Science.gov

Sample records for accurate radiative transfer

  1. 3ARM: A Fast, Accurate Radiative Transfer Model for Use in Climate Models

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Sokolik, I. N.; Toon, O. B.; Mlawer, E. J.; Clough, S. A.; Ackerman, T. P.; Mather, J.

    1996-01-01

    A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.

  2. 3ARM: A Fast, Accurate Radiative Transfer Model for use in Climate Models

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Sokolik, I. N.; Toon, O. B.; Mlawer, E. J.; Clough, S. A.; Ackerman, T. P.; Mather, J.

    1996-01-01

    A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.

  3. GORRAM: Introducing accurate operational-speed radiative transfer Monte Carlo solvers

    NASA Astrophysics Data System (ADS)

    Buras-Schnell, Robert; Schnell, Franziska; Buras, Allan

    2016-06-01

    We present a new approach for solving the radiative transfer equation in horizontally homogeneous atmospheres. The motivation was to develop a fast yet accurate radiative transfer solver to be used in operational retrieval algorithms for next generation meteorological satellites. The core component is the program GORRAM (Generator Of Really Rapid Accurate Monte-Carlo) which generates solvers individually optimized for the intended task. These solvers consist of a Monte Carlo model capable of path recycling and a representative set of photon paths. Latter is generated using the simulated annealing technique. GORRAM automatically takes advantage of limitations on the variability of the atmosphere. Due to this optimization the number of photon paths necessary for accurate results can be reduced by several orders of magnitude. For the shown example of a forward model intended for an aerosol satellite retrieval, comparison with an exact yet slow solver shows that a precision of better than 1% can be achieved with only 36 photons. The computational time is at least an order of magnitude faster than any other type of radiative transfer solver. Merely the lookup table approach often used in satellite retrieval is faster, but on the other hand suffers from limited accuracy. This makes GORRAM-generated solvers an eligible candidate as forward model in operational-speed retrieval algorithms and data assimilation applications. GORRAM also has the potential to create fast solvers of other integrable equations.

  4. A fast and accurate PCA based radiative transfer model: Extension to the broadband shortwave region

    NASA Astrophysics Data System (ADS)

    Kopparla, Pushkar; Natraj, Vijay; Spurr, Robert; Shia, Run-Lie; Crisp, David; Yung, Yuk L.

    2016-04-01

    Accurate radiative transfer (RT) calculations are necessary for many earth-atmosphere applications, from remote sensing retrieval to climate modeling. A Principal Component Analysis (PCA)-based spectral binning method has been shown to provide an order of magnitude increase in computational speed while maintaining an overall accuracy of 0.01% (compared to line-by-line calculations) over narrow spectral bands. In this paper, we have extended the PCA method for RT calculations over the entire shortwave region of the spectrum from 0.3 to 3 microns. The region is divided into 33 spectral fields covering all major gas absorption regimes. We find that the RT performance runtimes are shorter by factors between 10 and 100, while root mean square errors are of order 0.01%.

  5. Global climate modeling of Saturn's atmosphere: fast and accurate radiative transfer and exploration of seasonal variability

    NASA Astrophysics Data System (ADS)

    Guerlet, Sandrine; Spiga, A.; Sylvestre, M.; Fouchet, T.; Millour, E.; Wordsworth, R.; Leconte, J.; Forget, F.

    2013-10-01

    Recent observations of Saturn’s stratospheric thermal structure and composition revealed new phenomena: an equatorial oscillation in temperature, reminiscent of the Earth's Quasi-Biennal Oscillation ; strong meridional contrasts of hydrocarbons ; a warm “beacon” associated with the powerful 2010 storm. Those signatures cannot be reproduced by 1D photochemical and radiative models and suggest that atmospheric dynamics plays a key role. This motivated us to develop a complete 3D General Circulation Model (GCM) for Saturn, based on the LMDz hydrodynamical core, to explore the circulation, seasonal variability, and wave activity in Saturn's atmosphere. In order to closely reproduce Saturn's radiative forcing, a particular emphasis was put in obtaining fast and accurate radiative transfer calculations. Our radiative model uses correlated-k distributions and spectral discretization tailored for Saturn's atmosphere. We include internal heat flux, ring shadowing and aerosols. We will report on the sensitivity of the model to spectral discretization, spectroscopic databases, and aerosol scenarios (varying particle sizes, opacities and vertical structures). We will also discuss the radiative effect of the ring shadowing on Saturn's atmosphere. We will present a comparison of temperature fields obtained with this new radiative equilibrium model to that inferred from Cassini/CIRS observations. In the troposphere, our model reproduces the observed temperature knee caused by heating at the top of the tropospheric aerosol layer. In the lower stratosphere (20mbar radiative heating/cooling by trace

  6. Fast and Accurate Radiative Transfer Calculations Using Principal Component Analysis for (Exo-)Planetary Retrieval Models

    NASA Astrophysics Data System (ADS)

    Kopparla, P.; Natraj, V.; Shia, R. L.; Spurr, R. J. D.; Crisp, D.; Yung, Y. L.

    2015-12-01

    Radiative transfer (RT) computations form the engine of atmospheric retrieval codes. However, full treatment of RT processes is computationally expensive, prompting usage of two-stream approximations in current exoplanetary atmospheric retrieval codes [Line et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT computations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those few optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Kopparla et al. [2015, in preparation] extended the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Here, we apply the PCA method to a some typical (exo-)planetary retrieval problems. Comparisons between the new model, called Universal Principal Component Analysis Radiative Transfer (UPCART) model, two-stream models and line-by-line RT models are performed, for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the top of the atmosphere for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and stellar and viewing geometries. We demonstrate that very accurate radiance and flux estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases, as compared to a numerically exact line-by-line RT model. The accuracy is enhanced when the results are convolved to typical instrument resolutions. The operational speed and accuracy of UPCART can be further improved by optimizing binning schemes and parallelizing the codes, work

  7. Radiative Transfer: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Mayer, Bernhard; Emde, Claudia; Buras, Robert; Kylling, Arve

    Solar and terrestrial radiation is the driver of atmospheric dynamics and chemistry and can be exploited by remote sensing algorithms to determine atmospheric composition. For this purpose, accurate radiative transfer models are needed. Here, a modern radiative transfer tool developed over many years at the Institute of Atmospheric Physics is explained. As an application, the remote sensing of cloud microphysics using the angular distribution of reflected solar radiance in the rainbow and backscatter glory is shown, with special emphasis on the polarization of radiation.

  8. Accurately Modelling the Absorption of a Mixture of Gases at Low- to Medium-resolution in Exoplanetary and Brown Dwarf Atmospheric Radiative Transfer Calculations

    NASA Astrophysics Data System (ADS)

    Garland, Ryan; Irwin, Patrick Gerard Joseph

    2016-10-01

    Exoplanetary and brown dwarf atmospheres are extremely diverse environments ranging over many different temperatures, pressures, and compositions. In order to model the spectra produced by the these objects, a commonplace approach in exoplanetary science is to use cross-sections of individual gases to quickly calculate the atmospheric opacities. However, when combining multiple gases with non-monochromatic absorption coefficients, the multiplication property of transmission does not hold. The resulting spectra are hence unreliable. Extensive work was carried out on Solar System radiative transfer models to find an efficient alternative to line-by-line calculations of opacity which was more accurate than combining cross-sections, resulting in many band models and the correlated-k method. Here we illustrate the effect of using cross-sections to model typical brown dwarf and exoplanetary atmospheres (e.g. HD189733b), and compare them to the spectra calculated using the correlated-k method. We verify our correlated-k method using a line-by-line model. For the same objects, we also present the effects of pressure broadening on the resulting spectra. Considering both the method of calculation (i.e. cross-section or correlated-k) and the treatment of pressure broadening, we show that the differences in the spectra are immediately obvious and hugely significant. Entire spectral features can appear or disappear, changing the morphology of the spectra. For the inspected brown dwarfs, these spectral features can vary by up to three orders of magnitude in luminosity. For our exoplanets, the transit depth can vary by up to 1%. We conclude that each effect would change the retrieved system parameters (i.e. temperature and abundances) considerably.

  9. Accurate Quantification of Ionospheric State Based on Comprehensive Radiative Transfer Modeling and Optimal Inversion of the OI 135.6-nm Emission

    NASA Astrophysics Data System (ADS)

    Qin, J.; Kamalabadi, F.; Makela, J. J.; Meier, R. J.

    2015-12-01

    Remote sensing of the nighttime OI 135.6-nm emission represents the primary means of quantifying the F-region ionospheric state from optical measurements. Despite its pervasive use for studying aeronomical processes, the interpretation of these emissions as a proxy for ionospheric state remains ambiguous in that the relative contributions of radiative recombination and mutual neutralization to the production and, especially, the effects of scattering and absorption on the transport of the 135.6-nm emissions have not been fully quantified. Moreover, an inversion algorithm, which is robust to varying ionospheric structures under different geophysical conditions, is yet to be developed for statistically optimal characterization of the ionospheric state. In this work, as part of the NASA ICON mission, we develop a comprehensive radiative transfer model from first principle to investigate the production and transport of the nighttime 135.6-nm emissions. The forward modeling investigation indicates that under certain conditions mutual neutralization can contribute up to ~38% to the 135.6-nm emissions. Moreover, resonant scattering and pure absorption can reduce the brightness observed in the limb direction by ~40% while enhancing the brightness in the nadir direction by ~25%. Further analysis shows that without properly addressing these effects in the inversion process, the peak electron density in the F-region ionosphere (NmF2) can be overestimated by up to ~24%. To address these issues, an inversion algorithm that properly accounts for the above-mentioned effects is proposed for accurate quantification of the ionospheric state using satellite measurements. The ill-posedness due to the intrinsic presence of noise in real data is coped with by incorporating proper regularizations that enforce either global smoothness or piecewise smoothness of the solution. Application to model-generated data with different signal-to-noise ratios show that the algorithm has achieved

  10. Numerical Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Kalkofen, Wolfgang

    2009-07-01

    Preface; Introduction; Part I. Operator Perturbation: 1. Survey of operator perturbation methods W. Kalkofen; 2. Line formation in expanding atmospheres: multilevel calculations using approximate lambda operators W. R. Hamann; 3. Stellar atmospheres in non-LTE: model construction and line formation calculations using approximate lambda operators K. Werner; 4. Acceleration of convergence L. H. Auer; 5. Line formation in a time-dependent atmosphere W. Kalkofen; 6. Iterative solution of multilevel transfer problems Eugene H. Avrett and Rudolf Loeser; 7. An algorithm for the simultaneous solution of thousands of transfer equations under global constraints Lawrence S. Anderson; 8. Operator perturbation for differential equations W. Kalkofen; Part II. Polarised Radiation: 9. A gentle introduction to polarised radiative transfer David E. Rees; 10. Non-LTE polarised radiative transfer in special lines David E. Rees and Graham A. Murphy; 11. Transfer of polarised radiation using 4x4 matrices E. Landi Degli'Innocenti; 12. Radiative transfer in the presence of strong magnetic fields A. A. van Ballegooijen; 13. An integral operator technique of radiative transfer in spherical symmetry A. Peraiah; 14. Discrete ordinate matrix method M. Schmidt and R. Wehrse.

  11. Utrecht Radiative Transfer Courses

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2003-01-01

    The Utrecht course ``The Generation and Transport of Radiation'' teaches basic radiative transfer to second-year students. It is a much-expanded version of the first chapter of Rybicki & Lightman's ``Radiative Processes in Astrophysics''. After this course, students understand why intensity is measured per steradian, have an Eddington-Barbier feel for optically thick line formation, and know that scattering upsets LTE. The text is a computer-aided translation by Ruth Peterson of my 1992 Dutch-language course. My aim is to rewrite this course in non-computer English and make it web-available at some time. In the meantime, copies of the Peterson translation are made yearly at Uppsala -- ask them, not me. Eventually it should become a textbook. The Utrecht course ``Radiative Transfer in Stellar Atmospheres'' is a 30-hour course for third-year students. It treats NLTE line formation in plane-parallel stellar atmospheres at a level intermediate between the books by Novotny and Boehm-Vitense, and Mihalas' ``Stellar Atmospheres''. After this course, students appreciate that epsilon is small, that radiation can heat or cool, and that computers have changed the field. This course is web-available since 1995 and is regularly improved -- but remains incomplete. Eventually it should become a textbook. The three Utrecht exercise sets ``Stellar Spectra A: Basic Line Formation'', ``Stellar Spectra B: LTE Line Formation'', and ``Stellar Spectra C: NLTE Line Formation'' are IDL-based computer exercises for first-year, second-year, and third-year students, respectively. They treat spectral classification, Saha-Boltzmann population statistics, the curve of growth, the FAL-C solar atmosphere model, the role of H-minus in the solar continuum, LTE formation of Fraunhofer lines, inversion tactics, the Feautrier method, classical lambda iteration, and ALI computation. The first two sets are web-available since 1998; the third will follow. Acknowledgement. Both courses owe much to previous

  12. Spectrally Invariant Approximation within Atmospheric Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2011-01-01

    Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These spectrally invariant relationships are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in cloud-dominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with 1D radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.

  13. Accurate momentum transfer cross section for the attractive Yukawa potential

    SciTech Connect

    Khrapak, S. A.

    2014-04-15

    Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within ±2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.

  14. Auroral resonance line radiative transfer

    SciTech Connect

    Gladstone, G.R. )

    1992-02-01

    A model is developed for simulating the two-dimensional radiative transfer of resonance line emissions in auroras. The method of solution utilizes Fourier decomposition of the horizontal dependence in the intensity field so that the two-dimensional problem becomes a set of one-dimensional problems having different horizontal wavenumbers. The individual one-dimensional problems are solved for using a Feautrier-type solution of the differential-integral form of the radiative transfer equation. In the limit as the horizontal wavenumber becomes much larger than the local line-center extinction coefficient, the scattering integral becomes considerably simplified, and the final source function is evaluated in closed form. The two-dimensional aspects of the model are tested against results for nonresonance radiative transfer studies, and the resonance line part of the model is tested against results of existing plane-parallel resonance line radiative transfer codes. Finally, the model is used to simulate the intensity field of O{sub I} 1,304{angstrom} for hard and soft auroras of various Gaussian horizontal widths. The results demonstrate the importance of considering the effects of two-dimensional radiative transfer when analyzing auroral resonance line data.

  15. Radiative transfer in spherical atmospheres

    NASA Astrophysics Data System (ADS)

    Kalkofen, W.; Wehrse, R.

    A method for defining spherical model atmospheres in radiative/convective and hydrostatic equilibrium is presented. A finite difference form is found for the transfer equation and a matrix operator is developed as the discrete space analog (in curvilinear coordinates) of a formal integral in plane geometry. Pressure is treated as a function of temperature. Flux conservation is maintained within the energy equation, although the correct luminosity transport must be assigned for any given level of the atmosphere. A perturbed integral operator is used in a complete linearization of the transfer and constraint equations. Finally, techniques for generating stable solutions in economical computer time are discussed.

  16. RRTM: A rapid radiative transfer model

    SciTech Connect

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A.

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  17. Nonlinear response matrix methods for radiative transfer. [Radiative transfer

    SciTech Connect

    Miller, W.F. Jr.; Lewis, E.E.

    1987-01-01

    A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs.

  18. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  19. Radiative transfer in dusty nebulae

    NASA Technical Reports Server (NTRS)

    Dana, R. A.

    1977-01-01

    The effects of dust scattering on observable optical and infrared parameters, and the accuracy of approximate solutions were examined. The equation of radiative transfer in a static and homogeneous, but not necessarily uniform, distribution gas and dust around a central empty core with a point source of energy at its center was solved. The dust properties were characterized by a phenomenological extinction cross section, albedo and parameters describing the anisotropy of dust scattering. For ultraviolet photons, ionization equilibrium equations for the gas were solved, and for infrared photons a self-consistent dust temperature was calculated. Ray tracing was used to solve for the angular dependence of the intensity.

  20. Radiative transfer in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Manning, Amanda J. L.

    In recent years, much debate has surrounded phenomena such as the depletion of the ozone layer and the onset of greenhouse warming, which have occurred due to the changing concentrations of various constituents in the earth's atmosphere. The influx into the middle atmosphere of unnatural quantities of trace gases such as carbon dioxide and methane is likely to affect global climate both adversely and irreversibly. In order to model the response of the atmosphere to these changes, and to evaluate the relative importance of various gases in the interlinked radiative, dynamical, and chemical processes taking place, it is vital that we understand as fully as possible the role played by radiative transfer. To this end, a detailed yet flexible numerical model, covering the entire infrared spectrum, was developed for the study of radiative transfer processes in the stratosphere and mesosphere. The scheme is intended to be as accurate as possible within the constraints of available computer resources, and to produce reference heating rates against which those derived using more approximate methods may be checked. Particular consideration was given to minor constituents, including water vapor, methane, and nitrous oxide, whose roles were underestimated in many previous studies, and to minor spectral bands of major constituents, such as the 4.3 micron and 10 micron bands of carbon dioxide and the 14.3 micron band of ozone, whose importance with regard to the radiative balance of the middle atmosphere has not yet been fully evaluated. Considerable attention is paid to the calculation of atmospheric transmittance: the sensitivity of the heating rates to the choice of narrow band Goody or Malkmus model transmittances, as opposed to those generated using the high-resolution GENLN2 line-by-line model is assessed. Diffuse radiation is accounted for by explicit Gaussian integration over zenith angle, and the way in which heating rates thus generated differ from those derived with

  1. Radiative Transfer in the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Manning, Amanda J. L.

    Available from UMI in association with The British Library. Requires signed TDF. In recent years, much debate has surrounded phenomena such as the depletion of the ozone layer and the onset of greenhouse warming, which have occurred due to the changing concentrations of various constituents in the earth's atmosphere. The influx into the middle atmosphere of unnatural quantities of trace gases such as carbon dioxide and methane is likely to affect global climate both adversely and irreversibly. In order to model the response of the atmosphere to these changes, and to evaluate the relative importance of various gases in the interlinked radiative, dynamical and chemical processes taking place, it is vital that we understand as fully as possible the role played by radiative transfer. To this end, a detailed yet flexible numerical model, covering the entire infrared spectrum, has been developed for the study of radiative transfer processes in the stratosphere and mesosphere. The scheme is intended to be as accurate as possible within the constraints of available computer resources, and to produce reference heating rates against which those derived using more approximate methods may be checked. Particular consideration has been given to minor constituents, including water vapour, methane and nitrous oxide, whose roles have been underestimated in many previous studies, and to minor spectral bands of major constituents, such as the 4.3 μm and 10 μm bands of carbon dioxide and the 14.3 μm band of ozone, whose importance with regard to the radiative balance of the middle atmosphere has not yet been fully evaluated. Considerable attention is paid to the calculation of atmospheric transmittance: the sensitivity of the heating rates to the choice of narrow band Goody or Malkmus model transmittances, as opposed to those generated using the high-resolution GENLN2 line -by-line model, is assessed. Diffuse radiation is accounted for by explicit Gaussian integration over zenith

  2. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  3. Stochastic Radiative transfer and real cloudiness

    SciTech Connect

    Evans, F.

    1995-09-01

    Plane-parallel radiative transfer modeling of clouds in GCMs is thought to be an inadequate representation of the effects of real cloudiness. A promising new approach for studying the effects of cloud horizontal inhomogeneity is stochastic radiative transfer, which computes the radiative effects of ensembles of cloud structures described by probability distributions. This approach is appropriate because cloud information is inherently statistical, and it is the mean radiative effect of complex 3D cloud structure that is desired. 2 refs., 1 fig.

  4. A study of Monte Carlo radiative transfer through fractal clouds

    SciTech Connect

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P.

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  5. BART: Bayesian Atmospheric Radiative Transfer fitting code

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Blecic, Jasmina; Harrington, Joseph; Rojo, Patricio; Lust, Nate; Bowman, Oliver; Stemm, Madison; Foster, Andrew; Loredo, Thomas J.; Fortney, Jonathan; Madhusudhan, Nikku

    2016-08-01

    BART implements a Bayesian, Monte Carlo-driven, radiative-transfer scheme for extracting parameters from spectra of planetary atmospheres. BART combines a thermochemical-equilibrium code, a one-dimensional line-by-line radiative-transfer code, and the Multi-core Markov-chain Monte Carlo statistical module to constrain the atmospheric temperature and chemical-abundance profiles of exoplanets.

  6. One-way radiative transfer

    NASA Astrophysics Data System (ADS)

    González-Rodríguez, Pedro; Ilan, Boaz; Kim, Arnold D.

    2016-06-01

    We introduce the one-way radiative transfer equation (RTE) for modeling the transmission of a light beam incident normally on a slab composed of a uniform forward-peaked scattering medium. Unlike the RTE, which is formulated as a boundary value problem, the one-way RTE is formulated as an initial value problem. Consequently, the one-way RTE is much easier to solve. We discuss the relation of the one-way RTE to the Fokker-Planck, small-angle, and Fermi pencil beam approximations. Then, we validate the one-way RTE through systematic comparisons with RTE simulations for both the Henyey-Greenstein and screened Rutherford scattering phase functions over a broad range of albedo, anisotropy factor, optical thickness, and refractive index values. We find that the one-way RTE gives very good approximations for a broad range of optical property values for thin to moderately thick media that have moderately to sharply forward-peaked scattering. Specifically, we show that the error made by the one-way RTE decreases monotonically as the anisotropic factor increases and as the albedo increases. On the other hand, the error increases monotonically as the optical thickness increases and the refractive index mismatch at the boundary increases.

  7. Radiative heat transfer in porous uranium dioxide

    SciTech Connect

    Hayes, S.L.

    1992-12-01

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  8. Spectrally-Invariant Approximation Within Atmospheric Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2011-01-01

    Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These "spectrally invariant relationships" are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in clouddominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction. and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with ID radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.

  9. Validation of the Poisson Stochastic Radiative Transfer Model

    NASA Technical Reports Server (NTRS)

    Zhuravleva, Tatiana; Marshak, Alexander

    2004-01-01

    A new approach to validation of the Poisson stochastic radiative transfer method is proposed. In contrast to other validations of stochastic models, the main parameter of the Poisson model responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by matching measurements and calculations of the direct solar radiation. If the measurements of the direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that allows the stochastic model to accurately approximate the average measurements of surface downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade model are taken as a prototype of real measurements.

  10. A Radiative Transfer Model for Climate Calculations

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.

    2000-01-01

    This paper describes a radiative transfer model developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. We use a newly developed k-distribution model for both the thermal and solar parts of the spectrum. We employ a generalized two-stream approximation for the scattering by aerosol and clouds. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. We perform several calculations focussing primarily on the question of absorption of solar radiation by gases and aerosols. We estimate the accuracy of the k-distribution to be approx. 1 W/sq m for the gaseous absorption in the solar spectrum. We estimate the accuracy of the two-stream method to be 3-12 W/sq m for the downward solar flux and 1-5 W/sq m for the upward solar flux at the top of atmosphere depending on the optical depth of the aerosol layer. We also show that the effect of ignoring aerosol absorption on the downward solar flux at the surface is 50 W/sq m for the TARFOX aerosol for an optical depth of 0.5 and 150 W/sq m for a highly absorbing mineral aerosol. Thus, we conclude that the uncertainty introduced by the aerosol solar radiative properties (and merely assuming some "representative" model) can be considerably larger than the error introduced by the use of a two-stream method.

  11. A Non-Radiative Transfer Approach to Radiometric Vicarious Calibration

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Holekamp, Kara; Pagnutti, Mary; Stanley, Thomas

    2007-01-01

    TOA (top-of-atmosphere) radiance from high-spatial-resolution satellite imagery systems is important for a wide variety of research and applications. Many research initiatives require data with absolute radiometric accuracy better than a few percent. The conversion of satellite digital numbers to radiance depends on accurate radiometric calibration. A common method for determining and validating radiometric calibrations is to rely upon vicarious calibration approaches. Historically, vicarious calibration methods use radiative transfer codes with ground-based atmosphere and surface reflectance or radiance inputs for estimating TOA radiance values. These TOA radiance values are compared against the satellite digital numbers to determine the radiometric calibration. However, the radiative transfer codes used depend on many assumptions about the aerosol properties and the atmospheric point spread function. A measurement-based atmospheric radiance estimation approach for high-spatial-resolution, multispectral, visible/near-infrared sensors is presented that eliminates the use of radiative transfer codes and many of the underlying assumptions. A comparison between the radiative transfer and non-radiative transfer approaches is made.

  12. Automated generation of highly accurate, efficient and transferable pseudopotentials

    NASA Astrophysics Data System (ADS)

    Hansel, R. A.; Brock, C. N.; Paikoff, B. C.; Tackett, A. R.; Walker, D. G.

    2015-11-01

    A multi-objective genetic algorithm (MOGA) was used to automate a search for optimized pseudopotential parameters. Pseudopotentials were generated using the atomPAW program and density functional theory (DFT) simulations were conducted using the pwPAW program. The optimized parameters were the cutoff radius and projector energies for the s and p orbitals. The two objectives were low pseudopotential error and low computational work requirements. The error was determined from (1) the root mean square difference between the all-electron and pseudized-electron log derivative, (2) the calculated lattice constant versus reference data of Holzwarth et al., and (3) the calculated bulk modulus versus reference potentials. The computational work was defined as the number of flops required to perform the DFT simulation. Pseudopotential transferability was encouraged by optimizing each element in different lattices: (1) nitrogen in GaN, AlN, and YN, (2) oxygen in NO, ZnO, and SiO4, and (3) fluorine in LiF, NaF, and KF. The optimal solutions were equivalent in error and required significantly less computational work than the reference data. This proof-of-concept study demonstrates that the combination of MOGA and ab-initio simulations is a powerful tool that can generate a set of transferable potentials with a trade-off between accuracy (error) and computational efficiency (work).

  13. Radiation heat transfer shapefactors for combustion systems

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Johansson, O.; Abrous, A.

    1987-01-01

    The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.

  14. Radiative transfer model: matrix operator method.

    PubMed

    Liu, Q; Ruprecht, E

    1996-07-20

    A radiative transfer model, the matrix operator method, is discussed here. The matrix operator method is applied to a plane-parallel atmosphere within three spectral ranges: the visible, the infrared, and the microwave. For a homogeneous layer with spherical scattering, the radiative transfer equation can be solved analytically. The vertically inhomogeneous atmosphere can be subdivided into a set of homogeneous layers. The solution of the radiative transfer equation for the vertically inhomogeneous atmosphere is obtained recurrently from the analytical solutions for the subdivided layers. As an example for the application of the matrix operator method, the effects of the cirrus and the stratocumulus clouds on the net radiation at the surface and at the top of the atmosphere are investigated. The relationship between the polarization in the microwave range and the rain rates is also studied. Copies of the FORTRAN program and the documentation of the FORTRAN program on a diskette are available.

  15. An Improved Radiative Transfer Model for Climate Calculations

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications, we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  16. Efficient vector radiative transfer calculations in vertically inhomogeneous cloudy atmospheres.

    PubMed

    van Diedenhoven, Bastiaan; Hasekamp, Otto P; Landgraf, Jochen

    2006-08-10

    Accurate radiative transfer calculations in cloudy atmospheres are generally time consuming, limiting their practical use in satellite remote sensing applications. We present a model to efficiently calculate the radiative transfer of polarized light in atmospheres that contain homogeneous cloud layers. This model combines the Gauss-Seidel method, which is efficient for inhomogeneous cloudless atmospheres, with the doubling method, which is efficient for homogeneous cloud layers. Additionally to reduce the computational effort for radiative transfer calculations in absorption bands, the cloud reflection and transmission matrices are interpolated over the absorption and scattering optical thicknesses within the cloud layer. We demonstrate that the proposed radiative transfer model in combination with this interpolation technique is efficient for the simulation of satellite measurements for inhomogeneous atmospheres containing one homogeneous cloud layer. For example, the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) measurements in the oxygen A band (758-773 nm) and the Hartley-Huggins ozone band (295-335 nm) with a spectral resolution of 0.4 nm can be simulated for these atmospheres within 1 min on a 2.8 GHz PC with an accuracy better than 0.1%.

  17. Hierarchicalp-version finite elements for radiation heat transfer

    NASA Astrophysics Data System (ADS)

    Gould, Dana Craig

    Methods to compute surface-to-surface radiation heat transfer between diffuse-gray surfaces using hierarchical p-version finite elements have been developed and applied to the analysis of a high-speed aircraft wing. A review of traditional methods for surface-to-surface radiation exchange is given. Traditional methods rely on the assumption of isothermal surfaces with incoming and outgoing radiation heat flux assumed constant over the surface. These assumptions are not appropriate for p-version finite elements, so new methods for evaluating the incoming and outgoing radiation flux over a finite element surface were required. Two methods for computing the surface-to-surface radiation heat transfer that do not rely on the above assumptions are developed and validated. The first approach uses traditional methods to compute the radiation exchange on an element sub-mesh, then transfers this data back to the parent element for the computation of the radiation heat flux. The second method requires the numerical integration of the net radiation exchange equation for each element. The methods are validated and evaluated using simple problems with analytical solutions. The radiation sub-element method is less costly than the direct integration method, but it is also less accurate. Both methods are computationally more expensive than traditional methods for a given number of degrees of freedom; however, for a given accuracy, they are less expensive. The new methods are used to analyze the wing of a High Speed Civil Transport vehicle. The p-elements were effective in capturing significant temperature variations over large sections of the wing and reduced the mesh complexity and associated modeling time while maintaining accuracy.

  18. Tests of Exoplanet Atmospheric Radiative Transfer Codes

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph; Challener, Ryan; DeLarme, Emerson; Cubillos, Patricio; Blecic, Jasmina; Foster, Austin; Garland, Justin

    2016-10-01

    Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. In the process of writing our own code, we became aware of several others with artifacts of unknown origin and even outright errors in their spectra. We present a series of tests to verify atmospheric radiative-transfer codes. These include: simple, single-line line lists that, when combined with delta-function abundance profiles, should produce a broadened line that can be verified easily; isothermal atmospheres that should produce analytically-verifiable blackbody spectra at the input temperatures; and model atmospheres with a range of complexities that can be compared to the output of other codes. We apply the tests to our own code, Bayesian Atmospheric Radiative Transfer (BART) and to several other codes. The test suite is open-source software. We propose this test suite as a standard for verifying current and future radiative transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  19. Lattice Boltzmann method for one-dimensional vector radiative transfer.

    PubMed

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2016-02-01

    A one-dimensional vector radiative transfer (VRT) model based on lattice Boltzmann method (LBM) that considers polarization using four Stokes parameters is developed. The angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by LBM. LBM has such attractive properties as simple calculation procedure, straightforward and efficient handing of boundary conditions, and capability of stable and accurate simulation. To validate the performance of LBM for vector radiative transfer, four various test problems are examined. The first case investigates the non-scattering thermal-emitting atmosphere with no external collimated solar. For the other three cases, the external collimated solar and three different scattering types are considered. Particularly, the LBM is extended to solve VRT in the atmospheric aerosol system where the scattering function contains singularities and the hemisphere space distributions for the Stokes vector are presented and discussed. The accuracy and computational efficiency of this algorithm are discussed. Numerical results show that the LBM is accurate, flexible and effective to solve one-dimensional polarized radiative transfer problems. PMID:26906779

  20. Groups in the radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Nikoghossian, Arthur

    2016-11-01

    The paper presents a group-theoretical description of radiation transfer in inhomogeneous and multi-component atmospheres with the plane-parallel geometry. It summarizes and generalizes the results obtained recently by the author for some standard transfer problems of astrophysical interest with allowance of the angle and frequency distributions of the radiation field. We introduce the concept of composition groups for media with different optical and physical properties. Group representations are derived for two possible cases of illumination of a composite finite atmosphere. An algorithm for determining the reflectance and transmittance of inhomogeneous and multi-component atmospheres is described. The group theory is applied also to determining the field of radiation inside an inhomogeneous atmosphere. The concept of a group of optical depth translations is introduced. The developed theory is illustrated with the problem of radiation diffusion with partial frequency distribution assuming that the inhomogeneity is due to depth-variation of the scattering coefficient. It is shown that once reflectance and transmittance of a medium are determined, the internal field of radiation in the source-free atmosphere is found without solving any new equations. The transfer problems for a semi-infinite atmosphere and an atmosphere with internal sources of energy are discussed. The developed theory allows to derive summation laws for the mean number of scattering events underwent by the photons in the course of diffusion in the atmosphere.

  1. ASTRORAY: General relativistic polarized radiative transfer code

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.

    2014-07-01

    ASTRORAY employs a method of ray tracing and performs polarized radiative transfer of (cyclo-)synchrotron radiation. The radiative transfer is conducted in curved space-time near rotating black holes described by Kerr-Schild metric. Three-dimensional general relativistic magneto hydrodynamic (3D GRMHD) simulations, in particular performed with variations of the HARM code, serve as an input to ASTRORAY. The code has been applied to reproduce the sub-mm synchrotron bump in the spectrum of Sgr A*, and to test the detectability of quasi-periodic oscillations in its light curve. ASTRORAY can be readily applied to model radio/sub-mm polarized spectra of jets and cores of other low-luminosity active galactic nuclei. For example, ASTRORAY is uniquely suitable to self-consistently model Faraday rotation measure and circular polarization fraction in jets.

  2. Viktor V. Sobolev and radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Nagirner, Dmitrij I.

    2016-11-01

    Invited review A detailed review of V.V. Sobolev's contributions to the theory of radiative transfer is presented. First, the basic problems of the theory of monochromatic scattering are formulated, which were introduced and solved approximately by the founders of the theory (E. Milne, A. Eddington, and others). Then the fundamental contribution by academician V.A. Ambartsumian, Sobolev's scientific adviser, to the analytical radiative transfer theory is summarized. Academician V.V. Sobolev continued and profoundly developed this theory. He pioneered new areas of the theory of multiple light scattering: the scattering of polarized radiation; the theory of a time-dependent radiation field; and the scattering in inhomogeneous media, in plane-parallel media with reflecting boundaries, and in media expanding with a velocity gradient. He proposed new approximate methods for solving the problems of anisotropic monochromatic scattering as well as scattering in spectral lines in stationary and expanding media which are still in use today. The most important Sobolev's contribution was to the exact analytical theory of radiative transfer. He proposed the probability method to solve radiative transfer problems and the probabilistic treatment of scattering processes; he introduced and justified the approximation of CFR in spectral lines; he developed the resolvent method for the exact solution to the basic integral equation describing monochromatic scattering and scattering in spectral lines; and he developed the theory of anisotropic scattering to analytic perfection. V.V. Sobolev applied these solutions to the interpretation of observation data for many astrophysical objects: photometric, polarimetric, and spectral characteristics of planetary atmospheres; spectra of stationary and non-stationary stars; and polarization of X-ray sources and quasars. V.V. Sobolev coauthored several papers with his students. The publications by Sobolev's disciples that continued his research

  3. Impact of Multiple Scattering on Infrared Radiative Transfer involving Ice Clouds

    NASA Astrophysics Data System (ADS)

    Kuo, C. P.; Yang, P.; Huang, X.; Feldman, D.; Flanner, M.

    2015-12-01

    General circulation models (GCMs) facilitate a major tool to investigate climate on global scale. Since solar and terrestrial radiation control energy budget of global climate, developing an accurate yet computationally efficient radiative transfer model in GCMs is important. However, in most of the GCMs, absorption of ice cloud is the only mechanism considered for the longwave radiative transfer process. Implementation of longwave scattering in GCMs requires parameterizations of ice cloud. This study utilizes spectrally consistent ice particle model in MODIS collection 6 and more than 14,000 particle size distributions from aircraft in-situ observations to parameterize ice cloud longwave optical properties. The new parameterizations are compared with Fu-Liou parameterization implemented in the RRTM_LW (Longwave Rapid Radiative Transfer Model). As accurate and computationally efficient radiative transfer model is important in GCMs, comparison of different radiative transfer methods are performed. Specifically, RRTMG_LW (GCM version of RRTM_LW), one of the most widely utilized radiative transfer schemes in the GCMs, will be modified to include different scattering approximation methods. To evaluate the accuracy, DISORT (Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-Parallel Medium) is implemented and compared with other methods in terms of cloud radiative effect and heating rate.

  4. Infrared radiative energy transfer in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1991-01-01

    Analyses and numerical procedures are presented to investigate the radiative interactions in various energy transfer processes in gaseous systems. Both gray and non-gray radiative formulations for absorption and emission by molecular gases are presented. The gray gas formulations are based on the Planck mean absorption coefficient and the non-gray formulations are based on the wide band model correlations for molecular absorption. Various relations for the radiative flux and divergence of radiative flux are developed. These are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The procedure developed was applied to several realistic problems. Results of selected studies are presented.

  5. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  6. SGPGET: AN SBDART Module for Aerosol Radiative Transfer

    SciTech Connect

    McComiskey, A.; Ricchiazzi, P.; Ogren, J.A.; Dutton, E.

    2005-03-18

    Quantification of the aerosol direct effect and climate sensitivity requires accurate estimates of optical properties as inputs to a radiative transfer model. Long-term measurements of aerosol properties at the Southern Great Plains (SGP) site can be used as an improvement over a best guess or global average for optical properties (e.g., asymmetry factor of 0.7) used in Atmospheric Radiation Measurement (ARM) products such as the Broadband Heating Rate Profile VAP. To make this information readily available to the ARM community and others, an add-on module for a commonly used radiative transfer model, SBDART (Ricchiazzi et al. 1998), is being developed. A look up table and algorithm will provide aerosol related model inputs including aerosol optical and atmospheric state properties at high temporal resolution. These inputs can be used in conjunction with any mode of operation and with any other information, for example, cloud properties, in SBDART or any other radiative transfer model. Aerosol properties measured at three visible wavelengths are extrapolated so that flux calculations can be made in any desired wavelength across the shortwave spectrum. Several sources of uncertainty contribute to degraded accuracy of the aerosol property estimation. The effect of these uncertainties is shown through error analysis and comparisons of modeled and observed surface irradiance. A module is also being developed for the North Slope of Alaska site.

  7. ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD

    SciTech Connect

    Kurzeja, R.

    2009-09-09

    Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

  8. Modeling of Radiative Transfer in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    VonAllmen, Paul; Turner, Neal

    2007-01-01

    This program implements a spectral line, radiative transfer tool for interpreting Spitzer Space Telescope observations by matching them with models of protostellar disks for improved understanding of planet and star formation. The Spitzer Space Telescope detects gas phase molecules in the infrared spectra of protostellar disks, with spectral lines carrying information on the chemical composition of the material from which planets form. Input to the software includes chemical models developed at JPL. The products are synthetic images and spectra for comparison with Spitzer measurements. Radiative transfer in a protostellar disk is primarily affected by absorption and emission processes in the dust and in molecular gases such as H2, CO, and HCO. The magnitude of the optical absorption and emission is determined by the population of the electronic, vibrational, and rotational energy levels. The population of the molecular level is in turn determined by the intensity of the radiation field. Therefore, the intensity of the radiation field and the population of the molecular levels are inter-dependent quantities. To meet the computational challenges of solving for the coupled radiation field and electronic level populations in disks having wide ranges of optical depths and spatial scales, the tool runs in parallel on the JPL Dell Cluster supercomputer with C++ and Fortran compiler with a Message Passing Interface. Because this software has been developed on a distributed computing platform, the modeling of systems previously beyond the reach of available computational resources is possible.

  9. Transfer of infrared radiation through clouds.

    PubMed

    Kuhn, P M; Weickmann, H K; Lojko, M J; Stearns, L P

    1974-03-01

    Calculations of radiative through and resulting ir cooling of cloud forms is certainly more difficult than observations. Based on observations, a radiative transfer model has been developed for absorption in clouds employing an observationally determined volume absorption coefficient, ranging from 0.0005 to 0.0007 cm(-1). This model does not require any assumption of cloud blackness or thickness and permits clouds to remain partially transparent or opaque as their thickness and absorption dictate. Agreement within a standard deviation of 12.0 W m(-2) between observation and calculation has been maintained in approximately twenty profiles through clouds. The standard deviation was determined from some 140 observations.

  10. Enhancing radiative energy transfer through thermal extraction

    NASA Astrophysics Data System (ADS)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  11. Radiative transfer in realistic planetary atmospheres. [bibliographies

    NASA Technical Reports Server (NTRS)

    Plass, G. N.; Kattawar, G. W.

    1982-01-01

    Some 40 publications that appeared in scientific journals from 1973 to 1981 as well as 45 scientific reports issued during the grant period are listed by title. Topics cover the development of a matrix operator theory of radiative transfer which made possible the exact model calculations of the radiance as a function of height in planetary atmospheres; calculation of the Mie phase matrix for various types of particles as well as for radiance and polarization in planetary atmospheres; analysis of high dispersion spectroscopic observations of Venus; calculation of curves of growth for Venus; the development of a theory for calculating radiative transfer in spherical shell atmospheres; investigations of zonal winds on Venus; and examination of Rayleigh scattering.

  12. Accurate bs and w testing important for crude-oil custody transfer

    SciTech Connect

    Williams, J. )

    1990-11-12

    This paper discusses how monitoring crude-oil sediment and water content at the field production site is essential in accurate crude-oil custody transfer operations. This is accomplished by manual methods, or on-line devices like capacitance, density, or energy-absorption analyzers. For custody-transfer purposes, sediment and water is determined by a test which follows one of the API manuals of petroleum measurement standards (MPMS). Typically, this test is conducted in the field by the field centrifuge method which, if performed properly, yields very accurate results. Laboratory tests can be performed, but sample handling becomes even more critical.

  13. Introductory Tools for Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Feldman, D.; Kuai, L.; Natraj, V.; Yung, Y.

    2006-12-01

    Satellite data are currently so voluminous that, despite their unprecedented quality and potential for scientific application, only a small fraction is analyzed due to two factors: researchers' computational constraints and a relatively small number of researchers actively utilizing the data. Ultimately it is hoped that the terabytes of unanalyzed data being archived can receive scientific scrutiny but this will require a popularization of the methods associated with the analysis. Since a large portion of complexity is associated with the proper implementation of the radiative transfer model, it is reasonable and appropriate to make the model as accessible as possible to general audiences. Unfortunately, the algorithmic and conceptual details that are necessary for state-of-the-art analysis also tend to frustrate the accessibility for those new to remote sensing. Several efforts have been made to have web- based radiative transfer calculations, and these are useful for limited calculations, but analysis of more than a few spectra requires the utilization of home- or server-based computing resources. We present a system that is designed to allow for easier access to radiative transfer models with implementation on a home computing platform in the hopes that this system can be utilized in and expanded upon in advanced high school and introductory college settings. This learning-by-doing process is aided through the use of several powerful tools. The first is a wikipedia-style introduction to the salient features of radiative transfer that references the seminal works in the field and refers to more complicated calculations and algorithms sparingly5. The second feature is a technical forum, commonly referred to as a tiki-wiki, that addresses technical and conceptual questions through public postings, private messages, and a ranked searching routine. Together, these tools may be able to facilitate greater interest in the field of remote sensing.

  14. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  15. Radiation heat transfer within an optical fiber draw tower furnace

    SciTech Connect

    Issa, J.; Jaluria, Y.; Polymeropoulos, C.E.; Yin, Z.

    1995-12-31

    Study of the thermal transport and material flow processes associated with the drawing of optical fiber in a graphite draw furnace requires modeling of the heat transfer from the furnace wall. Previous work has shown that accurate knowledge of the furnace heater element axial temperature distribution is essential for proper modeling of the radiative transfer process. The present work is aimed at providing this information, as well as generating a set of data for the study of radiation exchange in the furnace cavity. The experimental procedure involved measuring the centerline temperature distribution in graphite and fused silica rods inserted into an optical fiber draw tower furnace. The temperature measurements were then used along with a model for radiative-convective heat transfer in the furnace in order to obtain the furnace temperature profile. This is an inverse problem since the centerline temperature in the rod is known whereas the furnace thermal conditions are not. The results obtained showed that the furnace temperature distribution was independent of rod material and size. The shape of the computed temperature distributions suggest that they can be well represented by a Gaussian function.

  16. A Radiation Transfer Solver for Athena Using Short Characteristics

    NASA Astrophysics Data System (ADS)

    Davis, Shane W.; Stone, James M.; Jiang, Yan-Fei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  17. Evaluation of three different radiative transfer equation solvers for combined conduction and radiation heat transfer

    NASA Astrophysics Data System (ADS)

    Sun, Yujia; Zhang, Xiaobing; Howell, John R.

    2016-11-01

    This work investigates the performance of P1 method, FVM and SP3 method for 2D combined conduction and radiation heat transfer problem. Results based on the Monte Carlo method coupled with the energy equation are used as the benchmark solutions. Effects of the conduction-radiation parameter and optical thickness are considered. Performance analyses in term of the accuracy of heat flux and temperature predictions and of computing time are presented and analyzed.

  18. A first-order radiative transfer model for microwave radiometry of forest canopies at L-band

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic radiative transfer model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals ...

  19. Radiative transfer analyses of Titan's tropical atmosphere

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.; Doose, Lyn; Tomasko, Martin G.; Penteado, Paulo F.; See, Charles

    2012-04-01

    Titan's optical and near-IR spectra result primarily from the scattering of sunlight by haze and its absorption by methane. With a column abundance of 92 km amagat (11 times that of Earth), Titan's atmosphere is optically thick and only ˜10% of the incident solar radiation reaches the surface, compared to 57% on Earth. Such a formidable atmosphere obstructs investigations of the moon's lower troposphere and surface, which are highly sensitive to the radiative transfer treatment of methane absorption and haze scattering. The absorption and scattering characteristics of Titan's atmosphere have been constrained by the Huygens Probe Descent Imager/Spectral Radiometer (DISR) experiment for conditions at the probe landing site (Tomasko, M.G., Bézard, B., Doose, L., Engel, S., Karkoschka, E. [2008a]. Planet. Space Sci. 56, 624-247; Tomasko, M.G. et al. [2008b]. Planet. Space Sci. 56, 669-707). Cassini's Visual and Infrared Mapping Spectrometer (VIMS) data indicate that the rest of the atmosphere (except for the polar regions) can be understood with small perturbations in the high haze structure determined at the landing site (Penteado, P.F., Griffith, C.A., Tomasko, M.G., Engel, S., See, C., Doose, L., Baines, K.H., Brown, R.H., Buratti, B.J., Clark, R., Nicholson, P., Sotin, C. [2010]. Icarus 206, 352-365). However the in situ measurements were analyzed with a doubling and adding radiative transfer calculation that differs considerably from the discrete ordinates codes used to interpret remote data from Cassini and ground-based measurements. In addition, the calibration of the VIMS data with respect to the DISR data has not yet been tested. Here, VIMS data of the probe landing site are analyzed with the DISR radiative transfer method and the faster discrete ordinates radiative transfer calculation; both models are consistent (to within 0.3%) and reproduce the scattering and absorption characteristics derived from in situ measurements. Constraints on the atmospheric

  20. Radiative transfer of HCN: interpreting observations of hyperfine anomalies

    NASA Astrophysics Data System (ADS)

    Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.

    2016-07-01

    Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.

  1. A rapid radiative transfer model for reflection of solar radiation

    NASA Technical Reports Server (NTRS)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  2. A Rapid Radiative Transfer Model for Reflection of Solar Radiation.

    NASA Astrophysics Data System (ADS)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-07-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  3. Radiative Transfer and Retrievals in EOF Domain

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen; Smith, William L.; Schluessel, Peter

    2008-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) is a hyperspectral sensor with 8461 spectral channels and a nominal spectral resolution of 0.25 cm(sup -1). It is computationally intensive to perform radiative transfer calculations and inversions using all these channels. We will present a Principal Component-based Radiative Transfer Model (PCRTM) and a retrieval algorithm which perform all the necessary calculations in EOF domain. Since the EOFs are orthogonal to each other, only about 100 principal components are needed to represent the information content of the 8461 channels. The PCRTM provides the EOF coefficients and associated derivatives with respect to atmospheric and surface parameters needed by the inversion algorithm. The inversion algorithm is based on a non-linear Levenberg-Marquardt method with climatology covariance and a priori information as constraints. The retrieved parameters include atmospheric temperature, moisture and ozone profiles, cloud parameters, surface skin temperature, and surface emissivities. To make the retrieval system even more compact and stable. The atmospheric vertical profiles are compressed into the EOF space as well. The surface emissivities are also compressed into EOF space.

  4. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement

    NASA Astrophysics Data System (ADS)

    Dong, J. W.; Wang, B.; Gao, C.; Wang, L. J.

    2016-09-01

    An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The system achieves a high measurement accuracy of 0.2 ps with a 0.1 ps measurement resolution and a large dynamic range up to 50 km as well as no dead zone.

  5. Radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1992-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.

  6. Radiation energy transfer in RNA polymers

    NASA Astrophysics Data System (ADS)

    Kempner, E. S.; Salovey, R.; Bernstein, S. L.

    1996-11-01

    Ribozymes are a special class of polyribonucleotide (RNA) molecules which possess intrinsic catalytic activity, capable of cleaving nucleic acid substrates. RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. These RNAs were frozen and irradiated with high energy electrons. Surviving ribozyme activity was determined, using the ability of the irradiated ribozymes to cleave a labeled substrate. From the same irradiated samples, the amount of intact RNA remaining was determined following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity vs structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. It is concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule.

  7. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    NASA Astrophysics Data System (ADS)

    Hollstein, André; Fischer, Jürgen

    2012-05-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  8. A stochastic formation of radiative transfer in clouds

    SciTech Connect

    Stephens, G.L.; Gabriel, P.M.

