for RT models to accurately reproduce local estimates of radiative quantities under conditions that are reminiscent of in situ measurements. Our assessment of the self-consistency and the relative and absolute performance of 3-D Monte Carlo models in RAMI-3 supports their usage in the generation of a "surrogate truth" for all RAMI test cases. This development then leads (1) to the presentation of the "RAMI Online Model Checker" (ROMC), an open-access web-based interface to evaluate RT models automatically, and (2) to a reassessment of the role, scope, and opportunities of the RAMI project in the future.

  16. Radiative Transfer Modeling of the Enigmatic Scattering Polarization in the Solar Na I D1 Line

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D1 line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D1 line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D1 line without the need for ground-level polarization.

  17. Slip conditions with wall catalysis and radiation for multicomponent, nonequilibrium gas flow. [for predicting heat transfer to the space shuttle

    NASA Technical Reports Server (NTRS)

    Hendricks, W. L.

    1974-01-01

    The slip conditions for a multicomponent mixture with diffusion, wall-catalyzed atom recombination and thermal radiation are derived, and simplified expressions for engineering applications are presented. The gas mixture may be in chemical nonequilibrium with finite-rate catalytic recombination occurring on the wall. These boundary conditions, which are used for rarefied flow regime flow field calculations, are shown to be necessary for accurate predictions of skin friction and heat transfer coefficients in the rarefied portion of the space shuttle trajectory.

  18. Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure

    NASA Astrophysics Data System (ADS)

    Tzortziou, Maria; Herman, Jay R.; Gallegos, Charles L.; Neale, Patrick J.; Subramaniam, Ajit; Harding, Lawrence W., Jr.; Ahmad, Ziauddin

    2006-06-01

    We combined detailed bio-optical measurements and radiative transfer modeling to perform an 'optical closure' experiment for an optically complex and biologically productive region of the Chesapeake Bay. We used this experiment to evaluate certain assumptions commonly used in bio-optical models, and to investigate which optical characteristics are most important to accurately model and interpret remote sensing ocean-color observations in these Case 2 waters. Direct measurements were made of the magnitude, variability, and spectral characteristics of backscattering and absorption that are critical for accurate parameterizations in satellite bio-optical algorithms and underwater radiative transfer simulations. We found that the ratio of backscattering to total scattering (i.e. the backscattering fraction, bb/ b) varied considerably depending on particulate loading, distance from land, and mixing processes, and had an average value of 0.0128 at 530 nm. Incorporating information on the magnitude, variability, and spectral characteristics of particulate backscattering into the radiative transfer model, rather than using a volume scattering function commonly assumed for turbid waters, was critical to obtaining agreement between model calculations and measured radiometric quantities. In-situ measurements of absorption coefficients need to be corrected for systematic overestimation due to scattering errors, and this correction commonly employs the assumption that absorption by particulate matter at near-infrared wavelengths is zero. Direct measurements, however, showed that particulate matter in the Bay had small, but non-zero, absorption in the 700-730 nm wavelength region. Accounting for this residual particulate absorption when correcting in-situ measured absorption spectra for scattering errors was important in model simulations of water reflectance in the green wavelengths, where reflectance spectra in estuarine waters peak. Sun-induced chlorophyll fluorescence

  19. Detectivity of gas leakage based on electromagnetic radiation transfer

    NASA Astrophysics Data System (ADS)

    Long, Yunting; Wang, Lingxue; Li, Jiakun; Zhang, Changxing; Zhang, Bei

    2011-05-01

    Standoff detection of gas leakage is a fundamental need in petrochemical and power industries. The passive gas imaging system using thermal imager has been proven to be efficient to visualize leaking gas which is not visible to the naked eye. The detection probability of gas leakage is the basis for designing a gas imaging system. Supposing the performance parameters of the thermal imager are known, the detectivity based on electromagnetic radiation transfer model to image gas leakage is analyzed. This model takes into consideration a physical analysis of the gas plume spread in the atmosphere-the interaction processes between the gas and its surrounding environment, the temperature of the gas and the background, the background surface emissivity, and also gas concentration, etc. Under a certain environmental conditions, through calculating the radiation reaching to the detector from the camera's optical field of view, we obtain an entity "Gas Equivalent Blackbody Temperature Difference (GEBTD)" which is the radiation difference between the on-plume and off-plume regions. Comparing the GEBTD with the Noise Equivalent Temperature Difference (NETD) of the thermal imager, we can know whether the system can image the gas leakage. At last, an example of detecting CO2 gas by JADE MWIR thermal imager with a narrow band-pass filter is presented.

  20. Radiative/Turbulent Transfer Interactions in Layer Clouds.

    NASA Astrophysics Data System (ADS)

    Hanson, Howard P.

    1987-05-01

    The differential absorption and emission of radiation with height inside clouds creates sources and sinks of buoyancy and thus can be an important factor in the turbulence-maintaining and dissipating processes of the clouds. This paper is concerned with the roles that solar and infrared radiation play in the turbulence budget of layer clouds, with primary emphasis on marine stratocumulus and inferential discussion of other layer cloud systems.Physically realistic parameterizations of solar and infrared (IR) fluxes are used to show how the turbulence generation by cloud-top IR cooling can be more than offset by stabilization due to absorption of sunlight, and how the role of cloud-base IR warming depends crucially on the height of the cloud base. In the context of a mixed-layer model, these effects can be cast entirely in terms of the height of the layer's center of mass relative to the net heating and/or cooling due to the radiative transfer. Implications for the diurnal cycle and for a thin-cloud instability are discussed.

  1. Radiation transfer in plant canopies - Transmission of direct solar radiation and the role of leaf orientation

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1987-01-01

    Understanding the details of the interaction between the radiation field and plant structures is important climatically because of the influence of vegetation on the surface water and energy balance, but also biologically, since solar radiation provides the energy necessary for photosynthesis. The problem is complex because of the extreme variety of vegetation forms in space and time, as well as within and across plant species. This one-dimensional vertical multilayer model describes the transfer of direct solar radiation through a leaf canopy, accounting explicitly for the vertical inhomogeneities of a plant stand and leaf orientation, as well as heliotropic plant behavior. This model reproduces observational results on homogeneous canopies, but it is also well adapted to describe vertically inhomogeneous canopies. Some of the implications of leaf orientation and plant structure as far as light collection is concerned are briefly reviewed.

  2. Atmospheric radiative transfer generalised for use on Earth and other planets: ARTS 2.2

    NASA Astrophysics Data System (ADS)

    Mendrok, Jana; Eriksson, Patrick; Buehler, Stefan; Perrin, Agnes; Hartogh, Paul; Rezac, Ladislav; Lemke, Oliver

    2015-04-01

    Microwave and (sub)millimetre-wave frequencies have long been of interest for remote sensing of the Earth and space objects. They suffer less from interference by small particles (dust, clouds), hence penetrate deeper into atmospheres revealing their deeper structures hidden to shorter wavelengths, and possess characteristic line absorption features of many gaseous species, which are of interest for the understanding of atmospheric chemistry and dynamics. Models simulating radiative transfer and wave propagation (RT/WP) have been developed by many institutions. Most of them are designed for a particular, narrow region of the electromagnetic spectrum, certain instrument types or missions, and specific atmospheric conditions. In particular, they are usually set up for a specific planetary body. This high level of specialisation allows for accurate modelling results. However, it also limits the flexibility of those models and comparability between them. One of the major differences in radiative transfer modeling in the atmospheres of Earth and other planets arises from the different composition of the atmospheres. When interested in measuring total abundance or even vertical distribution of atmospheric constituents, knowledge of parameters describing spectrally dependent absorption in dependence of atmospheric state is required. When modeling radiative transfer for different planets, the line shapes are often accounted for by scaling the parameters valid for Earth's ``air'' or by building a spectroscopic catalogue specific to the planet in question and its main atmospheric composition. This strongly limits applicability of these models. Based on the ARTS model [1], a sophisticated, flexible RT model for Earth atmosphere (3D spherical geometry, diverse absorption models, scattering, polarization, Jacobians), we have developed a toolbox for microwave atmospheric radiative transfer in solar system planets. As part of this, we developed and implemented a more generalized

  3. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

    NASA Astrophysics Data System (ADS)

    Meliani, Zakaria; Mizuno, Yosuke; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri

    2017-01-01

    Context. In many astrophysical phenomena, and especially in those that involve the high-energy regimes that always accompany the astronomical phenomenology of black holes and neutron stars, physical conditions that are achieved are extreme in terms of speeds, temperatures, and gravitational fields. In such relativistic regimes, numerical calculations are the only tool to accurately model the dynamics of the flows and the transport of radiation in the accreting matter. Aims: We here continue our effort of modelling the behaviour of matter when it orbits or is accreted onto a generic black hole by developing a new numerical code that employs advanced techniques geared towards solving the equations of general-relativistic hydrodynamics. Methods: More specifically, the new code employs a number of high-resolution shock-capturing Riemann solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of adaptive mesh-refinement (AMR) techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to accurately compute the electromagnetic emissions from such accretion flows. Results: We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry that are performed either in two or three spatial dimensions. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black-hole binary interacting with the surrounding circumbinary disc. In this way, we can present for the first time ray-traced images of the shocked fluid and the light curve resulting from consistent general-relativistic radiation-transport calculations from this process. Conclusions: The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to accurately and self

  4. Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts

    NASA Astrophysics Data System (ADS)

    Novak, G. S.; Ostriker, J. P.; Ciotti, L.

    2012-12-01

    To facilitate the study of black hole fuelling, star formation and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behaviour in all of the relevant limits [dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to ultraviolet (UV)/optical; optically thick to infrared (IR)] and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ultraluminous IR galaxies with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.

  5. Angularly Adaptive P1 - Double P0 Flux-Limited Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems

    SciTech Connect

    Brantley, P S

    2006-08-08

    The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near a non-equilibrium radiation wave front. In addition, the DP{sub 0} approximation should be more accurate in non-equilibrium optically thin regions where the positive and negative angular domains are largely decoupled. We develop an adaptive angular technique that locally uses either the DP{sub 0} or P{sub 1} flux-limited diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for two test problems due to Su and Olson and to Ganapol and Pomraning for which semi-analytic transport solutions exist. These numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation, both without and with flux-limiting, for non-equilibrium grey radiative transfer.

  6. Angularly Adaptive P1-Double P0 Flux-Limited Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems

    SciTech Connect

    Brantley, P S

    2005-12-13

    The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near a non-equilibrium radiation wave front. In addition, the DP{sub 0} approximation should be more accurate in non-equilibrium optically thin regions where the positive and negative angular domains are largely decoupled. We develop an adaptive angular technique that locally uses either the DP{sub 0} or P{sub 1} flux-limited diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for two test problems due to Su and Olson and to Ganapol and Pomraning for which semi-analytic transport solutions exist. These numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation, both without and with flux-limiting, for non-equilibrium grey radiative transfer.

  7. Near-field radiative heat transfer between two parallel SiO{sub 2} plates with and without microcavities

    SciTech Connect

    Ijiro, T.; Yamada, N.

    2015-01-12

    Near-to-far-field radiative heat transfer between two macroscopic SiO{sub 2} plates—with and without microcavities—was observed using a highly precise and accurate optical gap-measurement method. The experiments, conducted near 300 K, measured heat transfer as a function of gap separation from 1.0 μm to 50 μm and also as a function of temperature differences between 4.1 and 19.5 K. The gap-dependent heat flux was in excellent agreement with theoretical predictions. Furthermore, the effects of microcavities on the plate surfaces were clearly observed and significant enhancement of near-field radiative heat transfer was confirmed between gold-coated microcavities with narrow vacuum separation.

  8. Accurate dose assessment system for an exposed person utilising radiation transport calculation codes in emergency response to a radiological accident.

    PubMed

    Takahashi, F; Shigemori, Y; Seki, A

    2009-01-01

    A system has been developed to assess radiation dose distribution inside the body of exposed persons in a radiological accident by utilising radiation transport calculation codes-MCNP and MCNPX. The system consists mainly of two parts, pre-processor and post-processor of the radiation transport calculation. Programs for the pre-processor are used to set up a 'problem-dependent' input file, which defines the accident condition and dosimetric quantities to be estimated. The program developed for the post-processor part can effectively indicate dose information based upon the output file of the code. All of the programs in the dosimetry system can be executed with a generally used personal computer and accurately give the dose profile to an exposed person in a radiological accident without complicated procedures. An experiment using a physical phantom was carried out to verify the availability of the dosimetry system with the developed programs in a gamma ray irradiation field.

  9. AN ALGORITHM FOR RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT TRANSFER EQUATION

    SciTech Connect

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-07-01

    We describe a new algorithm for solving the coupled frequency-integrated transfer equation and the equations of magnetohydrodynamics in the regime that light-crossing time is only marginally shorter than dynamical timescales. The transfer equation is solved in the mixed frame, including velocity-dependent source terms accurate to O(v/c). An operator split approach is used to compute the specific intensity along discrete rays, with upwind monotonic interpolation used along each ray to update the transport terms, and implicit methods used to compute the scattering and absorption source terms. Conservative differencing is used for the transport terms, which ensures the specific intensity (as well as energy and momentum) are conserved along each ray to round-off error. The use of implicit methods for the source terms ensures the method is stable even if the source terms are very stiff. To couple the solution of the transfer equation to the MHD algorithms in the ATHENA code, we perform direct quadrature of the specific intensity over angles to compute the energy and momentum source terms. We present the results of a variety of tests of the method, such as calculating the structure of a non-LTE atmosphere, an advective diffusion test, linear wave convergence tests, and the well-known shadow test. We use new semi-analytic solutions for radiation modified shocks to demonstrate the ability of our algorithm to capture the effects of an anisotropic radiation field accurately. Since the method uses explicit differencing of the spatial operators, it shows excellent weak scaling on parallel computers.

  10. A fast operator perturbation method for the solution of the special relativistic equation of radiative transfer in spherical symmetry

    NASA Technical Reports Server (NTRS)

    Hauschildt, P. H.

    1992-01-01

    A fast method for the solution of the radiative transfer equation in rapidly moving spherical media, based on an approximate Lambda-operator iteration, is described. The method uses the short characteristic method and a tridiagonal approximate Lambda-operator to achieve fast convergence. The convergence properties and the CPU time requirements of the method are discussed for the test problem of a two-level atom with background continuum absorption and Thomson scattering. Details of the actual implementation for fast vector and parallel computers are given. The method is accurate and fast enough to be incorporated in radiation-hydrodynamic calculations.

  11. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  12. Radiative Transfer Modeling of a Large Pool Fire by Discrete Ordinates, Discrete Transfer, Ray Tracing, Monte Carlo and Moment Methods

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.; Ripoll, J.-F.; Wray, A. A.; Joseph, D.; ElHafi, M.

    2004-01-01

    Five computational methods for solution of the radiative transfer equation in an absorbing-emitting and non-scattering gray medium were compared on a 2 m JP-8 pool fire. The temperature and absorption coefficient fields were taken from a synthetic fire due to the lack of a complete set of experimental data for fires of this size. These quantities were generated by a code that has been shown to agree well with the limited quantity of relevant data in the literature. Reference solutions to the governing equation were determined using the Monte Carlo method and a ray tracing scheme with high angular resolution. Solutions using the discrete transfer method, the discrete ordinate method (DOM) with both S(sub 4) and LC(sub 11) quadratures, and moment model using the M(sub 1) closure were compared to the reference solutions in both isotropic and anisotropic regions of the computational domain. DOM LC(sub 11) is shown to be the more accurate than the commonly used S(sub 4) quadrature technique, especially in anisotropic regions of the fire domain. This represents the first study where the M(sub 1) method was applied to a combustion problem occurring in a complex three-dimensional geometry. The M(sub 1) results agree well with other solution techniques, which is encouraging for future applications to similar problems since it is computationally the least expensive solution technique. Moreover, M(sub 1) results are comparable to DOM S(sub 4).

  13. An efficient and accurate technique to compute the absorption, emission, and transmission of radiation by the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.

    1990-01-01

    CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.

  14. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    SciTech Connect

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  15. Time dependent flare model with non-LTE radiative transfer

    NASA Astrophysics Data System (ADS)

    Varady, M.; Karlický, M.; Kašparová, J.; Heinzel, P.

    2002-12-01

    The first results of a time dependent simulation of chromospheric response to a high energy electron beam are presented. The hybrid code, i.e. a combination of a 1-D hydrodynamic code and a test particle code, has been used to calculate the energy losses of a high energy electron beam propagating through the solar atmosphere and the consequent response of the ambient solar plasma to the energy deposition. The resulting time evolution of the solar plasma temperature, density, velocity and energy deposit on hydrogen has then been used as an input for a time dependent radiative transfer code in the MALI approach to determine the time variation of the Hα line profile. Non-thermal collisional rates have been included in the linearised ESE.

  16. Matrix operator theory of radiative transfer. I - Rayleigh scattering.

    NASA Technical Reports Server (NTRS)

    Plass, G. N.; Kattawar, G. W.; Catchings, F. E.

    1973-01-01

    An entirely rigorous method for the solution of the equations for radiative transfer based on the matrix operator theory is reviewed. The advantages of the present method are: (1) all orders of the reflection and transmission matrices are calculated at once; (2) layers of any thickness may be combined, so that a realistic model of the atmosphere can be developed from any arbitrary number of layers, each with different properties and thicknesses; (3) calculations can readily be made for large optical depths and with highly anisotropic phase functions; (4) results are obtained for any desired value of the surface albedo including the value unity and for a large number of polar and azimuthal angles; (5) all fundamental equations can be interpreted immediately in terms of the physical interactions appropriate to the problem; and (6) both upward and downward radiance can be calculated at interior points from relatively simple expressions.

  17. Radiative transfer theory applied to ocean bottom modeling.

    PubMed

    Quijano, Jorge E; Zurk, Lisa M

    2009-10-01

    Research on the propagation of acoustic waves in the ocean bottom sediment is of interest for active sonar applications such as target detection and remote sensing. The interaction of acoustic energy with the sea floor sublayers is usually modeled with techniques based on the full solution of the wave equation, which sometimes leads to mathematically intractable problems. An alternative way to model wave propagation in layered media containing random scatterers is the radiative transfer (RT) formulation, which is a well established technique in the electromagnetics community and is based on the principle of conservation of energy. In this paper, the RT equation is used to model the backscattering of acoustic energy from a layered elastic bottom sediment containing distributions of independent scatterers due to a constant single frequency excitation in the water column. It is shown that the RT formulation provides insight into the physical phenomena of scattering and conversion of energy between waves of different polarizations.

  18. Radiative Transfer in Decretion Disks of Be Binaries

    NASA Astrophysics Data System (ADS)

    Panoglou, D.; Faes, D. M.; Carciofi, A. C.; Okazaki, A. T.; Rivinius, Th.

    2017-02-01

    In this work we explore the effect of binarity on the decretion disk of Be stars in order to explain their variability. To this aim, we performed smoothed particle hydrodynamics (SPH) simulations on Be binary systems, following the matter ejected isotropically from the equator of the Be star towards the base of an isothermal decretion disk. We let the system evolve long enough to be considered at steady state, and focus on the effect of viscosity for coplanar prograde binary orbits. The disk structure is found to be locked to the orbital phase and to exhibit a dependence on the azimuthal angle. Additionally, we present the first results from detailed non-local thermodynamic equilibrium (non-LTE) radiative transfer calculations of the disk structure computed with the SPH code. This is achieved by the use of the three-dimensional (3D) Monte Carlo code HDUST, which can produce predictions with respect to a series of observables.

  19. Accurate modeling of antennas for radiating short pulses, FDTD analysis and experimental measurements

    NASA Astrophysics Data System (ADS)

    Maloney, James G.; Smith, Glenn S.

    1993-01-01

    Antennas used to radiate short pulses often require different design rules that those that are used to radiate essentially time-harmonic signals. The finite-difference time-domain (FDTD) method is a very flexible numerical approach that can be used to treat a variety of electromagnetic problems in the time domain. It is well suited to the analysis and design of antennas for radiating short pulses; however, several advances had to be made before the method could be applied to this problem. In this paper, we will illustrate the use of the FDTD method with two antennas designed for the radiation of short pulses. The first is a simple, two-dimensional geometry, and open-ended parallel-plate waveguide, while the second is a three-dimensional, rotationally symmetric geometry, a conical monopole fed through an image by a coaxial transmission line. Both antennas are 'optimized' according to given criteria by adjusting geometrical parameters and including resistive loading that varies continuously with position along the antenna. The predicted performance for the conical monopole antenna is compared with experimental measurements; this verifies the optimization and demonstrates the practicality of the design.

  20. Radiative Transfer Modeling On The Atmosphere Of Uranus

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Sromovsky, L. A.; Fry, P. M.

    2010-10-01

    We carried out radiative transfer modeling on the atmosphere of Uranus to find the simplest 3-dimensional aerosol models that could fit the observations within measurement and modeling uncertainties. We used the Levenberg-Marquardt algorithm in combination with a radiative transfer model that accounts for Raman scattering and polarization (Sromovsky 2005, Icarus 173, 245-283) to fit 2002 HST/STIS spectra calibrated by Karkoschka and Tomasko (2009, Icarus 202, 287-309) and bandpass filter imaging observations by the HST Advanced Camera for Surveys (ACS) in 2006 and by the Wide Field/Planetary Camera 2 in 2007. Preliminary results were obtained from sampling 5 different latitudes with 4-6 emission angles and the 0.6-0.86 micron spectral range (chosen to allow conservative scattering and assumption of Beer's law), using five different methane mixing ratios consistent with the Lindal et al. (1987, JGR 92, 14987-15001) occultation solutions. The best-fit mixing ratio is near 2.9% at low latitudes and near 2.3% at middle-high latitudes, which agree with the results of Karkoschka and Tomasko (2009). A single layer of sub-micron Mie particles fits remarkably well, but a better fit is obtained with two such Mie layers, which consists of optically thin layer at 1.5 bar and optically thick layer at 2.1 2.7 bar. Both layers have optical depth increasing toward southern hemisphere. This work was supported by grants from the Space Telescope Science Institute.

  1. Thin film heat flux sensors for accurate transient and unidirectional heat transfer analysis

    NASA Astrophysics Data System (ADS)

    Azerou, B.; Garnier, B.; Lahmar, J.

    2012-11-01

    Heat flux measurement is needed in many heat transfer studies. For the best unbiased heat flux sensors (HFS), the heat flux is obtained using temperature measurements at different locations and also an inverse heat conduction method (function specification...) in order to calculate the heat flux. Systematic errors can come from the uncertainty in the wire thermocouples locations and from errors in the knowledge of distances between two consecutive wire thermocouples. The main idea in this work is to use thin film thermoresistances deposited on a flexible thin polymer substrate instead of wire thermocouples welded on metallic sample. The interest of using thin film thermoresistances instead of wire thermocouples is a lower disturbance due to the smaller thickness of the thin film sensors (typically less than 1μm) and a much better knowledge of the distances between the different thin film thermoresistances which are precisely defined in the mask used for the metallic thin film pattern fabrication. In this paper, we present the fabrication of the new heat flux sensor with thin film thermoresistances, the study of the effect of the self heating (due to Joule effect in thermoresistances) and the performances of this new HFS with the comparison with classical HFS using wire thermocouples. For this study, a symmetric experimental setup is used with metallic samples equipped with an etched foil heater and both classical and new HFS. For several heating conditions, it appears that a better accuracy is always obtained with the new HFS using thin film thermoresistances.

  2. Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors

    NASA Astrophysics Data System (ADS)

    Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem

    2016-10-01

    Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative

  3. A new Radiative Transfer Model of the Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, C.; Richardson, M. I.

    2009-12-01

    General Circulation Models (GCMs) of the Venus atmosphere forced with linearized cooling exhibit significant sensitivity to the prescribed heating structure. In order to improve the radiative forcing used in GCMs we have developed a medium resolution, full scattering, radiative transfer model (RTM) to provide optical properties and reference heating conditions for the Venus atmosphere over a wide wavelength range. We describe the components used by the RTM, including an efficient K-coefficient description of the gaseous absorbers, Mie/Henyey-Greenstein scattering by particulate matter in the clouds, Rayleigh scattering by the major gases, continuum absorption, and additional Ultra Violet and Visible gaseuous absorption. The implementation of the RTM is modular and allows any valid wavelength range to be investigated given sufficient optical data. We show the results of validation experiments using the RTM. We calculate fluxes in the near Infra-Red optical windows near 1.0 micron, 1.7 micron and 2.3 micron using native VIRTIS spectral resolution K-coefficients, and degrade the resolution to test the sensitivity to nearby high opacity spectral features. We calculate fluxes and heating rates for a sample profile from the Venus International Reference Atmosphere (VIRA), and additionally provide geometric albedo (0.85), bond albedo (0.72), and downward diffuse and direct solar fluxes at the surface (17W/m/m between 350-750 nm) for the same profile. We discuss the work required to create a suitable self-consistent radiative forcing for a GCM using this RTM. A two-stream implementation is considered and tested using the TWOSTR flux solver and the calculations required to produce a Curtis Matrix algorithm are described.

  4. Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations

    NASA Astrophysics Data System (ADS)

    Gibelli, François; Lombez, Laurent; Guillemoles, Jean-François

    2017-02-01

    In order to characterize hot carrier populations in semiconductors, photoluminescence measurement is a convenient tool, enabling us to probe the carrier thermodynamical properties in a contactless way. However, the analysis of the photoluminescence spectra is based on some assumptions which will be discussed in this work. We especially emphasize the importance of the variation of the material absorptivity that should be considered to access accurate thermodynamical properties of the carriers, especially by varying the excitation power. The proposed method enables us to obtain more accurate results of thermodynamical properties by taking into account a rigorous physical description and finds direct application in investigating hot carrier solar cells, which are an adequate concept for achieving high conversion efficiencies with a relatively simple device architecture.

  5. Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations.

    PubMed

    Gibelli, François; Lombez, Laurent; Guillemoles, Jean-François

    2017-02-15

    In order to characterize hot carrier populations in semiconductors, photoluminescence measurement is a convenient tool, enabling us to probe the carrier thermodynamical properties in a contactless way. However, the analysis of the photoluminescence spectra is based on some assumptions which will be discussed in this work. We especially emphasize the importance of the variation of the material absorptivity that should be considered to access accurate thermodynamical properties of the carriers, especially by varying the excitation power. The proposed method enables us to obtain more accurate results of thermodynamical properties by taking into account a rigorous physical description and finds direct application in investigating hot carrier solar cells, which are an adequate concept for achieving high conversion efficiencies with a relatively simple device architecture.

  6. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  7. An Accurate Method to Compute the Parasitic Electromagnetic Radiations of Real Solar Panels

    NASA Astrophysics Data System (ADS)

    Andreiu, G.; Panh, J.; Reineix, A.; Pelissou, P.; Girard, C.; Delannoy, P.; Romeuf, X.; Schmitt, D.

