Science.gov

Sample records for accurate relativistic energy-consistent

  1. Simple and accurate sum rules for highly relativistic systems

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2005-03-01

    In this paper, I consider the Bethe and Thomas-Reiche-Kuhn sum rules, which together form the foundation of Bethe's theory of energy loss from fast charged particles to matter. For nonrelativistic target systems, the use of closure leads directly to simple expressions for these quantities. In the case of relativistic systems, on the other hand, the calculation of sum rules is fraught with difficulties. Various perturbative approaches have been used over the years to obtain relativistic corrections, but these methods fail badly when the system in question is very strongly bound. Here, I present an approach that leads to relatively simple expressions yielding accurate sums, even for highly relativistic many-electron systems. I also offer an explanation for the difference between relativistic and nonrelativistic sum rules in terms of the Zitterbewegung of the electrons.

  2. Accurate determination of the free-free Gaunt factor - II. Relativistic Gaunt factors

    NASA Astrophysics Data System (ADS)

    van Hoof, P. A. M.; Ferland, G. J.; Williams, R. J. R.; Volk, K.; Chatzikos, M.; Lykins, M.; Porter, R. L.

    2015-05-01

    When modelling an ionized plasma, all spectral synthesis codes need the thermally averaged free-free Gaunt factor defined over a very wide range of parameter space in order to produce an accurate prediction for the spectrum. Until now no data set exists that would meet these needs completely. We have therefore produced a table of relativistic Gaunt factors over a much wider range of parameter space than has ever been produced before. We present tables of the thermally averaged Gaunt factor covering the range 10log γ2 = -6 to 10 and 10log u = -16 to 13 for all atomic numbers Z = 1 through 36. The data were calculated using the relativistic Bethe-Heitler-Elwert (BHE) approximation and were subsequently merged with accurate non-relativistic results in those parts of the parameter space where the BHE approximation is not valid. These data will be incorporated in the next major release of the spectral synthesis code CLOUDY. We also produced tables of the frequency integrated Gaunt factor covering the parameter space 10log γ2 = -6 to +10 for all values of Z between 1 and 36. All the data presented in this paper are available online.

  3. Highly accurate relativistic universal Gaussian basis set: Dirac-Fock-Coulomb calculations for atomic systems up to nobelium

    NASA Astrophysics Data System (ADS)

    Malli, G. L.; Da Silva, A. B. F.; Ishikawa, Yasuyuki

    1994-10-01

    A universal Gaussian basis set is developed that leads to relativistic Dirac-Fock SCF energies of comparable accuracy as that obtained by the accurate numerical finite-difference method (GRASP2 package) [J. Phys. B 25, 1 (1992)]. The Gaussian-type functions of our universal basis set satisfy the relativistic boundary conditions associated with the finite nuclear model for a finite speed of light and conform to the so-called kinetic balance at the nonrelativistic limit. We attribute the exceptionally high accuracy obtained in our calculations to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite-difference method. Results of the Dirac-Fock-Coulomb energies for a number of atoms up to No (Z=102) and some negative ions are presented and compared with the recent results obtained with the numerical finite-difference method and geometrical Gaussian basis sets by Parpia, Mohanty, and Clementi [J. Phys. B 25, 1 (1992)]. The accuracy of our calculations is estimated to be within a few parts in 109 for all the atomic systems studied.

  4. Accurate relativistic adapted Gaussian basis sets for francium through Ununoctium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.

    PubMed

    Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2013-10-15

    Accurate relativistic adapted Gaussian basis sets (RAGBSs) for 87 Fr up to 118 Uuo atoms without variational prolapse were developed here with the use of a polynomial version of the Generator Coordinate Dirac-Fock method. Two finite nuclear models have been used, the Gaussian and uniform sphere models. The largest RAGBS error, with respect to numerical Dirac-Fock results, is 15.4 miliHartree for Ununoctium with a basis set size of 33s30p19d14f functions.

  5. Relativistic regimes in which Compton scattering doubly differential cross sections obtained from impulse approximation are accurate due to cancelation of errors

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2015-05-01

    There is no simple parameter that can be used to predict when impulse approximation (IA) can yield accurate Compton scattering doubly differential cross sections (DDCS) in relativistic regimes. When Z is low, a small value of the parameter /q (where is the average initial electron momentum and q is the momentum transfer) suffices. For small Z the photon electron kinematic contribution described in relativistic S-matrix (SM) theory reduces to an expression, Xrel, which is present in the relativistic impulse approximation (RIA) formula for Compton DDCS. When Z is high, the S-Matrix photon electron kinematics no longer reduces to Xrel, and this along with the error characterized by the magnitude of /q contribute to the RIA error Δ. We demonstrate and illustrate in the form of contour plots that there are regimes of incident photon energy ωi and scattering angle θ in which the two types of errors at least partially cancel. Our calculations show that when θ is about 65° for Uranium K-shell scattering, Δ is less than 1% over an ωi range of 300 to 900 keV.

  6. Apparatus to measure relativistic mass increase

    NASA Astrophysics Data System (ADS)

    Luetzelschwab, John W.

    2003-09-01

    An apparatus that uses readily available material to measure the relativistic mass increase of beta particles from a radioactive 204Tl source is described. Although the most accurate analysis uses curve fitting or a Kurie plot, students may just use the raw data and a simple calculation to verify the relativistic mass increase.

  7. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  8. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  9. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  10. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  11. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  12. Relativistic radiative transfer in relativistic spherical flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2017-02-01

    Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.

  13. Multiconfiguration Dirac-Hartree-Fock Adjusted Energy-Consistent Pseudopotential for Uranium: Spin-Orbit Configuration Interaction and Fock-Space Coupled-Cluster Study of U4+ and U5+

    NASA Astrophysics Data System (ADS)

    Weigand, Anna; Cao, Xiaoyan; Vallet, Valérie; Flament, Jean-Pierre; Dolg, Michael

    2009-07-01

    In order to assess the accuracy of a recently adjusted relativistic energy-consistent small-core pseudopotential for uranium, the U5+ (5f1 subconfiguration) spin-orbit splitting as well as the fine structure of the U4+ (5f2 subconfiguration) spectrum have been calculated. The pseudopotential has been adjusted to four-component all-electron data, i.e., at the multiconfiguration Dirac-Hartree-Fock level using the Dirac-Coulomb Hamiltonian with a Fermi nucleus charge distribution and perturbatively including the Breit interaction. Its performance in a dressed effective Hamiltonian spin-orbit configuration interaction framework is compared to that of an older scalar-relativistic Wood-Boring adjusted pseudopotential, supplemented by a valence spin-orbit term, as well as to all-electron calculations using the Douglas-Kroll-Hess Hamiltonian. Electron correlation is accounted for by the multireference configuration interaction method with and without the Davidson correction and with different frozen-orbital spaces. Our best calculations show satisfactory agreement with experimental data; i.e., the mean absolute (relative) deviations amount to 183 (2.4%) and 948 cm-1 (5.1%) for the U5+ and the U4+ fine-structure energy levels, respectively. Even better agreement, comparable to the one for rigorous highly correlated four-component all-electron data, is obtained in intermediate Hamiltonian Fock-space coupled-cluster calculations applying the new pseudopotential.

  14. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  15. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  16. Non-relativistic leptogenesis

    SciTech Connect

    Bödeker, Dietrich; Wörmann, Mirco E-mail: mwoermann@physik.uni-bielefeld.de

    2014-02-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large ( ∼ 20%) effects compared to previous computations.

  17. Relativistic Brownian motion

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Hänggi, Peter

    2009-02-01

    Over the past one hundred years, Brownian motion theory has contributed substantially to our understanding of various microscopic phenomena. Originally proposed as a phenomenological paradigm for atomistic matter interactions, the theory has since evolved into a broad and vivid research area, with an ever increasing number of applications in biology, chemistry, finance, and physics. The mathematical description of stochastic processes has led to new approaches in other fields, culminating in the path integral formulation of modern quantum theory. Stimulated by experimental progress in high energy physics and astrophysics, the unification of relativistic and stochastic concepts has re-attracted considerable interest during the past decade. Focusing on the framework of special relativity, we review, here, recent progress in the phenomenological description of relativistic diffusion processes. After a brief historical overview, we will summarize basic concepts from the Langevin theory of nonrelativistic Brownian motions and discuss relevant aspects of relativistic equilibrium thermostatistics. The introductory parts are followed by a detailed discussion of relativistic Langevin equations in phase space. We address the choice of time parameters, discretization rules, relativistic fluctuation-dissipation theorems, and Lorentz transformations of stochastic differential equations. The general theory is illustrated through analytical and numerical results for the diffusion of free relativistic Brownian particles. Subsequently, we discuss how Langevin-type equations can be obtained as approximations to microscopic models. The final part of the article is dedicated to relativistic diffusion processes in Minkowski spacetime. Since the velocities of relativistic particles are bounded by the speed of light, nontrivial relativistic Markov processes in spacetime do not exist; i.e., relativistic generalizations of the nonrelativistic diffusion equation and its Gaussian solutions

  18. Relativistic Jets and Collapsars

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Woosley, S. E.

    2001-05-01

    In order to study the relativistic jets from collapsars, we have developed a special relativistic multiple-dimensional hydrodynamics code similar to the GENESIS code (Aloy et al., ApJS, 122, 151). The code is based on the PPM interpolation algorithm and Marquina's Riemann solver. Using this code, we have simulated the propagation of axisymmetric jets along the rotational axis of collapsed rotating stars (collapsars). Using the progenitors of MacFadyen, Woosley, and Heger, a relativistic jet is injected at a given inner boundary radius. This radius, the opening angle of the jet, its Lorentz factor, and its total energy are parameters of the problem. A highly collimated, relativistic outflow is observed at the surface of the star several seconds later. We will discuss the hydrodynamical focusing of the jet, it's break out properties, time evolution, and sensitivity to the adopted parameters.

  19. Relativistic Length Agony Continued

    NASA Astrophysics Data System (ADS)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  20. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  1. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  2. Numerical Relativistic Quantum Optics

    DTIC Science & Technology

    2013-11-08

    Introduction 1 II. Relativistic Wave Equations 2 III. Stationary States 4 A. Analytical Solutions for Coulomb Potentials 4 B. Numerical Solutions...C. Relativistic Ionization Example 15 V. Computational Performance 18 VI. Conclusions 21 VII. Acknowledgements 22 References 23 1 I. INTRODUCTION ...peculiar result that B0 = 1 TG is a weak field. At present, such fields are observed only in connection with astrophysical phenomena [14]. The highest

  3. Relativistic effects in chemistry

    SciTech Connect

    Yatsimirskii, K.B.

    1995-11-01

    Relativistic effects become apparent when the velocity of the electron is arbitrarily close to the speed of light (137 au) without actually attaining it (in heavy atoms of elements at the end of Mendeleev`s Periodic Table). At the orbital level, the relativistic effect is apparent in the radial contraction of penetrating s and p shells, expansion of nonpenetrating d and f shells, and the spin-orbit splitting of p-,d-, and f-shells. The appearance of a relativistic effect is indicated in the variation in the electronic configurations of the atoms in the Periodic Table, the appearance of new types of closed electron shells (6s{sub 1/2}{sup 2}, 6p{sub 1/2}{sup 2}, 7s{sub 1/2}{sup 2}, 5d{sub 3/2}{sup 4}), the stabilization of unstable oxidation states of heavy elements, the characteristic variation in the ionization enthalpies of heavy atoms, their electron affinity, hydration energies, redox potentials, and optical electronegativities. In the spectra of coordination compounds, a relativistic effect is observed when comparing the position of the charge transfer bands in analogous compounds, the parameters characterizing the ligand field strength (10Dq), the interatomic distances and angles in compounds of heavy elements. A relativistic effect is also apparent in the ability of heavy metals to form clusters and superclusters. Relativistic corrections also affect other properties of heavy metal compounds (force constants, dipole moments, biological activity, etc.).

  4. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  5. Multiple scattering calculations of relativistic electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Rehr, J. J.; Verbeeck, J.

    2010-04-01

    A generalization of the real-space Green’s-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite CK edge, for which we present an accurate magic angle measurement consistent with the predicted value.

  6. A simple approximation for the current-voltage characteristics of high-power, relativistic diodes

    DOE PAGES

    Ekdahl, Carl

    2016-06-10

    A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. Lastly, the approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.

  7. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  8. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  9. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  10. Relativistic Modeling Capabilities in PERSEUS Extended MHD Simulation Code for HED Plasmas

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Seyler, Charles

    2014-10-01

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as hybrid X-pinches and laser-plasma interactions. A major challenge of a relativistic fluid implementation is the recovery of primitive variables (density, velocity, pressure) from conserved quantities at each time step of a simulation. This recovery, which reduces to straightforward algebra in non-relativistic simulations, becomes more complicated when the equations are made relativistic, and has thus far been a major impediment to two-fluid simulations of relativistic HED plasmas. By suitable formulation of the relativistic generalized Ohm's law as an evolution equation, we have reduced the central part of the primitive variable recovery problem to a straightforward algebraic computation, which enables efficient and accurate relativistic two-fluid simulations. Our code recovers expected non-relativistic results and reveals new physics in the relativistic regime. Work supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative Agreement DE-NA0001836.

  11. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  12. Exact Damping for Relativistic Plasma Waves

    NASA Astrophysics Data System (ADS)

    Swanson, D. G.

    2000-10-01

    The damping coefficient for a relativistic plasma may be reduced to a single integral with no approximations through use of the Newberger sum rules when k_z=0. Expanding the integral in a series, the leading term agrees with the leading term of the weak relativistic function F_7/2(z), but the remaining terms are not alike. The single expansion parameter is proportional to λ z, indicating that the result may NOT be accurately expressed as a series involving products of Bessel functions of argument λ times functions F_q(z). Expressions for the imaginary parts of all dielectric tensor elements will be presented. The real parts of the tensor elements are not as simple, but because the elements are analytic, they must likewise be modified.

  13. General relativistic screening in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Paranjape, Aseem

    2016-10-01

    We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large-scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential ψ that lead on large scales to the correct, fully relativistic description of density perturbations in the Newtonian gauge. We note that the relativistic constraint equation for ψ can be cast as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe. Exploiting the weak time evolution of ψ in all regimes of interest, this equation can be further accurately approximated as a Helmholtz equation, with an effective relativistic "screening" scale ℓ related to the Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian gauge by replacing Poisson's equation with this Helmholtz equation, involving a trivial change in the Green's function kernel. Our results also motivate a simple, approximate (but very accurate) gauge transformation—δN(k )≈δsim(k )×(k2+ℓ-2)/k2 —to convert the density field δsim of standard collisionless N -body simulations (initialized in the comoving synchronous gauge) into the Newtonian gauge density δN at arbitrary times. A similar conversion can also be written in terms of particle positions. Our results can be interpreted in terms of a Jeans stability criterion induced by the expansion of the Universe. The appearance of the screening scale ℓ in the evolution of ψ , in particular, leads to a natural resolution of the "Jeans swindle" in the presence of superhorizon modes.

  14. Relativistic Pseudospin Symmetry

    SciTech Connect

    Ginocchio, Joseph N.

    2011-05-06

    We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.

  15. Relativistic electrons in space.

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.

    1972-01-01

    This paper reviews the current state of knowledge concerning relativistic electrons, above 0.3 MeV, in interplanetary space, as measured by detectors on board satellites operating beyond the influence of the magnetosphere. The electrons have a galactic component, which at the lower energies is subject both to solar modulation and to spasmodic 'quiet time' increases and a direct solar component correlated with flare activity. The recent measurements have established the form of the differential energy spectrum of solar flare electrons. Electrons have been detected from flares behind the visible solar disk. Relativistic electrons do not appear to leave the sun at the time of the flash phase of the flare, although there are several signatures of electron acceleration at this time. The delay is interpreted as taking place during the transport of the electrons through the lower corona.

  16. Relativistic Quantum Information Theory

    DTIC Science & Technology

    2007-11-20

    In S. Kalara and D.V. Nanopou- los, editors, Proceedings of the International Symposium on Black Holes , Membranes, Wormholes and Superstrings, pages...within the gravitational field of a black hole . We outline the general theory of how the entanglement of polarized photons changes under...relativistic Lorentz transformations, and have studied quantum information transmission in the presence of a black hole . A description of the accretion of

  17. Relativistic statistical arbitrage

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, A. D.; Freer, C. E.

    2010-11-01

    Recent advances in high-frequency financial trading have made light propagation delays between geographically separated exchanges relevant. Here we show that there exist optimal locations from which to coordinate the statistical arbitrage of pairs of spacelike separated securities, and calculate a representative map of such locations on Earth. Furthermore, trading local securities along chains of such intermediate locations results in a novel econophysical effect, in which the relativistic propagation of tradable information is effectively slowed or stopped by arbitrage.

  18. Relativistic gravity gradiometry

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Mashhoon, Bahram

    2016-12-01

    In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.

  19. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  20. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  1. Operational Stochastic Cooling in the Relativistic Heavy-Ion Collider

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Severino, F.

    2008-05-02

    Operational stochastic cooling of 100 GeV/nucleon gold beams has been achieved in the BNL Relativistic Heavy-Ion Collider. We discuss the physics and technology of the longitudinal cooling system and present results with the beams. A simulation algorithm is described and shown to accurately model the system.

  2. Relativistic magnetohydrodynamics in one dimension

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  3. Relativistic magnetohydrodynamics in one dimension.

    PubMed

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  4. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  5. Observation of relativistic antihydrogen atoms

    SciTech Connect

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  6. Relativistic quantum information

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  7. Newtonian and relativistic cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Wald, Robert M.

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations

  8. Ultrabaric relativistic superfluids

    NASA Astrophysics Data System (ADS)

    Papini, G.; Weiss, M.

    1985-09-01

    Ultrabaric superfluid solutions are obtained for Einstein's equations to examine the possibility of the existence of superluminal sound speeds. The discussion is restricted only by requiring the energy-momentum tensor and the equation of state of matter to be represented by full relativistic equations. Only a few universes are known to satisfy the conditions, and those exhibit tension and are inflationary. Superluminal sound velocities are shown, therefore, to be possible for the interior Schwarzchild metric, which has been used to explain the red shift of quasars, and the Stephiani solution (1967). The latter indicates repeated transitions between superluminal and subliminal sound velocities in the hyperbaric superfluid of the early universe.

  9. Compton scattering of blackbody photons by relativistic electrons

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Pjanka, Patryk

    2013-12-01

    We present simple and accurate analytical formulas for the rates of Compton scattering by relativistic electrons integrated over the energy distribution of blackbody seed photons. Both anisotropic scattering, in which blackbody photons arriving from one direction are scattered by an anisotropic electron distribution into another direction, and scattering of isotropic seed photons are considered. Compton scattering by relativistic electrons off blackbody photons from either stars or cosmic microwave background takes place, in particular, in microquasars, colliding-wind binaries, supernova remnants, interstellar medium and the vicinity of the Sun.

  10. Relativistic Effects on Chemical Properties.

    ERIC Educational Resources Information Center

    McKelvey, Donald R.

    1983-01-01

    Discusses how anomalous chemical properties may be explained by considering relativistic effects. Traces development of the relativistic wave equation (Dirac equation) starting with the Borh treatment of the hydrogen atom and discusses major consequences of the Dirac equation. Suggests that these topics receive greater attention in the…

  11. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  12. relline: Relativistic line profiles calculation

    NASA Astrophysics Data System (ADS)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  13. Robust relativistic bit commitment

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2016-12-01

    Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.

  14. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  15. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  16. The Calculus of Relativistic Temporal Geometry

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander

    2009-05-01

    Richard Feynman's unpublished 1965 gedanken experiment, discussed on pages 60-62 of A. F. Mayer, On the Geometry of Time in Physics and Cosmology (April 2009), demonstrates that the principles of relativity destroy both Newton's concept of absolute time and the concept of a Newtonian gravitational equipotential surface. According to logic arising from experience, it has long been falsely assumed that no energy cost is incurred for translation over an ideally frictionless level surface in the presence of a vertical acceleration. However, that the speed of light is a limiting velocity implies that while two distinct points on such a surface can be considered to be at the same potential relative to a third point that is not on that surface, a particle translated between two such points must incur energy transfer to the accelerating field. Typically, this manifests as a redshift of electromagnetic radiation as demonstrated by ``Feynman's rocket.'' Accurate calculation of this relativistic transverse gravitational redshift (TGR) for observable phenomena in a real-world astrophysical gravitational field requires the calculus of relativistic temporal geometry. Calculations using this technique accurately predict the following empirically observed but heretofore unexplained natural phenomena: the center-to-limb variation of solar wavelength (˜1 km/ s), the K-effect for massive main sequence stars (˜2-3 km/s), and the excess redshift of white dwarf stars (˜10-15 km/s).

  17. The relation between relativistic and non-relativistic continuum thermodynamics

    NASA Astrophysics Data System (ADS)

    Schellstede, G. O.; von Borzeszkowski, H.-H.; Chrobok, T.; Muschik, W.

    2014-01-01

    We consider the relativistic theory of irreversible processes with the aim to answer the following questions: (1) Under which conditions is this theory a relativistic generalization of the non-relativistic theory of irreversible processes (in particular, this implies to ask for the conditions under which the first law of thermodynamics can be recovered from the relativistic conservation law of total energy), and (2) how do the relativistic corrections look like? To this end, we perform a low-energy approximation for the balance equations underlying the theory, i.e., for the balances of the particle number, the energy-momentum and the entropy. It is shown that, going up to the 3rd order in the expansion series of the balances, the non-relativistic theory can be derived when one assumes that the 4-current of the particle flow is purely convective and the product of the 3-dimensional acceleration and velocity is equal to zero. Afterwards, the higher-order terms are discussed. Since our discussion mainly makes use of those balance equations that lie on the basis of most versions of continuum thermodynamics, the results do not only refer to early TIP presented by Eckart (Phys Rev 58:919, 1940) and Landau and Lifshitz (Fluid mechanics. Pergamon Press, Oxford, 1940), but also to its extended and/or general-relativistic versions.

  18. Hydrodynamics of Relativistic Fireballs

    NASA Technical Reports Server (NTRS)

    Piran, Tsvi; Shemi, Amotz; Narayan, Ramesh

    1993-01-01

    Many models of gamma-ray bursts involve a fireball, which is an optically thick concentration of radiation energy with a high ratio of energy density to rest mass. We examine analytically and numerically the evolution of a relativistic fireball. We show that, after an early rearrangement phase, most of the matter and energy in the fireball is concentrated within a narrow shell. The shell propagates at nearly the speed of light, with a frozen radial profile, and according to a simple set of scaling laws. The spectrum of the escaping radiation is harder at early times and softer later on. Depending on the initial energy-to-mass ratio, the final outcome of a fireball is either photons with roughly the initial temperature or ultrarelativistic baryons. In the latter case, the energy could be converted back to gamma-rays via interaction with surrounding material.

  19. Relativistic Celestial Mechanics

    NASA Astrophysics Data System (ADS)

    Brumberg, Victor A.

    2010-08-01

    Relativistic celestial mechanics (RCM) refers to a science to study the motion of celestial bodies within the framework of general relativity theory (GRT) by Einstein. Being a straightforward successor of Newtonian celestial mechanics RCM embraces all aspects of motion of celestial bodies including (1) physics of motion, i.e. investigation of the physical nature of all effects influencing the motion of celestial bodies and formulation of a physical model for a specific problem; (2) mathematics of motion, i.e. investigation of the mathematical characteristics of the solutions of the differential equations of motion of celestial bodies; (3) computation of motion, i.e. the actual determination of the quantitative characteristics of motion; (4) astronomy of motion, i.e. application of mathematical solution of a problem to a specific celestial body, comparison with the results of observations, determination of initial values and parameters of motion, and checking the physical and mathematical models employed for a given problem.

  20. Photodetachment of relativistic ions

    SciTech Connect

    Donahue, J.B.; Gram, P.A.M.; Hamm, M.E.; Hamm, R.W.; Bryant, H.C.; Butterfield, K.B.; Clark, D.A.; Frost, C.A.; Smith, W.W.

    1980-01-01

    A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (..beta.. = 0.842) H/sup -/ ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relatavistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of photo-detachment work with H/sup -/ beams and our spectroscopic work with H/sup 0/ beams are presented. Plans for future work are discussed.

  1. Processes in relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1982-01-01

    The establishment and maintenance of a Boltzmann distribution in particle kinetic energies is investigated for a plasma with theta = KTe/mc-squared much greater than unity, where m is the electron mass. It is shown that thermalization of the electron gas by binary collisions is not sufficiently effective to maintain the equilibrium distribution when other processes that perturb the equilibrium are taken into account. Electron-positron pair production in electron-electron and electron-ion collisions, and perturbations of a Boltzmann distribution by nonthermal processes are evaluated. Thermalization by means of other mechanisms, such as interaction with plasma waves is discussed, and the opacity of a relativistic plasma is computed for Compton scattering, pair production in the fields of electrons and ions, inverse bremsstrahlung, and synchrotron self-absorption.

  2. Relativistic calculation of deuteron threshold electrodisintegration at backward angles

    NASA Astrophysics Data System (ADS)

    Arriaga, A.; Schiavilla, R.

    2007-07-01

    The threshold electrodisintegration of the deuteron at backward angles is studied in instant form Hamiltonian dynamics, including a relativistic one-pion-exchange potential (OPEP) with off-shell terms as predicted by pseudovector coupling of pions to nucleons. The bound and scattering states are obtained in the center-of-mass frame, and then boosted from it to the Breit frame, where the evaluation of the relevant matrix elements of the electromagnetic current operator is carried out. The latter includes, in addition to one-body, also two-body terms due to pion exchange, as obtained, consistently with the OPEP, in pseudovector pion-nucleon coupling theory. In order to estimate the magnitude of the relativistic effects we perform, for comparison, the calculation with a nonrelativistic phase-equivalent Hamiltonian and consistent one-body and two-body pion-exchange currents. Our results for the electrodisintegration cross section show that, in the calculations using one-body currents, relativistic corrections become significant (i.e., larger than 10%) only at high momentum transfer Q (Q2≃40 fm-2 and beyond). However, the inclusion of two-body currents makes the relativistic predictions considerably smaller than the corresponding nonrelativistic results in the Q2 region (18 40) fm-2. The calculations based on the relativistic model also confirm the inadequacy, already established in a nonrelativistic context, of the present electromagnetic current model to reproduce accurately the experimental data at intermediate values of momentum transfers.