    1993-03-01

    The research carried out under this award dealt with issues involving deterministic radiative transfer, remote sensing, Stochastic radiative transfer, and parameterization of cloud optical properties. A number of different forms of radiative transfer models in one, two, and three dimensions were developed in an attempt to build an understanding of the radiative transfer in clouds with realistic spatial structure and to determine the key geometrical parameter that influence this transfer. The research conducted also seeks to assess the relative importance of these geometrical effects in contrast to microphysical effects of clouds. The main conclusion of the work is that geometry has a profound influence on all aspects of radiative transfer and the interpretation of this transfer. We demonstrate how this geometry can influence estimate of particle effective radius to the 30-50% level and also how geometry can significantly bias the remote sensing of cloud optical depth.

  9. Planetary Atmosphere Dynamics and Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.

    1996-01-01

    This research program has dealt with two projects in the field of planetary atmosphere dynamics and radiative energy transfer, one theoretical and one experimental. The first project, in radiative energy transfer, incorporated the capability to isolate and quantify the contribution of individual atmospheric components to the Venus radiative balance and thermal structure to greatly improve the current understanding of the radiative processes occurring within the Venus atmosphere. This is possible by varying the mixing ratios of each gas species, and the location, number density and aerosol size distributions of the clouds. This project was a continuation of the work initiated under a 1992 University Consortium Agreement. Under the just completed grant, work has continued on the use of a convolution-based algorithm that provided the capability to calculate the k coefficients of a gas mixture at different temperatures, pressures and spectral intervals from the separate k-distributions of the individual gas species. The second primary goal of this research dealt with the Doppler wind retrieval for the Successful Galileo Jupiter probe mission in December, 1995. In anticipation of the arrival of Galileo at Jupiter, software development continued to read the radioscience and probe/orbiter trajectory data provided by the Galileo project and required for Jupiter zonal wind measurements. Sample experiment radioscience data records and probe/orbiter trajectory data files provided by the Galileo Radioscience and Navigation teams at the Jet Propulsion Laboratory, respectively, were used for the first phase of the software development. The software to read the necessary data records was completed in 1995. The procedure by which the wind retrieval takes place begins with initial consistency checks of the raw data, preliminary data reductions, wind recoveries, iterative reconstruction of the probe descent profile, and refined wind recoveries. At each stage of the wind recovery

  10. Simulation of solar radiative transfer in cumulus clouds

    SciTech Connect

    Zuev, V.E.; Titov, G.A.

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  11. Radiative Transfer Simulations of Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Pavlyuchenkov, Yaroslav; Wiebe, Dmitry; Fateeva, Anna; Vasyunina, Tatiana

    2011-04-01

    The determination of prestellar core structure is often based on observations of (sub)millimeter dust continuum. However, recently the Spitzer Space Telescope provided us with IR images of many objects not only in emission but also in absorption. We developed a technique to reconstruct the density and temperature distributions of protostellar objects based on radiation transfer (RT) simulations both in mm and IR wavelengths. Best-fit model parameters are obtained with the genetic algorithm. We apply the method to two cores of Infrared Dark Clouds and show that their observations are better reproduced by a model with an embedded heating source despite the lack of 70 μm emission in one of these cores. Thus, the starless nature of massive cores can only be established with the careful case-by-case RT modeling.

  12. Lattice Boltzmann model for a steady radiative transfer equation.

    PubMed

    Yi, Hong-Liang; Yao, Feng-Ju; Tan, He-Ping

    2016-08-01

    A complete lattice Boltzmann model (LBM) is proposed for the steady radiative transfer equation (RTE). The RTE can be regarded as a pure convection equation with a source term. To derive the expressions for the equilibrium distribution function and the relaxation time, an artificial isotropic diffusion term is introduced to form a convection-diffusion equation. When the dimensionless relaxation time has a value of 0.5, the lattice Boltzmann equation (LBE) is exactly applicable to the original steady RTE. We also perform a multiscale analysis based on the Chapman-Enskog expansion to recover the macroscopic RTE from the mesoscopic LBE. The D2Q9 model is used to solve the LBE, and the numerical results obtained by the LBM are comparable to the results obtained by other methods or analytical solutions, which demonstrates that the proposed model is highly accurate and stable in simulating multidimensional radiative transfer. In addition, we find that the convergence rate of the LBM depends on the transport properties of RTE: for diffusion-dominated RTE with a large optical thickness, the LBM shows a second-order convergence rate in space, while for convection-dominated RTE with a small optical thickness, a lower convergence rate is observed. PMID:27627417

  13. A deterministic photon free method to solve radiation transfer equations

    SciTech Connect

    Chang, Britton . E-mail: bchang@llnl.gov

    2007-03-01

    A new method to solve radiation transfer equations is presented. In the absence of scattering, material motion, and heat conduction, the photon variables can be eliminated from the fully implicit, multi-group, discrete-ordinate, finite difference (finite element) equations of continuum radiation transfer to yield a smaller set of equations which depends only on temperature. The solution to this smaller set of equations is used to generate the solution to the original set of equations from which the reduced set is derived. The reduced system simplifies to a nonlinear heat equation in the regime of strong absorption and strong emission. We solve the reduced set of equations by the Newton-GMRES method in which the Jacobian update is preconditioned by a linearization of this nonlinear heat equation. The performances of this new method and of the semi-implicit linear method, which is preconditioned by grey transport acceleration combined with diffusion synthetic acceleration, are compared on two test problems. The test results indicate that the new method can take larger time steps, requires less memory, is more accurate, and is competitive in speed with the semi-implicit linear method.

  14. Lattice Boltzmann model for a steady radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Yi, Hong-Liang; Yao, Feng-Ju; Tan, He-Ping

    2016-08-01

    A complete lattice Boltzmann model (LBM) is proposed for the steady radiative transfer equation (RTE). The RTE can be regarded as a pure convection equation with a source term. To derive the expressions for the equilibrium distribution function and the relaxation time, an artificial isotropic diffusion term is introduced to form a convection-diffusion equation. When the dimensionless relaxation time has a value of 0.5, the lattice Boltzmann equation (LBE) is exactly applicable to the original steady RTE. We also perform a multiscale analysis based on the Chapman-Enskog expansion to recover the macroscopic RTE from the mesoscopic LBE. The D2Q9 model is used to solve the LBE, and the numerical results obtained by the LBM are comparable to the results obtained by other methods or analytical solutions, which demonstrates that the proposed model is highly accurate and stable in simulating multidimensional radiative transfer. In addition, we find that the convergence rate of the LBM depends on the transport properties of RTE: for diffusion-dominated RTE with a large optical thickness, the LBM shows a second-order convergence rate in space, while for convection-dominated RTE with a small optical thickness, a lower convergence rate is observed.

  15. Radiative Transfer Theory Verified by Controlled Laboratory Experiments

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur

    2013-01-01

    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

  16. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  17. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard.

    PubMed

    Wallace, W C; Ghafur, O; Khurmi, C; Sainadh U, Satya; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-07-29

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation. PMID:27517769

  18. Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard

    NASA Astrophysics Data System (ADS)

    Wallace, W. C.; Ghafur, O.; Khurmi, C.; Sainadh U, Satya; Calvert, J. E.; Laban, D. E.; Pullen, M. G.; Bartschat, K.; Grum-Grzhimailo, A. N.; Wells, D.; Quiney, H. M.; Tong, X. M.; Litvinyuk, I. V.; Sang, R. T.; Kielpinski, D.

    2016-07-01

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

  19. Numerical Radiative Transfer and the Hydrogen Reionization of the Universe

    NASA Astrophysics Data System (ADS)

    Petkova, M.

    2011-03-01

    One of the most interesting questions in cosmology is to understand how the Universe evolved from its nearly uniform and simple state briefly after the Big Bang to the complex state we see around us today. In particular, we would like to explain how galaxies have formed, and why they have the properties that we observe in the local Universe. Computer simulations play a highly important role in studying these questions, because they allow one to follow the dynamical equations of gravity and hydrodynamics well into the non-linear regime of the growth of cosmic structures. The current generation of simulation codes for cosmological structure formation calculates the self-gravity of dark matter and cosmic gas, and the fluid dynamics of the cosmic gas, but radiation processes are typically not taken into account, or only at the level of a spatially uniform, externally imposed background field. However, we know that the radiation field has been highly inhomogeneous during certain phases of the growth of structure, and may have in fact provided important feedback effects for galaxy formation. In particular, it is well established that the diffuse gas in the universe was nearly fully neutral after recombination at very high redshift, but today this gas is highly ionized. Sometime during the evolution, a transition to the ionized state must have occurred, a process we refer to as reionization. The UV radiation responsible for this reionization is now permeating the universe and may in part explain why small dwarf galaxies have so low luminosities. It is therefore clear that accurate and self-consistent studies of galaxy formation and of the dynamics of the reionization process should ideally be done with simulation codes that directly include a treatment of radiative transfer, and that account for all relevant source and sink terms of the radiation. We present a novel numerical implementation of radiative transfer in the cosmological smoothed particle hydrodynamics (SPH

  20. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  1. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models

    SciTech Connect

    Collins, William; Iacono, Michael J.; Delamere, Jennifer S.; Mlawer, Eli J.; Shephard, Mark W.; Clough, Shepard A.; Collins, William D.

    2008-04-01

    A primary component of the observed, recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone and LLGHGs. In the context of the increasing application of the Atmospheric and Environmental Research, Inc. (AER) radiation models within the GCM community, their capability to calculate longwave and shortwave radiative forcing for clear sky scenarios previously examined by the radiative transfer model intercomparison project (RTMIP) is presented. Forcing calculations with the AER line-by-line (LBL) models are very consistent with the RTMIP line-by-line results in the longwave and shortwave. The AER broadband models, in all but one case, calculate longwave forcings within a range of -0.20 to 0.23 W m{sup -2} of LBL calculations and shortwave forcings within a range of -0.16 to 0.38 W m{sup -2} of LBL results. These models also perform well at the surface, which RTMIP identified as a level at which GCM radiation models have particular difficulty reproducing LBL fluxes. Heating profile perturbations calculated by the broadband models generally reproduce high-resolution calculations within a few hundredths K d{sup -1} in the troposphere and within 0.15 K d{sup -1} in the peak stratospheric heating near 1 hPa. In most cases, the AER broadband models provide radiative forcing results that are in closer agreement with high 20 resolution calculations than the GCM radiation codes examined by RTMIP, which supports the application of the AER models to climate change research.

  2. Polar firn layering in radiative transfer models

    NASA Astrophysics Data System (ADS)

    Linow, Stefanie; Hoerhold, Maria

    2016-04-01

    For many applications in the geosciences, remote sensing is the only feasible method of obtaining data from large areas with limited accessibility. This is especially true for the cryosphere, where light conditions and cloud coverage additionally limit the use of optical sensors. Here, instruments operating at microwave frequencies become important, for instance in polar snow parameters / SWE (snow water equivalent) mapping. However, the interaction between snow and microwave radiation is a complex process and still not fully understood. RT (radiative transfer) models to simulate snow-microwave interaction are available, but they require a number of input parameters such as microstructure and density, which are partly ill-constrained. The layering of snow and firn introduces an additional degree of complexity, as all snow parameters show a strong variability with depth. Many studies on RT modeling of polar firn deal with layer variability by using statistical properties derived from previous measurements, such as the standard deviations of density and microstructure, to configure model input. Here, the variability of microstructure parameters, such as density and particle size, are usually assumed to be independent of each other. However, in the case of the firn pack of the polar ice sheets, we observe that microstructure evolution depends on environmental parameters, such as temperature and snow deposition. Accordingly, density and microstructure evolve together within the snow and firn. Based on CT (computer tomography) microstructure measurements of antarctic firn, we can show that: first, the variability of density and effective grain size are linked and can thus be implemented in the RT models as a coupled set of parameters. Second, the magnitude of layering is captured by the measured standard deviation. Based on high-resolution density measurements of an Antarctic firn core, we study the effect of firn layering at different microwave wavelengths. By means of

  3. Radiative transfer during the reflooding step of a LOCA

    NASA Astrophysics Data System (ADS)

    Gérardin, J.; Seiler, N.; Ruyer, P.; Boulet, P.

    2013-10-01

    Within the evaluation of the heat transfer downstream a quench front during the reflood phase of a Loss of Coolant Accident (LOCA) in a nuclear power plant, a numerical study has been conducted on radiative transfer through a vapor-droplet medium. The non-grey behavior of the medium is obvious since it can be optically thin or thick depending on the wavelength. A six wide bands model has been tested, providing a satisfactory accuracy for the description of the radiative properties. Once the radiative properties of the medium computed, they have been introduced in a model solving the radiative heat transfer based on the Improved Differential Approximation. The fluxes and the flux divergence have been computed on a geometry characteristic of the reactor core showing that radiative transfer plays a relevant role, quite as important as convective heat transfer.

  4. On the fundamental solution of the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Flatau, Piotr J.; Stephens, Graeme L.

    1988-09-01

    This paper outlines the general solution of the one-dimensional, azimuthally averaged radiative transfer equation in terms of a matrix exponential. The link between this fundamental solution and those more commonly used in radiative transfer is established. The formulation is developed for a general vertically inhomogeneous atmosphere with sources. Several new concepts, based on properties of the matrix exponentials, are described in the context of radiative transfer, including the use of the commutator and product integrals. It is also demonstrated how the matrix exponential formulation provides for new insights, not only into improvements of the numerical efficiency and stability of the solution, but also into the understanding of radiative transfer through a layered atmosphere. The various concepts introduced in this paper are illustrated throughout by the two-stream simplification of the general radiative transfer equation.

  5. Application of ray tracing in radiation heat transfer

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1993-01-01

    This collection of presentation figures displays the capabilities of ray tracing for radiation propagation calculations as compared to an analytical approach. The goal is to introduce the terminology and solution process used in ray tracing, and provide insight into radiation heat transfer principles and analysis tools. A thermal analysis working environment is introduced that solves demanding radiation heat transfer problems based on ray tracing. This information may serve as a reference for designing and building ones own analysis environment.

  6. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  7. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer. PMID:26641312

  8. Study on radiation transfer in human skin for cosmetics

    NASA Astrophysics Data System (ADS)

    Yamada, Jun; Kawamura, Ayumu; Miura, Yoshimasa; Takata, Sadaki; Ogawa, Katsuki

    2005-06-01

    In order to design cosmetics producing the optical properties that are required for a beautiful skin, the radiation transfer in the skin has been numerically investigated by the Monte Carlo method and the effects of skin texture and cosmetics on the radiation transfer have been empirically investigated using an artificial skin. The numerical analysis showed that the total internal reflection suppresses large portion of radiation going out through the skin surface Additionally, the experimental study revealed that skin texture and cosmetics not only diffusely reflect the incoming radiation, but also lead the internally reflected radiation to the outside of the skin.

  9. Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2000-01-01

    This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.

  10. Development of highly accurate approximate scheme for computing the charge transfer integral.

    PubMed

    Pershin, Anton; Szalay, Péter G

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature. PMID:26298117

  11. Development of highly accurate approximate scheme for computing the charge transfer integral

    SciTech Connect

    Pershin, Anton; Szalay, Péter G.

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  12. Application of the spectrally integrated Voigt function to line-by-line radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Quine, B. M.; Abrarov, S. M.

    2013-09-01

    We show that a new approach based on the spectrally integrated Voigt function (SIVF) enables the computation of line-by-line (LBL) radiative transfer at reduced spectral resolution without loss of accuracy. The algorithm provides rapid and accurate computation of area under the Voigt function in a way that preserves spectral radiance and, consequently, radiant intensity. The error analysis we provide shows the high-accuracy of the proposed SIVF approximations. A comparison of the performance of the method with that of the traditional LBL approach is presented. Motivations for the use and advantage of the SIVF as a replacement for conventional line function computations in radiative transfer are discussed.

  13. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.

    2005-01-01

    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  14. Radiative transfer in atmosphere-sea ice-ocean system

    SciTech Connect

    Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S.C.

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  15. Extended emission wavelength of random dye lasers by exploiting radiative and non-radiative energy transfer

    NASA Astrophysics Data System (ADS)

    Wan Ismail, Wan Zakiah; Goldys, Ewa M.; Dawes, Judith M.

    2016-02-01

    We demonstrate long-wavelength operation (>700 nm) of random dye lasers (using a methylene blue dye) with the addition of rhodamine 6G and titania, enabled by radiative and non-radiative energy transfer. The pump energy is efficiently absorbed and transferred to the acceptors, to support lasing in random dye lasers in the near infrared. The optimum random laser performance with the highest emission intensity and the lowest lasing threshold was achieved for a concentration of methylene blue as the acceptor equal to 6× the concentration of rhodamine 6G (donor). Excessive levels of methylene blue increased the lasing threshold and broadened the methylene blue emission linewidth due to dye quenching from re-absorption. This is due to competition between the donor emission and energy transfer and between absorption loss and fluorescence quenching. The radiative and non-radiative energy transfer is analyzed as a function of the acceptor concentration and pump energy density, with consideration of the spectral overlap. The dependence of the radiative and non-radiative transfer efficiency on the acceptor concentration is obtained, and the energy transfer parameters, including the radiative and non-radiative energy transfer rate constants ( K R and K NR), are investigated using Stern-Volmer analysis. The analysis indicates that radiative energy transfer is the dominant energy transfer mechanism in this system.

  16. Accurate localization of optic radiation during neurosurgery in an interventional MRI suite.

    PubMed

    Daga, Pankaj; Winston, Gavin; Modat, Marc; White, Mark; Mancini, Laura; Cardoso, M Jorge; Symms, Mark; Stretton, Jason; McEvoy, Andrew W; Thornton, John; Micallef, Caroline; Yousry, Tarek; Hawkes, David J; Duncan, John S; Ourselin, Sebastien

    2012-04-01

    Accurate localization of the optic radiation is key to improving the surgical outcome for patients undergoing anterior temporal lobe resection for the treatment of refractory focal epilepsy. Current commercial interventional magnetic resonance imaging (MRI) scanners are capable of performing anatomical and diffusion weighted imaging and are used for guidance during various neurosurgical procedures. We present an interventional imaging workflow that can accurately localize the optic radiation during surgery. The workflow is driven by a near real-time multichannel nonrigid image registration algorithm that uses both anatomical and fractional anisotropy pre- and intra-operative images. The proposed workflow is implemented on graphical processing units and we perform a warping of the pre-operatively parcellated optic radiation to the intra-operative space in under 3 min making the proposed algorithm suitable for use under the stringent time constraints of neurosurgical procedures. The method was validated using both a numerical phantom and clinical data using pre- and post-operative images from patients who had undergone surgery for treatment of refractory focal epilepsy and shows strong correlation between the observed post-operative visual field deficit and the predicted damage to the optic radiation. We also validate the algorithm using interventional MRI datasets from a small cohort of patients. This work could be of significant utility in image guided interventions and facilitate effective surgical treatments.

  17. A second order radiative transfer equation and its solution by meshless method with application to strongly inhomogeneous media

    SciTech Connect

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2013-01-01

    A new second order form of radiative transfer equation (named MSORTE) is proposed, which overcomes the singularity problem of a previously proposed second order radiative transfer equation [J.E. Morel, B.T. Adams, T. Noh, J.M. McGhee, T.M. Evans, T.J. Urbatsch, Spatial discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys. 214 (1) (2006) 12-40 (where it was termed SAAI), J.M. Zhao, L.H. Liu, Second order radiative transfer equation and its properties of numerical solution using finite element method, Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some locations have very small/zero extinction coefficient. The MSORTE contains a naturally introduced diffusion (or second order) term which provides better numerical property than the classic first order radiative transfer equation (RTE). The stability and convergence characteristics of the MSORTE discretized by central difference scheme is analyzed theoretically, and the better numerical stability of the second order form radiative transfer equations than the RTE when discretized by the central difference type method is proved. A collocation meshless method is developed based on the MSORTE to solve radiative transfer in inhomogeneous media. Several critical test cases are taken to verify the performance of the presented method. The collocation meshless method based on the MSORTE is demonstrated to be capable of stably and accurately solve radiative transfer in strongly inhomogeneous media, media with void region and even with discontinuous extinction coefficient.

  18. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect

    Im, K H; Ahluwalia, R K

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  19. Radiative Transfer Model for Translucent Slab Ice on Mars

    NASA Astrophysics Data System (ADS)

    Andrieu, F.; Schmidt, F.; Douté, S.; Schmitt, B.; Brissaud, O.

    2016-09-01

    We developed a radiative transfer model that simulates in VIS/NIR the bidirectional reflectance of a contaminated slab layer of ice overlaying a granular medium, under geometrical optics conditions to study martian ices.

  20. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    SciTech Connect

    Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  1. grtrans: Polarized general relativistic radiative transfer via ray tracing

    NASA Astrophysics Data System (ADS)

    Dexter, Jason

    2016-05-01

    grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans includes Geokerr (ascl:1011.015) and requires cfitsio (ascl:1010.001) and pyfits (ascl:1207.009).

  2. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models

    SciTech Connect

    Fu, Q.; Sun, W.B.; Yang, P.

    1998-09-01

    An accurate parameterization is presented for the infrared radiative properties of cirrus clouds. For the single-scattering calculations, a composite scheme is developed for randomly oriented hexagonal ice crystals by comparing results from Mie theory, anomalous diffraction theory (ADT), the geometric optics method (GOM), and the finite-difference time domain technique. This scheme employs a linear combination of single-scattering properties from the Mie theory, ADT, and GOM, which is accurate for a wide range of size parameters. Following the approach of Q. Fu, the extinction coefficient, absorption coefficient, and asymmetry factor are parameterized as functions of the cloud ice water content and generalized effective size (D{sub ge}). The present parameterization of the single-scattering properties of cirrus clouds is validated by examining the bulk radiative properties for a wide range of atmospheric conditions. Compared with reference results, the typical relative error in emissivity due to the parameterization is {approximately}2.2%. The accuracy of this parameterization guarantees its reliability in applications to climate models. The present parameterization complements the scheme for the solar radiative properties of cirrus clouds developed by Q. Fu for use in numerical models.

  3. An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate Models.

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Yang, Ping; Sun, W. B.

    1998-09-01

    An accurate parameterization is presented for the infrared radiative properties of cirrus clouds. For the single-scattering calculations, a composite scheme is developed for randomly oriented hexagonal ice crystals by comparing results from Mie theory, anomalous diffraction theory (ADT), the geometric optics method (GOM), and the finite-difference time domain technique. This scheme employs a linear combination of single-scattering properties from the Mie theory, ADT, and GOM, which is accurate for a wide range of size parameters. Following the approach of Q. Fu, the extinction coefficient, absorption coefficient, and asymmetry factor are parameterized as functions of the cloud ice water content and generalized effective size (Dge). The present parameterization of the single-scattering properties of cirrus clouds is validated by examining the bulk radiative properties for a wide range of atmospheric conditions. Compared with reference results, the typical relative error in emissivity due to the parameterization is 2.2%. The accuracy of this parameterization guarantees its reliability in applications to climate models. The present parameterization complements the scheme for the solar radiative properties of cirrus clouds developed by Q. Fu for use in numerical models.

  4. Radiation Transfer in the Atmosphere: Scattering

    NASA Technical Reports Server (NTRS)

    Mishchenko, M.; Travis, L.; Lacis, Andrew A.

    2014-01-01

    Sunlight illuminating the Earth's atmosphere is scattered by gas molecules and suspended particles, giving rise to blue skies, white clouds, and optical displays such as rainbows and halos. By scattering and absorbing the shortwave solar radiation and the longwave radiation emitted by the underlying surface, cloud and aerosol particles strongly affect the radiation budget of the terrestrial climate system. As a consequence of the dependence of scattering characteristics on particle size, morphology, and composition, scattered light can be remarkably rich in information on particle properties and thus provides a sensitive tool for remote retrievals of macro- and microphysical parameters of clouds and aerosols.

  5. General Relativistic Radiative Transfer: Applications to Black-Hole Systems

    NASA Technical Reports Server (NTRS)

    Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan

    2007-01-01

    We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.

  6. Radiative heat transfer in low-dimensional systems -- microscopic mode

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  7. RRTMGP: A fast and accurate radiation code for the next decade

    NASA Astrophysics Data System (ADS)

    Mlawer, E. J.; Pincus, R.; Wehe, A.; Delamere, J.

    2015-12-01

    Atmospheric radiative processes are key drivers of the Earth's climate and must be accurately represented in global circulations models (GCMs) to allow faithful simulations of the planet's past, present, and future. The radiation code RRTMG is widely utilized by global modeling centers for both climate and weather predictions, but it has become increasingly out-of-date. The code's structure is not well suited for the current generation of computer architectures and its stored absorption coefficients are not consistent with the most recent spectroscopic information. We are developing a new broadband radiation code for the current generation of computational architectures. This code, called RRTMGP, will be a completely restructured and modern version of RRTMG. The new code preserves the strengths of the existing RRTMG parameterization, especially the high accuracy of the k-distribution treatment of absorption by gases, but the entire code is being rewritten to provide highly efficient computation across a range of architectures. Our redesign includes refactoring the code into discrete kernels corresponding to fundamental computational elements (e.g. gas optics), optimizing the code for operating on multiple columns in parallel, simplifying the subroutine interface, revisiting the existing gas optics interpolation scheme to reduce branching, and adding flexibility with respect to run-time choices of streams, need for consideration of scattering, aerosol and cloud optics, etc. The result of the proposed development will be a single, well-supported and well-validated code amenable to optimization across a wide range of platforms. Our main emphasis is on highly-parallel platforms including Graphical Processing Units (GPUs) and Many-Integrated-Core processors (MICs), which experience shows can accelerate broadband radiation calculations by as much as a factor of fifty. RRTMGP will provide highly efficient and accurate radiative fluxes calculations for coupled global

  8. Verification of snowpack radiation transfer models using actinometry

    NASA Astrophysics Data System (ADS)

    Phillips, Gavin J.; Simpson, William R.

    2005-04-01

    Actinometric measurements of photolysis rate coefficients within artificial snow have been used to test calculations of these coefficients by two radiative transfer models. The models used were based upon the delta-Eddington method or the discrete ordinate method, as implemented in the tropospheric ultraviolet and visible snow model, and were constrained by irradiance measurements and light attenuation profiles within the artificial snow. Actinometric measurements of the photolysis rate coefficient were made by observing the unimolecular conversion of 2-nitrobenzaldehyde (NBA) to its photoproduct under ultraviolet irradiation. A control experiment using liquid solutions of NBA determined that the quantum yield for conversion was ϕ = 0.41 ± 0.04 (±2σ). Measured photolysis rate coefficients in the artificial snow are enhanced in the near-surface layer, as predicted in the model calculations. The two models yielded essentially identical results for the depth-integrated photolysis rate coefficient of NBA, and their results quantitatively agreed with the actinometric measurements within the experimental precision of the measurement (±10%, ±2σ). The study shows that these models accurately determine snowpack actinic fluxes. To calculate in-snow photolysis rates for a molecule of interest, one must also have knowledge of the absorption spectrum and quantum yield for the specific photoprocess in addition to the actinic flux. Having demonstrated that the actinic flux is well determined by these models, we find that the major remaining uncertainty in prediction of snowpack photochemical rates is the measurement of these molecular photophysical properties.

  9. Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian

    2015-10-01

    Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.

  10. 3D Radiative Transfer in Cloudy Atmospheres

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Davis, Anthony

    Developments in three-dimensional cloud radiation over the past few decades are assessed and distilled into this contributed volume. Chapters are authored by subject-matter experts who address a broad audience of graduate students, researchers, and anyone interested in cloud-radiation processes in the solar and infrared spectral regions. After two introductory chapters and a section on the fundamental physics and computational techniques, the volume extensively treats two main application areas: the impact of clouds on the Earth's radiation budget, which is an essential aspect of climate modeling; and remote observation of clouds, especially with the advanced sensors on current and future satellite missions. http://www.springeronline.com/alert/article?a=3D1_1fva7w_1j826l_41z_6

  11. A Model of Radiative and Conductive Energy Transfer in Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce

    1996-01-01

    The thermal regime in planetary regoliths involves three processes: propagation of visible radiation, propagation of thermal radiation, and thermal conduction. The equations of radiative transfer and heat conduction are formulated for particulate media composed of anisotropically scattering particles. Although the equations are time dependent, only steady state problems are considered in this paper. Using the two-stream approximation, solutions are obtained for two cases: a layer of powder heated from below and an infinitely thick regolith illuminated by visible radiation. Radiative conductivity, subsurface temperature gradients, and the solid state greenhouse effect all appear intrinsically in the solutions without ad hoc additions. Although the equations are nonlinear, approximate analytic solutions that are accurate to a few percent are obtained. Analytic expressions are given for the temperature distribution, the optical and thermal radiance distributions, the hemispherical albedo, the hemispherical emissivity, and the directional emissivity. Additional applications of the new model to three problems of interest in planetary regoliths are presented by Hapke.

  12. A Fast Radiative Transfer Parameterization Under Cloudy Condition in Solar Spectral Region

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Liu, X.; Yang, P.; Wang, C.

    2014-12-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) system, which is proposed and developed by NASA, will directly measure the Earth's thermal infrared spectrum (IR), the spectrum of solar radiation reflected by the Earth and its atmosphere (RS), and radio occultation (RO). IR, RS, and RO measurements provide information on the most critical but least understood climate forcings, responses, and feedbacks associated with the vertical distribution of atmospheric temperature and water vapor, broadband reflected and emitted radiative fluxes, cloud properties, surface albedo, and surface skin temperature. To perform Observing System Simulation Experiments (OSSE) for long term climate observations, accurate and fast radiative transfer models are needed. The principal component-based radiative transfer model (PCRTM) is one of the efforts devoted to the development of fast radiative transfer models for simulating radiances and reflecatance observed by various hyperspectral instruments. Retrieval algorithm based on PCRTM forward model has been developed for AIRS, NAST, IASI, and CrIS. It is very fast and very accurate relative to the training radiative transfer model. In this work, we are extending PCRTM to UV-VIS-near IR spectral region. To implement faster cloudy radiative transfer calculations, we carefully investigated the radiative transfer process under cloud condition. The cloud bidirectional reflectance was parameterized based on off-line 36-stream multiple scattering calculations while few other lookup tables were generated to describe the effective transmittance and reflectance of the cloud-clear-sky coupling system in solar spectral region. The bidirectional reflectance or the irradiance measured by satellite may be calculated using a simple fast radiative transfer model providing the type of cloud (ice or water), optical depth of the cloud, optical depth of both atmospheric trace gases above and below clouds, particle size of the cloud, as well

  13. User's Manual: Routines for Radiative Heat Transfer and Thermometry

    NASA Technical Reports Server (NTRS)

    Risch, Timothy K.

    2016-01-01

    Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.

  14. Assessment of a differential total absorptivity solution to the radiative transfer equation as applied in the discrete transfer radiation model

    SciTech Connect

    Bressloff, N.W.; Moss, J.B.; Rubini, P.A.

    1996-04-01

    A differential total absorptivity (DTA) solution to the radiative transfer equation is assessed for application in the discrete transfer radiation model (DTRM). The new solution technique treats the source temperature dependence of adsorption explicitly, without the need for spectral integration. Predictions are presented for the radiative intensity across single lines of sight, and for the volumetric source variations in a full DTRM calculation between solid walls. DTA exhibits superior performance relative to a differential total transmissivity solution and the weighted sum of gray gases solution. Additionally, gray gas solutions and a homogeneous isothermal path solution are shown to be unsatisfactory.

  15. Radiation heat transfer calculations for space structures

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Johansson, O.; Abrous, A.

    1987-01-01

    A method is presented for the computation of radiant heat flux between arbitrary surfaces which permits a user defined level of accuracy. The method can be applied to directionally dependent surface properties, specular radiation, or solar illumination, and ensures conservation of energy. The method is compared with others to demonstrate its value.

  16. Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.

  17. Accurate and fast stray radiation calculation based on improved backward ray tracing.

    PubMed

    Yang, Liu; XiaoQiang, An; Qian, Wang

    2013-02-01

    An improved method of backward ray tracing is proposed according to the theory of geometrical optics and thermal radiation heat transfer. The accuracy is essentially raised comparing to the traditional backward ray tracing because ray orders and weight factors are taken into account and the process is designed as sequential and recurring steps to trace and calculate different order stray lights. Meanwhile, it needs very small computation comparing to forward ray tracing because irrelevant surfaces and rays are excluded from the tracing. The effectiveness was verified in the stray radiation analysis for a cryogenic infrared (IR) imaging system, as the results coincided with the actual stray radiation irradiance distributions in the real images. The computation amount was compared with that of forward ray tracing in the narcissus calculation for another cryogenic IR imaging system, it was found that to produce the same accuracy result, the computation of the improved backward ray tracing is far smaller than that of forward ray tracing by at least 2 orders of magnitude.

  18. Radiation Heat Transfer Procedures for Space-Related Applications

    NASA Technical Reports Server (NTRS)

    Chai, John C.

    2000-01-01

    Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.

  19. Transfer of radiation technology to developing countries

    NASA Astrophysics Data System (ADS)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  20. Improvement and Application of Atmospheric Radiative Transfer Models for Prediction of the Climatic Effects of Aerosol

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications, we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  1. Improvement and Application of Atmospheric Radiative Transfer Models for Prediction of the Climatic Effects of Aerosol

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  2. A modified Henyey method for computing radiative transfer hydrodynamics

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1975-01-01

    The implicit hydrodynamic code of Kutter and Sparks (1972), which is limited to optically thick regions and employs the diffusion approximation for radiative transfer, is modified to include radiative transfer effects in the optically thin regions of a model star. A modified Henyey method is used to include the solution of the radiative transfer equation in this implicit code, and the convergence properties of this method are proven. A comparison is made between two hydrodynamic models of a classical Cepheid with a 12-day period, one of which was computed with the diffusion approximation and the other with the modified Henyey method. It is found that the two models produce nearly identical light and velocity curves, but differ in the fact that the former never has temperature inversions in the atmosphere while the latter does when sufficiently strong shocks are present.

  3. Partial moment entropy approximation to radiative heat transfer

    SciTech Connect

    Frank, Martin . E-mail: frank@mathematik.uni-kl.de; Dubroca, Bruno . E-mail: Bruno.Dubroca@math.u-bordeaux.fr; Klar, Axel . E-mail: klar@mathematik.uni-kl.de

    2006-10-10

    We extend the half moment entropy closure for the radiative heat transfer equations presented in Dubroca and Klar [B. Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 584-596] and Turpault et al. [R. Turpault, M. Frank, B. Dubroca, A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comput. Phys. 198 (2004) 363-371] to multi-D. To that end, we consider a partial moment system with general partitions of the unit sphere closed by an entropy minimization principle. We give physical and mathematical reasons for this choice of model and study its properties. Several numerical examples in different physical regimes are presented.

  4. Radiative transfer theory for polarimetric remote sensing of pine forest

    NASA Technical Reports Server (NTRS)

    Hsu, C. C.; Han, H. C.; Shin, Robert T.; Kong, Jin AU; Beaudoin, A.; Letoan, T.

    1992-01-01

    The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. To take into account the clustered structures with the radiative transfer theory, the scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. Subsequently, the resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including the multi-scale structures, namely, trunks, primary and secondary branches, as well as needles, we interpret and simulate the polarimetric radar responses from pine forest for different frequencies and looking angles. The preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment.

  5. A simplified scheme for computing radiation transfer in the troposphere

    NASA Technical Reports Server (NTRS)

    Katayama, A.

    1973-01-01

    A scheme is presented, for the heating of clear and cloudy air by solar and infrared radiation transfer, designed for use in tropospheric general circulation models with coarse vertical resolution. A bulk transmission function is defined for the infrared transfer. The interpolation factors, required for computing the bulk transmission function, are parameterized as functions of such physical parameters as the thickness of the layer, the pressure, and the mixing ratio at a reference level. The computation procedure for solar radiation is significantly simplified by the introduction of two basic concepts. The first is that the solar radiation spectrum can be divided into a scattered part, for which Rayleigh scattering is significant but absorption by water vapor is negligible, and an absorbed part for which absorption by water vapor is significant but Rayleigh scattering is negligible. The second concept is that of an equivalent cloud water vapor amount which absorbs the same amount of radiation as the cloud.

  6. Many-body radiative heat transfer theory.

    PubMed

    Ben-Abdallah, Philippe; Biehs, Svend-Age; Joulain, Karl

    2011-09-01

    In this Letter, an N-body theory for the radiative heat exchange in thermally nonequilibrated discrete systems of finite size objects is presented. We report strong exaltation effects of heat flux which can be explained only by taking into account the presence of many-body interactions. Our theory extends the standard Polder and van Hove stochastic formalism used to evaluate heat exchanges between two objects isolated from their environment to a collection of objects in mutual interaction. It gives a natural theoretical framework to investigate the photon heat transport properties of complex systems at the mesoscopic scale. PMID:22026672

  7. Combined conduction and radiation heat transfer in concentric cylindrical media

    NASA Technical Reports Server (NTRS)

    Pandey, D. K.

    1987-01-01

    The exact radiative transfer expressions for gray and nongray gases which are absorbing, emitting and nonscattering, contained between infinitely long concentric cylinders with black surfaces, are given in local thermodynamic equilibrium. Resulting energy equations due to the combination of conduction and radiation modes of heat transfer, under steady state conditions for gray and nongray media, are solved numerically using the undetermined parameters method. A single 4.3-micron band of CO2 is considered for the nongray problems. The present solutions for gray and nongray gases obtained in the plane-parallel limit (radius ratio approaches to one) are compared with the plane-parallel results reported in the literature.

  8. ARTIST: Adaptable Radiative Transfer Innovations for Submillimeter Telescopes

    NASA Astrophysics Data System (ADS)

    Jørgensen, Jes; Brinch, Christian; Girart, Josep Miquel; Padovani, Marco; Frau, Pau; Schaaf, Reinhold; Kuiper, Rolf; Bertoldi, Frank; Hogerheijde, Michiel; Juhasz, Attila; Vlemmings, Wouter

    2014-02-01

    ARTIST is a suite of tools for comprehensive multi-dimensional radiative transfer calculations of dust and line emission, as well as their polarization, to help interpret observations from submillimeter telescopes. The ARTIST package consists of LIME, a radiative transfer code that uses adaptive gridding allowing simulations of sources with arbitrary multi-dimensional (1D, 2D, 3D) and time-dependent structures, thus ensuring rapid convergence; the DustPol and LinePol tools for modeling the polarization of the line and dust emission; and an interface run from Python scripts that manages the interaction between a general model library and LIME, and a graphical interface to simulate images.

  9. Computation of Radiation Heat Transfer in Aeroengine Combustors

    NASA Technical Reports Server (NTRS)

    Patankar, S. V.

    1996-01-01

    In this report the highlights of the research completed for the NASA are summarized. This research has been completed in the form of two Ph.D. theses by Chai (1994) and Parthasarathy (1996). Readers are referred to these theses for a complete details of the work and lists of references. In the following sections, first objectives of this research are introduced, then the finite-volume method for radiation heat transfer is described, and finally computations of radiative heat transfer in non-gray participating media is presented.

  10. Modelling of Radiation Heat Transfer in Reacting Hot Gas Flows

    NASA Astrophysics Data System (ADS)

    Thellmann, A.; Mundt, C.

    2009-01-01

    In this work the interaction between a turbulent flow including chemical reactions and radiation transport is investigated. As a first step, the state-of-the art radiation models P1 based on the moment method and Discrete Transfer Model (DTM) based on the discrete ordinate method are used in conjunction with the CFD code ANSYS CFX. The absorbing and emitting medium (water vapor) is modeled by Weighted Sum of Gray Gases. For the chemical reactions the standard Eddy dissipation model combined with the two equation turbulence model k-epsilon is employed. A demonstration experiment is identified which delivers temperature distribution, species concentration and radiative intensity distribution in the investigated combustion enclosure. The simulation results are compared with the experiment and reveals that the P1 model predicts the location of the maximal radiation intensity unphysically. On the other hand the DTM model does better but over predicts the maximum value of the radiation intensity. This radiation sensitivity study is a first step on the way to identify a suitable radiation transport and spectral model in order to implement both in an existing 3D Navier-Stokes Code. Including radiation heat transfer we intend to investigate the influence on the overall energy balance in a hydrogen/oxygen rocket combustion chamber.

  11. Theory of heat transfer and hydraulic resistance of oil radiators

    NASA Technical Reports Server (NTRS)

    Mariamov, N B

    1942-01-01

    In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.

  12. Subgrid-scale model for radiative transfer in turbulent participating media

    NASA Astrophysics Data System (ADS)

    Soucasse, L.; Rivière, Ph.; Soufiani, A.

    2014-01-01

    The simulation of turbulent flows of radiating gases, taking into account all turbulence length scales with an accurate radiation transport solver, is computationally prohibitive for high Reynolds or Rayleigh numbers. This is particularly the case when the small structures are not optically thin. We develop in this paper a radiative transfer subgrid model suitable for the coupling with direct numerical simulations of turbulent radiating fluid flows. Owing to the linearity of the Radiative Transfer Equation (RTE), the emission source term is spatially filtered to define large-scale and subgrid-scale radiation intensities. The large-scale or filtered intensity is computed with a standard ray tracing method on a coarse grid, and the subgrid intensity is obtained analytically (in Fourier space) from the Fourier transform of the subgrid emission source term. A huge saving of computational time is obtained in comparison with direct ray tracing applied on the fine mesh. Model accuracy is checked for three 3D fluctuating temperature fields. The first field is stochastically generated and allows us to discuss the effects of the filtering level and of the optical thicknesses of the whole medium, of the integral length scale, and of the cutoff wave length. The second and third cases correspond respectively to turbulent natural convection of humid air in a cubical box, and to the flow of hot combustion products inside a channel. In all cases, the achieved accuracy on radiative powers and wall fluxes is about a few percents.

  13. Subgrid-scale model for radiative transfer in turbulent participating media

    SciTech Connect

    Soucasse, L.; Rivière, Ph.; Soufiani, A.

    2014-01-15

    The simulation of turbulent flows of radiating gases, taking into account all turbulence length scales with an accurate radiation transport solver, is computationally prohibitive for high Reynolds or Rayleigh numbers. This is particularly the case when the small structures are not optically thin. We develop in this paper a radiative transfer subgrid model suitable for the coupling with direct numerical simulations of turbulent radiating fluid flows. Owing to the linearity of the Radiative Transfer Equation (RTE), the emission source term is spatially filtered to define large-scale and subgrid-scale radiation intensities. The large-scale or filtered intensity is computed with a standard ray tracing method on a coarse grid, and the subgrid intensity is obtained analytically (in Fourier space) from the Fourier transform of the subgrid emission source term. A huge saving of computational time is obtained in comparison with direct ray tracing applied on the fine mesh. Model accuracy is checked for three 3D fluctuating temperature fields. The first field is stochastically generated and allows us to discuss the effects of the filtering level and of the optical thicknesses of the whole medium, of the integral length scale, and of the cutoff wave length. The second and third cases correspond respectively to turbulent natural convection of humid air in a cubical box, and to the flow of hot combustion products inside a channel. In all cases, the achieved accuracy on radiative powers and wall fluxes is about a few percents.

  14. Super-Eddington radiation transfer in soft gamma repeaters

    NASA Astrophysics Data System (ADS)

    Ulmer, Andrew

    1994-12-01

    Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 1013 G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.

  15. Super-Eddington radiation transfer in soft gamma repeaters

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 10(exp 13) G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.

  16. Comparison of vibration dissociation coupling and radiative heat transfer models for AOTV/AFE flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.; Bobskill, Glenn J.; Greendyke, Robert B.

    1988-01-01

    A series of detailed studies comparing various vibration dissociation coupling models, reaction systems and rates, and radiative heating models has been conducted for the nonequilibrium stagnation region of an AFE/AOTV vehicle. Atomic and molecular nonequilibrium radiation correction factors have been developed and applied to various absorption coefficient step models, and a modified vibration dissociation coupling model has been shown to yield good vibration/electronic temperature and concentration profiles. While results indicate sensitivity to the choice of vibration dissociation coupling model and to the nitrogen electron impact ionization rate, by proper combinations accurate flowfield and radiative heating results can be obtained. These results indicate that nonequilibrium effects significantly affect the flowfield and the radiative heat transfer. However, additional work is needed in ionization chemistry and absorption coefficient modeling.

  17. Polarized multi-dimensional radiative transfer using the discrete ordinates method

    SciTech Connect

    Haferman, J.L.; Smith, T.F.; Krajewski, W.F.

    1996-11-01

    A polarized multi-dimensional radiative transfer model based on the discrete-ordinates method is developed. The model solves the monochromatic vector radiative transfer equation (VRTE) that considers polarization using the four Stokes parameters. For the VRTE, the intensity of the scalar radiative transfer equation is replaced by the Stokes intensity vector; the position-dependent scalar extinction coefficient is replaced by a direction- and position-dependent 4 x 4 extinction matrix; the position-dependent scalar absorption coefficient is replaced by a direction- and position-dependent emission vector; and the scalar phase function is replaced by a scattering phase matrix. The model is capable of solving the VRTE in anisotropically scattering one-, two-, or three-dimensional Cartesian geometries. The model is validated for one-dimensional polarized radiative transfer by comparing its results to several benchmark cases available in the literature. The model results are accurate so long as a quadrature set is chosen so that all phase functions used for a given problem normalize to unity. The model has been developed using a parallel computing paradigm, where each Stokes parameter is solved for on a separate computer processing unit.

  18. Two-dimensional radiative transfer in cloudy atmospheres - The spherical harmonic spatial grid method

    NASA Technical Reports Server (NTRS)

    Evans, K. F.

    1993-01-01

    A new two-dimensional monochromatic method that computes the transfer of solar or thermal radiation through atmospheres with arbitrary optical properties is described. The model discretizes the radiative transfer equation by expanding the angular part of the radiance field in a spherical harmonic series and representing the spatial part with a discrete grid. The resulting sparse coupled system of equations is solved iteratively with the conjugate gradient method. A Monte Carlo model is used for extensive verification of outgoing flux and radiance values from both smooth and highly variable (multifractal) media. The spherical harmonic expansion naturally allows for different levels of approximation, but tests show that the 2D equivalent of the two-stream approximation is poor at approximating variations in the outgoing flux. The model developed here is shown to be highly efficient so that media with tens of thousands of grid points can be computed in minutes. The large improvement in efficiency will permit quick, accurate radiative transfer calculations of realistic cloud fields and improve our understanding of the effect of inhomogeneity on radiative transfer in cloudy atmospheres.

  19. Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept.

    PubMed

    Liu, Xu; Smith, William L; Zhou, Daniel K; Larar, Allen

    2006-01-01

    Modern infrared satellite sensors such as the Atmospheric Infrared Sounder (AIRS), the Cross-Track Infrared Sounder (CrIS), the Tropospheric Emission Spectrometer (TES), the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), and the Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, superfast radiative transfer models are needed. We present a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the principal component-based radiative transfer model (PCRTM) predicts the principal component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from the properties of PC scores and instrument line-shape functions. The PCRTM is accurate and flexible. Because of its high speed and compressed spectral information format, it has great potential for superfast one-dimensional physical retrieval and for numerical weather prediction large volume radiance data assimilation applications. The model has been successfully developed for the NAST-I and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  20. Principal Component-Based Radiative Transfer Model (PCRTM) for Hyperspectral Sensors. Part I; Theoretical Concept

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen

    2005-01-01

    Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  1. A modular radiative transfer program for gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Campbell, S. A.

    1977-01-01

    The fundamentals of a computer program, simulated monochromatic atmospheric radiative transfer (SMART), which calculates atmospheric path transmission, solar radiation, and thermal radiation in the 4.6 micrometer spectral region, are described. A brief outline of atmospheric absorption properties and line by line transmission calculations is explained in conjunction with an outline of the SMART computational procedures. Program flexibility is demonstrated by simulating the response of a gas filter correlation radiometer as one example of an atmospheric infrared sensor. Program limitations, input data requirements, program listing, and comparison of SMART transmission calculations are presented.

  2. Fractional integration and radiative transfer in a multifractal atmosphere

    SciTech Connect

    Naud, C.; Schertzer, D.; Lovejoy, S.

    1996-04-01

    Recently, Cess et al. (1995) and Ramathan et al. (1995) cited observations which exhibit an anomalous absorption of cloudy skies in comparison with the value predicted by usual models and which thus introduce large uncertainties for climatic change assessments. These observation raise questions concerning the way general circulation models have been tuned for decades, relying on classical methods, of both radiative transfer and dynamical modeling. The observations also tend to demonstrate that homogeneous models are simply not relevant in relating the highly variable properties of clouds and radiation fields. However smoothed, the intensity of cloud`s multi-scattered radiation fields reflect this extreme variability.

  3. Heat transfer studies on the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Nelson, M.

    1987-01-01

    This paper examines radiation transfer in the droplet sheet of a liquid droplet radiator including non-isotropic scattering by the droplets. Non-isotropic scattering becomes significant for small droplets (diameter less than 0.1 mm) and for low emissivity liquids. For droplets with an emittance of 0.1 and for a droplet sheet optical depth or 5, the radiated power varies by about 12 percent, depending on whether scattering is predominantly forward or backward. An experimental measurement of the power emitted by a cylindrical cloud of heated droplets of silicone fluid is also reported. The measured cloud emissivity correlates, within experimental error, with the analytical model.

  4. A public code for general relativistic, polarised radiative transfer around spinning black holes

    NASA Astrophysics Data System (ADS)

    Dexter, Jason

    2016-10-01

    Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, GRTRANS, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in FORTRAN 90 and efficiently parallelises with OPENMP, and the full code and several components have PYTHON interfaces. We describe several tests which are used for verifiying the code, and we compare the results for polarised thin accretion disc and semi-analytic jet problems with those from the literature as examples of its use. Along the way, we provide accurate fitting functions for polarised synchrotron emission and transfer coefficients from thermal and power-law distribution functions, and compare results from numerical integration and quadrature solutions of the polarised radiative transfer equations. We also show that all transfer coefficients can play an important role in predicted images and polarisation maps of the Galactic centre black hole, Sgr A*, at submillimetre wavelengths.