    2012-05-01

    The methodology [1] able to compute the parasitic electromagnetic (EM) radiations of a solar panel is highly improved in this paper to model real solar panels. Thus, honeycomb composite panels, triple junction solar cells and serie or shunt regulation system can now be taken into account. After a brief summary of the methodology, the improvements are detailed. Finally, some encouraging frequency and time-domain results of magnetic field emitted by a real solar panel are presented.

  8. Accurate Accumulation of Dose for Improved Understanding of Radiation Effects in Normal Tissue

    SciTech Connect

    Jaffray, David A.; Lindsay, Patricia E.; Brock, Kristy K.; Deasy, Joseph O.; Tome, W.A.

    2010-03-01

    The actual distribution of radiation dose accumulated in normal tissues over the complete course of radiation therapy is, in general, poorly quantified. Differences in the patient anatomy between planning and treatment can occur gradually (e.g., tumor regression, resolution of edema) or relatively rapidly (e.g., bladder filling, breathing motion) and these undermine the accuracy of the planned dose distribution. Current efforts to maximize the therapeutic ratio require models that relate the true accumulated dose to clinical outcome. The needed accuracy can only be achieved through the development of robust methods that track the accumulation of dose within the various tissues in the body. Specific needs include the development of segmentation methods, tissue-mapping algorithms, uncertainty estimation, optimal schedules for image-based monitoring, and the development of informatics tools to support subsequent analysis. These developments will not only improve radiation outcomes modeling but will address the technical demands of the adaptive radiotherapy paradigm. The next 5 years need to see academia and industry bring these tools into the hands of the clinician and the clinical scientist.

  9. First and Higher Order Effects on Zero Order Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Neelam, M.; Mohanty, B.

    2014-12-01

    Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.

  10. Semi-implicit time integration for P{sub N} thermal radiative transfer

    SciTech Connect

    McClarren, Ryan G. Evans, Thomas M.; Lowrie, Robert B.; Densmore, Jeffery D.

    2008-08-10

    Implicit time integration involving the solution of large systems of equations is the current paradigm for time-dependent radiative transfer. In this paper we present a semi-implicit, linear discontinuous Galerkin method for the spherical harmonics (P{sub N}) equations for thermal radiative transfer in planar geometry. Our method is novel in that the material coupling terms are treated implicitly (via linearizing the emission source) and the streaming operator is treated explicitly using a second-order accurate Runge-Kutta method. The benefit of this approach is that each time step only involves the solution of equations that are local to each cell. This benefit comes at the cost of having the time step limited by a CFL condition based on the speed of light. To guarantee positivity and avoid artificial oscillations, we use a slope-limiting technique. We present analysis and numerical results that show the method is robust in the diffusion limit when the photon mean-free path is not resolved by the spatial mesh. Also, in the diffusion limit the time step restriction relaxes to a less restrictive explicit diffusion CFL condition. We demonstrate with numerical results that away from the diffusion limit our method demonstrates second-order error convergence as the spatial mesh is refined with a fixed CFL number.

  11. ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERAL RELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME

    SciTech Connect

    Pu, Hung-Yi; Younsi, Ziri

    2016-04-01

    General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge–Kutta integration step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey-Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.

  12. The differential-discrete-ordinate method for solutions of the equation of radiative transfer

    SciTech Connect

    Kumar, S.; Majumdar, A.; Tien, C.L. )

    1990-05-01

    This paper introduces a powerful but simple methodology for solving the general equation of radiative transfer for scattering and/or absorbing one-dimensional systems. Existing methods, usually designed to handle specific boundary and energy equilibrium conditions, either provide crude estimates or involve intricate mathematical analysis coupled with numerical techniques. In contrast, the present scheme, which uses a discrete-ordinate technique to reduce the integro-differential equation to a system of ordinary differential equations, utilizes readily available software routines to solve the resulting set of coupled first-order ordinary differential equations as a two-point boundary value problem. The advantage of this approach is that the user is freed from having to understand complicated mathematical analysis and perform extensive computer programming. Additionally, the software used is state of the art, which is less prone to numerical instabilities and inaccuracies. Any degree of scattering anisotropy and albedo can be incorporated along with different conditions of energy equilibrium or specified temperature distributions and boundary conditions. Examples are presented where the radiative transfer is computed by using different quadratures such as Gaussian, Lobatto, Fiveland, Chebyshev, and Newton-Cotes. Comparison with benchmark cases shows that in a highly forward scattering medium Gaussian quadrature provides the most accurate and stable solutions.

  13. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume

    2016-03-01

    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  14. Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime

    NASA Astrophysics Data System (ADS)

    Pu, Hung-Yi; Yun, Kiyun; Younsi, Ziri; Yoon, Suk-Jin

    2016-04-01

    General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge-Kutta integration step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey_Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.

  15. Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Le Hardy, D.; Favennec, Y.; Rousseau, B.; Hecht, F.

    2017-04-01

    The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.

  16. Radiative transfer in cylindrical threads with incident radiation. VII. Multi-thread models

    NASA Astrophysics Data System (ADS)

    Labrosse, N.; Rodger, A. S.

    2016-03-01

    Aims: Our aim is to improve on previous radiative transfer calculations in illuminated cylindrical threads to better understand the physical conditions in cool solar chromospheric and coronal structures commonly observed in hydrogen and helium lines. Methods: We solved the radiative transfer and statistical equilibrium equations in a two-dimensional cross-section of a cylindrical structure oriented horizontally and lying above the solar surface. The cylinder is filled with a mixture of hydrogen and helium and is illuminated at a given altitude from the solar disc. We constructed simple models made from a single thread or from an ensemble of several threads along the line of sight. This first use of two-dimensional, multi-thread fine structure modelling combining hydrogen and helium radiative transfer allowed us to compute synthetic emergent spectra from cylindrical structures and to study the effect of line-of-sight integration of an ensemble of threads under a range of physical conditions. We analysed the effects of variations in temperature distribution and in gas pressure. We considered the effect of multi-thread structures within a given field of view and the effect of peculiar velocities between the structures in a multi-thread model. We compared these new models to the single thread model and tested them with varying parameters. Results: The presence of a temperature gradient, with temperature increasing towards the edge of the cylindrical thread, reduces the relative importance of the incident radiation coming from the solar disc on the emergent intensities of most hydrogen and helium lines. We also find that when assuming randomly displaced threads in a given field of view, the integrated intensities of optically thick and thin transitions behave considerably differently. In optically thin lines, the emergent intensity increases proportionally with the number of threads, and the spatial variation of the intensity becomes increasingly homogeneous. Optically

  17. Inversion of chlorophyll contents by use of hyperspectral CHRIS data based on radiative transfer model

    NASA Astrophysics Data System (ADS)

    Wang, M. C.; Niu, X. F.; Chen, S. B.; Guo, P. J.; Yang, Q.; Wang, Z. J.

    2014-03-01

    Chlorophyll content, the most important pigment related to photosynthesis, is the key parameter for vegetation growth. The continuous spectrum characteristics of ground objects can be captured through hyperspectral remotely sensed data. In this study, based on the coniferous forest radiative transfer model, chlorophyll contents were inverted by use of hyperspectral CHRIS data in the coniferous forest coverage of Changbai Mountain Area. In addition, the sensitivity of LIBERTY model was analyzed. The experimental results validated that the reflectance simulation of different chlorophyll contents was coincided with that of the field measurement, and hyperspectral vegetation indices applied to the quantitative inversion of chlorophyll contents was feasible and accurate. This study presents a reasonable method of chlorophyll inversion for the coniferous forest, promotes the inversion precision, is of significance in coniferous forest monitoring.

  18. Truncated Fourier-series approximation of the time-domain radiative transfer equation using finite elements.

    PubMed

    Pulkkinen, Aki; Tarvainen, Tanja

    2013-03-01

    The radiative transfer equation (RTE) is widely accepted to accurately describe light transport in a medium with scattering particles, and it has been successfully applied as a light-transport model, for example, in diffuse optical tomography. Due to the computationally expensive nature of the RTE, most of these applications have been in the frequency domain. In this paper, an efficient solution method for the time-domain RTE is proposed. The method is based on solving the frequency-domain RTE at multiple modulation frequencies and using the Fourier-series representation of the radiance to obtain approximation of the time-domain solution. The approach is tested with simulations. The results show that the method can be used to obtain the solution of the time-domain RTE with good accuracy and with significantly fewer computational resources than are needed in the direct time-domain solution.

  19. An analytic solution of the radiative transfer equation for a gray scattering atmosphere in motion

    NASA Astrophysics Data System (ADS)

    Pistinner, Shlomi; Shaviv, Giora

    1994-12-01

    We provide a formal analytic solution of the radiative transfer equation for a gray moving atmosphere in a plane parallel geometry. A formal solution in the diffusion and the free-streaming limit is also provided in the case of a spherically extended atmosphere. The formal solutions are written explicitly for scattering atmospheres in which the density and the velocity fields are given by a power law. A self-consistent temperature profile accurate to O(Beta = v/c) is provided for the case in which the absorption or the scattering are temperature independent. The gray extinction temperature profile is considerably simplified in the case of a scattering atmosphere. Steady state flow and homologous expansion are special cases that are considered in detail.

  20. Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration.

    PubMed

    Budak, Vladimir P; Kaloshin, Gennady A; Shagalov, Oleg V; Zheltov, Victor S

    2015-07-27

    In this paper we propose the fast, but the accurate algorithm for numerical modeling of light fields in the turbid media slab. For the numerical solution of the radiative transfer equation (RTE) it is required its discretization based on the elimination of the solution anisotropic part and the replacement of the scattering integral by a finite sum. The solution regular part is determined numerically. A good choice of the method of the solution anisotropic part elimination determines the high convergence of the algorithm in the mean square metric. The method of synthetic iterations can be used to improve the convergence in the uniform metric. A significant increase in the solution accuracy with the use of synthetic iterations allows applying the two-stream approximation for the regular part determination. This approach permits to generalize the proposed method in the case of an arbitrary 3D geometry of the medium.

  1. Image Reconstruction for Diffuse Optical Tomography Based on Radiative Transfer Equation

    PubMed Central

    Han, Bo; Tang, Jinping

    2015-01-01

    Diffuse optical tomography is a novel molecular imaging technology for small animal studies. Most known reconstruction methods use the diffusion equation (DA) as forward model, although the validation of DA breaks down in certain situations. In this work, we use the radiative transfer equation as forward model which provides an accurate description of the light propagation within biological media and investigate the potential of sparsity constraints in solving the diffuse optical tomography inverse problem. The feasibility of the sparsity reconstruction approach is evaluated by boundary angular-averaged measurement data and internal angular-averaged measurement data. Simulation results demonstrate that in most of the test cases the reconstructions with sparsity regularization are both qualitatively and quantitatively more reliable than those with standard L2 regularization. Results also show the competitive performance of the split Bregman algorithm for the DOT image reconstruction with sparsity regularization compared with other existing L1 algorithms. PMID:25648064

  2. Radiative transfer in the surfaces of atmosphereless bodies. III - Interpretation of lunar photometry

    NASA Technical Reports Server (NTRS)

    Lumme, K.; Irvine, W. M.

    1982-01-01

    Narrowband and UBV photoelectric phase curves of the entire lunar disk and surface photometry of some craters have been interpreted using a newly developed generalized radiative transfer theory for planetary regoliths. The data are well fitted by the theory, yielding information on both macroscopic and microscopic lunar properties. Derived values for the integrated disk geometric albedo are considerably higher than quoted previously, because of the present inclusion of an accurately determined opposition effect. The mean surface roughness, defined as the ratio of the height to the radius of a typical irregularity, is found to be 0.9 + or - 0.1, or somewhat less than the mean value of 1.2 obtained for the asteroids. From the phase curves, wavelength-dependent values of the single scattering albedo and the Henyey-Greenstein asymmetry factor for the average surface particle are derived.

  3. Multi-scale methods for the solution of the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Coelho, Pedro J.; Crouseilles, Nicolas; Pereira, Pedro; Roger, Maxime

    2016-03-01

    Various methods have been developed and tested over the years to solve the radiative transfer equation (RTE) with different results and trade-offs. Although the RTE is extensively used, the approximate diffusion equation is sometimes preferred, particularly in optically thick media, due to the lower computational requirements. Recently, multi-scale models, namely the domain decomposition methods, the micro-macro model and the hybrid transport-diffusion model, have been proposed as an alternative to the RTE. In domain decomposition methods, the domain is split into two subdomains, namely a mesoscopic subdomain where the RTE is solved and a macroscopic subdomain where the diffusion equation is solved. In the micro-macro and hybrid transport-diffusion models, the radiation intensity is decomposed into a macroscopic component and a mesoscopic one. In both cases, the aim is to reduce the computational requirements, while maintaining the accuracy, or to improve the accuracy for similar computational requirements. In this paper, these multi-scale methods are described, and the application of the micro-macro and hybrid transport-diffusion models to three-dimensional transient problems is reported. It is shown that when the diffusion approximation is accurate, but not over the entire domain, the multi-scale methods may improve the solution accuracy in comparison with the solution of the RTE. The order of accuracy of the numerical schemes and the radiative properties of the medium play a key role in the performance of the multi-scale methods.

  4. A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new model for radiative transfer in participating media and its application to complex plant canopies is presented. The goal was to be able to efficiently solve complex canopy-scale radiative transfer problems while also representing sub-plant heterogeneity. In the model, individual leaf surfaces ...

  5. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  6. Spatial and angular finite element method for radiative transfer in participating media

    NASA Astrophysics Data System (ADS)

    Castro, Rafael O.; Trelles, Juan Pablo

    2015-05-01

    A computational approach for the modeling of multi-dimensional radiative transfer in participating media, including scattering, is presented. The approach is based on the sequential use of angular and spatial Finite Element Methods for the discretization of the Radiative Transfer Equation (RTE). The angular discretization is developed with an Angular Finite Element Method (AFEM) based on the Galerkin approach. The AFEM leads to a counterpart of the RTE consisting of a coupled set of transient-advective-reactive equations that are continuously dependent on space and time. The AFEM is ideally suited for so-called h- and/or p-refinement for the discretization of the angular domain: h-refinement is obtained by increasing the number of angular elements and p-refinement by increasing the order of the angular interpolating functions. The spatial discretization of the system of equations obtained after the angular discretization is based on a Variational Multi-Scale Finite Element Method (VMS-FEM) suitable for the solution of generic transport problems. The angularly and spatially discretized system is solved with a second-order accurate implicit predictor multi-corrector time stepper together with a globalized inexact Newton-Krylov nonlinear solver. The overall approach is designed and implemented to allow the seamless inclusion of other governing equations necessary to solve coupled fluid-radiative systems, such as those in combustion, high-temperature chemically reactive, and plasma flow models. The combined AFEM and VMS-FEM for the solution of the RTE is validated with two- and three-dimensional benchmark problems, each solved for 3 levels of angular partitioning (h-refinement) and for 2 orders of angular basis functions (p-refinement), i.e. piecewise constant (P0) and piecewise linear (P1) basis over spherical triangles. The overall approach is also applied to the simulation of radiative transfer in a parabolic concentrator with participating media, as encountered in

  7. Classification and radiative-transfer modeling of meteorite spectra

    NASA Astrophysics Data System (ADS)

    Pentikäinen, H.; Penttilä, A.; Peltoniemi, J.; Muinonen, K.

    2014-07-01

    The interpretation of asteroid spectra is closely tied to surface structure and composition. Asteroid surfaces are usually assumed to be covered with a regolith, which is a mixture of mineral grains ranging from micrometers to centimeters in size. The inverse problem of deducing the characteristics of the grains from the scattering of light (e.g., using photometric and polarimetric observations) is difficult. Meteorite spectroscopy can be a valuable alternative source of information considering that unweathered meteoritic ''falls'' are almost pristine samples of their parent bodies. Reflectance spectra of 18 different meteorite samples were measured with the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO) covering a wavelength range of 450--2250 nm [1,2]. The measurements expand the database of reflectance spectra obtained by Paton et al. [3] and Gaffey [4]. Principal Component Analysis (PCA) performed on the spectra indicates a separation of the undifferentiated ordinary chondrites and the differentiated achondrites. The principal components also suggest a discrimination between the spectra of ordinary chondrites with petrologic grades 5 and 6. The distinction is not present when the data are supplemented with the spectra from the two other data sets obtained with differing measuring techniques. To further investigate the different classifications, the PCA is implemented with selected spectral features contrary to the previous analyses, which encompassed the complete spectra. Single-scattering albedos for meteoritic fundamental scatterers were derived with a Monte Carlo radiative-transfer model [1]. In the derivation, realistic scattering phase functions were utilized. The functions were obtained by fitting triple Henyey-Greenstein functions to the measured scattering phase functions of olivine powder for two different size distributions [5,6]. The simulated reflectances for different scattering phase functions were matched to the measured meteorite

  8. THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS

    SciTech Connect

    Whitney, B. A.; Honor, J.; Robitaille, T. P.; Bjorkman, J. E.; Dong, R.; Wolff, M. J.; Wood, K.

    2013-08-15

    We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, ''puffed-up inner rims'' in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations.

  9. A fast all-sky radiative transfer model and its implications for solar energy research

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.

    2015-12-01

    Radiative transfer models simulating broadband solar radiation, e.g. Rapid Radiation Transfer Model (RRTM) and its GCM applications, have been widely used by atmospheric scientists to model solar resource for various energy applications such as operational forecasting. Due to the complexity of solving the radiative transfer equation, simulating solar radiation under cloudy conditions can be extremely time consuming though many approximations, e.g. two-stream approach and delta-M truncation scheme, have been utilized. To provide a new option to approximate solar radiation, we developed a Fast All-sky Radiation Model for Solar applications (FARMS) using simulated cloud transmittance and reflectance from 16-stream RRTM model runs. The solar irradiances at the land surface were simulated by combining parameterized cloud properties with a fast clear-sky radiative transfer model. Using solar radiation measurements from the US Department of Energy's Atmospheric Radiation Measurement (ARM) central facility in Oklahoma as a benchmark against the model simulations, we were able to demonstrate that the accuracy of FARMS was comparable to the two-stream approach. However, FARMS is much more efficient since it does not explicitly solve the radiative transfer equation for each individual cloud condition. We further explored the use of FARMS to promote solar resource assessment and forecasting research through the increased ability to accommodate higher spatial and temporal resolution calculations for the next generation of satellite and numerical weather prediction (NWP) models.

  10. Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate

    NASA Technical Reports Server (NTRS)

    Lacis, A. A.; Wang, W. C.; Hansen, J. E.

    1979-01-01

    A radiative transfer method appropriate for use in simple climate models and three dimensional global climate models was developed. It is fully interactive with climate changes, such as in the temperature-pressure profile, cloud distribution, and atmospheric composition, and it is accurate throughout the troposphere and stratosphere. The vertical inhomogeneity of the atmosphere is accounted for by assuming a correlation of gaseous k-distributions of different pressures and temperatures. Line-by-line calculations are made to demonstrate that The method is remarkably accurate. The method is then used in a one-dimensional radiative-convective climate model to study the effect of cirrus clouds on surface temperature. It is shown that an increase in cirrus cloud cover can cause a significant warming of the troposphere and the Earth's surface, by the mechanism of an enhanced green-house effect. The dependence of this phenomenon on cloud optical thickness, altitude, and latitude is investigated.

  11. Radiative transfer calculated from a Markov chain formalism

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.; House, L. L.

    1978-01-01

    The theory of Markov chains is used to formulate the radiative transport problem in a general way by modeling the successive interactions of a photon as a stochastic process. Under the minimal requirement that the stochastic process is a Markov chain, the determination of the diffuse reflection or transmission from a scattering atmosphere is equivalent to the solution of a system of linear equations. This treatment is mathematically equivalent to, and thus has many of the advantages of, Monte Carlo methods, but can be considerably more rapid than Monte Carlo algorithms for numerical calculations in particular applications. We have verified the speed and accuracy of this formalism for the standard problem of finding the intensity of scattered light from a homogeneous plane-parallel atmosphere with an arbitrary phase function for scattering. Accurate results over a wide range of parameters were obtained with computation times comparable to those of a standard 'doubling' routine. The generality of this formalism thus allows fast, direct solutions to problems that were previously soluble only by Monte Carlo methods. Some comparisons are made with respect to integral equation methods.

  12. Partial redistribution in 3D non-LTE radiative transfer in solar-atmosphere models

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Andrii V.; Leenaarts, Jorrit

    2017-01-01

    Context. Resonance spectral lines such as H I Ly α, Mg II H&K, and Ca II H&K that form in the solar chromosphere, are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines including both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is, however, indispensable for accurate diagnostics of the chromosphere. Aims: We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-local thermodynamic equilibrium (non-LTE) radiative transfer code. Methods: To make the method memory-friendly, we use the hybrid approximation for the redistribution integral. To make the method fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the H&K lines and H I with the Ly α line treated in PRD. Results: A typical 3D PRD solution can be obtained in a model atmosphere with 252 × 252 × 496 coordinate points in 50 000-200 000 CPU hours, which is a factor ten slower than computations assuming complete redistribution. We illustrate the importance of the joint action of PRD and 3D effects for the Mg II H&K lines for disk-center intensities, as well as the center-to-limb variation. Conclusions: The proposed method allows for the simulation of PRD lines in a time series of radiation-magnetohydrodynamic models, in order to interpret observations of chromospheric lines at high spatial resolution.

  13. Radiative Transfer Modeling of Uranus' Atmospheric Structure at Equinox

    NASA Astrophysics Data System (ADS)

    Norwood, James; Chanover, N.

    2009-09-01

    We acquired near-infrared spectra of Uranus near equinox at NASA's Infrared Telescope Facility in September 2006 and September 2007. These spectra, taken with SpeX (R=2000), probe Uranus' atmosphere between 0.8 and 2.4 microns. The position of the slit over the Uranian disk was varied to obtain spectra from all visible latitudes. Assessment of these observations has revealed that Uranus' atmospheric structure not only changes with latitude, but also underwent notable evolution near its 2007 equinox in the twelve-month time span between datasets (2009, Icarus, in press). We now present results from an in-depth analysis of these observations using a radiative transfer code. This code creates synthetic spectra based on model atmospheres, and utilizes the band-model methane absorption coefficients determined by Irwin et al. (2006, Icarus 181, 309-319). Properties of Uranus' atmosphere, such as methane abundance and vertical structure, are varied to determine which conditions are best able to reproduce the observed spectra. We further determine what physical changes resulted in the temporal and latitudinal variations witnessed in Uranus' atmosphere. This project was funded by a NASA Earth and Space Fellowship.

  14. SRTC++: a New Monte Carlo Radiative Transfer Model for Titan

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; MacKenzie, Shannon; Young, Eliot F.

    2016-10-01

    Titan's vertically extended and highly scattering atmosphere poses a challenge to interpreting near-infrared observations of its surface. Not only does Titan's extended atmosphere often require accommodation of its spherical geometry, it is also difficult to separate surface albedos from scattering or absorption within low-altitude atmospheric layers. One way to disentangle the surface and atmosphere is to combine observations in which terrain on Titan is imaged from a range of viewing geometries. To address this type of problem, we have developed a new algorithm, Spherical Radiative Transfer in C++ or SRTC++.This code is written from scratch in fast C++ and designed from the ground up to run efficiently in parallel. We see SRTC++ as complementary to existing plane-parallel codes, not in competition with them as the first problems that we seek to address will be spatial in nature. For example, we will be able to investigate spatial resolution limits in the various spectral windows, discrimination of vertical atmospheric layers, the adjacency effect, and indirect illumination past Titan's terminator.

  15. Modeling Planet-Building Stellar Disks with Radiative Transfer Code

    NASA Astrophysics Data System (ADS)

    Swearingen, Jeremy R.; Sitko, Michael L.; Whitney, Barbara; Grady, Carol A.; Wagner, Kevin Robert; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Hammel, Heidi B.; Lisse, Casey M.; Cure, Michel; Kraus, Stefan; Fukagawa, Misato; Calvet, Nuria; Espaillat, Catherine; Monnier, John D.; Millan-Gabet, Rafael; Wilner, David J.

    2015-01-01

    Understanding the nature of the many planetary systems found outside of our own solar system cannot be completed without knowledge of the beginnings these systems. By detecting planets in very young systems and modeling the disks of material around stars from which they form, we can gain a better understanding of planetary origin and evolution. The efforts presented here have been in modeling two pre-transitional disk systems using a radiative transfer code. With the first of these systems, V1247 Ori, a model that fits the spectral energy distribution (SED) well and whose parameters are consistent with existing interferometry data (Kraus et al 2013) has been achieved. The second of these two systems, SAO 206462, has presented a different set of challenges but encouraging SED agreement between the model and known data gives hope that the model can produce images that can be used in future interferometry work. This work was supported by NASA ADAP grant NNX09AC73G, and the IR&D program at The Aerospace Corporation.

  16. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  17. Inversion of the radiative transfer equation for polarized light

    NASA Astrophysics Data System (ADS)

    del Toro Iniesta, Jose Carlos; Ruiz Cobo, Basilio

    2016-12-01

    Since the early 1970s, inversion techniques have become the most useful tool for inferring the magnetic, dynamic, and thermodynamic properties of the solar atmosphere. Inversions have been proposed in the literature with a sequential increase in model complexity: astrophysical inferences depend not only on measurements but also on the physics assumed to prevail both on the formation of the spectral line Stokes profiles and on their detection with the instrument. Such an intrinsic model dependence makes it necessary to formulate specific means that include the physics in a properly quantitative way. The core of this physics lies in the radiative transfer equation (RTE), where the properties of the atmosphere are assumed to be known while the unknowns are the four Stokes profiles. The solution of the (differential) RTE is known as the direct or forward problem. From an observational point of view, the problem is rather the opposite: the data are made up of the observed Stokes profiles and the unknowns are the solar physical quantities. Inverting the RTE is therefore mandatory. Indeed, the formal solution of this equation can be considered an integral equation. The solution of such an integral equation is called the inverse problem. Inversion techniques are automated codes aimed at solving the inverse problem. The foundations of inversion techniques are critically revisited with an emphasis on making explicit the many assumptions underlying each of them.

  18. Test plan for validation of the radiative transfer equation.

    SciTech Connect

    Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.

    2010-09-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).

  19. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    SciTech Connect

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  20. Numerical model for combined conductive and radiative heat transfer in annular packed beds

    SciTech Connect

    Kamiuto, K.; Saito, S.; Ito, K. . Dept. of Production Systems Engineering)

    1993-06-01

    A numerical model is developed for quantitatively analyzing combined conductive and radiative heat transfer in concentric annular packed beds. A packed bed is considered to be a continuous medium for heat transfer, but the porosity distribution within a packed bed is taken into account. To examine the validity of the proposed model, combined conductive and radiative heat transfer through annular packed beds of cordierite or porcelain beads is analyzed numerically using finite differences under conditions corresponding to heat transfer experiments of these packed beds. The resultant temperature profiles and heat transfer characteristics are compared with the experimental results.