  3. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  4. Mixing of relativistic ideal gases with relative relativistic velocities

    NASA Astrophysics Data System (ADS)

    Gonzalez-Narvaez, R. E.; Ares de Parga, A. M.; Ares de Parga, G.

    2017-01-01

    The Redefined Relativistic Thermodynamics is tested by means of mixing two ideal gases at different temperatures and distinct velocities. The conservation of the 4-vector energy-momentum leads to a tremendous increment of the temperature. This phenomenon can be used in order to describe the heating of a cold clump with shocked jets material. A prediction for improving the ignition of a Tokamak is proposed. The compatibility of the Redefined Relativistic Thermodynamics with the Thermodynamical Field Theory is analyzed.

  5. The mechanics of relativistic space flights

    NASA Astrophysics Data System (ADS)

    Zakirov, U. N.

    The relativistic mechanics of an artificial space body with a variable rest mass is presented in a systematic manner. In particular, attention is given to the principles of Lobachevskii geometry, Riemann geometry, and relativity; general Lorentz transformations and relativistic kinematics; the principal theorems of the relativistic mechanics of a space vehicle in spherically symmetric gravitational fields; and the relativistic motion of a space vehicle with jet propulsion. Possible applications of relativistic mechanics are examined.

  6. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  7. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  8. Relativistic Electron Beams Above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Fullekrug, Martin; Roussel-Dupre, Robert; Symbalisty, Eugene; Chanrion, Olivier; van der Velde, Oscar; Soula, Serge; Odzimek, Anna; Bennett, Alec; Whitley, Toby; Neubert, Torsten

    2010-05-01

    It has recently been discovered that lightning discharges generate upward-directed relativistic electron beams above thunderclouds. This extends the phenomenon of relativistic runaway breakdown believed to occur inside thunderclouds to the atmosphere above thunderclouds. This marks a profound advance in our understanding of the atmosphere because we now know it acts as a giant, natural, particle accelerator. The accelerated electrons can reach significant relativistic energies of some MeV during their passage from the troposphere, through the middle atmosphere, into near-Earth space. These relativistic electron beams constitute a current above thunderclouds and effectively transfer energy from the troposphere to the middle atmosphere. This coupling process thereby forms a novel element of the global atmospheric electric circuit which links tropospheric thunderclouds to the atmosphere above. This contribution describes the radio remote sensing of upward electron beams to determine their occurrence frequency and to characterise their physical properites.

  9. Relativistic effects in atom gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun

    2017-01-01

    Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.

  10. A general relativistic signature in the galaxy bispectrum: the local effects of observing on the lightcone

    NASA Astrophysics Data System (ADS)

    Umeh, Obinna; Jolicoeur, Sheean; Maartens, Roy; Clarkson, Chris

    2017-03-01

    Next-generation galaxy surveys will increasingly rely on the galaxy bispectrum to improve cosmological constraints, especially on primordial non-Gaussianity. A key theoretical requirement that remains to be developed is the analysis of general relativistic effects on the bispectrum, which arise from observing galaxies on the past lightcone, as well as from relativistic corrections to the dynamics. As an initial step towards a fully relativistic analysis of the galaxy bispectrum, we compute for the first time the local relativistic lightcone effects on the bispectrum, which come from Doppler and gravitational potential contributions. For the galaxy bispectrum, the problem is much more complex than for the power spectrum, since we need the lightcone corrections at second order. Mode-coupling contributions at second order mean that relativistic corrections can be non-negligible at smaller scales than in the case of the power spectrum. In a primordial Gaussian universe, we show that the local lightcone projection effects for squeezed shapes at z ~ 1 mean that the bispectrum can differ from the Newtonian prediction by gtrsim 10% when the short modes are k lesssim (50 Mpc)‑1. These relativistic projection effects, if ignored in the analysis of observations, could be mistaken for primordial non-Gaussianity. For upcoming surveys which probe equality scales and beyond, all relativistic lightcone effects and relativistic dynamical corrections should be included for an accurate measurement of primordial non-Gaussianity.

  11. Relativistic Jets from Collapsars

    NASA Astrophysics Data System (ADS)

    Aloy, M. A.; Müller, E.; Ibáñez, J. M.; Martí, J. M.; MacFadyen, A.

    2000-03-01

    Using a collapsar progenitor model of MacFadyen & Woosley, we have simulated the propagation of an axisymmetric jet through a collapsing rotating massive star with the GENESIS multidimensional relativistic hydrodynamic code. The jet forms as a consequence of an assumed (constant or variable) energy deposition in the range of 1050-1051 ergs s-1 within a 30 deg cone around the rotation axis. The jet flow is strongly beamed (approximately less than a few degrees), spatially inhomogeneous, and time dependent. The jet reaches the surface of the stellar progenitor (R*=2.98x1010 cm) intact. At breakout, the maximum Lorentz factor of the jet flow is 33. After breakout, the jet accelerates into the circumstellar medium, whose density is assumed to decrease exponentially and then become constant, ρext=10-5 g cm-3. Outside the star, the flow begins to expand laterally also (v~c), but the beam remains very well collimated. At a distance of 2.54 R*, where the simulation ends, the Lorentz factor has increased to 44.

  12. Relativistic Electron Vortices

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.

    2017-03-01

    The desire to push recent experiments on electron vortices to higher energies leads to some theoretical difficulties. In particular the simple and very successful picture of phase vortices of vortex charge ℓ associated with ℓℏ units of orbital angular momentum per electron is challenged by the facts that (i) the spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the orbital angular momentum of a photon.

  13. Newtonian and Relativistic Cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Wald, Robert

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the Friedmann equations, and also that a correspondence between Newtonian and relativistic dust cosmologies holds in linearized perturbation theory. Nevertheless, it is not obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology with significant nonlinear dynamical behavior at small scales. We investigate this issue in light of a perturbative framework that we have recently developed. We propose a straightforward dictionary---exact at the linearized level---that maps Newtonian dust cosmologies into GR dust cosmologies, and we use our ordering scheme to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We then find additional corrections needed to satisfy Einstein's equation to ``order 1'' at small scales and to ``order ɛ'' at large scales. We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe GR cosmologies.

  14. Causal localizations in relativistic quantum mechanics

    SciTech Connect

    Castrigiano, Domenico P. L. Leiseifer, Andreas D.

    2015-07-15

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  15. Causal localizations in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Castrigiano, Domenico P. L.; Leiseifer, Andreas D.

    2015-07-01

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  16. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    NASA Astrophysics Data System (ADS)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  17. Rarefaction wave in relativistic steady magnetohydrodynamic flows

    SciTech Connect

    Sapountzis, Konstantinos Vlahakis, Nektarios

    2014-07-15

    We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.

  18. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  19. Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves

    NASA Astrophysics Data System (ADS)

    Meli, A.

    We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field

  20. Relativistic and quantum electrodynamics effects in the helium pair potential.

    PubMed

    Przybytek, M; Cencek, W; Komasa, J; Łach, G; Jeziorski, B; Szalewicz, K

    2010-05-07

    The helium pair potential was computed including relativistic and quantum electrodynamics contributions as well as improved accuracy adiabatic ones. Accurate asymptotic expansions were used for large distances R. Error estimates show that the present potential is more accurate than any published to date. The computed dissociation energy and the average R for the (4)He(2) bound state are 1.62+/-0.03 mK and 47.1+/-0.5 A. These values can be compared with the measured ones: 1.1(-0.2)(+0.3) mK and 52+/-4 A [R. E. Grisenti, Phys. Rev. Lett. 85, 2284 (2000)].

  1. Large amplitude relativistic plasma waves

    SciTech Connect

    Coffey, Timothy

    2010-05-15

    Relativistic, longitudinal plasma oscillations are studied for the case of a simple water bag distribution of electrons having cylindrical symmetry in momentum space with the axis of the cylinder parallel to the velocity of wave propagation. The plasma is required to obey the relativistic Vlasov-Poisson equations, and solutions are sought in the wave frame. An exact solution for the plasma density as a function of the electrostatic field is derived. The maximum electric field is presented in terms of an integral over the known density. It is shown that when the perpendicular momentum is neglected, the maximum electric field approaches infinity as the wave phase velocity approaches the speed of light. It is also shown that for any nonzero perpendicular momentum, the maximum electric field will remain finite as the wave phase velocity approaches the speed of light. The relationship to previously published solutions is discussed as is some recent controversy regarding the proper modeling of large amplitude relativistic plasma waves.

  2. Non-Relativistic Superstring Theories

    SciTech Connect

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  3. Polyanalytic relativistic second Bargmann transforms

    SciTech Connect

    Mouayn, Zouhaïr

    2015-05-15

    We construct coherent states through special superpositions of eigenstates of the relativistic isotonic oscillator. In each superposition, the coefficients are chosen to be L{sup 2}-eigenfunctions of a σ-weight Maass Laplacian on the Poincaré disk, which are associated with the eigenvalue 4m(σ−1−m), m∈Z{sub +}∩[0,(σ−1)/2]. For each nonzero m, the associated coherent states transform constitutes the m-true-polyanalytic extension of a relativistic version of the second Bargmann transform, whose integral kernel is expressed in terms of a special Appel-Kampé de Fériet’s hypergeometric function. The obtained results could be used to extend the known semi-classical analysis of quantum dynamics of the relativistic isotonic oscillator.

  4. Accurate Scientific Visualization in Research and Physics Teaching

    NASA Astrophysics Data System (ADS)

    Wendler, Tim

    2011-10-01

    Accurate visualization is key in the expression and comprehension of physical principles. Many 3D animation software packages come with built-in numerical methods for a variety of fundamental classical systems. Scripting languages give access to low-level computational functionality, thereby revealing a virtual physics laboratory for teaching and research. Specific examples will be presented: Galilean relativistic hair, energy conservation in complex systems, scattering from a central force, and energy transfer in bi-molecular reactions.

  5. Accurate Theoretical Thermochemistry for Fluoroethyl Radicals.

    PubMed

    Ganyecz, Ádám; Kállay, Mihály; Csontos, József

    2017-02-09

    An accurate coupled-cluster (CC) based model chemistry was applied to calculate reliable thermochemical quantities for hydrofluorocarbon derivatives including radicals 1-fluoroethyl (CH3-CHF), 1,1-difluoroethyl (CH3-CF2), 2-fluoroethyl (CH2F-CH2), 1,2-difluoroethyl (CH2F-CHF), 2,2-difluoroethyl (CHF2-CH2), 2,2,2-trifluoroethyl (CF3-CH2), 1,2,2,2-tetrafluoroethyl (CF3-CHF), and pentafluoroethyl (CF3-CF2). The model chemistry used contains iterative triple and perturbative quadruple excitations in CC theory, as well as scalar relativistic and diagonal Born-Oppenheimer corrections. To obtain heat of formation values with better than chemical accuracy perturbative quadruple excitations and scalar relativistic corrections were inevitable. Their contributions to the heats of formation steadily increase with the number of fluorine atoms in the radical reaching 10 kJ/mol for CF3-CF2. When discrepancies were found between the experimental and our values it was always possible to resolve the issue by recalculating the experimental result with currently recommended auxiliary data. For each radical studied here this study delivers the best heat of formation as well as entropy data.

  6. Special Relativistic Hydrodynamics with Gravitation

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim

    2016-12-01

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  7. Relativistic solutions to directed energy

    NASA Astrophysics Data System (ADS)

    Kulkarni, Neeraj; Lubin, Philip M.; Zhang, Qicheng

    2016-09-01

    This paper analyses the nature and feasibility of using directed energy to propel probes through space at relativistic speeds. Possible mission scenarios are considered by varying the spacecraft mass, thickness of the sail and power of the directed energy array. We calculate that gram-scaled probes are capable of achieving relativistic speeds and reaching Alpha Centauri well within a human lifetime. A major drawback is the diffraction of the beam which reduces the incident power on the sail resulting in a terminal velocity for the probes. Various notions of efficiency are discussed and we conclude that directed energy propulsion provides a viable direction for future space exploration.

  8. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  9. Quantum Tunneling Time: Relativistic Extensions

    NASA Astrophysics Data System (ADS)

    Xu, Dai-Yu; Wang, Towe; Xue, Xun

    2013-11-01

    Several years ago, in quantum mechanics, Davies proposed a method to calculate particle's traveling time with the phase difference of wave function. The method is convenient for calculating the sojourn time inside a potential step and the tunneling time through a potential hill. We extend Davies' non-relativistic calculation to relativistic quantum mechanics, with and without particle-antiparticle creation, using Klein-Gordon equation and Dirac Equation, for different forms of energy-momentum relation. The extension is successful only when the particle and antiparticle creation/annihilation effect is negligible.

  10. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  11. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  12. Relativistic Optimized Link by KLT

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    The KLT is a way of optimizing the signal processing of a given noisy signal by projecting the noisy signal itself onto the set of orthonormal basis functions spanned by the eigenfunctions of the autocorrelation of the noisy signal. Thus, the key problem in computing the KLT of a noisy signal is the computation of the eigenvalues and eigenfunctions of the autocorrelation of the noisy signal. For the special case of the Brownian motion (i.e. the basic Gaussian noisy signal) it can be proved that the KLT eigenfunctions are just sines, i.e. the KLT is the same as the FT. Let us now bring relativity into the KLT picture (this paper is confined to special relativity; general relativity can be KLT-studied also, but the calculations are, of course, even more difficult). Also, only rectilinear motions will be considered here. So, if one considers a source in relativistic motion, then the noisy signal undergoes a time-rescaling that depends on the type of relativistic motion. In past work this author has demostrated that the eigenfunctions of the time-rescaled, relativistic Brownian motion are Bessel functions of the first kind, and their eigenvalues are the zeros of such Bessel functions. In addition, it is stated (without proofs) that explicit formulae for the KLT signal processing can be found for the particularly important cases of the noisy signals received on Earth from a relativistic spacecraft whose motion is either: 1) uniform; or 2) uniformly accelerated.

  13. Proper-time relativistic dynamics

    NASA Technical Reports Server (NTRS)

    Gill, Tepper L.; Zachary, W. W.; Lindesay, James

    1993-01-01

    Proper-time relativistic single-particle classical Hamiltonian mechanics is formulated using a transformation from observer time to system proper time which is a canonical contact transformation on extended phase space. It is shown that interaction induces a change in the symmetry structure of the system which can be analyzed in terms of a Lie-isotopic deformation of the algebra of observables.

  14. Relativistic resonance and decay phenomena

    NASA Astrophysics Data System (ADS)

    Bui, Hai V.

    2015-04-01

    The exact relation τ = ℏ/Γ between the width Γ of a resonance and the lifetime τ for the decay of this resonance could not be obtained in standard quantum theory based on the Hilbert space or Schwartz space axiom in non-relativistic physics as well as in the relativistic regime. In order to obtain the exact relation, one has to modify the Hilbert space axiom or the Schwartz space axiom and choose new boundary conditions based on the Hardy space axioms in which the space of the states and the space of the observables are described by two different Hardy spaces. As consequences of the new Hardy space axioms, one obtains, instead of the symmetric time evolution for the states and the observables, asymmetrical time evolutions for the states and observables which are described by two semi-groups. A relativistic resonance obeying the exponential time evolution can be described by a relativistic Gamow vector, which is defined as superposition of the exact out-plane wave states with a Breit-Wigner energy distribution of the width Γ.

  15. Manipulating relativistic electrons with lasers

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    2016-09-01

    The motion control of relativistic electrons with lasers allows for an efficient and elegant way to map the space with ultra-intense electric-field components, which, in turn, permits a unique improvement of the electron beam parameters. This perspective addresses the recent laser plasma accelerator experiments related to the phase space engineering of electron beams in a plasma medium performed at LOA.

  16. Action Principle for Relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    D'Avignon, Eric; Morrison, Philip; Pegoraro, Francesco

    2015-11-01

    A covariant action principle for ideal relativistic magnetohydrodynamics in terms of natural Eulerian field variables is given. This is done by generalizing the covariant Poisson bracket theory of Marsden et al., which uses a noncanonical bracket to implement constrained variations of an action functional. Various implications and extensions of this action principle are also discussed.

  17. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; Hartmann, D. H.; Fishman, G. J.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  18. Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics

    SciTech Connect

    Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  19. Relativistic Positioning System in perturbed spacetime

    NASA Astrophysics Data System (ADS)

    Kostić, Uroš; Horvat, Martin; Gomboc, Andreja

    2015-11-01

    We present a variant of a Global Navigation Satellite System called a Relativistic Positioning System (RPS), which is based on emission coordinates. We modelled the RPS dynamics in a spacetime around Earth, described by a perturbed Schwarzschild metric, where we included the perturbations due to Earth multipoles (up to the 6th), the Moon, the Sun, Venus, Jupiter, solid tide, ocean tide, and Kerr rotation effect. The exchange of signals between the satellites and a user was calculated using a ray-tracing method in the Schwarzschild spacetime. We find that positioning in a perturbed spacetime is feasible and is highly accurate already with standard numerical procedures: the positioning algorithms used to transform between the emission and the Schwarzschild coordinates of the user are very accurate and time efficient—on a laptop it takes 0.04 s to determine the user’s spatial and time coordinates with a relative accuracy of {10}-28-{10}-26 and {10}-32-{10}-30, respectively.

  20. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  1. The Scalar Relativistic Contribution to Ga-Halide Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The one-electron Douglas Kroll (DK) and perturbation theory (+R) approaches are used to compute the scalar relativistic contribution to the atomization energies of GaFn. These results are compared with the previous GaCln results. While the +R and DK results agree well for the GaCln atom nation energies, they differ for GaFn. The present work suggests that the DK approach is more accurate than the +R approach. In addition, the DK approach is less sensitive to the choice of basis set. The computed atomization energies of GaF2 and GaF3 are smaller than the somewhat uncertain experiments. It is suggested that additional calibration calculations for the scalar relativistic effects in GaF2 and GaF3 would be valuable.

  2. Relativistic MHD simulations of extragalactic jets

    NASA Astrophysics Data System (ADS)

    Leismann, T.; Antón, L.; Aloy, M. A.; Müller, E.; Martí, J. M.; Miralles, J. A.; Ibáñez, J. M.

    2005-06-01

    We have performed a comprehensive parameter study of the morphology and dynamics of axisymmetric, magnetized, relativistic jets by means of numerical simulations. The simulations have been performed with an upgraded version of the GENESIS code which is based on a second-order accurate finite volume method involving an approximate Riemann solver suitable for relativistic ideal magnetohydrodynamic flows, and a method of lines. Starting from pure hydrodynamic models we consider the effect of a magnetic field of increasing strength (up to β ≡ |b|2/2p ≈ 3.3 times the equipartition value) and different topology (purely toroidal or poloidal). We computed several series of models investigating the dependence of the dynamics on the magnetic field in jets of different beam Lorentz factor and adiabatic index. We find that the inclusion of the magnetic field leads to diverse effects which contrary to Newtonian magnetohydrodynamics models do not always scale linearly with the (relative) strength of the magnetic field. The relativistic models show, however, some clear trends. Axisymmetric jets with toroidal magnetic fields produce a cavity which consists of two parts: an inner one surrounding the beam which is compressed by magnetic forces, and an adjacent outer part which is inflated due to the action of the magnetic field. The outer border of the outer part of the cavity is given by the bow-shock where its interaction with the external medium takes place. Toroidal magnetic fields well below equipartition (β = 0.05) combined with a value of the adiabatic index of 4/3 yield extremely smooth jet cavities and stable beams. Prominent nose cones form when jets are confined by toroidal fields and carry a high Poynting flux (σ≡ |b|2/ρ>0.01 and β≥ 1). In contrast, none of our models possessing a poloidal field develops such a nose cone. The size of the nose cone is correlated with the propagation speed of the Mach disc (the smaller the speed the larger is the size). If two

  3. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  4. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  5. Low-momentum-transfer nonrelativistic limit of the relativistic impulse approximation expression for Compton-scattering doubly differential cross sections and characterization of their relativistic contributions

    SciTech Connect

    LaJohn, L. A.

    2010-04-15

    The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q{yields}0), valid even at relativistic incident photon energies {omega}{sub 1}>m provided that the average initial momentum of the ejected electron is not too high, that is, accurate Compton peak (CP) even when {omega}{sub 1}>m using nr expressions when {theta} is small. For example, a 1% accuracy can be obtained when {omega}{sub 1}=1 MeV if {theta}<20 deg. However as {omega}{sub 1} increases into the MeV range, the maximum {theta} at which an accurate Compton peak can be obtained from nr expressions approaches closer to zero, because the {theta} at which the relativistic shift of CP to higher energy is greatest, which starts at 180 deg. when {omega}{sub 1}<300 keV, begins to decrease, approaching zero even though the {theta} at which the relativistic increase in the CP magnitude remains greatest around {theta}=180 deg. The relativistic contribution to the prediction of Compton doubly differential cross sections (DDCS) is characterized in simple terms using Ribberfors further approximation to his full RIA expression. This factorable form is given by DDCS=KJ, where K is the kinematic factor and J the Compton profile. This form makes it possible to account for the relativistic shift of CP to higher energy and the increase in the CP magnitude as being due to the dependence of J(p{sub min},{rho}{sub rel}) (where p{sub min} is the relativistic version of the z

  6. Relativistic Celestial Mechanics of the Solar System

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    allows us to to discover and eliminate spurious coordinate effects that have no physical meaning. The basic mathematical technique used in our theoretical treatment is based on matching of asymptotic post-Newtonian expansions of the solutions of the gravity field equations. In Chapter 6, we discuss the principles of relativistic celestial mechanics of massive bodies and particles. We focus on derivation of the post-Newtonian equations of orbital and rotational motion of an extended body possessing multipolar moments. These moments couple with the tidal gravitational fields of other bodies, making the motion of the body under consideration very complicated. Simplification is possible if the body can be assumed spherically symmetric. We discuss the conditions under which this simplification can be afforded, and derive the equations of motion of spherically-symmetric bodies. These equations are solved in the case of the two-body problem, and we demonstrate the rich nature of the possible coordinate presentations of such a solution. The relativistic celestial mechanics of light particles (photons) propagating in a time-dependent gravitational field of an N-body system is addressed in Chapter 7. This is a primary subject of relativistic astrometry which became especially important for the analysis of space observations from the Hipparcos satellite in the early 1990s. New astrometric space missions, orders of magnitude more accurate than Hipparcos, for example, Gaia, SIM, JASMINE, and so on, will require even more complete developments. Additionally, relativistic effects play an important role in other areas of modern astronomy, such as, pulsar timing, very long baseline radio interferometry, cosmological gravitational lensing, and so on. High-precision measurements of gravitational light bending in the solar system are among the most crucial experimental tests of the general theory of relativity. Einstein predicted that the amount of light bending by the Sun is twice that

  7. Parametric derivation of the observable relativistic periastron advance for binary pulsars

    NASA Astrophysics Data System (ADS)

    Königsdörffer, Christian; Gopakumar, Achamveedu

    2006-02-01

    We compute the dimensionless relativistic periastron advance parameter k, which is measurable from the timing of relativistic binary pulsars. We present a new (general) method and employ for the computation the recently derived Keplerian-type parametric solution to the post-Newtonian (PN) accurate conservative dynamics of spinning compact binaries moving in eccentric orbits. The parametric solution and hence the parameter k are applicable for the cases of simple precession, namely, case (i), the binary consists of equal-mass compact objects, having two arbitrary spins, and case (ii), the binary consists of compact objects of arbitrary mass, where only one of them is spinning with an arbitrary spin. Our expression, for the cases considered, is in agreement with a more general formula for the 2PN accurate k, relevant for the relativistic double pulsar PSR J0737-3039, derived by Damour and Schäfer many years ago, using a different procedure.

  8. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  9. Relativistic optics of nondispersive media

    SciTech Connect

    Miron, R.; Zet, G.

    1995-09-01

    The relativistic optics of the nondispersive media endowed with the metric g{sub ij}(x) and with a nonlinear connection is studied. The d-connection relates the conformal and projective properties of the space-time. A post-Newtonian estimation for the metric g{sub ij} is also given. It is shown that the solar system tests impose a constraint on a combination of the post-Newtonian parameters describing the model.

  10. Thermodynamic and relativistic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Artamonov, A. A.; Plotnikov, E. M.

    2017-01-01

    Thermodynamic uncertainty relation (UR) was verified experimentally. The experiments have shown the validity of the quantum analogue of the zeroth law of stochastic thermodynamics in the form of the saturated Schrödinger UR. We have also proposed a new type of UR for the relativistic mechanics. These relations allow us to consider macroscopic phenomena within the limits of the ratio of the uncertainty relations for different physical quantities.

  11. Relativistic opacities for astrophysical applications

    DOE PAGES

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; ...

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less

  12. Relativistic opacities for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Fontes, C. J.; Fryer, C. L.; Hungerford, A. L.; Hakel, P.; Colgan, J.; Kilcrease, D. P.; Sherrill, M. E.

    2015-09-01

    We report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generated with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.

  13. Relativistic Binaries in Globular Clusters.

    PubMed

    Benacquista, Matthew J; Downing, Jonathan M B

    2013-01-01

    Galactic globular clusters are old, dense star systems typically containing 10(4)-10(6) stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  14. Relativistic covariance of Ohm's law

    NASA Astrophysics Data System (ADS)

    Starke, R.; Schober, G. A. H.

    2016-04-01

    The derivation of Lorentz-covariant generalizations of Ohm's law has been a long-term issue in theoretical physics with deep implications for the study of relativistic effects in optical and atomic physics. In this article, we propose an alternative route to this problem, which is motivated by the tremendous progress in first-principles materials physics in general and ab initio electronic structure theory in particular. We start from the most general, Lorentz-covariant first-order response law, which is written in terms of the fundamental response tensor χμ ν relating induced four-currents to external four-potentials. By showing the equivalence of this description to Ohm's law, we prove the validity of Ohm's law in every inertial frame. We further use the universal relation between χμ ν and the microscopic conductivity tensor σkℓ to derive a fully relativistic transformation law for the latter, which includes all effects of anisotropy and relativistic retardation. In the special case of a constant, scalar conductivity, this transformation law can be used to rederive a standard textbook generalization of Ohm's law.