  5. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  6. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    SciTech Connect

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2015-03-15

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.

  7. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations

    NASA Astrophysics Data System (ADS)

    Sun, Wenjun; Jiang, Song; Xu, Kun; Li, Shu

    2015-12-01

    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP) scheme in all

  8. Radiative transfer simulations of magnetar flare beaming

    NASA Astrophysics Data System (ADS)

    van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.

    2016-09-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  9. Additional correction for energy transfer efficiency calculation in filter-based Förster resonance energy transfer microscopy for more accurate results

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Periasamy, Ammasi

    2010-03-01

    Förster resonance energy transfer (FRET) microscopy is commonly used to monitor protein interactions with filter-based imaging systems, which require spectral bleedthrough (or cross talk) correction to accurately measure energy transfer efficiency (E). The double-label (donor+acceptor) specimen is excited with the donor wavelength, the acceptor emission provided the uncorrected FRET signal and the donor emission (the donor channel) represents the quenched donor (qD), the basis for the E calculation. Our results indicate this is not the most accurate determination of the quenched donor signal as it fails to consider the donor spectral bleedthrough (DSBT) signals in the qD for the E calculation, which our new model addresses, leading to a more accurate E result. This refinement improves E comparisons made with lifetime and spectral FRET imaging microscopy as shown here using several genetic (FRET standard) constructs, where cerulean and venus fluorescent proteins are tethered by different amino acid linkers.

  10. Modeling the physical structure of star-forming regions with LIME, a 3D radiative transfer code

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Bottinelli, S.; Caux, E.

    2016-05-01

    The ability to predict line emission is crucial in order to make a comparison with observations. From LTE to full radiative transfer codes, the goal is always to derive the most accurately possible the physical properties of the source. Non-LTE calculations can be very time consuming but are needed in most of the cases since many studied regions are far from LTE.

  11. HELIOS: A new open-source radiative transfer code

    NASA Astrophysics Data System (ADS)

    Malik, Matej; Grosheintz, Luc; Lukas Grimm, Simon; Mendonça, João; Kitzmann, Daniel; Heng, Kevin

    2015-12-01

    I present the new open-source code HELIOS, developed to accurately describe radiative transfer in a wide variety of irradiated atmospheres. We employ a one-dimensional multi-wavelength two-stream approach with scattering. Written in Cuda C++, HELIOS uses the GPU’s potential of massive parallelization and is able to compute the TP-profile of an atmosphere in radiative equilibrium and the subsequent emission spectrum in a few minutes on a single computer (for 60 layers and 1000 wavelength bins).The required molecular opacities are obtained with the recently published code HELIOS-K [1], which calculates the line shapes from an input line list and resamples the numerous line-by-line data into a manageable k-distribution format. Based on simple equilibrium chemistry theory [2] we combine the k-distribution functions of the molecules H2O, CO2, CO & CH4 to generate a k-table, which we then employ in HELIOS.I present our results of the following: (i) Various numerical tests, e.g. isothermal vs. non-isothermal treatment of layers. (ii) Comparison of iteratively determined TP-profiles with their analytical parametric prescriptions [3] and of the corresponding spectra. (iii) Benchmarks of TP-profiles & spectra for various elemental abundances. (iv) Benchmarks of averaged TP-profiles & spectra for the exoplanets GJ1214b, HD189733b & HD209458b. (v) Comparison with secondary eclipse data for HD189733b, XO-1b & Corot-2b.HELIOS is being developed, together with the dynamical core THOR and the chemistry solver VULCAN, in the group of Kevin Heng at the University of Bern as part of the Exoclimes Simulation Platform (ESP) [4], which is an open-source project aimed to provide community tools to model exoplanetary atmospheres.-----------------------------[1] Grimm & Heng 2015, ArXiv, 1503.03806[2] Heng, Lyons & Tsai, Arxiv, 1506.05501Heng & Lyons, ArXiv, 1507.01944[3] e.g. Heng, Mendonca & Lee, 2014, ApJS, 215, 4H[4] exoclime.net

  12. A Thermokinetic Approach to Radiative Heat Transfer at the Nanoscale

    PubMed Central

    Pérez-Madrid, Agustín; Lapas, Luciano C.; Rubí, J. Miguel

    2013-01-01

    Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through micrometric gaps regardless of geometrical configurations and distances. PMID:23527019

  13. Radiative transfer in a polluted urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  14. Radiation transfer in plant canopies - Scattering of solar radiation and canopy reflectance

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1988-01-01

    The one-dimensional vertical model of radiation transfer in a plant canopy described by Verstraete (1987) is extended to account for the transfer of diffuse radiation. This improved model computes the absorption and scattering of both visible and near-infrared radiation in a multilayer canopy as a function of solar position and leaf orientation distribution. Multiple scattering is allowed, and the spectral reflectance of the vegetation stand is predicted. The results of the model are compared to those of other models and actual observations.

  15. A Fast Infrared Radiative Transfer Model for Overlapping Clouds

    NASA Technical Reports Server (NTRS)

    Niu, Jianguo; Yang, Ping; Huang, Huang-Lung; Davies, James E.; Li, Jun; Baum, Bryan A.; Hu, Yong X.

    2006-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: 1) clear-sky, 2) single-layered ice or water cloud, and 3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3 - 1179.5/cm) and the short-to-medium wave (SMW) band (1180.1 - 2228.9/cm). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD(F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model.

  16. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect

    Veron, Dana E

    2009-03-12

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  17. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  18. On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media

    NASA Astrophysics Data System (ADS)

    Zhao, J. M.; Tan, J. Y.; Liu, L. H.

    2012-02-01

    Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.

  19. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  20. Coupling radiative heat transfer in participating media with other heat transfer modes

    SciTech Connect

    Tencer, John; Howell, John R.

    2015-09-28

    The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

  1. Cloud Property Retrieval and 3D Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2003-01-01

    Cloud thickness and photon mean-free-path together determine the scale of "radiative smoothing" of cloud fluxes and radiances. This scale is observed as a change in the spatial spectrum of cloud radiances, and also as the "halo size" seen by off beam lidar such as THOR and WAIL. Such of beam lidar returns are now being used to retrieve cloud layer thickness and vertical scattering extinction profile. We illustrate with recent measurements taken at the Oklahoma ARM site, comparing these to the-dependent 3D simulations. These and other measurements sensitive to 3D transfer in clouds, coupled with Monte Carlo and other 3D transfer methods, are providing a better understanding of the dependence of radiation on cloud inhomogeneity, and to suggest new retrieval algorithms appropriate for inhomogeneous clouds. The international "Intercomparison of 3D Radiation Codes" or I3RC, program is coordinating and evaluating the variety of 3D radiative transfer methods now available, and to make them more widely available. Information is on the Web at: http://i3rc.gsfc.nasa.gov/. Input consists of selected cloud fields derived from data sources such as radar, microwave and satellite, and from models involved in the GEWEX Cloud Systems Studies. Output is selected radiative quantities that characterize the large-scale properties of the fields of radiative fluxes and heating. Several example cloud fields will be used to illustrate. I3RC is currently implementing an "open source" 3d code capable of solving the baseline cases. Maintenance of this effort is one of the goals of a new 3DRT Working Group under the International Radiation Commission. It is hoped that the 3DRT WG will include active participation by land and ocean modelers as well, such as 3D vegetation modelers participating in RAMI.

  2. Radiative heat transfer between two dielectric-filled metal gratings

    NASA Astrophysics Data System (ADS)

    Dai, J.; Dyakov, S. A.; Yan, M.

    2016-04-01

    Nanoscale surface corrugation is known to be able to drastically enhance radiative heat transfer between two metal plates. Here we numerically calculate the radiative heat transfer between two dielectric-filled metal gratings at dissimilar temperatures based on a scattering approach. It is demonstrated that, compared to unfilled metal gratings, the heat flux for a fixed geometry can be further enhanced, by up to 650% for the geometry separated by a vacuum gap of g =1 μ m and temperature values concerned in our study. The enhancement in radiative heat transfer is found to depend on refractive index of the filling dielectric, the specific grating temperatures, and naturally the gap size between the two gratings. The enhancement can be understood through examining the transmission factor spectra, especially the spectral locations of the spoof surface plasmon polariton modes. Of more practical importance, it's shown that the radiative heat flux can exceed that between two planar SiC plates with same thickness, separation, and temperature settings over a wide temperature range. This reaffirms that one can harness rich electromagnetic modal properties in nanostructured materials for efficient thermal management at nanoscale.

  3. Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization

    PubMed Central

    Marelli, Damián; Baumgartner, Robert; Majdak, Piotr

    2015-01-01

    Head-related transfer functions (HRTFs) describe the acoustic filtering of incoming sounds by the human morphology and are essential for listeners to localize sound sources in virtual auditory displays. Since rendering complex virtual scenes is computationally demanding, we propose four algorithms for efficiently representing HRTFs in subbands, i.e., as an analysis filterbank (FB) followed by a transfer matrix and a synthesis FB. All four algorithms use sparse approximation procedures to minimize the computational complexity while maintaining perceptually relevant HRTF properties. The first two algorithms separately optimize the complexity of the transfer matrix associated to each HRTF for fixed FBs. The other two algorithms jointly optimize the FBs and transfer matrices for complete HRTF sets by two variants. The first variant aims at minimizing the complexity of the transfer matrices, while the second one does it for the FBs. Numerical experiments investigate the latency-complexity trade-off and show that the proposed methods offer significant computational savings when compared with other available approaches. Psychoacoustic localization experiments were modeled and conducted to find a reasonable approximation tolerance so that no significant localization performance degradation was introduced by the subband representation. PMID:26681930

  4. Polarized radiative transfer equation in several astrophysically interesting coordinate systems

    NASA Astrophysics Data System (ADS)

    Freimanis, J.

    2012-04-01

    While modeling multiple light scattering in astrophysical objects generally it is necessary to make numerical 3D radiative transfer calculations in objects of irregular morphology. But often their shape can be approximated by some regular geometry, e.g. plane-parallel, spherical, cylindrical, conical, spheroidal or toroidal. There are few theoretical results concerning radiative transfer in nonplanar geometries, namely, only for spherical and cylindrical coordinate systems. But the numerical solution of any equation generally performs best if the numerical method accounts for the analytical properties of the solution, first of all - its singularities and asymptotics. This justifies further theoretical research of radiative transfer in different coordinate systems, and first of all, the transfer equation itself in different coordinate systems must be written down. General method allowing to obtain clear expression for the differential operator of polarized radiative transfer equation (PRTE) in arbitrary curvilinear spatial coordinate system was recently described [1]. Here it is applied to several orthogonal coordinate systems essential for astrophysical applications. PRTE in circular conical coordinate system is treated as a particular look upon PRTE in spherical coordinate system. Previously obtained expressions for PRTE in elliptic conical coordinate system [2] are simplified using Lukáčs [3] trigonometric parameterization of the coordinates. PRTE in triaxial ellipsoidal system is obtained by merger of parameterization of angular coordinates described in [3] with my own ideas; PRTE in oblate spheroidal and prolate spheroidal system appear as particular cases of it in two types of the ellipsoidal system. PRTE in two different kinds of toroidal coordinate system (classical and simple) is derived as well.

  5. Preliminary results of a three-dimensional radiative transfer model

    SciTech Connect

    O`Hirok, W.

    1995-09-01

    Clouds act as the primary modulator of the Earth`s radiation at the top of the atmosphere, within the atmospheric column, and at the Earth`s surface. They interact with both shortwave and longwave radiation, but it is primarily in the case of shortwave where most of the uncertainty lies because of the difficulties in treating scattered solar radiation. To understand cloud-radiative interactions, radiative transfer models portray clouds as plane-parallel homogeneous entities to ease the computational physics. Unfortunately, clouds are far from being homogeneous, and large differences between measurement and theory point to a stronger need to understand and model cloud macrophysical properties. In an attempt to better comprehend the role of cloud morphology on the 3-dimensional radiation field, a Monte Carlo model has been developed. This model can simulate broadband shortwave radiation fluxes while incorporating all of the major atmospheric constituents. The model is used to investigate the cloud absorption anomaly where cloud absorption measurements exceed theoretical estimates and to examine the efficacy of ERBE measurements and cloud field experiments. 3 figs.

  6. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. PMID:25965703

  7. On the planetary and Milne problems in complex radiative transfer

    NASA Astrophysics Data System (ADS)

    Viik, T.

    2016-11-01

    In this paper we consider two classical problems in radiative transfer - the planetary and the Milne problems - in an isotropic homogeneous optically semi-infinite medium where the albedo of single scattering may be defined anywhere in the complex plane. It appeared that the method of approximating the kernel in the integral equation for the Sobolev resolvent function can be used even in such a case. This approach allows to express almost all the relevant functions of transfer for those problems by simply determinable auxiliary functions.

  8. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  9. Retaining space and time coherence in radiative transfer models.

    PubMed

    Rosato, J

    2015-05-01

    A recent model for radiative transfer that accounts for spatial coherence is extended in such a way as to retain temporal coherence. The method employs Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy techniques. Both spatial and temporal coherence are shown to affect the formation of atomic line spectra. Calculations of Lyman α radiation transport in optically thick divertor plasma conditions are reported as an illustration of the model. A possible extension of the formalism to dense media involving correlations between atoms is discussed in an appendix. A link to partial frequency redistribution modeling is also discussed.

  10. Fire Intensity Data for Validation of the Radiative Transfer Equation

    SciTech Connect

    Blanchat, Thomas K.; Jernigan, Dann A.

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  11. Radiative transfer model validations during the First ISLSCP Field Experiment

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Breon, Francois-Marie; Gautier, Catherine

    1990-01-01

    Two simple radiative transfer models, the 5S model based on Tanre et al. (1985, 1986) and the wide-band model of Morcrette (1984) are validated by comparing their outputs with results obtained during the First ISLSCP Field Experiment on concomitant radiosonde, aerosol turbidity, and radiation measurements and sky photographs. Results showed that the 5S model overestimates the short-wave irradiance by 13.2 W/sq m, whereas the Morcrette model underestimated the long-wave irradiance by 7.4 W/sq m.

  12. Optical property dimensionality reduction techniques for accelerated radiative transfer performance: Application to remote sensing total ozone retrievals

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2014-01-01

    In this paper, we introduce several dimensionality reduction techniques for optical parameters. We consider the principal component analysis, the local linear embedding methods (locality pursuit embedding, locality preserving projection, locally embedded analysis), and discrete orthogonal transforms (cosine, Legendre, wavelet). The principle component analysis has already been shown to be an effective and accurate method of enhancing radiative transfer performance for simulations in an absorbing and a scattering atmosphere. By linearizing the corresponding radiative transfer model, we analyze the applicability of the proposed methods to a practical problem of total ozone column retrieval from UV-backscatter measurements.

  13. Application of nonlinear Krylov acceleration to radiative transfer problems

    SciTech Connect

    Till, A. T.; Adams, M. L.; Morel, J. E.

    2013-07-01

    The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)

  14. A study of thermal radiation transfer in a solar thruster

    SciTech Connect

    Venkateswaran, S.; Thynell, S.T.; Merkle, C.L. )

    1991-11-01

    Combined convective and radiative heat transfer in an axisymmetric solar thruster is analyzed. In a solar thruster, focused solar energy is converted into thermal energy by volumetric absorption, resulting in a significant increase in the temperature of the propellant gas. The heated gas is then expanded through a propulsive nozzle in order to generate thrust. In the present theoretical analysis, submicron size particles are employed for providing the mechanism of solar energy absorption. The two-dimensional radiation problem is solved using both an exact integral method and the P{sub 1}-approximation. The overall energy transfer is solved iteratively by numerical means. The computational model is used to perform parametric studies of the effects of Boltzmann number, optical dimensions of the medium, and wall emissivity. The overall performance of the solar thruster is assessed by determining the thrust levels and the specific impulses of the device under different operating conditions.

  15. Radiative transfer theory for polarimetric remote sensing of pine forest

    NASA Technical Reports Server (NTRS)

    Hsu, C. C.; Han, H. C.; Shin, R. T.; Kong, J. A.; Beaudoin, A.; Le Toan, T.

    1992-01-01

    The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. The scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. The resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including multiscale structures (trunks, primary and secondary branches, and needles), polarimetric radar responses from pine forest for different frequencies and looking angles are interpreted and simulated. Preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment.

  16. Accurate patient dosimetry of kilovoltage cone-beam CT in radiation therapy

    SciTech Connect

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

    2008-03-15

    The increased utilization of x-ray imaging in image-guided radiotherapy has dramatically improved the radiation treatment and the lives of cancer patients. Daily imaging procedures, such as cone-beam computed tomography (CBCT), for patient setup may significantly increase the dose to the patient's normal tissues. This study investigates the dosimetry from a kilovoltage (kV) CBCT for real patient geometries. Monte Carlo simulations were used to study the kV beams from a Varian on-board imager integrated into the Trilogy accelerator. The Monte Carlo calculated results were benchmarked against measurements and good agreement was obtained. The authors developed a novel method to calibrate Monte Carlo simulated beams with measurements using an ionization chamber in which the air-kerma calibration factors are obtained from an Accredited Dosimetry Calibration Laboratory. The authors have introduced a new Monte Carlo calibration factor, f{sub MCcal}, which is determined from the calibration procedure. The accuracy of the new method was validated by experiment. When a Monte Carlo simulated beam has been calibrated, the simulated beam can be used to accurately predict absolute dose distributions in the irradiated media. Using this method the authors calculated dose distributions to patient anatomies from a typical CBCT acquisition for different treatment sites, such as head and neck, lung, and pelvis. Their results have shown that, from a typical head and neck CBCT, doses to soft tissues, such as eye, spinal cord, and brain can be up to 8, 6, and 5 cGy, respectively. The dose to the bone, due to the photoelectric effect, can be as much as 25 cGy, about three times the dose to the soft tissue. The study provides detailed information on the additional doses to the normal tissues of a patient from a typical kV CBCT acquisition. The methodology of the Monte Carlo beam calibration developed and introduced in this study allows the user to calculate both relative and absolute

  17. Orbit Maneuver Compensation of KAGUYA for Its Safe and Accurate Lunar Transfer

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Yasuhiro; Terada, Hiroshi; Matsuoka, Masatoshi; Ohnishi, Takafumi

    Reported in this paper are the results of the orbit maneuver compensation in KAGUYA's Lunar transfer. Because of the uncoupled allocation of the attitude control thrusters, extra velocity increment (δv ) is induced whenever KAGUYA performs an orbit maneuver. Since the observed level of δv was unacceptable range from the point of maneuver accuracy requirement, it was compensated by means of deducting estimated δv from the orbit maneuver command. The δv estimation model was updated step-by-step during the Lunar transfer, which leaded to significant improvement of the orbit maneuver accuracy and resulted in the omission of the last trajectory correction maneuver. The method of the compensation and its results are introduced in detail.

  18. Millimeter wave radiative transfer studies for precipitation measurements

    NASA Technical Reports Server (NTRS)

    Vivekanandan, J.; Evans, Frank

    1989-01-01

    Scattering calculations using the discrete dipole approximation and vector radiative transfer calculations were performed to model multiparameter radar return and passive microwave emission for a simple model of a winter storm. The issue of dendrite riming was addressed by computing scattering properties of thin ice disks with varying bulk density. It was shown that C-band multiparameter radar contains information about particle density and the number concentration of the ice particles. The radiative transfer modeling indicated that polarized multifrequency passive microwave emission may be used to infer some properties of ice hydrometers. Detailed radar modeling and vector radiative transfer modeling is in progress to enhance the understanding of simultaneous radar and radiometer measurements, as in the case of the proposed TRMM field program. A one-dimensional cloud model will be used to simulate the storm structure in detail and study the microphysics, such as size and density. Multifrequency polarized radiometer measurements from the SSMI satellite instrument will be analyzed in relation to dual-frequency and dual-polarization radar measurements.

  19. TWILIGHT: A Cellular Framework for Three-Dimensional Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Khatami, David; Madore, Barry

    2015-01-01

    We describe a new framework for solving three-dimensional radiative transfer of arbitrary geometries, including a full characterisation of the wavelength-dependent anisotropic scattering, absorption, and thermal reemission of light by dust. By adopting a cellular approach to discretising the light and dust, the problem can be efficiently solved through a fully deterministic iterative process. As a proof of concept we present TWILIGHT, our implementation of the cellular approach, in order to demonstrate and benchmark the new method. TWILIGHT simultaneously renders over one hundred unique images of a given environment with no additional slowdown, enabling a close study of inclination effects of three-dimensional dust geometries. In addition to qualitative rendering tests, TWILIGHT is successfully tested against two Monte-Carlo radiative transfer benchmarks, producing similar brightness profiles at varying inclinations. With the proof-of-concept established, we describe the improvements and current developments underway using the cellular framework, including a technique to resolve the subgrid physics of dust radiative transfer from micron-scale grain models to kiloparsec-sized dust environments.

  20. Radiative transfer solution for rugged and heterogeneous scene observations.

    PubMed

    Miesch, C; Briottet, X; Kerr, Y H; Cabot, F

    2000-12-20

    A physical algorithm is developed to solve the radiative transfer problem in the solar reflective spectral domain. This new code, Advanced Modeling of the Atmospheric Radiative Transfer for Inhomogeneous Surfaces (AMARTIS), takes into account the relief, the spatial heterogeneity, and the bidirectional reflectances of ground surfaces. The resolution method consists of first identifying the irradiance and radiance components at ground and sensor levels and then modeling these components separately, the rationale being to find the optimal trade off between accuracy and computation times. The validity of the various assumptions introduced in the AMARTIS model are checked through comparisons with a reference Monte Carlo radiative transfer code for various ground scenes: flat ground with two surface types, a linear sand dune landscape, and an extreme mountainous configuration. The results show a divergence of less than 2% between the AMARTIS code and the Monte Carlo reference code for the total signals received at satellite level. In particular, it is demonstrated that the environmental and topographic effects are properly assessed by the AMARTIS model even for situations in which the effects become dominant. PMID:18354698

  1. Radiative heat transfer in rocket thrust chambers and nozzles

    NASA Technical Reports Server (NTRS)

    Hammad, K. J.; Naraghi, M. H. N.

    1989-01-01

    Numerical models based on the discrete exchange factor (DEF) and the zonal methods for radiative analysis of rocket engines containing a radiatively participating medium have been developed. These models implement a new technique for calculating the direct exchange factors to account for possible blockage by the nozzle throat. Given the gas and surface temperature distributions, engine geometry, and radiative properties, the models compute the wall radiative heat fluxes at different axial positions. The results of sample calculations for a typical rocket engine (engine 700 at NASA), which uses RP-1 (a kerosene-type propellant), are presented for a wide range of surface and gas properties. It is found that the heat transfer by radiation can reach up to 50 percent of that due to convection. The maximum radiative heat flux is at the inner side of the engine, where the gas temperature is the highest. While the results of both models are in excellent agreement, the computation time of the DEF method is found to be much smaller.

  2. Study of multi-dimensional radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, S. N.

    1993-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical arrow band model with an exponential-tailed inverse intensity distribution. Consideration of spectral correlation results in some distinguishing features of the Monte Carlo formulations. Validation of the Monte Carlo formulations has been conducted by comparing results of this method with other solutions. Extension of a one-dimensional problem to a multi-dimensional problem requires some special treatments in the Monte Carlo analysis. Use of different assumptions results in different sets of Monte Carlo formulations. The nongray narrow band formulations provide the most accurate results.

  3. Radiative transfer in inhomogeneous stratified scattering media with use of the auxiliary function method.

    PubMed

    Elias, Mady; Elias, Georges

    2004-04-01

    The auxiliary function method consists of taking full advantage of the expansion of the phase function on spherical harmonics in order to deduce an integral equation from the radiative transfer equation. In contrast to the discrete-ordinate method, it is free of the channel concept, the unknowns being a function only of the optical depth. After presenting the method, we show that it is very accurate and particularly well fitted when the scattering medium is continuously inhomogeneous in albedo and phase function and also for sublayers with different refractive index.

  4. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  5. IPRT polarized radiative transfer model intercomparison project - Phase A

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Korkin, Sergey; Ota, Yoshifumi; Labonnote, Laurent C.; Lyapustin, Alexei; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2015-10-01

    The polarization state of electromagnetic radiation scattered by atmospheric particles such as aerosols, cloud droplets, or ice crystals contains much more information about the optical and microphysical properties than the total intensity alone. For this reason an increasing number of polarimetric observations are performed from space, from the ground and from aircraft. Polarized radiative transfer models are required to interpret and analyse these measurements and to develop retrieval algorithms exploiting polarimetric observations. In the last years a large number of new codes have been developed, mostly for specific applications. Benchmark results are available for specific cases, but not for more sophisticated scenarios including polarized surface reflection and multi-layer atmospheres. The International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to fill this gap. This paper presents the results of the first phase A of the IPRT project which includes ten test cases, from simple setups with only one layer and Rayleigh scattering to rather sophisticated setups with a cloud embedded in a standard atmosphere above an ocean surface. All scenarios in the first phase A of the intercomparison project are for a one-dimensional plane-parallel model geometry. The commonly established benchmark results are available at the IPRT website.

  6. SPAMCART: a code for smoothed particle Monte Carlo radiative transfer

    NASA Astrophysics Data System (ADS)

    Lomax, O.; Whitworth, A. P.

    2016-10-01

    We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, i.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.

  7. Near-field radiative heat transfer in mesoporous alumina

    NASA Astrophysics Data System (ADS)

    Jing, Li; Yan-Hui, Feng; Xin-Xin, Zhang; Cong-Liang, Huang; Ge, Wang

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2˜4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. Project supported by the National Natural Science Foundation of China (Grant No. 51422601), the National Basic Research Program of China (Grant No. 2012CB720404), and the National Key Technology Research and Development Program of China (Grant No. 2013BAJ01B03).

  8. A fast radiative transfer model for SSMIS upper atmosphere sounding channels

    NASA Astrophysics Data System (ADS)

    Han, Yong; Weng, Fuzhong; Liu, Quanhua; van Delst, Paul

    2007-06-01

    Special Sensor Microwave Imager/Sounder (SSMIS) on board the Defense Meteorology Satellite Program (DMSP) F-16 satellite probes the atmospheric temperature from surface to 100 km. SSMIS channels 19-22 are significantly affected by Zeeman splitting, which is dependent on the Earth's magnetic field. Thus, in satellite data assimilation or retrieval systems, SSMIS brightness temperatures and their Jacobians (or gradient with respect to temperature) must be computed with a fast radiative transfer (RT) scheme that takes into account the Zeeman-splitting effect. In this study, an averaged transmittance within the channel frequency passbands is parameterized and predicted with atmospheric temperature, geomagnetic field strength, and the angle between the geomagnetic field vector and the electromagnetic wave propagation direction. The coefficients of predictors are trained with a line-by-line (LBL) radiative transfer model that accurately computes the monochromatic transmittances at fine frequency steps within each passband. The new radiative transfer scheme is compared to the results from the line-by-line model for the dependent and independent data sets. It is shown that the differences between the two models are well below the instrument noise levels but the new scheme is much faster. It is also shown that the SSMIS measurements agree well with the simulations that are based on the atmospheric profiles from the sounding of the atmosphere using broadband emission radiometry (SABER) on the Thermosphere-lonosphere-Mesosphere Energetics and Dynamics satellite and the COSPAR international reference atmosphere (CIRA) model.

  9. Radiative transfer in disc galaxies - V. The accuracy of the KB approximation

    NASA Astrophysics Data System (ADS)

    Lee, Dukhang; Baes, Maarten; Seon, Kwang-Il; Camps, Peter; Verstocken, Sam; Han, Wonyong

    2016-09-01

    We investigate the accuracy of an approximate radiative transfer technique that was first proposed by Kylafis & Bahcall (hereafter the KB approximation) and has been popular in modelling dusty late-type galaxies. We compare realistic galaxy models calculated with the KB approximation with those of a three-dimensional Monte Carlo radiative transfer code SKIRT. The SKIRT code fully takes into account of the contribution of multiple scattering whereas the KB approximation calculates only single scattered intensity and multiple scattering components are approximated. We find that the KB approximation gives fairly accurate results if optically thin, face-on galaxies are considered. However, for highly inclined (i ≳ 85°) and/or optically thick (central face-on optical depth ≳ 1) galaxy models, the approximation can give rise to substantial errors, sometimes, up to ≳ 40%. Moreover, it is also found that the KB approximation is not always physical, sometimes producing infinite intensities at lines of sight with high optical depth in edge-on galaxy models. There is no "simple recipe" to correct the errors of the KB approximation that is universally applicable to any galaxy models. Therefore, it is recommended that the full radiative transfer calculation be used, even though it's slower than the KB approximation.

  10. GAUSS-SEIDEL AND SUCCESSIVE OVERRELAXATION METHODS FOR RADIATIVE TRANSFER WITH PARTIAL FREQUENCY REDISTRIBUTION

    SciTech Connect

    Sampoorna, M.; Bueno, J. Trujillo

    2010-04-01

    The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.

  11. Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries

    NASA Technical Reports Server (NTRS)

    Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.

    2013-01-01

    Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.

  12. Contributions of the ARM Program to Radiative Transfer Modeling for Climate and Weather Applications

    NASA Technical Reports Server (NTRS)

    Mlawer, Eli J.; Iacono, Michael J.; Pincus, Robert; Barker, Howard W.; Oreopoulos, Lazaros; Mitchell, David L.

    2016-01-01

    Accurate climate and weather simulations must account for all relevant physical processes and their complex interactions. Each of these atmospheric, ocean, and land processes must be considered on an appropriate spatial and temporal scale, which leads these simulations to require a substantial computational burden. One especially critical physical process is the flow of solar and thermal radiant energy through the atmosphere, which controls planetary heating and cooling and drives the large-scale dynamics that moves energy from the tropics toward the poles. Radiation calculations are therefore essential for climate and weather simulations, but are themselves quite complex even without considering the effects of variable and inhomogeneous clouds. Clear-sky radiative transfer calculations have to account for thousands of absorption lines due to water vapor, carbon dioxide, and other gases, which are irregularly distributed across the spectrum and have shapes dependent on pressure and temperature. The line-by-line (LBL) codes that treat these details have a far greater computational cost than can be afforded by global models. Therefore, the crucial requirement for accurate radiation calculations in climate and weather prediction models must be satisfied by fast solar and thermal radiation parameterizations with a high level of accuracy that has been demonstrated through extensive comparisons with LBL codes. See attachment for continuation.

  13. Three Dimensional Atmospheric Radiative Transfer-Applications and Methods Comparison

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We review applications of 3D radiative transfer in the atmosphere, emphasizing the wide spectrum of scales important to remote sensing and modeling of cloud fields, and the characteristic scales introduced into observed radiances and fluxes by the distribution of photon pathlengths at conservative and absorbing wavelengths. We define the "plane-parallel bias", which is a measure of the importance of 3D cloud structure in large-scale models, and the "independent pixel errors" that quantify the significance of 3D effects in remote sensing, and emphasize their relative magnitude and scale dependence. A variety of approaches in current use in 3D radiative transfer, and issues of speed, accuracy, and flexibility are summarized. We also describe a recently initiated "International Intercomparison of 3-Dimensional Radiation Codes", or I3RC. I3RC is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide "baseline" cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiative transfer. Selected results from Phases 1 and 2 of I3RC are discussed. These are taken from five cloud fields: a 1D field of bar clouds, a 2D radar-derived field, a 3D Landsat-derived field, a stratiform cloud from the model of C. Moeng, and a convective cloud from the model of B. Stevens. Computations have been carried out for three monochromatic wavelengths (one conservative, one absorptive, and one thermal) and two solar zenith angles (0, 60 degrees).

  14. Strongly coupled near-field radiative and conductive heat transfer between planar bodies

    NASA Astrophysics Data System (ADS)

    Messina, Riccardo; Jin, Weiliang; Rodriguez, Alejandro W.

    2016-09-01

    We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on geometric and material parameters and not so crucially on operating temperatures. Our findings exploit rigorous calculations based on a closed-form expression for the heat flux between two plates separated by vacuum gaps d and subject to arbitrary temperature profiles, along with an approximate but accurate analytical treatment of coupled conduction-radiation in this geometry. We find that these effects can be prominent in typical materials (e.g., silica and sapphire) at separations of tens of nanometers, and can play an even larger role in metal oxides, which exhibit moderate conductivities and enhanced radiative properties. Broadly speaking, these predictions suggest that the impact of RHT on thermal conduction, and vice versa, could manifest itself as a limit on the possible magnitude of RHT at the nanoscale, which asymptotes to a constant (the conductive transfer rate when the gap is closed) instead of diverging at short separations.

  15. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  16. Evaluating radiative transfer schemes treatment of vegetation canopy architecture in land surface models

    NASA Astrophysics Data System (ADS)

    Braghiere, Renato; Quaife, Tristan; Black, Emily

    2016-04-01

    Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical

  17. Three Dimensional Radiative Transfer In Tropical Deep Convective Clouds.

    NASA Astrophysics Data System (ADS)

    di Giuseppe, F.

    In this study the focus is on the interaction between short-wave radiation with a field of tropical deep convective events generated using a 3D cloud resolving model (CRM) to assess the significance of 3D radiative transport (3DRT). It is not currently un- derstood what magnitude of error is involved when a two stream approximation is used to describe the radiative transfer through such a cloud field. It seems likely that deep convective clouds could be the most complex to represent, and that the error in neglecting horizontal transport could be relevant in these cases. The field here con- sidered has an extention of roughly 90x90 km, approximately equivalent to the grid box dimension of many global models. The 3DRT results are compared both with the calculations obtained by an Independent Pixel Approximation (IPA) approch and by the Plane Parallel radiative scheme (PP) implemented in ECMWF's Forecast model. The differences between the three calculations are used to assess both problems in current GCM's representation of radiative heating and inaccuracies in the dynamical response of CRM simulations due to the Independent Column Approximation (ICA). The understanding of the mechanisms involved in the main 3DRT/1D differences is the starting point for the future attempt to develop a parameterization procedure.

  18. Förster Resonance Energy Transfer imaging in vivo with approximated Radiative Transfer Equation

    PubMed Central

    Soloviev, Vadim Y.; McGinty, James; Stuckey, Daniel W.; Laine, Romain; Wylezinska-Arridge, Marzena; Wells, Dominic J.; Sardini, Alessandro; Hajnal, Joseph V.; French, Paul M.W.; Arridge, Simon R.

    2012-01-01

    We describe a new light transport model that we have applied to 3-D image reconstruction of in vivo fluorescence lifetime tomography data applied to read out Förster Resonance Energy Transfer in mice. The model is an approximation to the Radiative Transfer Equation and combines light diffusion and rays optics. This approximation is well adopted to wide-field time-gated intensity based data acquisition. Reconstructed image data are presented and compared with results obtained by using the Telegraph Equation approximation. The new approach provides improved recovery of absorption and scattering parameters while returning similar values for the fluorescence parameters. PMID:22193187

  19. Clouds Radiative Transfer Study at Microwave Region-RTM

    NASA Astrophysics Data System (ADS)

    Heredia, S. D.; Masuelli, S.; Caranti, G. M.; Jones, L.

    2011-12-01

    The objective of the recently launched SAC-D/Aquarius satellite mission is to globally and indirectly measure certain geophysical parameters such as: sea surface salinity (Sal), column water vapor (CWV), column liquid water (CLW), rain rate (RR), wind speed (WS), wind direction (WD), ice concentration (SIC) and others. On board the satellite there are several instruments designed for specific purposes like the passive microwave sensor MWR (Fig. 1) whose specifications are shown in Table 1. The aim of the latter is to determine the following parameters: CWV, CLW, RR, WS, WD and SIC. The MWR sensor measures brightness temperatures at two frequencies: 23.8 and 36.5GHz. In the case of 36.5GHz, it measures both polarizations (vertical and horizontal) while for 23.8GHz it only measures the horizontal component. Since this sensor measures brightness temperatures and not geophysical variables, it is necessary to establish a relationship that links both. These relationships are determined by radiative transfer models (RTM). In remote sensing there are two types of models, namely: Forward and Inverse Model. The radiative transfer model in the forward direction obtains brightness temperatures for a given configuration within the pixel (geophysical variables). The most important applications of these models are: * Simulator Development: spectral bands selection to meet the high-level requirements within the expected error. * Intercalibration: in the calculation of corrections due to differences in incidence angles and frequencies between sensors involved in this process. * Inverse Radiative Transfer Models to obtain geophysical variables from brightness temperatures. In this paper, we developed a module that simulates the interaction of radiation with cloud droplets and raindrops. These modules were incorporated into a radiative transfer model from CFRSL (Central Florida Remote Sensing Lab) to calculate the brightness temperatures that would measure a passive microwave sensor

  20. Three-dimensional radiative transfer on a massively parallel computer

    NASA Technical Reports Server (NTRS)

    Vath, H. M.

    1994-01-01

    We perform 3D radiative transfer calculations in non-local thermodynamic equilibrium (NLTE) in the simple two-level atom approximation on the Mas-Par MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. On such a machine, all processors execute the same command at a given time, but on different data. To make radiative transfer calculations efficient, we must re-consider the numerical methods and storage of data. To solve the transfer equation, we adopt the short characteristic method and examine different acceleration methods to obtain the source function. We use the ALI method and test local and non-local operators. Furthermore, we compare the Ng and the orthomin methods of acceleration. We also investigate the use of multi-grid methods to get fast solutions for the NLTE case. In order to test these numerical methods, we apply them to two problems with and without periodic boundary conditions.

  1. Coupled Convective and Radiative Heat Transfer Simulation for Urban Environments

    NASA Astrophysics Data System (ADS)

    Gracik, Stefan; Sadeghipour, Mostapha; Pitchurov, George; Liu, Jiying; Heidarinejad, Mohammad; Srebric, Jelena; Building Science Group, Penn State Team

    2013-11-01

    A building's surroundings affect its energy use. An analysis of building energy use needs to include the effects of its urban environment, as over half of the world's population now lives in cities. To correctly model the energy flow around buildings, an energy simulation needs to account for both convective and radiative heat transfer. This study develops a new model by coupling OpenFOAM and Radiance, open source packages for simulating computational fluid dynamics (CFD) and solar radiation, respectively. The model currently provides themo-fluid parameters including convective heat transfer coefficients, pressure coefficients, and solar heat fluxes that will be used as inputs for building energy simulations in a follow up study. The model uses Penn State campus buildings immersed in the atmospheric boundary layer flow as a case study to determine the thermo-fluid parameters around buildings. The results of this case study show that shadows can reduce the solar heat flux of a building's surface by eighty percent during a sunny afternoon. Convective heat transfer coefficients can vary by around fifty percent during a windy day.

  2. Computing Radiative Transfer in a 3D Medium

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  3. Conjugate conductive, convective, and radiative heat transfer in rocket engines

    SciTech Connect

    Naraghi, M.H.N.; DeLise, J.C.

    1995-12-31

    A comprehensive conductive, convective and radiative model for thermal analysis of rocket thrust chambers and nozzles is presented. In this model, the rocket thrust chamber and nozzle are subdivided into a number of stations along the longitudinal direction. At each station a finite element scheme is used to evaluate wall temperature distribution. The hot-gas-side convective heat transport is evaluated by numerically solving the compressible boundary layer equations and the radiative fluxes are evaluated by implementing an exchange factor scheme. The convective heat flux in the cooling channel is modeled based on the existing closed form correlations for rocket cooling channels. The conductive, convective and radiative processes are conjugated through an iterative procedure. The hot-gas-side heat transfer coefficients evaluated based on this model are compared to the experimental results reported in the literature. The computed convective heat transfer coefficients agree very well with experimental data for most of the engine except the throat where a discrepancy of approximately 20% exists. The model is applied to a typical regeneratively cooled rocket engine and the resulting wall temperature and heat flux distribution are presented.

  4. A New Look into the Effect of Large Drops on Radiative Transfer Process

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2003-01-01

    Recent studies indicate that a cloudy atmosphere absorbs more solar radiation than any current 1D or 3D radiation model can predict. The excess absorption is not large, perhaps 10-15 W/sq m or less, but any such systematic bias is of concern since radiative transfer models are assumed to be sufficiently accurate for remote sensing applications and climate modeling. The most natural explanation would be that models do not capture real 3D cloud structure and, as a consequence, their photon path lengths are too short. However, extensive calculations, using increasingly realistic 3D cloud structures, failed to produce photon paths long enough to explain the excess absorption. Other possible explanations have also been unsuccessful so, at this point, conventional models seem to offer no solution to this puzzle. The weakest link in conventional models is the way a size distribution of cloud particles is mathematically handled. Basically, real particles are replaced with a single average particle. This "ensemble assumption" assumes that all particle sizes are well represented in any given elementary volume. But the concentration of larger particles can be so low that this assumption is significantly violated. We show how a different mathematical route, using the concept of a cumulative distribution, avoids the ensemble assumption. The cumulative distribution has jumps, or steps, corresponding to the rarer sizes. These jumps result in an additional term, a kind of Green's function, in the solution of the radiative transfer equation. Solving the cloud radiative transfer equation with the measured particle distributions, described in a cumulative rather than an ensemble fashion, may lead to increased cloud absorption of the magnitude observed.

  5. Adding method of delta-four-stream spherical harmonic expansion approximation for infrared radiative transfer parameterization

    NASA Astrophysics Data System (ADS)

    Wu, Kun; Zhang, Feng; Min, Jinzhong; Yu, Qiu-Run; Wang, Xin-Yue; Ma, Leiming

    2016-09-01

    The adding method, which could calculate the infrared radiative transfer (IRT) in inhomogeneous atmosphere with multiple layers, has been applied to δ -four-stream discrete-ordinates method (DOM). This scheme is referred as δ -4DDA. However, there is a lack of application for adding method of δ -four-stream spherical harmonic expansion approximation (SHM) to solve infrared radiative transfer through multiple layers. In this paper, the adding method for δ -four-stream SHM (δ -4SDA) will be obtained and the accuracy of it will be evaluated as well. The result of δ -4SDA in an idealized medium with homogeneous optical property is significantly more accurate than that of the adding method for δ -two-stream DOM (δ -2DDA). The relative errors of δ -2DDA can be over 15% in thin optical depths for downward emissivity, while errors of δ -4SDA are bounded by 2%. However, the result of δ -4SDA is slightly less accurate than that of δ -4DDA. In a radiation model with realistic atmospheric profile considering gaseous transmission, the accuracy for heating rate of δ -4SDA is significantly superior than that of δ -2DDA, especially for the cloudy sky. The accuracy for heating rate of δ -4SDA is slightly less accurate than that of δ -4DDA under water cloud conditions, while it is superior than that of δ -4DDA in ice cloud cases. Beside, the computational efficiency of δ -4SDA is higher than that of δ -4DDA.

  6. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  7. Spectral Invariant Approximation within Atmospheric Radiative Transfer; Applications to EarthCare

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2012-01-01

    Certain algebraic combinations of single-scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These "spectrally-invariant relationships" are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength-independence does not hold in the atmosphere, but in cloud-dominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. We identify the conditions under which the spectrally-invariant approximation can accurately describe the extinction and scattering properties of cloudy atmospheres. Validity of the assumptions and accuracy of the approximation is tested with radiative transfer calculations. We discuss the physics behind this phenomenon and possible applications to remote sensing, climate, and the EarthCare, mission in particular.

  8. Global sensitivity analysis of the radiative transfer model

    NASA Astrophysics Data System (ADS)

    Neelam, Maheshwari; Mohanty, Binayak P.

    2015-04-01

    With the recently launched Soil Moisture Active Passive (SMAP) mission, it is very important to have a complete understanding of the radiative transfer model for better soil moisture retrievals and to direct future research and field campaigns in areas of necessity. Because natural systems show great variability and complexity with respect to soil, land cover, topography, precipitation, there exist large uncertainties and heterogeneities in model input factors. In this paper, we explore the possibility of using global sensitivity analysis (GSA) technique to study the influence of heterogeneity and uncertainties in model inputs on zero order radiative transfer (ZRT) model and to quantify interactions between parameters. GSA technique is based on decomposition of variance and can handle nonlinear and nonmonotonic functions. We direct our analyses toward growing agricultural fields of corn and soybean in two different regions, Iowa, USA (SMEX02) and Winnipeg, Canada (SMAPVEX12). We noticed that, there exists a spatio-temporal variation in parameter interactions under different soil moisture and vegetation conditions. Radiative Transfer Model (RTM) behaves more non-linearly in SMEX02 and linearly in SMAPVEX12, with average parameter interactions of 14% in SMEX02 and 5% in SMAPVEX12. Also, parameter interactions increased with vegetation water content (VWC) and roughness conditions. Interestingly, soil moisture shows an exponentially decreasing sensitivity function whereas parameters such as root mean square height (RMS height) and vegetation water content show increasing sensitivity with 0.05 v/v increase in soil moisture range. Overall, considering the SMAPVEX12 fields to be water rich environment (due to higher observed SM) and SMEX02 fields to be energy rich environment (due to lower SM and wide ranges of TSURF), our results indicate that first order as well as interactions between the parameters change with water and energy rich environments.

  9. Radiative transfer of X-rays in the solar corona

    NASA Technical Reports Server (NTRS)

    Acton, L. W.

    1978-01-01

    The problem of resonance scattering of X-ray emission lines in the solar corona is investigated. For the resonance lines of some helium-like ions, significant optical depths are reached over distances small compared with the size of typical coronal features. A general integral equation for the transfer of resonance-line radiation under solar coronal conditions is derived. This expression is in a form useful for modeling the complex three-dimensional temperature and density structure of coronal active regions. The transfer equation is then cast in a form illustrating the terms which give rise to the attenuation or enhancement of the resonance-line intensity. The source function for helium-like oxygen (O VII) under coronal conditions is computed and discussed in terms of the relative importance of scattering.

  10. A field test of a simple stochastic radiative transfer model

    SciTech Connect

    Byrne, N.

    1995-09-01

    The problem of determining the effect of clouds on the radiative energy balance of the globe is of well-recognized importance. One can in principle solve the problem for any given configuration of clouds using numerical techniques. This knowledge is not useful however, because of the amount of input data and computer resources required. Besides, we need only the average of the resulting solution over the grid scale of a general circulation model (GCM). Therefore, we are interested in estimating the average of the solutions of such fine-grained problems using only coarse grained data, a science or art called stochastic radiation transfer. Results of the described field test indicate that the stochastic description is a somewhat better fit to the data than is a fractional cloud cover model, but more data are needed. 1 ref., 3 figs.

  11. The Chandrasekhar method and its applications to atmospheric radiative transfer

    SciTech Connect

    Stamnes, K.

    1994-12-31

    Problems involving radiation and particle transport in a host medium require solution of the linear (or linearized) Boltzmann equation. A convenient strategy for solving such problems is to apply a multigroup procedure in which the problem is reformulated as a series of one-group problems in such a way that each one-group problem may be cast into a form identical to the monochromatic radiative transfer equation. In essence, Chandrasekhar`s method consists of converting the integro-differential equation for the resulting one-group problem into a system of coupled differential equations for which eigensolutions are sought. The basic method is well described in Chandrasekhar`s classic text in which applications to simple problems were used to demonstrate the potential power of the method before the advent of the modern computer.

  12. Comparative analysis of selected radiative transfer approaches for aquatic environments.

    PubMed

    Sokoletsky, Leonid

    2005-01-01

    A comparative analysis is presented of simple approaches to radiative transfer in plane-parallel layers, such as the self-consistent Haltrin approach, the Chandrasekhar-Klier exact solution for isotropic scatters, an extended version of two-flux radiative Kubelka-Munk theory, the neutron-diffuse Gate-Brinkworth theory, and different versions of the delta-Eddington theory. It is shown that the Haltrin approach is preferable to others and can be used for the solution of an inverse optical problem of the estimation of absorption and backscattering coefficients of aquatic environments from measured apparent optical properties. Two different methods of transformation from measured irradiance reflectance at combined illumination to irradiance reflectance induced by diffuse illumination only are developed. An analysis of the use of the different models for estimation of the effect of the bottom albedo is also presented. PMID:15662895

  13. Peregrinations through topics in light scattering and radiative transfer

    NASA Astrophysics Data System (ADS)

    Kattawar, George W.

    2016-07-01

    In this van de Hulst essay, I have taken the liberty to present a journey through some topics in light scattering and radiative transfer which I feel were major contributions to the field but the number of topics I would like to cover is far more numerous than I have the time or the space to present. I also wanted to share with the reader some heartwarming memories I have of my wonderful friend and truly distinguished colleague Hendrik Christoffel van de Hulst (affectionately known to his colleagues as "Henk") whom I consider to be one of the preeminent scientists of his era.

  14. Odyssey: Ray tracing and radiative transfer in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Pu, Hung-Yi; Yun, Kiyun; Younsi, Ziri; Yoon, Suk-Jin

    2016-01-01

    Odyssey is a GPU-based General Relativistic Radiative Transfer (GRRT) code for computing images and/or spectra in Kerr metric describing the spacetime around a rotating black hole. Odyssey is implemented in CUDA C/C++. For flexibility, the namespace structure in C++ is used for different tasks; the two default tasks presented in the source code are the redshift of a Keplerian disk and the image of a Keplerian rotating shell at 340GHz. Odyssey_Edu, an educational software package for visualizing the ray trajectories in the Kerr spacetime that uses Odyssey, is also available.

  15. Introduction of acoustical diffraction in the radiative transfer method

    NASA Astrophysics Data System (ADS)

    Reboul, Emeline; Le Bot, Alain; Perret-Liaudet, Joël

    2004-07-01

    This Note presents an original approach to include diffraction in the radiative transfer method when applied to acoustics. This approach leads to a better spatial description of the acoustical energy. An energetic diffraction coefficient and some diffraction sources are introduced to model the diffraction phenomena. The amplitudes of these sources are determined by solving a linear sytem of equations resulting from the power balance between all acoustical sources. The approach is applied on bidimensional examples and gives good results except at geometrical boundaries. To cite this article: E. Reboul et al., C. R. Mecanique 332 (2004).