  1. Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report

    SciTech Connect

    Jerry Y. Harrington

    2012-09-21

    This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

  2. Radiative Transfer Modeling of the Coupled Atmosphere and Plant Canopy and BRDF Retrieval

    NASA Astrophysics Data System (ADS)

    Liang, Shunlin

    The limitations of conventional satellite remote sensing that mainly uses nadir observations of terrestrial surfaces has led to an exploration of the use of angular signatures. The Earth Observation System (EOS), to be launched in 1998, is capable of providing directional observations from the space. This dissertation was designed to study the fundamental properties of the directional reflectance of terrestrial surfaces. Four new and inter-related algorithms have been developed in this study, including (a) an improved Gauss -Seidel numerical algorithm to solve the coupled atmosphere --vegetation canopy radiative transfer equation; (b) an analytic bidirectional reflectance distribution function (BRDF) model of canopy radiative transfer and its inversion algorithm; (c) a statistical BRDF model; and (d) an analytic model of atmospheric radiance transfer over a non-Lambertian surface. The classic Gauss-Seidel algorithm has been widely applied in atmosphere research. This is its first application for calculating the multiple-scattering radiance of the coupled atmosphere and canopy, and an improved iteration formula is derived to speed convergence due to large optical thickness. One of the major advantages of this algorithm is that it can easily incorporate any form of surface BRDF as the lower boundary condition. This dissertation presents an analytic canopy BRDF model based on a rigorous canopy radiative transfer equation in which the multiple-scattering component is approximated by asymptotic theory and the single-scattering calculation, which requires numerical integration to properly accommodate the hotspot effect, is also simplified. The Powell algorithm is then used to retrieve biophysical parameters from soybean measurement data based on both canopy and sky radiance distribution models. The results show that leaf area index (LAI) can be well retrieved, and more efforts are required to retrieve leaf angle distribution (LAD). A new procedure is developed to obtain

  3. Importance of Accurate Liquid Water Path for Estimation of Solar Radiation in Warm Boundary Layer Clouds: An Observational Study

    SciTech Connect

    Sengupta, Manajit; Clothiaux, Eugene E.; Ackerman, Thomas P.; Kato, Seiji; Min, Qilong

    2003-09-15

    A one-year observational study of overcast boundary layer stratus at the U.S. Department of Energy Atmospheric Radiation Measurement Program Southern Great Plains site illustrates that surface radiation is primarily sensitive to cloud liquid water path, with cloud drop effective radius having a secondary influence. The mean, median and standard deviation of cloud liquid water path and cloud drop effective radius for the dataset are 0.120 mm, 0.101 mm, 0.108 mm, and 7.38 {micro}m, 7.13 {micro}m, 2.39 {micro}m, respectively. Radiative transfer calculations demonstrate that cloud optical depth and cloud normalized forcing are respectively three and six times as sensitive to liquid water path variations as they are to effective radius variations, when the observed ranges of each of those variables is considered. Overall, there is a 79% correlation between observed and computed surface fluxes when using a fixed effective radius of 7.5 {micro}m and observed liquid water paths in the calculations. One conclusion from this study is that measurement of the indirect aerosol effect will be problematic at the site, as variations in cloud liquid water path will most likely mask effects of variations in particle size.

  4. Angularly Adaptive P1--Double P0 Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems in Planar Geometry

    SciTech Connect

    Brantley, P S

    2005-06-06

    The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. The standard P{sub 1} angular approximation represents the angular dependence of the radiation specific intensity using a linear function in the angular domain -1 {le} {mu} {le} 1. In contrast, the DP{sub 0} angular approximation represents the angular dependence as isotropic in each half angular range -1 {le} {mu} < 0 and 0 < {mu} {le} 1. Neglecting the time derivative of the radiation flux, both the P{sub 1} and DP{sub 0} equations can be written as a single diffusion equation for the radiation energy density. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near the non-equilibrium wave front. We develop an adaptive angular technique that locally uses either the DP{sub 0} or the P{sub 1} diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for a test problem due to Su and Olson for which a semi-analytic transport solution exists. The numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation for non-equilibrium grey radiative transfer.

  5. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    NASA Astrophysics Data System (ADS)

    Xin, Q.; Gong, P.; Li, W.

    2015-02-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  6. Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace

    SciTech Connect

    Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.

    2000-08-02

    A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.

  7. Testing quasar unification: radiative transfer in clumpy winds

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Knigge, C.; Long, K. S.; Sim, S. A.; Higginbottom, N.; Mangham, S. W.

    2016-05-01

    Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

  8. Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts

    NASA Astrophysics Data System (ADS)

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-01

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  9. Radiative transfer modelling of parsec-scale dusty warped discs

    NASA Astrophysics Data System (ADS)

    Jud, H.; Schartmann, M.; Mould, J.; Burtscher, L.; Tristram, K. R. W.

    2017-02-01

    Warped discs have been found on (sub-)parsec scale in some nearby Seyfert nuclei, identified by their maser emission. Using dust radiative transfer simulations, we explore their observational signatures in the infrared in order to find out whether they can partly replace the molecular torus. Strong variations of the brightness distributions are found, depending on the orientation of the warp with respect to the line of sight. Whereas images at short wavelengths typically show a disc-like and a point source component, the warp itself only becomes visible at far-infrared wavelengths. A similar variety is visible in the shapes of the spectral energy distributions. Especially for close to edge-on views, the models show silicate feature strengths ranging from deep absorption to strong emission for variations of the lines of sight towards the warp. To test the applicability of our model, we use the case of the Circinus galaxy, where infrared interferometry has revealed a highly elongated emission component matching a warped maser disc in orientation and size. Our model is for the first time able to present a physical explanation for the observed dust morphology as coming from the active galactic nuclei heated dust. As opposed to available torus models, a warped disc morphology produces a variety of silicate feature shapes for grazing lines of sight, close to an edge-on view. This could be an attractive alternative to a claimed change of the dust composition for the case of the nearby Seyfert 2 galaxy NGC 1068, which harbours a warped maser disc as well.

  10. ULTRAVIOLET RADIATIVE TRANSFER MODELING OF NEARBY GALAXIES WITH EXTRAPLANAR DUSTS

    SciTech Connect

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-20

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFR{sub UV}), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFR{sub UV} and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  11. A polynomial chaos approach to narrow band modeling of radiative heat transfer in non-uniform gaseous media

    NASA Astrophysics Data System (ADS)

    André, Frédéric

    2016-05-01

    An accurate treatment of non-uniformities is required in many applications involving radiative heat transfer in gaseous media. Usual techniques to handle path non-uniformities rely on simplifying assumptions, such as scaling or correlation of gas spectra. Those approximations are usually accurate but may also fail to provide accurate results, especially when large temperature gradients are considered. The objective of the present work is to show that this problem can be treated rigorously. The proposed method can be applied to any arbitrary narrow band model. It is based on some results from Polynomial Chaos' framework and copulas theory. Although the mathematical derivation may appear sophisticated, applying the method is straightforward. It is shown that adding only one coefficient to any uniform narrow band model (for a simple case involving a non-uniform column discretized into two uniform sub-paths) allows to achieve almost LBL accuracy for radiative heat transfer calculations. The technique is described and applied to some "severe" test cases from the literature.

  12. Bio-Optics of the Chesapeake Bay from Measurements and Radiative Transfer Calculations

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Herman, Jay R.; Gallegos, Charles L.; Neale, Patrick J.; Subramaniam, Ajit; Harding, Lawrence W., Jr.; Ahmad, Ziauddin

    2005-01-01

    We combined detailed bio-optical measurements and radiative transfer (RT) modeling to perform an optical closure experiment for optically complex and biologically productive Chesapeake Bay waters. We used this experiment to evaluate certain assumptions commonly used when modeling bio-optical processes, and to investigate the relative importance of several optical characteristics needed to accurately model and interpret remote sensing ocean-color observations in these Case 2 waters. Direct measurements were made of the magnitude, variability, and spectral characteristics of backscattering and absorption that are critical for accurate parameterizations in satellite bio-optical algorithms and underwater RT simulations. We found that the ratio of backscattering to total scattering in the mid-mesohaline Chesapeake Bay varied considerably depending on particulate loading, distance from land, and mixing processes, and had an average value of 0.0128 at 530 nm. Incorporating information on the magnitude, variability, and spectral characteristics of particulate backscattering into the RT model, rather than using a volume scattering function commonly assumed for turbid waters, was critical to obtaining agreement between RT calculations and measured radiometric quantities. In situ measurements of absorption coefficients need to be corrected for systematic overestimation due to scattering errors, and this correction commonly employs the assumption that absorption by particulate matter at near infrared wavelengths is zero.

  13. AccuRT: A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system

    NASA Astrophysics Data System (ADS)

    Hamre, Børge; Stamnes, Snorre; Stamnes, Knut; Stamnes, Jakob

    2017-02-01

    Reliable, accurate, and efficient modeling of the transport of electromagnetic radiation in turbid media has important applications in the study of the Earth's climate by remote sensing. For example, such modeling is needed to develop forward-inverse methods used to quantify types and concentrations of aerosol and cloud particles in the atmosphere, the dissolved organic and particulate biogeochemical matter in lakes, rivers, coastal, and open-ocean waters. It is also needed to simulate the performance of remote sensing detectors deployed on aircraft, balloons, and satellites as well as radiometric detectors deployed on buoys, gliders and other aquatic observing systems. Accurate radiative transfer modeling is also required to compute irradiances and scalar irradiances that are used to compute warming/cooling and photolysis rates in the atmosphere and primary production and warming/cooling rates in the water column. AccuRT is a radiative transfer model for the coupled atmosphere-water system that is designed to be a versatile tool for researchers in the ocean optics and remote sensing communities. It addresses the needs of researchers interested in analyzing irradiance and radiance measurements in the field and laboratory as well as those interested in making simulations of the top-of-the-atmosphere radiance in support of remote sensing algorithm development.

  14. Scattering effect in radiative heat transfer during selective laser sintering of polymers

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Boutaous, M'hamed; Xin, Shihe

    2016-10-01

    The aim of this work is to develop an accurate model to simulate the selective laser sintering (SLS) process, in order to understand the multiple phenomena occurring in the material and to study the influence of each parameter on the quality of the sintered parts. A numerical model, coupling radiative and conductive heat transfers in a polymer powder bed providing a local temperature field, is proposed. To simulate the polymer sintering by laser heating as in additive manufacturing, a double-lines scanning of a laser beam over a thin layer of polymer powder is studied. An effective volumetric heat source, using a modified Monte Carlo method, is estimated from laser radiation scattering and absorption in a semi-transparent polymer powder bed. In order to quantify the laser-polymer interaction, the heating and cooling of the material is modeled and simulated with different types heat sources by both finite elements method (FEM) and discrete elements method (DEM). To highlight the importance of introducing a semi-transparent behavior of such materials and in order to validate our model, the results are compared with works taken from the literature.

  15. 3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent

    2015-08-01

    We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  16. An investigation of Titan's aerosols using microwave analog measurements and radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Thomas-Osip, J. E.; Gustafson, B. Å. S.; Kolokolova, L.; Xu, Y.-L.

    2005-12-01

    A combination of laboratory experiments, theoretical modeling, and spacecraft observations is employed to characterize the aerosols in the atmosphere of Titan. The scattering properties of model aerosols were measured using the Microwave Analog Light Scattering Facility at the University of Florida and complemented with theoretical modeling of single scattering characteristics and radiative transfer in Titan's atmosphere. This study compares these modeling results with photopolarimetric observations made over a range of phase angles by the Pioneer 11 and Voyagers 1 and 2 spacecraft. Important results of this work include a survey of the scattering properties of different particle morphologies and compositions necessary to accurately interpret these observations without introducing non-physical assumptions about the particles or requiring additional free parameters to the radiative transfer models. Previous studies use calculation methods which, due to computing memory and processing time requirements, a priori exclude much of the parameter space that the microwave analog laboratory is ideal for exploring. The goal of the present work, to directly constrain aerosol physical characteristics, is addressed by studying in a consistent manner how a variety of particle morphologies and refractive indices affect the polarization and intensity reflected by Titan's atmosphere. Based on comparisons of model results to spacecraft observations, many model morphologies are excluded from further consideration. The most plausible physical particle models suggest that a combination of Rayleigh-like single particles and aggregates that are larger than those previously suggested and investigated [West, R.A., Smith, P.H., 1991. Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus 90, 330-333; Rannou, P., Cabane, M., Botet, R., Chassefière, E., 1997. A new interpretation of scattered light measurements at Titan's limb. J. Geophys. Res. 102, 10997

  17. Multiangle Implementation of Atmospheric Correction (MAIAC):. 1; Radiative Transfer Basis and Look-up Tables

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Martonchik, John; Wang, Yujie; Laszlo, Istvan; Korkin, Sergey

    2011-01-01

    This paper describes a radiative transfer basis of the algorithm MAIAC which performs simultaneous retrievals of atmospheric aerosol and bidirectional surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). The retrievals are based on an accurate semianalytical solution for the top-of-atmosphere reflectance expressed as an explicit function of three parameters of the Ross-Thick Li-Sparse model of surface bidirectional reflectance. This solution depends on certain functions of atmospheric properties and geometry which are precomputed in the look-up table (LUT). This paper further considers correction of the LUT functions for variations of surface pressure/height and of atmospheric water vapor, which is a common task in the operational remote sensing. It introduces a new analytical method for the water vapor correction of the multiple ]scattering path radiance. It also summarizes the few basic principles that provide a high efficiency and accuracy of the LUT ]based radiative transfer for the aerosol/surface retrievals and optimize the size of LUT. For example, the single-scattering path radiance is calculated analytically for a given surface pressure and atmospheric water vapor. The same is true for the direct surface-reflected radiance, which along with the single-scattering path radiance largely defines the angular dependence of measurements. For these calculations, the aerosol phase functions and kernels of the surface bidirectional reflectance model are precalculated at a high angular resolution. The other radiative transfer functions depend rather smoothly on angles because of multiple scattering and can be calculated at coarser angular resolution to reduce the LUT size. At the same time, this resolution should be high enough to use the nearest neighbor geometry angles to avoid costly three ]dimensional interpolation. The pressure correction is implemented via linear interpolation between two LUTs computed for the standard and reduced

  18. Solution of the equation of radiative transfer for remote sensing over nonuniform surface reflectivity

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.

    1982-01-01

    An understanding of radiative transfer in the earth's atmosphere is a necessity for the remote sensing of surface reflectivity from satellites and aircraft. The range of the adjacency effect, which represents the effect of bright areas on the radiance above dark areas, is the main parameter that distinguishes atmospheric radiative transfer over a nonuniform surface from that over a uniform one. A radiative transfer model which expresses this range correctly is, therefore, critical for developing remote sensing methods for the case of an atmosphere over a nonuniform surface. The present investigation is concerned with the development of a new approximate solution of the radiative transfer (RT) equation. The solution is not limited to nonabsorbing atmospheres, but it will still be limited to nadir observations. The results compare favorably with Monte Carlo simulations.

  19. Two Experiments for Estimating Free Convection and Radiation Heat Transfer Coefficients

    ERIC Educational Resources Information Center

    Economides, Michael J.; Maloney, J. O.

    1978-01-01

    This article describes two simple undergraduate heat transfer experiments which may reinforce a student's understanding of free convection and radiation. Apparatus, experimental procedure, typical results, and discussion are included. (Author/BB)

  20. The lattice Boltzmann method for one-dimensional transient radiative transfer in graded index gray medium

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2014-04-01

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing absorbing and scattering media with graded index subjected to a short square laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. Firstly, for the case of the refractive index matched boundary, LBM solutions to transient radiative transfer in graded index medium are validated by comparison with results reported in the literature. Afterward, LBM is employed to investigate transient radiative transfer in graded index medium with a refractive index discontinuity at the boundaries. Effects of the graded index distributions, the optical thickness, and scattering phase function on transmittance and reflectance signals are investigated, and several interesting trends on the time-resolved signals are observed and analyzed.

  1. Directional Radiometry and Radiative Transfer: the Convoluted Path From Centuries-old Phenomenology to Physical Optics

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2014-01-01

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  2. Near-Field Radiative Heat Transfer under Temperature Gradients and Conductive Transfer

    NASA Astrophysics Data System (ADS)

    Jin, Weiliang; Messina, Riccardo; Rodriguez, Alejandro W.

    2017-02-01

    We describe a recently developed formulation of coupled conductive and radiative heat transfer (RHT) between objects separated by nanometric, vacuum gaps. Our results rely on analytical formulas of RHT between planar slabs (based on the scattering-matrix method) as well as a general formulation of RHT between arbitrarily shaped bodies (based on the fluctuating-volume current method), which fully captures the existence of temperature inhomogeneities. In particular, the impact of RHT on conduction, and vice versa, is obtained via self-consistent solutions of the Fourier heat equation and Maxwell's equations. We show that in materials with low thermal conductivities (e.g. zinc oxides and glasses), the interplay of conduction and RHT can strongly modify heat exchange, exemplified for instance by the presence of large temperature gradients and saturating flux rates at short (nanometric) distances. More generally, we show that the ability to tailor the temperature distribution of an object can modify the behaviour of RHT with respect to gap separations, e.g. qualitatively changing the asymptotic scaling at short separations from quadratic to linear or logarithmic. Our results could be relevant to the interpretation of both past and future experimental measurements of RHT at nanometric distances.

  3. Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.

  4. Monte Carlo method based radiative transfer simulation of stochastic open forest generated by circle packing application

    NASA Astrophysics Data System (ADS)

    Jin, Shengye; Tamura, Masayuki

    2013-10-01

    Monte Carlo Ray Tracing (MCRT) method is a versatile application for simulating radiative transfer regime of the Solar - Atmosphere - Landscape system. Moreover, it can be used to compute the radiation distribution over a complex landscape configuration, as an example like a forest area. Due to its robustness to the complexity of the 3-D scene altering, MCRT method is also employed for simulating canopy radiative transfer regime as the validation source of other radiative transfer models. In MCRT modeling within vegetation, one basic step is the canopy scene set up. 3-D scanning application was used for representing canopy structure as accurately as possible, but it is time consuming. Botanical growth function can be used to model the single tree growth, but cannot be used to express the impaction among trees. L-System is also a functional controlled tree growth simulation model, but it costs large computing memory. Additionally, it only models the current tree patterns rather than tree growth during we simulate the radiative transfer regime. Therefore, it is much more constructive to use regular solid pattern like ellipsoidal, cone, cylinder etc. to indicate single canopy. Considering the allelopathy phenomenon in some open forest optical images, each tree in its own `domain' repels other trees. According to this assumption a stochastic circle packing algorithm is developed to generate the 3-D canopy scene in this study. The canopy coverage (%) and the tree amount (N) of the 3-D scene are declared at first, similar to the random open forest image. Accordingly, we randomly generate each canopy radius (rc). Then we set the circle central coordinate on XY-plane as well as to keep circles separate from each other by the circle packing algorithm. To model the individual tree, we employ the Ishikawa's tree growth regressive model to set the tree parameters including DBH (dt), tree height (H). However, the relationship between canopy height (Hc) and trunk height (Ht) is

  5. Many-body heat radiation and heat transfer in the presence of a nonabsorbing background medium

    NASA Astrophysics Data System (ADS)

    Müller, Boris; Incardone, Roberta; Antezza, Mauro; Emig, Thorsten; Krüger, Matthias

    2017-02-01

    Heat radiation and near-field radiative heat transfer can be strongly manipulated by adjusting geometrical shapes, optical properties, or the relative positions of the objects involved. Typically, these objects are considered as embedded in vacuum. By applying the methods of fluctuational electrodynamics, we derive general closed-form expressions for heat radiation and heat transfer in a system of N arbitrary objects embedded in a passive nonabsorbing background medium. Taking into account the principle of reciprocity, we explicitly prove the symmetry and positivity of transfer in any such system. Regarding applications, we find that the heat radiation of a sphere as well as the heat transfer between two parallel plates is strongly enhanced by the presence of a background medium. Regarding near- and far-field transfer through a gas like air, we show that a microscopic model (based on gas particles) and a macroscopic model (using a dielectric contrast) yield identical results. We also compare the radiative transfer through a medium like air and the energy transfer found from kinetic gas theory.

  6. Adipose veno-lymphatic transfer for management of post-radiation lymphedema

    SciTech Connect

    Pho, R.W.; Bayon, P.; Tan, L.

    1989-01-01

    In a patient who had post-radiation lymphedema after excision of liposarcoma, a method is described that is called adipose veno-lymphatic transfer. The technique involves transferring adipose tissue containing lymphatic vessels that surround the long saphenous vein, from the normal, healthy leg to the irradiated leg, with the creation of an arteriovenous fistula.

  7. INTERACTION OF LASER RADIATION WITH MATTER: Resonance laser-induced ionisation of sodium vapour taking radiative transfer into account

    NASA Astrophysics Data System (ADS)

    Kosarev, N. I.; Shaparev, N. Ya

    2006-04-01

    The problem of ionisation of atomic sodium in the field of resonance laser radiation is numerically solved taking radiative transfer into account. Seed electrons are produced due to the mechanism of associative ionisation, then they gain energy in superelastic processes (collisions of the second kind) and initiate the avalanche ionisation of the medium by electron impact. We studied the effect of secondary radiation on the laser pulse propagation upon competition between the ionising and quenching electron collisions with excited atoms, on the kinetics of ionisation-induced vapour bleaching, and the plasma channel expansion in the form of a halo.

  8. Development and application of a reverse Monte Carlo radiative transfer code for rocket plume base heating

    NASA Technical Reports Server (NTRS)

    Everson, John; Nelson, H. F.

    1993-01-01

    A reverse Monte Carlo radiative transfer code to predict rocket plume base heating is presented. In this technique rays representing the radiation propagation are traced backwards in time from the receiving surface to the point of emission in the plume. This increases the computational efficiency relative to the forward Monte Carlo technique when calculating the radiation reaching a specific point, as only the rays that strike the receiving point are considered.

  9. Transfer of PSR0531 rotation energy to the radiation of the Crab nebula

    NASA Astrophysics Data System (ADS)

    Machabeli, G.; Gogoberidze, G.; Shapakidze, D.; Midelashvili, E.

    2017-04-01

    This study focuses on the transfer of the Crab pulsar rotation energy to the electrostatic plasma waves of the pulsar magnetosphere by means of parametric instability. The energy of generated Langmuir waves is redistributed both to the pulsar radiation and the radiation of Crab nebula. It is shown that the power of the electrostatic waves transmitted to the Nebula is much greater than the power of Langmuir waves responsible for the generation of high frequency pulsar radiation.

  10. Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroyuki; Okawa, Shinpei; Yamada, Yukio; Hoshi, Yoko

    2014-11-01

    Numerical modeling of light propagation in random media has been an important issue for biomedical imaging, including diffuse optical tomography (DOT). For high resolution DOT, accurate and fast computation of light propagation in biological tissue is desirable. This paper proposes a space-time hybrid model for numerical modeling based on the radiative transfer and diffusion equations (RTE and DE, respectively) in random media under refractive-index mismatching. In the proposed model, the RTE and DE regions are separated into space and time by using a crossover length and the time from the ballistic regime to the diffusive regime, ρDA 10 / μt‧ and tDA 20 / v μt‧ where μt‧ and v represent a reduced transport coefficient and light velocity, respectively. The present model succeeds in describing light propagation accurately and reduces computational load by a quarter compared with full computation of the RTE.

  11. A detailed evaluation of the stratospheric heat budget: 1. Radiation transfer

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Mlynczak, Martin G.; Garcia, Rolando R.; Portmann, Robert W.

    1999-03-01

    We present part 1 of a two-part series on a detailed evaluation of the stratospheric heat budget. In part 2 [Mlynczak et al., this issue] we present radiative heating, radiative cooling, net radiative heating, global radiation balance, radiative relaxation times, and diabatic circulations in the stratosphere using temperature and minor constituent data provided by instruments on the Upper Atmosphere Research Satellite (UARS) between 1991 and 1993 and by the limb infrared monitor of the stratosphere (LIMS) instrument, which operated on the Nimbus-7 spacecraft in 1978-1979. Here we describe the radiative transfer techniques used to compute the climatology of radiative heating and circulations given in part 2. Included in the radiation transfer calculations are heating due to absorption of solar radiation from the ultraviolet through near-infrared wavelengths and radiative cooling due to emission by carbon dioxide, water vapor, and ozone from 0 to 3000 cm-1 (∞-3.3 μm). Infrared radiative effects of stratospheric aerosols are also considered in detail.

  12. An efficient and robust reconstruction method for optical tomography with the time-domain radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Qiao, Yaobin; Qi, Hong; Chen, Qin; Ruan, Liming; Tan, Heping

    2016-03-01

    An efficient and robust method based on the complex-variable-differentiation method (CVDM) is proposed to reconstruct the distribution of optical parameters in two-dimensional participating media. An upwind-difference discrete-ordinate formulation of the time-domain radiative transfer equation is well established and used as forward model. The regularization term using generalized Gaussian Markov random field model is added in the objective function to overcome the ill-posed nature of the radiative inverse problem. The multi-start conjugate gradient method was utilized to accelerate the convergence speed of the inverse procedure. To obtain an accurate result and avoid the cumbersome formula of adjoint differentiation model, the CVDM was employed to calculate the gradient of objective function with respect to the optical parameters. All the simulation results show that the CVDM is efficient and robust for the reconstruction of optical parameters.

  13. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and

  14. Radiative Heat Transfer During Atmosphere Entry at Parabolic Velocity

    NASA Technical Reports Server (NTRS)

    Yoshikawa, Kenneth K.; Wick, Bradford H.

    1961-01-01

    Stagnation point radiative heating rates for manned vehicles entering the earth's atmosphere at parabolic velocity are presented and compared with corresponding laminar convective heating rates. The calculations were made for both nonlifting and lifting entry trajectories for vehicles of varying nose radius, weight-to-area ratio, and drag. It is concluded from the results presented that radiative heating will be important for the entry conditions considered.

  15. Circumstellar shells, the formation of grains, and radiation transfer

    NASA Technical Reports Server (NTRS)

    Lefevre, Jean

    1987-01-01

    Advances in infrared astronomy during the last decade have firmly established the presence of dust around a large number of cold giant and supergiant stars. To describe the properties of stars and to understand their evolution, it is necessary to know the nature of the giants and their influence on stellar radiation. Two questions are considered: the formation of grains around cold stars and the modification of stellar radiation by the stellar shell.

  16. Introduction to the Theory of Atmospheric Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Buglia, J. J.

    1986-01-01

    The fundamental physical and mathematical principles governing the transmission of radiation through the atmosphere are presented, with emphasis on the scattering of visible and near-IR radiation. The classical two-stream, thin-atmosphere, and Eddington approximations, along with some of their offspring, are developed in detail, along with the discrete ordinates method of Chandrasekhar. The adding and doubling methods are discussed from basic principles, and references for further reading are suggested.

  17. Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies

    NASA Astrophysics Data System (ADS)

    Mendaza, Teresa; Martin-Torres, Javier

    2016-04-01

    We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of

  18. The effect of the number of wavebands used in spectral radiation heat transfer calculations

    SciTech Connect

    Chang, S. L.; Golchert, B.; Petrick, M.