  15. Relativistic opacities for astrophysical applications

    SciTech Connect

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; Hakel, Peter; Colgan, James Patrick; Kilcrease, David Parker; Sherrill, Manalo Edgar

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generated with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.

  16. MHD Equation of State with Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Gong, Zhigang; Däppen, Werner; Zejda, Ladislav

    2001-01-01

    The Mihalas-Däppen-Hummer (MHD) equation of state does not include the effect of relativistic partially degenerate electrons, although nonrelativistic partial degeneracy is taken into account. The discovery of a relativistic correction in helioseismology forces us to perform an appropriate upgrade of the MHD equation of state. We have adopted the method of J. M. Aparicio to evaluate the relativistic Fermi-Dirac functions. Our calculations confirm the validity of the approximation used, which works well for the weakly relativistic electrons under solar-center conditions. However, our results will also provide reliable thermodynamic quantities in the stronger relativistic regime as found in more massive stars. Since a particular feature of the original MHD papers was an explicit list of the adopted free energy and its first- and second-order analytical derivatives, we give the corresponding relativistic quantities in the Appendix.

  17. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  18. Relativistic Navigation: A Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    1996-01-01

    We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the

  19. Hydrogen atom in a strong magnetic field. II. Relativistic corrections for low-lying excited states

    NASA Astrophysics Data System (ADS)

    Poszwa, A.; Rutkowski, A.

    2004-02-01

    The highly accurate solution of the Schrödinger equation in the form of common Landau exponential factor multiplied by a power series in two variables, the sine of the cone angle and radial variable is completed by the first-order relativistic correction calculated within the framework of the relativistic direct perturbation theory (DPT). It is found that in contrast to behavior of relativistic corrections for the ground state and 2p-1(ms=-1/2) excited state, which change sign from negative to positive near B≈1011 G and B≈1010 G, respectively [Z. Chen and S. P. Goldman, Phys. Rev A 45, 1722 (1992)], the relativistic corrections for 2s0(ms=-1/2) and 2p0(ms=-1/2) excited states are negative for the magnetic field varying in range 0relativistic correction significantly mix nonrelativistic states the near-degenerate version of DPT is used. The avoided crossings of relativistic levels with μ=-1/2 and π=-1, evolving from field-free states with principal quantum numbers n=2,3,4 are presented.

  20. Relativistic radiation transport in dispersive media

    SciTech Connect

    Kichenassamy, S.; Krikorian, R.A.

    1985-10-15

    A general-relativistic radiative transfer equation in an isotropic, weakly absorbing, nonmagnetized dispersive medium is derived using the kinetic-theoretical approach and the relativistic Hamiltonian theory of geometrical optics in those media. It yields the generally accepted classical equation in the special-relativistic approximation and in stationary conditions. The influence of the gravitational field and of space-time variations of the refractive index n on the radiation distribution is made explicit in the case of spherical symmetry.

  1. Mesoscopic Superposition States in Relativistic Landau Levels

    SciTech Connect

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-09-21

    We show that a linear superposition of mesoscopic states in relativistic Landau levels can be built when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily superpositions of coherent states involving the particle orbital quanta in a well-defined mesoscopic regime. We demonstrate that these mesoscopic superpositions have a purely relativistic origin and disappear in the nonrelativistic limit.

  2. A relativistic correction to semiclassical charmonium

    NASA Astrophysics Data System (ADS)

    Weiss, J.

    1995-09-01

    It is shown that the relativistic linear potentials, introduced by the author within the particle à la Wheeler-Feynman direct-interaction (AAD) theory, applied to the semiclassically quantized charmonium, yield energy spectrum comparable to that of some known models. Using the expansion of the relativistic linear AAD potentials in powers ofc -1, the charmonium spectrum, given as a rule by Bohr-Sommerfeld quantization of circular orbits, is extended up to the second order of relativistic corrections.

  3. Relativistic Electron Wave Packets Carrying Angular Momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-01

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  4. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  5. Effect of Chaos on Relativistic Quantum Tunneling

    DTIC Science & Technology

    2012-06-01

    Effect of chaos on relativistic quantum tunneling This article has been downloaded from IOPscience. Please scroll down to see the full text article...of chaos on relativistic quantum tunneling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...tunneling dynamics even in the relativistic quantum regime. Similar phenomena have been observed in graphene. A physical theory is developed to

  6. Relativistic Effects Around Black Holes: Smearing Absorption Edges

    NASA Technical Reports Server (NTRS)

    Zhang, X. L.; Feng, Y. X.; Zhang, S. N.; Yao, Y.

    2002-01-01

    Broad iron absorption structures have been observed in the X-ray spectra of both AGNs and black hole X-ray binaries (BHXBs). A correctly modeled absorption structure can reveal the physical condition of the source, help to determine the continuum spectra and thus help to estimate other spectral lifes more accurately. The absorption structures are usually thought to be caused by the reflection of X-rays by the accretion disks around the central black holes, and the broadening can be a ttributed to the ionization states of the disk and relativistic effects.

  7. A finite Zitterbewegung model for relativistic quantum mechanics

    SciTech Connect

    Noyes, H.P.

    1990-02-19

    Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.

  8. Finite Element Method for Capturing Ultra-relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2003-01-01

    While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.

  9. Range of validity for perturbative treatments of relativistic sum rules

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2003-10-01

    The range of validity of perturbative calculations of relativistic sum rules is investigated by calculating the second-order relativistic corrections to the Bethe sum rule and its small momentum limit, the Thomas-Reiche-Kuhn (TRK) sum rule. For the TRK sum rule and atomic systems, the second-order correction is found to be less than 0.5% up to about Z=70. The total relativistic corrections should then be accurate at least through this range of Z, and probably beyond this range if the second-order terms are included. For Rn (Z=86), however, the second-order corrections are nearly 1%. The total corrections to the Bethe sum rule are largest at small momentum, never being significantly larger than the corresponding corrections to the TRK sum rule. The first-order corrections to the Bethe sum rule also give better than 0.5% accuracy for Z<70, and inclusion of the second-order corrections should extend this range, as well.

  10. Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement

    SciTech Connect

    Anninos, P; Fragile, P C; Salmonson, J D

    2005-05-06

    A new code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. it provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threated oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. A number of tests are presented to demonstrate robustness of the numerical algorithms and adaptive mesh framework over a wide spectrum of problems, boosts, and astrophysical applications, including relativistic shock tubes, shock collisions, magnetosonic shocks, Alfven wave propagation, blast waves, magnetized Bondi flow, and the magneto-rotational instability in Kerr black hole spacetimes.

  11. Gravitational and relativistic deflection of X-ray superradiance

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Te; Ahrens, Sven

    2015-03-01

    Einstein predicted that clocks at different altitudes tick at various rates under the influence of gravity. This effect has been observed using 57Fe Mössbauer spectroscopy over an elevation of 22.5 m (ref. 1) or by comparing accurate optical clocks at different heights on a submetre scale. However, challenges remain in finding novel methods for the detection of gravitational and relativistic effects on more compact scales. Here, we investigate a scheme that potentially allows for millimetre- to submillimetre-scale studies of the gravitational redshift by probing a nuclear crystal with X-rays. Also, a rotating crystal can force interacting X-rays to experience inhomogeneous clock tick rates within it. We find that an association of gravitational redshift and special-relativistic time dilation with quantum interference is manifested by a time-dependent deflection of X-rays. The scheme suggests a table-top solution for probing gravitational and special-relativistic effects, which should be within the reach of current experimental technology.

  12. Relabeling symmetry in relativistic fluids and plasmas

    NASA Astrophysics Data System (ADS)

    Kawazura, Yohei; Yoshida, Zensho; Fukumoto, Yasuhide

    2014-10-01

    The conservation of the recently formulated relativistic canonical helicity is derived from Noether's theorem with the fluid elements' relabeling symmetry. Upon Eulerianizing the Noether current, the purely spatial volume integral on the Lagrangian coordinates is mapped to a space-time mixed three-dimensional integral on the four-dimensional Eulerian coordinates. The relativistic conservation law in the Eulerian coordinates is no longer represented by any divergence-free current. We have also formulated a relativistic action principle of MHD on the Lagrangian coordinates, and have derived the relativistic MHD cross helicity. Work supported by Grant-in-Aid for JSPS Fellows 241010.

  13. Dissipation in Relativistic Pair-Plasma Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  14. Dissipation in relativistic pair-plasma reconnection

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji

    2007-11-15

    An investigation into the relativistic dissipation in magnetic reconnection is presented. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. A set of numerical simulations is analyzed, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For antiparallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  15. Relativistic and non-relativistic solitons in plasmas

    NASA Astrophysics Data System (ADS)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  16. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency.

    PubMed

    Stark, David J; Bhattacharjee, Chinmoy; Arefiev, Alexey V; Toncian, Toma; Hazeltine, R D; Mahajan, S M

    2015-07-10

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. For an anisotropic electron distribution, propagation characteristics, like the critical density, will depend on the polarization of the electromagnetic wave. Despite the onset of the Weibel instability in such plasmas, the anisotropy can persist long enough to affect laser propagation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization.

  17. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  18. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.

    2015-11-01

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.

  19. Relativistic quantum private database queries

    NASA Astrophysics Data System (ADS)

    Sun, Si-Jia; Yang, Yu-Guang; Zhang, Ming-Ou

    2015-04-01

    Recently, Jakobi et al. (Phys Rev A 83, 022301, 2011) suggested the first practical private database query protocol (J-protocol) based on the Scarani et al. (Phys Rev Lett 92, 057901, 2004) quantum key distribution protocol. Unfortunately, the J-protocol is just a cheat-sensitive private database query protocol. In this paper, we present an idealized relativistic quantum private database query protocol based on Minkowski causality and the properties of quantum information. Also, we prove that the protocol is secure in terms of the user security and the database security.

  20. On the relativistic anisotropic configurations

    NASA Astrophysics Data System (ADS)

    Shojai, F.; Kohandel, M.; Stepanian, A.

    2016-06-01

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.

  1. Einstein Toolkit for Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  2. Relativistic shock spectra: A prediction

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1994-01-01

    I argue that particles heated by relativistic shocks should assume an equilibrium energy distribution. This leads to a synchrotron spectrum F(sub nu) varies as nu(sup 1/3) up to approximately the critical frequency nu(sub 0) of an electron with the mean electron energy. Application to gamma ray bursts (GRB's) implies that a burst with 10(exp -5) erg/(sq cm s) of soft gamma-rays and h(nu(sub 0)) = 300 KeV should be about 18th magnitude in visible light and a few micro-Jy at 1 GHz (less if self-absorbed).

  3. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  4. Arbitrarily Long Relativistic Bit Commitment

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2015-12-01

    We consider the recent relativistic bit commitment protocol introduced by Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015)] and present a new security analysis against classical attacks. In particular, while the initial complexity of the protocol scales double exponentially with the commitment time, our analysis shows that the correct dependence is only linear. This has dramatic implications in terms of implementation: in particular, the commitment time can easily be made arbitrarily long, by only requiring both parties to communicate classically and perform efficient classical computation.

  5. Action principle for relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    D'Avignon, Eric; Morrison, P. J.; Pegoraro, F.

    2015-04-01

    A covariant action principle for ideal relativistic magnetohydrodynamics in terms of natural Eulerian field variables is given. This is done by generalizing the covariant Poisson bracket theory of Marsden et al. [Ann. Phys. 169, 29 (1986)], which uses a noncanonical bracket to effect constrained variations of an action functional. Various implications and extensions of this action principle are also discussed. Two significant byproducts of this formalism are the introduction of a new divergence-free 4-vector variable for the magnetic field, and a new Lie-dragged form for the theory.

  6. Relativistic Sommerfeld Low Temperature Expansion

    NASA Astrophysics Data System (ADS)

    Lourenço, O.; Dutra, M.; Delfino, A.; Sá Martins, J. S.

    We derive a relativistic Sommerfeld expansion for thermodynamic quantities in many-body fermionic systems. The expansion is used to generate the equation of state of the Walecka model and its isotherms. We find that these results are in good agreement with numerical calculations, even when the expansion is truncated at its lowest order, in the low temperature regime, defined by T/xf ≪ 1. Although the interesting region near the liquid-gas phase transition is excluded by this criterion, the expansion may still find usefulness in the study of very cold nuclear matter systems, such as neutron stars.

  7. Thermodynamics of polarized relativistic matter

    NASA Astrophysics Data System (ADS)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  8. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  9. Predicting the relativistic periastron advance of a binary without curving spacetime

    NASA Astrophysics Data System (ADS)

    Friedman, Y.; Livshitz, S.; Steiner, J. M.

    2017-01-01

    Relativistic Newtonian dynamics, the simple model used previously for predicting accurately the anomalous precession of Mercury, is now applied to predict the periastron advance of a binary. The classical treatment of a binary as a two-body problem is modified to account for the influence of the gravitational potential on spacetime. Without curving spacetime, the model predicts the identical equation for the relativistic periastron advance as the post-Newtonian approximation of the general relativity formalism thereby providing further substantiation of this model.

  10. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  11. Einstein Never Approved of Relativistic Mass

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  12. Relativistic Few-Body Hadronic Physics Calculations

    SciTech Connect

    Polyzou, Wayne

    2016-06-20

    The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In addition to computing bound state

  13. 24-Hour Relativistic Bit Commitment

    NASA Astrophysics Data System (ADS)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-01

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  14. Are relativistic jets monoparametric engines?

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Meyer, E. T.; Fossati, G.; Lister, M. L.

    We adopt as a working hypothesis that relativistic jets are essentially mono-parametric entities, and that their physical properties are a function of a single physical parameter, the same way the physical properties of main sequence stars are mainly a function of the star mass. We propose that the physical parameter is the jet kinetic power, and we use as a proxy for this quantity the low frequency extended radio luminosity (LFERL), an orientation insensitive quantity. We discuss the consequences of this hypothesis for the collective properties of relativistic jets and we show that a blazar sequence should spontaneously emerge on the peak frequency vs luminosity plot as the locus of those sources that are well aligned to the observer's line of sight. We also show that the sources of the same LFERL should form tracks that start from a location on the blazar sequence and move to lower luminosities and peak frequencies in a way that encodes information about the emitting plasma energetics and kinematics and velocity gradients, as well as about the inverse Compton (IC) emission seed photons. We are currently working on collecting the observations that will allow us to put this idea to the test.

  15. Single electron relativistic clock interferometer

    NASA Astrophysics Data System (ADS)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  16. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  17. Electron Correlation in 4-Component Relativistic Calculations

    NASA Technical Reports Server (NTRS)

    Visscher, Luuk; Arnold, James O. (Technical Monitor)

    1994-01-01

    The full 4-component Dirac-Coulomb equation can nowadays be used in molecular calculations, The first step in solving this relativistic many-electron equation usually consists of solving the closed or open-shell Diarc-Fock equations. Like in non-relativistic calculations the outcome does not account for the effects of electron correlation. This can in principle be remedied by developing relativistic variants of electron correlation methods like Configuration Interaction or Coupled Cluster. In this talk the differences and similarities of such relativistic approaches as compared to non-relativistic methods will be reviewed. Results of Configuration Interaction calculations on the PtH molecule and on the MeF(sub 6, sup 2-) (Me= Co, Rh, Ir) complexes will be presented to give an impression of the kind of results that currently can be obtained.

  18. Simulations of Dynamic Relativistic Magnetospheres

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle Patrick

    Neutron stars and black holes are generally surrounded by magnetospheres of highly conducting plasma in which the magnetic flux density is so high that hydrodynamic forces are irrelevant. In this vanishing-inertia—or ultra-relativistic—limit, magnetohydrodynamics becomes force-free electrodynamics, a system of equations comprising only the magnetic and electric fields, and in which the plasma response is effected by a nonlinear current density term. In this dissertation I describe a new pseudospectral simulation code, designed for studying the dynamic magnetospheres of compact objects. A detailed description of the code and several numerical test problems are given. I first apply the code to the aligned rotator problem, in which a star with a dipole magnetic field is set rotating about its magnetic axis. The solution evolves to a steady state, which is nearly ideal and dissipationless everywhere except in a current sheet, or magnetic field discontinuity, at the equator, into which electromagnetic energy flows and is dissipated. Magnetars are believed to have twisted magnetospheres, due to internal magnetic evolution which deforms the crust, dragging the footpoints of external magnetic field lines. This twisting may be able to explain both magnetars' persistent hard X-ray emission and their energetic bursts and flares. Using the new code, I simulate the evolution of relativistic magnetospheres subjected to slow twisting through large angles. The field lines expand outward, forming a strong current layer; eventually the configuration loses equilibrium and a dynamic rearrangement occurs, involving large-scale rapid magnetic reconnection and dissipation of the free energy of the twisted magnetic field. When the star is rotating, the magnetospheric twisting leads to a large increase in the stellar spin-down rate, which may take place on the long twisting timescale or in brief explosive events, depending on where the twisting is applied and the history of the system

  19. Generalized Ohm's law for relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Kandus, A.; Tsagas, C. G.

    2008-04-01

    We generalize the relativistic expression of Ohm's law by studying a multifluid system of charged species using the 1 + 3 covariant formulation of general relativistic electrodynamics. This is done by providing a fully relativistic, fully non-linear propagation equation for the spatial component of the electric 4-current. Our analysis proceeds along the lines of the non-relativistic studies and extends previous relativistic work on cold plasmas. Exploiting the compactness and transparency of the covariant formalism, we provide a direct comparison with the standard Newtonian versions of Ohm's law and identify the relativistic corrections in an unambiguous way. The generalized expression of Ohm's law is initially given relative to an arbitrary observer and for a multicomponent relativistic charged medium. Then, the law is written with respect to the Eckart frame and for a hot two-fluid plasma with zero total charge. Finally, we apply our analysis to a cold proton-electron plasma and recover the well-known magnetohydrodynamic expressions. In every step, we discuss the approximations made and identify familiar effects, like the Biermann battery and the Hall effect.

  20. Relativistic effects in Lyman-α forest

    SciTech Connect

    Iršič, Vid; Dio, Enea Di; Viel, Matteo E-mail: enea.didio@oats.inaf.it

    2016-02-01

    We present the calculation of the Lyman-alpha (Lyman-α) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range (z=2−5). Furthermore, we show a comprehensive application of our calculations to the Quasar-Lyman-α cross-correlation function. Our results indicate that the signal of relativistic effects are sizeable at Baryonic Acoustic Oscillation (BAO) scale mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross-correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considering cross-correlations between tracers with very different biases, and should be included in the data analysis of the current and future surveys. Moreover, the idea presented in this paper is highly complementary to other techniques and observables trying to isolate the effect of the relativistic corrections and thus test the validity of the theory of gravity beyond the Newtonian regime.

  1. Diagnosing particle acceleration in relativistic jets

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Baring, Matthew G.; Liang, Edison P.; Summerlin, Errol J.; Fu, Wen; Smith, Ian A.; Roustazadeh, Parisa

    2015-03-01

    The high-energy emission from blazars and other relativistic jet sources indicates that electrons are accelerated to ultra-relativistic (GeV - TeV) energies in these systems. This paper summarizes recent results from numerical studies of two fundamentally different particle acceleration mechanisms potentially at work in relativistic jets: Magnetic-field generation and relativistic particle acceleration in relativistic shear layers, which are likely to be present in relativistic jets, is studied via Particle-in-Cell (PIC) simulations. Diffusive shock acceleration at relativistic shocks is investigated using Monte-Carlo simulations. The resulting magnetic-field configurations and thermal + non-thermal particle distributions are then used to predict multi-wavelength radiative (synchrotron + Compton) signatures of both acceleration scenarios. In particular, we address how anisotropic shear-layer acceleration may be able to circumvent the well-known Lorentz-factor crisis, and how the self-consistent evaluation of thermal + non-thermal particle populations in diffusive shock acceleration simulations provides tests of the bulk Comptonization model for the Big Blue Bump observed in the SEDs of several blazars.

  2. GRIM: General Relativistic Implicit Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Foucart, Francois; Gammie, Charles F.

    2017-02-01

    GRIM (General Relativistic Implicit Magnetohydrodynamics) evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. GRIM, which runs on CPUs as well as on GPUs, combines time evolution and primitive variable inversion needed for conservative schemes into a single step using only the residuals of the governing equations as inputs. This enables the code to be physics agnostic as well as flexible regarding time-stepping schemes.

  3. Magnetohydrodynamic production of relativistic jets.

    PubMed

    Meier, D L; Koide, S; Uchida, Y

    2001-01-05

    A number of astronomical systems have been discovered that generate collimated flows of plasma with velocities close to the speed of light. In all cases, the central object is probably a neutron star or black hole and is either accreting material from other stars or is in the initial violent stages of formation. Supercomputer simulations of the production of relativistic jets have been based on a magnetohydrodynamic model, in which differential rotation in the system creates a magnetic coil that simultaneously expels and pinches some of the infalling material. The model may explain the basic features of observed jets, including their speed and amount of collimation, and some of the details in the behavior and statistics of different jet-producing sources.

  4. Relativistic entanglement and Bell's inequality

    SciTech Connect

    Ahn, Doyeol; Moon, Young Hoon; Lee, Hyuk-jae; Hwang, Sung Woo

    2003-01-01

    In this paper, the Lorentz transformation of entangled Bell states seen by a moving observer is studied. The calculated Bell observable for four joint measurements turns out to give a universal value, ++-=(2/{radical}(2-{beta}{sup 2}))(1+{radical}(1-{beta}{sup 2})), where a,b are the relativistic spin observables derived from the Pauli-Lubanski pseudovector and {beta}=(v/c). We found that the degree of violation of the Bell's inequality is decreasing with increasing velocity of the observer and Bell's inequality is satisfied in the ultrarelativistic limit where the boost speed reaches the speed of light.

  5. Localization scheme for relativistic spinors

    NASA Astrophysics Data System (ADS)

    Ciupka, J.; Hanrath, M.; Dolg, M.

    2011-12-01

    A new method to determine localized complex-valued one-electron functions in the occupied space is presented. The approach allows the calculation of localized orbitals regardless of their structure and of the entries in the spinor coefficient matrix, i.e., one-, two-, and four-component Kramers-restricted or unrestricted one-electron functions with real or complex expansion coefficients. The method is applicable to localization schemes that maximize (or minimize) a functional of the occupied spinors and that use a localization operator for which a matrix representation is available. The approach relies on the approximate joint diagonalization (AJD) of several Hermitian (symmetric) matrices which is utilized in electronic signal processing. The use of AJD in this approach has the advantage that it allows a reformulation of the localization criterion on an iterative 2 × 2 pair rotating basis in an analytical closed form which has not yet been described in the literature for multi-component (complex-valued) spinors. For the one-component case, the approach delivers the same Foster-Boys or Pipek-Mezey localized orbitals that one obtains from standard quantum chemical software, whereas in the multi-component case complex-valued spinors satisfying the selected localization criterion are obtained. These localized spinors allow the formulation of local correlation methods in a multi-component relativistic framework, which was not yet available. As an example, several heavy and super-heavy element systems are calculated using a Kramers-restricted self-consistent field and relativistic two-component pseudopotentials in order to investigate the effect of spin-orbit coupling on localization.

  6. Baryon Loaded Relativistic Blast Waves in Supernovae

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan; Ray, Alak

    2011-03-01

    We provide a new analytic blast wave solution which generalizes the Blandford-McKee solution to arbitrary ejecta masses and Lorentz factors. Until recently relativistic supernovae have been discovered only through their association with long-duration gamma-ray bursts (GRBs). The blast waves of such explosions are well described by the Blandford-McKee (in the ultra-relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows, as the ejecta mass is negligible in comparison to the swept-up mass. The recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, opens up the possibility of highly baryon loaded, mildly relativistic outflows which remains in nearly free-expansion phase during the radio afterglow. In this work, we consider a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating adiabatically due to its collision with the pre-explosion circumstellar wind profile of the progenitor. We compute the synchrotron emission from relativistic electrons in the shock amplified magnetic field. This models the radio emission from the circumstellar interaction of a CEDEX. We show that this model explains the observed radio evolution of the prototypical SN 2009bb and demonstrate that SN 2009bb had a highly baryon loaded, mildly relativistic outflow. We discuss the effect of baryon loading on the dynamics and observational manifestations of a CEDEX. In particular, our predicted angular size of SN 2009bb is consistent with very long baseline interferometric (VLBI) upper limits on day 85, but is presently resolvable on VLBI angular scales, since the relativistic ejecta is still in the nearly free-expansion phase.

  7. Gauge origin independent calculations of molecular magnetisabilities in relativistic four-component theory

    NASA Astrophysics Data System (ADS)

    Iliaš, Miroslav; Jensen, Hans Jørgen Aa.; Bast, Radovan; Saue, Trond

    2013-07-01

    The use of magnetic-field dependent London atomic orbitals, also called gauge including atomic orbitals, is known to be an efficient choice for accurate non-relativistic calculations of magnetisabilities. In this work, the appropriate formulas were extended and implemented in the framework of the four-component relativistic linear response method at the self-consistent field single reference level. Benefits of employing the London atomic orbitals in relativistic calculations are illustrated with Hartree-Fock wave functions on the XF3 (X = N, P, As, Sb, Bi) series of molecules. Significantly better convergence of magnetisabilities with respect to the basis set size is observed compared to calculations employing a common gauge origin. In fact, it is mandatory to use London atomic orbitals unless you want to use ridiculously large basis sets. Relativistic effects on magnetisabilities are found to be quite small (<5%) for this particular set of molecules, but should be investigated on a larger set of molecules. We emphasise the breakdown of the connection between the paramagnetic contribution to magnetisabilities and rotational g tensors in the relativistic domain and discuss its origin. Finally, we visualise the magnetisability density which shows markedly atomic features evocative of Pascal's rules.