  16. A multilevel method for conductive-radiative heat transfer

    SciTech Connect

    Banoczi, J.M.; Kelley, C.T.

    1996-12-31

    We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.

  17. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  18. II. The Second Law in Relation to Thermal Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Jesudason, Christopher G.

    2011-12-01

    Planck introduced the quantum hypothesis from his Blackbody radiation studies, where he and subsequent workers opined that classical mechanics and electrodynamical theories could not account for the phenomenon. Hence a statistical mechanics with an appropriate Second law entropy was invented and coupled to the First law to account for quantum effects. Here, as an academic exercise we derive the quantum of energy by considering two structures, that of the dipole oscillators on a 2-D surface and the scattering of radiation into the 3-D cavity. Previous derivations are briefly cited and reviewed where none followed this approach. One prediction from this first order Brownian motion development is that a 2-D sheet of oscillators should emit radiation largely with energy density factor T1 of the Kelvin temperature T, rather than that deduced as T4 from detailed balance. Preliminary measurements conducted here seemed to verify the the T1 density. The first order theory also admits a possibility of nonlinear quanta and the consequences are explored briefly. It was noticed in passing during the experimentation that certain bodies suspended in a vacuum exhibited small persistent temperature differentials. A Second law statement is presented for such cases and consequences explored for processes that are not coupled by Newtonian momentum energy transfer mechanisms, such as for the radiation field as deduced by Planck. The different forms of heat transfer due to different laws (e.g. gravity waves and electromagnetic waves) are strictly separable and cannot be confused or forced to an equivalence. We generalize on the Zeroth law, the Kirchoff law and postulate an appropriate entropy form due to these generalizations.

  19. THE RADIATIVE TRANSFER OF SYNCHROTRON RADIATION THROUGH A COMPRESSED RANDOM MAGNETIC FIELD

    SciTech Connect

    Cawthorne, T. V.; Hughes, P. A.

    2013-07-01

    This paper examines the radiative transfer of synchrotron radiation in the presence of a magnetic field configuration resulting from the compression of a highly disordered magnetic field. It is shown that, provided Faraday rotation and circular polarization can be neglected, the radiative transfer equations for synchrotron radiation separate for this configuration, and the intensities and polarization values for sources that are uniform on large scales can be found straightforwardly in the case where opacity is significant. Although the emission and absorption coefficients must, in general, be obtained numerically, the process is much simpler than a full numerical solution to the transfer equations. Some illustrative results are given and an interesting effect, whereby the polarization increases while the magnetic field distribution becomes less strongly confined to the plane of compression, is discussed. The results are of importance for the interpretation of polarization near the edges of lobes in radio galaxies and of bright features in the parsec-scale jets of active galactic nuclei, where such magnetic field configurations are believed to exist.

  20. Energy Transfer Based Nanocomposite Scintillator for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Aslam, Soha; Sahi, Sunil; Chen, Wei; Ma, Lun; Kenarangui, Rasool

    2014-09-01

    Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum

  1. Radiative Transfer Modeling of the Enigmatic Scattering Polarization in the Solar Na I D1 Line

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D1 line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D1 line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D1 line without the need for ground-level polarization.

  2. Modeling the Impact of Vegetation Structure on Canopy Radiative Transfer for a Global Vegetation Dynamic Model

    NASA Astrophysics Data System (ADS)

    Ni-Meister, W.; Kiang, N.; Yang, W.

    2007-12-01

    The transmission of light through plant canopies results in vertical profiles of light intensity that affect the photosynthetic activity and gas exchange of plants, their competition for light, and the canopy energy balance. The accurate representation of the canopy light profile is then important for predicting ecological dynamics. The study presents a simple canopy radiative transfer scheme to characterize the impact of the horizontal and vertical vegetation structure heterogeneity on light profiles. Actual vertical foliage profile and a clumping factor which are functions of tree geometry, size and density and foliage density are used to characterize the vertical and horizontal vegetation structure heterogeneity. The simple scheme is evaluated using the ground and airborne lidar data collected in deciduous and coniferous forests and was also compared with the more complex Geometric Optical and Radiative Transfer (GORT) model and the two-stream scheme currently being used to describe light interactions with vegetation canopy in most GCMs. The simple modeled PAR profiles match well with the ground data, lidar and full GORT model prediction, it performs much better than the simple Beer's&plaw used in two stream scheme. This scheme will have the same computation cost as the current scheme being used in GCMs, but provides better photosynthesis, radiative fluxes and surface albedo estimates, thus is suitable for a global vegetation dynamic model embedded in GCMs.

  3. Modeling Recollision and Escape Probabilities [|#11#|]USING the Stochastic Radiative Transfer Equation

    NASA Astrophysics Data System (ADS)

    Xu, L.; Schull, M. A.; Samanta, A.; Myneni, R. B.; Knyazikhin, Y.

    2010-12-01

    The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral reflectance become wavelength independent and determine two canopy structure specific variables - the recollision and escape probabilities. These variables specify an accurate relationship between the spectral response of a vegetation canopy to incident solar radiation at the leaf and the canopy scale. They are sensitive to important structural features of the canopy such as forest cover, tree density, leaf area index, crown geometry, forest type and stand age. The canopy spectral invariant behavior is a very strong effect clearly seen in optical remote sensing data. The relative simplicity of retrieving the spectral invariants however is accompanied by considerable difficulties in their interpretations due to the lack of models for these parameters. We use the stochastic radiative transfer equation to relate the spectral invariants to the 3D canopy structure. Stochastic radiative transfer model treats the vegetation canopy as a stochastic medium. It expresses the 3D spatial correlation with the use of the pair correlation function, which plays a key role in measuring the spatial correlation of the 3D canopy structure over a wide range of scales. Data analysis from a simulated single bush to the comprehensive forest canopy is presented for both passive and active (lidar) remote sensing domain.

  4. Matrix Riccati equation formulation for radiative transfer in a plane-parallel geometry

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Wen; Wu, Tso-Lun

    1997-01-01

    In this paper, we formulate the radiative transfer problem as an initial value problem via a pair of nonlinear matrix differential equations (matrix Riccati equations or MREs) which describe the reflection ( R) and transmission ( T) matrices of the specific intensities in a plane-parallel geometry. One first computes R and T matrices of some small but finite layer thickness (equivalent optical thickness 0959-7174/7/1/009/img1) and then repetitively applies the doubling method to the reflection and transmission matrices 0959-7174/7/1/009/img2 and 0959-7174/7/1/009/img3 until reaching the desired layer thickness. The initial matrices 0959-7174/7/1/009/img4 and 0959-7174/7/1/009/img5 can be computed quite accurately by either of the following methods: multiple-order, multiple-scattering approximation, iterative method or fourth-order Runge - Kutta techniques. In addition, the reflection coefficient matrix of a semi-infinite medium satisfies an algebraic matrix equation which can be solved repetitively by a matrix method. MREs offer an alternative way of solving plane-parallel radiative transport problems. This method requires only elementary matrix operations (addition, multiplication and inversion). For vector and/or beam-wave radiative transfer problems, large matrices are required to describe the physics adequately, and the MRE method provides a significant reduction in computer memory and computation time.

  5. Suomi NPP VIIRS Striping Analysis using Radiative Transfer Model Calculations

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Cao, C.

    2015-12-01

    Modern satellite radiometers such as VIIRS have many detectors with slightly different relative spectral response (RSR). These differences can introduce artifacts such as striping in the imagery. In recent studies we have analyzed the striping pattern related to the detector level RSR difference in VIIRS Thermal Emissive Bands (TEB) M15 and M16, which includes line-by-line radiative transfer model (LBLRTM) detector level response study and onboard detector stability evaluation using the solar diffuser. Now we extend these analysis to the Reflective Solar Bands (RSB) using MODTRAN atmospheric radiative transfer model (RTM) for detector level radiance simulation. Previous studies analyzed the striping pattern in the images of VIIRS ocean color and reflectance in RSB, further studies about the root cause for striping are still needed. In this study, we will use the MODTRAN model at spectral resolution of 1 cm^-1 under different atmospheric conditions for VIIRS RSB, for example band M1 centered at 410nm which is used for Ocean Color product retrieval. The impact of detector level RSR difference, atmospheric dependency, and solar geometry on the striping in VIIRS SDR imagery will be investigated. The cumulative histogram method used successfully for the TEB striping analysis will be used to quantify the striping. These analysis help S-NPP and J1 to better understand the root cause for VIIRS image artifacts and reduce the uncertainties in geophysical retrievals to meet the user needs.

  6. Infrared radiative transfer through a regular array of cuboidal clouds

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN; Weinman, J. A.

    1981-01-01

    Infrared radiative transfer through a regular array of cuboidal clouds is studied and the interaction of the sides of the clouds with each other and the ground is considered. The theory is developed for black clouds and is extended to scattering clouds using a variable azimuth two-stream approximation. It is shown that geometrical considerations often dominate over the microphysical aspects of radiative transfer through the clouds. For example, the difference in simulated 10 micron brightness temperature between black isothermal cubic clouds and cubic clouds of optical depth 10, is less than 2 deg for zenith angles less than 50 deg for all cloud fractions when viewed parallel to the array. The results show that serious errors are made in flux and cooling rate computations if broken clouds are modeled as planiform. Radiances computed by the usual practice of area-weighting cloudy and clear sky radiances are in error by 2 to 8 K in brightness temperature for cubic clouds over a wide range of cloud fractions and zenith angles. It is also shown that the lapse rate does not markedly affect the exiting radiances for cuboidal clouds of unit aspect ratio and optical depth 10.

  7. Preliminary design for Arctic atmospheric radiative transfer experiments

    NASA Technical Reports Server (NTRS)

    Zak, B. D.; Church, H. W.; Stamnes, K.; Shaw, G.; Filyushkin, V.; Jin, Z.; Ellingson, R. G.; Tsay, S. C.

    1995-01-01

    If current plans are realized, within the next few years, an extraordinary set of coordinated research efforts focusing on energy flows in the Arctic will be implemented. All are motivated by the prospect of global climate change. SHEBA (Surface Energy Budget of the Arctic Ocean), led by the National Science Foundation (NSF) and the Office of Naval Research (ONR), involves instrumenting an ice camp in the perennial Arctic ice pack, and taking data for 12-18 months. The ARM (Atmospheric Radiation Measurement) North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) focuses on atmospheric radiative transport, especially in the presence of clouds. The NSA/AAO CART involves instrumenting a sizeable area on the North Slope of Alaska and adjacent waters in the vicinity of Barrow, and acquiring data over a period of about 10 years. FIRE (First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment) Phase 3 is a program led by the National Aeronautics and Space Administration (NASA) which focuses on Arctic clouds, and which is coordinated with SHEBA and ARM. FIRE has historically emphasized data from airborne and satellite platforms. All three program anticipate initiating Arctic data acquisition during spring, 1997. In light of his historic opportunity, the authors discuss a strawman atmospheric radiative transfer experimental plan that identifies which features of the radiative transport models they think should be tested, what experimental data are required for each type of test, the platforms and instrumentation necessary to acquire those data, and in general terms, how the experiments could be conducted. Aspects of the plan are applicable to all three programs.

  8. Preliminary design for Arctic atmospheric radiative transfer experiments

    NASA Astrophysics Data System (ADS)

    Zak, B. D.; Church, H. W.; Stamnes, K.; Shaw, G.; Filyushkin, V.; Jin, Z.; Ellingson, R. G.; Tsay, S. C.

    If current plans are realized, within the next few years, an extraordinary set of coordinated research efforts focusing on energy flows in the Arctic will be implemented. All are motivated by the prospect of global climate change. SHEBA (Surface Energy Budget of the Arctic Ocean), led by the National Science Foundation (NSF) and the Office of Naval Research (ONR), involves instrumenting an ice camp in the perennial Arctic ice pack, and taking data for 12-18 months. The ARM (Atmospheric Radiation Measurement) North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) focuses on atmospheric radiative transport, especially in the presence of clouds. The NSA/AAO CART involves instrumenting a sizeable area on the North Slope of Alaska and adjacent waters in the vicinity of Barrow, and acquiring data over a period of about 10 years. FIRE (First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment) Phase 3 is a program led by the National Aeronautics and Space Administration (NASA) which focuses on Arctic clouds, and which is coordinated with SHEBA and ARM. FIRE has historically emphasized data from airborne and satellite platforms. All three program anticipate initiating Arctic data acquisition during spring, 1997. In light of his historic opportunity, the authors discuss a strawman atmospheric radiative transfer experimental plan that identifies which features of the radiative transport models they think should be tested, what experimental data are required for each type of test, the platforms and instrumentation necessary to acquire those data, and in general terms, how the experiments could be conducted. Aspects of the plan are applicable to all three programs.

  9. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    SciTech Connect

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  10. An efficient and accurate technique to compute the absorption, emission, and transmission of radiation by the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.

    1990-01-01

    CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.

  11. Multi-Scale Distributed Sensitivity Analysis of Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Neelam, M.; Mohanty, B.

    2015-12-01

    Amidst nature's great variability and complexity and Soil Moisture Active Passive (SMAP) mission aims to provide high resolution soil moisture products for earth sciences applications. One of the biggest challenges still faced by the remote sensing community are the uncertainties, heterogeneities and scaling exhibited by soil, land cover, topography, precipitation etc. At each spatial scale, there are different levels of uncertainties and heterogeneities. Also, each land surface variable derived from various satellite mission comes with their own error margins. As such, soil moisture retrieval accuracy is affected as radiative model sensitivity changes with space, time, and scale. In this paper, we explore the distributed sensitivity analysis of radiative model under different hydro-climates and spatial scales, 1.5 km, 3 km, 9km and 39km. This analysis is conducted in three different regions Iowa, U.S.A (SMEX02), Arizona, USA (SMEX04) and Winnipeg, Canada (SMAPVEX12). Distributed variables such as soil moisture, soil texture, vegetation and temperature are assumed to be uncertain and are conditionally simulated to obtain uncertain maps, whereas roughness data which is spatially limited are assumed a probability distribution. The relative contribution of the uncertain model inputs to the aggregated model output is also studied, using various aggregation techniques. We use global sensitivity analysis (GSA) to conduct this analysis across spatio-temporal scales. Keywords: Soil moisture, radiative transfer, remote sensing, sensitivity, SMEX02, SMAPVEX12.

  12. Detectivity of gas leakage based on electromagnetic radiation transfer

    NASA Astrophysics Data System (ADS)

    Long, Yunting; Wang, Lingxue; Li, Jiakun; Zhang, Changxing; Zhang, Bei

    2011-05-01

    Standoff detection of gas leakage is a fundamental need in petrochemical and power industries. The passive gas imaging system using thermal imager has been proven to be efficient to visualize leaking gas which is not visible to the naked eye. The detection probability of gas leakage is the basis for designing a gas imaging system. Supposing the performance parameters of the thermal imager are known, the detectivity based on electromagnetic radiation transfer model to image gas leakage is analyzed. This model takes into consideration a physical analysis of the gas plume spread in the atmosphere-the interaction processes between the gas and its surrounding environment, the temperature of the gas and the background, the background surface emissivity, and also gas concentration, etc. Under a certain environmental conditions, through calculating the radiation reaching to the detector from the camera's optical field of view, we obtain an entity "Gas Equivalent Blackbody Temperature Difference (GEBTD)" which is the radiation difference between the on-plume and off-plume regions. Comparing the GEBTD with the Noise Equivalent Temperature Difference (NETD) of the thermal imager, we can know whether the system can image the gas leakage. At last, an example of detecting CO2 gas by JADE MWIR thermal imager with a narrow band-pass filter is presented.

  13. Radiative Transfer Modeling of a Large Pool Fire by Discrete Ordinates, Discrete Transfer, Ray Tracing, Monte Carlo and Moment Methods

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.; Ripoll, J.-F.; Wray, A. A.; Joseph, D.; ElHafi, M.

    2004-01-01

    Five computational methods for solution of the radiative transfer equation in an absorbing-emitting and non-scattering gray medium were compared on a 2 m JP-8 pool fire. The temperature and absorption coefficient fields were taken from a synthetic fire due to the lack of a complete set of experimental data for fires of this size. These quantities were generated by a code that has been shown to agree well with the limited quantity of relevant data in the literature. Reference solutions to the governing equation were determined using the Monte Carlo method and a ray tracing scheme with high angular resolution. Solutions using the discrete transfer method, the discrete ordinate method (DOM) with both S(sub 4) and LC(sub 11) quadratures, and moment model using the M(sub 1) closure were compared to the reference solutions in both isotropic and anisotropic regions of the computational domain. DOM LC(sub 11) is shown to be the more accurate than the commonly used S(sub 4) quadrature technique, especially in anisotropic regions of the fire domain. This represents the first study where the M(sub 1) method was applied to a combustion problem occurring in a complex three-dimensional geometry. The M(sub 1) results agree well with other solution techniques, which is encouraging for future applications to similar problems since it is computationally the least expensive solution technique. Moreover, M(sub 1) results are comparable to DOM S(sub 4).

  14. Near-field radiative heat transfer between two parallel SiO{sub 2} plates with and without microcavities

    SciTech Connect

    Ijiro, T.; Yamada, N.

    2015-01-12

    Near-to-far-field radiative heat transfer between two macroscopic SiO{sub 2} plates—with and without microcavities—was observed using a highly precise and accurate optical gap-measurement method. The experiments, conducted near 300 K, measured heat transfer as a function of gap separation from 1.0 μm to 50 μm and also as a function of temperature differences between 4.1 and 19.5 K. The gap-dependent heat flux was in excellent agreement with theoretical predictions. Furthermore, the effects of microcavities on the plate surfaces were clearly observed and significant enhancement of near-field radiative heat transfer was confirmed between gold-coated microcavities with narrow vacuum separation.

  15. Angularly Adaptive P1 - Double P0 Flux-Limited Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems

    SciTech Connect

    Brantley, P S

    2006-08-08

    The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near a non-equilibrium radiation wave front. In addition, the DP{sub 0} approximation should be more accurate in non-equilibrium optically thin regions where the positive and negative angular domains are largely decoupled. We develop an adaptive angular technique that locally uses either the DP{sub 0} or P{sub 1} flux-limited diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for two test problems due to Su and Olson and to Ganapol and Pomraning for which semi-analytic transport solutions exist. These numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation, both without and with flux-limiting, for non-equilibrium grey radiative transfer.

  16. Angularly Adaptive P1-Double P0 Flux-Limited Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems

    SciTech Connect

    Brantley, P S

    2005-12-13

    The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near a non-equilibrium radiation wave front. In addition, the DP{sub 0} approximation should be more accurate in non-equilibrium optically thin regions where the positive and negative angular domains are largely decoupled. We develop an adaptive angular technique that locally uses either the DP{sub 0} or P{sub 1} flux-limited diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for two test problems due to Su and Olson and to Ganapol and Pomraning for which semi-analytic transport solutions exist. These numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation, both without and with flux-limiting, for non-equilibrium grey radiative transfer.

  17. Accurate tumor localization and tracking in radiation therapy using wireless body sensor networks.

    PubMed

    Pourhomayoun, Mohammad; Jin, Zhanpeng; Fowler, Mark

    2014-07-01

    Radiation therapy is an effective method to combat cancerous tumors by killing the malignant cells or controlling their growth. Knowing the exact position of the tumor is a very critical prerequisite in radiation therapy. Since the position of the tumor changes during the process of radiation therapy due to the patient׳s movements and respiration, a real-time tumor tracking method is highly desirable in order to deliver a sufficient dose of radiation to the tumor region without damaging the surrounding healthy tissues. In this paper, we develop a novel tumor positioning method based on spatial sparsity. We estimate the position by processing the received signals from only one implantable RF transmitter. The proposed method uses less number of sensors compared to common magnetic transponder based approaches. The performance of the proposed method is evaluated in two different cases: (1) when the tissue configuration is perfectly determined (acquired beforehand by MRI or CT) and (2) when there are some uncertainties about the tissue boundaries. The results demonstrate the high accuracy and performance of the proposed method, even when the tissue boundaries are imperfectly known. PMID:24832352

  18. Accurate tumor localization and tracking in radiation therapy using wireless body sensor networks.

    PubMed

    Pourhomayoun, Mohammad; Jin, Zhanpeng; Fowler, Mark

    2014-07-01

    Radiation therapy is an effective method to combat cancerous tumors by killing the malignant cells or controlling their growth. Knowing the exact position of the tumor is a very critical prerequisite in radiation therapy. Since the position of the tumor changes during the process of radiation therapy due to the patient׳s movements and respiration, a real-time tumor tracking method is highly desirable in order to deliver a sufficient dose of radiation to the tumor region without damaging the surrounding healthy tissues. In this paper, we develop a novel tumor positioning method based on spatial sparsity. We estimate the position by processing the received signals from only one implantable RF transmitter. The proposed method uses less number of sensors compared to common magnetic transponder based approaches. The performance of the proposed method is evaluated in two different cases: (1) when the tissue configuration is perfectly determined (acquired beforehand by MRI or CT) and (2) when there are some uncertainties about the tissue boundaries. The results demonstrate the high accuracy and performance of the proposed method, even when the tissue boundaries are imperfectly known.

  19. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    NASA Astrophysics Data System (ADS)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev

  20. AN ALGORITHM FOR RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT TRANSFER EQUATION

    SciTech Connect

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-07-01

    We describe a new algorithm for solving the coupled frequency-integrated transfer equation and the equations of magnetohydrodynamics in the regime that light-crossing time is only marginally shorter than dynamical timescales. The transfer equation is solved in the mixed frame, including velocity-dependent source terms accurate to O(v/c). An operator split approach is used to compute the specific intensity along discrete rays, with upwind monotonic interpolation used along each ray to update the transport terms, and implicit methods used to compute the scattering and absorption source terms. Conservative differencing is used for the transport terms, which ensures the specific intensity (as well as energy and momentum) are conserved along each ray to round-off error. The use of implicit methods for the source terms ensures the method is stable even if the source terms are very stiff. To couple the solution of the transfer equation to the MHD algorithms in the ATHENA code, we perform direct quadrature of the specific intensity over angles to compute the energy and momentum source terms. We present the results of a variety of tests of the method, such as calculating the structure of a non-LTE atmosphere, an advective diffusion test, linear wave convergence tests, and the well-known shadow test. We use new semi-analytic solutions for radiation modified shocks to demonstrate the ability of our algorithm to capture the effects of an anisotropic radiation field accurately. Since the method uses explicit differencing of the spatial operators, it shows excellent weak scaling on parallel computers.

  1. Escape factors in zero-dimensional radiation-transfer codes

    NASA Astrophysics Data System (ADS)

    Phillips, G. J.; Wark, J. S.; Kerr, F. M.; Rose, S. J.; Lee, R. W.

    2008-04-01

    Several zero-dimensional non-LTE radiation-transfer codes are in common use within the laser-plasma community (for example, RATION, FLY, FLYCHK and GALAXY). These codes are capable of generating calculated emission spectra for a plasma of given density and temperature in the presence of a radiation field. Although dimensionless in nature, these codes can take into account the coupling of radiation and populations by use of the escape factor method, and in this sense the codes incorporate the finite size of the plasma of interest in two ways - firstly in the calculation of the effect of the radiation on the populations and secondly when using these populations to generate a spectrum. Different lengths can be used within these two distinct operations, though it has not been made clear what these lengths should be. We submit that the appropriate length to use for the calculation of populations in such zero-dimensional codes is the mean chord of the system, whilst when calculating the spectrum the appropriate length is the size of the plasma along the line of sight. Indeed, for specific plasma shapes using the appropriate escape factors it can be shown that this interpretation agrees with analytic results. However, this is only the case if the correct escape factor is employed: use of the Holstein escape factor (which is in widely distributed versions of the codes mentioned above) is found to be significantly in error under most conditions. We also note that for the case where a plasma is close to coronal equilibrium, some limited information concerning the shape of the plasma can be extracted merely from the ratio of optically thick to optically thin lines, without the need for any explicit spatial resolution.

  2. A fast operator perturbation method for the solution of the special relativistic equation of radiative transfer in spherical symmetry

    NASA Technical Reports Server (NTRS)

    Hauschildt, P. H.

    1992-01-01

    A fast method for the solution of the radiative transfer equation in rapidly moving spherical media, based on an approximate Lambda-operator iteration, is described. The method uses the short characteristic method and a tridiagonal approximate Lambda-operator to achieve fast convergence. The convergence properties and the CPU time requirements of the method are discussed for the test problem of a two-level atom with background continuum absorption and Thomson scattering. Details of the actual implementation for fast vector and parallel computers are given. The method is accurate and fast enough to be incorporated in radiation-hydrodynamic calculations.

  3. Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts

    NASA Astrophysics Data System (ADS)

    Novak, G. S.; Ostriker, J. P.; Ciotti, L.

    2012-12-01

    To facilitate the study of black hole fuelling, star formation and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behaviour in all of the relevant limits [dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to ultraviolet (UV)/optical; optically thick to infrared (IR)] and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ultraluminous IR galaxies with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.

  4. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    SciTech Connect

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  5. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  6. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    NASA Astrophysics Data System (ADS)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  7. Accurate Accumulation of Dose for Improved Understanding of Radiation Effects in Normal Tissue

    SciTech Connect

    Jaffray, David A.; Lindsay, Patricia E.; Brock, Kristy K.; Deasy, Joseph O.; Tome, W.A.

    2010-03-01

    The actual distribution of radiation dose accumulated in normal tissues over the complete course of radiation therapy is, in general, poorly quantified. Differences in the patient anatomy between planning and treatment can occur gradually (e.g., tumor regression, resolution of edema) or relatively rapidly (e.g., bladder filling, breathing motion) and these undermine the accuracy of the planned dose distribution. Current efforts to maximize the therapeutic ratio require models that relate the true accumulated dose to clinical outcome. The needed accuracy can only be achieved through the development of robust methods that track the accumulation of dose within the various tissues in the body. Specific needs include the development of segmentation methods, tissue-mapping algorithms, uncertainty estimation, optimal schedules for image-based monitoring, and the development of informatics tools to support subsequent analysis. These developments will not only improve radiation outcomes modeling but will address the technical demands of the adaptive radiotherapy paradigm. The next 5 years need to see academia and industry bring these tools into the hands of the clinician and the clinical scientist.

  8. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  9. Vector and parallel Monte Carlo radiative heat transfer simulation

    SciTech Connect

    Burns, P.J. . Dept. of Mechanical Engineering); Pryor, D.V. )

    1989-01-01

    A fully vectorized version of a Monte Carlo algorithm of radiative heat transfer in two-dimensional geometries is presented. This algorithm differs from previous applications in that its capabilities are more extensive, with arbitrary numbers of surfaces, arbitrary numbers of material properties, and surface characteristics that include transmission, specular reflection, and diffuse reflection (all of which may be functions of the angle of incidence). The algorithm is applied to an irregular, experimental geometry and implemented on a Cyber 205. A speedup factor of approximately 16, for this combination of geometry and material properties, is achieved for the vector version over the scalar code. Issues related to the details of vectorization, including heavy use of bit addressability, the maintaining of long vector lengths, and gather/scatter use, are discussed. The parallel application of this algorithm is straightforward and is discussed in light of architectural differences among several current supercomputers.

  10. Matrix operator theory of radiative transfer. I - Rayleigh scattering.

    NASA Technical Reports Server (NTRS)

    Plass, G. N.; Kattawar, G. W.; Catchings, F. E.

    1973-01-01

    An entirely rigorous method for the solution of the equations for radiative transfer based on the matrix operator theory is reviewed. The advantages of the present method are: (1) all orders of the reflection and transmission matrices are calculated at once; (2) layers of any thickness may be combined, so that a realistic model of the atmosphere can be developed from any arbitrary number of layers, each with different properties and thicknesses; (3) calculations can readily be made for large optical depths and with highly anisotropic phase functions; (4) results are obtained for any desired value of the surface albedo including the value unity and for a large number of polar and azimuthal angles; (5) all fundamental equations can be interpreted immediately in terms of the physical interactions appropriate to the problem; and (6) both upward and downward radiance can be calculated at interior points from relatively simple expressions.

  11. Radiative transfer theory applied to ocean bottom modeling.

    PubMed

    Quijano, Jorge E; Zurk, Lisa M

    2009-10-01

    Research on the propagation of acoustic waves in the ocean bottom sediment is of interest for active sonar applications such as target detection and remote sensing. The interaction of acoustic energy with the sea floor sublayers is usually modeled with techniques based on the full solution of the wave equation, which sometimes leads to mathematically intractable problems. An alternative way to model wave propagation in layered media containing random scatterers is the radiative transfer (RT) formulation, which is a well established technique in the electromagnetics community and is based on the principle of conservation of energy. In this paper, the RT equation is used to model the backscattering of acoustic energy from a layered elastic bottom sediment containing distributions of independent scatterers due to a constant single frequency excitation in the water column. It is shown that the RT formulation provides insight into the physical phenomena of scattering and conversion of energy between waves of different polarizations.

  12. Casimir effect and radiative heat transfer between Chern Insulators

    NASA Astrophysics Data System (ADS)

    Rodriguez Lopez, Pablo; Grushin, Adolfo; Tse, Wang-Kong; Dalvit, Diego

    2015-03-01

    Chern Insulators are a class of two-dimensional topological materials. Their electronic properties are different from conventional materials, and lead to interesting new physics as quantum Hall effect in absence of an external magnetic field. Here we will review some of their special properties and, in particular, we will discuss the radiative heat transfer and the Casimir effect between two planar Chern Insulators sheets. Finally, we will see how to control the intensity and sign of this Casimir force and the requirements to observe a repulsive Casimir force in the lab with those materials. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 302005.

  13. Application of 3-D radiative transfer theory to atmospheric correction of land surface images

    NASA Technical Reports Server (NTRS)

    Diner, D. J.; Martonchik, J. V.; Danielson, E. D.; Bruegge, C. J.

    1988-01-01

    Three dimensional radiative transfer theory was applied to computation of atmospheric effects on remotely sensed imagery. The atmospheric correction algorithm derived is used to estimate aerosol opacity.

  14. Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors

    NASA Astrophysics Data System (ADS)

    Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem

    2016-10-01

    Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative

  15. Relativistic radiative transfer and relativistic spherical shell flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2016-06-01

    We examine a radiatively driven spherical flow from a central object, whose thickness is smaller than the radius of the central object, and a plane-parallel approximation can be used-a spherical shell flow. We first solve the relativistic radiative transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained comoving flux, we then solve the relativistic hydrodynamical equation, and obtain a new velocity field. We repeat these double iteration processes until both the intensity and velocity profiles converge. We found that the flow speed v(τ) is roughly approximated as β ≡ v/c = βs(1 - τ/τb), where τ is the optical depth, τb the flow total optical depth, and c the speed of light. We further found that the flow terminal speed vs is roughly expressed as β _s ≡ v_s/c = (Γ hat{F}_0-1)τ_b/dot{m} , where Γ is the central luminosity normalized by the Eddington luminosity, hat{F}_0 the comoving flux normalized by the incident flux, and of the order of unity, and dot{m} the mass-loss rate normalized by the critical mass loss.

  16. Radiation transfer in metallic-powder beds during laser forming

    SciTech Connect

    Gusarov, A V

    2010-08-03

    This paper presents numerical simulations of two-dimensional radiation transfer in a powder layer that resides on a substrate of the same material and is exposed to a normally incident laser beam with an axisymmetric bell-shaped or top-hat intensity profile. The powder layer is treated as an equivalent homogeneous absorbing/scattering medium with radiative properties defined by the reflectance of the solid phase, the porosity of the powder and its surface area. The model used is applicable when the laser beam diameter far exceeds the particle size of the powder. It is shown that the absorptance of an optically thick layer of opaque powder particles is a universal function of the absorptance of the solid phase and is independent of surface area and porosity, in agreement with experimental data in the literature. The fraction of laser energy absorbed in the powder-substrate system and that absorbed in the substrate decrease with an increase in the reflectance of the material, but the powder bed is then more uniformly heated. (laser technologies)

  17. How accurate is image guided radiation therapy (IGRT) delivered with a micro-irradiator?

    PubMed Central

    Oldham, M; Newton, J; Rankine, L; Adamovics, J; Kirsch, D; Das, S

    2013-01-01

    There is significant interest in delivering precisely targeted small-volume radiation treatments, in the pre-clinical setting, to study dose-volume relationships with tumor control and normal tissue damage. In this work we investigate the IGRT targeting accuracy of the XRad225Cx system from Precision x-Ray using high resolution 3D dosimetry techniques. Initial results revealed a significant targeting error of about 2.4mm. This error was reduced to within 0.5mm after the IGRT hardware and software had been recalibrated. The facility for 3D dosimetry was essential to gain a comprehensive understanding of the targeting error in 3D. PMID:24454521

  18. Intercomparison of Shortwave Radiative Transfer Codes and Measurements

    SciTech Connect

    Halthore, Rangasayi N.; Crisp, David; Schwartz, Stephen E.; Anderson, Gail; Berk, A.; Bonnel, B.; Boucher, Olivier; Chang, Fu-Lung; Chou, Ming-Dah; Clothiaux, Eugene E.; Dubuisson, P.; Fomin, Boris; Fouquart, Y.; Freidenreich, S.; Gautier, Catherine; Kato, Seiji; Laszlo, Istvan; Li, Zhanqing; Mather, Jim H.; Plana-Fattori, Artemio; Ramaswamy, V.; Ricchiazzi, P.; Shiren, Y.; Trishchenko, A.; Wiscombe, Warren J.

    2005-06-03

    Computation of components of shortwave (SW) or solar irradiance in the surface-atmospheric system forms the basis of intercomparison between 16 radiative transfer models of varying spectral resolution ranging from line-by-line models to broadband and general circulation models. In order of increasing complexity the components are: direct solar irradiance at the surface, diffuse irradiance at the surface, diffuse upward flux at the surface, and diffuse upward flux at the top of the atmosphere. These components allow computation of the atmospheric absorptance. Four cases are considered from pure molecular atmospheres to atmospheres with aerosols and atmosphere with a simple uniform cloud. The molecular and aerosol cases allow comparison of aerosol forcing calculation among models. A cloud-free case with measured atmospheric and aerosol properties and measured shortwave radiation components provides an absolute basis for evaluating the models. For the aerosol-free and cloud-free dry atmospheres, models agree to within 1% (root mean square deviation as a percentage of mean) in broadband direct solar irradiance at surface; the agreement is relatively poor at 5% for a humid atmosphere. A comparison of atmospheric absorptance, computed from components of SW radiation, shows that agreement among models is understandably much worse at 3% and 10% for dry and humid atmospheres, respectively. Inclusion of aerosols generally makes the agreement among models worse than when no aerosols are present, with some exceptions. Modeled diffuse surface irradiance is higher than measurements for all models for the same model inputs. Inclusion of an optically thick low-cloud in a tropical atmosphere, a stringent test for multiple scattering calculations, produces, in general, better agreement among models for a low solar zenith angle (SZA = 30?) than for a high SZA (75?). All models show about a 30% increase in broadband absorptance for 30? SZA relative to the clear-sky case and almost no

  19. Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime

    NASA Astrophysics Data System (ADS)

    Pu, Hung-Yi; Yun, Kiyun; Younsi, Ziri; Yoon, Suk-Jin

    2016-04-01

    General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge-Kutta integration step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey_Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.

  20. Numerical analyses of radiative heat transfer in any arbitrarily-shaped axisymmetric enclosures

    NASA Astrophysics Data System (ADS)

    Salah, M. Ben; Askri, F.; Jemni, A.; Nasrallah, S. Ben

    2006-02-01

    A numerical approach for the treatment of radiative heat transfer in any irregularly-shaped axisymmetric enclosure filled with absorbing, emitting and scattering gray media is developed. Radiative transfer equation (RTE) is formulated for a general axisymmetric geometrical configurations, and the discretized equation is conducted using an unstructured meshes, generated by an appropriate computer algorithm, and the control volume finite element method which frequently adopted in CFD problems. A computer procedure has been done to solve the discretized RTE and to examine the accuracy and the computational efficiency of the proposed numerical approach. By using this computer algorithm, five test cases, a cylindrical enclosure with absorbing and emitting medium, a diffuser shaped axisymmetric enclosure, a finite axisymmetric cylindrical enclosure with a curved wall, a furnace with axially varying medium temperature and a rocket nozzle, are treated and the obtained results agree very well with other published works. Furthermore, the developed computer procedure has an accurate CPU time and it can be coupled easily with CFD codes.

  1. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume

    2016-03-01

    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  2. High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model

    NASA Astrophysics Data System (ADS)

    Zawada, D. J.; Dueck, S. R.; Rieger, L. A.; Bourassa, A. E.; Lloyd, N. D.; Degenstein, D. A.

    2015-06-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument on board the Odin spacecraft has been measuring limb-scattered radiance since 2001. The vertical radiance profiles measured as the instrument nods are inverted, with the aid of the SASKTRAN radiative transfer model, to obtain vertical profiles of trace atmospheric constituents. Here we describe two newly developed modes of the SASKTRAN radiative transfer model: a high-spatial-resolution mode and a Monte Carlo mode. The high-spatial-resolution mode is a successive-orders model capable of modelling the multiply scattered radiance when the atmosphere is not spherically symmetric; the Monte Carlo mode is intended for use as a highly accurate reference model. It is shown that the two models agree in a wide variety of solar conditions to within 0.2 %. As an example case for both models, Odin-OSIRIS scans were simulated with the Monte Carlo model and retrieved using the high-resolution model. A systematic bias of up to 4 % in retrieved ozone number density between scans where the instrument is scanning up or scanning down was identified. The bias is largest when the sun is near the horizon and the solar scattering angle is far from 90°. It was found that calculating the multiply scattered diffuse field at five discrete solar zenith angles is sufficient to eliminate the bias for typical Odin-OSIRIS geometries.

  3. High resolution and Monte Carlo additions to the SASKTRAN radiative transfer model

    NASA Astrophysics Data System (ADS)

    Zawada, D. J.; Dueck, S. R.; Rieger, L. A.; Bourassa, A. E.; Lloyd, N. D.; Degenstein, D. A.

    2015-03-01

    The OSIRIS instrument on board the Odin spacecraft has been measuring limb scattered radiance since 2001. The vertical radiance profiles measured as the instrument nods are inverted, with the aid of the SASKTRAN radiative transfer model, to obtain vertical profiles of trace atmospheric constituents. Here we describe two newly developed modes of the SASKTRAN radiative transfer model: a high spatial resolution mode, and a Monte Carlo mode. The high spatial resolution mode is a successive orders model capable of modelling the multiply scattered radiance when the atmosphere is not spherically symmetric; the Monte Carlo mode is intended for use as a highly accurate reference model. It is shown that the two models agree in a wide variety of solar conditions to within 0.2%. As an example case for both models, Odin-OSIRIS scans were simulated with the Monte Carlo model and retrieved using the high resolution model. A systematic bias of up to 4% in retrieved ozone number density between scans where the instrument is scanning up or scanning down was identified. It was found that calculating the multiply scattered diffuse field at five discrete solar zenith angles is sufficient to eliminate the bias for typical Odin-OSIRIS geometries.

  4. First and Higher Order Effects on Zero Order Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Neelam, M.; Mohanty, B.

    2014-12-01

    Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.

  5. Radiative transfer with finite elements. II. Lyalpha line transfer in moving media

    NASA Astrophysics Data System (ADS)

    Meinköhn, E.; Richling, S.

    2002-09-01

    A finite element method for solving the resonance line transfer problem in moving media is presented. The algorithm works in three spatial dimensions on unstructured grids which are adaptively refined by means of an a posteriori error indicator. Frequency discretization is implemented via a first-order Euler scheme. We discuss the resulting matrix structure for coherent isotropic scattering and complete redistribution. The solution is performed using an iterative procedure, where monochromatic radiative transfer problems are successively solved. The present implementation is applicable for arbitrary model configurations with an optical depth up to 103-4. Results of Lyalpha line transfer calculations for a spherically symmetric model, a disk-like configuration, and a halo containing three source regions are discussed. We find the characteristic double-peaked Lyalpha line profile for all models with an optical depth ga 1. In general, the blue peak of the profile is enhanced for models with infall motion and the red peak for models with outflow motion. Both velocity fields produce a triangular shape in the two-dimensional Lyalpha spectra, whereas rotation creates a shear pattern. Frequency-resolved Lyalpha images may help to find the number and position of multiple Lyalpha sources located in a single halo. A qualitative comparison with observations of extended Lyalpha halos associated with high redshift galaxies shows that even models with lower hydrogen column densities than required from profile fitting yield results which reproduce many features in the observed line profiles and two-dimensional spectra.

  6. Some critical remarks about the radiative heat transfer in air frame cavities according to EN ISO 10077-2

    NASA Astrophysics Data System (ADS)

    Cuccurullo, G.; Giordano, L.

    2015-11-01

    Thermal performances of windows frames are established, in Europe, by the international standard UNI EN ISO 10077-2:2012. The standard introduces an equivalent thermal conductivity for air frame cavities thus simplifying the original combined heat transfer problem to a merely two-dimensional conductive one. The equivalence is referred to a rectangular cavity and is not able to fully recover the same radiative heat flux involved in the original problem. In view of that, the paper is focused on the radiative heat transfer taking place in the air cavities and aims to check if different equivalence criteria could lead to improved results. Thus, numerical tests involving an accurate description of radiative heat transfer in air cavities are compared to the simplified fully-conductive one provided by the standard. Results show that different criteria lead to quite different results. The optimal criterion turns out to depend on both geometrical and surface radiative parameters. It is also shown that, in any case, a proper radiative resistance but not the one suggested by the ISO 10077 should be adopted.

  7. Systematic Errors that are Due to the Monochromatic-Equivalent Radiative Transfer Approximation in Thermal Emission Problems.

    PubMed

    Turner, D S

    2000-11-01

    An underlying assumption of data assimilation models is that the radiative transfer model used by them can simulate observed radiances with zero bias and small error. For practical reasons a fast parameterized radiative transfer model is used instead of a highly accurate line-by-line model. These fast models usually replace the spectral integration of the product of the transmittance and the Planck function with a monochromatic equivalent, namely, the product of a spectrally averaged transmittance and a spectrally averaged Planck function. The error of using this equivalent form is commonly assumed to be negligible. However, this error is not necessarily negligible and introduces a systematic height-dependent bias to the assimilation scheme. Although the bias could be corrected by a separate bias correction scheme, it is more effective to correct its source, the fast radiative transfer model. I examine the magnitude of error when the monochromatic-equivalent approach is used and demonstrate how a fast parameterized radiative model with Planck-weighted mean transmittances can effectively reduce if not eliminate these errors at source. I focus on channel 12 of the High-Resolution Infrared Radiation Sounder onboard the National Oceanic and Atmospheric Administration (NOAA)-14 satellite that, among all the channels of this instrument, displays the largest error.

  8. The DRESOR method for radiative heat transfer in semitransparent graded index cylindrical medium

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Xian; Huang, Zhifeng; Wang, Zhichao; Zhou, Huaichun

    2014-08-01

    During a numerical analysis of radiative transfer in some cylindrical optical thermal analysis and thermal design, applying a cylindrical coordinate system would be much more convenient and precise than that using a Cartesian coordinate system. In this paper, the DRESOR method under a cylindrical coordinate system is proposed to address radiative transfer in a semitransparent graded index cylindrical medium. The dimensionless incident radiation and net radiative heat flux are obtained using the DRESOR method. The accuracy and validity of the proposed method is verified by comparison with other techniques. The effects of isotropic scattering albedo and graded index on radiative transfer are also considered. Additionally, the high directional radiative intensity information is obtained to show the performance of the DRESOR method. It shows that the DRESOR method is an effective technique to address the radiative transfer problem in the graded index cylindrical medium with complex surface temperature characteristics.

  9. Residual Monte Carlo high-order solver for Moment-Based Accelerated Thermal Radiative Transfer equations

    SciTech Connect

    Willert, Jeffrey Park, H.

    2014-11-01

    In this article we explore the possibility of replacing Standard Monte Carlo (SMC) transport sweeps within a Moment-Based Accelerated Thermal Radiative Transfer (TRT) algorithm with a Residual Monte Carlo (RMC) formulation. Previous Moment-Based Accelerated TRT implementations have encountered trouble when stochastic noise from SMC transport sweeps accumulates over several iterations and pollutes the low-order system. With RMC we hope to significantly lower the build-up of statistical error at a much lower cost. First, we display encouraging results for a zero-dimensional test problem. Then, we demonstrate that we can achieve a lower degree of error in two one-dimensional test problems by employing an RMC transport sweep with multiple orders of magnitude fewer particles per sweep. We find that by reformulating the high-order problem, we can compute more accurate solutions at a fraction of the cost.

  10. Physics-based visualization of dense natural clouds. I. Three-dimensional discrete ordinates radiative transfer.

    PubMed

    Tofsted, D H; O'Brien, S G

    1998-11-20

    A technique is developed to model radiative transfer in three-dimensional natural clouds with a standard discrete ordinates finite-element method modified to evaluate cell-surface-averaged radiances. A log-least-squares-based scale transformation is used to improve the discrete phase-function model. We handle dense media by assuming constant diffuse radiances over input faces to cubic cells, allowing analytical forms for transmittance factors. Transmission equations are combined with diffuse volumetric single-scattering calculations to support evaluations of cell energy balance. Energy not accounted for volumetrically is treated with surface-based effects. Results produced show accurate flux computations at over 30 optical depths per modeled cell. Comparisons with nonuniform cloud Monte Carlo calculations show less than 1% rms error and correlations greater than 0.999 for cases in which cloud-density fluctuations are resolved.

  11. An analytic solution of the radiative transfer equation for a gray scattering atmosphere in motion

    NASA Technical Reports Server (NTRS)

    Pistinner, Shlomi; Shaviv, Giora

    1994-01-01

    We provide a formal analytic solution of the radiative transfer equation for a gray moving atmosphere in a plane parallel geometry. A formal solution in the diffusion and the free-streaming limit is also provided in the case of a spherically extended atmosphere. The formal solutions are written explicitly for scattering atmospheres in which the density and the velocity fields are given by a power law. A self-consistent temperature profile accurate to O(Beta = v/c) is provided for the case in which the absorption or the scattering are temperature independent. The gray extinction temperature profile is considerably simplified in the case of a scattering atmosphere. Steady state flow and homologous expansion are special cases that are considered in detail.

  12. Radiative transfer in the surfaces of atmosphereless bodies. III - Interpretation of lunar photometry

    NASA Technical Reports Server (NTRS)

    Lumme, K.; Irvine, W. M.

    1982-01-01

    Narrowband and UBV photoelectric phase curves of the entire lunar disk and surface photometry of some craters have been interpreted using a newly developed generalized radiative transfer theory for planetary regoliths. The data are well fitted by the theory, yielding information on both macroscopic and microscopic lunar properties. Derived values for the integrated disk geometric albedo are considerably higher than quoted previously, because of the present inclusion of an accurately determined opposition effect. The mean surface roughness, defined as the ratio of the height to the radius of a typical irregularity, is found to be 0.9 + or - 0.1, or somewhat less than the mean value of 1.2 obtained for the asteroids. From the phase curves, wavelength-dependent values of the single scattering albedo and the Henyey-Greenstein asymmetry factor for the average surface particle are derived.

  13. Spatial and angular finite element method for radiative transfer in participating media

    NASA Astrophysics Data System (ADS)

    Castro, Rafael O.; Trelles, Juan Pablo

    2015-05-01

    A computational approach for the modeling of multi-dimensional radiative transfer in participating media, including scattering, is presented. The approach is based on the sequential use of angular and spatial Finite Element Methods for the discretization of the Radiative Transfer Equation (RTE). The angular discretization is developed with an Angular Finite Element Method (AFEM) based on the Galerkin approach. The AFEM leads to a counterpart of the RTE consisting of a coupled set of transient-advective-reactive equations that are continuously dependent on space and time. The AFEM is ideally suited for so-called h- and/or p-refinement for the discretization of the angular domain: h-refinement is obtained by increasing the number of angular elements and p-refinement by increasing the order of the angular interpolating functions. The spatial discretization of the system of equations obtained after the angular discretization is based on a Variational Multi-Scale Finite Element Method (VMS-FEM) suitable for the solution of generic transport problems. The angularly and spatially discretized system is solved with a second-order accurate implicit predictor multi-corrector time stepper together with a globalized inexact Newton-Krylov nonlinear solver. The overall approach is designed and implemented to allow the seamless inclusion of other governing equations necessary to solve coupled fluid-radiative systems, such as those in combustion, high-temperature chemically reactive, and plasma flow models. The combined AFEM and VMS-FEM for the solution of the RTE is validated with two- and three-dimensional benchmark problems, each solved for 3 levels of angular partitioning (h-refinement) and for 2 orders of angular basis functions (p-refinement), i.e. piecewise constant (P0) and piecewise linear (P1) basis over spherical triangles. The overall approach is also applied to the simulation of radiative transfer in a parabolic concentrator with participating media, as encountered in

  14. A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new model for radiative transfer in participating media and its application to complex plant canopies is presented. The goal was to be able to efficiently solve complex canopy-scale radiative transfer problems while also representing sub-plant heterogeneity. In the model, individual leaf surfaces ...

  15. Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate

    NASA Technical Reports Server (NTRS)

    Lacis, A. A.; Wang, W. C.; Hansen, J. E.

    1979-01-01

    A radiative transfer method appropriate for use in simple climate models and three dimensional global climate models was developed. It is fully interactive with climate changes, such as in the temperature-pressure profile, cloud distribution, and atmospheric composition, and it is accurate throughout the troposphere and stratosphere. The vertical inhomogeneity of the atmosphere is accounted for by assuming a correlation of gaseous k-distributions of different pressures and temperatures. Line-by-line calculations are made to demonstrate that The method is remarkably accurate. The method is then used in a one-dimensional radiative-convective climate model to study the effect of cirrus clouds on surface temperature. It is shown that an increase in cirrus cloud cover can cause a significant warming of the troposphere and the Earth's surface, by the mechanism of an enhanced green-house effect. The dependence of this phenomenon on cloud optical thickness, altitude, and latitude is investigated.