    2000-05-09

    A spectral radiation heat transfer model that conserves emitted and absorbed energy has been developed and used to model the combustion space of an industrial glass furnace. This comprehensive radiation heat transfer model coupled with a computational fluid dynamics (CFD) code was used to investigate the effect of spectral dependencies on the computed results. The results of this work clearly indicate the need for a spectral approach as opposed to a gray body approach since the gray body approach (one waveband) severely underestimates the energy emitted via radiation.

  19. Numerical radiative transfer with state-of-the-art iterative methods made easy

    NASA Astrophysics Data System (ADS)

    Lambert, Julien; Paletou, Frédéric; Josselin, Eric; Glorian, Jean-Michel

    2016-01-01

    This article presents an on-line tool and its accompanying software resources for the numerical solution of basic radiation transfer out of local thermodynamic equilibrium (LTE). State-of-the-art stationary iterative methods such as Accelerated Λ-iteration and Gauss-Seidel schemes, using a short characteristics-based formal solver are used. We also comment on typical numerical experiments associated to the basic non-LTE radiation problem. These resources are intended for the largest use and benefit, in support to more classical radiation transfer lectures usually given at the Master level.

  20. Meshless method for solving coupled radiative and conductive heat transfer in refractive index medium

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-An; Sadat, Hamou; Tan, Jian-Yu

    2016-01-01

    A diffuse approximation meshless method (DAM) is employed as a means of solving the coupled radiative and conductive heat transfer problems in semi-transparent refractive index media contained in 1D and 2D geometries. The meshless approach for radiative transfer is based on the discrete ordinates equation. Cases of combined conduction- radiation are presented, including plane parallel slab, square enclosure, and semicircular enclosure with an inner circle. The influence of the refractive index on the temperature distributions and heat fluxes is investigated. Results obtained using the proposed meshless method are compared with those reported in the literature to demonstrate the flexibility and accuracy of the method.

  1. A NUMERICAL SCHEME FOR SPECIAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT RADIATIVE TRANSFER EQUATION

    SciTech Connect

    Ohsuga, Ken; Takahashi, Hiroyuki R.

    2016-02-20

    We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.

  2. Realistic NLTE Radiative Transfer for Modeling Stellar Winds

    NASA Technical Reports Server (NTRS)

    Bennett, Philip D.

    1999-01-01

    This NASA grant supported the development of codes to solve the non-LTE multi-level spherical radiative transfer problem in the presence of velocity fields. Much of this work was done in collaboration with Graham Harper (CASA, University of Colorado). These codes were developed for application to the cool, low-velocity winds of evolved late-type stars. Particular emphasis was placed on modeling the wind of lambda Velorum (K4 lb), the brightest K supergiant in the sky, based on extensive observations of the ultraviolet spectrum with the HST/GHRS from GO program 5307. Several solution techniques were examined, including the Eddington factor Approach described in detail by Bennett & Harper (1997). An Eddington factor variant of Harper's S-MULTI code (Harper 1994) for stationary atmospheres was developed and implemented, although full convergence was not realized. The ratio of wind terminal velocity to turbulent velocity is large (approx. 0.3-0.5) in these cool star winds so this assumption of stationarity provides reasonable starting models. Final models, incorporating specified wind laws, were converged using the comoving CRD S-MULTI code. Details of the solution procedure were published by Bennett & Harper (1997). Our analysis of the wind of lambda Vel, based on wind absorption superimposed on chromospheric emission lines in the ultraviolet, can be found in Carpenter et al. (1999). In this paper, we compare observed wind absorption features to an exact CRD calculation in the comoving frame, and also to a much quicker, but approximate, method using the SEI (Sobolev with Exact Integration) code of Lamers, Cerruti-Sola, & Perinotto (1987). Carpenter et al. (1999) provide detailed comparisons of the exact CRD and approximate SEI results and discuss when SEI is adequate to use for computing wind line profiles. Unfortunately, the observational material is insufficient to unambiguously determine the wind acceleration law for lambda Vel. Relatively few unblended Fe II lines

  3. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  4. [Mid-infrared atmosphere radiation transfer analytic model and remote sensing images simulation].

    PubMed

    Yang, Gui-Jun; Liu, Qin-Huo; Liu, Qiang; Xiao, Qing; Gu, Xing-Fa; Huang, Wen-Jiang

    2009-03-01

    In order to establish a complete set of simulation system for high-resolution mid-infrared remote sensing and provide a powerful reference for spacecraft design and related works, the importance of atmospheric radiative transfer simulation in this system was considered, and a reasonable and high precision imaging numerical simulation method was expected. Taking into account the characteristics of MIR, including scattering and thermal emission, terms of atmospheric radiative transfer were decomposed based on radiative transfer principle, and images of top of atmosphere (TOA) were simulated according to MODTRAN4 and look-up table method. Besides, adjacency effect caused by atmospheric scattering of neighboring pixels radiation was considered, and an extended point spread function in mid-infrared was coupled with analytical model of atmospheric radiative transfer to simulate TOA images. Finally, a preliminary test and simulation results show that the simulation model has better accuracy. If parameters of observation geometry and atmosphere were given and the land surface temperature/emissivity was determined, the calculation of pixel-level atmospheric radiative transfer was to be achieved.

  5. A Consummate Radiative Transfer Package for Studying the Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Zhai, P.; Hu, Y.; Trepte, C. R.; Winker, D. M.

    2015-12-01

    We will present a radiative transfer package based on the successive order of scattering method. This code is capable to calculate the radiation field in turbid media, which can be either the atmosphere-land or atmosphere-ocean coupled systems. The outputs include all four Stokes parameters at arbitrary detector locations and viewing angles in the turbid medium. Both the elastic and inelastic scattering are implemented in the package. This radiative transfer tool has been used in various applications, for instance, generating an aerosol look-up table for atmospheric correction in ocean color remote sensing; retrieving water cloud size distribution using the polarized multi-angle measurements; simulating the OCO2 O2 A band radiance measurement, etc. Our radiative transfer package is a great tool to interpret and predict the measurements from the future polarimeters and multipolarization-state lidars for Earth observing missions.

  6. Radiative heat transfer in many-body systems: Coupled electric and magnetic dipole approach

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Zhao, Junming; Liu, Linhua

    2017-03-01

    The many-body radiative heat transfer theory [P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Phys. Rev. Lett. 107, 114301 (2011), 10.1103/PhysRevLett.107.114301] considered only the contribution from the electric dipole moment. For metal particles, however, the magnetic dipole moment due to eddy current plays an important role, which can further couple with the electric dipole moment to introduce crossed terms. In this paper, we develop the coupled electric and magnetic dipole (CEMD) approach for the radiative heat transfer in a collection of objects in mutual interaction. Due to the coupled electric and magnetic interactions, four terms, namely the electric-electric, the electric-magnetic, the magnetic-electric, and the magnetic-magnetic terms, contribute to the radiative heat flux and the local energy density. The CEMD is applied to study the radiative heat transfer between various dimers of nanoparticles. It is found that each of the four terms can dominate the radiative heat transfer depending on the position and composition of particles. Moreover, near-field many-body interactions are studied by CEMD considering both dielectric and metallic nanoparticles. The near-field radiative heat flux and local energy density can be greatly increased when the particles are in coupled resonances. Surface plasmon polariton and surface phonon polariton can be coupled to enhance the radiative heat flux.

  7. Production of pure quasi-monochromatic 11C beams for accurate radiation therapy and dose delivery verification

    NASA Astrophysics Data System (ADS)

    Lazzeroni, Marta; Brahme, Anders

    2015-09-01

    In the present study we develop a new technique for the production of clean quasi-monochromatic 11C positron emitter beams for accurate radiation therapy and PET-CT dose delivery imaging and treatment verification. The 11C ion beam is produced by projectile fragmentation using a primary 12C ion beam. The practical elimination of the energy spread of the secondary 11C fragments and other beam contaminating fragments is described. Monte Carlo calculation with the SHIELD-HIT10+ code and analytical methods for the transport of the ions in matter are used in the analysis. Production yields, as well as energy, velocity and magnetic rigidity distributions of the fragments generated in a cylindrical target are scored as a function of the depth within 1 cm thick slices for an optimal target consisting of a fixed 20 cm section of liquid hydrogen followed by a variable thickness section of polyethylene. The wide energy and magnetic rigidity spread of the 11C ion beam can be reduced to values around 1% by using a variable monochromatizing wedge-shaped degrader in the beam line. Finally, magnetic rigidity and particle species selection, as well as discrimination of the particle velocity through a combined Time of Flight and Radio Frequency-driven Velocity filter purify the beam from similar magnetic rigidity contaminating fragments (mainly 7Be and 3He fragments). A beam purity of about 99% is expected by the combined method.

  8. a Radiative Transfer Equation/phase Function Approach to Vegetation Canopy Reflectance Modeling

    NASA Astrophysics Data System (ADS)

    Randolph, Marion Herbert

    Vegetation canopy reflectance models currently in use differ considerably in their treatment of the radiation scattering problem, and it is this fundamental difference which stimulated this investigation of the radiative transfer equation/phase function approach. The primary objective of this thesis is the development of vegetation canopy phase functions which describe the probability of radiation scattering within a canopy in terms of its biological and physical characteristics. In this thesis a technique based upon quadrature formulae is used to numerically generate a variety of vegetation canopy phase functions. Based upon leaf inclination distribution functions, phase functions are generated for plagiophile, extremophile, erectophile, spherical, planophile, blue grama (Bouteloua gracilis), and soybean canopies. The vegetation canopy phase functions generated are symmetric with respect to the incident and exitant angles, and hence satisfy the principle of reciprocity. The remaining terms in the radiative transfer equation are also derived in terms of canopy geometry and optical properties to complete the development of the radiative transfer equation/phase function description for vegetation canopy reflectance modeling. In order to test the radiative transfer equation/phase function approach the iterative discrete ordinates method for solving the radiative transfer equation is implemented. In comparison with field data, the approach tends to underestimate the visible reflectance and overestimate infrared reflectance. The approach does compare well, however, with other extant canopy reflectance models; for example, it agrees to within ten to fifteen percent of the Suits model (Suits, 1972). Sensitivity analysis indicates that canopy geometry may influence reflectance as much as 100 percent for a given wavelength. Optical thickness produces little change in reflectance after a depth of 2.5 (Leaf area index of 4.0) is reached, and reflectance generally increases

  9. Coaxial radiative and convective heat transfer in gray and nongray gases

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.

    1980-01-01

    Coupled radiative and convective heat transfer is investigated for an absorbing gas flowing in a finite length channel and heated by blackbody radiation directed along the flow axis. The problem is formulated in one dimension and numerical solutions are obtained for the temperature profile of the gas and for the radiation escaping the channel entrance, assuming both gray and nongray absorption spectra. Due to radiation trapping, the flowing gas is found to have substantially smaller radiation losses for a given peak gas temperature than a solid surface that is radiatively heated to this temperature. A greenhouse effect is also evident whereby radiation losses are minimized for a gas having stronger absorption at long wavelengths.

  10. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    NASA Astrophysics Data System (ADS)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  11. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    PubMed

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  12. A Linear-Discontinuous Spatial Differencing Scheme for SnRadiative Transfer Calculations

    NASA Astrophysics Data System (ADS)

    Morel, J. E.; Wareing, Todd A.; Smith, Kenneth

    1996-10-01

    Various types of linear-discontinuous spatial differencing schemes have been developed for theSn(discrete-ordinates) equations approximating the linear Boltzmann transport equation. It has been shown through an asymptotic analysis that the 1D slab-geometry lumped linear-discontinuous scheme not only goes over to a convergent and robust differencing of the diffusion equation in the monoenergetic thick diffusion limit, but it also yields the correct interior solution, even when boundary layers are left unresolved by the spatial mesh. In the present work we generalize this scheme to obtain a 1D slab-geometry lumped linear-discontinuous scheme for the nonlinear radiative transfer equation and the associated material temperature equation. We present a full nonlinear energy-dependent asymptotic analysis of the behavior of this scheme in the thick equilibrium-diffusion limit. We find that this scheme goes over to a convergent and robust differencing of the equilibrium-diffusion equation on the interior of the mesh, but it does not yield the exact interior solution when boundary layers are left unresolved by the spatial mesh. Nevertheless, the interior solution obtained with spatially unresolved boundary layers is always well behaved and fairly accurate. Computational results are presented which test the predictions of our asymptotic analysis and demonstrate the efficiency of our solution technique.

  13. Frequency-domain sensitivity analysis for small imaging domains using the equation of radiative transfer.

    PubMed

    Gu, Xuejun; Ren, Kui; Hielscher, Andreas H

    2007-04-01

    Optical tomography of small imaging domains holds great promise as the signal-to-noise ratio is usually high, and the achievable spatial resolution is much better than in large imaging domains. Emerging applications range from the imaging of joint diseases in human fingers to monitoring tumor growth or brain activity in small animals. In these cases, the diameter of the tissue under investigation is typically smaller than 3 cm, and the optical path length is only a few scattering mean-free paths. It is well known that under these conditions the widely applied diffusion approximation to the equation of radiative transfer (ERT) is of limited applicability. To accurately model light propagation in these small domains, the ERT has to be solved directly. We use the frequency-domain ERT to perform a sensitivity study for small imaging domains. We found optimal source-modulation frequencies for which variations in optical properties, size, and location of a tissue inhomogeneity lead to maximal changes in the amplitude and phase of the measured signal. These results will be useful in the design of experiments and optical tomographic imaging systems that probe small tissue volumes.

  14. On radiative transfer using synthetic kernel and simplified spherical harmonics methods in linearly anisotropically scattering media

    NASA Astrophysics Data System (ADS)

    Altaç, Zekeriya

    2014-11-01

    The Synthetic Kernel (SKN) method is employed to a 3D absorbing, emitting and linearly anisotropically scattering inhomogeneous medium. Standard SKN approximation is applied only to the diffusive components of the radiative transfer equations. An alternative SKN (S KN*) method is also derived in full 3-D generality by extending the approximation to the direct wall contributions. Complete sets of boundary conditions for both SKN approaches are rigorously obtained. The simplified spherical harmonics (P2N-1 or SP2N-1) and simplified double spherical harmonics (DPN-1 or SDPN-1) equations for linearly anisotropically scattering homogeneous medium are also derived. Resulting full P2N-1 and DPN-1 (or SP2N-1 and SDPN-1) equations are cast as diagonalized second order coupled diffusion-like equations. By this analysis, it is shown that the SKN method is a high-order approximation, and simply by the selection of full or half range Gauss-Legendre quadratures, S KN* equations become identical to P2N-1 or DPN-1 (or SP2N-1 or SDPN-1) equations. Numerical verification of all methods presented is carried out using a 1D participating isotropic slab medium. The SKN method proves to be more accurate than S KN* approximation, but it is analytically more involved. It is shown that the S KN* with proposed BCs converges with increasing order of approximation, and the BCs are applicable to SPN or SDPN methods.

  15. Estimating the gas transfer velocity: a prerequisite for more accurate and higher resolution GHG fluxes (lower Aare River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Sollberger, S.; Perez, K.; Schubert, C. J.; Eugster, W.; Wehrli, B.; Del Sontro, T.

    2013-12-01

    Currently, carbon dioxide (CO2) and methane (CH4) emissions from lakes, reservoirs and rivers are readily investigated due to the global warming potential of those gases and the role these inland waters play in the carbon cycle. However, there is a lack of high spatiotemporally-resolved emission estimates, and how to accurately assess the gas transfer velocity (K) remains controversial. In anthropogenically-impacted systems where run-of-river reservoirs disrupt the flow of sediments by increasing the erosion and load accumulation patterns, the resulting production of carbonic greenhouse gases (GH-C) is likely to be enhanced. The GH-C flux is thus counteracting the terrestrial carbon sink in these environments that act as net carbon emitters. The aim of this project was to determine the GH-C emissions from a medium-sized river heavily impacted by several impoundments and channelization through a densely-populated region of Switzerland. Estimating gas emission from rivers is not trivial and recently several models have been put forth to do so; therefore a second goal of this project was to compare the river emission models available with direct measurements. Finally, we further validated the modeled fluxes by using a combined approach with water sampling, chamber measurements, and highly temporal GH-C monitoring using an equilibrator. We conducted monthly surveys along the 120 km of the lower Aare River where we sampled for dissolved CH4 (';manual' sampling) at a 5-km sampling resolution, and measured gas emissions directly with chambers over a 35 km section. We calculated fluxes (F) via the boundary layer equation (F=K×(Cw-Ceq)) that uses the water-air GH-C concentration (C) gradient (Cw-Ceq) and K, which is the most sensitive parameter. K was estimated using 11 different models found in the literature with varying dependencies on: river hydrology (n=7), wind (2), heat exchange (1), and river width (1). We found that chamber fluxes were always higher than boundary

  16. Transient radiative energy transfer in incompressible laminar flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Singh, D. J.

    1987-01-01

    Analysis and numerical procedures are presented to investigate the transient radiative interactions of nongray absorbing-emitting species in laminar fully-developed flows between two parallel plates. The particular species considered are OH, CO, CO2, and H2O and different mixtures of these. Transient and steady-state results are obtained for the temperaure distribution and bulk temperature for different plate spacings, wall temperatures, and pressures. Results, in general, indicate that the rate of radiative heating can be quite high during earlier times. This information is useful in designing thermal protection systems for transient operations.

  17. Bidirectional Reflectance of Flat, Optically Thick Particulate Layers: An Efficient Radiative Transfer Solution and Applications to Snow and Soil Surfaces

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yanovitsku, Edgard G.; Zakharova, Nadia T.

    1999-01-01

    We describe a simple and highly efficient and accurate radiative transfer technique for computing bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact Solution of the radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation field, it is by far the fastest numerical approach available and can be used as an ideal input for Monte Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web at http://ww,,v.giss.nasa.gov/-crmim/brf.html and can be applied to a wide range of remote sensing, engineering, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the 6-Eddington approximation in calculations for soil surfaces.

  18. RADIATIVE TRANSFER MODELING OF THE ENIGMATIC SCATTERING POLARIZATION IN THE SOLAR Na i D{sub 1} LINE

    SciTech Connect

    Belluzzi, Luca; Bueno, Javier Trujillo; Degl’Innocenti, Egidio Landi

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D{sub 1} line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D{sub 1} line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D{sub 1} line without the need for ground-level polarization.

  19. Implementation and evaluation of a generalized radiative transfer scheme within canopy in the soil-vegetation-atmosphere transfer (SVAT) model

    NASA Astrophysics Data System (ADS)

    Qiu, Bo; Guo, Weidong; Xue, Yongkang; Dai, Qiudan

    2016-10-01

    The process of radiative transfer over vegetated areas has a profound impact on energy, water, and carbon balances over the terrestrial surface. In this paper, a generalized radiative transfer scheme (GRTS) within canopy is implemented in the Simplified Simple Biosphere land surface model (SSiB). The main concept and structure of GRTS and its coupling methodology to a land model are presented. Different from the two-stream method, the GRTS takes into account the effects of complex canopy morphology and inhomogeneous optical properties of leaves on radiative transfer process within the canopy. In the offline SSiB/GRTS simulation for the period of 2001-2012, the nonuniform leaf angle distribution within canopy layers is considered in SSiB/GRTS in the areas of evergreen broadleaf trees. Compared with the SSiB/two stream method, SSiB/GRTS produces lower canopy reflectance and higher transmittance, which leads to more realistic albedo simulation. The canopy-absorbed radiation flux in SSiB/GRTS simulation is lower than that in SSiB/two stream method simulation throughout the year in the areas of evergreen broadleaf trees. The largest difference of -18.4 W/m2 occurs in the Amazon region in the autumn. The ground-absorbed radiation flux increases in the SSiB/GRTS simulation, especially in the spring and autumn. The largest difference in the ground-absorbed radiation flux between SSiB/GRTS simulation and SSiB/two stream method simulation is 25.45 W/m2. In the boreal winter season, compared with the two-stream method in the SSiB, the GRTS gives higher surface albedo in the areas with high snow cover fraction over leaf.

  20. Resonance laser-induced ionisation of sodium vapour taking radiative transfer into account

    SciTech Connect

    Kosarev, N I; Shaparev, N Ya

    2006-04-30

    The problem of ionisation of atomic sodium in the field of resonance laser radiation is numerically solved taking radiative transfer into account. Seed electrons are produced due to the mechanism of associative ionisation, then they gain energy in superelastic processes (collisions of the second kind) and initiate the avalanche ionisation of the medium by electron impact. We studied the effect of secondary radiation on the laser pulse propagation upon competition between the ionising and quenching electron collisions with excited atoms, on the kinetics of ionisation-induced vapour bleaching, and the plasma channel expansion in the form of a halo. (interaction of laser radiation with matter)

  1. On the linear properties of the nonlinear radiative transfer problem

    NASA Astrophysics Data System (ADS)

    Pikichyan, H. V.

    2016-11-01

    In this report, we further expose the assertions made in nonlinear problem of reflection/transmission of radiation from a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness, when both of its boundaries are illuminated by intense monochromatic radiative beams. The new conceptual element of well-defined, so-called, linear images is noteworthy. They admit a probabilistic interpretation. In the framework of nonlinear problem of reflection/transmission of radiation, we derive solution which is similar to linear case. That is, the solution is reduced to the linear combination of linear images. By virtue of the physical meaning, these functions describe the reflectivity and transmittance of the medium for a single photon or their beam of unit intensity, incident on one of the boundaries of the layer. Thereby the medium in real regime is still under the bilateral illumination by external exciting radiation of arbitrary intensity. To determine the linear images, we exploit three well known methods of (i) adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance".

  2. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator

    NASA Astrophysics Data System (ADS)

    Sahoo, Rashmi R.; Sarkar, Jahar

    2016-12-01

    Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.

  3. The high altitude SSMIS channels: Validation of fast radiative transfer simulations by comparison with line-by-line simulations

    NASA Astrophysics Data System (ADS)

    Larsson, Richard; Rayer, Peter; Saunders, Roger; Bell, William; Booton, Anna; Buehler, Stefan A.; Eriksson, Patrick; John, Viju

    2015-04-01

    Channels 19-22 of the Special Sensor Microwave Imager/Sounder (SSMIS) on the DMSP satellite are simulated using a diverse atmospheric temperature profile dataset. These channels all measure the absorption spectra of the main isotope of molecular oxygen, and have pass-bands that are close in frequency to the center frequencies of four of the spectral lines. As a consequence, the channels measure high up in the atmosphere. The sensitivity of some channels even peak above the present upper levels of numerical weather prediction models at 80 km. The high altitude of the measurements in turn means that the molecular oxygen spectroscopy is noticeably affected by the Zeeman effect; this splits a line into frequency-separated polarized components as a function of the external magnetic field. The simulations have been performed using both ARTS and RTTOV as forward radiative transfer simulators. ARTS uses a line-by-line approach to radiative transfer. For the Zeeman effect calculations, ARTS can read line data and 3D magnetism directly from databases and then performs the splitting and polarization for each finite layer to calculate polarized absorption that is input to the radiative transfer equation. RTTOV uses a fast approach to radiative transfer, pre-calculating scalar effective transmission predictors for a set of atmospheric scenarios for each channel. For the Zeeman effect calculations, an altitude independent magnetic field is required as input for the layered transmission for the radiative transfer equation. Our results show that the differences between the models are small compared to sensor noise for all channels. The mean difference between models is larger for the lower altitude channels 21 and 22, but the standard deviation is small between the models. The mean simulated brightness temperatures of ARTS are closer to SSMIS than the RTTOV values, but it is not possible to tell which model is more accurate as temperature errors in the profiles are expected to be

  4. Simplified multiple scattering model for radiative transfer in turbid water

    NASA Technical Reports Server (NTRS)

    Ghovanlou, A. H.; Gupta, G. N.

    1978-01-01

    Quantitative analytical procedures for relating selected water quality parameters to the characteristics of the backscattered signals, measured by remote sensors, require the solution of the radiative transport equation in turbid media. Presented is an approximate closed form solution of this equation and based on this solution, the remote sensing of sediments is discussed. The results are compared with other standard closed form solutions such as quasi-single scattering approximations.

  5. Testing and Improving Theories of Radiative Transfer for Determining the Mineralogy of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Gudmundsson, E.; Ehlmann, B. L.; Mustard, J. F.; Hiroi, T.; Poulet, F.

    2012-12-01

    Two radiative transfer theories, the Hapke and Shkuratov models, have been used to estimate the mineralogic composition of laboratory mixtures of anhydrous mafic minerals from reflected near-infrared light, accurately modeling abundances to within 10%. For this project, we tested the efficacy of the Hapke model for determining the composition of mixtures (weight fraction, particle diameter) containing hydrous minerals, including phyllosilicates. Modal mineral abundances for some binary mixtures were modeled to +/-10% of actual values, but other mixtures showed higher inaccuracies (up to 25%). Consequently, a sensitivity analysis of selected input and model parameters was performed. We first examined the shape of the model's error function (RMS error between modeled and measured spectra) over a large range of endmember weight fractions and particle diameters and found that there was a single global minimum for each mixture (rather than local minima). The minimum was sensitive to modeled particle diameter but comparatively insensitive to modeled endmember weight fraction. Derivation of the endmembers' k optical constant spectra using the Hapke model showed differences with the Shkuratov-derived optical constants originally used. Model runs with different sets of optical constants suggest that slight differences in the optical constants used significantly affect the accuracy of model predictions. Even for mixtures where abundance was modeled correctly, particle diameter agreed inconsistently with sieved particle sizes and varied greatly for individual mix within suite. Particle diameter was highly sensitive to the optical constants, possibly indicating that changes in modeled path length (proportional to particle diameter) compensate for changes in the k optical constant. Alternatively, it may not be appropriate to model path length and particle diameter with the same proportionality for all materials. Across mixtures, RMS error increased in proportion to the fraction

  6. Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis

    NASA Astrophysics Data System (ADS)

    Ali, Abebe Mohammed; Skidmore, Andrew K.; Darvishzadeh, Roshanak; van Duren, Iris; Holzwarth, Stefanie; Mueller, Joerg

    2016-12-01

    Quantification of vegetation properties plays an important role in the assessment of ecosystem functions with leaf dry mater content (LDMC) and specific leaf area (SLA) being two key functional traits. For the first time, these two leaf traits have been estimated from the airborne images (HySpex) using the INFORM radiative transfer model and Continuous Wavelet Analysis (CWA). Ground truth data, were collected for 33 sample plots during a field campaign in July 2013 in the Bavarian Forest National Park, Germany, concurrent with the hyperspectral overflight. The INFORM model was used to simulate the canopy reflectance of the test site and the simulated spectra were transformed to wavelet features by applying CWA. Next, the top 1% strongly correlated wavelet features with the LDMC and SLA were used to develop predictive (regression) models. The two leaf traits were then retrieved using the CWA transformed HySpex imagery and the predictive models. The results were validated using R2 and the RMSE of the estimated and measured variables. Our results revealed strong correlations between six wavelet features and LDMC, as well as between four wavelet features and SLA. The wavelet features at 1741 nm (scale 5) and 2281 nm (scale 4) were the two most strongly correlated with LDMC and SLA respectively. The combination of all the identified wavelet features for LDMC yielded the most accurate prediction (R2 = 0.59 and RMSE = 4.39%). However, for SLA the most accurate prediction was obtained from the single most correlated feature: 2281 nm, scale 4 (R2 = 0.85 and RMSE = 4.90). Our results demonstrate the applicability of Continuous Wavelet Analysis (CWA) when inverting radiative transfer models, for accurate mapping of forest leaf functional traits.