  8. Relativistic contributions to single and double core electron ionization energies of noble gases.

    PubMed

    Niskanen, J; Norman, P; Aksela, H; Agren, H

    2011-08-07

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of ∼4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  9. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    PubMed

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  10. Relativistic klystron research for linear colliders

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab.

  11. Analytic models of relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. V.

    2015-06-01

    We present not a literature review but a description, as detailed and consistent as possible, of two analytic models of disk accretion onto a rotating black hole: a standard relativistic disk and a twisted relativistic disk. Although one of these models is older than the other, both are of topical interest for black hole studies. The treatment is such that the reader with only a limited knowledge of general relativity and relativistic hydrodynamics, with little or no use of additional sources, can gain insight into many technical details lacking in the original papers.

  12. Relativistic corrections to a generalized sum rule

    NASA Astrophysics Data System (ADS)

    Sinky, H.; Leung, P. T.

    2006-09-01

    Relativistic corrections to a previously established generalized sum rule are obtained using the Foldy-Wouthysen transformation. This sum rule derived previously by Wang [Phys. Rev. A 60, 262 (1999)] for a nonrelativistic system contains both the well-known Thomas-Reiche-Kuhn and Bethe sum rules, for which relativistic corrections have been obtained in the literature. Our results for the generalized formula will be applied to recover several results obtained previously in the literature, as well as to another sum rule whose relativistic corrections will be obtained.

  13. Relativistic rotation curve for cosmological structures

    NASA Astrophysics Data System (ADS)

    Razbin, Mohammadhosein; Firouzjaee, Javad T.; Mansouri, Reza

    2014-08-01

    Using a general relativistic exact model for spherical structures in a cosmological background, we have put forward an algorithm to calculate the test particle geodesics within such cosmological structures in order to obtain the velocity profile of stars or galaxies. The rotation curve thus obtained is based on a density profile and is independent of any mass definition which is not unique in general relativity. It is then shown that this general relativistic rotation curves for a toy model and a NFW density profile are almost identical to the corresponding Newtonian one, although the general relativistic masses may be quite different.

  14. The relativistic Black-Scholes model

    NASA Astrophysics Data System (ADS)

    Trzetrzelewski, Maciej

    2017-02-01

    The Black-Scholes equation, after a certain coordinate transformation, is equivalent to the heat equation. On the other hand the relativistic extension of the latter, the telegraphers equation, can be derived from the Euclidean version of the Dirac equation. Therefore, the relativistic extension of the Black-Scholes model follows from relativistic quantum mechanics quite naturally. We investigate this particular model for the case of European vanilla options. Due to the notion of locality incorporated in this way, one finds that the volatility frown-like effect appears when comparing to the original Black-Scholes model.

  15. Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics

    SciTech Connect

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2011-06-15

    A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics, where the world-lines of the particles are parametrized in terms of the Fokker-Pryce center of inertia and of Wigner-covariant relative 3-coordinates inside the instantaneous Wigner 3-spaces, and where there is a decoupled (non-covariant and non-local) canonical relativistic center of mass. This approach: (a) allows us to make a consistent quantization in every inertial frame; (b) leads to a description of both bound and scattering states; (c) offers new insights on the relativistic localization problem; (d) leads to a non-relativistic limit with a Hamilton-Jacobi treatment of the Newton center of mass; (e) clarifies non-local aspects (spatial non-separability) of relativistic entanglement connected with Lorentz signature and not present in its non-relativistic treatment.

  16. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-12-31

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  17. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-01-01

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  18. Pseudospectral approach to relativistic molecular theory.

    PubMed

    Nakajima, Takahito; Hirao, Kimihiko

    2004-08-22

    The efficient relativistic Dirac-Hartree-Fock (DHF) and Dirac-Kohn-Sham (DKS) methods are proposed by an application of the pseudospectral (PS) approach. The present PS-DHF/DKS method is a relativistic extension of the PS-HF/KS method of Friesner, though we aim at higher numerical accuracy by elimination of superfluous arbitrariness. The relativistic PS-DHF/DKS method is implemented into our REL4D programs. Several PS applications to molecular systems show that the relativistic PS-DHF/DKS approach is more efficient than the traditional approach without a loss of accuracy. The present PS-DKS method successfully assigns and predicts the photoelectron spectra of hexacarbonyl complexes of tungsten and seaborgium theoretically.

  19. Coherent states for the relativistic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Aldaya, Victor; Guerrero, J.

    1995-01-01

    Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.

  20. Thermal Properties of Degenerate Relativistic Quantum Gases

    NASA Astrophysics Data System (ADS)

    Homorodean, Laurean

    We present the concentration-temperature phase diagram, characteristic functions, thermal equation of state and heat capacity at constant volume for degenerate ideal gases of relativistic fermions and bosons. The nonrelativistic and ultrarelativistic limits of these laws are also discussed.

  1. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    SciTech Connect

    MCLERRAN,L.

    1999-10-29

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities.

  2. Entropic formulation of relativistic continuum mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    An entropic formulation of relativistic continuum mechanics is developed in the Landau-Lifshitz frame. We introduce two spatial scales, one being the small scale representing the linear size of each material particle and the other the large scale representing the linear size of a large system which consists of material particles and is to linearly regress to the equilibrium. We propose a local functional which is expected to represent the total entropy of the larger system and require the entropy functional to be maximized in the process of linear regression. We show that Onsager's original idea on linear regression can then be realized explicitly as current conservations with dissipative currents in the desired form. We demonstrate the effectiveness of this formulation by showing that one can treat a wide class of relativistic continuum materials, including standard relativistic viscous fluids and relativistic viscoelastic materials.

  3. Relativistic Langevin equation for runaway electrons

    NASA Astrophysics Data System (ADS)

    Mier, J. A.; Martin-Solis, J. R.; Sanchez, R.

    2016-10-01

    The Langevin approach to the kinetics of a collisional plasma is developed for relativistic electrons such as runaway electrons in tokamak plasmas. In this work, we consider Coulomb collisions between very fast, relativistic electrons and a relatively cool, thermal background plasma. The model is developed using the stochastic equivalence of the Fokker-Planck and Langevin equations. The resulting Langevin model equation for relativistic electrons is an stochastic differential equation, amenable to numerical simulations by means of Monte-Carlo type codes. Results of the simulations will be presented and compared with the non-relativistic Langevin equation for RE electrons used in the past. Supported by MINECO (Spain), Projects ENE2012-31753, ENE2015-66444-R.

  4. Einstein Never Approved of Relativistic Mass

    NASA Astrophysics Data System (ADS)

    Hecht, Eugene

    2009-09-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's speed-independent. This paper explores the history of "relativistic mass," emphasizing Einstein's public role and private thoughts. We show how the concept of speed-dependent mass mistakenly evolved out of a tangle of ideas despite Einstein's prescient reluctance. Along the way there will be previously unrevealed surprises (e.g., Einstein never derived the expression for "relativistic mass," and privately disapproved of it).

  5. Relativistic klystron research at SLAC and LLNL

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Barletta, W.A.; Birx, D.L.; Boyd, J.K.; Houck, T.; Westenskow, G.A.; Yu, S.S.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab.

  6. Recording of relativistic particles in thin scintillators

    SciTech Connect

    Tolstukhin, I A.; Somov, Alexander S.; Somov, S. V.; Bolozdynya, A. I.

    2014-11-01

    Results of investigating an assembly of thin scintillators and silicon photomultipliers for registering relativistic particles with the minimum ionization are presented. A high efficiency of registering relativistic particles using an Ej-212 plastic scintillator, BSF-91A wavelength-shifting fiber (Saint-Gobain), and a silicon photomultiplier (Hamamtsu) is shown. The measurement results are used for creating a scintillation hodoscope of the magnetic spectrometer for registering γ quanta in the GlueX experiment.

  7. Mass versus relativistic and rest masses

    NASA Astrophysics Data System (ADS)

    Okun, L. B.

    2009-05-01

    The concept of relativistic mass, which increases with velocity, is not compatible with the standard language of relativity theory and impedes the understanding and learning of the theory by beginners. The same difficulty occurs with the term rest mass. To get rid of relativistic mass and rest mass it is appropriate to replace the equation E =mc2 by the true Einstein's equation E0=mc2, where E0 is the rest energy and m is the mass.

  8. Intense EM filamentation in relativistic hot plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Qiang-Lin; Chen, Zhong-Ping; Mahajan, Swadesh M.

    2017-03-01

    Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The "relativistic" filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  9. BL Lac objects and relativistic beaming

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1986-01-01

    General arguments for relativistic beaming in BL Lac objects are reviewed. These include overproduction of X-rays and fast time variability. Comments are made about the relationship of the X-ray continuum to that at lower frequencies, and observational evidence for and against continuum radiation being relativistically beamed is discussed. Finally, there is discussion of the influence of geometrical effects on predictions for time variability as a function of frequency in the context of inhomogeneous synchrotron self-Compton jet models.

  10. Relativistic uranium beams - the Bevalac experience

    SciTech Connect

    Alonso, J.

    1983-03-01

    This paper will address areas where relativistic heavy ion accelerators differ from proton facilities. Salient areas are: (1) the specialized injectors for heavy ions; ion sources, structures for very low charge-to-mass ratio (q/A) ions, and stripper optimization; (2) special requirements for the synchrotron ring; ultrahigh vacuum, flexible controls and instrumentation. These areas are discussed in the context of the Bevalac, as well as our idea for a next-generation relativistic heavy ion accelerator.

  11. Relativistically modulational instability by strong Langmuir waves

    SciTech Connect

    Liu, X. L.; Liu, S. Q.; Li, X. Q.

    2012-09-15

    Based on the set of nonlinear coupling equations, which has considered the relativistic effects of electrons, modulational instability by strong Langmuir waves has been investigated in this paper. Both the characteristic scale and maximum growth rate of the Langmuir field will enhance with the increase in the electron relativistic effect. The numerical results indicate that longitudinal perturbations induce greater instability than transverse perturbations do, which will lead to collapse and formation of the pancake-like structure.

  12. RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    SciTech Connect

    Zhang, Wei-Qun; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study

    2005-06-06

    The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.

  13. Convexity and symmetrization in relativistic theories

    NASA Astrophysics Data System (ADS)

    Ruggeri, T.

    1990-09-01

    There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.

  14. Relabeling symmetry in relativistic fluids and plasmas

    NASA Astrophysics Data System (ADS)

    Kawazura, Yohei; Yoshida, Zensho; Fukumoto, Yasuhide

    2014-11-01

    The conservation of the recently formulated relativistic canonical helicity (Yoshida et al 2014 J. Math. Phys. 55 043101) is derived from Noether's theorem by constructing an action principle on the relativistic Lagrangian coordinates (we obtain general cross helicities that include the helicity of the canonical vorticity). The conservation law is, then, explained by the relabeling symmetry pertinent to the Lagrangian label of fluid elements. Upon Eulerianizing the Noether current, the purely spatial volume integral on the Lagrangian coordinates is mapped to a space-time mixed three-dimensional integral on the four-dimensional Eulerian coordinates. The relativistic conservation law in the Eulerian coordinates is no longer represented by any divergence-free current; hence, it is not adequate to regard the relativistic helicity (represented by the Eulerian variables) as a Noether charge, and this stands the reason why the ‘conventional helicity’ is no longer a constant of motion. We have also formulated a relativistic action principle of magnetohydrodynamics (MHD) on the Lagrangian coordinates, and have derived the relativistic MHD cross helicity.

  15. Detonation waves in relativistic hydrodynamics

    SciTech Connect

    Cissoko, M. )

    1992-02-15

    This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

  16. The Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  17. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    SciTech Connect

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  18. Relativistic Dipole Matrix Element Zeros

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2002-05-01

    There is a special class of relativistic high energy dipole matrix element zeros (RZ), whose positions with respect to photon energy ω , only depend on the bound state l quantum number according to ω^0=mc^2/(l_b+1) (independent of primary quantum number n, nuclear charge Z, central potential V and dipole retardation). These RZ only occur in (n,l_b,j_b)arrow (ɛ , l_b+1,j_b) transitions such as ns_1/2arrow ɛ p_1/2; np_3/2arrow ɛ d_3/2: nd_5/2arrow ɛ f_5/2 etc. The nonrelativistic limit of these matrix elements can be established explicitly in the Coulomb case. Within the general matrix element formalism (such as that in [1]); when |κ | is substituted for γ in analytic expressions for matrix elements, the zeros remain, but ω^0 now becomes dependent on n and Z. When the reduction to nonrelativistic form is completed by application of the low energy approximation ω mc^2 mc^2, the zeros disappear. This nonzero behavior was noted in nonrelativistic dipole Coulomb matrix elements by Fano and Cooper [2] and later proven by Oh and Pratt[3]. (J. H. Scofield, Phys. Rev. A 40), 3054 (1989 (U. Fano and J. W. Cooper, Rev. Mod. Phys. 40), 441 (1968). (D. Oh and R. H. Pratt, Phys. Rev. A 34), 2486 (1986); 37, 1524 (1988); 45, 1583 (1992).

  19. Causal Categories: Relativistically Interacting Processes

    NASA Astrophysics Data System (ADS)

    Coecke, Bob; Lal, Raymond

    2013-04-01

    A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a causal category. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.

  20. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    SciTech Connect

    Duffell, Paul C.; MacFadyen, Andrew I. E-mail: macfadyen@nyu.edu

    2011-12-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluids on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.

  1. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).

  2. Relativistic Particle-In-Cell Simulations of Particle Accleration in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Hartmann, D. H.; Fishman, J. F.

    2008-01-01

    Highly accelerated particles are observed in astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), microquasars, and Gamma-Ray Bursts (GRBs). Particle-In-Cell (PIC) simulations of relativistic electron-ion and electron-positron jets injected into a stationary medium show that efficient acceleration occurs downstream in the jet. In collisionless relativistic shocks particle acceleration is due to plasma waves and their associated instabilities, e.g., the Buneman instability, other two-stream instabilities, and the Weibel (filamentation) instability. Simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. The instability depends on strength and direction of the magnetic field. Particles in relativistic jets may be accelerated in a complicated dynamics of relativistic jets with magnetic field. We present results of our recent PIC simulations.

  3. Diskoseismology: Probing relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Nowak, Michael Allen

    1992-08-01

    Helioseismology has provided a wealth of information about the structure of the solar atmosphere. Little is known, however, about the structure of accretion disks that are thought to exist around black holes and neutron stars. In this thesis we present calculations of modes that are trapped in thin Keplerian accretion disks. We hope to use observations of thes modes to elucidate the structure of the inner relativistic regions of accretion disks. Our calculations assume that the thin disk is terminated by an innermost stable orbit, as would occur around a slowly rotating black hole or weakly magnetized compact neutron star. The dominant relativistic effects, which allow modes to be trapped within the inner region of the disk, are approximated via a modified Newtonian potential. Using the Lagrangian formulation of Friedman and Schutz, we develop a general formalism for investigating the adiabatic oscillations of arbitrary unperturbed disk models. First we consider the special case of acoustic waves in disks with isothermal atmospheres. Next we describe the Lagrangian perturbation vectors in terms of the derivatives of a scalar potential, as has been done by Ipser and Lindblom. Using this potential, we derive a single partial differential equation governing the oscillations of a disk. The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall into two main classes which are analogous to the p-modes and g-modes in the sun. Specifically we use the potential formalism to compute the g-modes for disks with isothermal atmospheres. Physical arguments show that both the p-modes and g-modes belong to the same family of modes as the p-modes and g-modes in the sun, just viewed in a different parameter regime. With the aid of the Lagrangian formalism we consider possible growth or damping mechanisms and compute the (assumed) relatively small rates of growth or damping of the modes. Specifically, we consider gravitational radiation reaction and

  4. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  5. Towards the island of stability with relativistic energy density functionals

    SciTech Connect

    Prassa, V.; Niksic, T.; Lalazissis, G. A.; Vretenar, D.

    2012-10-20

    Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. Modern semi-empirical functionals, adjusted to the nuclear matter equation of state and to empirical masses of deformed nuclei, are applied to studies of shapes of superheavy nuclei. The theoretical framework is tested in a comparison to empirical masses, quadrupole deformations, and energy barriers of actinide nuclei. The model is used in a self-consistent mean-field calculation of spherical, axial and triaxial shapes of superheavy nuclei, alpha-decay energies and lifetimes. The effect of explicit treatment of collective correlations is analyzed in calculations that consistently use a collective Hamiltonian model based on REDFs.

  6. The CLASSgal code for relativistic cosmological large scale structure

    SciTech Connect

    Dio, Enea Di; Montanari, Francesco; Durrer, Ruth; Lesgourgues, Julien E-mail: Francesco.Montanari@unige.ch E-mail: Ruth.Durrer@unige.ch

    2013-11-01

    We present accurate and efficient computations of large scale structure observables, obtained with a modified version of the CLASS code which is made publicly available. This code includes all relativistic corrections and computes both the power spectrum C{sub ℓ}(z{sub 1},z{sub 2}) and the corresponding correlation function ξ(θ,z{sub 1},z{sub 2}) of the matter density and the galaxy number fluctuations in linear perturbation theory. For Gaussian initial perturbations, these quantities contain the full information encoded in the large scale matter distribution at the level of linear perturbation theory. We illustrate the usefulness of our code for cosmological parameter estimation through a few simple examples.

  7. Imbalanced relativistic force-free magnetohydrodynamic turbulence

    SciTech Connect

    Cho, Jungyeon; Lazarian, A.

    2014-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub −}{sup 2}∝(ϵ{sub +}/ϵ{sub −}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.

  8. Relativistic generation of vortex and magnetic field

    SciTech Connect

    Mahajan, S. M.; Yoshida, Z.

    2011-05-15

    The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the ''evolution'' of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity--the magnetic field and the thermal-kinetic vorticity. The ''strength'' of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.

  9. Relativistic mixtures of charged and uncharged particles

    SciTech Connect

    Kremer, Gilberto M.

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  10. Relativistic mirrors in laser plasmas (analytical methods)

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.

    2016-10-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.

  11. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  12. Nonlinear relativistic plasma resonance: Renormalization group approach

    NASA Astrophysics Data System (ADS)

    Metelskii, I. I.; Kovalev, V. F.; Bychenkov, V. Yu.

    2017-02-01

    An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.

  13. Anomalous magnetic viscosity in relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Lin, Fujun; Liu, Sanqiu; Li, Xiaoqing

    2013-07-01

    It has been proved that the self-generated magnetic fields by transverse plasmons in the relativistic regime are modulationally unstable, leading to a self-similar collapse of the magnetic flux tubes and resulting in local magnetic structures; highly spatially intermittent flux is responsible for generating the anomalous viscosity. We derive the anomalous magnetic viscosity coefficient, in accretion disks around compact objects, such as black holes, pulsars and quasars, where the plasmas are relativistic, in order to help clarify the nature of viscosity in the theory of accretion disks. The results indicate that, the magnetic viscosity is modified by the relativistic effects of plasmas, and its' strength would be 1015 stronger than the molecular viscosity, which may be helpful in explaining the observations.

  14. RESISTIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-20

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvenic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the 'diamond-chain' structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  15. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  16. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvénic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  17. Relativistic quantum information and time machines

    NASA Astrophysics Data System (ADS)

    Ralph, Timothy C.; Downes, Tony G.

    2012-01-01

    Relativistic quantum information combines the informational approach to understanding and using quantum mechanical systems - quantum information - with the relativistic view of the Universe. In this introductory review we examine key results to emerge from this new field of research in physics and discuss future directions. A particularly active area recently has been the question of what happens when quantum systems interact with general relativistic closed timelike curves - effectively time machines. We discuss two different approaches that have been suggested for modelling such situations. It is argued that the approach based on matching the density operator of the quantum state between the future and past most consistently avoids the paradoxes usually associated with time travel.

  18. Relativistic spin precession in the double pulsar.

    PubMed

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  19. Relativistic dynamics, Green function and pseudodifferential operators

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, Diego Julio

    2016-06-01

    The central role played by pseudodifferential operators in relativistic dynamics is known very well. In this work, operators like the Schrodinger one (e.g., square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by means of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability: it is a non-local, Lorentz invariant and does not have the same problems as the "local"position operator proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue waves, are presented and deeply analyzed in this theoretical framework.

  20. Exact quantisation of the relativistic Hopfield model

    NASA Astrophysics Data System (ADS)

    Belgiorno, F.; Cacciatori, S. L.; Dalla Piazza, F.; Doronzo, M.

    2016-11-01

    We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.

  1. Reply to ``Comment on `Relativistic effects in bonding and dipole moments for the diatomic hydrides of sixth-row elements''

    NASA Astrophysics Data System (ADS)

    Malli, G. L.; Pyper, N. C.; Ramos, A. F.

    1991-03-01

    The comment by Balasubramanian, Christiansen, and Pitzer [preceding Comment, Phys. Rev. 43, 2581 (1991)] is misleading since it compares the results of their effective-core-potential calculations including the so-called spin-orbit configuration-interaction method (SOCI) that were performed to derive accurate dissociation energies, with our fully ab initio relativistic computations that were not extended beyond the relativistic molecular orbital self-consistent-field level, which was entirely adequate to achieve the different objectives behind our ab initio computations.

  2. The pure rotational spectrum of ruthenium monocarbide, RuC, and relativistic ab initio predictions

    SciTech Connect

    Wang, Fang; Steimle, Timothy C.; Adam, Allan G.; Cheng, Lan; Stanton, John F.

    2013-11-07

    The J = 1 ← J = 0 and J = 2 ← J = 1 rotational transitions of ruthenium monocarbide, RuC, have been recorded using the separated field pump/probe microwave optical double resonance technique and analyzed to determine the fine and hyperfine parameters for the X{sup 1}Σ{sup +} state. The {sup 101}Ru(I = 5/2) electric quadrupole parameter, eq{sub 0}Q, and nuclear spin-rotation interaction parameter, C{sub I}{sup eff}, were determined to be 433.19(8) MHz and −0.049(6) MHz, respectively. The equilibrium bond distance, r{sub e}, was determined to be 1.605485(2) Å. Hartree-Fock and coupled-cluster calculations were carried out for the properties of the X{sup 1}Σ{sup +} state. Electron-correlation effects are pronounced for all properties studied. It is shown that (a) the moderate scalar-relativistic contribution to eq{sub 0}Q is entirely due to the coupling between scalar-relativistic and electron-correlation effects, (b) the spin-free exact two-component theory in its one-electron variant offers a reliable and efficient treatment of scalar-relativistic effects, and (c) non-relativistic theory performs quite well for the prediction of C{sub I}{sup elec}, provided that electron correlation is treated accurately.

  3. SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics

    NASA Astrophysics Data System (ADS)

    Kidder, Lawrence E.; Field, Scott E.; Foucart, Francois; Schnetter, Erik; Teukolsky, Saul A.; Bohn, Andy; Deppe, Nils; Diener, Peter; Hébert, François; Lippuner, Jonas; Miller, Jonah; Ott, Christian D.; Scheel, Mark A.; Vincent, Trevor

    2017-04-01

    We introduce a new relativistic astrophysics code, SpECTRE, that combines a discontinuous Galerkin method with a task-based parallelism model. SpECTRE's goal is to achieve more accurate solutions for challenging relativistic astrophysics problems such as core-collapse supernovae and binary neutron star mergers. The robustness of the discontinuous Galerkin method allows for the use of high-resolution shock capturing methods in regions where (relativistic) shocks are found, while exploiting high-order accuracy in smooth regions. A task-based parallelism model allows efficient use of the largest supercomputers for problems with a heterogeneous workload over disparate spatial and temporal scales. We argue that the locality and algorithmic structure of discontinuous Galerkin methods will exhibit good scalability within a task-based parallelism framework. We demonstrate the code on a wide variety of challenging benchmark problems in (non)-relativistic (magneto)-hydrodynamics. We demonstrate the code's scalability including its strong scaling on the NCSA Blue Waters supercomputer up to the machine's full capacity of 22 , 380 nodes using 671 , 400 threads.

  4. Spectroscopic effects of first-order relativistic vibronic coupling in linear triatomic molecules.

    PubMed

    Mishra, Sabyashachi; Vallet, Valerie; Poluyanov, Leonid V; Domcke, Wolfgang

    2005-09-22

    It has recently been shown that there exists, in addition to the well-known nonrelativistic Renner-Teller coupling, a linear (that is, of the first order in the bending distortion) vibronic-coupling mechanism of relativistic (that is, spin-orbit) origin in 2II electronic states of linear molecules [L. V. Poluyanov and W. Domcke, Chem. Phys. 301, 111 (2004)]. The generic aspects of the relativistic linear vibronic-coupling mechanism have been analyzed in the present work by numerical calculations of the vibronic spectrum for appropriate models. The vibronic and spin-orbit parameters have been determined by accurate ab initio electronic-structure calculations for the X 2II states of a series of triatomic radicals and radical cations. It is shown for the example of GeCH that the relativistic linear vibronic-coupling mechanism provides a quantitative explanation of the pronounced perturbations in the vibronic spectrum of the X 2II state of GeCH, which previously have been termed "Sears resonances" [S.-G. He, H. Li, T. C. Smith, D. J. Clouthier, and A. J. Merer, J. Chem. Phys. 119, 10115 (2003)]. The X 2II vibronic spectra of the series BS2, CS2+, OCS+, and OBS illustrate the interplay of nonrelativistic and relativistic vibronic-coupling mechanisms in Renner-Teller systems.

  5. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1977-01-01

    The general-relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general-relativistic version of the mixing-length formalism for convection is presented.

  6. Relativistic klystron research for high gradient accelerators

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs.

  7. Recent progress in relativistic klystron research

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Aalberts, D.P.; Boyd, J.K.; Houck, T.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.; Hopkins, D.B.; Sessler, A.M.; Haimson, J.; Mecklenburg, B.; Lawrence Livermore National Lab., CA (US

    1989-08-01

    Experimental work is now under way by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome our previously reported problem of high-power rf pulse shortening and have achieved peak rf power levels of 290 MW. We have used the rf from a relativistic klystron to power a short, 11.4-GHz high-gradient accelerator. The measured momentum spectrum of the accelerated electron beam corresponds to an accelerating gradient of 84 MV/m. 5 refs., 7 figs.