  16. Classification and radiative-transfer modeling of meteorite spectra

    NASA Astrophysics Data System (ADS)

    Pentikäinen, H.; Penttilä, A.; Peltoniemi, J.; Muinonen, K.

    2014-07-01

    The interpretation of asteroid spectra is closely tied to surface structure and composition. Asteroid surfaces are usually assumed to be covered with a regolith, which is a mixture of mineral grains ranging from micrometers to centimeters in size. The inverse problem of deducing the characteristics of the grains from the scattering of light (e.g., using photometric and polarimetric observations) is difficult. Meteorite spectroscopy can be a valuable alternative source of information considering that unweathered meteoritic ''falls'' are almost pristine samples of their parent bodies. Reflectance spectra of 18 different meteorite samples were measured with the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO) covering a wavelength range of 450--2250 nm [1,2]. The measurements expand the database of reflectance spectra obtained by Paton et al. [3] and Gaffey [4]. Principal Component Analysis (PCA) performed on the spectra indicates a separation of the undifferentiated ordinary chondrites and the differentiated achondrites. The principal components also suggest a discrimination between the spectra of ordinary chondrites with petrologic grades 5 and 6. The distinction is not present when the data are supplemented with the spectra from the two other data sets obtained with differing measuring techniques. To further investigate the different classifications, the PCA is implemented with selected spectral features contrary to the previous analyses, which encompassed the complete spectra. Single-scattering albedos for meteoritic fundamental scatterers were derived with a Monte Carlo radiative-transfer model [1]. In the derivation, realistic scattering phase functions were utilized. The functions were obtained by fitting triple Henyey-Greenstein functions to the measured scattering phase functions of olivine powder for two different size distributions [5,6]. The simulated reflectances for different scattering phase functions were matched to the measured meteorite

  17. THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS

    SciTech Connect

    Whitney, B. A.; Honor, J.; Robitaille, T. P.; Bjorkman, J. E.; Dong, R.; Wolff, M. J.; Wood, K.

    2013-08-15

    We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, ''puffed-up inner rims'' in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations.

  18. Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications.

    PubMed

    Simovski, Constantin; Maslovski, Stanislav; Nefedov, Igor; Tretyakov, Sergei

    2013-06-17

    Using our recently developed method we analyze the radiative heat transfer in micron-thick multilayer stacks of metamaterials with hyperbolic dispersion. The metamaterials are especially designed for prospective thermophotovoltaic systems. We show that the huge transfer of near-infrared thermal radiation across micron layers of metamaterials is achievable and can be optimized. We suggest an approach to the optimal design of such metamaterials taking into account high temperatures of the emitting medium and the heating of the photovoltaic medium by the low-frequency part of the radiation spectrum. We show that both huge values and frequency selectivity are achievable for the radiative heat transfer in hyperbolic multilayer stacks.

  19. Radiative transfer in an atmosphere-ocean system.

    PubMed

    Plass, G N; Kattawar, G W

    1969-02-01

    The radiation field for an atmosphere-ocean system is calculated by a Monte Carlo method. In the atmosphere, both Rayleigh scattering by the molecules and Mie scattering by the aerosols and water droplets, when present, as well as molecular and aerosol absorption are included in the model. Similarly, in the ocean, both Rayleigh scattering by the water molecules and Mie scattering by the hydrosols as well as absorption by the water molecules and hydrosols are considered. Separate scattering functions are calculated from the Mie theory for the water droplets in clouds, the aerosols, and the hydrosols with an appropriate and different size distribution in each case. The photon path is followed accurately in three dimensions with new scattering angles determined from the appropriate scattering function including the strong forward scattering peak. Both the reflected and refracted rays, as well as the rays that undergo total internal reflection, are followed at the ocean surface, which is assumed smooth. The ocean floor is represented by a Lambert surface. The radiance and flux are given for two wavelengths, three solar angles, shallow and deep oceans, various albedos of ocean floor, various depths in atmosphere and ocean, and with and without clouds in the atmosphere.

  20. A fast all-sky radiative transfer model and its implications for solar energy research

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.

    2015-12-01

    Radiative transfer models simulating broadband solar radiation, e.g. Rapid Radiation Transfer Model (RRTM) and its GCM applications, have been widely used by atmospheric scientists to model solar resource for various energy applications such as operational forecasting. Due to the complexity of solving the radiative transfer equation, simulating solar radiation under cloudy conditions can be extremely time consuming though many approximations, e.g. two-stream approach and delta-M truncation scheme, have been utilized. To provide a new option to approximate solar radiation, we developed a Fast All-sky Radiation Model for Solar applications (FARMS) using simulated cloud transmittance and reflectance from 16-stream RRTM model runs. The solar irradiances at the land surface were simulated by combining parameterized cloud properties with a fast clear-sky radiative transfer model. Using solar radiation measurements from the US Department of Energy's Atmospheric Radiation Measurement (ARM) central facility in Oklahoma as a benchmark against the model simulations, we were able to demonstrate that the accuracy of FARMS was comparable to the two-stream approach. However, FARMS is much more efficient since it does not explicitly solve the radiative transfer equation for each individual cloud condition. We further explored the use of FARMS to promote solar resource assessment and forecasting research through the increased ability to accommodate higher spatial and temporal resolution calculations for the next generation of satellite and numerical weather prediction (NWP) models.

  1. SRTC++: a New Monte Carlo Radiative Transfer Model for Titan

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; MacKenzie, Shannon; Young, Eliot F.

    2016-10-01

    Titan's vertically extended and highly scattering atmosphere poses a challenge to interpreting near-infrared observations of its surface. Not only does Titan's extended atmosphere often require accommodation of its spherical geometry, it is also difficult to separate surface albedos from scattering or absorption within low-altitude atmospheric layers. One way to disentangle the surface and atmosphere is to combine observations in which terrain on Titan is imaged from a range of viewing geometries. To address this type of problem, we have developed a new algorithm, Spherical Radiative Transfer in C++ or SRTC++.This code is written from scratch in fast C++ and designed from the ground up to run efficiently in parallel. We see SRTC++ as complementary to existing plane-parallel codes, not in competition with them as the first problems that we seek to address will be spatial in nature. For example, we will be able to investigate spatial resolution limits in the various spectral windows, discrimination of vertical atmospheric layers, the adjacency effect, and indirect illumination past Titan's terminator.

  2. History of one family of atmospheric radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Anderson, Gail P.; Wang, Jinxue; Hoke, Michael L.; Kneizys, F. X.; Chetwynd, James H., Jr.; Rothman, Laurence S.; Kimball, L. M.; McClatchey, Robert A.; Shettle, Eric P.; Clough, Shepard (.; Gallery, William O.; Abreu, Leonard W.; Selby, John E. A.

    1994-12-01

    Beginning in the early 1970's, the then Air Force Cambridge Research Laboratory initiated a program to develop computer-based atmospheric radiative transfer algorithms. The first attempts were translations of graphical procedures described in a 1970 report on The Optical Properties of the Atmosphere, based on empirical transmission functions and effective absorption coefficients derived primarily from controlled laboratory transmittance measurements. The fact that spectrally-averaged atmospheric transmittance (T) does not obey the Beer-Lambert Law (T equals exp(-(sigma) (DOT)(eta) ), where (sigma) is a species absorption cross section, independent of (eta) , the species column amount along the path) at any but the finest spectral resolution was already well known. Band models to describe this gross behavior were developed in the 1950's and 60's. Thus began LOWTRAN, the Low Resolution Transmittance Code, first released in 1972. This limited initial effort has how progressed to a set of codes and related algorithms (including line-of-sight spectral geometry, direct and scattered radiance and irradiance, non-local thermodynamic equilibrium, etc.) that contain thousands of coding lines, hundreds of subroutines, and improved accuracy, efficiency, and, ultimately, accessibility. This review will include LOWTRAN, HITRAN (atlas of high-resolution molecular spectroscopic data), FASCODE (Fast Atmospheric Signature Code), and MODTRAN (Moderate Resolution Transmittance Code), their permutations, validations, and applications, particularly as related to passive remote sensing and energy deposition.

  3. Matrix operator theory of radiative transfer. 1: rayleigh scattering.

    PubMed

    Plass, G N; Kattawar, G W; Catchings, F E

    1973-02-01

    An entirely rigorous method for the solution of the equations for radiative transfer based on the matrix operator theory is reviewed. The advantages of the present method are: (1) all orders of the reflection and transmission matrices are calculated at once; (2) layers of any thickness may be combined, so that a realistic model of the atmosphere can be developed from any arbitrary number of layers, each with different properties and thicknesses; (3) calculations can readily be made for large optical depths and with highly anisotropic phase functions; (4) results are obtained for any desired value of the surface albedo including the value unity and for a large number of polar and azimuthal angles including the polar angle theta = 0 degrees ; (5) all fundamental equations can be interpreted immediately in terms of the physical interactions appropriate to the problem; (6) both upward and downward radiance can be calculated at interior points from relatively simple expressions. Both the general theory and its history together with the method of calculation are discussed. As a first example of the method numerous curves are given for both the reflected and transmitted radiance for Rayleigh scattering from a homogeneous layer for a range of optical thicknesses from 0.0019 to 4096, surface albedo A = 0, 0.2, and 1, and cosine of solar zenith angle micro = 1, 0.5397, and 0.1882. It is shown that the matrix operator approach contains the doubling method as a special case.

  4. Test plan for validation of the radiative transfer equation.

    SciTech Connect

    Ricks, Allen Joseph; Grasser, Thomas W.; Kearney, Sean Patrick; Jernigan, Dann A.; Blanchat, Thomas K.

    2010-09-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).

  5. Modeling Planet-Building Stellar Disks with Radiative Transfer Code

    NASA Astrophysics Data System (ADS)

    Swearingen, Jeremy R.; Sitko, Michael L.; Whitney, Barbara; Grady, Carol A.; Wagner, Kevin Robert; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Hammel, Heidi B.; Lisse, Casey M.; Cure, Michel; Kraus, Stefan; Fukagawa, Misato; Calvet, Nuria; Espaillat, Catherine; Monnier, John D.; Millan-Gabet, Rafael; Wilner, David J.

    2015-01-01

    Understanding the nature of the many planetary systems found outside of our own solar system cannot be completed without knowledge of the beginnings these systems. By detecting planets in very young systems and modeling the disks of material around stars from which they form, we can gain a better understanding of planetary origin and evolution. The efforts presented here have been in modeling two pre-transitional disk systems using a radiative transfer code. With the first of these systems, V1247 Ori, a model that fits the spectral energy distribution (SED) well and whose parameters are consistent with existing interferometry data (Kraus et al 2013) has been achieved. The second of these two systems, SAO 206462, has presented a different set of challenges but encouraging SED agreement between the model and known data gives hope that the model can produce images that can be used in future interferometry work. This work was supported by NASA ADAP grant NNX09AC73G, and the IR&D program at The Aerospace Corporation.

  6. Numerical model for combined conductive and radiative heat transfer in annular packed beds

    SciTech Connect

    Kamiuto, K.; Saito, S.; Ito, K. . Dept. of Production Systems Engineering)

    1993-06-01

    A numerical model is developed for quantitatively analyzing combined conductive and radiative heat transfer in concentric annular packed beds. A packed bed is considered to be a continuous medium for heat transfer, but the porosity distribution within a packed bed is taken into account. To examine the validity of the proposed model, combined conductive and radiative heat transfer through annular packed beds of cordierite or porcelain beads is analyzed numerically using finite differences under conditions corresponding to heat transfer experiments of these packed beds. The resultant temperature profiles and heat transfer characteristics are compared with the experimental results.

  7. Radiative heat transfer in anisotropic many-body systems: Tuning and enhancement

    SciTech Connect

    Nikbakht, Moladad

    2014-09-07

    A general formalism for calculating the radiative heat transfer in many body systems with anisotropic component is presented. Our scheme extends the theory of radiative heat transfer in isotropic many body systems to anisotropic cases. In addition, the radiative heating of the particles by the thermal bath is taken into account in our formula. It is shown that the radiative heat exchange (HE) between anisotropic particles and their radiative cooling/heating (RCH) could be enhanced several order of magnitude than that of isotropic particles. Furthermore, we demonstrate that both the HE and RCH can be tuned dramatically by particles relative orientation in many body systems.

  8. Reverse Monte Carlo ray-tracing for radiative heat transfer in combustion systems

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojing

    Radiative heat transfer is a dominant heat transfer phenomenon in high temperature systems. With the rapid development of massive supercomputers, the Monte-Carlo ray tracing (MCRT) method starts to see its applications in combustion systems. This research is to find out if Monte-Carlo ray tracing can offer more accurate and efficient calculations than the discrete ordinates method (DOM). Monte-Carlo ray tracing method is a statistical method that traces the history of a bundle of rays. It is known as solving radiative heat transfer with almost no approximation. It can handle nonisotropic scattering and nongray gas mixtures with relative ease compared to conventional methods, such as DOM and spherical harmonics method, etc. There are two schemes in Monte-Carlo ray tracing method: forward and backward/reverse. Case studies and the governing equations demonstrate the advantages of reverse Monte-Carlo ray tracing (RMCRT) method. The RMCRT can be easily implemented for domain decomposition parallelism. In this dissertation, different efficiency improvements techniques for RMCRT are introduced and implemented. They are the random number generator, stratified sampling, ray-surface intersection calculation, Russian roulette, and important sampling. There are two major modules in solving the radiative heat transfer problems: the RMCRT RTE solver and the optical property models. RMCRT is first fully verified in gray, scattering, absorbing and emitting media with black/nonblack, diffuse/nondiffuse bounded surface problems. Sensitivity analysis is carried out with regard to the ray numbers, the mesh resolutions of the computational domain, optical thickness of the media and effects of variance reduction techniques (stratified sampling, Russian roulette). Results are compared with either analytical solutions or benchmark results. The efficiency (the product of error and computation time) of RMCRT has been compared to DOM and suggest great potential for RMCRT's application

  9. Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report

    SciTech Connect

    Jerry Y. Harrington

    2012-09-21

    This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

  10. A polynomial chaos approach to narrow band modeling of radiative heat transfer in non-uniform gaseous media

    NASA Astrophysics Data System (ADS)

    André, Frédéric

    2016-05-01

    An accurate treatment of non-uniformities is required in many applications involving radiative heat transfer in gaseous media. Usual techniques to handle path non-uniformities rely on simplifying assumptions, such as scaling or correlation of gas spectra. Those approximations are usually accurate but may also fail to provide accurate results, especially when large temperature gradients are considered. The objective of the present work is to show that this problem can be treated rigorously. The proposed method can be applied to any arbitrary narrow band model. It is based on some results from Polynomial Chaos' framework and copulas theory. Although the mathematical derivation may appear sophisticated, applying the method is straightforward. It is shown that adding only one coefficient to any uniform narrow band model (for a simple case involving a non-uniform column discretized into two uniform sub-paths) allows to achieve almost LBL accuracy for radiative heat transfer calculations. The technique is described and applied to some "severe" test cases from the literature.

  11. Bio-Optics of the Chesapeake Bay from Measurements and Radiative Transfer Calculations

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Herman, Jay R.; Gallegos, Charles L.; Neale, Patrick J.; Subramaniam, Ajit; Harding, Lawrence W., Jr.; Ahmad, Ziauddin

    2005-01-01

    We combined detailed bio-optical measurements and radiative transfer (RT) modeling to perform an optical closure experiment for optically complex and biologically productive Chesapeake Bay waters. We used this experiment to evaluate certain assumptions commonly used when modeling bio-optical processes, and to investigate the relative importance of several optical characteristics needed to accurately model and interpret remote sensing ocean-color observations in these Case 2 waters. Direct measurements were made of the magnitude, variability, and spectral characteristics of backscattering and absorption that are critical for accurate parameterizations in satellite bio-optical algorithms and underwater RT simulations. We found that the ratio of backscattering to total scattering in the mid-mesohaline Chesapeake Bay varied considerably depending on particulate loading, distance from land, and mixing processes, and had an average value of 0.0128 at 530 nm. Incorporating information on the magnitude, variability, and spectral characteristics of particulate backscattering into the RT model, rather than using a volume scattering function commonly assumed for turbid waters, was critical to obtaining agreement between RT calculations and measured radiometric quantities. In situ measurements of absorption coefficients need to be corrected for systematic overestimation due to scattering errors, and this correction commonly employs the assumption that absorption by particulate matter at near infrared wavelengths is zero.

  12. A high-order photon Monte Carlo method for radiative transfer in direct numerical simulation

    SciTech Connect

    Wu, Y.; Modest, M.F.; Haworth, D.C. . E-mail: dch12@psu.edu

    2007-05-01

    A high-order photon Monte Carlo method is developed to solve the radiative transfer equation. The statistical and discretization errors of the computed radiative heat flux and radiation source term are isolated and quantified. Up to sixth-order spatial accuracy is demonstrated for the radiative heat flux, and up to fourth-order accuracy for the radiation source term. This demonstrates the compatibility of the method with high-fidelity direct numerical simulation (DNS) for chemically reacting flows. The method is applied to address radiative heat transfer in a one-dimensional laminar premixed flame and a statistically one-dimensional turbulent premixed flame. Modifications of the flame structure with radiation are noted in both cases, and the effects of turbulence/radiation interactions on the local reaction zone structure are revealed for the turbulent flame. Computational issues in using a photon Monte Carlo method for DNS of turbulent reacting flows are discussed.

  13. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    NASA Astrophysics Data System (ADS)

    Xin, Q.; Gong, P.; Li, W.

    2015-02-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  14. ULTRAVIOLET RADIATIVE TRANSFER MODELING OF NEARBY GALAXIES WITH EXTRAPLANAR DUSTS

    SciTech Connect

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-20

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFR{sub UV}), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFR{sub UV} and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  15. Testing quasar unification: radiative transfer in clumpy winds

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Knigge, C.; Long, K. S.; Sim, S. A.; Higginbottom, N.; Mangham, S. W.

    2016-05-01

    Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

  16. Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts

    NASA Astrophysics Data System (ADS)

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-01

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  17. Magnetic field and radiative transfer modelling of a quiescent prominence

    NASA Astrophysics Data System (ADS)

    Gunár, S.; Schwartz, P.; Dudík, J.; Schmieder, B.; Heinzel, P.; Jurčák, J.

    2014-07-01

    Aims: The aim of this work is to analyse the multi-instrument observations of the June 22, 2010 prominence to study its structure in detail, including the prominence-corona transition region and the dark bubble located below the prominence body. Methods: We combined results of the 3D magnetic field modelling with 2D prominence fine structure radiative transfer models to fully exploit the available observations. Results: The 3D linear force-free field model with the unsheared bipole reproduces the morphology of the analysed prominence reasonably well, thus providing useful information about its magnetic field configuration and the location of the magnetic dips. The 2D models of the prominence fine structures provide a good representation of the local plasma configuration in the region dominated by the quasi-vertical threads. However, the low observed Lyman-α central intensities and the morphology of the analysed prominence suggest that its upper central part is not directly illuminated from the solar surface. Conclusions: This multi-disciplinary prominence study allows us to argue that a large part of the prominence-corona transition region plasma can be located inside the magnetic dips in small-scale features that surround the cool prominence material located in the dip centre. We also argue that the dark prominence bubbles can be formed because of perturbations of the prominence magnetic field by parasitic bipoles, causing them to be devoid of the magnetic dips. Magnetic dips, however, form thin layers that surround these bubbles, which might explain the occurrence of the cool prominence material in the lines of sight intersecting the prominence bubbles. Movie and Appendix A are available in electronic form at http://www.aanda.org

  18. Study of longwave radiative transfer in stratocumulus clouds by using bin optical properties and bin microphysics scheme

    NASA Astrophysics Data System (ADS)

    Lábó, E.; Geresdi, I.

    2016-01-01

    Infrared radiative cooling at the cloud top is the major driving force for stratocumulus-topped boundary layer turbulence and the major source of buoyancy within a convective mixed layer. However, there is still large uncertainty about the rate of longwave cooling at the cloud top in recent numerical models. Radiative transfer calculations within stratocumulus clouds can be further improved by using bin scheme in the calculation of longwave extinction coefficients. A method to calculate bin optical properties was developed and was implemented in the RRTM LW radiative transfer model. This bin-type radiation scheme allows us more accurate calculation of the optical properties of clouds, because it does not need any arbitrary assumption for the size distribution of the hydrometeors. The number concentrations and mixing ratios in 36 size-bins provided by bin microphysical scheme are used for calculation of the extinction coefficient. In this paper results of this new scheme were compared to that of one-moment and two-moment bulk radiation schemes where the size distributions were supposed to follow a gamma-function. It was found that the application of the two-moment bulk scheme had no advantage against the one-moment bulk scheme in simulation of radiation profiles, if radiation feedback on cloud processes was not taken into account. Although the gamma function used by bulk schemes fitted relatively well to the size distribution of the water drops calculated by the bin scheme, the longwave radiation fluxes calculated by the two schemes (bulk vs. bin) were significantly different. The bin radiation scheme gave at least 50% larger warming rates both at the cloud base and at the cloud top than the bulk schemes did. The cooling/warming occurred in a thinner vertical layer in the case of the bin scheme than in the case of bulk schemes. The shape of the net radiation profile strongly depended on the CCN concentration. Continental clouds were found to have horizontally less

  19. Transient radiative transfer in participating media with pulse-laser irradiation—an approximate Galerkin solution

    NASA Astrophysics Data System (ADS)

    Okutucu, Tuba; Yener, Yaman; Busnaina, Ahmed A.

    2007-01-01

    An assessment is made of the Galerkin technique as an effective method of solution for transient radiative transfer problems in participating media. A one-dimensional absorbing and isotropically scattering plane-parallel gray medium irradiated with a short-pulse laser on one of its boundaries is considered for the application of the method. The medium is non-emitting and the boundaries are non-reflecting and non-refracting. In the integral formulation of the problem for the source function, the time-wise variation of the radiation intensity at any point and in any direction in the medium is assumed to be the same as the time-wise variation of the average intensity at the same point as an approximation for the application of the method. The transient transmittance and reflectance of the medium are evaluated for various values of the optical thickness, scattering albedo and pulse duration. The results are in agreement with those available in the literature. It is demonstrated that the method is relatively simple to implement and yields accurate results.

  20. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.

    PubMed

    Paganetti, H; Jiang, H; Lee, S Y; Kooy, H M

    2004-07-01

    Monte Carlo dosimetry calculations are essential methods in radiation therapy. To take full advantage of this tool, the beam delivery system has to be simulated in detail and the initial beam parameters have to be known accurately. The modeling of the beam delivery system itself opens various areas where Monte Carlo calculations prove extremely helpful, such as for design and commissioning of a therapy facility as well as for quality assurance verification. The gantry treatment nozzles at the Northeast Proton Therapy Center (NPTC) at Massachusetts General Hospital (MGH) were modeled in detail using the GEANT4.5.2 Monte Carlo code. For this purpose, various novel solutions for simulating irregular shaped objects in the beam path, like contoured scatterers, patient apertures or patient compensators, were found. The four-dimensional, in time and space, simulation of moving parts, such as the modulator wheel, was implemented. Further, the appropriate physics models and cross sections for proton therapy applications were defined. We present comparisons between measured data and simulations. These show that by modeling the treatment nozzle with millimeter accuracy, it is possible to reproduce measured dose distributions with an accuracy in range and modulation width, in the case of a spread-out Bragg peak (SOBP), of better than 1 mm. The excellent agreement demonstrates that the simulations can even be used to generate beam data for commissioning treatment planning systems. The Monte Carlo nozzle model was used to study mechanical optimization in terms of scattered radiation and secondary radiation in the design of the nozzles. We present simulations on the neutron background. Further, the Monte Carlo calculations supported commissioning efforts in understanding the sensitivity of beam characteristics and how these influence the dose delivered. We present the sensitivity of dose distributions in water with respect to various beam parameters and geometrical misalignments

  1. Minimum radiative heat transfer between two metallic half-spaces due to propagating waves

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, A.; Mayo, J.

    2016-11-01

    The gap dependence of radiative energy transfer due to propagating waves between two identical metallic half-spaces separated by vacuum is investigated. The dielectric function of the metallic half-spaces is described by the Drude model. Analytical expressions for the minimum radiative heat transfer coefficient, hmin, and the gap, dmin, at which the minimum value of radiative transfer is attained are determined in terms of the parameters of the dielectric function and the absolute temperature T. We show that hmin ∝T2 in the high temperature limit and hmin ∝T 7 / 2 in the low temperature limit.

  2. Mathematical modeling of sulfide flash smelting process. Part 2; Quantitative analysis of radiative heat transfer

    SciTech Connect

    Hahn, Y.B. ); Sohn, H.Y. )

    1990-12-01

    This paper reports on a mathematical model developed to describe the rate processes in an axisymmetric copper flash smelting furnace shaft. A particular feature of the model is the incorporation of the four-flux model to describe the radiative heat transfer by combining the absorbing, emitting, and anisotropic scattering phenomena. The importance of various subprocesses of the radiative heat transfer in a flash smelting furnace has been studied. Model predictions showed that the radiation from the furnace walls and between the particles and the surrounding is the dominant mode of heat transfer in a flash smelting furnace.

  3. Cloud Radiative Effect by Cloud Types Based on Radiative Transfer Model Calculations and Collocated A-Train Data

    NASA Astrophysics Data System (ADS)

    Yue, Q.; Fetzer, E. J.; Schreier, M. M.; Kahn, B. H.; Huang, X.

    2014-12-01

    Cloud radiative effect is sensitive to both cloud types and the atmospheric conditions that are correspondent with the clouds. It is important to separate the radiative effects due to the microphysical and radiative properties of clouds and the impact of clouds on clear atmosphere radiation. To better quantify these components of cloud radiative effects, we construct a data record of water vapor, temperature, TOA shortwave and long-wave radiations, and cloud properties from collocated A-Train satellite observations and NASA MERRA reanalysis, stratified according to cloud types determined by MODIS observations. The sensitivity of cloud radiative effects on the properties of cloud is investigated in this study using the observation data. The cloud masking effect is quantified for different cloud types using the Fu and Liou radiative transfer model and the observed cloudy and clear atmospheric conditions. The sampling biases of the satellite observed temperature and water vapor vertical distributions are quantified based on comparisons between satellite observations and reanalysis, and then incorporated into the radiative transfer calculations to study the impact of these observational biases on cloud radiative effect estimation from the temperature and water vapor profiles obtained from satellite.

  4. Estimating the gas transfer velocity: a prerequisite for more accurate and higher resolution GHG fluxes (lower Aare River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Sollberger, S.; Perez, K.; Schubert, C. J.; Eugster, W.; Wehrli, B.; Del Sontro, T.

    2013-12-01

    Currently, carbon dioxide (CO2) and methane (CH4) emissions from lakes, reservoirs and rivers are readily investigated due to the global warming potential of those gases and the role these inland waters play in the carbon cycle. However, there is a lack of high spatiotemporally-resolved emission estimates, and how to accurately assess the gas transfer velocity (K) remains controversial. In anthropogenically-impacted systems where run-of-river reservoirs disrupt the flow of sediments by increasing the erosion and load accumulation patterns, the resulting production of carbonic greenhouse gases (GH-C) is likely to be enhanced. The GH-C flux is thus counteracting the terrestrial carbon sink in these environments that act as net carbon emitters. The aim of this project was to determine the GH-C emissions from a medium-sized river heavily impacted by several impoundments and channelization through a densely-populated region of Switzerland. Estimating gas emission from rivers is not trivial and recently several models have been put forth to do so; therefore a second goal of this project was to compare the river emission models available with direct measurements. Finally, we further validated the modeled fluxes by using a combined approach with water sampling, chamber measurements, and highly temporal GH-C monitoring using an equilibrator. We conducted monthly surveys along the 120 km of the lower Aare River where we sampled for dissolved CH4 (';manual' sampling) at a 5-km sampling resolution, and measured gas emissions directly with chambers over a 35 km section. We calculated fluxes (F) via the boundary layer equation (F=K×(Cw-Ceq)) that uses the water-air GH-C concentration (C) gradient (Cw-Ceq) and K, which is the most sensitive parameter. K was estimated using 11 different models found in the literature with varying dependencies on: river hydrology (n=7), wind (2), heat exchange (1), and river width (1). We found that chamber fluxes were always higher than boundary

  5. SASKTRANIF- a New Engine for the Radiative Transfer Modeling of Solar Occultation Measurements.

    NASA Astrophysics Data System (ADS)

    Jones, A.; Lloyd, N.; Rieger, L. A.; Jensen, L.; Walker, K. A.; Degenstein, D. A.; Bourassa, A. E.; Boone, C. D.

    2014-12-01

    Vertical distributions of atmospheric gases measured by satellite instruments can be retrieved by mathematical inversion algorithms involving a forward model of the radiative transfer equation. Hence, an accurate forward model to predict atmospheric spectra is necessary for estimating volume mixing ratio quantities of these gases. One particular forward model is the SASKTRAN Inter-Face (or SASKTRANIF), which is a line by line radiative transfer model typically used to model atmospheric spectra arising from limb scattered sunlight at ultraviolet to near infrared wavelengths, using linear ray tracing and a three dimensional spherical shell atmosphere of homogeneous layers. An additional engine has now been implemented, designed to model solar occultation based measurements. Solar rays are traced through each atmospheric layer using an algorithm that accounts for refraction of the atmosphere. The extinction is calculated along the line of sight for a penetrating ray intersecting multiple layers of the atmosphere given a known chemical composition. By default, the engine uses the HITRAN 2008 spectral database to obtain information about the absorption cross sections of each modeled species, and also utilizes user defined climatologies for a priori information (such as input trace gas concentrations, temperature, and pressure). The new engine is currently in a testing phase. Here, we firstly compare synthesized spectra from SASKTRANIF with spectra derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) forward model. Secondly, we retrieve vertical volume mixing ratio profiles of various atmospheric gases by performing a global fit to ACE-FTS measured spectra where model parameters are determined using a Marquardt-Levenberg nonlinear least squares algorithm. Resulting vertical profiles are compared to those derived using the ACE-FTS retrieval system.

  6. 3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent

    2015-08-01

    We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  7. Multiangle Implementation of Atmospheric Correction (MAIAC):. 1; Radiative Transfer Basis and Look-up Tables

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Martonchik, John; Wang, Yujie; Laszlo, Istvan; Korkin, Sergey

    2011-01-01

    This paper describes a radiative transfer basis of the algorithm MAIAC which performs simultaneous retrievals of atmospheric aerosol and bidirectional surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). The retrievals are based on an accurate semianalytical solution for the top-of-atmosphere reflectance expressed as an explicit function of three parameters of the Ross-Thick Li-Sparse model of surface bidirectional reflectance. This solution depends on certain functions of atmospheric properties and geometry which are precomputed in the look-up table (LUT). This paper further considers correction of the LUT functions for variations of surface pressure/height and of atmospheric water vapor, which is a common task in the operational remote sensing. It introduces a new analytical method for the water vapor correction of the multiple ]scattering path radiance. It also summarizes the few basic principles that provide a high efficiency and accuracy of the LUT ]based radiative transfer for the aerosol/surface retrievals and optimize the size of LUT. For example, the single-scattering path radiance is calculated analytically for a given surface pressure and atmospheric water vapor. The same is true for the direct surface-reflected radiance, which along with the single-scattering path radiance largely defines the angular dependence of measurements. For these calculations, the aerosol phase functions and kernels of the surface bidirectional reflectance model are precalculated at a high angular resolution. The other radiative transfer functions depend rather smoothly on angles because of multiple scattering and can be calculated at coarser angular resolution to reduce the LUT size. At the same time, this resolution should be high enough to use the nearest neighbor geometry angles to avoid costly three ]dimensional interpolation. The pressure correction is implemented via linear interpolation between two LUTs computed for the standard and reduced

  8. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect

    Liu, X. L.; Zhang, Z. M.

    2014-06-23

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  9. Direct method for solving transfer equation by expansion in spherical harmonics: Scattering in atmosphere with Lambertian lower boundary and thermal radiation transfer

    NASA Technical Reports Server (NTRS)

    Ustinov, Y. A.

    1978-01-01

    The direct method for the solution of the spherical harmonics approximation to the equation of transfer of radiation is applied to the cases of (1) scattering of the solar radiation in the atmosphere with the Lambertian boundary and (2) thermal radiation transfer.

  10. Simulated Radiative Transfer DOAS - A new method for improving volcanic SO2 emissions retrievals from ground-based UV-spectroscopic measurements of scattered solar radiation

    NASA Astrophysics Data System (ADS)

    Kern, C.; Deutschmann, T.; Vogel, L.; Bobrowski, N.; Hoermann, C.; Werner, C. A.; Sutton, A. J.; Elias, T.

    2011-12-01

    Passive Differential Optical Absorption Spectroscopy (DOAS) has become a standard tool for measuring SO2 at volcanoes. More recently, ultra-violet (UV) cameras have also been applied to obtain 2D images of SO2-bearing plumes. Both techniques can be used to derive SO2 emission rates by measuring SO2 column densities, integrating these along the plume cross-section, and multiplying by the wind speed. Recent measurements and model studies have revealed that the dominating source of uncertainty in these techniques often originates from an inaccurate assessment of radiative transfer through the volcanic plume. The typical assumption that all detected radiation is scattered behind the volcanic plume and takes a straight path from there to the instrument is often incorrect. We recently showed that the straight path assumption can lead to column density errors of 50% or more in cases where plumes with high SO2 and aerosol concentrations are measured from several kilometers distance, or where the background atmosphere contains a large amount of scattering aerosols. Both under- and overestimation are possible depending on the atmospheric conditions and geometry during spectral acquisition. Simulated Radiative Transfer (SRT) DOAS is a new evaluation scheme that combines radiative transfer modeling with spectral analysis of passive DOAS measurements in the UV region to derive more accurate SO2 column densities than conventional DOAS retrievals, which in turn leads to considerably more accurate emission rates. A three-dimensional backward Monte Carlo radiative transfer model is used to simulate realistic light paths in and around the volcanic plume containing variable amounts of SO2 and aerosols. An inversion algorithm is then applied to derive the true SO2 column density. For fast processing of large datasets, a linearized algorithm based on lookup tables was developed and tested on a number of example datasets. In some cases, the information content of the spectral data is

  11. Uncertainty of microwave radiative transfer computations in rain

    NASA Astrophysics Data System (ADS)

    Hong, Sung Wook

    Currently, the effect of the vertical resolution on the brightness temperature (BT) has not been examined in depth. The uncertainty of the freezing level (FL) retrieved using two different satellites' data is large. Various radiative transfer (RT) codes yield different BTs in strong scattering conditions. The purposes of this research were: (1) to understand the uncertainty of the BT contributed by the vertical resolution numerically and analytically; (2) to reduce the uncertainty of the FL retrieval using new thermodynamic observations; and (3) to investigate the characteristics of four different RT codes. Firstly, a plane-parallel RT Model (RTM) of n layers in light rainfall was used for the analytical and computational derivation of the vertical resolution effect on the BT. Secondly, a new temperature profile based on observations was absorbed in the Texas A&M University (TAMU) algorithm. The Precipitation Radar (PR) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data were utilized for the improved FL retrieval. Thirdly, the TAMU, Eddington approximation (EDD), Discrete Ordinate, and backward Monte Carlo codes were compared under various view angles, rain rates, FLs, frequencies, and surface properties. The uncertainty of the BT decreased as the number of layers increased. The uncertainty was due to the optical thickness rather than due to relative humidity, pressure distribution, water vapor, and temperature profile. The mean TMI FL showed a good agreement with mean bright band height. A new temperature profile reduced the uncertainty of the TMI FL by about 10%. The differences of the BTs among the four different RT codes were within 1 K at the current sensor view angle over the entire dynamic rain rate range of 10-37 GHz. The differences between the TAMU and EDD solutions were less than 0.5 K for the specular surface. In conclusion, this research suggested the vertical resolution should be considered as a parameter in the forward model

  12. Directional Radiometry and Radiative Transfer: the Convoluted Path From Centuries-old Phenomenology to Physical Optics

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2014-01-01

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  13. The lattice Boltzmann method for one-dimensional transient radiative transfer in graded index gray medium

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2014-04-01

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing absorbing and scattering media with graded index subjected to a short square laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. Firstly, for the case of the refractive index matched boundary, LBM solutions to transient radiative transfer in graded index medium are validated by comparison with results reported in the literature. Afterward, LBM is employed to investigate transient radiative transfer in graded index medium with a refractive index discontinuity at the boundaries. Effects of the graded index distributions, the optical thickness, and scattering phase function on transmittance and reflectance signals are investigated, and several interesting trends on the time-resolved signals are observed and analyzed.

  14. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  15. Two Experiments for Estimating Free Convection and Radiation Heat Transfer Coefficients

    ERIC Educational Resources Information Center

    Economides, Michael J.; Maloney, J. O.

    1978-01-01

    This article describes two simple undergraduate heat transfer experiments which may reinforce a student's understanding of free convection and radiation. Apparatus, experimental procedure, typical results, and discussion are included. (Author/BB)

  16. Monte Carlo method based radiative transfer simulation of stochastic open forest generated by circle packing application

    NASA Astrophysics Data System (ADS)

    Jin, Shengye; Tamura, Masayuki

    2013-10-01

    Monte Carlo Ray Tracing (MCRT) method is a versatile application for simulating radiative transfer regime of the Solar - Atmosphere - Landscape system. Moreover, it can be used to compute the radiation distribution over a complex landscape configuration, as an example like a forest area. Due to its robustness to the complexity of the 3-D scene altering, MCRT method is also employed for simulating canopy radiative transfer regime as the validation source of other radiative transfer models. In MCRT modeling within vegetation, one basic step is the canopy scene set up. 3-D scanning application was used for representing canopy structure as accurately as possible, but it is time consuming. Botanical growth function can be used to model the single tree growth, but cannot be used to express the impaction among trees. L-System is also a functional controlled tree growth simulation model, but it costs large computing memory. Additionally, it only models the current tree patterns rather than tree growth during we simulate the radiative transfer regime. Therefore, it is much more constructive to use regular solid pattern like ellipsoidal, cone, cylinder etc. to indicate single canopy. Considering the allelopathy phenomenon in some open forest optical images, each tree in its own `domain' repels other trees. According to this assumption a stochastic circle packing algorithm is developed to generate the 3-D canopy scene in this study. The canopy coverage (%) and the tree amount (N) of the 3-D scene are declared at first, similar to the random open forest image. Accordingly, we randomly generate each canopy radius (rc). Then we set the circle central coordinate on XY-plane as well as to keep circles separate from each other by the circle packing algorithm. To model the individual tree, we employ the Ishikawa's tree growth regressive model to set the tree parameters including DBH (dt), tree height (H). However, the relationship between canopy height (Hc) and trunk height (Ht) is

  17. Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.

  18. Multiple scattering, radiative transfer, and weak localization in discrete random media: Unified microphysical approach

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.

    2008-06-01

    The radiative transfer theory has been extensively used in geophysics, remote sensing, and astrophysics for more than a century, but its physical basis had remained uncertain until quite recently. This ambiguous situation has finally changed, and the theory of radiative transfer in random particulate media has become a legitimate branch of Maxwell's electromagnetics. This tutorial review is intended to provide an accessible outline of recent basic developments. It discusses elastic electromagnetic scattering by random many-particle groups and summarizes the unified microphysical approach to radiative transfer and the effect of weak localization of electromagnetic waves (otherwise known as coherent backscattering). It explains the exact meaning of such fundamental concepts as single and multiple scattering, demonstrates how the theories of radiative transfer and weak localization originate in the Maxwell equations, and exposes and corrects certain misconceptions of the traditional phenomenological approach to radiative transfer. It also discusses the challenges facing the theories of multiple scattering, radiative transfer, and weak localization in the context of geophysical applications.

  19. Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroyuki; Okawa, Shinpei; Yamada, Yukio; Hoshi, Yoko

    2014-11-01

    Numerical modeling of light propagation in random media has been an important issue for biomedical imaging, including diffuse optical tomography (DOT). For high resolution DOT, accurate and fast computation of light propagation in biological tissue is desirable. This paper proposes a space-time hybrid model for numerical modeling based on the radiative transfer and diffusion equations (RTE and DE, respectively) in random media under refractive-index mismatching. In the proposed model, the RTE and DE regions are separated into space and time by using a crossover length and the time from the ballistic regime to the diffusive regime, ρDA~10/μt‧ and tDA~20/vμt‧ where μt‧ and v represent a reduced transport coefficient and light velocity, respectively. The present model succeeds in describing light propagation accurately and reduces computational load by a quarter compared with full computation of the RTE.

  20. Production of pure quasi-monochromatic 11C beams for accurate radiation therapy and dose delivery verification

    NASA Astrophysics Data System (ADS)

    Lazzeroni, Marta; Brahme, Anders

    2015-09-01

    In the present study we develop a new technique for the production of clean quasi-monochromatic 11C positron emitter beams for accurate radiation therapy and PET-CT dose delivery imaging and treatment verification. The 11C ion beam is produced by projectile fragmentation using a primary 12C ion beam. The practical elimination of the energy spread of the secondary 11C fragments and other beam contaminating fragments is described. Monte Carlo calculation with the SHIELD-HIT10+ code and analytical methods for the transport of the ions in matter are used in the analysis. Production yields, as well as energy, velocity and magnetic rigidity distributions of the fragments generated in a cylindrical target are scored as a function of the depth within 1 cm thick slices for an optimal target consisting of a fixed 20 cm section of liquid hydrogen followed by a variable thickness section of polyethylene. The wide energy and magnetic rigidity spread of the 11C ion beam can be reduced to values around 1% by using a variable monochromatizing wedge-shaped degrader in the beam line. Finally, magnetic rigidity and particle species selection, as well as discrimination of the particle velocity through a combined Time of Flight and Radio Frequency-driven Velocity filter purify the beam from similar magnetic rigidity contaminating fragments (mainly 7Be and 3He fragments). A beam purity of about 99% is expected by the combined method.

  1. Adipose veno-lymphatic transfer for management of post-radiation lymphedema

    SciTech Connect

    Pho, R.W.; Bayon, P.; Tan, L.

    1989-01-01

    In a patient who had post-radiation lymphedema after excision of liposarcoma, a method is described that is called adipose veno-lymphatic transfer. The technique involves transferring adipose tissue containing lymphatic vessels that surround the long saphenous vein, from the normal, healthy leg to the irradiated leg, with the creation of an arteriovenous fistula.

  2. Prediction of radiative heat transfer using multi-flux method in space application

    NASA Astrophysics Data System (ADS)

    Han, Cho Young

    2015-10-01

    Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field including space applications. To analyse the radiation heat transfer in a radiating fluid, the simultaneous solution of the radiation transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. In this context the finite volume method (FVM) and the discrete ordinates method (DOM) are usually being incorporated to simulate radiation problems with curvilinear coordinates. In this paper these two representative methods are examined and compared, especially in terms of the directional dependence of radiation intensity due to the discrete division of a solid angle. The FVM shows more reasonable results than the DOM does, as it has less constraint on the angular discretisation.

  3. An efficient and robust reconstruction method for optical tomography with the time-domain radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Qiao, Yaobin; Qi, Hong; Chen, Qin; Ruan, Liming; Tan, Heping

    2016-03-01

    An efficient and robust method based on the complex-variable-differentiation method (CVDM) is proposed to reconstruct the distribution of optical parameters in two-dimensional participating media. An upwind-difference discrete-ordinate formulation of the time-domain radiative transfer equation is well established and used as forward model. The regularization term using generalized Gaussian Markov random field model is added in the objective function to overcome the ill-posed nature of the radiative inverse problem. The multi-start conjugate gradient method was utilized to accelerate the convergence speed of the inverse procedure. To obtain an accurate result and avoid the cumbersome formula of adjoint differentiation model, the CVDM was employed to calculate the gradient of objective function with respect to the optical parameters. All the simulation results show that the CVDM is efficient and robust for the reconstruction of optical parameters.

  4. Polarized bidirectional reflectance of optically thick sparse particulate layers: An efficient numerically exact radiative-transfer solution

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Chowdhary, Jacek; Zakharova, Nadezhda T.

    2015-05-01

    We describe a simple yet efficient numerical algorithm for computing polarized bidirectional reflectance of an optically thick (semi-infinite), macroscopically flat layer composed of statistically isotropic and mirror symmetric random particles. The spatial distribution of the particles is assumed to be sparse, random, and statistically uniform. The 4×4 Stokes reflection matrix is calculated by iterating the Ambartsumian's vector nonlinear integral equation. The result is a numerically exact solution of the vector radiative transfer equation and as such fully satisfies the energy conservation law and the fundamental reciprocity relation. Since this technique bypasses the computation of the internal radiation field, it is very fast and highly accurate. The FORTRAN implementation of the technique is publicly available on the World Wide Web at

  5. Influence of diffusion on photoinduced electron transfer. [laser radiation

    SciTech Connect

    Song, L.; Dorfman, R.C.; Swallen, S.F.; Fayer, M.D. )

    1991-05-02

    Electron transfer from an optically excited donor (rubrene) to randomly distributed acceptors (duroquinone) has been investigated experimentally. The forward electron-transfer process under the influence of diffusion in liquid solution (diethyl sebacate) is compared with that in solid solution (sucrose octaacetate). Steady-state fluorescence yield and time-resolved fluorescence measurements were used to measure the excited-state population of the donor (rubrene). The parameters were used to analyze the electron-transfer dynamics under a variety of acceptor concentrations. The agreement between theoretical predictions and experiments is very good. The forward transfer parameters (a{sub f} and R{sub 0}) in liquid solution are almost identical with those obtained in solid solution.

  6. Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies

    NASA Astrophysics Data System (ADS)

    Mendaza, Teresa; Martin-Torres, Javier

    2016-04-01

    We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of

  7. Realistic NLTE Radiative Transfer for Modeling Stellar Winds

    NASA Technical Reports Server (NTRS)

    Bennett, Philip D.

    1999-01-01

    This NASA grant supported the development of codes to solve the non-LTE multi-level spherical radiative transfer problem in the presence of velocity fields. Much of this work was done in collaboration with Graham Harper (CASA, University of Colorado). These codes were developed for application to the cool, low-velocity winds of evolved late-type stars. Particular emphasis was placed on modeling the wind of lambda Velorum (K4 lb), the brightest K supergiant in the sky, based on extensive observations of the ultraviolet spectrum with the HST/GHRS from GO program 5307. Several solution techniques were examined, including the Eddington factor Approach described in detail by Bennett & Harper (1997). An Eddington factor variant of Harper's S-MULTI code (Harper 1994) for stationary atmospheres was developed and implemented, although full convergence was not realized. The ratio of wind terminal velocity to turbulent velocity is large (approx. 0.3-0.5) in these cool star winds so this assumption of stationarity provides reasonable starting models. Final models, incorporating specified wind laws, were converged using the comoving CRD S-MULTI code. Details of the solution procedure were published by Bennett & Harper (1997). Our analysis of the wind of lambda Vel, based on wind absorption superimposed on chromospheric emission lines in the ultraviolet, can be found in Carpenter et al. (1999). In this paper, we compare observed wind absorption features to an exact CRD calculation in the comoving frame, and also to a much quicker, but approximate, method using the SEI (Sobolev with Exact Integration) code of Lamers, Cerruti-Sola, & Perinotto (1987). Carpenter et al. (1999) provide detailed comparisons of the exact CRD and approximate SEI results and discuss when SEI is adequate to use for computing wind line profiles. Unfortunately, the observational material is insufficient to unambiguously determine the wind acceleration law for lambda Vel. Relatively few unblended Fe II lines

  8. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  9. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and

  10. Circumstellar shells, the formation of grains, and radiation transfer

    NASA Technical Reports Server (NTRS)

    Lefevre, Jean

    1987-01-01

    Advances in infrared astronomy during the last decade have firmly established the presence of dust around a large number of cold giant and supergiant stars. To describe the properties of stars and to understand their evolution, it is necessary to know the nature of the giants and their influence on stellar radiation. Two questions are considered: the formation of grains around cold stars and the modification of stellar radiation by the stellar shell.

  11. Single-node orbit analsyis with radiation heat transfer only

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1977-01-01

    The steady-state temperature of a single node which dissipates energy by radiation only is discussed for a nontime varying thermal environment. Relationships are developed to illustrate how shields can be utilized to represent a louver system. A computer program is presented which can assess periodic temperature characteristics of a single node in a time varying thermal environment having energy dissipation by radiation only. The computer program performs thermal orbital analysis for five combinations of plate, shields, and louvers.

  12. Introduction to the Theory of Atmospheric Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Buglia, J. J.

    1986-01-01

    The fundamental physical and mathematical principles governing the transmission of radiation through the atmosphere are presented, with emphasis on the scattering of visible and near-IR radiation. The classical two-stream, thin-atmosphere, and Eddington approximations, along with some of their offspring, are developed in detail, along with the discrete ordinates method of Chandrasekhar. The adding and doubling methods are discussed from basic principles, and references for further reading are suggested.

  13. Effect of radiator position and mass flux on the dryer room heat transfer rate

    NASA Astrophysics Data System (ADS)

    Mirmanto, M.; Sulistyowati, E. D.; Okariawan, I. D. K.