  7. Radiative transfer theory for active remote sensing of a layer of nonspherical particles

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1984-01-01

    The radiative transfer theory is applied to calculate the scattering by a layer of randomly positioned and oriented nonspherical particles. The scattering amplitude functions of each individual particle are calculated with Waterman's T matrix method, which utilizes vector spherical wave functions for expansion of incident, scattered, and surface fields. The orientation of the particles is described by a probability density function of the Eulerian angles of rotation. A rotation matrix is used to relate the T matrix of the principal frame to that of the natural frame of the particle. The extinction matrix and phase matrix of the radiative transfer equations are expressed in terms of the T matrix elements. The extinction matrix for nonspherical particles is generally nondiagonal. There are only two attenuation rates in a specified direction of propagation. The radiative transfer equations are solved by an iterative method to first order in albedo. Numerical results are illustrated as functions of incidence angle and frequency with applications to active remote sensing.

  8. Giant heat transfer in the crossover regime between conduction and radiation

    NASA Astrophysics Data System (ADS)

    Kloppstech, Konstantin; Könne, Nils; Biehs, Svend-Age; Rodriguez, Alejandro W.; Worbes, Ludwig; Hellmann, David; Kittel, Achim

    2017-02-01

    Heat is transferred by radiation between two well-separated bodies at temperatures of finite difference in vacuum. At large distances the heat transfer can be described by black body radiation, at shorter distances evanescent modes start to contribute, and at separations comparable to inter-atomic spacing the transition to heat conduction should take place. We report on quantitative measurements of the near-field mediated heat flux between a gold coated near-field scanning thermal microscope tip and a planar gold sample at nanometre distances of 0.2-7 nm. We find an extraordinary large heat flux which is more than five orders of magnitude larger than black body radiation and four orders of magnitude larger than the values predicted by conventional theory of fluctuational electrodynamics. Different theories of phonon tunnelling are not able to describe the observations in a satisfactory way. The findings demand modified or even new models of heat transfer across vacuum gaps at nanometre distances.

  9. Radiative transfer in the dynamic atmospheres of long period variable stars

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.; Bowen, George H.

    1990-01-01

    An iterative procedure is presented for determining the thermal structure and dynamics of Mira-type stellar atmospheres, where the non-LTE radiative transfer code PANDORA is used in conjunction with the Bowen hydrodynamics code of Iowa State University. Preliminary results are reported for an atmospheric model of a pulsating AGB star of 1 solar mass, 240 solar radii, Teff = 3000 K, and a period of 320 days. At the present time, H, H(-), Mg I, and Mg II radiative transfer calculations have been completed and synthetic spectra are shown for H-alpha. The radiative transfer calculations demonstrate that cooling in the innermost shock of the original Bowen model is underestimated due to the omission of various hydrogen transitions. These initial results suggest that the main shock of the Bowen models are too hot and/or too deep.

  10. A convective and radiative heat transfer analysis for the FIRE II forebody

    NASA Technical Reports Server (NTRS)

    Greendyke, Robert B.; Hartung, Lin C.

    1993-01-01

    A Navier-Stokes flowfield solution method (LAURA code) using finite-rate chemistry and two-temperature thermal nonequilibrium was used in combination with two nonequilibrium radiative heat transfer codes to calculate heating for the FIRE II vehicle. An axisymmetric model of the actual body shape was used. One radiative heating code (NEQAIR) was used in uncoupled fashion with the flowfield solver's energy equations, while the other code (LORAN) was used in both coupled and uncoupled variations. Several trajectory points ranging from highly nonequilibrium flow to near-equilibrium flow were used for a study of both convective and radiative heating over the vehicle. Considerable variation in radiative heating was seen at the extremes, while agreement was good in the intermediate trajectory points. Total heat transfer calculations gave good comparison until the peak heating trajectory points were encountered, and returned to good agreement for the last two equilibrium points.

  11. A convective and radiative heat transfer analysis for the FIRE II forebody

    NASA Astrophysics Data System (ADS)

    Greendyke, Robert B.; Hartung, Lin C.

    1993-07-01

    A Navier-Stokes flowfield solution method (LAURA code) using finite-rate chemistry and two-temperature thermal nonequilibrium was used in combination with two nonequilibrium radiative heat transfer codes to calculate heating for the FIRE II vehicle. An axisymmetric model of the actual body shape was used. One radiative heating code (NEQAIR) was used in uncoupled fashion with the flowfield solver's energy equations, while the other code (LORAN) was used in both coupled and uncoupled variations. Several trajectory points ranging from highly nonequilibrium flow to near-equilibrium flow were used for a study of both convective and radiative heating over the vehicle. Considerable variation in radiative heating was seen at the extremes, while agreement was good in the intermediate trajectory points. Total heat transfer calculations gave good comparison until the peak heating trajectory points were encountered, and returned to good agreement for the last two equilibrium points.

  12. Multi-Dimensional Simulations of Radiative Transfer in Aspherical Core-Collapse Supernovae

    SciTech Connect

    Tanaka, Masaomi; Maeda, Keiichi; Mazzali, Paolo A.; Nomoto, Ken'ichi

    2008-05-21

    We study optical radiation of aspherical supernovae (SNe) and present an approach to verify the asphericity of SNe with optical observations of extragalactic SNe. For this purpose, we have developed a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI (SupernovA Multidimensional RAdIative transfer code). The code can compute the optical light curve and spectra both at early phases (< or approx. 40 days after the explosion) and late phases ({approx}1 year after the explosion), based on hydrodynamic and nucleosynthetic models. We show that all the optical observations of SN 1998bw (associated with GRB 980425) are consistent with polar-viewed radiation of the aspherical explosion model with kinetic energy 20x10{sup 51} ergs. Properties of off-axis hypernovae are also discussed briefly.

  13. Multi-Dimensional Simulations of Radiative Transfer in Aspherical Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Maeda, Keiichi; Mazzali, Paolo A.; Nomoto, Ken'ichi

    2008-05-01

    We study optical radiation of aspherical supernovae (SNe) and present an approach to verify the asphericity of SNe with optical observations of extragalactic SNe. For this purpose, we have developed a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI (SupernovA Multidimensional RAdIative transfer code). The code can compute the optical light curve and spectra both at early phases (<~40 days after the explosion) and late phases (~1 year after the explosion), based on hydrodynamic and nucleosynthetic models. We show that all the optical observations of SN 1998bw (associated with GRB 980425) are consistent with polar-viewed radiation of the aspherical explosion model with kinetic energy 20×1051 ergs. Properties of off-axis hypernovae are also discussed briefly.

  14. Upper limits to near-field radiative heat transfer: generalizing the blackbody concept

    NASA Astrophysics Data System (ADS)

    Miller, Owen D.; Rodriguez, Alejandro W.; Johnson, Steven G.

    2016-09-01

    For 75 years it has been known that radiative heat transfer can exceed far-field blackbody rates when two bodies are separated by less than a thermal wavelength. Yet an open question has remained: what is the maximum achievable radiative transfer rate? Here we describe basic energy-conservation principles that answer this question, yielding upper bounds that depend on the temperatures, material susceptibilities, and separation distance, but which encompass all geometries. The simple structures studied to date fall far short of the bounds, offering the possibility for significant future enhancement, with ramifications for experimental studies as well as thermophotovoltaic applications.

  15. Truncation of the scattering phase matrix for vector radiative transfer simulation

    NASA Astrophysics Data System (ADS)

    Hioki, Souichiro; Yang, Ping; Kattawar, George W.; Hu, Yongxiang

    2016-11-01

    This short communication interprets the delta-fit technique in a context of similarity transformation and the correction to the source function, and derives the analogous form of the method to be applied for the scattering phase matrix. To adapt the delta-fit method to vector radiative transfer, the mathematically exact form of the similarity principle is used in the theoretical development. Some examples of relevant radiative transfer simulations are also presented for atmospheric ice particles. The performance of the adopted delta-fit method is comparable to the delta-M method with single scattering correction except for worse delta-fit performance for polarized radiance calculations in forward directions.

  16. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  17. Comparative accuracy of the Albedo, transmission and absorption for selected radiative transfer approximations

    NASA Technical Reports Server (NTRS)

    King, M. D.; HARSHVARDHAN

    1986-01-01

    Illustrations of both the relative and absolute accuracy of eight different radiative transfer approximations as a function of optical thickness, solar zenith angle and single scattering albedo are given. Computational results for the plane albedo, total transmission and fractional absorption were obtained for plane-parallel atmospheres composed of cloud particles. These computations, which were obtained using the doubling method, are compared with comparable results obtained using selected radiative transfer approximations. Comparisons were made between asymptotic theory for thick layers and the following widely used two stream approximations: Coakley-Chylek's models 1 and 2, Meador-Weaver, Eddington, delta-Eddington, PIFM and delta-discrete ordinates.

  18. Plant architecture, growth and radiative transfer for terrestrial and space environments

    NASA Technical Reports Server (NTRS)

    Norman, John M.; Goel, Narendra S.

    1993-01-01

    The overall objective of this research was to develop a hardware implemented model that would incorporate realistic and dynamic descriptions of canopy architecture in physiologically based models of plant growth and functioning, with an emphasis on radiative transfer while accommodating other environmental constraints. The general approach has five parts: a realistic mathematical treatment of canopy architecture, a methodology for combining this general canopy architectural description with a general radiative transfer model, the inclusion of physiological and environmental aspects of plant growth, inclusion of plant phenology, and integration.

  19. Radiation effects on stagnation point flow with melting heat transfer and second order slip

    NASA Astrophysics Data System (ADS)

    Mabood, F.; Shafiq, A.; Hayat, T.; Abelman, S.

    This article examines the effects of melting heat transfer and thermal radiation in stagnation point flow towards a stretching/shrinking surface. Mathematical formulation is made in the presence of mass transfer and second order slip condition. Numerical solutions to the resulting nonlinear problems are obtained by Runge-Kutta fourth fifth order method. Physical quantities like velocity, temperature, concentration, skin friction, Nusselt and Sherwood number are analyzed via sundry parameters for stretching/shrinking, first order slip, second order slip, radiation, melting, Prandtl and Schmidt. A comparative study with the previously published results in limiting sense is made.

  20. Effect of thermal radiation on unsteady stagnation-point flow with mass transfer

    NASA Astrophysics Data System (ADS)

    Md Ali, Fadzilah; Nazar, Roslinda; Md Arifin, Norihan

    2013-04-01

    In this paper, the effect of thermal radiation on unsteady stagnation-point flow of an incompressible viscous fluid with mass transfer is studied. The governing system of partial differential equations is first transformed into a system of ordinary differential equations by a similarity transformation and is then solved numerically by the shooting method. It is found that the surface heat transfer rate reduces when the thermal radiation is applied and dual solutions exist only for negative unsteadiness parameter while positive unsteadiness parameter produces a unique solution.

  1. Numerical non-LTE 3D radiative transfer using a multigrid method

    NASA Astrophysics Data System (ADS)

    Bjørgen, Johan P.; Leenaarts, Jorrit

    2017-03-01

    Context. 3D non-LTE radiative transfer problems are computationally demanding, and this sets limits on the size of the problems that can be solved. So far, multilevel accelerated lambda iteration (MALI) has been the method of choice to perform high-resolution computations in multidimensional problems. The disadvantage of MALI is that its computing time scales as O(n2), with n the number of grid points. When the grid becomes finer, the computational cost increases quadratically. Aims: We aim to develop a 3D non-LTE radiative transfer code that is more efficient than MALI. Methods: We implement a non-linear multigrid, fast approximation storage scheme, into the existing Multi3D radiative transfer code. We verify our multigrid implementation by comparing with MALI computations. We show that multigrid can be employed in realistic problems with snapshots from 3D radiative magnetohydrodynamics (MHD) simulations as input atmospheres. Results: With multigrid, we obtain a factor 3.3-4.5 speed-up compared to MALI. With full-multigrid, the speed-up increases to a factor 6. The speed-up is expected to increase for input atmospheres with more grid points and finer grid spacing. Conclusions: Solving 3D non-LTE radiative transfer problems using non-linear multigrid methods can be applied to realistic atmospheres with a substantial increase in speed.

  2. Two-dimensional multilevel radiative transfer with standard partial frequency redistribution in isolated solar atmospheric structures.

    NASA Astrophysics Data System (ADS)

    Paletou, F.

    1995-10-01

    We have implemented standard partial frequency redistribution (PRD) in a two-dimensional multilevel non-LTE radiative transfer code. The Multilevel Accelerated Lambda Iteration (MALI) method is used. First, a numerical approach for treating standard PRD effects is described, as well as a simple method for treating an optically thick bound-free transition with MALI. Then, the method is validated in mono-dimensional geometry. Finally, preliminary results from two-dimensional radiative modelling of solar prominences are presented.

  3. Accurate analysis of electron transfer from quantum dots to metal oxides in quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Javad Fahimi, Mohammad; Fathi, Davood; Ansari-Rad, Mehdi

    2015-09-01

    Electron transfer rate from quantum dot (QD) to metal oxide (MO) in quantum dot sensitized solar cells (QDSSCs) has an important role in the efficiency. In this work, we analyse the electron transfer rate from CdSe, CdS and CdTe QDs to TiO2, ZnO and SnO2 MOs by extending the related equations with considering various effects, based on the Marcus theory. In this regard, the effects of QD diameter, QD-MO spacing, the crystalline defects, temperature, and the reorganizational energy, on the electron transfer rate are investigated. The results show that, the maximum electron transfer rate is achieved for CdTe QD with the mentioned three MOs. Moreover, in order to direct the designer to reach the appropriate QDs-MOs combinations for obtaining the maximum electron transfer rate, the average electron transfer rate for various combinations is calculated. For the verification of simulation method, a part of work has been compared with the previous experimental and theoretical results, which indicates the correctness of our simulation algorithm.

  4. Radiative transfer equations in broad-band, time-varying fields

    NASA Technical Reports Server (NTRS)

    Cooper, J.; Zoller, P.

    1984-01-01

    A derivation of the equation of transfer is obtained by starting with Maxwell's equations in the 'slowly varying envelope' form. Particular attention is paid to characterizing the intensity that is 'seen' by the atom (which is found to be related to a Wigner distribution of the electric field). The equation of transfer is found to be valid for 'broad-band' slowly varying radiation fields.

  5. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation

    NASA Astrophysics Data System (ADS)

    Reichert, Andreas; Rettinger, Markus; Sussmann, Ralf

    2016-09-01

    Quantitative knowledge of water vapor absorption is crucial for accurate climate simulations. An open science question in this context concerns the strength of the water vapor continuum in the near infrared (NIR) at atmospheric temperatures, which is still to be quantified by measurements. This issue can be addressed with radiative closure experiments using solar absorption spectra. However, the spectra used for water vapor continuum quantification have to be radiometrically calibrated. We present for the first time a method that yields sufficient calibration accuracy for NIR water vapor continuum quantification in an atmospheric closure experiment. Our method combines the Langley method with spectral radiance measurements of a high-temperature blackbody calibration source (< 2000 K). The calibration scheme is demonstrated in the spectral range 2500 to 7800 cm-1, but minor modifications to the method enable calibration also throughout the remainder of the NIR spectral range. The resulting uncertainty (2σ) excluding the contribution due to inaccuracies in the extra-atmospheric solar spectrum (ESS) is below 1 % in window regions and up to 1.7 % within absorption bands. The overall radiometric accuracy of the calibration depends on the ESS uncertainty, on which at present no firm consensus has been reached in the NIR. However, as is shown in the companion publication Reichert and Sussmann (2016), ESS uncertainty is only of minor importance for the specific aim of this study, i.e., the quantification of the water vapor continuum in a closure experiment. The calibration uncertainty estimate is substantiated by the investigation of calibration self-consistency, which yields compatible results within the estimated errors for 91.1 % of the 2500 to 7800 cm-1 range. Additionally, a comparison of a set of calibrated spectra to radiative transfer model calculations yields consistent results within the estimated errors for 97.7 % of the spectral range.

  6. Radiative heat transfer in molten and glassy obsidian

    SciTech Connect

    Gable, C.W.; Shankland, T.J.

    1984-08-10

    We have measured optical transmittance spectra in rhyolitic obsidian samples in the wavelength range lambda = 380-5500 nm and at temperatures T from 19/sup 0/-1145/sup 0/C, above and below the softening point. From the transmittance, we calculated the absorption coefficient ..cap alpha..(lambda,T) and the radiative thermal conductivity K/sub R/(T). K/sub R/ ranges from 3 x 10/sup -3/ cal cm/sup -1/s/sup -1/K/sup -1/ (1.2Wm/sup -1/K/sup -1/) at 700/sup 0/C to 12 x 10/sup -3/ cal cm/sup -1/s/sup -1/K/sup -1/(5Wm/sup -1/K/sup -1/) at 1145/sup 0/C. The 700/sup 0/C value is comparable with lattice thermal conductivity K/sub L/ of about 4 x 10/sup -3/ cal cm/sup -1/ s/sup -1/K/sup -1/(1.7 Wm/sup -1/K/sup -1/). Removing scattering effects due to bubbles from the transmittance spectra by lowering the absorption baseline increased K/sub R/ to 20 x 10/sup -3/ cal cm/sup -1/ s/sup -1/ K/sup -1/(8.4Wm/sup -1/K/sup -1/) at 1145/sup 0/C. Because scattering bubbles is likely to be small in confined magmas, these numbers are probably minimum values for K/sub R/ and indicate that in active plutons radiative heat transport could be greater than lattice conductivity by more than a factor of 2 at 1000/sup 0/C. Thus melting markedly strengthens K/sub R/, and radiative heat transport is probably the dominant component of the total conductivity K = K/sub L/+K/sub R/ in silicic magmas. These relatively large values of K can be applied to models of the thermal evolution of magma bodies and to cooling of intrusives.

  7. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10-20 W m-2 differences in shortwave reach up to 60 W m-2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m-2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  8. The Radiative Transfer Of CH{sub 4}-N{sub 2} Plasma Arc

    SciTech Connect

    Benallal, R.; Liani, B.

    2008-09-23

    Any physical modelling of a circuit-breaker arc therefore requires an understanding of the radiated energy which is taken into account in the form of a net coefficient. The evaluation of the net emission coefficient is performed by the knowledge of the chemical plasma composition and the resolution of the radiative transfer equation. In this paper, the total radiation which escapes from a CH{sub 4}-N{sub 2} plasma is calculated in the temperature range between 5000 and 30000K on the assumption of a local thermodynamic equilibrium and we have studied the nitrogen effect in the hydrocarbon plasmas.

  9. Heat transfer in vertical Bridgman growth of oxides - Effects of conduction, convection, and internal radiation

    NASA Technical Reports Server (NTRS)

    Brandon, S.; Derby, J. J.

    1992-01-01

    In the present investigation of crystalline phase internal radiation and heat conduction during the vertical Bridgman growth of a YAG-like oxide crystal, where transport through the melt is dominated by convection and conduction, heat is also noted to be conducted through ampoule walls via natural convection and enclosure radiation. The results of a quasi-steady-state axisymmetric Galerkin FEM indicate that heat transfer through the system is powerfully affected by the optical absorption coefficient of the crystal. The coupling of internal radiation through the crystal with conduction through the ampoule walls promotes melt/crystal interface shapes that are highly reflected near the ampoule wall.

  10. Fast aerosol optical thickness retrieval from MERIS data with the use of fast radiative transfer code and analytical radiative transfer solutions

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Katsev, Iosif; Prikhach, Alexander; Zege, Eleonora

    We present the new fast aerosol retrieval technique (FAR) to retrieve the aerosol optical thick-ness (AOT), Angstrom parameter, and land reflectance from spectral satellite data. The most important difference of the proposed techniques from NASA/MODIS, ESA/MERIS and some other well-known AOT retrieval codes is that our retrievals do not use the look-up tables (LUT) technique but instead it is based on our previously developed extremely fast code RAY for ra-diative transfer (RT) computations and includes analytical solutions of radiative transfer. The previous version of the retrieval code (ART) was completely based at the RT computations. The FAR technique is about 100 times faster than ART because of the use combination of the RAY computation and analytical solution of the radiative transfer theory. The accuracy of these approximate solutions is thoroughly checked. Using the RT computations in the course of the AOT retrieval allows one to include any available local models of molecular atmosphere and of aerosol in upper and middle atmosphere layers for the treated area. Any set of wave-lengths from any satellite optical instruments can be processed. Moreover, we use the method of least squares in the retrieval of optical parameters of aerosol because the RAY code pro-vides the derivatives of the radiation characteristics with respect to the parameters in question. This technique allows the optimal use on multi-spectral information. The retrieval methods are flexible and can be used in synergetic algorithms, which couple data of two or more satel-lite receivers. These features may be considered as definite merits in comparison with the LUT technique. The successful comparison of FAR retrieved data with results of some other algorithms and with AERONET measurements will be demonstrated. Beside two important problems, namely, the effect of a priory choice of aerosol model to the retrieved AOT accuracy and effect of adjacent pixels containing clouds or snow spots is

  11. Radiative and free convective heat transfer from a containerless sphere

    NASA Technical Reports Server (NTRS)

    Johnson, K.

    1979-01-01

    A mathematical model is derived for heat loss due to radiation and free convection for a small copper sphere (approximately 0.3 to 0.4 cm diameter) cooled by a helium-argon gas mixture. A FORTRAN program written to simplify calculations and extend the range of applicability to experimentation is presented. Pressures used were less than 400 torr, and resulting temperatures ranged from 500 to 4600 K. Comparison of results for initial cooling by the gas mixture with experimental data showed a 5 percent error for temperature values and a 2.7 percent error for the temperature difference caused by the cooling. Results indicate that the accuracy could be increased significantly by using better estimates for thermal conductivities.

  12. Radiative transfer effects on reflected shock waves. II - Absorbing gas.

    NASA Technical Reports Server (NTRS)

    Su, F. Y.; Olfe, D. B.

    1972-01-01

    Radiative cooling effects behind a reflected shock wave are calculated for an absorbing-emitting gas by means of an expansion procedure in the small density ratio across the shock front. For a gray gas shock layer with an optical thickness of order unity or less the absorption integral is simplified by use of the local temperature approximation, whereas for larger optical thicknesses a Rosseland diffusion type of solution is matched with the local temperature approximation solution. The calculations show that the shock wave will attenuate at first and then accelerate to a constant velocity. Under appropriate conditions the gas enthalpy near the wall may increase at intermediate times before ultimately decreasing to zero. A two-band absorption model yields end-wall radiant-heat fluxes which agree well with available shock-tube measurements.

  13. Three-dimensional radiation transfer modeling in a dicotyledon leaf

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.

    1996-11-01

    The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.

  14. Radiative transfer in astronomical masers. III - Filamentary masers

    NASA Technical Reports Server (NTRS)

    Elitzur, Moshe; Mckee, Christopher F.; Hollenbach, David J.

    1991-01-01

    The complete solution of a filamentary maser is presented. An integral equation and an iterative procedure are developed to calculate and solve the contribution of rays emanating from the filament sidewall. The solution provides complete expressions for the distributions of intensity and flux across the source as functions of position and direction with regard to the axis. The results are used to find the number distribution of brightness temperature in a large sample of randomly oriented filaments with an arbitrary distribution of lengths. The effects of external radiation on the maser structure and intensity are studied. It is proposed that the two giant bursts of H2O maser emission observed in W49 and Orion resulted from the interaction or two interacting filaments and a foreground slab amplifying a background filament.

  15. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  16. Scattering in infrared radiative transfer: A comparison between the spectrally averaging model JURASSIC and the line-by-line model KOPRA

    NASA Astrophysics Data System (ADS)

    Griessbach, Sabine; Hoffmann, Lars; Höpfner, Michael; Riese, Martin; Spang, Reinhold

    2013-09-01

    The viability of a spectrally averaging model to perform radiative transfer calculations in the infrared including scattering by atmospheric particles is examined for the application of infrared limb remote sensing measurements. Here we focus on the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Envisat. Various spectra for clear air and cloudy conditions were simulated with a spectrally averaging radiative transfer model and a line-by-line radiative transfer model for three atmospheric window regions (825-830, 946-951, 1224-1228 cm-1) and compared to each other. The results are rated in terms of the MIPAS noise equivalent spectral radiance (NESR). The clear air simulations generally agree within one NESR. The cloud simulations neglecting the scattering source term agree within two NESR. The differences between the cloud simulations including the scattering source term are generally below three and always below four NESR. We conclude that the spectrally averaging approach is well suited for fast and accurate infrared radiative transfer simulations including scattering by clouds. We found that the main source for the differences between the cloud simulations of both models is the cloud edge sampling. Furthermore we reasoned that this model comparison for clouds is also valid for atmospheric aerosol in general.

  17. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions.

    PubMed

    Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Arridge, Simon R; Kaipio, Jari P

    2005-10-21

    In this paper, a coupled radiative transfer equation and diffusion approximation model is extended for light propagation in turbid medium with low-scattering and non-scattering regions. The light propagation is modelled with the radiative transfer equation in sub-domains in which the assumptions of the diffusion approximation are not valid. The diffusion approximation is used elsewhere in the domain. The two equations are coupled through their boundary conditions and they are solved simultaneously using the finite element method. The streamline diffusion modification is used to avoid the ray-effect problem in the finite element solution of the radiative transfer equation. The proposed method is tested with simulations. The results of the coupled model are compared with the finite element solutions of the radiative transfer equation and the diffusion approximation and with results of Monte Carlo simulation. The results show that the coupled model can be used to describe photon migration in turbid medium with low-scattering and non-scattering regions more accurately than the conventional diffusion model.

  18. THREE-DIMENSIONAL RADIATIVE TRANSFER CALCULATIONS OF RADIATION FEEDBACK FROM MASSIVE BLACK HOLES: OUTFLOW OF MASS FROM THE DUSTY 'TORUS'

    SciTech Connect

    Roth, Nathaniel; Kasen, Daniel; Quataert, Eliot; Hopkins, Philip F.