  8. Electronic Broadening operator for relativistic plasmas

    SciTech Connect

    Meftah, M. T.; Naam, A.

    2008-10-22

    In this work we review some aspects of the semiclassical dipole impact approximation for isolated ion lines in relativistic plasma. Mainly we focuss our work on the collision operator for relativistic electrons. In this case, the electron trajectory around a positive charge in the plasma differs drastically from those known earlier as hyperbolic. The effect of this difference on the collision operator is discussed with respect the various plasma conditions. Some theoretical and practical aspects of lines -shape calculations are discussed. Detailed calculations are performed for the collision operator in the semiclassical (dipole) impact approximation.

  9. Relativistic Brownian motion on a graphene chip

    NASA Astrophysics Data System (ADS)

    Pototsky, A.; Marchesoni, F.; Kusmartsev, F. V.; Hänggi, P.; Savel'ev, S. E.

    2012-10-01

    Relativistic Brownian motion can be inexpensively demonstrated on a graphene chip. The interplay of stochastic and relativistic dynamics, governing the transport of charge carrier in graphene, induces noise-controlled effects such as (i) a stochastic effective mass, detectable as a suppression of the particle mobility with increasing the temperature; (ii) transverse harmonic mixing, whereby electron transport can be controlled by two orthogonal, commensurate ac drives; (iii) a transverse ratchet effect, measurable as a net current orthogonal to an ac drive on an asymmetric substrate, and (iv) chaotic stochastic resonance. Such properties can be of practical applications in the emerging graphene technology.

  10. Nonaxisymmetric oscillations of differentially rotating relativistic stars

    SciTech Connect

    Passamonti, Andrea; Stavridis, Adamantios; Kokkotas, Kostas D.

    2008-01-15

    Nonaxisymmetric oscillations of differentially rotating stars are studied using both slow rotation and Cowling approximation. The equilibrium stellar models are relativistic polytropes where differential rotation is described by the relativistic j-constant rotation law. The oscillation spectrum is studied versus three main parameters: the stellar compactness M/R, the degree of differential rotation A, and the number of maximum couplings l{sub max}. It is shown that the rotational splitting of the nonaxisymmetric modes are strongly enhanced by increasing the compactness of the star and the degree of differential rotation. Finally, we investigate the relation between the fundamental quadrupole mode and the corotation band of differentially rotating stars.

  11. Towards universal quantum computation through relativistic motion

    PubMed Central

    Bruschi, David Edward; Sabín, Carlos; Kok, Pieter; Johansson, Göran; Delsing, Per; Fuentes, Ivette

    2016-01-01

    We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tuneable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes. PMID:26860584

  12. Can Bohmian mechanics be made relativistic?

    PubMed Central

    Dürr, Detlef; Goldstein, Sheldon; Norsen, Travis; Struyve, Ward; Zanghì, Nino

    2014-01-01

    In relativistic space–time, Bohmian theories can be formulated by introducing a privileged foliation of space–time. The introduction of such a foliation—as extra absolute space–time structure—would seem to imply a clear violation of Lorentz invariance, and thus a conflict with fundamental relativity. Here, we consider the possibility that, instead of positing it as extra structure, the required foliation could be covariantly determined by the wave function. We argue that this allows for the formulation of Bohmian theories that seem to qualify as fundamentally Lorentz invariant. We conclude with some discussion of whether or not they might also qualify as fundamentally relativistic. PMID:24511259

  13. Relativistic astrophysics with resonant multiple inspirals

    SciTech Connect

    Seto, Naoki; Muto, Takayuki

    2010-05-15

    We show that a massive black hole binary might resonantly trap a small third body (e.g. a neutron star) down to a stage when the binary becomes relativistic due to its orbital decay by gravitational radiation. The final fate of the third body would be quite interesting for relativistic astrophysics. For example, the parent binary could expel the third body with a velocity more than 10% of the speed of light. We also discuss the implications of this three-body system for direct gravitational wave observation.

  14. Properties of compressible elastica from relativistic analogy.

    PubMed

    Oshri, Oz; Diamant, Haim

    2016-01-21

    Kirchhoff's kinetic analogy relates the deformation of an incompressible elastic rod to the classical dynamics of rigid body rotation. We extend the analogy to compressible filaments and find that the extension is similar to the introduction of relativistic effects into the dynamical system. The extended analogy reveals a surprising symmetry in the deformations of compressible elastica. In addition, we use known results for the buckling of compressible elastica to derive the explicit solution for the motion of a relativistic nonlinear pendulum. We discuss cases where the extended Kirchhoff analogy may be useful for the study of other soft matter systems.

  15. Weakly relativistic dispersion of Bernstein waves

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.

    1988-01-01

    Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.

  16. GENERAL RELATIVISTIC EFFECTS ON NONLINEAR POWER SPECTRA

    SciTech Connect

    Jeong, Donghui; Gong, Jinn-Ouk; Noh, Hyerim; Hwang, Jai-chan E-mail: jgong@lorentz.leidenuniv.nl E-mail: jchan@knu.ac.kr

    2011-01-20

    The nonlinear nature of Einstein's equation introduces genuine relativistic higher order corrections to the usual Newtonian fluid equations describing the evolution of cosmological perturbations. We study the effect of such novel nonlinearities on the next-to-leading order matter and velocity power spectra for the case of a pressureless, irrotational fluid in a flat Friedmann background. We find that pure general relativistic corrections are negligibly small over all scales. Our result guarantees that, in the current paradigm of standard cosmology, one can safely use Newtonian cosmology even in nonlinear regimes.

  17. Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices

    SciTech Connect

    Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Tuennermann, Andreas; Nolte, Stefan; Longhi, Stefano; Szameit, Alexander

    2010-10-01

    We present the first experimental realization of an optical analog for relativistic quantum mechanics by simulating the Zitterbewegung (trembling motion) of a free Dirac electron in an optical superlattice. Our photonic setting enables a direct visualization of Zitterbewegung as a spatial oscillatory motion of an optical beam. Direct measurements of the wave packet expectation values in superlattices with tuned miniband gaps clearly show the transition from weak-relativistic to relativistic and far-relativistic regimes.

  18. Relativistic effects on the motion of asteroids and comets

    NASA Technical Reports Server (NTRS)

    Shahid-Saless, Bahman; Yeomans, Donald K.

    1994-01-01

    We study the effects arising from relativistic perturbations on the motion of asteroids and comets and show that for a number of such objects, inclusion of relativistic contributions in the equations of motion gives rise to significant improvements in the orbital solutions. Furthermore we argue that ignoring relativistic corrections to the equations of motion, while using masses derived from relativistic ephemerides yields incorrect solutions corresponding to an inconsistent, non-Newtonian, nonrelativistic model.

  19. A two-fluid model for relativistic heat conduction

    SciTech Connect

    López-Monsalvo, César S.

    2014-01-14

    Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.

  20. Chandra Discovers Relativistic Pinball Machine

    NASA Astrophysics Data System (ADS)

    2006-12-01

    across the shock front, like they're in a relativistic pinball machine," said team member Glenn Allen of the Massachusetts Institute of Technology (MIT), Cambridge. "The magnetic fields are like the bumpers, and the shock is like a flipper." In their analysis of the huge data set, the team was able to separate the X-rays coming from the accelerating electrons from those coming from the heated stellar debris. The data imply that some of these electrons are accelerated at a rate close to the maximum predicted by theory. Cosmic rays are composed of electrons, protons, and ions, of which only glow from electrons is detectable in X-rays. Protons and ions, which constitute the bulk of cosmic rays, are expected to behave similarly to the electrons. "It's exciting to see regions where the glow produced by cosmic rays actually outshines the 10-million-degree gas heated by the supernova's shock waves," said John Houck, also of MIT. "This helps us understand not only how cosmic rays are accelerated, but also how supernova remnants evolve." As the total energy of the cosmic rays behind the shock wave increases, the magnetic field behind the shock is modified, along with the character of the shock wave itself. Researching the conditions in the shocks helps astronomers trace the changes of the supernova remnant with time, and ultimately better understand the original supernova explosion. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  1. A fully relativistic study of the Pt(CN)42- and Pt(CN)62- photodetachment spectra

    NASA Astrophysics Data System (ADS)

    Pernpointner, Markus

    2007-09-01

    In this work the photoelectron spectra of the doubly charged transition metal complexes Pt(CN)42- and Pt(CN)62- are calculated by application of the one-particle propagator method in a fully relativistic framework. In systems with highly relativistic atoms spin-orbit coupling, electron correlation and scalar relativistic effects are hereby coupled in an intricate way and need to be treated consistently in order to obtain accurate results. The obtained ionization spectra are in very good agreement to experiment and the first ionization potentials were calculated as 1.40 eV for Pt(CN)42- and 4.00 eV for Pt(CN)62- compared to the experimental values of 1.69 eV and 4.01 eV [X.B. Wang, Y.L. Wang, H.K. Woo, J. Li, G.S. Wu, L.S. Wang, Chem. Phys. 329 (2006) 230].

  2. Asymptotic theory of relativistic, magnetized jets

    SciTech Connect

    Lyubarsky, Yuri

    2011-01-15

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors.

  3. Stable discrete representation of relativistically drifting plasmas

    NASA Astrophysics Data System (ADS)

    Kirchen, M.; Lehe, R.; Godfrey, B. B.; Dornmair, I.; Jalas, S.; Peters, K.; Vay, J.-L.; Maier, A. R.

    2016-10-01

    Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-In-Cell algorithm that is intrinsically free of the numerical Cherenkov instability for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.

  4. Asymptotic theory of relativistic, magnetized jets.

    PubMed

    Lyubarsky, Yuri

    2011-01-01

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors.

  5. Instabilities in a Relativistic Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.

    1990-11-01

    RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY

  6. Scaling Calculations for a Relativistic Gyrotron.

    DTIC Science & Technology

    2014-09-26

    relativistic gyrotron is under development 46-N ,an ultra -high power source of millimeter wave radia- tion. The purpose of the present study is to estimate the...to and m0c Xmn ley ( Le. rw° E, . B ....r respecti 2 EB). Unnormalized ’wo’ m c2 xmn o Xmnn quantities are expressed in mks units unless otherwise

  7. Relativistic equations with fractional and pseudodifferential operators

    SciTech Connect

    Babusci, D.; Dattoli, G.; Quattromini, M.

    2011-06-15

    In this paper we use different techniques from the fractional and pseudo-operators calculus to solve partial differential equations involving operators with noninteger exponents. We apply the method to equations resembling generalizations of the heat equations and discuss the possibility of extending the procedure to the relativistic Schroedinger and Dirac equations.

  8. Relativistic atomic physics at the SSC

    SciTech Connect

    1990-12-31

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance.

  9. Consistent resolution of some relativistic quantum paradoxes

    SciTech Connect

    Griffiths, Robert B.

    2002-12-01

    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics.

  10. Global existence proof for relativistic Boltzmann equation

    SciTech Connect

    Dudynski, M. ); Ekiel-Jezewska, M.L. )

    1992-02-01

    The existence and causality of solutions to the relativistic Boltzmann equation in L[sup 1] and in L[sub loc][sup 1] are proved. The solutions are shown to satisfy physically natural a priori bounds, time-independent in L[sup 1]. The results rely upon new techniques developed for the nonrelativistic Boltzmann equation by DiPerna and Lions.

  11. A Quantum Relativistic Prisoner's Dilemma Cellular Automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Carvalho, Márcio; Situ, Haozhen

    2016-10-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.

  12. Relativistic quantum corrections to laser wakefield acceleration.

    PubMed

    Zhu, Jun; Ji, Peiyong

    2010-03-01

    The influence of quantum effects on the interaction of intense laser fields with plasmas is investigated by using a hydrodynamic model based on the framework of the relativistic quantum theory. Starting from the covariant Wigner function and Dirac equation, the hydrodynamic equations for relativistic quantum plasmas are derived. Based on the relativistic quantum hydrodynamic equations and Poisson equation, the perturbations of electron number densities and the electric field of the laser wakefield containing quantum effects are deduced. It is found that the corrections generated by the quantum effects to the perturbations of electron number densities and the accelerating field of the laser wakefield cannot be neglected. Quantum effects will suppress laser wakefields, which is a classical manifestation of quantum decoherence effects, however, the contribution of quantum effects for the laser wakefield correction will been partially counteracted by the relativistic effects. The analysis also reveals that quantum effects enlarge the effective frequencies of plasmas, and the quantum behavior appears a screening effect for plasma electrons.

  13. Relativistic quantum corrections to laser wakefield acceleration

    SciTech Connect

    Zhu Jun; Ji Peiyong

    2010-03-15

    The influence of quantum effects on the interaction of intense laser fields with plasmas is investigated by using a hydrodynamic model based on the framework of the relativistic quantum theory. Starting from the covariant Wigner function and Dirac equation, the hydrodynamic equations for relativistic quantum plasmas are derived. Based on the relativistic quantum hydrodynamic equations and Poisson equation, the perturbations of electron number densities and the electric field of the laser wakefield containing quantum effects are deduced. It is found that the corrections generated by the quantum effects to the perturbations of electron number densities and the accelerating field of the laser wakefield cannot be neglected. Quantum effects will suppress laser wakefields, which is a classical manifestation of quantum decoherence effects, however, the contribution of quantum effects for the laser wakefield correction will been partially counteracted by the relativistic effects. The analysis also reveals that quantum effects enlarge the effective frequencies of plasmas, and the quantum behavior appears a screening effect for plasma electrons.

  14. High order numerical simulations of the Richtmyer- Meshkov instability in a relativistic fluid

    NASA Astrophysics Data System (ADS)

    Zanotti, O.; Dumbser, M.

    2015-07-01

    We study the Richtmyer-Meshkov (RM) instability of a relativistic perfect fluid by means of high order numerical simulations with adaptive mesh refinement (AMR). The numerical scheme combines a finite volume reconstruction in space, a local space-time discontinuous Galerkin predictor method, a high order one-step time update scheme, and a "cell-by-cell" space-time AMR strategy with time-accurate local time stepping. In this way, third order accurate (both in space and in time) numerical simulations of the RM instability are performed, spanning a wide parameter space. We present results both for the case in which a light fluid penetrates into a higher density one (Atwood number A > 0) and for the case in which a heavy fluid penetrates into a lower density one (Atwood number A < 0). We find that for large Lorentz factors γs of the incident shock wave, the relativistic RM instability is substantially weakened and ultimately suppressed. More specifically, the growth rate of the RM instability in the linear phase has a local maximum which occurs at a critical value of γs ≈ [1.2, 2]. Moreover, we have also revealed a genuinely relativistic effect, absent in Newtonian hydrodynamics, which arises in three dimensional configurations with a non-zero velocity component tangent to the incident shock front. In particular, in A > 0 models, the tangential velocity has a net magnification effect, while in A < 0 models, the tangential velocity has a net suppression effect.

  15. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    SciTech Connect

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Enders, J.; Köhler, A.; Kozela, A.

    2013-11-07

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.

  16. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bodek, K.; Caban, P.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.; Rembieliński, J.; Rozpedzik, D.; Włodarczyk, M.; Zejma, J.

    2013-11-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.

  17. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    NASA Astrophysics Data System (ADS)

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-01

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d-1, Xe4d-1, and Rn5d-1 ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  18. Relativistic decay widths of autoionization processes: the relativistic FanoADC-Stieltjes method.

    PubMed

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d(-1), Xe4d(-1), and Rn5d(-1) ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  19. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    SciTech Connect

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  20. Relativistic rotation-vibrational energies for the Cs2 molecule

    NASA Astrophysics Data System (ADS)

    Jia, Chun-Sheng; Jia, Yue

    2017-01-01

    We present bound state solutions of the Dirac equation with the improved Rosen-Morse potential energy model. In the non-relativistic limit, the relativistic energy equation becomes the non-relativistic rotation-vibrational energy expression of the diatomic molecule. We find that the relativistic effect of the relative motion of the ions produces an obvious decrease in the vibrational energies for the 33Σg + state of the Cs2 molecule. It is observed that the behavior of the relativistic rotation-vibrational energies in larger rotational quantum numbers remains similar to that of the system with zero rotational quantum number.

  1. Crystallization and collapse in relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2013-04-15

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  2. Advanced relativistic VLBI model for geodesy

    NASA Astrophysics Data System (ADS)

    Soffel, Michael; Kopeikin, Sergei; Han, Wen-Biao

    2016-10-01

    Our present relativistic part of the geodetic VLBI model for Earthbound antennas is a consensus model which is considered as a standard for processing high-precision VLBI observations. It was created as a compromise between a variety of relativistic VLBI models proposed by different authors as documented in the IERS Conventions 2010. The accuracy of the consensus model is in the picosecond range for the group delay but this is not sufficient for current geodetic purposes. This paper provides a fully documented derivation of a new relativistic model having an accuracy substantially higher than one picosecond and based upon a well accepted formalism of relativistic celestial mechanics, astrometry and geodesy. Our new model fully confirms the consensus model at the picosecond level and in several respects goes to a great extent beyond it. More specifically, terms related to the acceleration of the geocenter are considered and kept in the model, the gravitational time-delay due to a massive body (planet, Sun, etc.) with arbitrary mass and spin-multipole moments is derived taking into account the motion of the body, and a new formalism for the time-delay problem of radio sources located at finite distance from VLBI stations is presented. Thus, the paper presents a substantially elaborated theoretical justification of the consensus model and its significant extension that allows researchers to make concrete estimates of the magnitude of residual terms of this model for any conceivable configuration of the source of light, massive bodies, and VLBI stations. The largest terms in the relativistic time delay which can affect the current VLBI observations are from the quadrupole and the angular momentum of the gravitating bodies that are known from the literature. These terms should be included in the new geodetic VLBI model for improving its consistency.

  3. Crystallization and collapse in relativistically degenerate matter

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2013-04-01

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (MCh≃1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  4. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  5. Assessment of the MUSTA approach for numerical relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Blakely, P. M.; Nikiforakis, N.; Henshaw, W. D.

    2015-03-01

    Aims: We evaluate some approximations for solving the equations of special relativistic hydrodynamics within complex geometries. In particular, we assess the following schemes: the Generalized FORCE (GFORCE) and MUlti STAge (MUSTA) approaches which are used as the basis for a second-order-accurate Slope-LImited-Centred (SLIC) method. These do not require detailed knowledge of the characteristic structure of the system, but have the potential to be nearly as accurate as more expensive schemes which do require this knowledge. Methods: In order to treat complex geometries, we use multiple overlapping grids which allow the capturing of complex geometries while retaining the efficiencies associated with structured grids. Results: The schemes are evaluated using a suite of one dimensional problems some of which have known exact solutions, and it is shown that the schemes can be used at CFL numbers close to the theoretical stability limit. We compare the effects of the MUSTA approach when applied to two different schemes. The scheme is further validated on a number of problems involving complex geometries with overlapping grids.

  6. Spin dynamics in relativistic light-matter interaction

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2015-05-01

    Various spin effects are expected to become observable in light-matter interaction at relativistic intensities. Relativistic quantum mechanics equipped with a suitable relativistic spin operator forms the theoretical foundation for describing these effects. Various proposals for relativistic spin operators have been offered by different authors, which are presented in a unified way. As a result of the operators' mathematical properties only the Foldy-Wouthuysen operator and the Pryce operator qualify as possible proper relativistic spin operators. The ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally. Subsequently, the Foldy-Wouthuysen spin operator is employed to study electron-spin precession in high-intensity standing light waves with elliptical polarization. For a correct theoretical description of the predicted electron-spin precession relativistic effects due to the spin angular momentum of the electromagnetic wave has to be taken into account even in the limit of low intensities.

  7. RAISHIN: A High-Resolution Three-Dimensional General Relativistic Magnetohydrodynamics Code

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Fishman, Gerald J.

    2006-01-01

    We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code, RAISHIN, using a conservative, high resolution shock-capturing scheme. The numerical fluxes are calculated using the Harten, Lax, & van Leer (HLL) approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. In order to examine the numerical accuracy and the numerical efficiency, the code uses four different reconstruction methods: piecewise linear methods with Minmod and MC slope-limiter function, convex essentially non-oscillatory (CENO) method, and piecewise parabolic method (PPM) using multistep TVD Runge-Kutta time advance methods with second and third-order time accuracy. We describe code performance on an extensive set of test problems in both special and general relativity. Our new GRMHD code has proven to be accurate in second order and has successfully passed with all tests performed, including highly relativistic and magnetized cases in both special and general relativity.

  8. GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Aloy, M. A.; Ibáñez, J. M.; Martí, J. M.; Müller, E.

    1999-05-01

    The main features of a three-dimensional, high-resolution special relativistic hydro code based on relativistic Riemann solvers are described. The capabilities and performance of the code are discussed. In particular, we present the results of extensive test calculations that demonstrate that the code can accurately and efficiently handle strong shocks in three spatial dimensions. Results of the performance of the code on single and multiprocessor machines are given. Simulations (in double precision) with <=7×106 computational cells require less than 1 Gbyte of RAM memory and ~7×10-5 CPU s per zone and time step (on a SCI Cray-Origin 2000 with a R10000 processor). Currently, a version of the numerical code is under development, which is suited for massively parallel computers with distributed memory architecture (such as, e.g., Cray T3E).

  9. Relativistic scattering with a spatially dependent effective mass in the Dirac equation

    SciTech Connect

    Alhaidari, A. D.; Bahlouli, H.; Abdelmonem, M. S.; Al-Hasan, A.

    2007-06-15

    We formulate a relativistic algebraic method of scattering for systems with spatially dependent mass based on the J-matrix method. The reference Hamiltonian is the three-dimensional Dirac Hamiltonian but with a mass that is position-dependent with a constant asymptotic limit. Additionally, this effective mass distribution is locally represented in a finite dimensional function subspace. The spinor couples to spherically symmetric vector and pseudo scalar potentials that are short-range such that they are accurately represented by their matrix elements in the same finite dimensional subspace. We calculate the relativistic phase shift as a function of energy for a given configuration and study the effect of spatial variation of the mass on the energy resonance structure.

  10. Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Huovinen, Pasi; Molnar, Denes

    2009-01-01

    We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart (IS) dissipative hydrodynamics and Navier-Stokes (NS) theory for relativistic heavy ion physics applications. A massless ideal gas with 2→2 interactions is considered in a Bjorken scenario in 0 + 1 dimension (D) appropriate for the early longitudinal expansion stage of the collision. In the scale-invariant case of a constant shear viscosity to entropy density ratio η/s≈const, we find that IS theory is accurate within 10% in calculating dissipative effects if initially the expansion time scale exceeds half the transport mean free path τ0/λtr,0≳2. The same accuracy with NS requires three times larger τ0/λtr,0≳6. For dynamics driven by a constant cross section, on the other hand, about 50% larger τ0/λtr,0≳3 (IS) and 9 (NS) are needed. For typical applications at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), i.e., sNN~100-200 GeV, these limits imply that even the IS approach becomes marginal when η/s≳0.15. In addition, we find that the “naive” approximation to IS theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic IS and NS solutions in 0 + 1D, and present further tests for numerical dissipative hydrodynamics codes in 1 + 1, 2 + 1, and 3 + 1D based on generalized conservation laws.

  11. Polarizabilities of Ba and Ba{sub 2}: Comparison of molecular beam experiments with relativistic quantum chemistry

    SciTech Connect

    Schaefer, Sascha; Mehring, Max; Schaefer, Rolf; Schwerdtfeger, Peter

    2007-11-15

    The dielectric response to an inhomogeneous electric field has been investigated for Ba and Ba{sub 2} within a molecular beam experiment. The ratio of the polarizabilities per atom of Ba{sub 2} and Ba is determined to be 1.30{+-}0.13. The experimental result is compared to a high level ab initio quantum chemical coupled cluster calculation with an energy-consistent scalar relativistic small-core pseudopotential for Ba. For the barium atom a polarizability of 40.82 A{sup 3} is obtained and the isotropic value of the polarizability calculated for Ba{sub 2} is 97.88 A{sup 3}, which is in good agreement with the experimental results, demonstrating that a quantitative understanding of the interaction between two closed-shell heavy element metal atoms has been achieved.

  12. Relativistic quantum dynamics on a double cone

    NASA Astrophysics Data System (ADS)

    Gomes, F. A.; Silva, Edilberto O.; Lima, Jonas R. F.; Filgueiras, C.; Moraes, F.

    2017-02-01

    In this paper, we study the relativistic quantum problem of a particle constrained to a double cone surface. For this purpose, we build the Dirac equation in a curved space using the tetrads formalism. Two cases are analysed. First, we consider a free particle on the conical surface, and then we add an uniform magnetic field. In the first case, the exact energy spectrum is obtained and its non-relativistic limit compared to previously published results. In the second case, the spectrum is also exactly obtained and a detailed analysis considering all possible combinations of signs of the quantum numbers reveals the occurrence of highly degenerate zero energy modes. The results obtained here can be applied, for instance, in the investigation of the electronic and transport properties of condensed matter systems that can be described by an effective Dirac equation, such as graphene and topological insulators.

  13. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  14. 25th Texas Symposium on Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Rieger, Frank M.; van Eldik, Christopher; Hofmann, Werner

    The 25th Texas Symposium on Relativistic Astrophysics (TEXAS 2010) was held in Heidelberg, Germany, during December, 6-10, 2010. More than 350 astrophysicists attended a very interesting meeting, designed to exchange ideas and results, and to discuss future directions in Relativistic Astrophysics. A wide range of scientific results were discussed in about 100 oral and about 200 poster contributions during nine parallel afternoon sessions and one highlight evening session. Further information, including the full program, can be found on the conference webpage: http://www.mpi-hd.mpg.de/texas2010/. The papers published here in these proceedings represent the contributions accepted for the parallel sessions and the main poster session at TEXAS 2010.

  15. Relativistic theory of tidal Love numbers

    SciTech Connect

    Binnington, Taylor; Poisson, Eric

    2009-10-15

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  16. Relativistic klystrons for high-gradient accelerators

    SciTech Connect

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S. ); Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W. ); Haimson, J.; Mecklen

    1990-09-05

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome or previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power.