    A room radiator as usually used in cold countries, is actually able to be used as a heat source to dry goods, especially in the rainy season where the sun seldom shines due to much rain and cloud. Experiments to investigate effects of radiator position and mass flux on heat transfer rate were performed. This study is to determine the best position of the radiator and the optimum mass flux. The radiator used was a finned radiator made of copper pipes and aluminum fins with an overall dimension of 220 mm × 50 mm × 310 mm. The prototype room was constructed using plywood and wood frame with an overall size of 1000 mm × 1000 mm × 1000 mm. The working fluid was heated water flowing inside the radiator and air circulating naturally inside the prototype room. The nominal mass fluxes employed were 800, 900 and 1000 kg/m2 s. The water was kept at 80 °C at the radiator entrance, while the initial air temperature inside the prototype room was 30 °C. Three positions of the radiator were examined. The results show that the effect of the mass flux on the forced and free convection heat transfer rate is insignificant but the radiator position strongly affects the heat transfer rate for both forced and free convection.

  14. Parallel processing approach for radiative heat transfer prediction in participating media

    NASA Astrophysics Data System (ADS)

    Saltiel, C.; Naraghi, M. H. N.

    1993-10-01

    Numerical analysis of radiative transfer in participating media can be very complex. Computer simulations of practical situations often require both large computer memory and long calculation times. The use of massively parallel machines has proven very effective in simulating large complex systems. This technical note presents a unified matrix formulation for node-to-node-based radiative exchange in isotropically scattering homogeneous media using the discrete exchange factor (DEF) method. Computational implementation is compared between serial and parallel computing machines. The results demonstrate that parallel computing has the potential for changing the nature of radiative transfer calculations. Parallel computing allows for faster, more manageable calculations; it is especially effective for nonlinear problems.

  15. Numerical radiative transfer with state-of-the-art iterative methods made easy

    NASA Astrophysics Data System (ADS)

    Lambert, Julien; Paletou, Frédéric; Josselin, Eric; Glorian, Jean-Michel

    2016-01-01

    This article presents an on-line tool and its accompanying software resources for the numerical solution of basic radiation transfer out of local thermodynamic equilibrium (LTE). State-of-the-art stationary iterative methods such as Accelerated Λ-iteration and Gauss-Seidel schemes, using a short characteristics-based formal solver are used. We also comment on typical numerical experiments associated to the basic non-LTE radiation problem. These resources are intended for the largest use and benefit, in support to more classical radiation transfer lectures usually given at the Master level.

  16. Bidirectional plant canopy reflection models derived from the radiation transfer equation

    NASA Technical Reports Server (NTRS)

    Beeth, D. R.

    1975-01-01

    A collection of bidirectional canopy reflection models was obtained from the solution of the radiation transfer equation for a horizontally homogeneous canopy. A phase function is derived for a collection of bidirectionally reflecting and transmitting planar elements characterized geometrically by slope and azimuth density functions. Two approaches to solving the radiation transfer equation for the canopy are presented. One approach factors the radiation transfer equation into a solvable set of three first-order linear differential equations by assuming that the radiation field within the canopy can be initially approximated by three components: uniformly diffuse downwelling, uniformly diffuse upwelling, and attenuated specular. The solution to these equations, which can be iterated to any degree of accuracy, was used to obtain overall canopy reflection from the formal solution to the radiation transfer equation. A programable solution to canopy overall bidirectional reflection is given for this approach. The special example of Lambertian leaves with constant leaf bidirectional reflection and scattering functions is considered, and a programmable solution for this example is given. The other approach to solving the radiation transfer equation, a generalized Chandrasekhar technique, is presented in the appendix.

  17. Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects

    NASA Astrophysics Data System (ADS)

    Krüger, Matthias; Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran

    2012-09-01

    We present a detailed derivation of heat radiation, heat transfer, and (Casimir) interactions for N arbitrary objects in the framework of fluctuational electrodynamics in thermal nonequilibrium. The results can be expressed as basis-independent trace formulas in terms of the scattering operators of the individual objects. We prove that heat radiation of a single object is positive, and that heat transfer (for two arbitrary passive objects) is from the hotter to a colder body. The heat transferred is also symmetric, exactly reversed if the two temperatures are exchanged. Introducing partial wave expansions, we transform the results for radiation, transfer, and forces into traces of matrices that can be evaluated in any basis, analogous to the equilibrium Casimir force. The method is illustrated by (re)deriving the heat radiation of a plate, a sphere, and a cylinder. We analyze the radiation of a sphere for different materials, emphasizing that a simplification often employed for metallic nanospheres is typically invalid. We derive asymptotic formulas for heat transfer and nonequilibrium interactions for the cases of a sphere in front a plate and for two spheres, extending previous results. As an example, we show that a hot nanosphere can levitate above a plate with the repulsive nonequilibrium force overcoming gravity, an effect that is not due to radiation pressure.

  18. A Consummate Radiative Transfer Package for Studying the Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Zhai, P.; Hu, Y.; Trepte, C. R.; Winker, D. M.

    2015-12-01

    We will present a radiative transfer package based on the successive order of scattering method. This code is capable to calculate the radiation field in turbid media, which can be either the atmosphere-land or atmosphere-ocean coupled systems. The outputs include all four Stokes parameters at arbitrary detector locations and viewing angles in the turbid medium. Both the elastic and inelastic scattering are implemented in the package. This radiative transfer tool has been used in various applications, for instance, generating an aerosol look-up table for atmospheric correction in ocean color remote sensing; retrieving water cloud size distribution using the polarized multi-angle measurements; simulating the OCO2 O2 A band radiance measurement, etc. Our radiative transfer package is a great tool to interpret and predict the measurements from the future polarimeters and multipolarization-state lidars for Earth observing missions.

  19. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect

    Mirmoosa, M. S. Nefedov, I. S. Simovski, C. R.; Rüting, F.

    2014-06-21

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  20. Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised

    NASA Technical Reports Server (NTRS)

    Key, Jeffrey R.; Schweiger, Axel J.

    1998-01-01

    Two tools for the solution of radiative transfer problems are presented. Streamer is a highly flexible medium spectral resolution radiative transfer model based on the plane-parallel theory of radiative transfer. Capable of computing either fluxes or radiances, it is suitable for studying radiative processes at the surface or within the atmosphere and for the development of remote-sensing algorithms. FluxNet is a fast neural network-based implementation of Streamer for computing surface fluxes. It allows for a sophisticated treatment of radiative processes in the analysis of large data sets and potential integration into geophysical models where computational efficiency is an issue. Documentation and tools for the development of alternative versions of Fluxnet are available. Collectively, Streamer and FluxNet solve a wide variety of problems related to radiative transfer: Streamer provides the detail and sophistication needed to perform basic research on most aspects of complex radiative processes while the efficiency and simplicity of FluxNet make it ideal for operational use.

  1. Leaf Area Index Retrieval From SPARC Data: Assessment Of Radiative Transfer Model Inversion

    NASA Astrophysics Data System (ADS)

    Dini, L.; Vuolo, F.; Randazzo, L.

    2006-08-01

    Leaf Area Index (LAI) is a key parameter for many biophysical and climatic models. In the field of interest of our research group, an accurate LAI estimation is needed for modelling crop water requirements for precision farming and agricultural resource management applications. The objective of this study is to assess the accuracy of LAI retrieval from EO data by means of a radiative transfer model inversion technique. To this aim multi-angular CHRIS/PROBA data, from SPARC 2003 and 2004 campaigns, has been employed in the inversion of PROSPECT-SAILH (P-SH) model by using a numerical optimisation technique based on the Marquardt-Levenberg (M-L) algorithm. From the same data set, the closer to nadir reflectance in the red and near-infrared bands has been selected in order to estimate LAI by using an empirical approach based on the CLAIR model. Such estimated LAI has been thus employed as prior information in the P-SH model. LAI values retrieved with this combined approach have been estimated with good accuracy for some type of crops (e.g. R2 = 0.80, RMSE=0.51 m2m-2 for Alfalfa canopies). Ongoing and future work includes further improvements of the M-L optimisation method and the implementation of a different optimisation method based on Genetic Algorithm GA.

  2. a Radiative Transfer Equation/phase Function Approach to Vegetation Canopy Reflectance Modeling

    NASA Astrophysics Data System (ADS)

    Randolph, Marion Herbert

    Vegetation canopy reflectance models currently in use differ considerably in their treatment of the radiation scattering problem, and it is this fundamental difference which stimulated this investigation of the radiative transfer equation/phase function approach. The primary objective of this thesis is the development of vegetation canopy phase functions which describe the probability of radiation scattering within a canopy in terms of its biological and physical characteristics. In this thesis a technique based upon quadrature formulae is used to numerically generate a variety of vegetation canopy phase functions. Based upon leaf inclination distribution functions, phase functions are generated for plagiophile, extremophile, erectophile, spherical, planophile, blue grama (Bouteloua gracilis), and soybean canopies. The vegetation canopy phase functions generated are symmetric with respect to the incident and exitant angles, and hence satisfy the principle of reciprocity. The remaining terms in the radiative transfer equation are also derived in terms of canopy geometry and optical properties to complete the development of the radiative transfer equation/phase function description for vegetation canopy reflectance modeling. In order to test the radiative transfer equation/phase function approach the iterative discrete ordinates method for solving the radiative transfer equation is implemented. In comparison with field data, the approach tends to underestimate the visible reflectance and overestimate infrared reflectance. The approach does compare well, however, with other extant canopy reflectance models; for example, it agrees to within ten to fifteen percent of the Suits model (Suits, 1972). Sensitivity analysis indicates that canopy geometry may influence reflectance as much as 100 percent for a given wavelength. Optical thickness produces little change in reflectance after a depth of 2.5 (Leaf area index of 4.0) is reached, and reflectance generally increases

  3. A Numerical Scheme for Special Relativistic Radiation Magnetohydrodynamics Based on Solving the Time-dependent Radiative Transfer Equation

    NASA Astrophysics Data System (ADS)

    Ohsuga, Ken; Takahashi, Hiroyuki R.

    2016-02-01

    We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas-radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.

  4. Bidirectional Reflectance of Flat, Optically Thick Particulate Layers: An Efficient Radiative Transfer Solution and Applications to Snow and Soil Surfaces

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yanovitsku, Edgard G.; Zakharova, Nadia T.

    1999-01-01

    We describe a simple and highly efficient and accurate radiative transfer technique for computing bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact Solution of the radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation field, it is by far the fastest numerical approach available and can be used as an ideal input for Monte Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web at http://ww,,v.giss.nasa.gov/-crmim/brf.html and can be applied to a wide range of remote sensing, engineering, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the 6-Eddington approximation in calculations for soil surfaces.

  5. Transient radiative energy transfer in incompressible laminar flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Singh, D. J.

    1987-01-01

    Analysis and numerical procedures are presented to investigate the transient radiative interactions of nongray absorbing-emitting species in laminar fully-developed flows between two parallel plates. The particular species considered are OH, CO, CO2, and H2O and different mixtures of these. Transient and steady-state results are obtained for the temperaure distribution and bulk temperature for different plate spacings, wall temperatures, and pressures. Results, in general, indicate that the rate of radiative heating can be quite high during earlier times. This information is useful in designing thermal protection systems for transient operations.

  6. General Relativistic Radiative Transfer Code in Rotating Black Hole Spacetime: {ARTIST}

    NASA Astrophysics Data System (ADS)

    Takahashi, Rohta; Umemura, Masayuki

    2016-10-01

    We present a general relativistic radiative transfer code, {ARTIST} (Authentic Radiative Transfer In Space-Time), which is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of {ARTIST} is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole, which was originally explored by Hanni (1977). This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the {ARTIST} turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hot spot problem. All the simulations in the present study are performed in the equatorial plane around a Kerr black hole. The {ARTIST} is the first step to realize the general relativistic radiation hydrodynamics.

  7. On the linear properties of the nonlinear radiative transfer problem

    NASA Astrophysics Data System (ADS)

    Pikichyan, H. V.

    2016-11-01

    In this report, we further expose the assertions made in nonlinear problem of reflection/transmission of radiation from a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness, when both of its boundaries are illuminated by intense monochromatic radiative beams. The new conceptual element of well-defined, so-called, linear images is noteworthy. They admit a probabilistic interpretation. In the framework of nonlinear problem of reflection/transmission of radiation, we derive solution which is similar to linear case. That is, the solution is reduced to the linear combination of linear images. By virtue of the physical meaning, these functions describe the reflectivity and transmittance of the medium for a single photon or their beam of unit intensity, incident on one of the boundaries of the layer. Thereby the medium in real regime is still under the bilateral illumination by external exciting radiation of arbitrary intensity. To determine the linear images, we exploit three well known methods of (i) adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance".

  8. The effects of radiative transfer on low-level cyclogenesis

    SciTech Connect

    Leach, M.J.; Raman, S.

    1995-04-01

    Many investigators have documented the role that thermodynamic forcing due to radiative flux divergence plays in the enhancement or generation of circulation. Most of these studies involve large-scale systems, small-scale systems such as thunderstorms, and squall lines. The generation of circulation on large scales results from the creation of divergence in the upper troposphere and the maintenance of low-level potentially unstable air, and the maintenance of baroclinicity throughout the atmosphere. On smaller scales, radiative flux divergence acts similarly. In the thunderstorms and squall lines, the radiative forcing acts as a pump, increasing the divergence at the top of the storm systems and increasing the updraft velocity and the intensity of inflow at mid-levels in the storm systems. Other researchers have examined the role of surface processes and low-level baroclinicity in east coast cyclogenesis. In this paper, we examine the interactive role that radiative flux divergence, clouds, and surface processes play in low-level cyclogenesis and the creation or maintenance of the boundary layer baroclinicity.

  9. Verification of radiative transfer results by inserting them into the RTE: A demonstration for Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Hollstein, André

    2012-10-01

    The verification of a new or updated radiative transfer model (RTM) is one of the important steps in its development; this is usually achieved by comparisons with real measurements or published tables of generally accepted radiative transfer results. If such tables do not exist, verification becomes more complicated and an external review of the implementation is often unpractical due to the sheer amount and complexity of the code. The presented verification approach is to “simply” insert results of radiative transfer (RT) calculations into the radiative transfer equation (RTE). The evaluation of the RTE consists of numerically calculating partial derivatives and integrals, which is much simpler to implement than a solution of the RTE. Presented is a demonstration of this approach for a case of Rayleigh scattering in a plane parallel atmosphere, which showed only very small deviation from the radiative transfer equation.This approach has two key benefits. First, its implementation into a high level computer language can be very short (≈60 lines in MATHEMATICA) and clear compared to a full RTM; and such code is much more easy to review. Second, this approach can be easily extended to cases where no other independent RT implementation is available for validation. The proposed implementation and data are provided with this paper.

  10. Predicting Accurate Electronic Excitation Transfer Rates via Marcus Theory with Boys or Edmiston-Ruedenberg Localized Diabatization

    SciTech Connect

    Subotnik, Joseph E.; Vura-Weis, Josh; Sodt, Alex J.; Ratner, Mark A.

    2010-05-06

    We model the triplet-triplet energy-transfer experiments from the Closs group [Closs, G. L.; et al. J. Am. Chem. Soc. 1988, 110, 2652.] using a combination of Marcus theory and either Boys or Edmiston-Ruedenberg localized diabatization, and we show that relative and absolute rates of electronic excitation transfer may be computed successfully. For the case where both the donor and acceptor occupy equatorial positions on a rigid cyclohexane bridge, we find βcalc = 2.8 per C-C bond, compared with the experimental value βexp = 2.6. This work highlights the power of using localized diabatization methods as a tool for modeling nonequilibrium processes.

  11. Testing and Improving Theories of Radiative Transfer for Determining the Mineralogy of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Gudmundsson, E.; Ehlmann, B. L.; Mustard, J. F.; Hiroi, T.; Poulet, F.

    2012-12-01

    Two radiative transfer theories, the Hapke and Shkuratov models, have been used to estimate the mineralogic composition of laboratory mixtures of anhydrous mafic minerals from reflected near-infrared light, accurately modeling abundances to within 10%. For this project, we tested the efficacy of the Hapke model for determining the composition of mixtures (weight fraction, particle diameter) containing hydrous minerals, including phyllosilicates. Modal mineral abundances for some binary mixtures were modeled to +/-10% of actual values, but other mixtures showed higher inaccuracies (up to 25%). Consequently, a sensitivity analysis of selected input and model parameters was performed. We first examined the shape of the model's error function (RMS error between modeled and measured spectra) over a large range of endmember weight fractions and particle diameters and found that there was a single global minimum for each mixture (rather than local minima). The minimum was sensitive to modeled particle diameter but comparatively insensitive to modeled endmember weight fraction. Derivation of the endmembers' k optical constant spectra using the Hapke model showed differences with the Shkuratov-derived optical constants originally used. Model runs with different sets of optical constants suggest that slight differences in the optical constants used significantly affect the accuracy of model predictions. Even for mixtures where abundance was modeled correctly, particle diameter agreed inconsistently with sieved particle sizes and varied greatly for individual mix within suite. Particle diameter was highly sensitive to the optical constants, possibly indicating that changes in modeled path length (proportional to particle diameter) compensate for changes in the k optical constant. Alternatively, it may not be appropriate to model path length and particle diameter with the same proportionality for all materials. Across mixtures, RMS error increased in proportion to the fraction

  12. Simplified multiple scattering model for radiative transfer in turbid water

    NASA Technical Reports Server (NTRS)

    Ghovanlou, A. H.; Gupta, G. N.

    1978-01-01

    Quantitative analytical procedures for relating selected water quality parameters to the characteristics of the backscattered signals, measured by remote sensors, require the solution of the radiative transport equation in turbid media. Presented is an approximate closed form solution of this equation and based on this solution, the remote sensing of sediments is discussed. The results are compared with other standard closed form solutions such as quasi-single scattering approximations.

  13. Radiative transfer in the dynamic atmospheres of long period variable stars

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.; Bowen, George H.

    1990-01-01

    An iterative procedure is presented for determining the thermal structure and dynamics of Mira-type stellar atmospheres, where the non-LTE radiative transfer code PANDORA is used in conjunction with the Bowen hydrodynamics code of Iowa State University. Preliminary results are reported for an atmospheric model of a pulsating AGB star of 1 solar mass, 240 solar radii, Teff = 3000 K, and a period of 320 days. At the present time, H, H(-), Mg I, and Mg II radiative transfer calculations have been completed and synthetic spectra are shown for H-alpha. The radiative transfer calculations demonstrate that cooling in the innermost shock of the original Bowen model is underestimated due to the omission of various hydrogen transitions. These initial results suggest that the main shock of the Bowen models are too hot and/or too deep.

  14. Numerical calculation of the radiation heat transfer between rocket motor nozzle's wall and gas

    NASA Astrophysics Data System (ADS)

    Zhou, Yipeng; Zhu, Dingqiang

    2014-11-01

    The heat flux density of radiation heat transfer between rocket motor nozzle's wall and gas is one of the most important factors to decide temperature of nozzle's wall. It also provides an invaluable references advice for choosing the material of wall and type of cooling. The numerical calculation based on finite volume method is introduced in the paper. After analysis of the formula of FVM without the influence of scattering, a formula that is used to let spectral radiant intensity that is the calculation of FVM be converted into heat flux density of radiation heat transfer is deduced. It is compiled that the program based on FVM is used to calculate the heat flux density. At the end, the heat flux density of radiation heat transfer of 3D model of double-arc nozzle's wall is calculated under different condition, then simply analysis cooling system is performed.

  15. Two-dimensional HID light source radiative transfer using discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Ghrib, Basma; Bouaoun, Mohamed; Elloumi, Hatem

    2016-08-01

    This paper shows the implementation of the Discrete Ordinates Method for handling radiation problems in High Intensity Discharge (HID) lamps. Therefore, we start with presenting this rigorous method for treatment of radiation transfer in a two-dimensional, axisymmetric HID lamp. Furthermore, the finite volume method is used for the spatial discretization of the Radiative Transfer Equation. The atom and electron densities were calculated using temperature profiles established by a 2D semi-implicit finite-element scheme for the solution of conservation equations relative to energy, momentum, and mass. Spectral intensities as a function of position and direction are first calculated, and then axial and radial radiative fluxes are evaluated as well as the net emission coefficient. The results are given for a HID mercury lamp on a line-by-line basis. A particular attention is paid on the 253.7 nm resonance and 546.1 nm green lines.

  16. Multi-Dimensional Simulations of Radiative Transfer in Aspherical Core-Collapse Supernovae

    SciTech Connect

    Tanaka, Masaomi; Maeda, Keiichi; Mazzali, Paolo A.; Nomoto, Ken'ichi

    2008-05-21

    We study optical radiation of aspherical supernovae (SNe) and present an approach to verify the asphericity of SNe with optical observations of extragalactic SNe. For this purpose, we have developed a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI (SupernovA Multidimensional RAdIative transfer code). The code can compute the optical light curve and spectra both at early phases (< or approx. 40 days after the explosion) and late phases ({approx}1 year after the explosion), based on hydrodynamic and nucleosynthetic models. We show that all the optical observations of SN 1998bw (associated with GRB 980425) are consistent with polar-viewed radiation of the aspherical explosion model with kinetic energy 20x10{sup 51} ergs. Properties of off-axis hypernovae are also discussed briefly.

  17. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation

    NASA Astrophysics Data System (ADS)

    Reichert, Andreas; Rettinger, Markus; Sussmann, Ralf

    2016-09-01

    Quantitative knowledge of water vapor absorption is crucial for accurate climate simulations. An open science question in this context concerns the strength of the water vapor continuum in the near infrared (NIR) at atmospheric temperatures, which is still to be quantified by measurements. This issue can be addressed with radiative closure experiments using solar absorption spectra. However, the spectra used for water vapor continuum quantification have to be radiometrically calibrated. We present for the first time a method that yields sufficient calibration accuracy for NIR water vapor continuum quantification in an atmospheric closure experiment. Our method combines the Langley method with spectral radiance measurements of a high-temperature blackbody calibration source (< 2000 K). The calibration scheme is demonstrated in the spectral range 2500 to 7800 cm-1, but minor modifications to the method enable calibration also throughout the remainder of the NIR spectral range. The resulting uncertainty (2σ) excluding the contribution due to inaccuracies in the extra-atmospheric solar spectrum (ESS) is below 1 % in window regions and up to 1.7 % within absorption bands. The overall radiometric accuracy of the calibration depends on the ESS uncertainty, on which at present no firm consensus has been reached in the NIR. However, as is shown in the companion publication Reichert and Sussmann (2016), ESS uncertainty is only of minor importance for the specific aim of this study, i.e., the quantification of the water vapor continuum in a closure experiment. The calibration uncertainty estimate is substantiated by the investigation of calibration self-consistency, which yields compatible results within the estimated errors for 91.1 % of the 2500 to 7800 cm-1 range. Additionally, a comparison of a set of calibrated spectra to radiative transfer model calculations yields consistent results within the estimated errors for 97.7 % of the spectral range.

  18. Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations.

    PubMed

    Hunter, Nezahat; Muirhead, Colin R

    2009-03-01

    Information on Japanese A-bomb survivors exposed to gamma radiation has been used to estimate cancer risks for the whole range of photon (x-rays) and electron energies which are commonly encountered by radiation workers in the work place or by patients and workers in diagnostic radiology. However, there is some uncertainty regarding the radiation effectiveness of various low-linear energy transfer (low-LET) radiations (x-rays, gamma radiation and electrons). In this paper we review information on the effectiveness of low-LET radiations on the basis of epidemiological and in vitro radiobiological studies. Data from various experimental studies for chromosome aberrations and cell transformation in human lymphocytes and from epidemiological studies of the Japanese A-bomb survivors, patients medically exposed to radiation for diagnostic and therapeutic procedures, and occupational exposures of nuclear workers are considered. On the basis of in vitro cellular radiobiology, there is considerable evidence that the relative biological effectiveness (RBE) of high-energy low-LET radiation (gamma radiation, electrons) is less than that of low-energy low-LET radiation (x-rays, betas). This is a factor of about 3 to 4 for 29 kVp x-rays (e.g. as in diagnostic radiation exposures of the female breast) and for tritium beta-rays (encountered in parts of the nuclear industry) relative to Co-60 gamma radiation and 2-5 MeV gamma-rays (as received by the Japanese A-bomb survivors). In epidemiological studies, although for thyroid and breast cancer there appears to be a small tendency for the excess relative risks to decrease as the radiation energy increases for low-LET radiations, it is not statistically feasible to draw any conclusion regarding an underlying dependence of cancer risk on LET for the nominally low-LET radiations. PMID:19225189

  19. Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations.

    PubMed

    Hunter, Nezahat; Muirhead, Colin R

    2009-03-01

    Information on Japanese A-bomb survivors exposed to gamma radiation has been used to estimate cancer risks for the whole range of photon (x-rays) and electron energies which are commonly encountered by radiation workers in the work place or by patients and workers in diagnostic radiology. However, there is some uncertainty regarding the radiation effectiveness of various low-linear energy transfer (low-LET) radiations (x-rays, gamma radiation and electrons). In this paper we review information on the effectiveness of low-LET radiations on the basis of epidemiological and in vitro radiobiological studies. Data from various experimental studies for chromosome aberrations and cell transformation in human lymphocytes and from epidemiological studies of the Japanese A-bomb survivors, patients medically exposed to radiation for diagnostic and therapeutic procedures, and occupational exposures of nuclear workers are considered. On the basis of in vitro cellular radiobiology, there is considerable evidence that the relative biological effectiveness (RBE) of high-energy low-LET radiation (gamma radiation, electrons) is less than that of low-energy low-LET radiation (x-rays, betas). This is a factor of about 3 to 4 for 29 kVp x-rays (e.g. as in diagnostic radiation exposures of the female breast) and for tritium beta-rays (encountered in parts of the nuclear industry) relative to Co-60 gamma radiation and 2-5 MeV gamma-rays (as received by the Japanese A-bomb survivors). In epidemiological studies, although for thyroid and breast cancer there appears to be a small tendency for the excess relative risks to decrease as the radiation energy increases for low-LET radiations, it is not statistically feasible to draw any conclusion regarding an underlying dependence of cancer risk on LET for the nominally low-LET radiations.

  20. Derivation and application of the reciprocity relations for radiative transfer with internal illumination

    NASA Technical Reports Server (NTRS)

    Cogley, A. C.

    1975-01-01

    A Green's function formulation is used to derive basic reciprocity relations for planar radiative transfer in a general medium with internal illumination. Reciprocity (or functional symmetry) allows an explicit and generalized development of the equivalence between source and probability functions. Assuming similar symmetry in three-dimensional space, a general relationship is derived between planar-source intensity and point-source total directional energy. These quantities are expressed in terms of standard (universal) functions associated with the planar medium, while all results are derived from the differential equation of radiative transfer.

  1. Comparative accuracy of the Albedo, transmission and absorption for selected radiative transfer approximations

    NASA Technical Reports Server (NTRS)

    King, M. D.; HARSHVARDHAN

    1986-01-01

    Illustrations of both the relative and absolute accuracy of eight different radiative transfer approximations as a function of optical thickness, solar zenith angle and single scattering albedo are given. Computational results for the plane albedo, total transmission and fractional absorption were obtained for plane-parallel atmospheres composed of cloud particles. These computations, which were obtained using the doubling method, are compared with comparable results obtained using selected radiative transfer approximations. Comparisons were made between asymptotic theory for thick layers and the following widely used two stream approximations: Coakley-Chylek's models 1 and 2, Meador-Weaver, Eddington, delta-Eddington, PIFM and delta-discrete ordinates.

  2. Plant architecture, growth and radiative transfer for terrestrial and space environments

    NASA Technical Reports Server (NTRS)

    Norman, John M.; Goel, Narendra S.

    1993-01-01

    The overall objective of this research was to develop a hardware implemented model that would incorporate realistic and dynamic descriptions of canopy architecture in physiologically based models of plant growth and functioning, with an emphasis on radiative transfer while accommodating other environmental constraints. The general approach has five parts: a realistic mathematical treatment of canopy architecture, a methodology for combining this general canopy architectural description with a general radiative transfer model, the inclusion of physiological and environmental aspects of plant growth, inclusion of plant phenology, and integration.

  3. Truncation of the scattering phase matrix for vector radiative transfer simulation

    NASA Astrophysics Data System (ADS)

    Hioki, Souichiro; Yang, Ping; Kattawar, George W.; Hu, Yongxiang

    2016-11-01

    This short communication interprets the delta-fit technique in a context of similarity transformation and the correction to the source function, and derives the analogous form of the method to be applied for the scattering phase matrix. To adapt the delta-fit method to vector radiative transfer, the mathematically exact form of the similarity principle is used in the theoretical development. Some examples of relevant radiative transfer simulations are also presented for atmospheric ice particles. The performance of the adopted delta-fit method is comparable to the delta-M method with single scattering correction except for worse delta-fit performance for polarized radiance calculations in forward directions.

  4. Three-dimensional radiative transfer calculations on an SIMD machine applied to accretion disks

    NASA Technical Reports Server (NTRS)

    Vath, H.

    1994-01-01

    We have developed a tool to solve the radiative transfer equation for a three-dimensional astrophysical object on the SIMD computer MasPar MP-1. With this tool we can rapidly calculate the image of such an object as seen from an arbitrary direction and at an arbitrary wavelength. Such images and spectra can then be used to directly compare observations with the model. This tool can be applied to many different areas in astrophysics, e.g., HI disks of galaxies and polarized radiative transfer of accretion columns onto white dwarfs. Here we use this tool to calculate the image and spectrum of a simple model of an accretion disk.

  5. Efficient application of the spectrally integrated Voigt function to radiative transfer spectroscopy

    NASA Astrophysics Data System (ADS)

    Abrarov, Sanjar

    We present a new application of the spectrally integrated Voigt function (SIVF) to the radiative transfer spectroscopy that enables computation of the spectral radiance and radiance at reduced spectral resolution. Applying a technique based on the Fourier expansion of the exponential multiplier we obtain the series approximations providing high-accuracy and rapid SIVF computation. In contrast to traditional line-by-line (LBL) radiative transfer models, the proposed SIVF algorithm prevents underestimation in the absorption coefficients and, therefore, preserves the radiant energy. LBL sample computations utilizing SIVF algorithm show the advantages of the proposed methodology in terms of the accuracy and computational speed.

  6. Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system.

    PubMed

    Jin, Z; Stamnes, K

    1994-01-20

    We have applied the discrete-ordinate method to solve the radiative-transfer problem pertaining to a system consisting of two strata with different indices of refraction. The refraction and reflection at the interface are taken into account. The relevant changes (as compared with the standard problem with a constant index of refraction throughout the medium) in formulation and solution of the radiative-transfer equation, including the proper application of interface and boundary conditions, are described. Appropriate quadrature points (streams) and weights are chosen for the interface-continuity relations. Examples of radiative transfer in the coupled atmosphere-ocean system are provided. To take into account the region of total reflection in the ocean, additional angular quadrature points are required, compared with those used in the atmosphere and in the refractive region of the ocean that communicates directly with the atmosphere. To verify the model we have tested for energy conservation. We also discuss the effect of the number of streams assigned to the refractive region and the total reflecting region on the convergence. Our results show that the change in the index of refraction between the two strata significantly affects the radiation field. The radiative-transfer model we present is designed for application to the atmosphere-ocean system, but it can be applied to other systems that need to consider the change in the index of refraction between two strata. PMID:20862035

  7. Radiative transfer equations in broad-band, time-varying fields

    NASA Technical Reports Server (NTRS)

    Cooper, J.; Zoller, P.

    1984-01-01

    A derivation of the equation of transfer is obtained by starting with Maxwell's equations in the 'slowly varying envelope' form. Particular attention is paid to characterizing the intensity that is 'seen' by the atom (which is found to be related to a Wigner distribution of the electric field). The equation of transfer is found to be valid for 'broad-band' slowly varying radiation fields.

  8. Radiative transfer in spatially heterogeneous, two-dimensional anisotropically scattering media

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.

    1986-07-01

    A method is presented for solving the radiative transfer equation for a general anisotropically scattering and emitting medium exposed to arbitrary boundary radiation conditions. The method allows, in principle, for quite arbitrary spatial variability in the scattering and extinction and general solution procedures, based on the principles of invariant imbedding, which are applied in the form of doubling algorithms to obtain solutions for optically thick media. Some selected results are shown to demonstrate the versatility of the approach.

  9. Theory of Radiation Transfer in Neutron Star Atmospheres

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav

    2006-01-01

    The possibility for direct investigation of thermal emission from isolated neutron stars opened about a quarter of century ago with the launch of the first X-ray observatories Einstein and EXOSAT stimulated developing models of the neutron star surface radiation which began at the end of 80's. Confronting observational data with theoretical models of thermal emission allows one to infer the surface temperatures, magnetic fields, chemical composition, and neutron star masses and radii. This information, supplemented with the model equations of state and neutron star cooling models, provides an opportunity to understand the fundamental properties of the superdense matter in the stars' interiors. Almost all available models are based on the assumption that thermal radiation emitted by a neutron star is formed in the superficial star's layers--atmosphere. The neutron star atmospheres are very different from those of usual stars due to the immense gravity and huge magnetic fields. In this presentation we review the current status of the neutron star atmosphere modeling, present most important results, discuss problems and possible future developments.

  10. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kosmopoulos, P. G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C. T.

    2016-01-01

    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) "off-grid" random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min.

  11. Radiative heat transfer in molten and glassy obsidian

    SciTech Connect

    Gable, C.W.; Shankland, T.J.

    1984-08-10

    We have measured optical transmittance spectra in rhyolitic obsidian samples in the wavelength range lambda = 380-5500 nm and at temperatures T from 19/sup 0/-1145/sup 0/C, above and below the softening point. From the transmittance, we calculated the absorption coefficient ..cap alpha..(lambda,T) and the radiative thermal conductivity K/sub R/(T). K/sub R/ ranges from 3 x 10/sup -3/ cal cm/sup -1/s/sup -1/K/sup -1/ (1.2Wm/sup -1/K/sup -1/) at 700/sup 0/C to 12 x 10/sup -3/ cal cm/sup -1/s/sup -1/K/sup -1/(5Wm/sup -1/K/sup -1/) at 1145/sup 0/C. The 700/sup 0/C value is comparable with lattice thermal conductivity K/sub L/ of about 4 x 10/sup -3/ cal cm/sup -1/ s/sup -1/K/sup -1/(1.7 Wm/sup -1/K/sup -1/). Removing scattering effects due to bubbles from the transmittance spectra by lowering the absorption baseline increased K/sub R/ to 20 x 10/sup -3/ cal cm/sup -1/ s/sup -1/ K/sup -1/(8.4Wm/sup -1/K/sup -1/) at 1145/sup 0/C. Because scattering bubbles is likely to be small in confined magmas, these numbers are probably minimum values for K/sub R/ and indicate that in active plutons radiative heat transport could be greater than lattice conductivity by more than a factor of 2 at 1000/sup 0/C. Thus melting markedly strengthens K/sub R/, and radiative heat transport is probably the dominant component of the total conductivity K = K/sub L/+K/sub R/ in silicic magmas. These relatively large values of K can be applied to models of the thermal evolution of magma bodies and to cooling of intrusives.

  12. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10-20 W m-2 differences in shortwave reach up to 60 W m-2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m-2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  13. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m‑2 differences in shortwave reach up to 60 W m‑2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m‑2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  14. Three-dimensional radiation transfer modeling in a dicotyledon leaf

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.

    1996-11-01

    The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.

  15. Radiative transfer effects on reflected shock waves. II - Absorbing gas.

    NASA Technical Reports Server (NTRS)

    Su, F. Y.; Olfe, D. B.

    1972-01-01

    Radiative cooling effects behind a reflected shock wave are calculated for an absorbing-emitting gas by means of an expansion procedure in the small density ratio across the shock front. For a gray gas shock layer with an optical thickness of order unity or less the absorption integral is simplified by use of the local temperature approximation, whereas for larger optical thicknesses a Rosseland diffusion type of solution is matched with the local temperature approximation solution. The calculations show that the shock wave will attenuate at first and then accelerate to a constant velocity. Under appropriate conditions the gas enthalpy near the wall may increase at intermediate times before ultimately decreasing to zero. A two-band absorption model yields end-wall radiant-heat fluxes which agree well with available shock-tube measurements.

  16. Development of transfer standard devices for ensuring the accurate calibration of ultrasonic physical therapy machines in clinical use

    NASA Astrophysics Data System (ADS)

    Hekkenberg, R. T.; Richards, A.; Beissner, K.; Zeqiri, B.; Prout, G.; Cantrall, Ch; Bezemer, R. A.; Koch, Ch; Hodnett, M.

    2004-01-01

    Physical therapy ultrasound is widely applied to patients. However, many devices do not comply with the relevant standard stating that the actual power output shall be within +/-20% of the device indication. Extreme cases have been reported: from delivering effectively no ultrasound or operating at maximum power at all powers indicated. This can potentially lead to patient injury as well as mistreatment. The present European (EC) project is an ongoing attempt to improve the quality of the treatment of patients being treated with ultrasonic physical-therapy. A Portable ultrasound Power Standard (PPS) is being developed and accurately calibrated. The PPS includes: Ultrasound transducers (including one exhibiting an unusual output) and a driver for the ultrasound transducers that has calibration and proficiency test functions. Also included with the PPS is a Cavitation Detector to determine the onset of cavitation occurring within the propagation medium. The PPS will be suitable for conducting in-the-field accreditation (proficiency testing and calibration). In order to be accredited it will be important to be able to show traceability of the calibration, the calibration process and qualification of testing staff. The clinical user will benefit from traceability because treatments will be performed more reliably.

  17. Optimization by means of an analytical heat transfer model of a thermal insulation for CSP applications based on radiative shields

    NASA Astrophysics Data System (ADS)

    Gaetano, A.; Roncolato, J.; Montorfano, D.; Barbato, M. C.; Ambrosetti, G.; Pedretti, A.

    2016-05-01

    The employment of new gaseous heat transfer fluids as air or CO2, which are cheaper and environmentally friendly, is drawing more and more attention within the field of Concentrated Solar Power applications. However, despite the advantages, their use requires receivers with a larger heat transfer area and flow cross section with a consequent greater volume of thermal insulation. Solid thermal insulations currently used present high thermal inertia which is energetically penalizing during the daily transient phases faced by the main plant components (e.g. receivers). With the aim of overcoming this drawback a thermal insulation based on radiative shields is presented in this study. Starting from an initial layout comprising a solid thermal insulation layer, the geometry was optimized avoiding the use of the solid insulation keeping performance and fulfilling the geometrical constraints. An analytical Matlab model was implemented to assess the system thermal behavior in terms of heat loss taking into account conductive, convective and radiative contributions. Accurate 2D Computational Fluid Dynamics (CFD) simulations were run to validate the Matlab model which was then used to select the most promising among three new different designs.

  18. A full-spectrum k-distribution look-up table for radiative transfer in nonhomogeneous gaseous media

    NASA Astrophysics Data System (ADS)

    Wang, Chaojun; Ge, Wenjun; Modest, Michael F.; He, Boshu

    2016-01-01

    A full-spectrum k-distribution (FSK) look-up table has been constructed for gas mixtures within a certain range of thermodynamic states for three species, i.e., CO2, H2O and CO. The k-distribution of a mixture is assembled directly from the summation of the linear absorption coefficients of three species. The systematic approach to generate the table, including the generation of the pressure-based absorption coefficient and the generation of the k-distribution, is discussed. To efficiently obtain accurate k-values for arbitrary thermodynamic states from tabulated values, a 6-D linear interpolation method is employed. A large number of radiative heat transfer calculations have been carried out to test the accuracy of the FSK look-up table. Results show that, using the FSK look-up table can provide excellent accuracy compared to the exact results. Without the time-consuming process of assembling k-distribution from individual species plus mixing, using the FSK look-up table can save considerable computational cost. To evaluate the accuracy as well as the efficiency of the FSK look-up table, radiative heat transfer via a scaled Sandia D Flame is calculated to compare the CPU execution time using the FSK method based on the narrow-band database, correlations, and the look-up table. Results show that the FSK look-up table can provide a computationally cheap alternative without much sacrifice in accuracy.

  19. Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest structure

    NASA Astrophysics Data System (ADS)

    Kotchenova, Svetlana Y.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Davis, Anthony B.; Dubayah, Ralph; Myneni, Ranga B.

    2003-08-01

    Large footprint waveform-recording laser altimeters (lidars) have demonstrated a potential for accurate remote sensing of forest biomass and structure, important for regional and global climate studies. Currently, radiative transfer analyses of lidar data are based on the simplifying assumption that only single scattering contributes to the return signal, which may lead to errors in the modeling of the lower portions of recorded waveforms in the near-infrared spectrum. In this study we apply time-dependent stochastic radiative transfer (RT) theory to model the propagation of lidar pulses through forest canopies. A time-dependent stochastic RT equation is formulated and solved numerically. Such an approach describes multiple scattering events, allows for realistic representation of forest structure including foliage clumping and gaps, simulates off-nadir and multiangular observations, and has the potential to provide better approximations of return waveforms. The model was tested with field data from two conifer forest stands (southern old jack pine and southern old black spruce) in central Canada and two closed canopy deciduous forest stands (with overstory dominated by tulip poplar) in eastern Maryland. Model-simulated signals were compared with waveforms recorded by the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) over these regions. Model simulations show good agreement with SLICER signals having a slow decay of the waveform. The analysis of the effects of multiple scattering shows that multiply scattered photons magnify the amplitude of the reflected signal, especially that originating from the lower portions of the canopy.

  20. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Ngo, N. H.; Lisak, D.; Tran, H.; Hartmann, J.-M.

    2013-11-01

    We demonstrate that a previously proposed model opens the route for the inclusion of refined non-Voigt profiles in spectroscopic databases and atmospheric radiative transfer codes. Indeed, this model fulfills many essential requirements: (i) it takes both velocity changes and the speed dependences of the pressure-broadening and -shifting coefficients into account. (ii) It leads to accurate descriptions of the line shapes of very different molecular systems. Tests made for pure H2, CO2 and O2 and for H2O diluted in N2 show that residuals are down to ≃0.2% of the peak absorption, (except for the untypical system of H2 where a maximum residual of ±3% is reached), thus fulfilling the precision requirements of the most demanding remote sensing experiments. (iii) It is based on a limited set of parameters for each absorption line that have known dependences on pressure and can thus be stored in databases. (iv) Its calculation requires very reasonable computer costs, only a few times higher than that of a usual Voigt profile. Its inclusion in radiative transfer codes will thus induce bearable CPU time increases. (v) It can be extended in order to take line-mixing effects into account, at least within the so-called first-order approximation.

  1. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  2. Natural element method for radiative heat transfer in a semitransparent medium with irregular geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2013-05-01

    This paper develops a numerical solution to the radiative heat transfer problem coupled with conduction in an absorbing, emitting and isotropically scattering medium with the irregular geometries using the natural element method (NEM). The walls of the enclosures, having temperature and mixed boundary conditions, are considered to be opaque, diffuse as well as gray. The NEM as a meshless method is a new numerical scheme in the field of computational mechanics. Different from most of other meshless methods such as element-free Galerkin method or those based on radial basis functions, the shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The natural element solutions in dealing with the coupled heat transfer problem for the mixed boundary conditions have been validated by comparison with those from Monte Carlo method (MCM) generated by the authors. For the validation of the NEM solution to radiative heat transfer in the semicircular medium with an inner circle, the results by NEM have been compared with those reported in the literatures. For pure radiative transfer, the upwind scheme is employed to overcome the oscillatory behavior of the solutions in some conditions. The steady state and transient heat transfer problem combined with radiation and conduction in the semicircular enclosure with an inner circle are studied. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction-radiation parameter and the boundary emissivity are analyzed on the radiative and conductive heat fluxes and transient temperature distributions.

  3. The Radiative Transfer Of CH{sub 4}-N{sub 2} Plasma Arc

    SciTech Connect

    Benallal, R.; Liani, B.

    2008-09-23

    Any physical modelling of a circuit-breaker arc therefore requires an understanding of the radiated energy which is taken into account in the form of a net coefficient. The evaluation of the net emission coefficient is performed by the knowledge of the chemical plasma composition and the resolution of the radiative transfer equation. In this paper, the total radiation which escapes from a CH{sub 4}-N{sub 2} plasma is calculated in the temperature range between 5000 and 30000K on the assumption of a local thermodynamic equilibrium and we have studied the nitrogen effect in the hydrocarbon plasmas.

  4. Heat transfer in vertical Bridgman growth of oxides - Effects of conduction, convection, and internal radiation

    NASA Technical Reports Server (NTRS)

    Brandon, S.; Derby, J. J.

    1992-01-01

    In the present investigation of crystalline phase internal radiation and heat conduction during the vertical Bridgman growth of a YAG-like oxide crystal, where transport through the melt is dominated by convection and conduction, heat is also noted to be conducted through ampoule walls via natural convection and enclosure radiation. The results of a quasi-steady-state axisymmetric Galerkin FEM indicate that heat transfer through the system is powerfully affected by the optical absorption coefficient of the crystal. The coupling of internal radiation through the crystal with conduction through the ampoule walls promotes melt/crystal interface shapes that are highly reflected near the ampoule wall.

  5. Flame radiation and liner heat transfer in a tubular-can combustor

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Neely, G. M.; Humenik, F. M.

    1983-01-01

    Heat transfer within a combuster were examined. Total and spectral flame radiation in a tubular can combustor at a series of parametric operating conditions was measured. Radiation measurements were taken for a range of inlet air pressures from 0.34 to 2.0 MPa, inlet air temperatures from 533 to 700 K, with two different fuels, Jet-A and ERBS. Measurements of liner temperatures combined with the parametric radiation results allowed a calculation of the combustor liner heat loads. Flame emissivity was determined from the spectral measurements.

  6. Simultaneous heat and mass transfer in polymer solutions exposed to intermittent infrared radiation heating

    SciTech Connect

    Chen, J.J.; Lin, J.D.

    1998-06-01

    Drying is one of the essential steps in a number of industrial applications, such as the preserving of food and the drying of paint, pulp, and paper. The quality of paper tubes is significantly affected by the heat and mass transfer process. The drying of polymer solution plays a crucial role in the manufacturer of photographic film, synthetic fibers, adhesives, and a variety of other polymeric products. During drying of wet materials, simultaneous heat and mass transfer occurs both inside the medium and in the boundary layer of the drying agent. Drying is one of the most energy-consuming processes in the industrial sector and can also be very time consuming as, for example, in conventional convective drying by hot air, while minimum cost and energy consumption and maximum product quality are among the main concerns in industry today. Here, a theoretical study is performed that describes heat transfer and moisture variation while a polymer solution is exposed to high-intensity infrared radiation flux and/or an airflow. While the intermittent heating is considered, the authors investigate the influences of various radiation and convection parameters on the transfer of heat and moisture variation of coated layers on an optically thick substrate. During the tempering stage in the intermittent heating process, the convective mass transfer is included to simulate the ambient air in reality. The effects of radiation and convection parameters on the transfer processes are presented in terms of the rate of water content removal, heat transfer, and moisture distributions. Numerical results show that the rate of water removal from the polymer solution is dominated by both the adsorbed radiative heat energy and the distributions of water mass fraction in the polymer solution.

  7. Non-Radiative Energy Transfer Mediated by Hybrid Light-Matter States.

    PubMed

    Zhong, Xiaolan; Chervy, Thibault; Wang, Shaojun; George, Jino; Thomas, Anoop; Hutchison, James A; Devaux, Eloise; Genet, Cyriaque; Ebbesen, Thomas W

    2016-05-17

    We present direct evidence of enhanced non-radiative energy transfer between two J-aggregated cyanine dyes strongly coupled to the vacuum field of a cavity. Excitation spectroscopy and femtosecond pump-probe measurements show that the energy transfer is highly efficient when both the donor and acceptor form light-matter hybrid states with the vacuum field. The rate of energy transfer is increased by a factor of seven under those conditions as compared to the normal situation outside the cavity, with a corresponding effect on the energy transfer efficiency. The delocalized hybrid states connect the donor and acceptor molecules and clearly play the role of a bridge to enhance the rate of energy transfer. This finding has fundamental implications for coherent energy transport and light-energy harvesting.

  8. Surface and aerosol models for use in radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Hart, Quinn J.

    1991-08-01

    Absolute reflectance-based radiometric calibrations of Landsat-5 Thematic Mapper (TM) are improved with the inclusion of a method to invert optical-depth measurements to obtain aerosol-particle size distributions, and a non-Lambertian surface reflectance model. The inverted size distributions can predict radiances varying from the previously assumed jungian distributions by as much as 5 percent, though the reduction in the estimated error is less than one percent. Comparison with measured diffuse-to-global ratios show that neither distribution consistently predicts the ratio accurately, and this is shown to be a large contributor to calibration uncertainties. An empirical model for the surface reflectance of White Sands, using a two-degree polynomial fit as a function of scattering angle, was employed. The model reduced estimated errors in radiance predictions by up to one percent. Satellite calibrations dating from October, 1984 were reprocessed using the improved methods and linear estimations of satellite counts per unit radiance versus time since launch were determined which showed a decrease over time for the first four bands.

  9. Including wave interference in radiative transfer theory for P-SV waves

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; van Wijk, K.; Snieder, R.

    2010-12-01

    The theory of radiative transfer (RT) has successfully been applied to model the envelopes of high frequency (> 1 Hz) seismic waves in the Earth, attesting to the importance of multiple scattering in this frequency range. An advantage of RT over traditional techniques lies in its ability to separately estimate the mechanisms of intrinsic and scattering attenuation. In addition, RT satisfies energy conservation. However, it is well known that RT ignores the contribution of wave interference; it is for this reason that phenomena such as coherent backscattering are not described within RT. Therefore, RT must be considered an incomplete theory and a more general description of multiple wave scattering must be sought in order to describe the full range of possible wave phenomena in the Earth. By deriving RT from a fundamental level for a one-dimensional layered acoustic medium, we have formulated a new theory, similar to RT, which includes wave interference (Haney and van Wijk, 2007; PRE). The inclusion of wave interference allows localization to be accurately represented in an updated RT theory. The derivation of the new theory also provides insight into the connections between multiple scattering theory and interferometry. Building on this result, we extend the acoustic theory to P-SV waves in a layered elastic medium. The extension highlights the difficulty in accounting for wave interference in the presence of more than one stream of energy (e.g., P- and SV-waves). The new theory enables the issue of equipartitioning of localized elastic energy to be addressed, a topic that has received little attention previously. Predictions of the theory are tested against finite-difference numerical simulations of P-SV waves for an ensemble of randomly layered media. Finally, we comment on the type of seismic data sets suited to observe such interference contributions in practice.