    2012-11-01

    Observational and theoretical arguments suggest that the momentum carried in mass outflows from active galactic nuclei (AGNs) can reach several times L/c, corresponding to outflow rates of hundreds of solar masses per year. Radiation pressure on resonant absorption lines alone may not be sufficient to provide this momentum deposition, and the transfer of reprocessed IR radiation in dusty nuclear gas has been postulated to provide the extra enhancement. The efficacy of this mechanism, however, will be sensitive to multi-dimensional effects such as the tendency for the reprocessed radiation to preferentially escape along sightlines of lower column density. We use Monte Carlo radiative transfer calculations to determine the radiation force on dusty gas residing within approximately 30 parsecs from an accreting supermassive black hole. We calculate the net rate of momentum deposition in the surrounding gas and estimate the mass-loss rate in the resulting outflow as a function of solid angle for different black hole luminosities, sightline-averaged column densities, clumping parameters, and opening angles of the dusty gas. We find that these dust-driven winds carry momentum fluxes of 1-5 times L/c and correspond to mass-loss rates of 10-100 M {sub Sun} per year for a 10{sup 8} M {sub Sun} black hole radiating at or near its Eddington limit. These results help to explain the origin of high velocity molecular and atomic outflows in local ultraluminous infrared galaxies and can inform numerical simulations of galaxy evolution including AGN feedback.

  19. A full-spectrum k-distribution look-up table for radiative transfer in nonhomogeneous gaseous media

    NASA Astrophysics Data System (ADS)

    Wang, Chaojun; Ge, Wenjun; Modest, Michael F.; He, Boshu

    2016-01-01

    A full-spectrum k-distribution (FSK) look-up table has been constructed for gas mixtures within a certain range of thermodynamic states for three species, i.e., CO2, H2O and CO. The k-distribution of a mixture is assembled directly from the summation of the linear absorption coefficients of three species. The systematic approach to generate the table, including the generation of the pressure-based absorption coefficient and the generation of the k-distribution, is discussed. To efficiently obtain accurate k-values for arbitrary thermodynamic states from tabulated values, a 6-D linear interpolation method is employed. A large number of radiative heat transfer calculations have been carried out to test the accuracy of the FSK look-up table. Results show that, using the FSK look-up table can provide excellent accuracy compared to the exact results. Without the time-consuming process of assembling k-distribution from individual species plus mixing, using the FSK look-up table can save considerable computational cost. To evaluate the accuracy as well as the efficiency of the FSK look-up table, radiative heat transfer via a scaled Sandia D Flame is calculated to compare the CPU execution time using the FSK method based on the narrow-band database, correlations, and the look-up table. Results show that the FSK look-up table can provide a computationally cheap alternative without much sacrifice in accuracy.

  20. Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest structure

    NASA Astrophysics Data System (ADS)

    Kotchenova, Svetlana Y.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Davis, Anthony B.; Dubayah, Ralph; Myneni, Ranga B.

    2003-08-01

    Large footprint waveform-recording laser altimeters (lidars) have demonstrated a potential for accurate remote sensing of forest biomass and structure, important for regional and global climate studies. Currently, radiative transfer analyses of lidar data are based on the simplifying assumption that only single scattering contributes to the return signal, which may lead to errors in the modeling of the lower portions of recorded waveforms in the near-infrared spectrum. In this study we apply time-dependent stochastic radiative transfer (RT) theory to model the propagation of lidar pulses through forest canopies. A time-dependent stochastic RT equation is formulated and solved numerically. Such an approach describes multiple scattering events, allows for realistic representation of forest structure including foliage clumping and gaps, simulates off-nadir and multiangular observations, and has the potential to provide better approximations of return waveforms. The model was tested with field data from two conifer forest stands (southern old jack pine and southern old black spruce) in central Canada and two closed canopy deciduous forest stands (with overstory dominated by tulip poplar) in eastern Maryland. Model-simulated signals were compared with waveforms recorded by the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) over these regions. Model simulations show good agreement with SLICER signals having a slow decay of the waveform. The analysis of the effects of multiple scattering shows that multiply scattered photons magnify the amplitude of the reflected signal, especially that originating from the lower portions of the canopy.

  1. Optimization by means of an analytical heat transfer model of a thermal insulation for CSP applications based on radiative shields

    NASA Astrophysics Data System (ADS)

    Gaetano, A.; Roncolato, J.; Montorfano, D.; Barbato, M. C.; Ambrosetti, G.; Pedretti, A.

    2016-05-01

    The employment of new gaseous heat transfer fluids as air or CO2, which are cheaper and environmentally friendly, is drawing more and more attention within the field of Concentrated Solar Power applications. However, despite the advantages, their use requires receivers with a larger heat transfer area and flow cross section with a consequent greater volume of thermal insulation. Solid thermal insulations currently used present high thermal inertia which is energetically penalizing during the daily transient phases faced by the main plant components (e.g. receivers). With the aim of overcoming this drawback a thermal insulation based on radiative shields is presented in this study. Starting from an initial layout comprising a solid thermal insulation layer, the geometry was optimized avoiding the use of the solid insulation keeping performance and fulfilling the geometrical constraints. An analytical Matlab model was implemented to assess the system thermal behavior in terms of heat loss taking into account conductive, convective and radiative contributions. Accurate 2D Computational Fluid Dynamics (CFD) simulations were run to validate the Matlab model which was then used to select the most promising among three new different designs.

  2. Non-Radiative Energy Transfer Mediated by Hybrid Light-Matter States.

    PubMed

    Zhong, Xiaolan; Chervy, Thibault; Wang, Shaojun; George, Jino; Thomas, Anoop; Hutchison, James A; Devaux, Eloise; Genet, Cyriaque; Ebbesen, Thomas W

    2016-05-17

    We present direct evidence of enhanced non-radiative energy transfer between two J-aggregated cyanine dyes strongly coupled to the vacuum field of a cavity. Excitation spectroscopy and femtosecond pump-probe measurements show that the energy transfer is highly efficient when both the donor and acceptor form light-matter hybrid states with the vacuum field. The rate of energy transfer is increased by a factor of seven under those conditions as compared to the normal situation outside the cavity, with a corresponding effect on the energy transfer efficiency. The delocalized hybrid states connect the donor and acceptor molecules and clearly play the role of a bridge to enhance the rate of energy transfer. This finding has fundamental implications for coherent energy transport and light-energy harvesting.

  3. Evaluation of a radiative transfer equation and diffusion approximation hybrid forward solver for fluorescence molecular imaging.

    PubMed

    Gorpas, Dimitris; Andersson-Engels, Stefan

    2012-12-01

    The solution of the forward problem in fluorescence molecular imaging strongly influences the successful convergence of the fluorophore reconstruction. The most common approach to meeting this problem has been to apply the diffusion approximation. However, this model is a first-order angular approximation of the radiative transfer equation, and thus is subject to some well-known limitations. This manuscript proposes a methodology that confronts these limitations by applying the radiative transfer equation in spatial regions in which the diffusion approximation gives decreased accuracy. The explicit integro differential equations that formulate this model were solved by applying the Galerkin finite element approximation. The required spatial discretization of the investigated domain was implemented through the Delaunay triangulation, while the azimuthal discretization scheme was used for the angular space. This model has been evaluated on two simulation geometries and the results were compared with results from an independent Monte Carlo method and the radiative transfer equation by calculating the absolute values of the relative errors between these models. The results show that the proposed forward solver can approximate the radiative transfer equation and the Monte Carlo method with better than 95% accuracy, while the accuracy of the diffusion approximation is approximately 10% lower.

  4. Bayesian Atmospheric Radiative Transfer (BART) Code and Application to WASP-43b

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Cubillos, Patricio; Bowman, Oliver; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Challener, Ryan; Foster, Austin James; Foster, Andrew S.; Blumenthal, Sarah D.; Bruce, Dylan

    2016-01-01

    We present a new open-source Bayesian radiative-transfer framework, Bayesian Atmospheric Radiative Transfer (BART, https://github.com/exosports/BART), and its application to WASP-43b. BART initializes a model for the atmospheric retrieval calculation, generates thousands of theoretical model spectra using parametrized pressure and temperature profiles and line-by-line radiative-transfer calculation, and employs a statistical package to compare the models with the observations. It consists of three self-sufficient modules available to the community under the reproducible-research license, the Thermochemical Equilibrium Abundances module (TEA, https://github.com/dzesmin/TEA, Blecic et al. 2015}, the radiative-transfer module (Transit, https://github.com/exosports/transit), and the Multi-core Markov-chain Monte Carlo statistical module (MCcubed, https://github.com/pcubillos/MCcubed, Cubillos et al. 2015). We applied BART on all available WASP-43b secondary eclipse data from the space- and ground-based observations constraining the temperature-pressure profile and molecular abundances of the dayside atmosphere of WASP-43b. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  5. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations.

    PubMed

    Toublanc, D

    1996-06-20

    Monte Carlo radiative transfer simulation of light scattering in planetary atmospheres is not a simple problem, especially the study of angular distribution of light intensity. Approximate phase functions such as Henyey-Greenstein, modified Henyey-Greenstein, or Legendre polynomial decomposition are often used to simulate the Mie phase function. An alternative solution using an exact calculation alleviates these approximations.

  6. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations

    NASA Astrophysics Data System (ADS)

    Toublanc, Dominique

    1996-06-01

    Monte Carlo radiative transfer simulation of light scattering in planetary atmospheres is not a simple problem, especially the study of angular distribution of light intensity. Approximate phase functions such as Henyey-Greenstein, modified Henyey-Greenstein, or Legendre polynomial decomposition are often used to simulate the Mie phase function. An alternative solution using an exact calculation alleviates these approximations.

  7. A 3D radiative transfer framework . VII. Arbitrary velocity fields in the Eulerian frame

    NASA Astrophysics Data System (ADS)

    Seelmann, A. M.; Hauschildt, P. H.; Baron, E.

    2010-11-01

    Aims: A solution of the radiative-transfer problem in 3D with arbitrary velocity fields in the Eulerian frame is presented. The method is implemented in our 3D radiative transfer framework and used in the PHOENIX/3D code. It is tested by comparison to our well-tested 1D co-moving frame radiative transfer code, where the treatment of a monotonic velocity field is implemented in the Lagrangian frame. The Eulerian formulation does not need much additional memory and is useable on state-of-the-art computers, even large-scale applications with 1000's of wavelength points are feasible. Methods: In the Eulerian formulation of the problem, the photon is seen by the atom at a Doppler-shifted wavelength depending on its propagation direction, which leads to a Doppler-shifted absorption and emission. This leads to a different source function and a different Λ^* operator in the radiative transfer equations compared to the static case. Results: The results of the Eulerian 3D spherical calculations are compared to our well-tested 1D Lagrangian spherical calculations, the agreement is, up to vmax = 1 × 103 km s-1 very good. Test calculation in other geometries are also shown.

  8. Evaluation of Multispectral Based Radiative Transfer Model Inversion to Estimate Leaf Area Index in Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf area index (LAI) is a critical variable for predicting the growth and productivity of crops. Remote sensing estimates of LAI have relied upon empirical relationships between spectral vegetation indices and ground measurements that are costly to obtain. Radiative transfer model inversion based o...

  9. Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing technology can rapidly provide spatial information on crop growth status, which ideally could be used to invert radiative transfer models or ecophysiological models for estimating a variety of crop biophysical properties. However, the outcome of the model inversion procedure will be ...

  10. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters

    EPA Science Inventory

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...

  11. Advances in studies of cloud overlap and its radiative transfer in climate models

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Jing, Xianwen

    2016-04-01

    The latest advances in studies on the treatment of cloud overlap and its radiative transfer in global climate models are summarized. Developments with respect to this internationally challenging problem are described from aspects such as the design of cloud overlap assumptions, the realization of cloud overlap assumptions within climate models, and the data and methods used to obtain consistent observations of cloud overlap structure and radiative transfer in overlapping clouds. To date, there has been an appreciable level of achievement in studies on cloud overlap in climate models, demonstrated by the development of scientific assumptions (e.g., e-folding overlap) to describe cloud overlap, the invention and broad application of the fast radiative transfer method for overlapped clouds (Monte Carlo Independent Column Approximation), and the emergence of continuous 3D cloud satellite observation (e.g., CloudSat/CALIPSO) and cloud-resolving models, which provide numerous data valuable for the exact description of cloud overlap structure in climate models. However, present treatments of cloud overlap and its radiative transfer process are far from complete, and there remain many unsettled problems that need to be explored in the future.

  12. Use of Maple Seeding Canopy Reflectance Dataset for Validation of SART/LEAFMOD Radiative Transfer Model

    NASA Technical Reports Server (NTRS)

    Bond, Barbara J.; Peterson, David L.

    1999-01-01

    This project was a collaborative effort by researchers at ARC, OSU and the University of Arizona. The goal was to use a dataset obtained from a previous study to "empirically validate a new canopy radiative-transfer model (SART) which incorporates a recently-developed leaf-level model (LEAFMOD)". The document includes a short research summary.

  13. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo of Natural Waters

    EPA Science Inventory

    Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...

  14. Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation

    NASA Astrophysics Data System (ADS)

    Pinte, C.; Harries, T. J.; Min, M.; Watson, A. M.; Dullemond, C. P.; Woitke, P.; Ménard, F.; Durán-Rojas, M. C.

    2009-05-01

    Aims: Solving the continuum radiative transfer equation in high opacity media requires sophisticated numerical tools. In order to test the reliability of such tools, we present a benchmark of radiative transfer codes in a 2D disc configuration. Methods: We test the accuracy of seven independently developed radiative transfer codes by comparing the temperature structures, spectral energy distributions, scattered light images, and linear polarisation maps that each model predicts for a variety of disc opacities and viewing angles. The test cases have been chosen to be numerically challenging, with midplane optical depths up 10^6, a sharp density transition at the inner edge and complex scattering matrices. We also review recent progress in the implementation of the Monte Carlo method that allow an efficient solution to these kinds of problems and discuss the advantages and limitations of Monte Carlo codes compared to those of discrete ordinate codes. Results: For each of the test cases, the predicted results from the radiative transfer codes are within good agreement. The results indicate that these codes can be confidently used to interpret present and future observations of protoplanetary discs.

  15. Space–time domain velocity distributions in isotropic radiative transfer in two dimensions

    NASA Astrophysics Data System (ADS)

    Rossetto, Vincent

    2017-04-01

    We compute the exact solutions of the radiative transfer equation in two dimensions for isotropic scattering. The intensity and the radiance are given in the space–time domain when the source is punctual and isotropic or unidirectional. These analytical results are compared to Monte-Carlo simulations in four particular situations.

  16. Exact vs. Gauss-Seidel numerical solutions of the non-LTE radiation transfer problem

    NASA Astrophysics Data System (ADS)

    Quang, Carine; Paletou, Frédéric; Chevallier, Loïc

    2004-12-01

    Although published in 1995 (Trujillo Bueno & Fabiani Bendicho, ApJ 455, 646), the Gauss-Seidel method for solving the non-LTE radiative transfer problem has deserved too little attention in the astrophysical community yet. Further tests of the performances and of the accuracy of the numerical scheme are provided.

  17. Infinite space Green’s function of the time-dependent radiative transfer equation

    PubMed Central

    Liemert, André; Kienle, Alwin

    2012-01-01

    This study contains the derivation of an infinite space Green’s function of the time-dependent radiative transfer equation in an anisotropically scattering medium based on analytical approaches. The final solutions are analytical regarding the time variable and given by a superposition of real and complex exponential functions. The obtained expressions were successfully validated with Monte Carlo simulations. PMID:22435101

  18. An improved radiative transfer model for estimating mineral abundance of immature and mature lunar soils

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Li, Lin; Sun, Ying

    2015-06-01

    An improved Hapke's radiative transfer model (RTM) is presented to estimate mineral abundance for both immature and mature lunar soils from the Lunar Soil Characterization Consortium (LSCC) dataset. Fundamental to this improved Hapke's model is the application of an alternative equation to describe the effects of larger size submicroscopic metallic iron (SMFe) (>50 nm) in the interior of agglutinitic glass that mainly darken the host material, contrasting to the darkening and reddening effects of smaller size SMFe (<50 nm) residing in the rims of mineral grains. Results from applying a nonlinear inversion procedure to the improved Hapke's RTM show that the average mass fraction of smaller and larger size SMFe in lunar soils was estimated to be 0.30% and 0.31% respectively, and the particle size distribution of soil samples is all within their measured range. Based on the derived mass fraction of SMFe and particle size of the soil samples, abundances of end-member components composing lunar soil samples were derived via minimizing the difference between measured and calculated spectra. The root mean square error (RMSE) between the fitted and measured spectra is lower than 0.01 for highland samples and 0.005 for mare samples. This improved Hapke's model accurately estimates abundances of agglutinitic glass (R-squared = 0.88), pyroxene (R-squared = 0.69) and plagioclase (R-squared = 0.95) for all 57 samples used in this study including both immature and mature lunar soils. However, the improved Hapke's RTM shows poor performance for quantifying abundances of olivine, ilmenite and volcanic glass. Improving the model performance for estimation of these three end-member components is the central focus for our future work.

  19. Radiative transfer in arbitrarily-shaped axisymmetric bodies

    NASA Astrophysics Data System (ADS)

    Nunes, Edmundo Miguel

    2001-08-01

    A mathematical model for evaluating thermal radiative transport in axisymmetric enclosures is presented. Based on the Discrete Exchange Factor (DEF) method, exchange factors between arbitrarily-oriented differential surface/volume ring elements are systematically calculated. The formulation is capable of treating geometrically complex systems including enclosures with shadowing effects ensuing from inner and/or outer obstructing bodies. The model is developed for isotropically scattering participating media. The solutions to several cylindrical media benchmark problems are found to be in excellent agreement with existing solutions in the literature. The solutions to several rocket-nozzle and plug-chamber geometries are presented for a host of geometric conditions and optical thicknesses. In addition, two variants of the DEF method are presented for anisotropically scattering media. The N-bounce method approximates total exchange factors by summing direct and user-designated higher order terms representative of multiple reflections/scattering. The source function approach is an intensity-based method relating the source function (gas leaving intensity) to the surface leaving intensity. The results obtained via these methods are found to be in good agreement with the existing solutions to several axisymmetric benchmark problems. A mathematical formulation is additionally proposed for addressing the effects of nonhomogeneous property distributions. Several nonhomogeneous benchmark problems are solved in an effort to validate the model.

  20. Radiative heat transfer in plasma of pulsed high pressure caesium discharge

    NASA Astrophysics Data System (ADS)

    Lapshin, V. F.

    2016-01-01

    Two-temperature many component gas dynamic model is used for the analysis of features of radiative heat transfer in pulsed high pressure caesium discharge plasma. It is shown that at a sufficiently high pressure the radial optical thickness of arc column is close to unit (τR (λ) ∼ 1) in most part of spectrum. In this case radiative heat transfer has not local character. In these conditions the photons which are emitted in any point of plasma volume are absorbed in other point remote from an emission point on considerable distance. As a result, the most part of the electric energy put in the discharge mainly near its axis is almost instantly redistributed on all volume of discharge column. In such discharge radial profiles of temperature are smooth. In case of low pressure, when discharge plasma is optically transparent for own radiation in the most part of a spectrum (τR(λ) << 1), the emission of radiation without reabsorption takes place. Radiative heat transfer in plasma has local character and profiles of temperature have considerable gradient.

  1. Impact of differences in the solar irradiance spectrum on surface reflectance retrieval with different radiative transfer codes

    NASA Technical Reports Server (NTRS)

    Staenz, K.; Williams, D. J.; Fedosejevs, G.; Teillet, P. M.

    1995-01-01

    Surface reflectance retrieval from imaging spectrometer data as acquired with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has become important for quantitative analysis. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes such as 5S and MODTRAN2 play an increasing role for removal of scattering and absorption effects of the atmosphere. Accurate knowledge of the exo-atmospheric solar irradiance (E(sub 0)) spectrum at the spectral resolution of the sensor is important for this purpose. The present study investigates the impact of differences in the solar irradiance function, as implemented in a modified version of 5S (M5S), 6S, and MODTRAN2, and as proposed by Green and Gao, on the surface reflectance retrieved from AVIRIS data. Reflectance measured in situ is used as a basis of comparison.

  2. Monte Carlo simulation methods in moment-based scale-bridging algorithms for thermal radiative-transfer problems

    SciTech Connect

    Densmore, J.D.; Park, H.; Wollaber, A.B.; Rauenzahn, R.M.; Knoll, D.A.

    2015-03-01

    We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption–emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck–Cummings algorithm.

  3. Normalization method of highly forward-peaked scattering phase function using the double exponential formula for radiative transfer

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroyuki; Okawa, Shinpei; Yamada, Yukio; Hoshi, Yoko; Watanabe, Masao

    2016-12-01

    Numerical calculation of photon migration in biological tissue using the radiative transfer equation (RTE) has attracted great interests in biomedical optics and imaging. Because biological tissue is a highly forward-peaked scattering medium, a normalization of scattering phase function in the RTE is crucial. This paper proposes a simple way of normalizing the phase function by the double exponential formula, which is heuristically modified from the original one. The proposed method is validated by the agreement between the numerical solution of the RTE with the proposed method and analytical solution of the RTE for the case of a highly forward-peaked scattering medium, while the numerical solutions with conventional normalization methods disagree with the analytical solution. This result suggests the proposed method is accurate in numerical calculation of the RTE.

  4. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Malik, Rabia; Hussain, M.

    2016-05-01

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  5. First 3D radiative transfer with scattering for domain-decomposed MHD simulations

    NASA Astrophysics Data System (ADS)

    Hayek, W.

    2008-12-01

    This paper presents an implementation of the Gauss Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.

  6. Electrically tunable near-field radiative heat transfer via ferroelectric materials

    SciTech Connect

    Huang, Yi; Boriskina, Svetlana V.; Chen, Gang

    2014-12-15

    We explore ways to actively control near-field radiative heat transfer between two surfaces that relies on electrical tuning of phonon modes of ferroelectric materials. Ferroelectrics are widely used for tunable electrical devices, such as capacitors and memory devices; however, their tunable properties have not yet been examined for heat transfer applications. We show via simulations that radiative heat transfer between two ferroelectric materials can be enhanced by over two orders of magnitude over the blackbody limit in the near field, and can be tuned as much as 16.5% by modulating the coupling between surface phonon polariton modes at the two surfaces via varying external electric fields. We then discuss how to maximize the modulation contrast for tunable thermal devices using the studied mechanism.

  7. SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Baes, M.; Camps, P.

    2015-09-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.

  8. Identifying the number and location of body worn sensors to accurately classify walking, transferring and sedentary activities.

    PubMed

    Aziz, Omar; Robinovitch, Stephen N; Park, Edward J

    2016-08-01

    In order to perform fall risk assessments using wearable inertial sensors in older adults in their natural settings where falls are likely to occur, a first step is to automatically segment and classify sensor signals of human movements into the known `activities of interest'. Sensor data from such activities can later be used through quantitative and qualitative analysis for differentiating fallers from non-fallers. In this study, ten young adults participated in experimental trials involving several variations of walking, transferring and sedentary activities. Data from tri-axial accelerometers and gyroscopes were used to classify the aforementioned three categories using a multiclass support vector machine algorithm. Our results showed 100% accuracy in distinguishing walking, transferring and sedentary activities using data from a three-sensor combination of sternum and both ankles.

  9. Radiative Heat Transfer in Finite Cylindrical Enclosures with Nonhomogeneous Participating Media

    NASA Technical Reports Server (NTRS)

    Hsu, Pei-Feng; Ku, Jerry C.

    1994-01-01

    Results of a numerical solution for radiative heat transfer in homogeneous and nonhomogeneous participating media are presented. The geometry of interest is a finite axisymmetric cylindrical enclosure. The integral formulation for radiative transport is solved by the YIX method. A three-dimensional solution scheme is applied to two-dimensional axisymmetric geometry to simplify kernel calculations and to avoid difficulties associated with treating boundary conditions. As part of the effort to improve modeling capabilities for turbulent jet diffusion flames, predicted distributions for flame temperature and soot volume fraction are used to calculate radiative heat transfer from soot particles in such flames. It is shown that the nonhomogeneity of radiative property has very significant effects. The peak value of the divergence of radiative heat flux could be underestimated by 2 factor of 7 if a mean homogeneous radiative property is used. Since recent studies have shown that scattering by soot agglomerates is significant in flames, the effect of magnitude of scattering is also investigated and found to be nonnegligible.

  10. An Analytical Solution of Radiative Transfer in the Coupled Atmosphere-Ocean System with Rough Surface

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Charlock, Thomas P.; Rutledge, Ken; Knut Stamnes; Wang, Yingjian

    2006-01-01

    Using the efficient discrete-ordinate method, we present an analytical solution for radiative transfer in the coupled atmosphere-ocean system with rough air-water interface. The theoretical formulations of the radiative transfer equation and solution are described. The effects of surface roughness on radiation field in the atmosphere and ocean are studied and compared with measurements. The results show that ocean surface roughness has significant effects on the upwelling radiation in the atmosphere and the downwelling radiation in the ocean. As wind speed increases, the angular domain of sunglint broadens, the surface albedo decreases, and the transmission to ocean increases. The downward radiance field in the upper ocean is highly anisotropic, but this anisotropy decreases rapidly as surface wind increases and as depth in ocean increases. The effects of surface roughness on radiation also depend greatly on both wavelength and angle of incidence (i.e., solar elevation); these effects are significantly smaller throughout the spectrum at high sun. The model-observation discrepancies may indicate that the Cox-Munk surface roughness model is not sufficient for high wind conditions.

  11. High resolution surface solar radiation patterns over Eastern Mediterranean: Satellite, ground-based, reanalysis data and radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.

    2013-12-01

    Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement

  12. Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor

    SciTech Connect

    Joulain, Karl; Ezzahri, Younès; Drevillon, Jérémie; Ben-Abdallah, Philippe

    2015-03-30

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see that the more the material is reflective in the metallic state, the more switching effect is realized, whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO{sub 2} that exhibits an insulator-metallic transition at 68 °C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. Far-field thermal radiation experiments are proposed to back the results presented.

  13. Two-Flux Method for Transient Radiative Transfer in a Semitransparent Layer

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    The two-flux method was used to obtain transient solutions for a plane layer including internal reflections and scattering. The layer was initially at uniform temperature, and was heated or cooled by external radiation and convection. The two-flux equations were examined as a means for evaluating the radiative flux gradient in the transient energy equation. Comparisons of transient temperature distributions using the two-flux method were made with results where the radiative flux gradient was evaluated from the exact radiative transfer equations. Good agreement was obtained for optical thicknesses from 0.5 to 5 and for refractive indices of 1 and 2. Illustrative results obtained with the two-flux method demonstrate the effect of isotropic scattering coupled with changing the refractive index. For small absorption with large scattering the maximum layer temperature is increased when the refractive index is increased. For larger absorption the effect is opposite, and the maximum temperature decreases with increased refractive index .

  14. Polarized radiative transfer in two-dimensional scattering medium with complex geometries by natural element method

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Kim, Yong-Jun; Yi, Hong-Liang; Xie, Ming; Tan, He-Ping

    2016-08-01

    The natural element method (NEM) is extended to solve the polarized radiative transfer problem in a two-dimensional scattering medium with complex geometries, in which the angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by the Galerkin weighted residuals approach. The Laplace interpolation scheme is adopted to obtain the shape functions used in the Galerkin weighted residuals approach. The NEM solution to the vector radiative transfer in a square enclosure filled with a Mie scattering medium is first examined to validate our program. We then study the polarized radiative transfer in two kinds of geometries filled with scattering medium which is equivalent to a suspension of latex spheres in water. Three sizes of spheres are considered. The results for non-dimensional polarized radiative flux along the boundaries and the angular distributions of the Stokes vector at specific positions are presented and discussed. For the complex geometry bounded by the square and circular object, numerical solutions are presented for the cases both with Lambertian (diffuse) reflection and with Fresnel reflection. Some interesting phenomenon are found and analyzed.