  17. Relativistic-microwave theory of ball lightning

    NASA Astrophysics Data System (ADS)

    Wu, H.-C.

    2016-06-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  18. Modeling relativistic plasmas with PIC using VORPAL

    NASA Astrophysics Data System (ADS)

    Nieter, Chet; Cary, John R.

    2002-11-01

    VORPAL, a fully object-oriented, dimension-free plasma simulation code, now has a fully developed PIC model. This PIC model has been applied to studies of Laser Wake Field Acceleration, including the nonlinear structure of the wake field generated in the colliding pulse injection scheme and in the development of a new injection scheme that reduces timing requirements. (See Giacone et al. and Cary et al. at this conference). Since the PIC model was developed using VORPAL's object oriented architecture, it works in any dimension and with both serial and parallel runs. Several different update methods are available, including both relativistic and non-relativistic Boris push and an electrostatic update as well.

  19. Dudley's dilemma: Magnetic moments in relativistic theories

    NASA Astrophysics Data System (ADS)

    McNeil, J. A.

    1986-10-01

    In 1975 L. Dudley Miller showed how the basic phenomenology of the major shell and spin-orbit splittings constrained the relativistic scalar/vector structure model to values of the potentials incompatible with the observed magnetic moments of nuclei one nucleon away from closed shell [1]. In this talk the resolution of this problem is presented from three different perspectives. First a self-consistent Landau-Migdal approach is used to define the single particle isoscalar current in infinite nuclear matter. The constraint of self-consistency provides a vector suppression factor to the single particle current which returns the current to its nonrelativistic form and resolves the problem. The same suppression factor is shown to follow as well from either a consideration of gauge invariance or (equivalently) the relativistic random phase approximation. Local density approximation calculations of isoscalar magnetic moments of nuclei one nucleon away from closed shell recover the Schmidt values, thus resolving this longstanding problem.

  20. Relativistic-microwave theory of ball lightning

    PubMed Central

    Wu, H.-C.

    2016-01-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835

  1. Relativistic effects on sixth group hydrides

    NASA Astrophysics Data System (ADS)

    Pisani, L.; Clementi, E.

    1994-08-01

    Dirac-Fock (DF) and Hartree-Fock (HF) calculations have been performed for the ground state configuration of the H2O, H2S, H2Se, H2Te, and H2Po molecules. Equilibrium geometries, atomization energies, and molecular orbitals energies are evaluated with both methods, compared and discussed with the help of population analysis and atomic orbital energies. Particular attention has been given to a qualitative understanding of the relativistic effects. Molecular spin-orbits corrections appear to be essential to a description of some in the sixth group hydrides set. A description of the relativistic computer program is presented elsewhere [L. Pisani and E. Clementi, J. Comput. Chem. (in press)].

  2. Double relativistic electron-accelerating mirror

    SciTech Connect

    Andreev, Aleksandr A; Platonov, Konstantin Yu

    2013-05-31

    A numerical simulation of the interaction of a laser pulse with ultrathin targets has revealed a possibility of generating thin dense relativistic electron layers. The maximum kinetic energy of the electron mirror can be gained using an optimal combination of the target thickness and the laser pulse intensity and duration. It is proposed to use an additional (second) laser target, located at an optimal distance from the first target to cut off the laser pulse from the electron layer when the latter gains a maximum kinetic energy. This relativistic electron mirror can be used for efficient generation of 'hard' coherent radiation via counter reflection of an additional (probe) laser pulse from the mirror. (interaction of laser radiation with matter. laser plasma)

  3. Oscillations of rapidly rotating relativistic stars

    SciTech Connect

    Gaertig, Erich; Kokkotas, Kostas D.

    2008-09-15

    Nonaxisymmetric oscillations of rapidly rotating relativistic stars are studied using the Cowling approximation. The oscillation spectra have been estimated by Fourier transforming the evolution equations describing the perturbations. This is the first study of its kind and provides information on the effect of fast rotation on the oscillation spectra while it offers the possibility of studying the complete problem by including space-time perturbations. Our study includes both axisymmetric and nonaxisymmetric perturbations and provides limits for the onset of the secular bar mode rotational instability. We also present approximate formulas for the dependence of the oscillation spectrum from rotation. The results suggest that it is possible to extract the relativistic star's parameters from the observed gravitational wave spectrum.

  4. Relativistic hydrodynamics from the projection operator method.

    PubMed

    Minami, Yuki; Hidaka, Yoshimasa

    2013-02-01

    We study relativistic hydrodynamics in the linear regime, based on Mori's projection operator method. In relativistic hydrodynamics, it is considered that an ambiguity about the fluid velocity occurs from the choice of a local rest frame: the Landau and Eckart frames. We find that the difference of the frames is not the choice of the local rest frame, but rather that of dynamic variables in the linear regime. We derive hydrodynamic equations in both frames by the projection operator method. We show that the natural derivation gives the linearized Landau equation. Also we find that, even for the Eckart frame, the slow dynamics is actually described by the dynamic variables for the Landau frame.

  5. Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.

    2007-12-01

    The paper describes a new upwind conservative numerical scheme for special relativistic resistive magnetohydrodynamics with scalar resistivity. The magnetic field is kept approximately divergence free and the divergence of the electric field is kept consistent with the electric charge distribution via the method of Generalized Lagrange Multiplier. The hyperbolic fluxes are computed using the Harten-Lax-van Leer (HLL) prescription and the source terms are accounted via the time-splitting technique. The results of test simulations show that the scheme can handle equally well both resistive current sheets and shock waves, and thus can be a useful tool for studying phenomena of relativistic astrophysics that involve both colliding supersonic flows and magnetic reconnection.

  6. Ultraintense lasers: relativistic nonlinear optics and applications

    NASA Astrophysics Data System (ADS)

    Mourou, Gérard A.

    Traditional optics and nonlinear optics are related to laser-matter interaction with eV characteristic energy. Recent progresses in ultrahigh intensity makes it possible to drive electrons with relativistic energy opening up the field of relativistic nonlinear optics. In the last decade, lasers have undergone orders-of-magnitude jumps in peak power, with the invention of the technique of chirped pulse amplification (CPA) and the refinements of femtosecond techniques. Modern CPA lasers can produce intensities greater than 10 21 W/cm 2, one million times greater than previously possible. These ultraintense lasers give researchers a tool to produce unprecedented pressures (terabars), magnetic fields (gigagauss), temperatures (10 10 K), and accelerations (10 25 g) with applications in fusion energy, nuclear physics (fast ignition), high-energy physics, astrophysics, and cosmology. They promote the optics field from the eV to the GeV.

  7. Relativistic Astrophysics in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, C.

    2014-07-01

    X-ray spectroscopy and timing with XMM-Newton have given us an unprecedented view of general relativistic physics in the immediate vicinity of accreting supermassive black holes. In addition to firmly establishing the existence of black holes and allowing us to constrain their spin, we are now detecting reverberation effects from the innermost disk that will ultimately allow us to map the location of the enigmatic X-ray source. In this review talk, I shall begin by describing current status of black hole spin measurements and the tantalizing evidence for a mass dependence to the spin distribution. Building on from the previous talk, I shall then describe the general relativistic modeling of the detected reverberation delays as a means to map out the geometry of both the X-ray source and the inner accretion disk. I shall conclude by discussing the promise of ATHENA for these studies.

  8. Relativistic-microwave theory of ball lightning.

    PubMed

    Wu, H-C

    2016-06-22

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  9. Relativistic Magnetic Reconnection in the Laboratory

    NASA Astrophysics Data System (ADS)

    Krushelnick, Karl; Raymond, Anthony; Dong, Cf; McKelvey, A.; Zulick, C.; Alexander, N.; Bhattacharjee, A.; Campbell, Pt; Chen, H.; Chvykov, V.; Del Rio, E.; Fitzsimmons, P.; Fox, W.; Hou, Bx; Maksimchuk, A.; Mileham, C.; Nees, J.; Nilson, Pm; Stoekl, C.; Thomas, Agr; Wei, Ms; Yanovsky, V.; Willingale, L.

    2016-10-01

    Magnetic reconnection is a fundamental plasma process involving an exchange of magnetic energy to plasma kinetic energy through changes in the magnetic field topology. Here we present experimental measurements using the OMEGA EP laser at LLE and the HERCULES laser at the University of Michigan as well as numerical modeling which indicate that relativistic magnetic reconnection can be driven by short-pulse, high-intensity lasers that produce a relativistic plasma along with very strong magnetic fields. Evidence of magnetic reconnection was identified by the plasma's X-ray emission patterns, changes to the electron energy spectrum, and by measuring the time over which reconnection occurs. Funded by DOE Award No. DE-NA0002727.

  10. Finite nucleus effects on relativistic energy corrections

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.

    1993-01-01

    The effect of using a finite nucleus model in quantum-chemical calculations is examined. Relativistic corrections from the first order Foldy-Wouthuysen terms are affected indirectly by the change in wavefunction, but also directly as a result of revised expressions for the Darwin and spin-orbit terms due to the change in nuclear potential. A calculation for the Rn atom indicates that the mass-velocity and Darwin corrections are much more sensitive to the finite nucleus than the non-relativistic total energy, but that the total contribution for these two terms is quite stable provided the revised form of the Darwin term is used. The spin-orbit interaction is not greatly affected by the choice of nuclear model.

  11. General Relativistic MHD Simulations of Jet Formation

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.

    2005-01-01

    We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.

  12. Relativistic quantum teleportation with superconducting circuits.

    PubMed

    Friis, N; Lee, A R; Truong, K; Sabín, C; Solano, E; Johansson, G; Fuentes, I

    2013-03-15

    We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes nonuniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion. However, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology.

  13. Femtoscopy in Relativistic Heavy Ion Collisions

    SciTech Connect

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  14. Renormalization group for non-relativistic fermions.

    PubMed

    Shankar, R

    2011-07-13

    A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts.

  15. Jets in relativistic heavy ion collisions

    SciTech Connect

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  16. Diffusion processes in general relativistic radiating spheres

    SciTech Connect

    Barreto, W.; Herrera, L.; Santos, N.O.; Universidad Central de Venezuela, Caracas; Observatorio Nacional do Brasil, Rio de Janeiro )

    1989-09-01

    The influence of diffusion processes on the dynamics of general relativistic radiating spheres is systematically studied by means of two examples. Differences between the streaming-out limit and the diffusion limit are exhibited, for both models, through the evolution curves of dynamical variables. In particular it is shown the Bondi mass decreases, for both models, in the diffusion limit as compared with its value at the streaming-out regime. 15 refs.

  17. Spectral Methods in General Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Garrison, David

    2012-03-01

    In this talk I discuss the use of spectral methods in improving the accuracy of a General Relativistic Magnetohydrodynamic (GRMHD) computer code. I introduce SpecCosmo, a GRMHD code developed as a Cactus arrangement at UHCL, and show simulation results using both Fourier spectral methods and finite differencing. This work demonstrates the use of spectral methods with the FFTW 3.3 Fast Fourier Transform package integrated with the Cactus Framework to perform spectral differencing using MPI.

  18. The Relativistic Heavy Ion Collider, Rhic

    NASA Astrophysics Data System (ADS)

    Foelsche, H.; Hahn, H.; Harrison, M.; Ozaki, S.; Rhoades-Brown, M. J.

    1993-03-01

    The scope of the first relativistic energy heavy ion collider, RHIC, is discussed. Particular attention is paid to those novel features of a heavy ion collider that are distinct from the more usual proton machines. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range as well as the increased demands on available ion sources and injector complexes. Storage of heavy ion beams for many hours is severely impacted by intrabeam scattering.

  19. An extended relativistic quantum oscillator for ? particles

    NASA Astrophysics Data System (ADS)

    Nedjadi, Y.; Ait-Tahar, S.; Barrett, R. C.

    1998-04-01

    We introduce the extended Duffin-Kemmer-Petiau (DKP) oscillator obtained by combining two relativistic quantum oscillator models. In a study analogous to Kukulin, Loyola and Moshinsky's work on extended Dirac oscillators, we investigate whether this extended version has oscillator shells controllably independent from the spin-orbit coupling. This extended DKP oscillator is found to be exactly solvable for natural parity states. We calculate and discuss both the natural- and unnatural-parity eigenspectra of its spin-1 representation.

  20. Relativistic thermodynamics with an invariant energy scale

    SciTech Connect

    Das, Sudipta; Ghosh, Subir; Roychowdhury, Dibakar

    2009-12-15

    A particular framework for quantum gravity is the doubly special relativity (DSR) formalism that introduces a new observer independent scale, the Planck energy. Our aim in this paper is to study the effects of this energy upper bound in relativistic thermodynamics. We have explicitly computed the modified equation of state for an ideal fluid in the DSR framework. In deriving our result we exploited the scheme of treating DSR as a nonlinear representation of the Lorentz group in special relativity.

  1. Weibel instability in relativistic quantum plasmas

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Brodin, G.

    2015-08-01

    Generation of quasi-static magnetic fields, due to the Weibel instability is studied in a relativistic quantum plasma. This instability is induced by a temperature anisotropy. The dispersion relation and growth rates for low frequency electromagnetic perturbations are derived using a wave-kinetic equation which describes the evolution of the electron Wigner quasi-distribution. The influence of parallel kinetic effects is discussed in detail.

  2. Relativistic timescale analysis suggests lunar theory revision

    NASA Technical Reports Server (NTRS)

    Deines, Steven D.; Williams, Carol A.

    1995-01-01

    The SI second of the atomic clock was calibrated to match the Ephemeris Time (ET) second in a mutual four year effort between the National Physical Laboratory (NPL) and the United States Naval Observatory (USNO). The ephemeris time is 'clocked' by observing the elapsed time it takes the Moon to cross two positions (usually occultation of stars relative to a position on Earth) and dividing that time span into the predicted seconds according to the lunar equations of motion. The last revision of the equations of motion was the Improved Lunar Ephemeris (ILE), which was based on E. W. Brown's lunar theory. Brown classically derived the lunar equations from a purely Newtonian gravity with no relativistic compensations. However, ET is very theory dependent and is affected by relativity, which was not included in the ILE. To investigate the relativistic effects, a new, noninertial metric for a gravitated, translationally accelerated and rotating reference frame has three sets of contributions, namely (1) Earth's velocity, (2) the static solar gravity field and (3) the centripetal acceleration from Earth's orbit. This last term can be characterized as a pseudogravitational acceleration. This metric predicts a time dilation calculated to be -0.787481 seconds in one year. The effect of this dilation would make the ET timescale run slower than had been originally determined. Interestingly, this value is within 2 percent of the average leap second insertion rate, which is the result of the divergence between International Atomic Time (TAI) and Earth's rotational time called Universal Time (UT or UTI). Because the predictions themselves are significant, regardless of the comparison to TAI and UT, the authors will be rederiving the lunar ephemeris model in the manner of Brown with the relativistic time dilation effects from the new metric to determine a revised, relativistic ephemeris timescale that could be used to determine UT free of leap second adjustments.

  3. a Relativistic Calculation of Baryon Masses

    NASA Astrophysics Data System (ADS)

    Giammarco, Joseph Michael

    1990-01-01

    We calculate ground state baryon masses using a saddle-point variational (SPV) method, which permits us the use of fully relativistic 4-component Dirac spinors without the need for positive energy projection operators. This variational approach has been shown to work in the relativistic domain for one particle in an external potential (Dirac equation). We have extended its use to the relativistic 3-body Breit equation. Our procedure is as follows: we pick a trial wave function having the appropriate spin, flavor and color dependence. This can be accomplished with a non-symmetric relativistic spatial wave function having two different size parameters if the the first two quarks are always chosen to be identical. We than calculate an energy eigenvalue for the particle state and vary the parameters in our wave function to search for a "saddle-point". We minimize the energy with respect to the two size parameters and maximize with respect to two parameters that measure the contribution from the negative-energy states. This gives the baryon's mass as a function of four input parameters: the masses of the up, down and strange quarks (m_{u=d },m_{s}), and the strength of the coupling constants for the potentials ( alpha_{s},mu). We do this for the eight Baryon ground states and fit these to experimental data. This fit gives the values of the input parameters. For the potentials we use a coulombic term to represent one-gluon exchange and a linear term for confinement. For both terms we include a retardation term required by relativity. We also add delta function and spin-spin terms to account for the large contribution of the coulomb interaction at the origin. The results we obtain from our SPV method are in good agreement with experimental data. The actual search for the saddle-point parameters and the fitting of the quark masses and the values of the coupling strengths was done on a CDC Cyber 860.

  4. Electromagnetic wave in a relativistic magnetized plasma

    SciTech Connect

    Krasovitskiy, V. B.

    2009-12-15

    Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.

  5. Screening parameters for the relativistic hydrogenic model

    NASA Astrophysics Data System (ADS)

    Lanzini, Fernando; Di Rocco, Héctor O.

    2015-12-01

    We present a Relativistic Screened Hydrogenic Model (RSHM) where the screening parameters depend on the variables (n , l , j) and the parameters (Z , N) . These screening parameters were derived theoretically in a neat form with no use of experimental values nor numerical values from self-consistent codes. The results of the model compare favorably with those obtained by using more sophisticated approaches. For the interested reader, a copy of our code can be requested from the corresponding author.

  6. Interferometric Measurement of Acceleration at Relativistic Speeds

    NASA Astrophysics Data System (ADS)

    Christian, Pierre; Loeb, Abraham

    2017-01-01

    We show that an interferometer moving at a relativistic speed relative to a point source of light offers a sensitive probe of acceleration. Such an accelerometer contains no moving parts, and is thus more robust than conventional “mass-on-a-spring” accelerometers. In an interstellar mission to Alpha Centauri, such an accelerometer could be used to measure the masses of exoplanets and their host stars as well as test theories of modified gravity.

  7. Substructures in Simulations of Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael de Oliveira; Oliveira, Samuel Rocha de

    2017-04-01

    We present a set of simulations of relativistic jets from accretion disk initial setup with numerical solutions of a system of general-relativistic magnetohydrodynamics (GRMHD) partial differential equations in a fixed black hole (BH) spacetime which is able to show substructures formations inside the jet as well as lobe formation on the jet head. For this, we used a central scheme of finite volume method without dimensional split and with no Riemann solvers namely the Nessyahu-Tadmor method. Thus, we were able to obtain stable numerical solutions with spurious oscillations under control and with no excessive numerical dissipation. Therefore, we developed some setups for initial conditions capable of simulating the formation of relativistic jets from the accretion disk falling onto central black hole until its ejection, both immersed in a magnetosphere. In our simulations, we were able to observe some substructure of a jet created from an accretion initial disk, namely, jet head, knots, cocoon, and lobe. Also, we present an explanation for cocoon formation and lobe formation. Each initial scenario was determined by ratio between disk density and magnetosphere density, showing that this relation is very important for the shape of the jet and its substructures.

  8. Special relativistic visualization by local ray tracing.

    PubMed

    Müller, Thomas; Grottel, Sebastian; Weiskopf, Daniel

    2010-01-01

    Special relativistic visualization offers the possibility of experiencing the optical effects of traveling near the speed of light, including apparent geometric distortions as well as Doppler and searchlight effects. Early high-quality computer graphics images of relativistic scenes were created using offline, computationally expensive CPU-side 4D ray tracing. Alternate approaches such as image-based rendering and polygon-distortion methods are able to achieve interactivity, but exhibit inferior visual quality due to sampling artifacts. In this paper, we introduce a hybrid rendering technique based on polygon distortion and local ray tracing that facilitates interactive high-quality visualization of multiple objects moving at relativistic speeds in arbitrary directions. The method starts by calculating tight image-space footprints for the apparent triangles of the 3D scene objects. The final image is generated using a single image-space ray tracing step incorporating Doppler and searchlight effects. Our implementation uses GPU shader programming and hardware texture filtering to achieve high rendering speed.

  9. Substructures in Simulations of Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael de Oliveira; Oliveira, Samuel Rocha de

    2017-02-01

    We present a set of simulations of relativistic jets from accretion disk initial setup with numerical solutions of a system of general-relativistic magnetohydrodynamics (GRMHD) partial differential equations in a fixed black hole (BH) spacetime which is able to show substructures formations inside the jet as well as lobe formation on the jet head. For this, we used a central scheme of finite volume method without dimensional split and with no Riemann solvers namely the Nessyahu-Tadmor method. Thus, we were able to obtain stable numerical solutions with spurious oscillations under control and with no excessive numerical dissipation. Therefore, we developed some setups for initial conditions capable of simulating the formation of relativistic jets from the accretion disk falling onto central black hole until its ejection, both immersed in a magnetosphere. In our simulations, we were able to observe some substructure of a jet created from an accretion initial disk, namely, jet head, knots, cocoon, and lobe. Also, we present an explanation for cocoon formation and lobe formation. Each initial scenario was determined by ratio between disk density and magnetosphere density, showing that this relation is very important for the shape of the jet and its substructures.

  10. Cosmological measurements with general relativistic galaxy correlations

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Montanari, Francesco; Bertacca, Daniele; Doré, Olivier; Durrer, Ruth

    2016-05-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ``relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  11. General Relativistic Effects in Atom Interferometry

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

    2008-03-17

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  12. General relativistic neutrino transport using spectral methods

    NASA Astrophysics Data System (ADS)

    Peres, Bruno; Penner, Andrew Jason; Novak, Jérôme; Bonazzola, Silvano

    2014-02-01

    We present a new code, Lorene's Ghost (for Lorene's gravitational handling of spectral transport) developed to treat the problem of neutrino transport in supernovae with the use of spectral methods. First, we derive the expression for the nonrelativistic Liouville operator in doubly spherical coordinates (r, θ, ϕ, ɛ, Θ, Φ), and further its general relativistic counterpart. We use the 3 + 1 formalism with the conformally flat approximation for the spatial metric, to express the Liouville operator in the Eulerian frame. Our formulation does not use any approximations when dealing with the angular arguments (θ, ϕ, Θ, Φ), and is fully energy-dependent. This approach is implemented in a spherical shell, using either Chebyshev polynomials or Fourier series as decomposition bases. It is here restricted to simplified collision terms (isoenergetic scattering) and to the case of a static fluid. We finish this paper by presenting test results using basic configurations, including general relativistic ones in the Schwarzschild metric, in order to demonstrate the convergence properties, the conservation of particle number and correct treatment of some general relativistic effects of our code. The use of spectral methods enables to run our test cases in a six-dimensional setting on a single processor.

  13. Secondary antiproton production in relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Ramaty, R.

    1985-01-01

    The possibility is investigated that the reported excess low energy antiproton component of the cosmic radiation results from proton-proton (p-p) interactions in relativistic plasmas. Because of both target and projectile motion in such plasmas, the antiproton production threshold in the frame of the plasma is much lower than the threshold of antiproton production in cosmic ray interactions with ambient matter. The spectrum of the resultant antiprotons therefore extends to much lower energy than in the cosmic ray case. The antiproton spectrum is calculated for relativistic thermal plasmas and the spectrum is estimated for relativistic nonthermal plasmas. As possible production sites, matter accreting onto compact objects located in the galaxy is considered. Possible overproduction of gamma rays from associated neutral pion production can be avoided if the site is optically thick to the photons but not to the antiprotons. A possible scenario involves a sufficiently large photon density that the neutral pion gamma rays are absorbed by photon-photon pair production. Escape of the antiprotons to the interstellar medium can be mediated by antineutron production.

  14. Hydrodynamic approaches in relativistic heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Derradi de Souza, R.; Koide, T.; Kodama, T.

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation to the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to be answered to clarify the physics of collective phenomena in the relativistic heavy ion collisions are pointed out.

  15. Particle Acceleration and Emission in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.

    2003-01-01

    Shock wave acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  16. Relativistic effects in local inertial frames

    NASA Technical Reports Server (NTRS)

    Ashby, Neil; Bertotti, Bruno

    1986-01-01

    The concept of a generalized Fermi frame is introduced with the aim of describing the relativistic effects due to a third, distant body (such as the sun) upon the motion of an earth satellite. This extends Fermi's construction of a local inertial frame to the case in which there are local gravitating masses. This is done in the slow-motion, weak-field approximation by splitting the metric into an external part and a local part; Fermi's construction of local inertial coordinates defined with respect to the external metric is then used to transform the complete metric. The results show that the main relativistic effects on an earth satellite are due to the nonlinear correction in the earth's own Schwarzschild field. There are much smaller relativistic corrections in the tidal field of the sun, and an earth-sun interaction term. The spatial axes of the local frame also undergo geodetic precession. Particular care must be taken with respect to the definition of the time coordinate in the generalized Fermi frame in order that the unit of time be consistent with readings of reasonable physical clocks on earth's surface. Also discussed more rigorously is the generalized Fermi frame for a system of two bodies revolving in circular orbits around a common barycenter.

  17. Ultra-Relativistic Heavy Ion Nuclear Physics

    SciTech Connect

    Braithwaite, W. J.

    1995-05-31

    This report describes an on-going research initiative for the University of Arkansas at Little Rock (UALR): investigating the physics of ultra-relativistic heavy ions, i.e. collisions between massive nuclei which have been accelerated to kinetic energies so large that the rest mass of the ions is a negligible fraction of their total mass-energy. This progress report is being submitted in conjunction with a 3-year grant-renewal proposal, containing additional materials. Three main categories drive the UALRGultra-relativistic heavy ion research. (1) investigations of multi-particle Hanbury-Brown-Twiss (HBT) correlations in the CERN and RHIC energy domains strongly influence the URHI experimental effort, (2) participation in the NA49 Experiment to study 33 TeV (160 GeV/nucleon) Pb on Pb collisions using the SPS facili& at CERN, and (3) participation in the STAR collaboration which is developing a major detector for use with the STAR Experiment at the Relativistic Heavy Ion Collider (RHIC), being built at BNL.

  18. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  19. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    NASA Technical Reports Server (NTRS)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  20. Extended Galilean symmetries of non-relativistic strings

    NASA Astrophysics Data System (ADS)

    Batlle, Carles; Gomis, Joaquim; Not, Daniel

    2017-02-01

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  1. Calculation of relativistic nucleon-nucleon potentials in three dimensions

    NASA Astrophysics Data System (ADS)

    Hadizadeh, M. R.; Radin, M.