  10. Impact of differences in the solar irradiance spectrum on surface reflectance retrieval with different radiative transfer codes

    NASA Technical Reports Server (NTRS)

    Staenz, K.; Williams, D. J.; Fedosejevs, G.; Teillet, P. M.

    1995-01-01

    Surface reflectance retrieval from imaging spectrometer data as acquired with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has become important for quantitative analysis. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes such as 5S and MODTRAN2 play an increasing role for removal of scattering and absorption effects of the atmosphere. Accurate knowledge of the exo-atmospheric solar irradiance (E(sub 0)) spectrum at the spectral resolution of the sensor is important for this purpose. The present study investigates the impact of differences in the solar irradiance function, as implemented in a modified version of 5S (M5S), 6S, and MODTRAN2, and as proposed by Green and Gao, on the surface reflectance retrieved from AVIRIS data. Reflectance measured in situ is used as a basis of comparison.

  11. Monte Carlo simulation methods in moment-based scale-bridging algorithms for thermal radiative-transfer problems

    SciTech Connect

    Densmore, J.D.; Park, H.; Wollaber, A.B.; Rauenzahn, R.M.; Knoll, D.A.

    2015-03-01

    We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption–emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck–Cummings algorithm.

  12. Radiative transfer in arbitrarily-shaped axisymmetric bodies

    NASA Astrophysics Data System (ADS)

    Nunes, Edmundo Miguel

    2001-08-01

    A mathematical model for evaluating thermal radiative transport in axisymmetric enclosures is presented. Based on the Discrete Exchange Factor (DEF) method, exchange factors between arbitrarily-oriented differential surface/volume ring elements are systematically calculated. The formulation is capable of treating geometrically complex systems including enclosures with shadowing effects ensuing from inner and/or outer obstructing bodies. The model is developed for isotropically scattering participating media. The solutions to several cylindrical media benchmark problems are found to be in excellent agreement with existing solutions in the literature. The solutions to several rocket-nozzle and plug-chamber geometries are presented for a host of geometric conditions and optical thicknesses. In addition, two variants of the DEF method are presented for anisotropically scattering media. The N-bounce method approximates total exchange factors by summing direct and user-designated higher order terms representative of multiple reflections/scattering. The source function approach is an intensity-based method relating the source function (gas leaving intensity) to the surface leaving intensity. The results obtained via these methods are found to be in good agreement with the existing solutions to several axisymmetric benchmark problems. A mathematical formulation is additionally proposed for addressing the effects of nonhomogeneous property distributions. Several nonhomogeneous benchmark problems are solved in an effort to validate the model.

  13. Bayesian Atmospheric Radiative Transfer (BART) Code and Application to WASP-43b

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Cubillos, Patricio; Bowman, Oliver; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Challener, Ryan; Foster, Austin James; Foster, Andrew S.; Blumenthal, Sarah D.; Bruce, Dylan

    2016-01-01

    We present a new open-source Bayesian radiative-transfer framework, Bayesian Atmospheric Radiative Transfer (BART, https://github.com/exosports/BART), and its application to WASP-43b. BART initializes a model for the atmospheric retrieval calculation, generates thousands of theoretical model spectra using parametrized pressure and temperature profiles and line-by-line radiative-transfer calculation, and employs a statistical package to compare the models with the observations. It consists of three self-sufficient modules available to the community under the reproducible-research license, the Thermochemical Equilibrium Abundances module (TEA, https://github.com/dzesmin/TEA, Blecic et al. 2015}, the radiative-transfer module (Transit, https://github.com/exosports/transit), and the Multi-core Markov-chain Monte Carlo statistical module (MCcubed, https://github.com/pcubillos/MCcubed, Cubillos et al. 2015). We applied BART on all available WASP-43b secondary eclipse data from the space- and ground-based observations constraining the temperature-pressure profile and molecular abundances of the dayside atmosphere of WASP-43b. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  14. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters

    EPA Science Inventory

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...

  15. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo of Natural Waters

    EPA Science Inventory

    Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...

  16. Use of Maple Seeding Canopy Reflectance Dataset for Validation of SART/LEAFMOD Radiative Transfer Model

    NASA Technical Reports Server (NTRS)

    Bond, Barbara J.; Peterson, David L.

    1999-01-01

    This project was a collaborative effort by researchers at ARC, OSU and the University of Arizona. The goal was to use a dataset obtained from a previous study to "empirically validate a new canopy radiative-transfer model (SART) which incorporates a recently-developed leaf-level model (LEAFMOD)". The document includes a short research summary.

  17. Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing technology can rapidly provide spatial information on crop growth status, which ideally could be used to invert radiative transfer models or ecophysiological models for estimating a variety of crop biophysical properties. However, the outcome of the model inversion procedure will be ...

  18. THREE-DIMENSIONAL RADIATIVE TRANSFER CALCULATIONS OF RADIATION FEEDBACK FROM MASSIVE BLACK HOLES: OUTFLOW OF MASS FROM THE DUSTY 'TORUS'

    SciTech Connect

    Roth, Nathaniel; Kasen, Daniel; Quataert, Eliot; Hopkins, Philip F.

    2012-11-01

    Observational and theoretical arguments suggest that the momentum carried in mass outflows from active galactic nuclei (AGNs) can reach several times L/c, corresponding to outflow rates of hundreds of solar masses per year. Radiation pressure on resonant absorption lines alone may not be sufficient to provide this momentum deposition, and the transfer of reprocessed IR radiation in dusty nuclear gas has been postulated to provide the extra enhancement. The efficacy of this mechanism, however, will be sensitive to multi-dimensional effects such as the tendency for the reprocessed radiation to preferentially escape along sightlines of lower column density. We use Monte Carlo radiative transfer calculations to determine the radiation force on dusty gas residing within approximately 30 parsecs from an accreting supermassive black hole. We calculate the net rate of momentum deposition in the surrounding gas and estimate the mass-loss rate in the resulting outflow as a function of solid angle for different black hole luminosities, sightline-averaged column densities, clumping parameters, and opening angles of the dusty gas. We find that these dust-driven winds carry momentum fluxes of 1-5 times L/c and correspond to mass-loss rates of 10-100 M {sub Sun} per year for a 10{sup 8} M {sub Sun} black hole radiating at or near its Eddington limit. These results help to explain the origin of high velocity molecular and atomic outflows in local ultraluminous infrared galaxies and can inform numerical simulations of galaxy evolution including AGN feedback.

  19. Shape-Independent Limits to Near-Field Radiative Heat Transfer.

    PubMed

    Miller, Owen D; Johnson, Steven G; Rodriguez, Alejandro W

    2015-11-13

    We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb radiation at enhanced rates bounded by |χ|(2)/Im χ, optimally mediated by near-field photon transfer proportional to 1/d(2) across a separation distance d. Dipole-dipole and dipole-plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation (i.e., neglecting multiple scattering) exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and significantly greater at higher temperatures.

  20. Shape-Independent Limits to Near-Field Radiative Heat Transfer.

    PubMed

    Miller, Owen D; Johnson, Steven G; Rodriguez, Alejandro W

    2015-11-13

    We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb radiation at enhanced rates bounded by |χ|(2)/Im χ, optimally mediated by near-field photon transfer proportional to 1/d(2) across a separation distance d. Dipole-dipole and dipole-plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation (i.e., neglecting multiple scattering) exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and significantly greater at higher temperatures. PMID:26613444

  1. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.

    2012-09-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  2. Fundamentals of thermal radiation heat transfer; Proceedings of the Winter Annual Meeting, New Orleans, LA, December 9-14, 1984

    NASA Astrophysics Data System (ADS)

    Min, T. C.; Chen, J. L. S.

    1984-12-01

    Recent work in the field of radiation heat transfer is addressed in this symposium volume. Three broad topics are considered: analysis and modeling of radiation theory, radiation with a participating medium in a complex geometry, and radiation and/or other modes. Individual papers examine: Hookean and Stokesean implications of radiative stress; effective emissivity of a fluidized bed; mathematical modelling of heat transfer within the furnace of a pulverized coal-fired boiler equipped with platen superheaters; radiative transfer in axisymmetric, finite cylindrical enclosures; thermal behavior in furnaces of complex geometry; analysis of radiative equilibrium in a rectangular enclosure with gray medium; effects of isotropic scattering on melting and solidification of a semiinfinite, semitransparent medium; simultaneous radiation and forced convection in thermally developing turbulent flow through a parallel plate channel; and recent advances in the numerical analysis of dynamic coupled thermoelasticity.

  3. Electrically tunable near-field radiative heat transfer via ferroelectric materials

    SciTech Connect

    Huang, Yi; Boriskina, Svetlana V.; Chen, Gang

    2014-12-15

    We explore ways to actively control near-field radiative heat transfer between two surfaces that relies on electrical tuning of phonon modes of ferroelectric materials. Ferroelectrics are widely used for tunable electrical devices, such as capacitors and memory devices; however, their tunable properties have not yet been examined for heat transfer applications. We show via simulations that radiative heat transfer between two ferroelectric materials can be enhanced by over two orders of magnitude over the blackbody limit in the near field, and can be tuned as much as 16.5% by modulating the coupling between surface phonon polariton modes at the two surfaces via varying external electric fields. We then discuss how to maximize the modulation contrast for tunable thermal devices using the studied mechanism.

  4. Numerical investigation of transient heat transfer to hydromagnetic channel flow with radiative heat and convective cooling

    NASA Astrophysics Data System (ADS)

    Makinde, O. D.; Chinyoka, T.

    2010-12-01

    This present study consists of a numerical investigation of transient heat transfer in channel flow of an electrically conducting variable viscosity Boussinesq fluid in the presence of a magnetic field and thermal radiation. The temperature dependent nature of viscosity is assumed to follow an exponentially model and the system exchanges heat with the ambient following Newton's law of cooling. The governing nonlinear equations of momentum and energy transport are solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that combined effect of thermal radiation, magnetic field, viscosity variation and convective cooling have significant impact in controlling the rate of heat transfer in the boundary layer region.

  5. Determination of Radiative Heat Transfer Coefficient at High Temperatures Using a Combined Experimental-Computational Technique

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Kočí, Jan; Korecký, Tomáš; Maděra, Jiří; Černý, Robert Č.

    2015-04-01

    The radiative heat transfer coefficient at high temperatures is determined using a combination of experimental measurement and computational modeling. In the experimental part, cement mortar specimen is heated in a laboratory furnace to 600°C and the temperature field inside is recorded using built-in K-type thermocouples connected to a data logger. The measured temperatures are then used as input parameters in the three dimensional computational modeling whose objective is to find the best correlation between the measured and calculated data via four free parameters, namely the thermal conductivity of the specimen, effective thermal conductivity of thermal insulation, and heat transfer coefficients at normal and high temperatures. The optimization procedure which is performed using the genetic algorithms provides the value of the high-temperature radiative heat transfer coefficient of 3.64 W/(m2K).

  6. On the equivalence between the discrete ordinates and the spherical harmonics methods in radiative transfer

    SciTech Connect

    Barichello, L.B.; Siewert, C.E.

    1998-09-01

    In this work concerning steady-state radiative-transfer calculations in plane-parallel media, the equivalence between the discrete ordinates method and the spherical harmonics method is proved. More specifically, it is shown that for standard radiative-transfer problems without the imposed restriction of azimuthal symmetry the two methods yield identical results for the radiation intensity when the quadrature scheme for the discrete ordinates method is defined by the zeros of the associated Legendre functions and when generalized Mark boundary conditions are used to define the spherical harmonics solution. It is also shown that, with these choices for a quadrature scheme and for the boundary conditions, the two methods can be formulated so as to require the same computational effort. Finally a justification for using the generalized Mark boundary conditions in the spherical harmonics solution is given.

  7. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Malik, Rabia; Hussain, M.

    2016-05-01

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  8. SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Baes, M.; Camps, P.

    2015-09-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.

  9. An Analytical Solution of Radiative Transfer in the Coupled Atmosphere-Ocean System with Rough Surface

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Charlock, Thomas P.; Rutledge, Ken; Knut Stamnes; Wang, Yingjian

    2006-01-01

    Using the efficient discrete-ordinate method, we present an analytical solution for radiative transfer in the coupled atmosphere-ocean system with rough air-water interface. The theoretical formulations of the radiative transfer equation and solution are described. The effects of surface roughness on radiation field in the atmosphere and ocean are studied and compared with measurements. The results show that ocean surface roughness has significant effects on the upwelling radiation in the atmosphere and the downwelling radiation in the ocean. As wind speed increases, the angular domain of sunglint broadens, the surface albedo decreases, and the transmission to ocean increases. The downward radiance field in the upper ocean is highly anisotropic, but this anisotropy decreases rapidly as surface wind increases and as depth in ocean increases. The effects of surface roughness on radiation also depend greatly on both wavelength and angle of incidence (i.e., solar elevation); these effects are significantly smaller throughout the spectrum at high sun. The model-observation discrepancies may indicate that the Cox-Munk surface roughness model is not sufficient for high wind conditions.

  10. Radiative Heat Transfer in Finite Cylindrical Enclosures with Nonhomogeneous Participating Media

    NASA Technical Reports Server (NTRS)

    Hsu, Pei-Feng; Ku, Jerry C.

    1994-01-01

    Results of a numerical solution for radiative heat transfer in homogeneous and nonhomogeneous participating media are presented. The geometry of interest is a finite axisymmetric cylindrical enclosure. The integral formulation for radiative transport is solved by the YIX method. A three-dimensional solution scheme is applied to two-dimensional axisymmetric geometry to simplify kernel calculations and to avoid difficulties associated with treating boundary conditions. As part of the effort to improve modeling capabilities for turbulent jet diffusion flames, predicted distributions for flame temperature and soot volume fraction are used to calculate radiative heat transfer from soot particles in such flames. It is shown that the nonhomogeneity of radiative property has very significant effects. The peak value of the divergence of radiative heat flux could be underestimated by 2 factor of 7 if a mean homogeneous radiative property is used. Since recent studies have shown that scattering by soot agglomerates is significant in flames, the effect of magnitude of scattering is also investigated and found to be nonnegligible.

  11. Accurately characterizing the importance of wave-particle interactions in radiation belt dynamics: The pitfalls of statistical wave representations

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.

    2016-08-01

    Wave-particle interactions play a crucial role in energetic particle dynamics in the Earth's radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.

  12. High resolution surface solar radiation patterns over Eastern Mediterranean: Satellite, ground-based, reanalysis data and radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.

    2013-12-01

    Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement

  13. Radiative equilibrium in Monte Carlo radiative transfer using frequency distribution adjustment

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Stamatellos, Dimitris; Davies, Jonathan I.; Whitworth, Anthony P.; Sabatini, Sabina; Roberts, Sarah; Linder, Suzanne M.; Evans, Rhodri

    2005-06-01

    The Monte Carlo method is a powerful tool for performing radiative equilibrium calculations, even in complex geometries. The main drawback of the standard Monte Carlo radiative equilibrium methods is that they require iteration, which makes them numerically very demanding. Bjorkman and Wood recently proposed a frequency distribution adjustment scheme, which allows radiative equilibrium Monte Carlo calculations to be performed without iteration, by choosing the frequency of each re-emitted photon such that it corrects for the incorrect spectrum of the previously re-emitted photons. Though, the method appears to yield correct results, we argue that its theoretical basis is not completely transparent, and that it is not completely clear whether this technique is an exact rigorous method, or whether it is just a good and convenient approximation. We critically study the general problem of how an already sampled distribution can be adjusted to a new distribution by adding data points sampled from an adjustment distribution. We show that this adjustment is not always possible, and that it depends on the shape of the original and desired distributions, as well as on the relative number of data points that can be added. Applying this theorem to radiative equilibrium Monte Carlo calculations, we provide a firm theoretical basis for the frequency distribution adjustment method of Bjorkman and Wood, and we demonstrate that this method provides the correct frequency distribution through the additional requirement of radiative equilibrium. We discuss the advantages and limitations of this approach, and show that it can easily be combined with the presence of additional heating sources and the concept of photon weighting. However, the method may fail if small dust grains are included, or if the absorption rate is estimated from the mean intensity of the radiation field.

  14. Radiative and free-convective heat transfer from a finite horizontal plate inside an enclosure

    NASA Technical Reports Server (NTRS)

    Hrycak, Peter; Sandman, D. J.

    1986-01-01

    An experimental and analytical investigation of heat transfer from a horizontal, thin, square plate inside of an enclosure was carried out. Experimental results were obtained from both the upward-facing and the downward-facing sides of the heated plate. Starting with the integrated momentum and energy equations, approximate solutions were obtained for heat transfer in the laminar and the turbulent regime that correlate well with experimental data. Radiative heat transfer correction was given special attention. Effects of the enclosure-related recirculation of the test fluid, as well as effects of simultaneous heat transfer on both sides of the plate, caused an early transition, and indicated a high level of internal turbulence.

  15. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer

    SciTech Connect

    Chang, Jui-Yung; Basu, Soumyadipta Wang, Liping

    2015-02-07

    We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150 nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150 nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

  16. Two-Flux Method for Transient Radiative Transfer in a Semitransparent Layer

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    The two-flux method was used to obtain transient solutions for a plane layer including internal reflections and scattering. The layer was initially at uniform temperature, and was heated or cooled by external radiation and convection. The two-flux equations were examined as a means for evaluating the radiative flux gradient in the transient energy equation. Comparisons of transient temperature distributions using the two-flux method were made with results where the radiative flux gradient was evaluated from the exact radiative transfer equations. Good agreement was obtained for optical thicknesses from 0.5 to 5 and for refractive indices of 1 and 2. Illustrative results obtained with the two-flux method demonstrate the effect of isotropic scattering coupled with changing the refractive index. For small absorption with large scattering the maximum layer temperature is increased when the refractive index is increased. For larger absorption the effect is opposite, and the maximum temperature decreases with increased refractive index .

  17. Theoretical models of interstellar shocks. I - Radiative transfer and UV precursors

    NASA Technical Reports Server (NTRS)

    Shull, J. M.; Mckee, C. F.

    1979-01-01

    Theoretical models of interstellar radiative shocks are constructed, with special attention to the transfer of ionizing radiation. These models are 'self-consistent' in the sense that the emergent ionizing radiation (the UV precursor) is coupled with the ionization state of H, He, and the metals in the preshock gas. For shock velocities of at least 110 km/s the shocks generate sufficient UV radiation for complete preionization of H and He, the latter to He(+). At lower velocities the preionization can be much smaller, with important consequences for the cooling function, the shock structure, and the emission. For models with shock velocities of 40 to 130 km/s the intensities of the strongest emission lines in the UV, optical, and infrared are tabulated, as well as postshock column densities of metal ions potentially observable by UV absorption spectroscopy. Possible applications to supernova remnants and high-velocity interstellar gas are assessed.

  18. Solution of the self-adjoint radiative transfer equation on hybrid computer systems

    NASA Astrophysics Data System (ADS)

    Gasilov, V. A.; Kuchugov, P. A.; Olkhovskaya, O. G.; Chetverushkin, B. N.

    2016-06-01

    A new technique for simulating three-dimensional radiative energy transfer for the use in the software designed for the predictive simulation of plasma with high energy density on parallel computers is proposed. A highly scalable algorithm that takes into account the angular dependence of the radiation intensity and is free of the ray effect is developed based on the solution of a second-order equation with a self-adjoint operator. A distinctive feature of this algorithm is a preliminary transformation of rotation to eliminate mixed derivatives with respect to the spatial variables, simplify the structure of the difference operator, and accelerate the convergence of the iterative solution of the equation. It is shown that the proposed method correctly reproduces the limiting cases—isotropic radiation and the directed radiation with a δ-shaped angular distribution.

  19. Tabulation of Mie scattering calculation results for microwave radiative transfer modeling

    NASA Technical Reports Server (NTRS)

    Yeh, Hwa-Young M.; Prasad, N.

    1988-01-01

    In microwave radiative transfer model simulations, the Mie calculations usually consume the majority of the computer time necessary for the calculations (70 to 86 percent for frequencies ranging from 6.6 to 183 GHz). For a large array of atmospheric profiles, the repeated calculations of the Mie codes make the radiative transfer computations not only expensive, but sometimes impossible. It is desirable, therefore, to develop a set of Mie tables to replace the Mie codes for the designated ranges of temperature and frequency in the microwave radiative transfer calculation. Results of using the Mie tables in the transfer calculations show that the total CPU time (IBM 3081) used for the modeling simulation is reduced by a factor of 7 to 16, depending on the frequency. The tables are tested by computing the upwelling radiance of 144 atmospheric profiles generated by a 3-D cloud model (Tao, 1986). Results are compared with those using Mie quantities computed from the Mie codes. The bias and root-mean-square deviation (RMSD) of the model results using the Mie tables, in general, are less than 1 K except for 37 and 90 GHz. Overall, neither the bias nor RMSD is worse than 1.7 K for any frequency and any viewing angle.

  20. Polarized radiative transfer in two-dimensional scattering medium with complex geometries by natural element method

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Kim, Yong-Jun; Yi, Hong-Liang; Xie, Ming; Tan, He-Ping

    2016-08-01

    The natural element method (NEM) is extended to solve the polarized radiative transfer problem in a two-dimensional scattering medium with complex geometries, in which the angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by the Galerkin weighted residuals approach. The Laplace interpolation scheme is adopted to obtain the shape functions used in the Galerkin weighted residuals approach. The NEM solution to the vector radiative transfer in a square enclosure filled with a Mie scattering medium is first examined to validate our program. We then study the polarized radiative transfer in two kinds of geometries filled with scattering medium which is equivalent to a suspension of latex spheres in water. Three sizes of spheres are considered. The results for non-dimensional polarized radiative flux along the boundaries and the angular distributions of the Stokes vector at specific positions are presented and discussed. For the complex geometry bounded by the square and circular object, numerical solutions are presented for the cases both with Lambertian (diffuse) reflection and with Fresnel reflection. Some interesting phenomenon are found and analyzed.

  1. Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor

    SciTech Connect

    Joulain, Karl; Ezzahri, Younès; Drevillon, Jérémie; Ben-Abdallah, Philippe

    2015-03-30

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see that the more the material is reflective in the metallic state, the more switching effect is realized, whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO{sub 2} that exhibits an insulator-metallic transition at 68 °C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. Far-field thermal radiation experiments are proposed to back the results presented.

  2. Nonthermal radiative transfer of oxygen 98.9 nm ultraviolet emission: Solving an old mystery

    NASA Astrophysics Data System (ADS)

    Hubert, B.; Gérard, J.-C.; Shematovich, V. I.; Bisikalo, D. V.; Chakrabarti, S.; Gladstone, G. R.

    2015-12-01

    Sounding rocket measurements conducted in 1988 under high solar activity conditions revealed that the intensity of thermospheric OI emissions at 98.9 nm presents an anomalous vertical profile, showing exospheric intensities much higher than expected from radiative transfer model results, which included the known sources of excited oxygen. All attempts based on modeling of the photochemical processes and radiative transfer were unable to account for the higher than predicted brightnesses. More recently, the SOHO-Solar Ultraviolet Measurements of Emitted Radiation instrument measured the UV solar flux at high-spectral resolution, revealing the importance of a significant additional source of oxygen emission at 98.9 nm that had not been accounted for before. In this study, we simulate the radiative transfer of the OI-98.9 nm multiplet, including the photochemical sources of excited oxygen, the resonant scattering of solar photons, and the effects of nonthermal atoms, i.e., a population of fast-moving oxygen atoms in excess of the Maxwellian distribution. Including resonance scattering of the 98.9 nm solar multiplet, we find good agreement with the previous sounding rocket observation. The inclusion of a nonthermal oxygen population with a consistent increase of the total density produces a larger intensity at high altitude that apparently better accounts for the observation, but such a correction cannot be demonstrated given the uncertainties of the observations. A good agreement between model and sounding rocket observation is also found with the triplet at 130.4 nm. We further investigate the radiative transfer of the OI-98.9 nm multiplet and the oxygen emissions at 130.4 and 135.6 nm using observations from the STP78-1 satellite. We find a less satisfying agreement between the model and the STP78-1 data that can be accounted for by scaling the modeled intensity within a range acceptable given the uncertainties on the STP78-1 absolute calibration.

  3. An interface for simulating radiative transfer in and around volcanic plumes with the Monte Carlo radiative transfer model McArtim

    USGS Publications Warehouse

    Kern, Christoph

    2016-01-01

    This report describes two software tools that, when used as front ends for the three-dimensional backward Monte Carlo atmospheric-radiative-transfer model (RTM) McArtim, facilitate the generation of lookup tables of volcanic-plume optical-transmittance characteristics in the ultraviolet/visible-spectral region. In particular, the differential optical depth and derivatives thereof (that is, weighting functions), with regard to a change in SO2 column density or aerosol optical thickness, can be simulated for a specific measurement geometry and a representative range of plume conditions. These tables are required for the retrieval of SO2 column density in volcanic plumes, using the simulated radiative-transfer/differential optical-absorption spectroscopic (SRT-DOAS) approach outlined by Kern and others (2012). This report, together with the software tools published online, is intended to make this sophisticated SRT-DOAS technique available to volcanologists and gas geochemists in an operational environment, without the need for an indepth treatment of the underlying principles or the low-level interface of the RTM McArtim.

  4. An interface for simulating radiative transfer in and around volcanic plumes with the Monte Carlo radiative transfer model McArtim

    USGS Publications Warehouse

    Kern, Christoph

    2016-03-23

    This report describes two software tools that, when used as front ends for the three-dimensional backward Monte Carlo atmospheric-radiative-transfer model (RTM) McArtim, facilitate the generation of lookup tables of volcanic-plume optical-transmittance characteristics in the ultraviolet/visible-spectral region. In particular, the differential optical depth and derivatives thereof (that is, weighting functions), with regard to a change in SO2 column density or aerosol optical thickness, can be simulated for a specific measurement geometry and a representative range of plume conditions. These tables are required for the retrieval of SO2 column density in volcanic plumes, using the simulated radiative-transfer/differential optical-absorption spectroscopic (SRT-DOAS) approach outlined by Kern and others (2012). This report, together with the software tools published online, is intended to make this sophisticated SRT-DOAS technique available to volcanologists and gas geochemists in an operational environment, without the need for an indepth treatment of the underlying principles or the low-level interface of the RTM McArtim.

  5. vSmartMOM: A vector matrix operator method-based radiative transfer model linearized with respect to aerosol properties

    NASA Astrophysics Data System (ADS)

    Sanghavi, Suniti; Davis, Anthony B.; Eldering, Annmarie

    2014-01-01

    In this paper, we build up on the scalar model smartMOM to arrive at a formalism for linearized vector radiative transfer based on the matrix operator method (vSmartMOM). Improvements have been made with respect to smartMOM in that a novel method of computing intensities for the exact viewing geometry (direct raytracing) without interpolation between quadrature points has been implemented. Also, the truncation method employed for dealing with highly peaked phase functions has been changed to a vector adaptation of Wiscombe's delta-m method. These changes enable speedier and more accurate radiative transfer computations by eliminating the need for a large number of quadrature points and coefficients for generalized spherical functions. We verify our forward model against the benchmarking results of Kokhanovsky et al. (2010) [22]. All non-zero Stokes vector elements are found to show agreement up to mostly the seventh significant digit for the Rayleigh atmosphere. Intensity computations for aerosol and cloud show an agreement of well below 0.03% and 0.05% at all viewing angles except around the solar zenith angle (60°), where most radiative models demonstrate larger variances due to the strongly forward-peaked phase function. We have for the first time linearized vector radiative transfer based on the matrix operator method with respect to aerosol optical and microphysical parameters. We demonstrate this linearization by computing Jacobian matrices for all Stokes vector elements for a multi-angular and multispectral measurement setup. We use these Jacobians to compare the aerosol information content of measurements using only the total intensity component against those using the idealized measurements of full Stokes vector [I,Q,U,V] as well as the more practical use of only [I,Q,U]. As expected, we find for the considered example that the accuracy of the retrieved parameters improves when the full Stokes vector is used. The information content for the full Stokes

  6. Radiation exposure and performance of multiple burn LEO-GEO orbit transfer trajectories

    NASA Technical Reports Server (NTRS)

    Gorland, S. H.

    1985-01-01

    Many potential strategies exist for the transfer of spacecraft from low Earth orbit (LEO) to geosynchronous (GEO) orbit. One strategy has generally been utilized, that being a single impulsive burn at perigee and a GEO insertion burn at apogee. Multiple burn strategies were discussed for orbit transfer vehicles (OTVs) but the transfer times and radiation exposure, particularly for potentially manned missions, were used as arguments against those options. Quantitative results concerning the trip time and radiation encountered by multiple burn orbit transfer missions in order to establish the feasibility of manned missions, the vulnerability of electronics, and the shielding requirements are presented. The performance of these multiple burn missions is quantified in terms of the payload and propellant variances from the minimum energy mission transfer. The missions analyzed varied from one to eight perigee burns and ranged from a high thrust, 1 g acceleration, cryogenic hydrogen-oxygen chemical prpulsion system to a continuous burn, 0.001 g acceleration, hydrogen fueled resistojet propulsion system with a trip time of 60 days.

  7. Radiation exposure and performance of multiple burn LEO-GEO orbit transfer trajectories

    NASA Technical Reports Server (NTRS)

    Gorland, S. H.

    1985-01-01

    Many potential strategies exist for the transfer of spacecraft from low Earth orbit (LEO) to geosynchronous (GEO) orbit. One strategy has generally been utilized, that being a single impulsive burn at perigee and a GEO insertion burn at apogee. Multiple burn strategies were discussed for orbit transfer vehicles (OTVs) but the transfer times and radiation exposure, particularly for potentially manned missions, were used as arguments against those options. Quantitative results concerning the trip time and radiation encountered by multiple burn orbit transfer missions in order to establish the feasibility of manned missions, the vulnerability of electronics, and the shielding requirements are presented. The performance of these multiple burn missions is quantified in terms of the payload and propellant variances from the minimum energy mission transfer. The missions analyzed varied from one to eight perigee burns and ranged from a high thrust, 1 g, acceleration, cryogenic hydrogen-oxygen chemical propulsion system for a continuous burn, 0.001 g acceleration, hydrogen, fueled resistojet propulsion system with a trip time of 60 days.

  8. Acoustic radiation force expressed using complex phase shifts and momentum-transfer cross sections.

    PubMed

    Zhang, Likun; Marston, Philip L

    2016-08-01

    Acoustic radiation force is expressed using complex phase shifts of partial wave scattering functions and the momentum-transfer cross section, herein incorporated into acoustics from quantum mechanisms. Imaginary parts of the phase shifts represent dissipation in the object and/or in the boundary layer adjacent to the object. The formula simplifies the force as summation of functions of complex phase shifts of adjacent partial waves involving differences of real parts and sums of imaginary parts, providing an efficient way of exploring the force parameter-space. The formula for the force is proportional to a generalized momentum-transfer cross section for plane waves and no dissipation. PMID:27586777

  9. Spectral emissivity measurements of land-surface materials and related radiative transfer simulations

    NASA Technical Reports Server (NTRS)

    Wan, Z.; Ng, D.; Dozier, J.

    1994-01-01

    Spectral radiance measurements have been made in the laboratory and in the field for deriving spectral emissivities of some land cover samples with a spectroradiometer and an auxiliary radiation source in the wavelength range 2.5-14.5 micrometers. A easy and quick four-step method (four steps to measure the sample and a diffuse reflecting plate surface under sunshine and shadowing conditions, respectively) has been used for simultaneous determination of surface temperature and emissivity. We emphasized in-situ measurements in combination with radiative transfer simulations, and an error analysis for basic assumptions in deriving spectral emissivity of land-surface samples from thermal infrared measurements.

  10. A three dimensional radiative transfer method for optical remote sensing of vegetated land surfaces

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem; Myneni, Ranga B.; Choudhury, Bhaskar J.

    1991-01-01

    In the application of remote sensing at optical wavelengths to vegetated surfaces from satellite borne high resolution instruments, an understanding of the various physical mechanisms that contribute to the measured signal is important. A numerical method of solving the radiative transfer equation in three dimensions is reported. The reliability of coding and accuracy of the algorithm are evaluated by benchmarching. Parametrization of the methods and results of a simulation are presented. The method is tested with experimental data of canopy bidirectional reflectance factors. The effect of spatial heterogeneity on the relationship between the simple ratio and normalized vrs absorbed Photosynthetically Active Radiation (PAR) is discussed.

  11. Simulation of the radiation-convective heat transfer in multinozzle assemblies of rocket engines

    NASA Astrophysics Data System (ADS)

    Volkov, N. N.; Volkova, L. I.; Tsatsuev, S. M.

    2012-12-01

    The method and results of numerical modeling of the radiation-convective heat transfer and thermal state in the systems of multinozzle rocket-engine (RE) assemblies are presented. The method is implemented in a form of a software module entered as the component into the program of calculation of the nonsteady thermal state of the RE nozzles. The results of calculation by the consolidated program are given, and the two-dimensional thermal fields on the external and internal surfaces of mouthpieces of the four-nozzle liquid rocket engine allow us to refine the thermal state of the nozzles themselves and evaluate the radiation heat flows in the engine module.

  12. Influence of resonance radiation transfer on ionization balance in a positive column plasma

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu; Syasko, A.

    2016-08-01

    A method of self-consistent solution of charged particles balance equation, which is described by a differential equation of ambipolar diffusion, and an equation of resonance atom balance, which is described by an integral equation of radiation transfer, is proposed. The method is related to a replacement of an integral operator and a differential operator by a system of linear algebraic equations. The difference between a precise solution and a solution in the approximation of the effective resonance transition probability is shown. The influence of highest diffusion and radiation modes becomes apparent during transition to a contracted state.

  13. Two-stream approximations to radiative transfer in planetary atmospheres - A unified description of existing methods and a new improvement

    NASA Technical Reports Server (NTRS)

    Meador, W. E.; Weaver, W. R.

    1980-01-01

    Existing two-stream approximations to radiative transfer theory for particulate media are shown to be represented by identical forms of coupled differential equations if the intensity is replaced by integrals of the intensity over hemispheres. One set of solutions thus suffices for all methods and provides convenient analytical comparisons. The equations also suggest modifications of the standard techniques so as to duplicate exact solutions for thin atmospheres and thus permit accurate determinations of the effects of typical aerosol layers. Numerical results for the plane albedos of plane-parallel atmospheres are given for conventional and modified Eddington approximations, conventional and modified two-point quadrature schemes, the hemispheric-constant method and the delta-function method, all for comparison with accurate discrete-ordinate solutions. A new two-stream approximation is introduced that reduces to the modified Eddington approximation in the limit of isotropic phase functions and to the exact solution in the limit of extreme anisotropic scattering. Comparisons of plane albedos and transmittances show the new method to be generally superior over a wide range of atmospheric conditions (including cloud and aerosol layers), especially in the case of nonconservative scattering.

  14. Monte Carlo modeling of radiative heat transfer in particle-laden flow

    NASA Astrophysics Data System (ADS)

    Farbar, Erin; Boyd, Iain D.; Esmaily-Moghadam, Mahdi

    2016-11-01

    Three-dimensional numerical simulations are applied to model radiative heat transfer in a dispersed particle phase exhibiting preferential concentration typical of a turbulent, particle-laden flow environment. The dispersed phase is composed of micron-sized nickel particles, and the carrier phase is non-participating. The simulations are performed for a snapshot of the particle field using the Monte Carlo Ray Tracing method, and the spectral dependence of the optical properties is considered. Interaction between the particles and radiation is modeled by projecting the particle locations onto an Eulerian mesh. Results show that the optically thin approximation results in errors in predicted particle heat transfer of up to 35% at some locations in the particle field. Oxidation is shown to change the absorption efficiency of the particles significantly, while consideration of non-spherical particle shapes results in relatively small changes in the predicted optical properties of the particles.

  15. An analytic radiative transfer model for a coupled atmosphere and leaf canopy

    NASA Technical Reports Server (NTRS)

    Liang, Shunlin; Strahler, Alan H.

    1995-01-01

    A new analytical radiative transfer model of a leaf canopy is developed that approximates multiple-scattering radiance by a four-stream formulation. The canopy model is coupled to a homogeneous atmospheric model as well as a non-Lambertian lower boundary soil surface. The same four-stream formulation is also used for the calculation of multiple scattering in the atmosphere. Comparisons of radiance derived from the four-stream model with those calculated by an iterative numerical solution of the radiative transfer equation show that the analytic model has a very high accuracy, even with a turbid atmosphere and a very dense canopy in which multiple scattering dominates. Because the coupling of canopy and atmospheric models fully accommodates anisotropic surface reflectance and atmospheric scattering and its effect on directional radiance, the model is especially useful for application to directional radiance and measurements obtained by remote sensing. Retrieval of biophysical parameters using this model is under investigation.

  16. Differential total absorptivity solution to the radiative transfer equation for mixtures of combustion gases and soot

    SciTech Connect

    Bressloff, N.W.; Moss, J.B.; Rubini, P.A.

    1997-01-01

    The differential total absorptivity (DTA) solution to the radiative transfer equation, originally devised for combustion gases in the discrete transfer radiation model, is extended to mixtures of gaseous combustion products and soot. The method is compared to other solution techniques for representative mixtures across single lines of sight and across a layer bounded by solid walls. Intermediate soot loadings are considered such that the total radiance is not dominated by either the gaseous or soot components. The DTA solution is shown to yield excellent accuracy relative to a narrow-band solution, with a considerable saving in computational cost. Thus, explicit treatment of the source temperature dependence of absorption is successfully demonstrated without the need for spectral integration.

  17. Some analytical approximations to radiative transfer theory and their application for the analysis of reflectance data

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Hopkinson, Ian

    2008-03-01

    We derive an analytical approximation in the framework of the radiative transfer theory for use in the analysis of diffuse reflectance measurements. This model uses two parameters to describe a material, the transport free path length, l, and the similarity parameter, s. Using a simple algebraic expression, s and l can be applied for the determination of the absorption coefficient Kabs, which can be easily compared to absorption coefficients measured using transmission spectroscopy. l and Kabs can be seen as equivalent to the S and K parameters, respectively, in the Kubelka-Munk formulation. The advantage of our approximation is a clear basis in the complete radiative transfer theory. We demonstrate the application of our model to a range of different paper types and to fabrics treated with known levels of a dye.

  18. Monte Carlo Radiation Transfer Simulations of Photospheric Emission in Long-duration Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide

    2016-10-01

    We present MCRaT, a Monte Carlo Radiation Transfer code for self-consistently computing the light curves and spectra of the photospheric emission from relativistic, unmagnetized jets. We apply MCRaT to a relativistic hydrodynamic simulation of a long-duration gamma-ray burst jet, and present the resulting light curves and time-dependent spectra for observers at various angles from the jet axis. We compare our results to observational results and find that photospheric emission is a viable model to explain the prompt phase of long-duration gamma-ray bursts at the peak frequency and above, but faces challenges when reproducing the flat spectrum below the peak frequency. We finally discuss possible limitations of these results both in terms of the hydrodynamics and the radiation transfer and how these limitations could affect the conclusions that we present.

  19. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  20. CHAPARRAL: A library for solving large enclosure radiation heat transfer problems

    SciTech Connect

    Glass, M.W.

    1995-08-01

    Large, three-dimensional enclosure radiation beat transfer problems place a heavy demand on computing resources such as computational cycles, memory requirements, disk I/O, and disk space usage. This is primarily due to the computational and memory requirements associated with the view factor calculation and subsequent access of the view factor matrix during solution of the radiosity matrix equation. This is a fundamental problem that constrains Sandia`s current modeling capabilities. Reducing the computational and memory requirements for calculating and manipulating view factors would enable an analyst to increase the level of detail at which a body could be modeled and would have a major impact on many programs at Sandia such as weapon and transportation safety programs, component survivability programs, energy programs, and material processing programs. CHAPARRAL is a library package written to address these problems and is specifically tailored towards the efficient solution of extremely large three-dimensional enclosure radiation heat transfer problems.

  1. Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces

    NASA Astrophysics Data System (ADS)

    Kralik, Tomas; Hanzelka, Pavel; Zobac, Martin; Musilova, Vera; Fort, Tomas; Horak, Michal

    2012-11-01

    Near-field heat transfer across a gap between plane-parallel tungsten layers in vacuo was studied experimentally with the temperature of the cold sample near 5 K and the temperature of the hot sample in the range 10-40 K as a function of the gap size d. At gaps smaller than one-third of the peak wavelength λm given by Wien’s displacement law, the near-field effect was observed. In comparison with blackbody radiation, hundred times higher values of heat flux were achieved at d≈1μm. Heat flux normalized to the radiative power transferred between black surfaces showed scaling (λm/d)n, where n≈2.6. This Letter describes the results of experiment and a comparison with present theory over 4 orders of magnitude of heat flux.

  2. Polarimetric signatures of a coniferous forest canopy based on vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Amar, F.; Mougin, E.; Lopes, A.; Beaudoin, A.

    1992-01-01

    Complete polarization signatures of a coniferous forest canopy are studied by the iterative solution of the vector radiative transfer equations up to the second order. The forest canopy constituents (leaves, branches, stems, and trunk) are embedded in a multi-layered medium over a rough interface. The branches, stems and trunk scatterers are modeled as finite randomly oriented cylinders. The leaves are modeled as randomly oriented needles. For a plane wave exciting the canopy, the average Mueller matrix is formulated in terms of the iterative solution of the radiative transfer solution and used to determine the linearly polarized backscattering coefficients, the co-polarized and cross-polarized power returns, and the phase difference statistics. Numerical results are presented to investigate the effect of transmitting and receiving antenna configurations on the polarimetric signature of a pine forest. Comparison is made with measurements.

  3. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    PubMed

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  4. Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes

    NASA Astrophysics Data System (ADS)

    Xin, Q.; Gong, P.; Li, W.

    2015-06-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily timescales. We demonstrate that ambient CO2 concentrations influence daytime vegetation photosynthesis, which needs to be considered in biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  5. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Bergstrom, Robert W.; Redemann, Jens

    2002-01-01

    This report is the final report for "Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects". It is a bibliographic compilation of 29 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 30 first-authored conference presentations. The tasks outlined in the various proposals are listed below with a brief comment as to the research performed. Copies of title/abstract pages of peer-reviewed publications are attached.

  6. Radiation Heat Transfer in 3 Dimensions for Semi-Transparent Materials....

    SciTech Connect

    2010-12-02

    The RAD3D software solves the critical heat transfer mechanisms that occur in production glass furnaces. The code includes state-of-the-art solution algorithms for efficient radiant interaction of the heating elements, furnace walls and internal furnace components. The code specifically solves the coupled radiative and conductive heating of semi-transparent materials such as glass to calculate the temperature distribution in the glass during processing.

  7. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  8. Non-contact pumping of light emitters via non-radiative energy transfer

    DOEpatents

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  9. Analysis of spectral radiative heat transfer using discrete exchange factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Yinqiu; Naraghi, M. H. N.

    1993-09-01

    A solution technique is developed for spectral radiative heat-transfer problems. The formulation is based on the discrete exchange factor (DEF) method and uses Edward's (1976) wide band model to obtain spectral data. The results of the analyses of three cases were found to be in excellent agreement with those of the zonal method and differ by less than 5 percent from those of the discrete-ordinates method.

  10. Modelling canopy scale solar induced chlorophyll fluorescence simulated by the three dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Nagai, S.; Inoue, T.; Yang, W.; Ichii, K.

    2014-12-01

    Recent studies show that the vegetation canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellite. To understand how the canopy scale bidirectional fluorescence observations are related to three-dimensional fluorescence distribution within a plant canopy, it is necessary to evaluate canopy scale fluorescence emission using a detailed plant canopy radiative transfer model. In this study, we developed a three-dimensional plant canopy radiative transfer model that can simulate the bidirectional chlorophyll fluorescence radiance and show several preliminary results of fluorescence distribution at the tree level. To simulate the three dimensional variations in chlorophyll fluorescence from trees, we measured tree structures using a terrestrial LiDAR instrument. The measurements were conducted in Yokohama, Japan (35°22'49" N 139°37'29" E). Three Japanese cherry trees (Cerasus Speciosa) were chosen for our study (Figure 1). Leaf-level sun-induced chlorophyll fluorescence (SIF) is also necessary as an input of radiative transfer model. To measure the leaf-level SIF, we used high spectral resolution spectroradiometer (HR 4000, Ocean Optics Inc. USA). The spectral resolution of this instrument is 0.05 nm (full width half maximum). The spectral range measured was 720 to 780 nm. From the spectral radiance measurements, we estimated SIF using the three band Fraunhofer Line Depth (3FLD) method. The effect of solar and view zenith angles, multiple scattering depends on many factors such as back ground reflectance, leaf reflectance transmittance and landscape structures. To understand how the SIF from both sparse and dense forest stands vary with sun and view angles and optical variables, it is necessary to conduct further sensitivity analysis. Radiative transfer simulation will help understand SIF emission at variety of forest canopy cases.

  11. THE EFFECTS OF RADIATIVE TRANSFER ON THE PROBABILITY DISTRIBUTION FUNCTIONS OF MOLECULAR MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Burkhart, Blakesley; Lazarian, A.; Ossenkopf, V.; Stutzki, J.

    2013-07-10

    We study the effects of radiative transfer on the probability distribution functions (PDFs) of simulations of magnetohydrodynamic turbulence in the widely studied {sup 13}CO 2-1 transition. We find that the integrated intensity maps generally follow a log-normal distribution, with the cases that have {tau} Almost-Equal-To 1 best matching the PDF of the column density. We fit a two-dimensional variance-sonic Mach number relationship to our logarithmic PDFs of the form {sigma}{sub ln}{sup 2}{sub ({Sigma}/{Sigma}0}) = A x ln(1+b{sup 2}M{sub s}{sup 2}) and find that, for parameter b = 1/3, parameter A depends on the radiative transfer environment. We also explore the variance, skewness, and kurtosis of the linear PDFs finding that higher moments reflect both higher sonic Mach number and lower optical depth. Finally, we apply the Tsallis incremental PDF function and find that the fit parameters depend on both Mach numbers, but also are sensitive to the radiative transfer parameter space, with the {tau} Almost-Equal-To 1 case best fitting the incremental PDF of the true column density. We conclude that, for PDFs of low optical depth cases, part of the gas is always subthermally excited so that the spread of the line intensities exceeds the spread of the underlying column densities and hence the PDFs do not reflect the true column density. Similarly, PDFs of optically thick cases are dominated by the velocity dispersion and therefore do not represent the true column density PDF. Thus, in the case of molecules like carbon monoxide, the dynamic range of intensities, structures observed, and, consequently, the observable PDFs are less determined by turbulence and more often determined by radiative transfer effects.

  12. Comparison of polarized radiative transfer programs with applications to atmospheric and oceanic physics

    NASA Astrophysics Data System (ADS)

    Cohen, Dennis

    We first introduce the topic of radiative transfer and how it applies to a range of problems in physics from remote sensing of the Earth's atmospheres and oceans to investigating skin cancer. We then review the theoretical basis for radiative transfer modeling, which is further supplemented by Appendices 1-3. Afterwards a comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. We then we present a simple study to investigate the sensitivity of the Stokes components I, Q, and U to changes in a bimodal aerosol model for atmosphere-ocean scenes. Preliminary results show that there is significant promise in using the Q Stokes parameter in addition to I, while for this case U is deemed to be insensitive to our simple aerosol model. Lastly we conclude the work completed and suggest possible avenues for future work.

  13. Finite Difference Radiative Transfer Model Calculations Compared to Measurements at the Top and Bottom of the Atmosphere

    NASA Technical Reports Server (NTRS)

    LeCroy, Stuart R.; Whitlock, Charles H.; Suttles, John T.

    1997-01-01

    A finite difference radiative transfer program was developed to handle most anisotropic scattering and reflectance problems encountered in the Earth's atmospheric system. The model has been used to reproduce the radiance received by both satellite and ground based radiation measuring instruments. It accurately replicates the radiance measured by both narrow and wide field-of-view instruments with either narrow or broadband wavelength ranges located on the surface and at satellite altitudes. The output of the finite difference code is compared to the measurements by surface pyranometers and a spectroradiometer aboard a high flying aircraft. The program output is also compared to ERBE measurements aboard the ERBS and NOAA-9 satellites as well as the visible bands aboard the GOES-6 and GOES-7 satellites and AVHRR bands 1 and 2 of the NOAA-9 and NOAA-1 1 satellites. The model is within 0.2 % of the radiance received by pyranometers, within 0.6 % of the ERBE radiances, and within 3 % of the radiances measured by the visible bands of the GOES and NOAA AVHRR radiometers.

  14. Status of Radiative Transfer Model (RTM) development for the Northrop Grumman Venus Atmospheric Maneuverable Platform (VAMP) Technology Development Program

    NASA Astrophysics Data System (ADS)

    Wong, Eric

    2014-11-01

    In support of the Northrop Grumman/L-Garde Venus Atmospheric Maneuverable Platform (VAMP) development, we are developing a multi-purpose radiative transfer model (RTM) for the applications of the Venus atmosphere. For the solar array sizing, spectral solar radiance calculations are needed and a Correlated-k method of spectral integration will be used. This method is relatively fast computationally and typical error of the method is within a few percent, sufficiently accurate for solar array sizing analyses. For sensor characterization or sensor performance study, details of an absorption line, e.g. the near-IR “atmospheric window” absorption lines, must be used and an equivalent line-by-line calculation will be performed. At the completion of the model a large data base of radiance profiles of different atmospheric conditions will be created. The database can also be used to support thermal radiation analysis for other sub-systems. In this poster, we present our current state of the RTM development and model validation development. Additionally, we will present some preliminary comparison of top-of-atmosphere solar radiance with Venus Express VIRTIS measurements.