  15. Study of radiative heat transfer in Ångström- and nanometre-sized gaps

    PubMed Central

    Cui, Longji; Jeong, Wonho; Fernández-Hurtado, Víctor; Feist, Johannes; García-Vidal, Francisco J.; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2017-01-01

    Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here we report studies of radiative heat transfer in few Å to 5 nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe featuring embedded nanoscale thermocouples and a heated planar Au substrate that were both subjected to various surface-cleaning procedures. By drawing on the apparent tunnelling barrier height as a signature of cleanliness, we found that upon systematically cleaning via a plasma or locally pushing the tip into the substrate by a few nanometres, the observed radiative conductances decreased from unexpectedly large values to extremely small ones—below the detection limit of our probe—as expected from our computational results. Our results show that it is possible to avoid the confounding effects of surface contamination and systematically study thermal radiation in Ångström- and nanometre-sized gaps. PMID:28198467

  16. Study of radiative heat transfer in Ångström- and nanometre-sized gaps

    NASA Astrophysics Data System (ADS)

    Cui, Longji; Jeong, Wonho; Fernández-Hurtado, Víctor; Feist, Johannes; García-Vidal, Francisco J.; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2017-02-01

    Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here we report studies of radiative heat transfer in few Å to 5 nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe featuring embedded nanoscale thermocouples and a heated planar Au substrate that were both subjected to various surface-cleaning procedures. By drawing on the apparent tunnelling barrier height as a signature of cleanliness, we found that upon systematically cleaning via a plasma or locally pushing the tip into the substrate by a few nanometres, the observed radiative conductances decreased from unexpectedly large values to extremely small ones--below the detection limit of our probe--as expected from our computational results. Our results show that it is possible to avoid the confounding effects of surface contamination and systematically study thermal radiation in Ångström- and nanometre-sized gaps.

  17. Active control of near-field radiative heat transfer between graphene-covered metamaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua

    2017-04-01

    In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer.

  18. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer

    SciTech Connect

    Chang, Jui-Yung; Basu, Soumyadipta Wang, Liping

    2015-02-07

    We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150 nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150 nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

  19. Radiative and free-convective heat transfer from a finite horizontal plate inside an enclosure

    NASA Technical Reports Server (NTRS)

    Hrycak, Peter; Sandman, D. J.

    1986-01-01

    An experimental and analytical investigation of heat transfer from a horizontal, thin, square plate inside of an enclosure was carried out. Experimental results were obtained from both the upward-facing and the downward-facing sides of the heated plate. Starting with the integrated momentum and energy equations, approximate solutions were obtained for heat transfer in the laminar and the turbulent regime that correlate well with experimental data. Radiative heat transfer correction was given special attention. Effects of the enclosure-related recirculation of the test fluid, as well as effects of simultaneous heat transfer on both sides of the plate, caused an early transition, and indicated a high level of internal turbulence.

  20. Women's age and embryo developmental speed accurately predict clinical pregnancy after single vitrified-warmed blastocyst transfer.

    PubMed

    Kato, Keiichi; Ueno, Satoshi; Yabuuchi, Akiko; Uchiyama, Kazuo; Okuno, Takashi; Kobayashi, Tamotsu; Segawa, Tomoya; Teramoto, Shokichi

    2014-10-01

    The aim of this study was to establish a simple, objective blastocyst grading system using women's age and embryo developmental speed to predict clinical pregnancy after single vitrified-warmed blastocyst transfer. A 6-year retrospective cohort study was conducted in a private infertility centre. A total of 7341 single vitrified-armed blastocyst transfer cycles were included, divided into those carried out between 2006 and 2011 (6046 cycles) and 2012 (1295 cycles). Clinical pregnancy rate, ongoing pregnancy rate and delivery rates were stratified by women's age (<35, 35-37, 38-39, 40-41, 42-45 years) and time to blastocyst expansion (<120, 120-129, 130-139, 140-149, >149 h) as embryo developmental speed. In all the age groups, clinical pregnancy rate, ongoing pregnancy rate and delivery rates decreased as the embryo developmental speed decreased (P < 0.0001). A simple five-grade score based on women's age and embryo developmental speed was determined by actual clinical pregnancy rates observed in the 2006-2011 cohort. Subsequently, the novel grading score was validated in the 2012 cohort (1295 cycles), finding an excellent association. In conclusion, we established a novel blastocyst grading system using women's age and embryo developmental speed as objective parameters.

  1. An interface for simulating radiative transfer in and around volcanic plumes with the Monte Carlo radiative transfer model McArtim

    USGS Publications Warehouse

    Kern, Christoph

    2016-03-23

    This report describes two software tools that, when used as front ends for the three-dimensional backward Monte Carlo atmospheric-radiative-transfer model (RTM) McArtim, facilitate the generation of lookup tables of volcanic-plume optical-transmittance characteristics in the ultraviolet/visible-spectral region. In particular, the differential optical depth and derivatives thereof (that is, weighting functions), with regard to a change in SO2 column density or aerosol optical thickness, can be simulated for a specific measurement geometry and a representative range of plume conditions. These tables are required for the retrieval of SO2 column density in volcanic plumes, using the simulated radiative-transfer/differential optical-absorption spectroscopic (SRT-DOAS) approach outlined by Kern and others (2012). This report, together with the software tools published online, is intended to make this sophisticated SRT-DOAS technique available to volcanologists and gas geochemists in an operational environment, without the need for an indepth treatment of the underlying principles or the low-level interface of the RTM McArtim.

  2. A New Look Into the Treatment of Large Drops in Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2002-01-01

    One of the weakest links in conventional cloud radiation models is the way a size distribution of cloud particles is mathematically handled: one averages measured drop concentrations over space, evaluates the extinction and scattering cross sections using the mean drop size distribution function and solves the radiative transfer equation with average characteristics. This technique assumes that all drop sizes are well represented in ary given interval along the direction of photon travel. But the concentration of large drops can be so law that this assumption is significantly violated. This is clearly seen if one examines of how the appearance of drops changes with the scale. In the poster we demonstrate the results of our analysis of FSSP data acquired during FIRE'87 and both FSSP and DC1 data from cloud IOP in Spring 2000. The analysis shows that, in general, the average number of drops observed in an interval along the direction of photon travel is proportional to the interval's length (or scale) powered to a drop scaling exponent. For small droplets the scaling exponent is equal to 1, as predicted by a conventional radiative transfer model. However, for large drops, the scaling exponent can fall distinctly below 1. Since the solution of radiative transfer equation depends on the drop scaling exponent, its deviation from unity can lead to a systematic bias in estimation of cloud radiative properties. We discuss the importance of the scaling exponent for the characteristics of the small-scale drop size variability for large and small droplets. Most of the existing cloud radiation models, however, are insensitive to this parameter.

  3. Coherent regime and far-to-near-field transition for radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Tsurimaki, Yoichiro; Chapuis, Pierre-Olivier; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao; Vaillon, Rodolphe

    2017-01-01

    Radiative heat transfer between two semi-infinite parallel media is analyzed in the transition zone between the near-field and the classical macroscopic, i.e. incoherent far-field, regimes of thermal radiation, first for model gray materials and then for real metallic (Al) and dielectric (SiC) materials. The presence of a minimum in the flux-distance curve is observed for the propagative component of the radiative heat transfer coefficient, and in some cases for the total coefficient, i.e. the sum of the propagative and evanescent components. At best this reduction can reach 15% below the far-field limit in the case of aluminum. The far-to-near-field regime taking place for the distance range between the near-field and the classical macroscopic regime involves a coherent far-field regime. One of its limits can be practically defined by the distance at which the incoherent far-field regime breaks down. This separation distance below which the standard theory of incoherent thermal radiation cannot be applied anymore is found to be larger than the usual estimate based on Wien's law and varies as a function of temperature. The aforementioned effects are due to coherence, which is present despite the broadband spectral nature of thermal radiation, and has a stronger impact for reflective materials.

  4. Accurately characterizing the importance of wave-particle interactions in radiation belt dynamics: The pitfalls of statistical wave representations.

    PubMed

    Murphy, Kyle R; Mann, Ian R; Rae, I Jonathan; Sibeck, David G; Watt, Clare E J

    2016-08-01

    Wave-particle interactions play a crucial role in energetic particle dynamics in the Earth's radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.

  5. Accurately characterizing the importance of wave‐particle interactions in radiation belt dynamics: The pitfalls of statistical wave representations

    PubMed Central

    Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.

    2016-01-01

    Abstract Wave‐particle interactions play a crucial role in energetic particle dynamics in the Earth's radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm‐time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm‐time wave power. PMID:27867798

  6. Accurately characterizing the importance of wave-particle interactions in radiation belt dynamics: The pitfalls of statistical wave representations

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.

    2016-08-01

    Wave-particle interactions play a crucial role in energetic particle dynamics in the Earth's radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.

  7. Radiation exposure and performance of multiple burn LEO-GEO orbit transfer trajectories

    NASA Technical Reports Server (NTRS)

    Gorland, S. H.

    1985-01-01

    Many potential strategies exist for the transfer of spacecraft from low Earth orbit (LEO) to geosynchronous (GEO) orbit. One strategy has generally been utilized, that being a single impulsive burn at perigee and a GEO insertion burn at apogee. Multiple burn strategies were discussed for orbit transfer vehicles (OTVs) but the transfer times and radiation exposure, particularly for potentially manned missions, were used as arguments against those options. Quantitative results concerning the trip time and radiation encountered by multiple burn orbit transfer missions in order to establish the feasibility of manned missions, the vulnerability of electronics, and the shielding requirements are presented. The performance of these multiple burn missions is quantified in terms of the payload and propellant variances from the minimum energy mission transfer. The missions analyzed varied from one to eight perigee burns and ranged from a high thrust, 1 g, acceleration, cryogenic hydrogen-oxygen chemical propulsion system for a continuous burn, 0.001 g acceleration, hydrogen, fueled resistojet propulsion system with a trip time of 60 days.

  8. Radiation exposure and performance of multiple burn LEO-GEO orbit transfer trajectories

    NASA Technical Reports Server (NTRS)

    Gorland, S. H.

    1985-01-01

    Many potential strategies exist for the transfer of spacecraft from low Earth orbit (LEO) to geosynchronous (GEO) orbit. One strategy has generally been utilized, that being a single impulsive burn at perigee and a GEO insertion burn at apogee. Multiple burn strategies were discussed for orbit transfer vehicles (OTVs) but the transfer times and radiation exposure, particularly for potentially manned missions, were used as arguments against those options. Quantitative results concerning the trip time and radiation encountered by multiple burn orbit transfer missions in order to establish the feasibility of manned missions, the vulnerability of electronics, and the shielding requirements are presented. The performance of these multiple burn missions is quantified in terms of the payload and propellant variances from the minimum energy mission transfer. The missions analyzed varied from one to eight perigee burns and ranged from a high thrust, 1 g acceleration, cryogenic hydrogen-oxygen chemical prpulsion system to a continuous burn, 0.001 g acceleration, hydrogen fueled resistojet propulsion system with a trip time of 60 days.

  9. Simulation of the radiation-convective heat transfer in multinozzle assemblies of rocket engines

    NASA Astrophysics Data System (ADS)

    Volkov, N. N.; Volkova, L. I.; Tsatsuev, S. M.

    2012-12-01

    The method and results of numerical modeling of the radiation-convective heat transfer and thermal state in the systems of multinozzle rocket-engine (RE) assemblies are presented. The method is implemented in a form of a software module entered as the component into the program of calculation of the nonsteady thermal state of the RE nozzles. The results of calculation by the consolidated program are given, and the two-dimensional thermal fields on the external and internal surfaces of mouthpieces of the four-nozzle liquid rocket engine allow us to refine the thermal state of the nozzles themselves and evaluate the radiation heat flows in the engine module.

  10. A Two-Stream Multilayer, Spectral Radiative Transfer Model for Sea Ice,

    DTIC Science & Technology

    1989-07-01

    lassified -c DECASS,. CA7:0ON DCWNGAD NG SCHEDJcE Approved for public releais(- Cist: Iitlol is_ unlimilted. ZE>\\ G RGA:Z O EOR NMEE~ S CON.;TOCNG CG...0N 6.1102 AT24 SS 05 Inckcoe Secur> CIassit’caofin. A Two-Stream, Multilaver, Spectral Radiative Transfer Model for Sea Ice 12 D2RSCNAL AUTHCO 1( S ...radiation fields is demonstrated., 20 DIST~i? BTION/AVAIABILITY OF ABSTRACT 2i ABSTRACT SEC dRJY : 4? S F N uNCLASSIFIED/ UNLIMITED [3 SAME AS RPT 0 DTIC

  11. High fidelity radiative heat transfer models for high-pressure laminar hydrogen-air diffusion flames

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Lei, Shenghui; Dasgupta, Adhiraj; Modest, Michael F.; Haworth, Daniel C.

    2014-11-01

    Radiative heat transfer is studied numerically for high-pressure laminar H2-air jet diffusion flames, with pressure ranging from 1 to 30 bar. Water vapour is assumed to be the only radiatively participating species. Two different radiation models are employed, the first being the full spectrum k-distribution model together with conventional Radiative Transfer Equation (RTE) solvers. Narrowband k-distributions of water vapour are calculated and databased from the HITEMP 2010 database, which claims to retain accuracy up to 4000 K. The full-spectrum k-distributions are assembled from their narrowband counterparts to yield high accuracy with little additional computational cost. The RTE is solved using various spherical harmonics methods, such as P1, simplified P3 (SP3) and simplified P5 (SP5). The resulting partial differential equations as well as other transport equations in the laminar diffusion flames are discretized with the finite-volume method in OpenFOAM®. The second radiation model is a Photon Monte Carlo (PMC) method coupled with a line-by-line spectral model. The PMC absorption coefficient database is derived from the same spectroscopy database as the k-distribution methods. A time blending scheme is used to reduce PMC calculations at each time step. Differential diffusion effects, which are important in laminar hydrogen flames, are also included in the scalar transport equations. It was found that the optically thin approximation overpredicts radiative heat loss at elevated pressures. Peak flame temperature is less affected by radiation because of faster chemical reactions at high pressures. Significant cooling effects are observed at downstream locations. As pressure increases, the performance of RTE models starts to deviate due to increased optical thickness. SPN models perform only marginally better than P1 because P1 is adequate except at very high pressure.

  12. Effects of cloud condensate vertical alignment on radiative transfer calculations in deep convective regions

    NASA Astrophysics Data System (ADS)

    Wang, Xiaocong

    2017-04-01

    Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.

  13. Near-field thermal radiation transfer between semiconductors based on thickness control and introduction of photonic crystals

    NASA Astrophysics Data System (ADS)

    Inoue, Takuya; Asano, Takashi; Noda, Susumu

    2017-03-01

    We numerically investigate the spectral control of near-field thermal radiation transfer using interband absorption in semiconductors and the band-folding effect in photonic crystals (PCs) for highly efficient thermophotovoltaics. We reveal that the near-field coupling between two semiconductors (Si and GaSb) realizes frequency-selective thermal radiation transfer concentrated above their bandgap energy when their thicknesses are optimized considering their absorption coefficient spectra. Moreover, we elucidate the role of PC structures in the near-field thermal radiation transfer and demonstrate that the band-folding effect in PCs can further increase both the radiation power and frequency selectivity of the near-field thermal radiation transfer.

  14. Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes

    NASA Astrophysics Data System (ADS)

    Xin, Q.; Gong, P.; Li, W.

    2015-06-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily timescales. We demonstrate that ambient CO2 concentrations influence daytime vegetation photosynthesis, which needs to be considered in biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  15. The use of the Galerkin method for radiation transfer in an anisotropically scattering slab with reflecting boundaries

    NASA Astrophysics Data System (ADS)

    Cengel, Y. A.; Ozisik, M. N.

    1984-09-01

    Radiation transfer in an absorbing, emitting, anisotropically scattering, plane-parallel medium with diffusely reflecting boundaries is solved by application of the Galerkin method. With this approach, the radiation heat flux, angular distribution of radiation intensity, and the divergence of the radiation heat flux anywhere in the medium can be determined highly acurately. For optical thickness up to about 10, exact results are also readily obtainable if sufficient number of terms are considered in the expansion. Numerical results are presented for representative cases.

  16. Development of transfer standard devices for ensuring the accurate calibration of ultrasonic physical therapy machines in clinical use

    NASA Astrophysics Data System (ADS)

    Hekkenberg, R. T.; Richards, A.; Beissner, K.; Zeqiri, B.; Prout, G.; Cantrall, Ch; Bezemer, R. A.; Koch, Ch; Hodnett, M.

    2004-01-01

    Physical therapy ultrasound is widely applied to patients. However, many devices do not comply with the relevant standard stating that the actual power output shall be within +/-20% of the device indication. Extreme cases have been reported: from delivering effectively no ultrasound or operating at maximum power at all powers indicated. This can potentially lead to patient injury as well as mistreatment. The present European (EC) project is an ongoing attempt to improve the quality of the treatment of patients being treated with ultrasonic physical-therapy. A Portable ultrasound Power Standard (PPS) is being developed and accurately calibrated. The PPS includes: Ultrasound transducers (including one exhibiting an unusual output) and a driver for the ultrasound transducers that has calibration and proficiency test functions. Also included with the PPS is a Cavitation Detector to determine the onset of cavitation occurring within the propagation medium. The PPS will be suitable for conducting in-the-field accreditation (proficiency testing and calibration). In order to be accredited it will be important to be able to show traceability of the calibration, the calibration process and qualification of testing staff. The clinical user will benefit from traceability because treatments will be performed more reliably.

  17. Polarimetric signatures of a coniferous forest canopy based on vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Amar, F.; Mougin, E.; Lopes, A.; Beaudoin, A.

    1992-01-01

    Complete polarization signatures of a coniferous forest canopy are studied by the iterative solution of the vector radiative transfer equations up to the second order. The forest canopy constituents (leaves, branches, stems, and trunk) are embedded in a multi-layered medium over a rough interface. The branches, stems and trunk scatterers are modeled as finite randomly oriented cylinders. The leaves are modeled as randomly oriented needles. For a plane wave exciting the canopy, the average Mueller matrix is formulated in terms of the iterative solution of the radiative transfer solution and used to determine the linearly polarized backscattering coefficients, the co-polarized and cross-polarized power returns, and the phase difference statistics. Numerical results are presented to investigate the effect of transmitting and receiving antenna configurations on the polarimetric signature of a pine forest. Comparison is made with measurements.

  18. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  19. An analytic radiative transfer model for a coupled atmosphere and leaf canopy

    NASA Technical Reports Server (NTRS)

    Liang, Shunlin; Strahler, Alan H.

    1995-01-01

    A new analytical radiative transfer model of a leaf canopy is developed that approximates multiple-scattering radiance by a four-stream formulation. The canopy model is coupled to a homogeneous atmospheric model as well as a non-Lambertian lower boundary soil surface. The same four-stream formulation is also used for the calculation of multiple scattering in the atmosphere. Comparisons of radiance derived from the four-stream model with those calculated by an iterative numerical solution of the radiative transfer equation show that the analytic model has a very high accuracy, even with a turbid atmosphere and a very dense canopy in which multiple scattering dominates. Because the coupling of canopy and atmospheric models fully accommodates anisotropic surface reflectance and atmospheric scattering and its effect on directional radiance, the model is especially useful for application to directional radiance and measurements obtained by remote sensing. Retrieval of biophysical parameters using this model is under investigation.

  20. The mass transfer rate in X1916-053 - It is driven by gravitational radiation?

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Taam, R. E.; White, N. E.

    1985-01-01

    A 50-minute period for a binary system harboring an X-ray burster would allow several alternatives for the mass-giving secondary, including an H-shell burning-plus-He degenerate core composite model. The burst properties of X1916-053 are presently used to argue against the He degenerate as well as the He main sequence solutions and to estimate whether, for any of the other solutions, the mass transfer rate could be consistent with that expected from gravitational radiation (GR). Within an uncertainty of a factor of 2, the transfer rate for the composite model solution is consistent with gravitational radiation, but enhancement by other mechanisms should be investigated.

  1. Hyper fast radiative transfer for the physical retrieval of surface parameters from SEVIRI observations

    NASA Astrophysics Data System (ADS)

    Liuzzi, G.; Masiello, G.; Serio, C.; Blasi, M. G.; Venafra, S.

    2015-09-01

    This paper describes the theoretical aspects of a fast scheme for the physical retrieval of surface temperature and emissivity from SEVIRI data, their implementation and some sample results obtained. The scheme is based on a Kalman Filter approach, which effectively exploits the temporal continuity in the observations of the geostationary Meteosat Second Generation (MSG) platform, on which SEVIRI (Spinning Enhanced Visible and InfraRed Imager) operates. Such scheme embodies in its core a physical retrieval algorithm, which employs an hyper fast radiative transfer code highly customized for this retrieval task. Radiative transfer and its customizations are described in detail. Fastness, accuracy and stability of the code are fully documented for a variety of surface features, showing a peculiar application to the massive Greek forest fires in August 2007.

  2. New half-range differential approximation for spherically-symmetric radiative transfer.

    NASA Technical Reports Server (NTRS)

    Moreno, J. B.; Greber, I.

    1971-01-01

    A new half-range differential approximation for radiative transfer with spherical symmetry is presented. The development is motivated by the various failures of existing differential approximations in determining emissive-power distributions and heat transfer for concentric-spheres problems. The new approach represents a modification of the four-moment double spherical-harmonics method, to which it reduces in the planar limit. The difference is effected by relocating the discontinuity of the assumed directional distribution of radiation intensity. The shift takes the discontinuity from precisely on the division between radially inward and radially outward, to just within the radially-outward directional half range. The method is tested on a variety of concentric spheres problems with and without internal heat sources, reproducing all the important features of the exact results.

  3. Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study.

    PubMed

    Kotchenova, Svetlana Y; Vermote, Eric F; Levy, Robert; Lyapustin, Alexei

    2008-05-01

    Results are summarized for a scientific project devoted to the comparison of four atmospheric radiative transfer codes incorporated into different satellite data processing algorithms, namely, 6SV1.1 (second simulation of a satellite signal in the solar spectrum, vector, version 1.1), RT3 (radiative transfer), MODTRAN (moderate resolution atmospheric transmittance and radiance code), and SHARM (spherical harmonics). The performance of the codes is tested against well-known benchmarks, such as Coulson's tabulated values and a Monte Carlo code. The influence of revealed differences on aerosol optical thickness and surface reflectance retrieval is estimated theoretically by using a simple mathematical approach. All information about the project can be found at http://rtcodes.ltdri.org.

  4. Radiative heat transfer in curved specular surfaces in Czochralski crystal growth furnace

    SciTech Connect

    Guo, Z.; Maruyama, Shigenao; Tsukada, Takao

    1997-11-07

    A numerical investigation of radiative heat transfer constructed by curved surfaces with specular and diffuse reflection components is carried out. The ray tracing method is adopted for the calculation of view factors, in which a new ray emission model is proposed. The second-degree radiation ring elements are introduced, which are of engineering importance and numerical efficiency. The accuracy of the method is analyzed and verified using a simple configuration. The present computation using the proposed ray emission model is in good agreement with the analytical solution. As a numerical example and engineering application, the effects of the specular reflection and the meniscus of the melt surface in Czochralski (CZ) crystal growth are investigated. A marked temperature decrease in the melt surface is found by introducing specular reflection and the meniscus. The combined effects of the specular reflection and the meniscus should be considered in precision heat transfer control of a CZ apparatus.

  5. Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet

    PubMed Central

    2012-01-01

    In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles. PMID:22520273

  6. Monte Carlo modeling of radiative heat transfer in particle-laden flow

    NASA Astrophysics Data System (ADS)

    Farbar, Erin; Boyd, Iain D.; Esmaily-Moghadam, Mahdi

    2016-11-01

    Three-dimensional numerical simulations are applied to model radiative heat transfer in a dispersed particle phase exhibiting preferential concentration typical of a turbulent, particle-laden flow environment. The dispersed phase is composed of micron-sized nickel particles, and the carrier phase is non-participating. The simulations are performed for a snapshot of the particle field using the Monte Carlo Ray Tracing method, and the spectral dependence of the optical properties is considered. Interaction between the particles and radiation is modeled by projecting the particle locations onto an Eulerian mesh. Results show that the optically thin approximation results in errors in predicted particle heat transfer of up to 35% at some locations in the particle field. Oxidation is shown to change the absorption efficiency of the particles significantly, while consideration of non-spherical particle shapes results in relatively small changes in the predicted optical properties of the particles.

  7. Radiative Transfer Modeling Within the Vegetation Based on Virtual Flux Decomposition

    NASA Astrophysics Data System (ADS)

    Kallel, A.

    2009-04-01

    The knowledge of vegetation density and structure at large scales is important for many applications related to global energy budget, carbon cycle, gross primary productivity, monitoring of land use change, hydrology, etc. The tools and methods allowing the acquisition of such information at regional to global scales are based on air- or spaceborne remote sensing data. Many methods and algorithms have therefore been developed in order to understand the relationships between the vegetation features (namely amount and structure) and the amount of sunlight, through reflectance measurements in the optical and near- to middle-infrared spectral domains. On the one hand, passive optical remote sensing has shown good results in monitoring the changes in canopy structure. On the other hand, despite the long development process, many of the physically-based approaches (i.e., methods based on physical radiative transfer models) suffer from significant shortcomings, in particular considering hyperspectral and multiangular data. Concerning the energy conservation, although the law of the conservation of radiative energy is one of the basement of the physically-based radiative transfer models, these latter tend to violate it frequently. This arises in particular when considering some finite size scattering elements (leaves or shoots) into equations originally describing a turbid medium (i.e. a medium having components with null size). This phenomenon, called the hot spot effect, is managed in classical radiative transfer model by increasing the reflectance due to the first collision of the solar irradiance calculated for turbid medium. Recently, Kallel et al. (2008) proposed another formulation in terms of increase of the posterior probability of gap which could itself be viewed as a decreasing of the vegetation density called "the effective vegetation density". Then, energy conservation is achieved using the same effective density to estimate the upward diffuse flux provided by

  8. Computation of Accurate Activation Barriers for Methyl-Transfer Reactions of Sulfonium and Ammonium Salts in Aqueous Solution.