    2017-02-01

    In this paper, we have applied a three-dimensional approach for the calculation of the relativistic nucleon-nucleon potential. The quadratic operator relation between the non-relativistic and the relativistic nucleon-nucleon interactions is formulated as a function of relative two-nucleon momentum vectors, which leads to a three-dimensional integral equation. The integral equation is solved by the iteration method, and the matrix elements of the relativistic potential are calculated from non-relativistic ones. The spin-independent Malfliet-Tjon potential is employed in the numerical calculations, and the numerical tests indicate that the two-nucleon observables calculated by the relativistic potential are preserved with high accuracy.

  2. Relativistic Corrections to the Properties of the Alkali Fluorides

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Partridge, Harry

    1993-01-01

    Relativistic corrections to the bond lengths, dissociation energies and harmonic frequencies of KF, RbF and CsF have been obtained at the self-consistent field level by dissociating to ions. The relativistic corrections to the bond lengths, harmonic frequencies and dissociation energies to the ions are very small, due to the ionic nature of these molecules and the similarity of the relativistic and nonrelativistic ionic radii.

  3. Relativistic corrections in K-shell ionization cross sections

    SciTech Connect

    Sheth, C.V.

    1984-03-01

    Relativistic effects on a modified version of Rutherford's scattering cross section are considered up to first-order in the Born approximation for relativistic velocities in the binary-encounter approximation (BEA). The predicted cross sections with protons as projectile are lower than the previous theoretical values at low energies and are seen to be in better agreement with measurements. An approximate relativistic correction factor which accounts for orbital electrons only is compared with exact Dirac corrections, within the BEA model.

  4. SCALING OF THE ANOMALOUS BOOST IN RELATIVISTIC JET BOUNDARY LAYER

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-04-01

    We investigate the one-dimensional interaction of a relativistic jet and an external medium. Relativistic magnetohydrodynamic simulations show an anomalous boost of the jet fluid in the boundary layer, as previously reported. We describe the boost mechanism using an ideal relativistic fluid and magnetohydrodynamic theory. The kinetic model is also examined for further understanding. Simple scaling laws for the maximum Lorentz factor are derived, and verified by the simulations.

  5. Relativistic linearized coupled-cluster single-double calculations of positron-atom bound states

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.; Gribakin, G. F.; Harabati, C.

    2012-09-01

    Relativistic linearized coupled-cluster single-double approximation with third-order corrections is used to calculate positron-atom bound states. The method is tested on closed-shell atoms such as Be, Mg, Ca, Zn, Cd, and Hg, where a number of accurate calculations are available. It is then used to calculate positron binding energies for a range of open-shell transition metal atoms from Sc to Cu, from Y to Pd, and from Lu to Pt. These systems possess Feshbach resonances, which can be used to search for positron-atom binding experimentally through resonant annihilation or scattering.

  6. Volume-preserving algorithm for secular relativistic dynamics of charged particles

    SciTech Connect

    Zhang, Ruili; Liu, Jian; Wang, Yulei; He, Yang; Qin, Hong; Sun, Yajuan

    2015-04-15

    Secular dynamics of relativistic charged particles has theoretical significance and a wide range of applications. However, conventional algorithms are not applicable to this problem due to the coherent accumulation of numerical errors. To overcome this difficulty, we develop a volume-preserving algorithm (VPA) with long-term accuracy and conservativeness via a systematic splitting method. Applied to the simulation of runaway electrons with a time-span over 10 magnitudes, the VPA generates accurate results and enables the discovery of new physics for secular runaway dynamics.

  7. Relativistic, QED, and nuclear mass effects in the magnetic shielding of 3He.

    PubMed

    Rudziński, Adam; Puchalski, Mariusz; Pachucki, Krzysztof

    2009-06-28

    The magnetic shielding sigma of (3)He is studied. The complete relativistic corrections of order O(alpha(2)), leading QED corrections of order O(alpha(3) ln alpha), and finite nuclear mass effects of order O(m/m(N)) are calculated with high numerical precision. The resulting theoretical predictions for sigma = 59.967 43(10)x10(-6) are the most accurate to date among all elements and support the use of (3)He as a NMR standard.

  8. Relativistic effects on the bonding and properties of the hydrides of platinum

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1993-01-01

    The ground state of PtH2 and several low-lying states of PtH(+) and PtH have been studied at the all-electron self-consistent-field level of theory to examine the importance of relativistic effects. The results of calculations based on Dirac-Hartree-Fock theory, nonrelativistic theory, and the spin-free no-pair relativistic approximation of Hess are compared to separate the effects of the spin-free terms and the spin-orbit terms of the Hamiltonian on the relativistic corrections to the molecular properties. Comparison is also made between first-order perturbation theory including the one-electron spin-free terms and the method of Hess to determine the size of effects beyond first order. It is found that the spin-orbit interaction significantly affects the properties and energetics of these molecules because of the participation of the Pt 5d orbitals in the bonding, and that effects beyond first order in perturbation theory are large. Any treatment of Pt compounds will have to include both the spin-free and spin-orbit interactions for an accurate description.

  9. Contribution of relativistic quantum chemistry to electron’s electric dipole moment for CP violation

    SciTech Connect

    Abe, M. Gopakumar, G. Hada, M.; Das, B. P.; Tatewaki, H.; Mukherjee, D.

    2015-12-31

    The search for the electric dipole moment of the electron (eEDM) is important because it is a probe of Charge Conjugation-Parity (CP) violation. It can also shed light on new physics beyond the standard model. It is not possible to measure the eEDM directly. However, the interaction energy involving the effective electric field (E{sub eff}) acting on an electron in a molecule and the eEDM can be measured. This quantity can be combined with E{sub eff}, which is calculated by relativistic molecular orbital theory to determine eEDM. Previous calculations of E{sub eff} were not sufficiently accurate in the treatment of relativistic or electron correlation effects. We therefore developed a new method to calculate E{sub eff} based on a four-component relativistic coupled-cluster theory. We demonstrated our method for YbF molecule, one of the promising candidates for the eEDM search. Using very large basis set and without freezing any core orbitals, we obtain a value of 23.1 GV/cm for E{sub eff} in YbF with an estimated error of less than 10%. The error is assessed by comparison of our calculations and experiments for two properties relevant for E{sub eff}, permanent dipole moment and hyperfine coupling constant. Our method paves the way to calculate properties of various kinds of molecules which can be described by a single-reference wave function.

  10. Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations

    PubMed Central

    Yousaf, Muhammad; Ghaffar, Tayabia; Qamar, Shamsul

    2015-01-01

    The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD). Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems. PMID:26070067

  11. Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations.

    PubMed

    Yousaf, Muhammad; Ghaffar, Tayabia; Qamar, Shamsul

    2015-01-01

    The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD). Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems.

  12. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  13. General relativistic monopole magnetosphere of neutron stars: a pseudo-spectral discontinuous Galerkin approach

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2015-03-01

    The close vicinity of neutron stars remains poorly constrained by observations. Although plenty of data are available for the peculiar class of pulsars we are still unable to deduce the underlying plasma distribution in their magnetosphere. In the present paper, we try to unravel the magnetospheric structure starting from basic physics principles and reasonable assumptions about the magnetosphere. Beginning with the monopole force-free case, we compute accurate general relativistic solutions for the electromagnetic field around a slowly rotating magnetized neutron star. Moreover, here we address this problem by including the important effect of plasma screening. This is achieved by solving the time-dependent Maxwell equations in a curved space-time following the 3+1 formalism. We improved our previous numerical code based on pseudo-spectral methods in order to allow for possible discontinuities in the solution. Our algorithm based on a multidomain decomposition of the simulation box belongs to the discontinuous Galerkin finite element methods. We performed several sets of simulations to look for the general relativistic force-free monopole and split monopole solutions. Results show that our code is extremely powerful in handling extended domains of hundredth of light cylinder radii rL. The code has been validated against known exact analytical monopole solutions in flat space-time. We also present semi-analytical calculations for the general relativistic vacuum monopole.

  14. Why criteria for impulse approximation in Compton scattering fail in relativistic regimes

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2014-05-01

    The assumption behind impulse approximation (IA) for Compton scattering is that the momentum transfer q is much greater than the average < p > of the initial bound state momentum distribution p. Comparing with S-matrix results, we find that at relativistic incident photon energies (ωi) and for high Z elements, one requires information beyond < p > / q to predict the accuracy of relativistic IA (RIA) diferential cross sections. The IA expression is proportional to the product of a kinematic factor Xnr and the symmetrical Compton profile J, where Xnr = 1 + cos2 θ (θ is the photon scattering angle). In the RIA case, Xnr, independent of p, is replaced by Xrel (ω , θ , p) in the integrand which determines J. At nr energies there is virtually no RIA error in the position of the Compton peak maximum (ωfpk) in the scattered photon energy (ωf), while RIA error in the peak magnitude can be characterized by < p > / q . This is because at low ωi, the kinematic effects described by S-matrix (also RIA) expressions behave like Xnr, while in relativistic regimes (high ωi and Z), kinematic factors treated accurately by S-matrix but not RIA expressions become significant and do not factor out.

  15. Theoretical study of the relativistic molecular rotational g-tensor

    SciTech Connect

    Aucar, I. Agustín Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  16. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1975-01-01

    Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.

  17. Relativistic blast waves in two dimensions. I - The adiabatic case

    NASA Technical Reports Server (NTRS)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  18. RELATIVISTIC TWO-FLUID SIMULATIONS OF GUIDE FIELD MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2009-11-01

    The nonlinear evolution of relativistic magnetic reconnection in sheared magnetic configuration (with a guide field) is investigated by using two-dimensional relativistic two-fluid simulations. Relativistic guide field reconnection features the charge separation and the guide field compression in and around the outflow channel. As the guide field increases, the composition of the outgoing energy changes from enthalpy-dominated to Poynting-dominated. The inertial effects of the two-fluid model play an important role to sustain magnetic reconnection. Implications for the single-fluid magnetohydrodynamic approach and the physics models of relativistic reconnection are briefly addressed.

  19. Relativistic ionization of hydrogen by linearly polarized light.

    PubMed

    Crawford, D; Reiss, H

    1998-03-30

    Relativistic ionization of hydrogen by intense, linearly polarized light is treated by the Strong Field Approximation (SFA). Both bound and ionized states are described by the Dirac equation, with spin effects fully included. The applied laser field is also treated relativistically. There is no recourse to the dipole approximation nor to large-component, small-component approximations. Examples are calculated for the long-pulse limit of a uniformly distributed laser field. A prediction is verified that relativistic effects will appear with linear polarization of the laser at lower intensities than with circular polarization. Strong-field atomic stabilization is found to be enhanced by relativistic effects.

  20. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  1. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel D.; Newman, William I.

    2013-04-01

    We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number MA. We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence

  2. An accurate metric for the spacetime around rotating neutron stars.

    NASA Astrophysics Data System (ADS)

    Pappas, George

    2017-01-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parameterised by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parameterisation of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a 3-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  3. Isotropic Landau levels of relativistic and non-relativistic fermions in 3D flat space

    NASA Astrophysics Data System (ADS)

    Li, Yi; Wu, Congjun

    2012-02-01

    The usual Landau level quantization, as demonstrated in the 2D quantum Hall effect, is crucially based on the planar structure. In this talk, we explore its 3D counterpart possessing the full 3D rotational symmetry as well as the time reversal symmetry. We construct the Landau level Hamiltonians in 3 and higher dimensional flat space for both relativistic and non-relativistic fermions. The 3D cases with integer fillings are Z2 topological insulators. The non-relativistic version describes spin-1/2 fermions coupling to the Aharonov-Casher SU(2) gauge field. This system exhibits flat Landau levels in which the orbital angular momentum and the spin are coupled with a fixed helicity. Each filled Landau level contributes one 2D helical Dirac Fermi surface at an open boundary, which demonstrates the Z2 topological nature. A natural generalization to Dirac fermions is found as a square root problem of the above non-relativistic version, which can also be viewed as the Dirac equation defined on the phase space. All these Landau level problems can be generalized to arbitrary high dimensions systematically. [4pt] [1] Yi Li and Congjun Wu, arXiv:1103.5422.[0pt] [2] Yi Li, Ken Intriligator, Yue Yu and Congjun Wu, arXiv:1108.5650.

  4. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  5. String Mechanism for Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Dyadechkin, S. A.; Semenov, V. S.; Punsly, B.; Biernat, H. K.

    Here we present our latest studies of relativistic jet formation in the vicinity of a rotating black hole where the reconnection process has been taken into account. In order to simplify the problem, we use Lagrangian formalism and develop a method which enables us to consider a magnetized plasma as a set of magnetic flux tubes [5,6]. Within the limits of the Lagrangian approach, we perform numerical simulations of the flux tube (nonlinear string) behavior which clearly demonstrates the process of relativistic jet formation in the form of outgoing torsional nonlinear aves. It turns out that the jet is produced deep inside the ergosphere where the flux tube takes away spinning energy from the black hole due to the nonlocal Penrose process [2]. This is similar to the Blandford-Znajek (BZ) mechanism to some extent [8], however, the string mechanism is essentially time dependent. It is shown that the leading part of the accreting tube gains negative energy and therefore has to stay in the ergosphere forever. Simultaneously, another part of the tube propagates along the spinning axis away from the hole with nearly the speed of light. As a result, the tube is continuously stretching and our mechanism is essentially time dependent. Obviously, such process cannot last infinitely long and we have to take into account the reconnection process. Due to reconnection, the topology of the flux tube is changed and it gives rise to a plasmoid creation which propagates along spin axis of the hole with relativistic speed carrying off the energy and angular momentum away from the black hole.

  6. Inverse Compton Scattering in Mildly Relativistic Plasma

    NASA Technical Reports Server (NTRS)

    Molnar, S. M.; Birkinshaw, M.

    1998-01-01

    We investigated the effect of inverse Compton scattering in mildly relativistic static and moving plasmas with low optical depth using Monte Carlo simulations, and calculated the Sunyaev-Zel'dovich effect in the cosmic background radiation. Our semi-analytic method is based on a separation of photon diffusion in frequency and real space. We use Monte Carlo simulation to derive the intensity and frequency of the scattered photons for a monochromatic incoming radiation. The outgoing spectrum is determined by integrating over the spectrum of the incoming radiation using the intensity to determine the correct weight. This method makes it possible to study the emerging radiation as a function of frequency and direction. As a first application we have studied the effects of finite optical depth and gas infall on the Sunyaev-Zel'dovich effect (not possible with the extended Kompaneets equation) and discuss the parameter range in which the Boltzmann equation and its expansions can be used. For high temperature clusters (k(sub B)T(sub e) greater than or approximately equal to 15 keV) relativistic corrections based on a fifth order expansion of the extended Kompaneets equation seriously underestimate the Sunyaev-Zel'dovich effect at high frequencies. The contribution from plasma infall is less important for reasonable velocities. We give a convenient analytical expression for the dependence of the cross-over frequency on temperature, optical depth, and gas infall speed. Optical depth effects are often more important than relativistic corrections, and should be taken into account for high-precision work, but are smaller than the typical kinematic effect from cluster radial velocities.

  7. Relativistic Lagrangian displacement field and tensor perturbations

    NASA Astrophysics Data System (ADS)

    Rampf, Cornelius; Wiegand, Alexander

    2014-12-01

    We investigate the purely spatial Lagrangian coordinate transformation from the Lagrangian to the basic Eulerian frame. We demonstrate three techniques for extracting the relativistic displacement field from a given solution in the Lagrangian frame. These techniques are (a) from defining a local set of Eulerian coordinates embedded into the Lagrangian frame; (b) from performing a specific gauge transformation; and (c) from a fully nonperturbative approach based on the Arnowitt-Deser-Misner (ADM) split. The latter approach shows that this decomposition is not tied to a specific perturbative formulation for the solution of the Einstein equations. Rather, it can be defined at the level of the nonperturbative coordinate change from the Lagrangian to the Eulerian description. Studying such different techniques is useful because it allows us to compare and develop further the various approximation techniques available in the Lagrangian formulation. We find that one has to solve the gravitational wave equation in the relativistic analysis, otherwise the corresponding Newtonian limit will necessarily contain spurious nonpropagating tensor artifacts at second order in the Eulerian frame. We also derive the magnetic part of the Weyl tensor in the Lagrangian frame, and find that it is not only excited by gravitational waves but also by tensor perturbations which are induced through the nonlinear frame dragging. We apply our findings to calculate for the first time the relativistic displacement field, up to second order, for a Λ CDM Universe in the presence of a local primordial non-Gaussian component. Finally, we also comment on recent claims about whether mass conservation in the Lagrangian frame is violated.

  8. An Efficient and Accurate Quantum Lattice-Gas Model for the Many-Body Schroedinger Wave Equation

    DTIC Science & Technology

    2002-01-01

    CONTRACT NUMBER AN EFFICIENT AND ACCURATE QUANTUM LATTICE-GAS MODEL FOR THE MANY-BODY SCHROEDINGER WAVE EQUATION 5b. GRANT NUMBER SC. PROGRAM ELEMENT...for simulating the time-dependent evolution of a many-body jiiantum mechanical system of particles governed by the non-relativistic Schroedinger " wave...the numerical dispersion of the simulated wave packets is compared with the analytical solutions. 15. SUBJECT TERM: Schroedinger wave equation

  9. Optics measurement and correction for the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Shen, Xiaozhe

    The quality of beam optics is of great importance for the performance of a high energy accelerator like the Relativistic Heavy Ion Collider (RHIC). The turn-by-turn (TBT) beam position monitor (BPM) data can be used to derive beam optics. However, the accuracy of the derived beam optics is often limited by the performance and imperfections of instruments as well as measurement methods and conditions. Therefore, a robust and model-independent data analysis method is highly desired to extract noise-free information from TBT BPM data. As a robust signal-processing technique, an independent component analysis (ICA) algorithm called second order blind identification (SOBI) has been proven to be particularly efficient in extracting physical beam signals from TBT BPM data even in the presence of instrument's noise and error. We applied the SOBI ICA algorithm to RHIC during the 2013 polarized proton operation to extract accurate linear optics from TBT BPM data of AC dipole driven coherent beam oscillation. From the same data, a first systematic estimation of RHIC BPM noise performance was also obtained by the SOBI ICA algorithm, and showed a good agreement with the RHIC BPM configurations. Based on the accurate linear optics measurement, a beta-beat response matrix correction method and a scheme of using horizontal closed orbit bumps at sextupoles for arc beta-beat correction were successfully applied to reach a record-low beam optics error at RHIC. This thesis presents principles of the SOBI ICA algorithm and theory as well as experimental results of optics measurement and correction at RHIC.

  10. Relativistic density functional study on uranium(IV) and thorium(IV) oxide clusters of zonohedral geometry.

    PubMed

    Shamov, Grigory A

    2012-06-18

    Free and ligated oxide clusters of thorium(IV) and uranium(IV) were studied with density functional theory using all-electron scalar relativistic method, as well as energy-consistent relativistic f-in-core pseudopotentials. The main driving force for the cluster formation is the sintering of the dioxoactinide moieties, which is more favorable for thorium(IV) than for uranium(IV) because, for the latter, a penalty for bending of the uranyl(IV) is to be paid. We assumed that the rhombic structural motif that exists already in the (AnO(2))(2) dimer could be a guide to explaining the preference for the existing An(6)O(8)-type clusters. On the basis of this, we have theoretically explored the possibility of the existence of similar (zonohedric) polyhedral actinide oxide clusters and found that the next possible cluster would be of An(12)O(20) stoicheometry. We have predicted by our DFT computations that the corresponding zonohedral clusters would be minima on the potential energy surface. The alternating An-O rhombic structural motif also offers a possible explanation of the existence and stoichiometry of the only nonfluorite cluster thus far, the An(12)O(20), which is nonzonohedral, nonconvex, but still a rhombic polyhedron. Our relativistic all electron DFT computations of both free cationic and ligated clusters predict that preparation of the larger clusters is not forbidden thermodynamically. We have also found that for the uranium(IV), oxide dimer and hexamer clusters are antiferromagnetic, broken spin singlet in their ground state, while ligated [U(6)O(8)] clusters prefer an all high-spin electronic configuration.

  11. Imperfect relativistic mirrors in the quantum regime

    SciTech Connect

    Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.

    2014-05-15

    The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.

  12. Microengineering Laser Plasma Interactions at Relativistic Intensities

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Ji, L. L.; Audesirk, H.; George, K. M.; Snyder, J.; Krygier, A.; Poole, P.; Willis, C.; Daskalova, R.; Chowdhury, E.; Lewis, N. S.; Schumacher, D. W.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2016-02-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  13. An X-band overmoded relativistic klystron

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Chen, Changhua; Deng, Yuqun; Li, Jiawei; Bai, Xianchen

    2014-11-01

    An X-band overmoded relativistic klystron is proposed, the operation mode of which is the TM02 mode. The drift tube could not cut off the TM01 mode; isolating the buncher cavity from the input cavity is achieved by introducing a sectional RF lossy material. Microwaves are extracted from the modulated electron beam using a cylindrical waveguide, rather than a coaxial waveguide; thereby, the output structure is significantly simplified. Particle-in-cell simulations show that microwaves with power of 1.28 GW and frequency of 9.30 GHz can be obtained, corresponding to an efficiency of 32% and relative bandwidth of about 8%.

  14. Dynamical phase trajectories for relativistic nuclear collisions

    SciTech Connect

    Arsene, I. C.; Bravina, L. V.; Cassing, W.; Ivanov, Yu. B.; Russkikh, V. N.; Larionov, A.; Randrup, J.; Toneev, V. D.; Zeeb, G.; Zschiesche, D.

    2007-03-15

    Central collisions of gold nuclei are simulated by several existing models and the central net baryon density {rho} and the energy density {epsilon} are extracted at successive times for beam kinetic energies of 5-40 GeV/nucleon. The resulting trajectories in the ({rho},{epsilon}) phase plane are discussed from the perspective of experimentally exploring the expected first-order hadronization phase transition with the planned FAIR at GSI or in a low-energy campaign at the Relativistic Heavy Ion Collider.

  15. Relativistic thermal plasmas - Pair processes and equilibria

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.

    1982-01-01

    The work of Bisnovatyi-Kogan, Zel'dovich and Sunyaev (1971) is extended and generalized, through the inclusion of pair-producing photon processes and effects due to the finite size of the plasma, in an investigation of the equilibria of relativistic thermal plasmas which takes into account electron-positron creation and annihilation and photons produced within the plasma. It is shown that the bridge between an effectively thin plasma and an effectively thick plasma occurs in the transrelativistic region, where the dimensionless temperature value is between 0.1 and 1.0 and the temperature remains in this region over a great luminosity range.

  16. Leibnizian relationalism for general relativistic physics

    NASA Astrophysics Data System (ADS)

    Vassallo, Antonio; Esfeld, Michael

    2016-08-01

    An ontology of Leibnizian relationalism, consisting in distance relations among sparse matter points and their change only, is well recognized as a serious option in the context of classical mechanics. In this paper, we investigate how this ontology fares when it comes to general relativistic physics. Using a Humean strategy, we regard the gravitational field as a means to represent the overall change in the distance relations among point particles in a way that achieves the best combination of being simple and being informative.

  17. Analytic solutions of the relativistic Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Martinez, Mauricio; Xiao, Bo-Wen

    2015-04-01

    We present new analytic solutions to the relativistic Boltzmann equation within the relaxation time approximation. We first obtain spherically expanding solutions which are the kinetic counterparts of the exact solutions of the Israel-Stewart equation in the literature. This allows us to compare the solutions of the kinetic and hydrodynamic equations at an analytical level. We then derive a novel boost-invariant solution of the Boltzmann equation which has an unconventional dependence on the proper time. The existence of such a solution is also suggested in second-order hydrodynamics and fluid-gravity correspondence.

  18. Microengineering Laser Plasma Interactions at Relativistic Intensities.

    PubMed

    Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2016-02-26

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  19. Dynamical friction in a relativistic plasma

    NASA Astrophysics Data System (ADS)

    Pike, O. J.; Rose, S. J.

    2014-05-01

    The work of Spitzer on dynamical friction in a plasma [L. Spitzer, Jr., Physics of Fully Ionized Gases, 2nd ed. (Wiley, New York, 1962), Chap. 5] is extended to relativistic systems. We derive the force of dynamical friction, diffusion tensor, and test particle relaxation rates for a Maxwellian background in the same form as Trubnikov [B. A. Trubnikov, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 105], enabling high-temperature laboratory and astrophysical plasmas to be modeled in a consistent manner.

  20. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  1. Three-dimensional relativistic electromagnetic subcycle solitons.

    PubMed

    Esirkepov, Timur; Nishihara, Katsunobu; Bulanov, Sergei V; Pegoraro, Francesco

    2002-12-30

    Three-dimensional (3D) relativistic electromagnetic subcycle solitons were observed in 3D particle-in-cell simulations of an intense short-laser-pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dipole with a poloidal electric field and a toroidal magnetic field that oscillate in phase with the electron density with frequency below the Langmuir frequency. On the ion time scale, the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasineutral cavity.

  2. Relativistic mean field description of cluster radioactivity

    NASA Astrophysics Data System (ADS)

    Bhagwat, A.; Gambhir, Y. K.

    2005-01-01

    Comprehensive investigations of the observed cluster radioactivity are carried out. First, the relativistic mean field (RMF) theory is employed for the calculations of the ground-state properties of relevant nuclei. The calculations reproduce the experiment well. The calculated RMF point densities are folded with the density-dependent M3Y nucleon-nucleon interaction to obtain the cluster-daughter interaction potential. This, along with the calculated and experimental Q values, is used in the WKB approximation for estimating the half-lives of the parent nuclei against cluster decay. The calculations qualitatively agree with the experiment. Sensitive dependence of the half-lives on Q values is explicitly demonstrated.

  3. Minimal relativistic three-particle equations

    SciTech Connect

    Lindesay, J.