  15. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    SciTech Connect

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  16. Radiative thermal conductivity in obsidian and estimates of heat transfer in magma bodies

    SciTech Connect

    Stein, J.; Shankland, T.J.; Nitsan, U.

    1981-05-10

    The optical transmission spectra of four ryholitic obsidian samples were measured in order to determine the importance of radiative heat transfer in granite magmas. The spectra, obtained in the temperature range 20-800/sup 0/C, show that the radiative spectral window in these samples is limited by a charge transfer band in the UV (400 nm) and Si-O stretching overtone in the IR (4500 nm). Within this window the main obstacles to radiative transfer, in order of decreasing importance, are background scattering, a water band centered at 2800 nm, and an Fe/sup 2 +/ crystal field band at 1100 nm. Unlike crystalline silicates the absorption bands in obsidian do not broaden significantly as temperature increases. As a result, the temperature dependence of the calculated radiative thermal conductivity K/sub R/ is dominated by the T/sup ..beta../ term. Actual values of K/sub R/ increase from 9 x 10/sup -5/ to 1 x 1/sup -3/ cal cm/sup -1/ s/sup -1/ deg/sup -1/ between 300/sup 0/ and 800/sup 0/C, the high-temperature value being comparable to the lattice thermal conductivity in obsidian and a lower limit for K/sub R/ in granitic melts. As the scattering coefficient in melts is probably significantly lower than in obsidian, the radiative conductivity in active plutons is likely to be much higher. As an example, if scattering and the water band are removed from the observed spectra of the obsidian samples, calculated values of K/sub R/ could increase by a factor of 5, to about 5 x 10/sup -3/ cal cm/sup -1/ s/sup -1/ deg/sup -1/ at 1000/sup 0/C.

  17. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime.

    PubMed

    St-Gelais, Raphael; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2016-06-01

    Thermal radiation between parallel objects separated by deep subwavelength distances and subject to large thermal gradients (>100 K) can reach very high magnitudes, while being concentrated on a narrow frequency distribution. These unique characteristics could enable breakthrough technologies for thermal transport control and electricity generation (for example, by radiating heat exactly at the bandgap frequency of a photovoltaic cell). However, thermal transport in this regime has never been achieved experimentally due to the difficulty of maintaining large thermal gradients over nanometre-scale distances while avoiding other heat transfer mechanisms, namely conduction. Here, we show near-field radiative heat transfer between parallel SiC nanobeams in the deep subwavelength regime. The distance between the beams is controlled by a high-precision micro-electromechanical system (MEMS). We exploit the mechanical stability of nanobeams under high tensile stress to minimize thermal buckling effects, therefore keeping control of the nanometre-scale separation even at large thermal gradients. We achieve an enhancement of heat transfer of almost two orders of magnitude with respect to the far-field limit (corresponding to a 42 nm separation) and show that we can maintain a temperature gradient of 260 K between the cold and hot surfaces at ∼100 nm distance.

  18. Multi-band near-field radiative heat transfer between two anisotropic fishnet metamaterials

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Jiang, Yongyuan; Liu, Linhua

    2015-06-01

    We study the near-field radiative heat transfer between two metal-insulator-metal sandwiched-like fishnet metamaterials (FMMs) by fluctuation electrodynamics. Results show that multi-band heat flux between the fishnet metamaterials is achieved, which is attributed to the thermally excited surface modes within the FMM. Apart from the electric response mode of the near-field heat flux, magnetic modes are also existed, which are related with the excitations of the surface plasmon polaritons (SPPs) propagating on the outer surface of metal (external SPPs) and along the inner metal-dielectric interface (internal SPPs). Moreover, we show that the electromagnetic parameters of this anisotropic fishnet metamaterial depend on the angles θ of the incident light when heating the fishnet metamaterial, and thus the overall effect of the anisotropic FMM parameters is considered to predict the near-field radiative heat transfer. Different external-SPPs and internal-SPPs modes are excited at different frequencies which is attributed to the anisotropic electromagnetic response of FMM, which open new frequency channels of the near-field radiative heat transfer. This kind of anisotropic metamaterial should assist in thermal management in nanoscale.

  19. Radiative heat transfer in two-dimensional complex enclosures using the modified discrete ordinates method

    SciTech Connect

    Sakami, M.; Charette, A.

    1999-07-01

    Radiative transfer is the dominant mode of heat transfer in many applications. Examples of such applications include combustion chambers, space, greenhouses, rocket plume sensing, to name only a few. However, due to the difficulty in finding an exact analytical solution to the integro-differential radiative transfer equation (RTE) in general absorbing-emitting-scattering media, a diversity of numerical methods have been worked out over the last forty years. In this work, an extension of a modified discrete ordinates method recently proposed by other researchers is presented. It is intended to counter the ray effect inherent in this method. The media analyzed are absorbing, emitting and isotropically or anisotropically scattering and the enclosure geometry is arbitrary. Cases where obstructions are present are also treated. The radiative intensity is broken into two parts: the wall-related intensity and the medium-related intensity. The former is treated separately by rigorous integration over the entire solid boundary. The new differencing scheme recently developed by the authors and based on triangular grids is used for the treatment of the medium-related intensity. Results confirm that the proposed method is a good general remedy for anomalies caused by the ray effect due to the geometry.

  20. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime

    NASA Astrophysics Data System (ADS)

    St-Gelais, Raphael; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2016-06-01

    Thermal radiation between parallel objects separated by deep subwavelength distances and subject to large thermal gradients (>100 K) can reach very high magnitudes, while being concentrated on a narrow frequency distribution. These unique characteristics could enable breakthrough technologies for thermal transport control and electricity generation (for example, by radiating heat exactly at the bandgap frequency of a photovoltaic cell). However, thermal transport in this regime has never been achieved experimentally due to the difficulty of maintaining large thermal gradients over nanometre-scale distances while avoiding other heat transfer mechanisms, namely conduction. Here, we show near-field radiative heat transfer between parallel SiC nanobeams in the deep subwavelength regime. The distance between the beams is controlled by a high-precision micro-electromechanical system (MEMS). We exploit the mechanical stability of nanobeams under high tensile stress to minimize thermal buckling effects, therefore keeping control of the nanometre-scale separation even at large thermal gradients. We achieve an enhancement of heat transfer of almost two orders of magnitude with respect to the far-field limit (corresponding to a 42 nm separation) and show that we can maintain a temperature gradient of 260 K between the cold and hot surfaces at ∼100 nm distance.

  1. Development of Nighttime OI 135.6nm emission and radiative transfer model

    NASA Astrophysics Data System (ADS)

    Jiang, F.

    2013-12-01

    Characterizing the nighttime ionosphere using 135.6nm emission is one of the most used ionosphere monitoring means. An optical instrument using nighttime 135.6nm emission to study the column electron content(TEC) and F-region peak electron density(NmF2) will be launched on FY-3 satellite in China. The prerequisite to carry out retrieving and data processing is to develop the nighttime 135.6nm emission and radiative transfer calculation model. The model used an iterative scheme to determine the radiative transfer question including multiple scattering of atom oxygen and absorption of molecule oxygen.The volume emisson and the column emission were derived by the model. Results confirmed that the model could well describe the distribution of the volume emission rate through radiative transfer with the height,local time,season,latitude and longitude. The column emission rates calculated by the model were comparied with similar model and the results show the calculated column rates are believalbe.

  2. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime.

    PubMed

    St-Gelais, Raphael; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2016-06-01

    Thermal radiation between parallel objects separated by deep subwavelength distances and subject to large thermal gradients (>100 K) can reach very high magnitudes, while being concentrated on a narrow frequency distribution. These unique characteristics could enable breakthrough technologies for thermal transport control and electricity generation (for example, by radiating heat exactly at the bandgap frequency of a photovoltaic cell). However, thermal transport in this regime has never been achieved experimentally due to the difficulty of maintaining large thermal gradients over nanometre-scale distances while avoiding other heat transfer mechanisms, namely conduction. Here, we show near-field radiative heat transfer between parallel SiC nanobeams in the deep subwavelength regime. The distance between the beams is controlled by a high-precision micro-electromechanical system (MEMS). We exploit the mechanical stability of nanobeams under high tensile stress to minimize thermal buckling effects, therefore keeping control of the nanometre-scale separation even at large thermal gradients. We achieve an enhancement of heat transfer of almost two orders of magnitude with respect to the far-field limit (corresponding to a 42 nm separation) and show that we can maintain a temperature gradient of 260 K between the cold and hot surfaces at ∼100 nm distance. PMID:26950243

  3. Derivation of a one-way radiative transfer equation in random media

    NASA Astrophysics Data System (ADS)

    Borcea, Liliana; Garnier, Josselin

    2016-02-01

    We derive from first principles a one-way radiative transfer equation for the wave intensity resolved over directions (Wigner transform of the wave field) in random media. It is an initial value problem with excitation from a source which emits waves in a preferred, forward direction. The equation is derived in a regime with small random fluctuations of the wave speed but long distances of propagation with respect to the wavelength, so that cumulative scattering is significant. The correlation length of the medium and the scale of the support of the source are slightly larger than the wavelength, and the waves propagate in a wide cone with an opening angle less than 180∘, so that the backward and evanescent waves are negligible. The scattering regime is a bridge between that of radiative transfer, where the waves propagate in all directions, and the paraxial regime, where the waves propagate in a narrow angular cone. We connect the one-way radiative transfer equation with the equations satisfied by the Wigner transform of the wave field in these regimes.

  4. Linear perturbation theory of reionization in position space: Cosmological radiative transfer along the light cone

    NASA Astrophysics Data System (ADS)

    Mao, Yi; D'Aloisio, Anson; Wandelt, Benjamin D.; Zhang, Jun; Shapiro, Paul R.

    2015-04-01

    The linear perturbation theory of inhomogeneous reionization (LPTR) has been developed as an analytical tool for predicting the global ionized fraction and large-scale power spectrum of ionized density fluctuations during reionization. In the original formulation of the LPTR, the ionization balance and radiative transfer equations are linearized and solved in Fourier space. However, the LPTR's approximation to the full solution of the radiative transfer equation is not straightforward to interpret, since the latter is most intuitively conceptualized in position space. To bridge the gap between the LPTR and the language of numerical radiative transfer, we present a new, equivalent, position-space formulation of the LPTR that clarifies the approximations it makes and facilitates its interpretation. We offer a comparison between the LPTR and the excursion-set model of reionization (ESMR), and demonstrate the built-in capability of the LPTR to explore a wide range of reionization scenarios, and to go beyond the ESMR in exploring scenarios involving X-rays.

  5. The derivation and verification of surface reflectances using airborne MSS data and a radiative transfer model

    SciTech Connect

    Ramsey, E.W. III; Jensen, J.R.

    1988-01-01

    Surface reflectance images were derived from airborne MSS data using a radiative transfer model to eliminate atmospheric effects and to derive downwelling irradiances. Input radiative transfer model parameters and Brightness Value (BV) to radiance conversion gain and bias factors were generated for each band using an optimization procedure to minimize the difference between modelled and image BV. Subsequently, reflectance images were derived at five wavelengths from the blue to red bands using the optimized parameters as inputs into the radiative transfer model. Modelled surface reflectance images were evaluated for accuracy by statistical comparison to measured reflectances, and for improved contrast by subjective comparison to the original images. Daedalus DS-1260 MSS bands 3, 4 and 5 modelled reflectances explained 25%, 75% and 72% of the measured reflectance variances, respectively; while bands 2 and 7 correlation were not significant (p < .05). Finally, the generated reflectance images showed dramatic improvement in contrast, revealing textures that were not apparent in the original images. 20 refs., 4 figs., 3 tabs.

  6. Monte Carlo method of radiative transfer applied to a turbulent flame modeling with LES

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Gicquel, Olivier; Veynante, Denis; Taine, Jean

    2009-06-01

    Radiative transfer plays an important role in the numerical simulation of turbulent combustion. However, for the reason that combustion and radiation are characterized by different time scales and different spatial and chemical treatments, the radiation effect is often neglected or roughly modelled. The coupling of a large eddy simulation combustion solver and a radiation solver through a dedicated language, CORBA, is investigated. Two formulations of Monte Carlo method (Forward Method and Emission Reciprocity Method) employed to resolve RTE have been compared in a one-dimensional flame test case using three-dimensional calculation grids with absorbing and emitting media in order to validate the Monte Carlo radiative solver and to choose the most efficient model for coupling. Then the results obtained using two different RTE solvers (Reciprocity Monte Carlo method and Discrete Ordinate Method) applied on a three-dimensional flame holder set-up with a correlated-k distribution model describing the real gas medium spectral radiative properties are compared not only in terms of the physical behavior of the flame, but also in computational performance (storage requirement, CPU time and parallelization efficiency). To cite this article: J. Zhang et al., C. R. Mecanique 337 (2009).

  7. Evidence of energy transfer in nanoparticle-porphyrins conjugates for radiation therapy enhancement

    NASA Astrophysics Data System (ADS)

    Kudinov, Konstantin; Cooper, Daniel; Tyagi, Pooja; Bekah, Devesh; Bhattacharyya, Dhrittiman; Hill, Colin; Ha, Jonathan Kin; Nadeau, Jay; Bradforth, Stephen

    2015-03-01

    We report progress towards combining radiation therapy (RT) and photodynamic therapy (PDT) using scintillating nanoparticle (NP)-photosensitizer conjugates. In this approach, scintillating NPs are excited by clinically relevant ionizing radiation sources and subsequently transfer energy to conjugated photosensitizers via FRET, acting as an energy mediator between ionizing radiation and photosensitizer molecules. The excited photosensitizers generate reactive oxygen species that can induce local damage and immune response. Advantages of the scheme include: 1) Compared with traditional radiation therapy, a possible decrease of the total radiation dose needed to eliminate the lesion; 2) Compared with traditional PDT, the ability to target deeper and more highly pigmented lesions; 3) The possibility of additional photosensitizing effects due to the scintillation of the nanoparticles. In this work, the photosensitizer molecule chlorin e6 was covalently bound to the surface of LaF3:Ce NPs. After conjugation, the photoluminescence intensity of NPs decreased, and fluorescence lifetime of conjugated chlorin e6 became sensitive to excitation wavelength, suggesting rapid FRET. In addition, scintillation spectra of nanoparticles were measured. Preliminary calculations suggest that the observed scintillation efficiencies are sufficient to enhance RT. In vitro cancer cell studies suggest conjugates are taken up by cells. Survival curves with radiation exposure suggest that the particles alone cause radiosensitization comparable to that seen with gold nanoparticles.

  8. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    PubMed

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-01

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  9. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    SciTech Connect

    Basu, Soumyadipta Yang, Yue; Wang, Liping

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  10. Transient conductive, radiative heat transfer coupled with moisture transport in attic insulations

    NASA Astrophysics Data System (ADS)

    Gorthala, R.; Harris, K. T.; Roux, J. A.; McCarty, T. A.

    1994-01-01

    A transient, one-dimensional thermal model that incorporates combined conduction, radiation heat transfer, and moisture transport for residential attic insulations has been developed. The governing equations are the energy equation, the radiative transport equation for volumetric radiation within the insulation batt, and the species equations for bound H2O and vapor H2O. A simultaneous solution procedure with a Eulerian control volume-based finite difference method was used to solve the energy equation and the species equations. The method of discrete ordinates was used in solving the radiative transport equation. For H2O transport, both diffusion of vapor H2O and bound H2O and moisture adsorption/desorption within the insulation binder are included in the model. The experimental data measured at an occupied North Mississippi residence for R19STD (standard R19 fiberglass insulation batt without a foil radiant barrier) were used to validate the model which predicted heat fluxes for summer, spring, winter, and fall seasonal conditions. These predictions were compared with the measured heat flux data and the predictions from the dry model (without the moisture transport). Various profiles such as temperature-time histories, relative humidity time histories, spatial H2O concentrations, spatial temperatures, and spatial heat fluxes are presented to explain the overall heat transfer behavior.

  11. Application of general invariance relations reduction method to solution of radiation transfer problems

    NASA Astrophysics Data System (ADS)

    Rogovtsov, Nikolai N.; Borovik, Felix

    2016-11-01

    A brief analysis of different properties and principles of invariance to solve a number of classical problems of the radiation transport theory is presented. The main ideas, constructions, and assertions used in the general invariance relations reduction method are described in outline. The most important distinctive features of this general method of solving a wide enough range of problems of the radiation transport theory and mathematical physics are listed. To illustrate the potential of this method, a number of problems of the scalar radiative transfer theory have been solved rigorously in the article. The main stages of rigorous derivations of asymptotical formulas for the smallest in modulo elements of the discrete spectrum and the eigenfunctions, corresponding to them, of the characteristic equation for the case of an arbitrary phase function and almost conservative scattering are described. Formulas of the same type for the azimuthal averaged reflection function, the plane and spherical albedos have been obtained rigorously. New analytical representations for the reflection function, the plane and spherical albedos have been obtained, and effective algorithms for calculating these values have been offered for the case of a practically arbitrary phase function satisfying the Hölder condition. New analytical representation of the «surface» Green function of the scalar radiative transfer equation for a semi-infinite plane-parallel conservatively scattering medium has been found. The deep regime asymptotics of the "volume" Green function has been obtained for the case of a turbid medium of cylindrical form.

  12. SPARTA - Solver for Polarized Atmospheric Radiative Transfer Applications: Introduction and application to Saharan dust fields

    NASA Astrophysics Data System (ADS)

    Barlakas, Vasileios; Macke, Andreas; Wendisch, Manfred

    2016-07-01

    Non-spherical particles in the atmosphere absorb and scatter solar radiation. They change the polarization state of solar radiation depending on their shape, size, chemical composition and orientation. To quantify polarization effects, a new three-dimensional (3D) vector radiative transfer model, SPARTA (Solver for Polarized Atmospheric Radiative Transfer Applications) is introduced and validated against benchmark results. SPARTA employs the statistical forward Monte Carlo technique for efficient column-response pixel-based radiance calculations including polarization for 3D inhomogeneous cloudless and cloudy atmospheres. A sensitivity study has been carried out and exemplarily results are presented for two lidar-based mineral dust fields. The scattering and absorption properties of the dust particles have been computed for spheroids and irregular shaped particles. Polarized radiance fields in two-dimensional (2D) and one-dimensional (1D) inhomogeneous Saharan dust fields have been calculated at 532 nm wavelength. The domain-averaged results of the normalized reflected radiance are almost identical for the 1D and 2D modes. In the areas with large spatial gradient in optical thickness with expected significant horizontal photon transport, the radiance fields of the 2D mode differ by about ±12% for the first Stokes component (radiance, I) and ±8% for the second Stokes component (linear polarization, Q) from the fields of the 1D mode.

  13. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  14. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    SciTech Connect

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  15. COLLAPSE OF MOLECULAR CLOUD CORES WITH RADIATION TRANSFER: FORMATION OF MASSIVE STARS BY ACCRETION

    SciTech Connect

    Sigalotti, Leonardo Di G.; Daza-Montero, Judith; De Felice, Fernando

    2009-12-20

    Most early radiative transfer calculations of protostellar collapse have suggested an upper limit of approx40 M{sub sun} for the final stellar mass before radiation pressure can exceed the star's gravitational pull and halt the accretion. Here we perform further collapse calculations, using frequency-dependent radiation transfer coupled to a frequency-dependent dust model that includes amorphous carbon particles, silicates, and ice-coated silicates. The models start from pressure-bounded, logatropic spheres of mass between 5 M{sub sun} and 150 M{sub sun} with an initial nonsingular density profile. We find that in a logatrope the infall is never reversed by the radiative forces on the dust and that stars with masses approx>100 M{sub sun} may form by continued accretion. Compared to previous models that start the collapse with a rho propor to r{sup -2} density configuration, our calculations result in higher accretion times and lower average accretion rates with peak values of approx5.8 x 10{sup -5} M{sub sun} yr{sup -1}. The radii and bolometric luminosities of the produced massive stars (approx>90 M{sub sun}) are in good agreement with the figures reported for detected stars with initial masses in excess of 100 M{sub sun}. The spectral energy distribution from the stellar photosphere reproduces the observed fluxes for hot molecular cores with peaks of emission from mid- to near-infrared.

  16. Conjugate-impedance matched metamaterials for super-Planckian radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Maslovski, Stanislav I.; Simovski, Constantin R.; Tretyakov, Sergei A.

    2016-04-01

    A problem of maximization of the radiative heat transfer (at a given wavelength) between a body and its environment is considered theoretically. It is shown that the spectral density of the radiative heat flux is maximized under the formulated conjugate impedance matching condition, in which case the spectral density of radiated power can exceed the black body limit, resulting in a super-Planckian heat exchange at characteristic distances significantly greater than the wavelength. It is demonstrated that the material parameters of the optimal emitters can be deduced from the known material parameters of the environment and represented by closed-form relations, thus, enabling a way for physical realization of such far-field super-Planckian emitters.

  17. Establishment of an x-ray standard calibration curve by conventional dicentric analysis as prerequisite for accurate radiation dose assessment.

    PubMed

    Beinke, Christina; Braselmann, Herbert; Meineke, Viktor

    2010-02-01

    The dicentric assay was established to carry out cytogenetic biodosimetry after suspected radiation overexposure, including a comprehensive documentation system to record the processing of the specimen, all data, results, and stored information. As an essential prerequisite for retrospective radiation dose assessment, a dose-response curve for dicentric induction by in vitro x-ray irradiation of peripheral blood samples was produced. The accelerating potential was 240 kV (maximum photon energy: 240 keV). A total of 8,377 first-division metaphases of four healthy volunteers were analyzed after exposure to doses ranging from 0.2 to 4.0 Gy at a dose rate of 1.0 Gy min. The background level of aberrations at 0-dose was determined by the analysis of 14,522 first-division metaphases obtained from unirradiated blood samples of 10 healthy volunteers. The dose-response relationship follows a linear-quadratic equation, Y = c + alphaD + betaD, with the coefficients c = 0.0005 +/- 0.0002, alpha = 0.043 +/- 0.006, and beta = 0.063 +/- 0.004. The technical competence and the quality of the calibration curve were assessed by determination of the dose prediction accuracy in an in vitro experiment simulating whole-body exposures within a range of 0.2 to 2.0 Gy. Dose estimations were derived by scoring up to 500-1,000 metaphase spreads or more (full estimation mode) and by evaluating only 50 metaphase spreads (triage mode) per subject. The triage mode was applied by performing manifold evaluations of the full estimation data in order to test the robustness of the curve for triage purposes and to assess possible variations among the estimated doses referring to a single exposure and preparation.

  18. Large-format imaging plate and weissenberg camera for accurate protein crystallographic data collection using synchrotron radiation.

    PubMed

    Sakabe, K; Sasaki, K; Watanabe, N; Suzuki, M; Wang, Z G; Miyahara, J; Sakabe, N

    1997-05-01

    Off-line and on-line protein data-collection systems using an imaging plate as a detector are described and their components reported. The off-line scanner IPR4080 was developed for a large-format imaging plate ;BASIII' of dimensions 400 x 400 mm and 400 x 800 mm. The characteristics of this scanner are a dynamic range of 10(5) photons pixel(-1), low background noise and high sensitivity. A means of reducing electronic noise and a method for finding the origin of the noise are discussed in detail. A dedicated screenless Weissenberg camera matching IPR4080 with synchrotron radiation was developed and installed on beamline BL6B at the Photon Factory. This camera can attach one or two sheets of 400 x 800 mm large-format imaging plate inside the film cassette by evacuation. The positional reproducibility of the imaging plate on the cassette is so good that the data can be processed by batch job. Data of 93% completeness up to 1.6 A resolution were collected on a single axis rotation and the value of R(merge) becomes 4% from a tetragonal lysozyme crystal using a set of two imaging-plate sheets. Comparing two types of imaging plates, the signal-to-noise ratio of the ST-VIP-type imaging plate is 25% better than that of the BASIII-type imaging plate for protein data collection using 1.0 and 0.7 A X-rays. A new on-line protein data-collection system with imaging plates is specially designed to use synchrotron radiation X-rays at maximum efficiency.

  19. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  20. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Robertson, K. M.; Milliken, R. E.; Li, S.

    2016-10-01

    Quantitative mineral abundances of lab derived clay-gypsum mixtures were estimated using a revised Hapke VIS-NIR and Shkuratov radiative transfer model. Montmorillonite-gypsum mixtures were used to test the effectiveness of the model in distinguishing between subtle differences in minor absorption features that are diagnostic of mineralogy in the presence of strong H2O absorptions that are not always diagnostic of distinct phases or mineral abundance. The optical constants (k-values) for both endmembers were determined from bi-directional reflectance spectra measured in RELAB as well as on an ASD FieldSpec3 in a controlled laboratory setting. Multiple size fractions were measured in order to derive a single k-value from optimization of the optical path length in the radiative transfer models. It is shown that with careful experimental conditions, optical constants can be accurately determined from powdered samples using a field spectrometer, consistent with previous studies. Variability in the montmorillonite hydration level increased the uncertainties in the derived k-values, but estimated modal abundances for the mixtures were still within 5% of the measured values. Results suggest that the Hapke model works well in distinguishing between hydrated phases that have overlapping H2O absorptions and it is able to detect gypsum and montmorillonite in these simple mixtures where they are present at levels of ∼10%. Care must be taken however to derive k-values from a sample with appropriate H2O content relative to the modeled spectra. These initial results are promising for the potential quantitative analysis of orbital remote sensing data of hydrated minerals, including more complex clay and sulfate assemblages such as mudstones examined by the Curiosity rover in Gale crater.

  1. 3D radiative transfer in colliding wind binaries: Application of the SimpleX algorithm to 3D SPH simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore

    2014-09-01

    We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  2. RTTOV-gb - adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    De Angelis, Francesco; Cimini, Domenico; Hocking, James; Martinet, Pauline; Kneifel, Stefan

    2016-08-01

    Ground-based microwave radiometers (MWRs) offer a new capability to provide continuous observations of the atmospheric thermodynamic state in the planetary boundary layer. Thus, they are potential candidates to supplement radiosonde network and satellite data to improve numerical weather prediction (NWP) models through a variational assimilation of their data. However in order to assimilate MWR observations, a fast radiative transfer model is required and such a model is not currently available. This is necessary for going from the model state vector space to the observation space at every observation point. The fast radiative transfer model RTTOV is well accepted in the NWP community, though it was developed to simulate satellite observations only. In this work, the RTTOV code has been modified to allow for simulations of ground-based upward-looking microwave sensors. In addition, the tangent linear, adjoint, and K-modules of RTTOV have been adapted to provide Jacobians (i.e., the sensitivity of observations to the atmospheric thermodynamical state) for ground-based geometry. These modules are necessary for the fast minimization of the cost function in a variational assimilation scheme. The proposed ground-based version of RTTOV, called RTTOV-gb, has been validated against accurate and less time-efficient line-by-line radiative transfer models. In the frequency range commonly used for temperature and humidity profiling (22-60 GHz), root-mean-square brightness temperature differences are smaller than typical MWR uncertainties (˜ 0.5 K) at all channels used in this analysis. Brightness temperatures (TBs) computed with RTTOV-gb from radiosonde profiles have been compared with nearly simultaneous and co-located ground-based MWR observations. Differences between simulated and measured TBs are below 0.5 K for all channels except for the water vapor band, where most of the uncertainty comes from instrumental errors. The Jacobians calculated with the K-module of RTTOV

  3. RTTOV-gb - Adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    De Angelis, Francesco; Cimini, Domenico; Hocking, James; Martinet, Pauline; Kneifel, Stefan

    2016-04-01

    assimilation schemes. The performances of RTTOV-gb have been tested against accurate and less time-efficient line-by-line RT models using both dependent and independent profile datasets. The Jacobians computed with RTTOV-gb have been compared with those obtained with a reference radiative transfer model as well as the brute force method. The tests have already shown that RTTOV-gb is up to 8-time faster than reference RT models, producing differences that are well within the expected MWR instrumental error.

  4. Three-dimensional aspects of radiative transfer in remote sensing of precipitation: Application to the 1986 COHMEX storm

    NASA Technical Reports Server (NTRS)

    Haferman, J. L.; Krajewski, W. F.; Smith, T. F.

    1994-01-01

    Several multifrequency techniques for passive microwave estimation of precipitation based on the absorption and scattering properties of hydrometers have been proposed in the literature. In the present study, plane-parallel limitations are overcome by using a model based on the discrete-ordinates method to solve the radiative transfer equation in three-dimensional rectangular domains. This effectively accounts for the complexity and variety of radiation problems encountered in the atmosphere. This investigation presents result for plane-parallel and three-dimensional radiative transfer for a precipitating system, discusses differences between these results, and suggests possible explanations for these differences. Microphysical properties were obtained from the Colorado State University Regional Atmospehric Modeling System and represent a hailstorm observed during the 1986 Cooperative Huntsville Meteorological Experiment. These properties are used as input to a three-dimensional radiative transfer model in order to simulate satellite observation of the storm. The model output consists of upwelling brightness temperatures at several of the frequencies on the Special Sensor Microwave/Imager. The radiative transfer model accounts for scattering and emission of atmospheric gases and hydrometers in liquid and ice phases. Brightness temperatures obtained from the three-dimensional model of this investigation indicate that horizontal inhomogeneities give rise to brightness temperature fields that can be quite different from fields obtained using plane-parallel radiative transfer theory. These differences are examined for various resolutions of the satellite sensor field of view. In adddition, the issue of boundary conditions for three-dimensional atmospheric radiative transfer is addressed.

  5. Natural element method for solving radiative transfer with or without conduction in three-dimensional complex geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Ma, Yu; Yi, Hong-Liang; Tan, He-Ping

    2013-11-01

    A meshless method called as the natural element method (NEM) is developed for solving radiative heat transfer problem in 3D complex enclosures filled with an absorbing, emitting and scattering medium. The boundary surfaces are supposed to be opaque, diffuse as well as gray. The shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The NEM solutions dealing with the radiative heat transfer with or without conduction are validated by comparison with some cases reported by the literature. Furthermore, the radiative heat transfer in cubic enclosures with or without an inner hollow sphere, cylinder and elliptical cylinder is also examined to demonstrate the applicability of the present method towards various three-dimensional geometries. For pure radiative transfer, both the cases of radiative non-equilibrium and radiative equilibrium are investigated. For combined conduction and radiation heat transfer, effects of various parameters such as the conduction-radiation parameter, the scattering albedo, the extinction coefficient, and the boundary emissivity are analyzed on the temperature distributions.

  6. The assessment of the impact of aviation NOx on ozone and other radiative forcing responses - The importance of representing cruise altitudes accurately

    NASA Astrophysics Data System (ADS)

    Skowron, A.; Lee, D. S.; De León, R. R.

    2013-08-01

    Aviation emissions of NOx result in the formation of tropospheric ozone (warming) and destruction of a small amount of methane (cooling), positive and negative radiative forcing effects. In addition, the reduction of methane results in a small long-term reduction in tropospheric ozone (cooling) and, in addition, a long-term reduction in water vapour in the stratosphere (cooling) from reduced oxidation of methane, both negative radiative forcing impacts. Taking all these radiative effects together, aircraft NOx is still thought to result in a positive (warming) radiative effect under constant emissions assumptions. Previously, comparative modelling studies have focussed on the variability between models, using the same emissions database. In this study, we rather quantify the variability and uncertainty arising from different estimations of present-day aircraft NOx emissions. Six different aircraft NOx emissions inventories were used in the global chemical transport model, MOZART v3. The inventories were normalized to give the same global emission of NOx in order to remove one element of uncertainty. Emissions differed in the normalized cases by 23% at cruise altitudes (283-200 hPa, where the bulk of emission occurs, globally). However, the resultant short-term ozone chemical perturbation varied by 15% between the different inventories. Once all the effects that give rise to positive and negative radiative impacts were accounted for, the variability of net radiative forcing impacts was 94%. Using these radiative effects to formulate a net aviation NOx Global Warming Potential (GWP) for a 100-year time horizon resulted in GWPs ranging from 60 to 4, over an order of magnitude. It is concluded that the detailed placement of emissions at chemically sensitive cruise altitudes strongly affects the assessment of the total radiative impact, introducing a hitherto previously unidentified large fraction of the uncertainty of impacts between different modelling assessments. It

  7. A Review of 3D Radiative Transfer in Atmospheric Science: History and Outlook

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2006-12-01

    3D radiative transfer has, until recently, remained a marginal subject within atmospheric science. While some measurement techniques like lidar and radar are inherently 3D, the simplifying assumptions made in the use of such data have alleviated any need to deal with 3D radiative transfer. Cloud scenes are obviously 3D, but the crude resolution of past atmospheric models (GCMs) required clouds to be treated as 1D. Measured radiative fluxes containing 3D cloud effects were simply time-averaged until all their 3D-ness was apparently beaten out of them. The main subject which has propelled 3D radiative transfer onto center stage is, nevertheless, clouds. This is because conventional GCMs are being challenged by GCMs that have their large-scale parametrizations of cloud-related processes replaced by explicit cloud-system-resolving models. Within these new GCMs, 3D radiative transfer cannot be ignored since cloud fluctuations are resolved explicitly down to scales where 1D and 3D radiative transfer can differ markedly. This talk will attempt to identify the high points in the development of the 3D cloud radiation field. My own career interleaved with much of this history, including the strong move away from just using computers and toward field observations, and also the effort to fit the new knowledge into climate models. The 3D cloud radiation field began in the 1970s, but attracted few adherents because of severe limitations on computer time and memory, and also because of ignorance of cloud structure (beyond the qualitative classifications which had ruled for 170 years). The earliest landmarks were Monte Carlo calcuations for cubic clouds, whose main point was the drastic errors incurred by ignoring cloud 3D-ness. This line of development ramified until the early 1990s, leading finally to randomly placed cubes with sizes drawn from a probability distribution. A parallel line of development began with the landmark paper of Lovejoy in 1982, which showed that cloud

  8. An accurate method for energy spectrum reconstruction of Linac beams based on EPID measurements of scatter radiation

    NASA Astrophysics Data System (ADS)

    Juste, B.; Miró, R.; Verdú, G.; Santos, A.

    2014-06-01

    This work presents a methodology to reconstruct a Linac high energy photon spectrum beam. The method is based on EPID scatter images generated when the incident photon beam impinges onto a plastic block. The distribution of scatter radiation produced by this scattering object placed on the external EPID surface and centered at the beam field size was measured. The scatter distribution was also simulated for a series of monoenergetic identical geometry photon beams. Monte Carlo simulations were used to predict the scattered photons for monoenergetic photon beams at 92 different locations, with 0.5 cm increments and at 8.5 cm from the centre of the scattering material. Measurements were performed with the same geometry using a 6 MeV photon beam produced by the linear accelerator. A system of linear equations was generated to combine the polyenergetic EPID measurements with the monoenergetic simulation results. Regularization techniques were applied to solve the system for the incident photon spectrum. A linear matrix system, A×S=E, was developed to describe the scattering interactions and their relationship to the primary spectrum (S). A is the monoenergetic scatter matrix determined from the Monte Carlo simulations, S is the incident photon spectrum, and E represents the scatter distribution characterized by EPID measurement. Direct matrix inversion methods produce results that are not physically consistent due to errors inherent in the system, therefore Tikhonov regularization methods were applied to address the effects of these errors and to solve the system for obtaining a consistent bremsstrahlung spectrum.

  9. Near-field radiative heat transfer between arbitrarily shaped objects and a surface

    NASA Astrophysics Data System (ADS)

    Edalatpour, Sheila; Francoeur, Mathieu

    2016-07-01

    A fluctuational electrodynamics-based formalism for calculating near-field radiative heat transfer between objects of arbitrary size and shape and an infinite surface is presented. The surface interactions are treated analytically via Sommerfeld's theory of electric dipole radiation above an infinite plane. The volume integral equation for the electric field is discretized using the thermal discrete dipole approximation (T-DDA). The framework is verified against exact results in the sphere-surface configuration and is applied to analyze near-field radiative heat transfer between a complex-shaped probe and an infinite plane, both made of silica. It is found that, when the probe tip size is approximately equal to or smaller than the gap d separating the probe and the surface, coupled localized surface phonon (LSPh)-surface phonon-polariton (SPhP) mediated heat transfer occurs. In this regime, the net spectral heat rate exhibits four resonant modes due to LSPhs along the minor axis of the probe, while the net total heat rate in the near field follows a d-0.3 power law. Conversely, when the probe tip size is much larger than the separation gap d , heat transfer is mediated by SPhPs, resulting in two resonant modes in the net spectral heat rate, corresponding to those of a single emitting silica surface, while the net total heat rate approaches a d-2 power law. It is also demonstrated that a complex-shaped probe can be approximated by a prolate spheroidal electric dipole when the thermal wavelength is larger than the major axis of the spheroidal dipole and when the separation gap d is much larger than the radius of curvature of the dipole tip facing the surface.

  10. Reconstruction of forest geometries from terrestrial laser scanning point clouds for canopy radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Bremer, Magnus; Schmidtner, Korbinian; Rutzinger, Martin

    2015-04-01

    The architecture of forest canopies is a key parameter for forest ecological issues helping to model the variability of wood biomass and foliage in space and time. In order to understand the nature of subpixel effects of optical space-borne sensors with coarse spatial resolution, hypothetical 3D canopy models are widely used for the simulation of radiative transfer in forests. Thereby, radiation is traced through the atmosphere and canopy geometries until it reaches the optical sensor. For a realistic simulation scene we decompose terrestrial laser scanning point cloud data of leaf-off larch forest plots in the Austrian Alps and reconstruct detailed model ready input data for radiative transfer simulations. The point clouds are pre-classified into primitive classes using Principle Component Analysis (PCA) using scale adapted radius neighbourhoods. Elongated point structures are extracted as tree trunks. The tree trunks are used as seeds for a Dijkstra-growing procedure, in order to obtain single tree segmentation in the interlinked canopies. For the optimized reconstruction of branching architectures as vector models, point cloud skeletonisation is used in combination with an iterative Dijkstra-growing and by applying distance constraints. This allows conducting a hierarchical reconstruction preferring the tree trunk and higher order branches and avoiding over-skeletonization effects. Based on the reconstructed branching architectures, larch needles are modelled based on the hierarchical level of branches and the geometrical openness of the canopy. For radiative transfer simulations, branch architectures are used as mesh geometries representing branches as cylindrical pipes. Needles are either used as meshes or as voxel-turbids. The presented workflow allows an automatic classification and single tree segmentation in interlinked canopies. The iterative Dijkstra-growing using distance constraints generated realistic reconstruction results. As the mesh representation

  11. Monte-Carlo Radiative Transfer Model of the Diffuse Galactic Light

    NASA Astrophysics Data System (ADS)

    Seon, Kwang-Il

    2015-02-01

    Monte-Carlo radiative models of the diffuse Galactic light (DGL) in our Galaxy are calcu-lated using the dust radiative transfer code MoCafe, which is three-dimensional and takes full account of multiple scattering. The code is recently updated to use a fast voxel traversal algorithm, which has dramatically increased the computing speed. The radiative transfer models are calculated with the gen-erally accepted dust scale-height of 0.1 kpc. The stellar scale-heights are assumed to be 0.1 or 0.35 kpc, appropriate for far-ultraviolet (FUV) and optical wavelengths, respectively. The face-on optical depth, measured perpendicular to the Galactic plane, is also varied from 0.2 to 0.6, suitable to the optical to FUV wavelengths, respectively. We find that the DGL at high Galactic latitudes is mostly due to backward or large-angle scattering of starlight originating from the local stars within a radial distance of r < 0.5 kpc from the Earth. On the other hand, the DGL measured in the Galactic plane is mostly due to stars at a distance range that corresponds to an optical depth of -1 measured from the Earth. Therefore, the low-latitude DGL at the FUV wavelength band would be mostly caused by the stars located at a distance of r . 0.5 kpc and the optical DGL near the Galactic plane mainly originates from stars within a distance range of 1 . r . 2 kpc. We also calculate the radiative transfer models in a clumpy two-phase medium. The clumpy two-phase models provide lower intensities at high Galactic latitudes compared to the uniform density models, because of the lower effective optical depth in clumpy media. However, no significant difference in the intensity at the Galactic plane is found.

  12. PAKAL: A THREE-DIMENSIONAL MODEL TO SOLVE THE RADIATIVE TRANSFER EQUATION

    SciTech Connect

    De la Luz, Victor; Lara, Alejandro; Mendoza-Torres, J. E.; Selhorst, Caius L.

    2010-06-15

    We present a new numerical model called 'Pakal' intended to solve the radiative transfer equation in a three-dimensional (3D) geometry, using the approximation for a locally plane-parallel atmosphere. Pakal uses pre-calculated radial profiles of density and temperature (based on hydrostatic, hydrodynamic, or MHD models) to compute the emission from 3D source structures with high spatial resolution. Then, Pakal solves the radiative transfer equation in a set of (3D) ray paths, going from the source to the observer. Pakal uses a new algorithm to compute the radiative transfer equation by using an intelligent system consisting of three structures: a cellular automaton; an expert system; and a program coordinator. The code outputs can be either two-dimensional maps or one-dimensional profiles, which reproduce the observations with high accuracy, giving detailed physical information about the environment where the radiation was generated and/or transmitted. We present the model applied to a 3D solar radial geometry, assuming a locally plane-parallel atmosphere, and thermal free-free radio emission from hydrogen-helium gas in thermodynamic equilibrium. We also present the convergence test of the code. We computed the synthetic spectrum of the centimetric-millimetric solar emission and found better agreement with observations (up to 10{sup 4} K at 20 GHz) than previous models reported in the literature. The stability and convergence test show the high accuracy of the code. Finally, Pakal can improve the integration time by up to an order of magnitude compared against linear integration codes.

  13. Calculations of non-gray gas radiative heat transfer by coupling the discrete ordinates method with the Leckner model in 3D rectangular enclosures

    NASA Astrophysics Data System (ADS)

    Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.

    2016-11-01

    In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of {H}2{O} and {C}{O}2. A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of {H}2{O} and {C}{O}2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of {H}2{O} and {C}{O}2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.

  14. Calculations of non-gray gas radiative heat transfer by coupling the discrete ordinates method with the Leckner model in 3D rectangular enclosures

    NASA Astrophysics Data System (ADS)

    Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.

    2015-12-01

    In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of H2O and CO2 . A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of H2O and CO2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of H2O and CO2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.

  15. Effects of observed horizontal inhomogeneities within cirrus clouds on solar radiative transfer

    NASA Astrophysics Data System (ADS)

    Buschmann, Nicole; McFarquhar, Greg M.; Heymsfield, Andrew J.

    2002-10-01

    In situ microphysical and combined radar and radiometer measurements of 11 cirrus clouds from Central Equatorial Pacific Experiment (CEPEX), European Cloud and Radiation Experiment (EUCREX), investigation of Clouds by Ground-Based and Airborne Radar and Lidar (CARL), and First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) are used to investigate effects of horizontal cloud inhomogeneities on solar radiative transfer. A three-dimensional ray-tracing model (GRIMALDI), based on the Monte Carlo method, is used to calculate upward and downward flux densities and absorption for the spectral range from 0.38 to 4.0 μm. Radiative flux densities are calculated using the inhomogeneous clouds derived from the observations and for horizontally and vertically averaged homogeneous clouds. Horizontally averaged values of radiative flux densities and absorption for heterogeneous clouds can differ by up to 30% from those calculated for the homogeneous clouds for convectively induced tropical cirrus clouds. The midlatitude cases examined tended to be more homogeneous, and hence differences between radiative properties for the homogeneous and heterogeneous clouds did not exceed 10%. For cirrus clouds with mean optical thicknesses smaller than 5 and with relative variances of optical thickness smaller than 0.2, errors caused by the homogeneous assumption are smaller than ±10%.

  16. Numerical prediction of radiative heat transfer in reciprocating superadiabatic combustion in porous media.

    PubMed

    Du, Liming; Xie, Maozhao

    2011-06-01

    A numerical study of Reciprocating Superadiabatic Combustion of Premixed gases in porous media (hereafter, referred to as RSCP) is performed. In this system the transient combustion of methane-air mixture is stabilized in a porous media combustor by periodically switching flow directions. The mass, momentum, energy and species conservation equations are solved using a two-dimensional control volume method. Local thermal non-equilibrium between the gas and the solid phases is considered by solving separate energy equations for the two phases and coupling them through a convective heat transfer coefficient. The porous media is assumed to emit, absorb and isotropically scatter radiation. The influences of the dominating operating parameters, such as filtration velocity, equivalence ratio and half cycle on the temperature profile, heat release rate, radiant flux, radiant efficiency and combustion efficiency are discussed. The results show that coupling calculating of flow field, combustion reaction and volume radiation of the optically thick media is successively achieved and heat radiation plays an important role in the overall performance of the burner. The temperature profile inside the RSCP combustor has a typical trapezoidal shape and the profile of radiation flux is similar to sinusoidal shape. Compared with the conventional premixed combustion in porous medium, combustion behavior in RSCP combustor is superior, such as better thermal structure and higher radiation efficiency and combustion efficiency.

  17. A transfer function approach to studying the size-of-source and distance effects in radiation thermometry

    NASA Astrophysics Data System (ADS)

    Vuelban, E. M.; Dekker, P. R.

    2013-09-01

    In this work, a model based on the transfer function approach of the propagation of radiation through several apertures and optical components is presented. This transfer function formalism offers the possibility of studying various measurement scenarios involving different source geometries, distances, and varying complexities of the optics of the radiation thermometer. The impact of different types of source geometries, and the variation of source-thermometer distance are investigated using the above model. Simulation results and experimental validation are presented.

  18. Relativistic radiative transfer in a moving stratus irradiated by a luminous flat source

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2015-06-01

    Relativistic radiative transfer in a geometrically thin stratus (sheet-like gaseous cloud with finite optical depth), which is moving at a relativistic speed around a luminous flat source, such as accretion disks, and is irradiated by the source, is examined under the special relativistic treatment. Incident radiation is aberrated and Doppler-shifted when it is received by the stratus, and emitted radiation is also aberrated and Doppler-shifted when it leaves the stratus. Considering these relativistic effects, we analytically obtain the emergent intensity as well as other radiative quantities in the purely scattering case for both infinite and finite strati. We mainly consider the frequency-integrated case, but also briefly show the frequency-dependent one. We also solve the relativistic radiative transfer equation numerically, and compare the results with the analytical solutions. In the infinite stratus, the mean intensity in the comoving and inertial frames decreases and becomes constant, as the stratus speed increases. The flux in the comoving frame decreases exponentially with the optical depth. The emergent intensity decreases as the speed increases, since the incident photons are redshifted at the bottom-side of the stratus. In the finite stratus, the mean intensity in the comoving and inertial frames quickly increases in the top-side region due to the aberrated photons. The flux in the comoving frame is positive in the range of 0 < β ≤ 0.4, while it becomes negative for β ≳ 0.5. The behavior of the emergent intensity is similar to that of the infinite case, although there is an irradiation effect caused by the aberrated photons.

  19. Two-dimensional radiative transfer. I - Planar geometry. [in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Mihalas, D.; Auer, L. H.; Mihalas, B. R.

    1978-01-01

    Differential-equation methods for solving the transfer equation in two-dimensional planar geometries are developed. One method, which uses a Hermitian integration formula on ray segments through grid points, proves to be extremely well suited to velocity-dependent problems. An efficient elimination scheme is developed for which the computing time scales linearly with the number of angles and frequencies; problems with large velocity amplitudes can thus be treated accurately. A very accurate and efficient method for performing a formal solution is also presented. A discussion is given of several examples of periodic media and free-standing slabs, both in static cases and with velocity fields. For the free-standing slabs, two-dimensional transport effects are significant near boundaries, but no important effects were found in any of the periodic cases studied.

  20. The Role Played by Radiative Heat-Transfer in Earth's Thermal History

    NASA Astrophysics Data System (ADS)

    van den Berg, A. P.; Yuen, D. A.; Rainey, E. S.

    2004-12-01

    For the last 30 years mantle heat transfer was thought to be governed by convective mantle circulation, where heat-transfer is operative by means of a thermal-boundary type of law in which classical scaling works well. In the last 5 years there has been increasing evidence that radiative heat-transfer may play an important role, especially in the deep mantle (Badro et al., 2004). Consequently we have studied the role played by radiative heat-transfer in conjunction with a core-coupling thermal history model. Our model results are based on a 2-D cartesian domain geometry and do not include the effects of phase transitions, at 670 km and 2750 km. We have focussed on varying the strength of radiative thermal conductivity by means of a single parameter f. This prefactor f is applied to the the radiative part of the Hofmeister composite conductivity model (Hofmeister, 1999). We have neglected the effects of water, grain-size and Fe on the radiative thermal conductivity. Our results show a clear impact of the scaling parameter f. Small values of f representing models which are dominated by lattice conductivity show a significant delay of 1-2 Gyr in planetary secular cooling compared to corresponding uniform conductivity models. This appears to be due to a low conductivity zone (LCZ) produced at shallow depth by these variable temperature and pressure dependent models. Increasing f from 0 to 10 produces a less pronounced LCZ. As a result the thermal resistance of the thermal boundary layer decreases and the rate of secular cooling increases with f. Our results dominated by the temperature and pressure sensitive LCZ illustrate the shortcomings of purely pressure dependent monotonic conductivity profiles for thermal history models. Heat flow from the core also depends strongly on the radiative conductivity in our models, including thermal coupling between mantle and core. Strong variations of some 100%, increasing with f, were observed in the core heat flux. The recently