    PubMed

    Gunaydin, Hakan; Acevedo, Orlando; Jorgensen, William L; Houk, K N

    2007-05-01

    The energetics of methyl-transfer reactions from dimethylammonium, tetramethylammonium, and trimethylsulfonium to dimethylamine were computed with density functional theory, MP2, CBS-QB3, and quantum mechanics/molecular mechanics (QM/MM) Monte Carlo methods. At the CBS-QB3 level, the gas-phase activation enthalpies are computed to be 9.9, 15.3, and 7.9 kcal/mol, respectively. MP2/6-31+G(d,p) activation enthalpies are in best agreement with the CBS-QB3 results. The effects of aqueous solvation on these reactions were studied with polarizable continuum model, generalized Born/surface area (GB/SA), and QM/MM Monte Carlo simulations utilizing free-energy perturbation theory in which the PDDG/PM3 semiempirical Hamiltonian for the QM and explicit TIP4P water molecules in the MM region were used. In the aqueous phase, all of these reactions proceed more slowly when compared to the gas phase, since the charged reactants are stabilized more than the transition structure geometries with delocalized positive charges. In order to obtain the aqueous-phase activation free energies, the gas-phase activation free energies were corrected with the solvation free energies obtained from single-point conductor-like polarizable continuum model and GB/SA calculations for the stationary points along the reaction coordinate.

  9. Non-contact pumping of light emitters via non-radiative energy transfer

    DOEpatents

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  10. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  11. A Self-Consistent Radiative Transfer Model for Simulating Active and Passive Observations of Precipitation

    NASA Astrophysics Data System (ADS)

    Adams, I. S.

    2015-12-01

    Current generation sensors suites such as those included on the Global Precipitation Measurement (GPM) mission, Aquarius, and Soil Moisture Active / Passive (SMAP) exploit a combination to provide a greater understanding of geophysical phenomena. While "operationalized" retrieval algorithms require fast forward models, the ability to perform higher fidelity simulations is necessary for understanding the physics of remote sensing problems to test assumptions and to develop parameterizations for the fast models. To ensure proper synergy between active and passive modeling, forward models must be consistent between the two sensor types. This work presents a self-consistent active and passive radiative transfer model for simulating radar and radiometer responses to precipitation. To accomplish this, we extend the Atmospheric Radiative Transfer Simulator (ARTS) version 2.3 to solve the radiative transfer equation for radar under multiple scattering conditions using Monte Carlo integration. Early versions of ARTS (1.1 and later) included a passive Monte Carlo solver, and ARTS is capable of handling atmospheres of up to three dimensions with ellipsoidal planetary geometries. The modular nature of ARTS facilitates extensibility, and the well-developed ray-tracing tools are suited for implementation of Monte Carlo algorithms. Finally, since ARTS handles the full Stokes vector, co- and cross-polarized reflectivity products are possible for scenarios that include nonspherical particles, with or without preferential alignment. The accuracy of the forward model will be demonstrated, and the effects of multiple scattering will be detailed. The three-dimensional nature of the radiative transfer model will be useful for understanding the effects of nonuniform beamfill and multiple scattering for spatially heterogeneous precipitation events. This targets of this forward model are GPM (the Dual-wavelength Precipitation Radar (DPR) and GPM Microwave Imager (GMI)) and airborne sensors

  12. Extending radiative transfer models by use of Bayes rule. [in atmospheric science

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1977-01-01

    This paper presents a procedure that extends some existing radiative transfer modeling techniques to problems in atmospheric science where curvature and layering of the medium and dynamic range and angular resolution of the signal are important. Example problems include twilight and limb scan simulations. Techniques that are extended include successive orders of scattering, matrix operator, doubling, Gauss-Seidel iteration, discrete ordinates and spherical harmonics. The procedure for extending them is based on Bayes' rule from probability theory.

  13. Radiative transfer in a semiinfinite medium with a specularly reflecting boundary

    NASA Technical Reports Server (NTRS)

    Ganapol, B. D.

    1995-01-01

    A consistent solution of the radiative transfer equation characterizing photon transport in a semi-infinite medium of refractive index greater than or equal to one is obtained following the method of Sobolev. Fresnel specular reflection, Snell's law and isotropic scattering are assumed. An algorithm is developed and its accuracy is demonstrated. A numerical Laplace transform inversion leads to an efficient evaluation for the interior flux and source function distributions.

  14. Radiation Heat Transfer in 3 Dimensions for Semi-Transparent Materials....

    SciTech Connect

    2010-12-02

    The RAD3D software solves the critical heat transfer mechanisms that occur in production glass furnaces. The code includes state-of-the-art solution algorithms for efficient radiant interaction of the heating elements, furnace walls and internal furnace components. The code specifically solves the coupled radiative and conductive heating of semi-transparent materials such as glass to calculate the temperature distribution in the glass during processing.

  15. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Bergstrom, Robert W.; Redemann, Jens

    2002-01-01

    This report is the final report for "Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects". It is a bibliographic compilation of 29 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 30 first-authored conference presentations. The tasks outlined in the various proposals are listed below with a brief comment as to the research performed. Copies of title/abstract pages of peer-reviewed publications are attached.

  16. Modelling canopy scale solar induced chlorophyll fluorescence simulated by the three dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Nagai, S.; Inoue, T.; Yang, W.; Ichii, K.

    2014-12-01

    Recent studies show that the vegetation canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellite. To understand how the canopy scale bidirectional fluorescence observations are related to three-dimensional fluorescence distribution within a plant canopy, it is necessary to evaluate canopy scale fluorescence emission using a detailed plant canopy radiative transfer model. In this study, we developed a three-dimensional plant canopy radiative transfer model that can simulate the bidirectional chlorophyll fluorescence radiance and show several preliminary results of fluorescence distribution at the tree level. To simulate the three dimensional variations in chlorophyll fluorescence from trees, we measured tree structures using a terrestrial LiDAR instrument. The measurements were conducted in Yokohama, Japan (35°22'49" N 139°37'29" E). Three Japanese cherry trees (Cerasus Speciosa) were chosen for our study (Figure 1). Leaf-level sun-induced chlorophyll fluorescence (SIF) is also necessary as an input of radiative transfer model. To measure the leaf-level SIF, we used high spectral resolution spectroradiometer (HR 4000, Ocean Optics Inc. USA). The spectral resolution of this instrument is 0.05 nm (full width half maximum). The spectral range measured was 720 to 780 nm. From the spectral radiance measurements, we estimated SIF using the three band Fraunhofer Line Depth (3FLD) method. The effect of solar and view zenith angles, multiple scattering depends on many factors such as back ground reflectance, leaf reflectance transmittance and landscape structures. To understand how the SIF from both sparse and dense forest stands vary with sun and view angles and optical variables, it is necessary to conduct further sensitivity analysis. Radiative transfer simulation will help understand SIF emission at variety of forest canopy cases.

  17. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    SciTech Connect

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  18. Radiative thermal conductivity in obsidian and estimates of heat transfer in magma bodies

    SciTech Connect

    Stein, J.; Shankland, T.J.; Nitsan, U.

    1981-05-10

    The optical transmission spectra of four ryholitic obsidian samples were measured in order to determine the importance of radiative heat transfer in granite magmas. The spectra, obtained in the temperature range 20-800/sup 0/C, show that the radiative spectral window in these samples is limited by a charge transfer band in the UV (400 nm) and Si-O stretching overtone in the IR (4500 nm). Within this window the main obstacles to radiative transfer, in order of decreasing importance, are background scattering, a water band centered at 2800 nm, and an Fe/sup 2 +/ crystal field band at 1100 nm. Unlike crystalline silicates the absorption bands in obsidian do not broaden significantly as temperature increases. As a result, the temperature dependence of the calculated radiative thermal conductivity K/sub R/ is dominated by the T/sup ..beta../ term. Actual values of K/sub R/ increase from 9 x 10/sup -5/ to 1 x 1/sup -3/ cal cm/sup -1/ s/sup -1/ deg/sup -1/ between 300/sup 0/ and 800/sup 0/C, the high-temperature value being comparable to the lattice thermal conductivity in obsidian and a lower limit for K/sub R/ in granitic melts. As the scattering coefficient in melts is probably significantly lower than in obsidian, the radiative conductivity in active plutons is likely to be much higher. As an example, if scattering and the water band are removed from the observed spectra of the obsidian samples, calculated values of K/sub R/ could increase by a factor of 5, to about 5 x 10/sup -3/ cal cm/sup -1/ s/sup -1/ deg/sup -1/ at 1000/sup 0/C.

  19. Monte Carlo method of radiative transfer applied to a turbulent flame modeling with LES

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Gicquel, Olivier; Veynante, Denis; Taine, Jean

    2009-06-01

    Radiative transfer plays an important role in the numerical simulation of turbulent combustion. However, for the reason that combustion and radiation are characterized by different time scales and different spatial and chemical treatments, the radiation effect is often neglected or roughly modelled. The coupling of a large eddy simulation combustion solver and a radiation solver through a dedicated language, CORBA, is investigated. Two formulations of Monte Carlo method (Forward Method and Emission Reciprocity Method) employed to resolve RTE have been compared in a one-dimensional flame test case using three-dimensional calculation grids with absorbing and emitting media in order to validate the Monte Carlo radiative solver and to choose the most efficient model for coupling. Then the results obtained using two different RTE solvers (Reciprocity Monte Carlo method and Discrete Ordinate Method) applied on a three-dimensional flame holder set-up with a correlated-k distribution model describing the real gas medium spectral radiative properties are compared not only in terms of the physical behavior of the flame, but also in computational performance (storage requirement, CPU time and parallelization efficiency). To cite this article: J. Zhang et al., C. R. Mecanique 337 (2009).

  20. Evidence of energy transfer in nanoparticle-porphyrins conjugates for radiation therapy enhancement

    NASA Astrophysics Data System (ADS)

    Kudinov, Konstantin; Cooper, Daniel; Tyagi, Pooja; Bekah, Devesh; Bhattacharyya, Dhrittiman; Hill, Colin; Ha, Jonathan Kin; Nadeau, Jay; Bradforth, Stephen

    2015-03-01

    We report progress towards combining radiation therapy (RT) and photodynamic therapy (PDT) using scintillating nanoparticle (NP)-photosensitizer conjugates. In this approach, scintillating NPs are excited by clinically relevant ionizing radiation sources and subsequently transfer energy to conjugated photosensitizers via FRET, acting as an energy mediator between ionizing radiation and photosensitizer molecules. The excited photosensitizers generate reactive oxygen species that can induce local damage and immune response. Advantages of the scheme include: 1) Compared with traditional radiation therapy, a possible decrease of the total radiation dose needed to eliminate the lesion; 2) Compared with traditional PDT, the ability to target deeper and more highly pigmented lesions; 3) The possibility of additional photosensitizing effects due to the scintillation of the nanoparticles. In this work, the photosensitizer molecule chlorin e6 was covalently bound to the surface of LaF3:Ce NPs. After conjugation, the photoluminescence intensity of NPs decreased, and fluorescence lifetime of conjugated chlorin e6 became sensitive to excitation wavelength, suggesting rapid FRET. In addition, scintillation spectra of nanoparticles were measured. Preliminary calculations suggest that the observed scintillation efficiencies are sufficient to enhance RT. In vitro cancer cell studies suggest conjugates are taken up by cells. Survival curves with radiation exposure suggest that the particles alone cause radiosensitization comparable to that seen with gold nanoparticles.

  1. Implementation of the equation of radiative transfer on block-structured grids for modeling light propagation in tissue.

    PubMed

    Montejo, Ludguier D; Klose, Alexander D; Hielscher, Andreas H

    2010-09-14

    We present the first algorithm for solving the equation of radiative transfer (ERT) in the frequency domain (FD) on three-dimensional block-structured Cartesian grids (BSG). This algorithm allows for accurate modeling of light propagation in media of arbitrary shape with air-tissue refractive index mismatch at the boundary at increased speed compared to currently available structured grid algorithms. To accurately model arbitrarily shaped geometries the algorithm generates BSGs that are finely discretized only near physical boundaries and therefore less dense than fine grids. We discretize the FD-ERT using a combination of the upwind-step method and the discrete ordinates (S(N)) approximation. The source iteration technique is used to obtain the solution. We implement a first order interpolation scheme when traversing between coarse and fine grid regions. Effects of geometry and optical parameters on algorithm performance are evaluated using numerical phantoms (circular, cylindrical, and arbitrary shape) and varying the absorption and scattering coefficients, modulation frequency, and refractive index. The solution on a 3-level BSG is obtained up to 4.2 times faster than the solution on a single fine grid, with minimal increase in numerical error (less than 5%).

  2. Giant heat transfer in the crossover regime between conduction and radiation

    PubMed Central

    Kloppstech, Konstantin; Könne, Nils; Biehs, Svend-Age; Rodriguez, Alejandro W.; Worbes, Ludwig; Hellmann, David; Kittel, Achim

    2017-01-01

    Heat is transferred by radiation between two well-separated bodies at temperatures of finite difference in vacuum. At large distances the heat transfer can be described by black body radiation, at shorter distances evanescent modes start to contribute, and at separations comparable to inter-atomic spacing the transition to heat conduction should take place. We report on quantitative measurements of the near-field mediated heat flux between a gold coated near-field scanning thermal microscope tip and a planar gold sample at nanometre distances of 0.2–7 nm. We find an extraordinary large heat flux which is more than five orders of magnitude larger than black body radiation and four orders of magnitude larger than the values predicted by conventional theory of fluctuational electrodynamics. Different theories of phonon tunnelling are not able to describe the observations in a satisfactory way. The findings demand modified or even new models of heat transfer across vacuum gaps at nanometre distances. PMID:28198369

  3. Linear perturbation theory of reionization in position space: Cosmological radiative transfer along the light cone

    NASA Astrophysics Data System (ADS)

    Mao, Yi; D'Aloisio, Anson; Wandelt, Benjamin D.; Zhang, Jun; Shapiro, Paul R.

    2015-04-01

    The linear perturbation theory of inhomogeneous reionization (LPTR) has been developed as an analytical tool for predicting the global ionized fraction and large-scale power spectrum of ionized density fluctuations during reionization. In the original formulation of the LPTR, the ionization balance and radiative transfer equations are linearized and solved in Fourier space. However, the LPTR's approximation to the full solution of the radiative transfer equation is not straightforward to interpret, since the latter is most intuitively conceptualized in position space. To bridge the gap between the LPTR and the language of numerical radiative transfer, we present a new, equivalent, position-space formulation of the LPTR that clarifies the approximations it makes and facilitates its interpretation. We offer a comparison between the LPTR and the excursion-set model of reionization (ESMR), and demonstrate the built-in capability of the LPTR to explore a wide range of reionization scenarios, and to go beyond the ESMR in exploring scenarios involving X-rays.

  4. Casimir Friction and Near-field Radiative Heat Transfer in Graphene Structures

    NASA Astrophysics Data System (ADS)

    Volokitin, A. I.

    2017-02-01

    The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO2 substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO2 substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO2 substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO2 substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.

  5. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  6. Status of Radiative Transfer Model (RTM) development for the Northrop Grumman Venus Atmospheric Maneuverable Platform (VAMP) Technology Development Program

    NASA Astrophysics Data System (ADS)

    Wong, Eric

    2014-11-01

    In support of the Northrop Grumman/L-Garde Venus Atmospheric Maneuverable Platform (VAMP) development, we are developing a multi-purpose radiative transfer model (RTM) for the applications of the Venus atmosphere. For the solar array sizing, spectral solar radiance calculations are needed and a Correlated-k method of spectral integration will be used. This method is relatively fast computationally and typical error of the method is within a few percent, sufficiently accurate for solar array sizing analyses. For sensor characterization or sensor performance study, details of an absorption line, e.g. the near-IR “atmospheric window” absorption lines, must be used and an equivalent line-by-line calculation will be performed. At the completion of the model a large data base of radiance profiles of different atmospheric conditions will be created. The database can also be used to support thermal radiation analysis for other sub-systems. In this poster, we present our current state of the RTM development and model validation development. Additionally, we will present some preliminary comparison of top-of-atmosphere solar radiance with Venus Express VIRTIS measurements.

  7. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2007-09-30

    An efficient method for the solution of 3-D Radiative Transfer Problems”, JQSRT. 45. 47-56, (1991) 3. A. Sánchez, T.F. Smith, and W. F. Krajewski ...Haferman, T. F. Smith, and W. F. Krajewski , “A Multi-dimensional Discrete Ordinates Method for Polarized Radiative Transfer, Part I: Validation for...Operator Theory of Radiative Transfer. II. Scattering from Maritime Haze,” Appl. Opt. l2, 1071-1084 (1973). PUBLICATIONS 1. P . Zhai, G. W. Kattawar

  8. Analytical algorithm for modeling polarized solar radiation transfer through the atmosphere for application in processing complex lidar and radiometer measurements

    NASA Astrophysics Data System (ADS)

    Chaikovskaya, L.; Dubovik, O.; Litvinov, P.; Grudo, J.; Lopatsin, A.; Chaikovsky, A.; Denisov, S.

    2015-01-01

    Inversion algorithms and program packages recently created for processing data of the ground-based radiometer spectral measurements along with lidar multi-wavelength measurements are extremely multiparametric. Therefore, it is very important to develop an efficient program module for computations of functions modeling measurements by a sun-radiometer in the inversion procedure. In this paper, we present the analytical version of such efficient algorithm and analytical code on C++ designed for performance of algorithm testing. The code computes multiple scattering of the Sun light in the atmosphere. Data output are the radiance and linear polarization parameters angular patterns at a preselected altitude. The atmosphere model with mixed aerosol and molecular scattering is given approximately as the homogeneous atmosphere model. The algorithm testing has been carried out by comparison of computed data with accurate data obtained on the base of the discrete-ordinate code. Errors of estimates of downward radiance above the Earth surface turned out to be within 10%-15%.. The analytical solution construction concept has taken from the scalar task of solar radiation transfer in the atmosphere where an approximate analytical solution was developed. Taking into account the fact that aerosol phase functions are highly forward elongated, the multi-component method of solving vector transfer equations and small-angle approximation have been used. Generalization of the scalar approach to the polarization parameters is described.

  9. Assessment of the ultraviolet radiation field in ocean waters from space-based measurements and full radiative-transfer calculations.

    PubMed

    Vasilkov, Alexander P; Herman, Jay R; Ahmad, Ziauddin; Kahru, Mati; Mitchell, B Greg

    2005-05-10

    Quantitative assessment of the UV effects on aquatic ecosystems requires an estimate of the in-water radiation field. Actual ocean UV reflectances are needed for improving the total ozone retrievals from the total ozone mapping spectrometer (TOMS) and the ozone monitoring instrument (OMI) flown on NASA's Aura satellite. The estimate of underwater UV radiation can be done on the basis of measurements from the TOMS/OMI and full models of radiative transfer (RT) in the atmosphere-ocean system. The Hydrolight code, modified for extension to the UV, is used for the generation of look-up tables for in-water irradiances. A look-up table for surface radiances generated with a full RT code is input for the Hydrolight simulations. A model of seawater inherent optical properties (IOPs) is an extension of the Case 1 water model to the UV. A new element of the IOP model is parameterization of particulate matter absorption based on recent in situ data. A chlorophyll product from ocean color sensors is input for the IOP model. Verification of the in-water computational scheme shows that the calculated diffuse attenuation coefficient Kd is in good agreement with the measured Kd.

  10. The Use of Iteration Factors Method in the Solution of Multilevel Radiative Transfer Problems in Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Kuzmanovska-Barandovska, O.

    2012-12-01

    The NLTE problem of formation of spectral lines is one of the most difficult ones to deal with; due to the important role of scattering processes it is nonlocal and for the multilevel case it is additionally nonlinear. Therefore, the problem requires simultaneous solution of radiative transfer (RT) and statistical equilibrium (SE) equations which can be achieved through iterative procedure. There is still a great need of efficient numerical methods for a solution of NLTE radiative transfer problems as they are a necessary step of stellar atmospheres modelling and other important astrophysical problems. In the thesis we develop fast and accurate numerical method that uses iteration factors. The method is based on the use of quasi-invariant functions - iteration factors, in a simple iterative procedure. Defined as ratios of the moments (integrals of angles and frequencies) of radiation field intensities, the factors are calculated on the beginning of each iterative step from the current solution and then used to obtain its correction. In the thesis we extend iteration factors method developed for a solution of linear problems - monochromatic problem and two-level atom line transfer problems to the solution of a more generalized multilevel problem of spectral line formation with complete redistribution and no background continuum. The additional difficulty arises from the non linear coupling of atomic level populations and the radiation filed intensities in the corresponding spectral lines. In the thesis we suggest and describe in details four iterative procedures that use two families of iteration factors defined for a constant property medium and two different approaches for a simultaneous solution of nonlinear RT and SE equations: (1) linearization of the equations with respect to all relevant variables and (2) modification of the SE equations in order to make them linear. In both approaches the substitution of the linearized SE equations in the moments of RT

  11. A simple radiative transfer model of the high latitude mesospheric scattering layer

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.

    1974-01-01

    A simple radiative transfer model of the particle layer found at 85 km over the summer poles is presented. The effects of the layer on the global radiative temperature, the polar region temperature, and the greenhouse effect are discussed. The estimated magnitude of the global radiative temperature change is 3.5 x .001 K to 2.2 x .01 K, depending on the value of the imaginary part of the particle index of refraction. The layer is shown to have a possible secondary influence on the temperature of the polar region while the contribution which the layer makes to the greenhouse effect is shown to be negligible. The imaginary part of the particle index of refraction is shown to be important in determining the attenuation properties of the layer.

  12. Application of general invariance relations reduction method to solution of radiation transfer problems

    NASA Astrophysics Data System (ADS)

    Rogovtsov, Nikolai N.; Borovik, Felix

    2016-11-01

    A brief analysis of different properties and principles of invariance to solve a number of classical problems of the radiation transport theory is presented. The main ideas, constructions, and assertions used in the general invariance relations reduction method are described in outline. The most important distinctive features of this general method of solving a wide enough range of problems of the radiation transport theory and mathematical physics are listed. To illustrate the potential of this method, a number of problems of the scalar radiative transfer theory have been solved rigorously in the article. The main stages of rigorous derivations of asymptotical formulas for the smallest in modulo elements of the discrete spectrum and the eigenfunctions, corresponding to them, of the characteristic equation for the case of an arbitrary phase function and almost conservative scattering are described. Formulas of the same type for the azimuthal averaged reflection function, the plane and spherical albedos have been obtained rigorously. New analytical representations for the reflection function, the plane and spherical albedos have been obtained, and effective algorithms for calculating these values have been offered for the case of a practically arbitrary phase function satisfying the Hölder condition. New analytical representation of the «surface» Green function of the scalar radiative transfer equation for a semi-infinite plane-parallel conservatively scattering medium has been found. The deep regime asymptotics of the "volume" Green function has been obtained for the case of a turbid medium of cylindrical form.

  13. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    SciTech Connect

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  14. Transient conductive, radiative heat transfer coupled with moisture transport in attic insulations

    NASA Astrophysics Data System (ADS)

    Gorthala, R.; Harris, K. T.; Roux, J. A.; McCarty, T. A.

    1994-01-01

    A transient, one-dimensional thermal model that incorporates combined conduction, radiation heat transfer, and moisture transport for residential attic insulations has been developed. The governing equations are the energy equation, the radiative transport equation for volumetric radiation within the insulation batt, and the species equations for bound H2O and vapor H2O. A simultaneous solution procedure with a Eulerian control volume-based finite difference method was used to solve the energy equation and the species equations. The method of discrete ordinates was used in solving the radiative transport equation. For H2O transport, both diffusion of vapor H2O and bound H2O and moisture adsorption/desorption within the insulation binder are included in the model. The experimental data measured at an occupied North Mississippi residence for R19STD (standard R19 fiberglass insulation batt without a foil radiant barrier) were used to validate the model which predicted heat fluxes for summer, spring, winter, and fall seasonal conditions. These predictions were compared with the measured heat flux data and the predictions from the dry model (without the moisture transport). Various profiles such as temperature-time histories, relative humidity time histories, spatial H2O concentrations, spatial temperatures, and spatial heat fluxes are presented to explain the overall heat transfer behavior.

  15. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  16. COLLAPSE OF MOLECULAR CLOUD CORES WITH RADIATION TRANSFER: FORMATION OF MASSIVE STARS BY ACCRETION

    SciTech Connect

    Sigalotti, Leonardo Di G.; Daza-Montero, Judith; De Felice, Fernando

    2009-12-20

    Most early radiative transfer calculations of protostellar collapse have suggested an upper limit of approx40 M{sub sun} for the final stellar mass before radiation pressure can exceed the star's gravitational pull and halt the accretion. Here we perform further collapse calculations, using frequency-dependent radiation transfer coupled to a frequency-dependent dust model that includes amorphous carbon particles, silicates, and ice-coated silicates. The models start from pressure-bounded, logatropic spheres of mass between 5 M{sub sun} and 150 M{sub sun} with an initial nonsingular density profile. We find that in a logatrope the infall is never reversed by the radiative forces on the dust and that stars with masses approx>100 M{sub sun} may form by continued accretion. Compared to previous models that start the collapse with a rho propor to r{sup -2} density configuration, our calculations result in higher accretion times and lower average accretion rates with peak values of approx5.8 x 10{sup -5} M{sub sun} yr{sup -1}. The radii and bolometric luminosities of the produced massive stars (approx>90 M{sub sun}) are in good agreement with the figures reported for detected stars with initial masses in excess of 100 M{sub sun}. The spectral energy distribution from the stellar photosphere reproduces the observed fluxes for hot molecular cores with peaks of emission from mid- to near-infrared.

  17. Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study

    NASA Astrophysics Data System (ADS)

    Ali, M. E.; Sandeep, N.

    The knowledge of heat transfer in MHD nanofluid flows over different geometries is very important for heat exchangers design, transpiration, fiber coating, etc. Recent days, heat transfer of non-Newtonian nanofluids plays a major role in manufacturing processes due to its shear thinning and thickening properties. Naturally, magnetite (Fe3O4) nanoparticles move randomly within the base fluid. By applying the transverse magnetic field, the motion of those nanoparticles becomes uniform. This phenomenon is very useful in heat transfer processes. With this initiation, a mathematical model is developed to investigate the heat transfer behaviour of electrically conducting MHD flow of a Casson nanofluid over a cone, wedge and a plate. We consider a Cattaneo-Christov heat flux model with variable source/sink and nonlinear radiation effects. We also considered water as the base fluid suspended with magnetite nanoparticles. R-K-Felhberg-integration scheme is employed to resolve the altered governing nonlinear equations. Impacts of governing parameters on common profiles (temperature and velocity) are conversed (in three cases). By viewing the same parameters, the friction factor coefficient and heat transfer rate are discussed with the assistance of tables. It is found that the boundary layers (thermal and flow) over three geometries (cone, wedge and a plate) are not uniform. It is also found that the thermal relaxation parameter effectively enhances the heat local Nusselt number and the heat transfer performance is high in the flow over a wedge when compared with the flows over a cone and plate.

  18. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect.

    PubMed

    Xu, Shuai; Wang, Jufang; Ding, Nan; Hu, Wentao; Zhang, Xurui; Wang, Bing; Hua, Junrui; Wei, Wenjun; Zhu, Qiyun

    2015-01-01

    Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells.

  19. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    SciTech Connect

    Basu, Soumyadipta Yang, Yue; Wang, Liping

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  20. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    PubMed

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-08

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.