    1981-07-01

    A minimal self-consistent set of covariant and unitary three-particle equations is presented. Numerical results are obtained for three-particle bound states, elastic scattering and rearrangement of bound pairs with a third particle, and amplitudes for breakup into states of three free particles. The mathematical form of the three-particle bound state equations is explored; constraints are set upon the range of eigenvalues and number of eigenstates of these one parameter equations. The behavior of the number of eigenstates as the two-body binding energy decreases to zero in a covariant context generalizes results previously obtained non-relativistically by V. Efimov.

  4. Relativistic analysis of proton elastic scattering

    NASA Astrophysics Data System (ADS)

    El Nohy, N. A.; El-Hammamy, M. N.; Yoseph, S. I.; Abdel-Moneim, A. M.

    2015-04-01

    The Dirac equation as the relevant wave equation, is used in modified DWUCK4 program to calculate the elastic scattering cross section throughout the energy range suitable for relativistic treatment of proton elastic scattering by nuclei 40Ca, 58Ni, 90Zr and 208Pb. A good fit to the experimental data is presented. The real and imaginary potentials are well determined and behave regularly with energy. The behaviour of the real central effective potential shows the development of a "wine-bottle" shape in the transition energy region and the persistence of a small attractive potential in the nuclear surface region, even at 800 MeV.

  5. Relativistic electron in curved magnetic fields

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Making use of the perturbation method based on the nonlinear differential equation theory, the author investigates the classical motion of a relativistic electron in a class of curved magnetic fields which may be written as B=B(O,B sub phi, O) in cylindrical coordinates (R. phi, Z). Under general astrophysical conditions the author derives the analytical expressions of the motion orbit, pitch angle, etc., of the electron in their dependence upon parameters characterizing the magnetic field and electron. The effects of non-zero curvature of magnetic field lines on the motion of electrons and applicabilities of these results to astrophysics are also discussed.

  6. Semi-Relativistic Reflection and Transmission Coefficients for Two Spinless Particles Separated by a Rectangular-Shaped Potential Barrier

    NASA Astrophysics Data System (ADS)

    Thylwe, K. E.; Oluwadare, O. J.; Oyewumi, K. J.

    2016-10-01

    A generalized Schrödinger approximation, due to Ikhdair & Sever, of the semi-relativistic two-body problem with a rectangular barrier in (1+1) dimensions is compared with exact computations. Exact and approximate transmission and reflection coefficients are obtained in terms of local wave numbers. The approximate transmission and reflection coefficients turn out to be surprisingly accurate in an energy range |ɛ - V0| < 2μc2, where μ is the reduced mass, ɛ the scattering energy, and V0 the barrier top energy. The approximate wave numbers are less accurate.

  7. Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics

    DOE PAGES

    Schollmeier, Marius; Sefkow, Adam B.; Geissel, Matthias; ...

    2015-04-20

    High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge ofmore » the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results indicate that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.« less

  8. Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics

    SciTech Connect

    Schollmeier, Marius; Sefkow, Adam B.; Geissel, Matthias; Arefiev, Alexey V.; Flippo, Kirk A.; Gaillard, Sandrine A.; Johnson, Randy P.; Kimmel, Mark W.; Offermann, Dustin T.; Rambo, Patrick K.; Schwarz, Jens; Shimada, Tom

    2015-04-20

    High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge of the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results indicate that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.

  9. Time parameters and Lorentz transformations of relativistic stochastic processes.

    PubMed

    Dunkel, Jörn; Hänggi, Peter; Weber, Stefan

    2009-01-01

    Rules for the transformation of time parameters in relativistic Langevin equations are derived and discussed. In particular, it is shown that, if a coordinate-time-parametrized process approaches the relativistic Jüttner-Maxwell distribution, the associated proper-time-parametrized process converges to a modified momentum distribution, differing by a factor proportional to the inverse energy.

  10. Feynman's Relativistic Electrodynamics Paradox and the Aharonov-Bohm Effect

    NASA Astrophysics Data System (ADS)

    Caprez, Adam; Batelaan, Herman

    2009-03-01

    An analysis is done of a relativistic paradox posed in the Feynman Lectures of Physics involving two interacting charges. The physical system presented is compared with similar systems that also lead to relativistic paradoxes. The momentum conservation problem for these systems is presented. The relation between the presented analysis and the ongoing debates on momentum conservation in the Aharonov-Bohm problem is discussed.

  11. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1975-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. A general relativistic version of the mixing-length formalism for convection is presented. It is argued that in work on spherical systems, general relativity theorists have identified the wrong quantity as total mass-energy inside radius r.

  12. Electron impact ionization at relativistic energies

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali; Cole, Kyra; Hertlein, Marcus; Feinberg, Benedict; Schriel, Ralf; Adaniya, Hidehito; Neumann, Nadine

    2004-05-01

    We used an ion time-of-flight set up based on a pulsed high-voltage extraction technique to study the charge state distribution of He, Ne, Ar, Kr and Xe atoms after impact of 0.2 to 1.5 GeV electrons. The relativistic electron beam is produced at the booster beamline at the Advanced Light Source at the Lawrence Berkeley National Laboratory. The yield of ions drops drastically with the charge state number. Our measurements show that the ratio of doubly-charge to singly-charged ions reaches an asymptotic limit of 0.0028 for He already at electron energies below 40 MeV. However we observe a very pronounced energy dependence of the ratio of the doubly-charged to singly-charged ions for the heavier atoms such as Kr and Xe in the 0.2 - 1.5 GeV energy range. This energy dependence takes place way above the energy at which theories based on the equivalent photon method or the born- approximation predict the asymptotic limit to be reached. This may be an indication of new physics coming into play in the photoionization process due to relativistic effects.

  13. Relativistic-beam Pickup Test Facility

    SciTech Connect

    Kramer, S.L.; Simpson, J.; Konecny, R.; Suddeth, D.

    1983-01-01

    The electrical response of pickups and cavities to charged particle beams has been an area of considerable activity and concern for accelerator systems. With the advent of stochastic beam cooling, the position and frequency response of beam pickups has become a crucial parameter in determining the performance of these systems. The most frequently used method for measuring and calibrating beam pickups has been the use of current carrying wires to simulate relativistic beams. This method has sometimes led to incorrect predictions of the pickup response to particle beams. The reasons for the differences are not always obvious but could arise from: (1) wires are incapable of exciting or permitting many of the modes that beams excite or (2) the interaction of the wire with large arrays of pickups produce results which are not easily predicted. At Argonne these deficiencies are resolved by calibrating pickups with a relativistic electron beam. This facility is being used extensively by several groups to measure beam pickup devices and is the primary calibration facility for pickups to be used in the FNAL TEV-I Antiproton Source.

  14. Prognosis of Gles of Relativistic Solar Protons

    NASA Astrophysics Data System (ADS)

    Pérez-Peraza, Jorge; Juárez-Zuñiga, Alan

    2015-04-01

    Ground level enhancements (GLEs) are relativistic solar particles measured at ground level by the worldwide network of cosmic ray detectors. These sporadic events are associated with solar flares and are assumed to be of a quasi-random nature. Studying them gives information about their source and propagation processes, the maximum capacity of the Sun as a particle accelerator engine, the magnetic structure of the medium traversed, etc. Space vehicles, as well as electric transformers and gas pipes at high latitudes may be damaged by this kind of radiation. As a result, their prediction has turned out to be very important, but because of their random occurrence, up to now few efforts toward this goal have been made. The results of these efforts have been limited to possible warnings in real time, just before a GLE occurrence, but no specific dates have been predicted well enough in advance to prevent possible hazards. In this study we show that, in spite of the quasi-stochastic nature of GLEs, it is possible to predict them with relative precision, even for future solar cycles. Additionally, a previous study establishing synchronization among some periodicities of several layers of solar atmosphere argues against the full randomness of the phenomenon of relativistic particle production. Therefore, by means of wavelet spectral analysis combined with fuzzy logic tools, we reproduce previous known GLE events and present results for future events. The next GLE is expected to occur in the first semester of 2016.

  15. Relativistic redshifts in quasar broad lines

    SciTech Connect

    Tremaine, Scott; Shen, Yue; Liu, Xin; Loeb, Abraham E-mail: yshen@obs.carnegiescience.edu E-mail: aloeb@cfa.harvard.edu

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.

  16. PROGNOSIS OF GLEs OF RELATIVISTIC SOLAR PROTONS

    SciTech Connect

    Pérez-Peraza, Jorge; Juárez-Zuñiga, Alan E-mail: z.alan.z@hotmail.com

    2015-04-10

    Ground level enhancements (GLEs) are relativistic solar particles measured at ground level by the worldwide network of cosmic ray detectors. These sporadic events are associated with solar flares and are assumed to be of a quasi-random nature. Studying them gives information about their source and propagation processes, the maximum capacity of the Sun as a particle accelerator engine, the magnetic structure of the medium traversed, etc. Space vehicles, as well as electric transformers and gas pipes at high latitudes may be damaged by this kind of radiation. As a result, their prediction has turned out to be very important, but because of their random occurrence, up to now few efforts toward this goal have been made. The results of these efforts have been limited to possible warnings in real time, just before a GLE occurrence, but no specific dates have been predicted well enough in advance to prevent possible hazards. In this study we show that, in spite of the quasi-stochastic nature of GLEs, it is possible to predict them with relative precision, even for future solar cycles. Additionally, a previous study establishing synchronization among some periodicities of several layers of solar atmosphere argues against the full randomness of the phenomenon of relativistic particle production. Therefore, by means of wavelet spectral analysis combined with fuzzy logic tools, we reproduce previous known GLE events and present results for future events. The next GLE is expected to occur in the first semester of 2016.

  17. CAFE: A NEW RELATIVISTIC MHD CODE

    SciTech Connect

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S. E-mail: aosorio@astro.unam.mx

    2015-06-22

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  18. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.; Matsakos, T.; Lima, J. J. G.

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  19. Magnetic Field Structure in Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Jermak, Helen; Mundell, Carole; Steele, Iain; Harrison, Richard; Kobayashi, Shiho; Lindfors, Elina; Nilsson, Kari; Barres de Almeida, Ulisses

    2013-12-01

    Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs), the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world's largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  20. CAFE: A New Relativistic MHD Code

    NASA Astrophysics Data System (ADS)

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.

    2015-06-01

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  1. RECOLLIMATION SHOCKS IN MAGNETIZED RELATIVISTIC JETS

    SciTech Connect

    Mizuno, Yosuke; Rezzolla, Luciano; Gómez, Jose L.; Nishikawa, Ken-Ichi; Meli, Athina; Hardee, Philip E.

    2015-08-10

    We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Although initially the jet is kinematically dominated, we have considered axial, toroidal, and helical magnetic fields to investigate the effects of different magnetic-field topologies and strengths on the recollimation structures. We find that an axial field introduces a larger effective gas pressure and leads to stronger recollimation shocks and rarefactions, resulting in larger flow variations. The jet boost grows quadratically with the initial magnetic field. On the other hand, a toroidal field leads to weaker recollimation shocks and rarefactions, significantly modifying the jet structure after the first recollimation rarefaction and shock. The jet boost decreases systematically. For a helical field, instead, the behavior depends on the magnetic pitch, with a phenomenology that ranges between the one seen for axial and toroidal magnetic fields, respectively. In general, however, a helical magnetic field yields a more complex shock and rarefaction substructure close to the inlet that significantly modifies the jet structure. The differences in shock structure resulting from different field configurations and strengths may have observable consequences for disturbances propagating through a stationary recollimation shock.

  2. Recollimation Shocks in Magnetized Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Gómez, Jose L.; Nishikawa, Ken-Ichi; Meli, Athina; Hardee, Philip E.; Rezzolla, Luciano

    2015-08-01

    We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Although initially the jet is kinematically dominated, we have considered axial, toroidal, and helical magnetic fields to investigate the effects of different magnetic-field topologies and strengths on the recollimation structures. We find that an axial field introduces a larger effective gas pressure and leads to stronger recollimation shocks and rarefactions, resulting in larger flow variations. The jet boost grows quadratically with the initial magnetic field. On the other hand, a toroidal field leads to weaker recollimation shocks and rarefactions, significantly modifying the jet structure after the first recollimation rarefaction and shock. The jet boost decreases systematically. For a helical field, instead, the behavior depends on the magnetic pitch, with a phenomenology that ranges between the one seen for axial and toroidal magnetic fields, respectively. In general, however, a helical magnetic field yields a more complex shock and rarefaction substructure close to the inlet that significantly modifies the jet structure. The differences in shock structure resulting from different field configurations and strengths may have observable consequences for disturbances propagating through a stationary recollimation shock.

  3. Relativistic stars in beyond Horndeski theories

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Koyama, Kazuya; Langlois, David; Saito, Ryo; Sakstein, Jeremy

    2016-12-01

    This work studies relativistic stars in beyond Horndeski scalar-tensor theories that exhibit a breaking of the Vainshtein mechanism inside matter, focusing on a model based on the quartic beyond Horndeski Lagrangian. We self-consistently derive the scalar field profile for static spherically symmetric objects in asymptotically de Sitter space-time and show that the Vainshtein breaking branch of the solutions is the physical branch thereby resolving several ambiguities with non-relativistic frameworks. The geometry outside the star is shown to be exactly Schwarzschild-de Sitter and therefore the parameterised post-Newtonian parameter {β }{{PPN}}=1, confirming that the external screening works at the post-Newtonian level. The Tolman-Oppenheimer-Volkoff (TOV) equations are derived and a new lower bound on the Vainshtein breaking parameter {{{\\Upsilon }}}1\\gt -4/9 is found by requiring the existence of static spherically symmetric stars. Focusing on the unconstrained case where {{{\\Upsilon }}}1\\lt 0, we numerically solve the TOV equations for polytropic and realistic equations of state and find stars with larger radii at fixed mass. Furthermore, the maximum mass can increase dramatically and stars with masses in excess of 3{M}⊙ can be found for relatively small values of the Vainshtein breaking parameter. We re-examine white dwarf stars and show that post-Newtonian corrections are important in beyond Horndeski theories and therefore the bounds coming from previous analyses should be revisited.

  4. Global relativistic effects in chaotic scattering

    NASA Astrophysics Data System (ADS)

    Bernal, Juan D.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2017-03-01

    The phenomenon of chaotic scattering is very relevant in different fields of science and engineering. It has been mainly studied in the context of Newtonian mechanics, where the velocities of the particles are low in comparison with the speed of light. Here, we analyze global properties such as the escape time distribution and the decay law of the Hénon-Heiles system in the context of special relativity. Our results show that the average escape time decreases with increasing values of the relativistic factor β . As a matter of fact, we have found a crossover point for which the KAM islands in the phase space are destroyed when β ≃0.4 . On the other hand, the study of the survival probability of particles in the scattering region shows an algebraic decay for values of β ≤0.4 , and this law becomes exponential for β >0.4 . Surprisingly, a scaling law between the exponent of the decay law and the β factor is uncovered where a quadratic fitting between them is found. The results of our numerical simulations agree faithfully with our qualitative arguments. We expect this work to be useful for a better understanding of both chaotic and relativistic systems.

  5. Balloon Observations of Relativistic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Millan, R. M.; Woodger, L. A.

    2015-12-01

    Relativistic electron precipitation events lasting from minutes to hours have been observed by balloon-borne instrumentation since 1996. This collection of observations, including the recent BARREL observations, all occur in the noon to midnight sector. EMIC waves have been suggested as the precipitation mechanism for this type of event [Lorentzen et al., 2000 and Millan et al., 2002]. A recent study by Li et al., [2014] performed a case study which modeled the radiation belt relativistic electron pitch angle diffusion from EMIC waves which showed convincing agreement between the modeled results and the BARREL x-ray observations. A survey of the BARREL REP events suggests this type of precipitation is a very localized phenomena with most events only being observed by a single balloon at a time despite the extensive L-value and local time coverage of observations during the campaign. This result is consistent with the findings of Blum et al., [2013]. Furthermore, the balloon observations show local time energy dependence consistent with the SAMPEX observations reported by Comess et al, [2013]. In this work we address the following questions: based on the REP events observed by balloon-borne instrumentation, are these characteristics true for all identified REP events and does this support EMIC waves as the precipitation mechanism? Due to the localized region of precipitation, do these events represent a significant radiation belt loss process?

  6. Chameleon scalar fields in relativistic gravitational backgrounds

    SciTech Connect

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza E-mail: tamaki@gravity.phys.waseda.ac.jp

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}

  7. General-relativistic astrophysics. [gravitational wave astronomy

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1978-01-01

    The overall relevance of general relativity to astrophysics is considered, and some of the knowledge about the ways in which general relativity should influence astrophysical systems is reviewed. Attention is focused primarily on finite-sized astrophysical systems, such as stars, globular clusters, galactic nuclei, and primordial black holes. Stages in the evolution of such systems and tools for studying the effects of relativistic gravity in these systems are examined. Gravitational-wave astronomy is discussed in detail, with emphasis placed on estimates of the strongest gravitational waves that bathe earth, present obstacles and future prospects for detection of the predicted waves, the theory of small perturbations of relativistic stars and black holes, and the gravitational waves such objects generate. Characteristics of waves produced by black-hole events in general, pregalactic black-hole events, black-hole events in galactic nuclei and quasars, black-hole events in globular clusters, the collapse of normal stars to form black holes or neutron stars, and corequakes in neutron stars are analyzed. The state of the art in gravitational-wave detection and characteristics of various types of detector are described.

  8. Relativistic Fe Kα Line In Bright Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Mantovani, Giulia; Nandra, K.; Ponti, G.

    2016-10-01

    Relativistic iron lines are expected to be an ubiquitous feature in bright AGN. However, a significant fraction of object misses a relativistic line component. We investigated the physical reasons of its absence. To this aim we studied a sample of Seyfert 1 galaxies where controversial results on the presence of a relativistic line have been previously reported. I will show that high statistics is key to reveal the line: the relativistic Fe Kalpha line is detected at >95% confidence level in observations where the counts in the 5-7 keV energy band are >4 x 10^4. We also st udied the correlation between the relativistic line and the high energy reflection continuum, and explored whether evidences of light bending exist in the data.

  9. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas

    SciTech Connect

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K.

    2010-06-15

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin-(1/2), and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin-(1/2) contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.

  10. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.

    PubMed

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K

    2010-06-01

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.

  11. A Very-High-Specific-Impulse Relativistic Laser Thruster

    SciTech Connect

    Horisawa, Hideyuki; Kimura, Itsuro

    2008-04-28

    Characteristics of compact laser plasma accelerators utilizing high-power laser and thin-target interaction were reviewed as a potential candidate of future spacecraft thrusters capable of generating relativistic plasma beams for interstellar missions. Based on the special theory of relativity, motion of the relativistic plasma beam exhausted from the thruster was formulated. Relationships of thrust, specific impulse, input power and momentum coupling coefficient for the relativistic plasma thruster were derived. It was shown that under relativistic conditions, the thrust could be extremely large even with a small amount of propellant flow rate. Moreover, it was shown that for a given value of input power thrust tended to approach the value of the photon rocket under the relativistic conditions regardless of the propellant flow rate.

  12. Torsion effects on a relativistic position-dependent mass system

    NASA Astrophysics Data System (ADS)

    Vitória, R. L. L.; Bakke, K.

    2016-12-01

    We analyse a relativistic scalar particle with a position-dependent mass in a spacetime with a space-like dislocation by showing that relativistic bound states solutions can be achieved. Further, we consider the presence of the Coulomb potential and analyse the relativistic position-dependent mass system subject to the Coulomb potential in the spacetime with a space-like dislocation. We also show that a new set of relativistic bound states solutions can be obtained, where there also exists the influence of torsion of the relativistic energy levels. Finally, we investigate an analogue of the Aharonov-Bohm effect for bound states in this position-dependent mass in a spacetime with a space-like dislocation.

  13. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  14. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  15. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  16. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  17. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  18. Trans-Relativistic Particle Acceleration in Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Subramanian, P.

    2014-01-01

    Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron

  19. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    DOE PAGES

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; ...

    2016-06-20

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. In this paper, using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we showmore » for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. Finally, when rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.« less

  20. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    SciTech Connect

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; Claudepierre, S. G.; Turner, D. L.; Baker, D. N.; Rae, I. J.; Kale, A.; Milling, D. K.; Boyd, A. J.; Spence, H. E.; Reeves, Geoffrey D.; Singer, H. J.; Dimitrakoudis, S.; Daglis, I. A.; Honary, F.

    2016-06-20

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. In this paper, using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. Finally, when rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.

  1. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; Claudepierre, S. G.; Turner, D. L.; Baker, D. N.; Rae, I. J.; Kale, A.; Milling, D. K.; Boyd, A. J.; Spence, H. E.; Reeves, G. D.; Singer, H. J.; Dimitrakoudis, S.; Daglis, I. A.; Honary, F.

    2016-10-01

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave-particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. Using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave-particle scattering loss into the atmosphere is not needed in this case. When rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.

  2. Accurate transition rates for intercombination lines of singly ionized nitrogen

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.

    2011-01-01

    The transition energies and rates for the 2s22p2 3P1,2-2s2p3 5S2o and 2s22p3s-2s22p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p3 1,3P1o and 2s22p3s 1,3P1olevels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  3. Accurate transition rates for intercombination lines of singly ionized nitrogen

    SciTech Connect

    Tayal, S. S.

    2011-01-15

    The transition energies and rates for the 2s{sup 2}2p{sup 2} {sup 3}P{sub 1,2}-2s2p{sup 3} {sup 5}S{sub 2}{sup o} and 2s{sup 2}2p3s-2s{sup 2}2p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p{sup 3} {sup 1,3}P{sub 1}{sup o} and 2s{sup 2}2p3s {sup 1,3}P{sub 1}{sup o}levels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  4. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  5. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  6. Code Development of Three-Dimensional General Relativistic Hydrodynamics with AMR (Adaptive-Mesh Refinement) and Results from Special and General Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dönmez, Orhan

    2004-09-01

    In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.

  7. Relativistic electron beam acceleration by Compton scattering of extraordinary waves

    SciTech Connect

    Sugaya, R.

    2006-05-15

    Relativistic transport equations, which demonstrate that relativistic and nonrelativistic particle acceleration along and across a magnetic field and the generation of an electric field transverse to the magnetic field, are induced by nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of almost perpendicularly propagating electromagnetic waves in a relativistic magnetized plasma were derived from the relativistic Vlasov-Maxwell equations. The relativistic transport equations show that electromagnetic waves can accelerate particles in the k{sup ''} direction (k{sup ''}=k-k{sup '}). Simultaneously, an intense cross-field electric field, E{sub 0}=B{sub 0}xv{sub d}/c, is generated via the dynamo effect owing to perpendicular particle drift to satisfy the generalized Ohm's law, which means that this cross-field particle drift is identical to the ExB drift. On the basis of these equations, acceleration and heating of a relativistic electron beam due to nonlinear wave-particle scattering of electromagnetic waves in a magnetized plasma were investigated theoretically and numerically. Two electromagnetic waves interact nonlinearly with the relativistic electron beam, satisfying the resonance condition of {omega}{sub k}-{omega}{sub k{sup '}}-(k{sub perpendicular}-k{sub perpendicula=} r{sup '})v{sub d}-(k{sub parallel}-k{sub parallel}{sup '})v{sub b}{approx_equal}m{omega}{sub ce}, where v{sub b} and v{sub d} are the parallel and perpendicular velocities of the relativistic electron beam, respectively, and {omega}{sub ce} is the relativistic electron cyclotron frequency. The relativistic transport equations using the relativistic drifted Maxwellian momentum distribution function of the relativistic electron beam were derived and analyzed. It was verified numerically that extraordinary waves can accelerate the highly relativistic electron beam efficiently with {beta}m{sub e}c{sup 2} < or approx. 1 GeV, where {beta}=(1-v{sub b}{sup 2}/c{sup 2}){sup -1/2}.

  8. Relativistic three-partite non-locality

    NASA Astrophysics Data System (ADS)

    Moradpour, Hooman; Montakhab, Afshin

    2016-05-01

    Bell-like inequalities have been used in order to distinguish non-local quantum pure states by various authors. The behavior of such inequalities under Lorentz transformation (LT) has been a source of debate and controversies in the past. In this paper, we consider the two most commonly studied three-particle pure states, that of W and Greenberger-Horne-Zeilinger (GHZ) states which exhibit distinctly different types of entanglement. We discuss the various types of three-particle inequalities used in previous studies and point to their corresponding shortcomings and strengths. Our main result is that if one uses Czachor’s relativistic spin operator and Svetlichny’s inequality as the main measure of non-locality and uses the same angles in the rest frame (S) as well as the moving frame (S‧), then maximally violated inequality in S will decrease in the moving frame, and will eventually lead to lack of non-locality (i.e. satisfaction of inequality) in the v→c limit. This is shown for both the GHZ and W states and in two different configurations which are commonly studied (Cases 1 and 2). Our results are in line with a more familiar case of two particle case. We also show that the satisfaction of Svetlichny’s inequality in the v→c limit is independent of initial particles’ velocity. Our study shows that whenever we use Czachor’s relativistic spin operator, results draws a clear picture of three-particle non-locality making its general properties consistent with previous studies on two-particle systems regardless of the W state or the GHZ state is involved. Throughout the paper, we also address the results of using Pauli’s operator in investigating the behavior of |Sv| under LT for both of the GHZ and W states and two cases (Cases 1 and 2). Our investigation shows that the violation of |Sv| in moving frame depends on the particle’s energy in the lab frame, which is in agreement with some previous works on two and three-particle systems. Our work may

  9. Rotational modes of relativistic stars: Analytic results

    NASA Astrophysics Data System (ADS)

    Lockitch, Keith H.; Andersson, Nils; Friedman, John L.

    2001-01-01

    We study the r modes and rotational ``hybrid'' modes (inertial modes) of relativistic stars. As in Newtonian gravity, the spectrum of low-frequency rotational modes is highly sensitive to the stellar equation of state. If the star and its perturbations obey the same one-parameter equation of state (as with barotropic stars), there exist no pure r modes at all-no modes whose limit, for a star with zero angular velocity, is an axial-parity perturbation. Rotating stars of this kind similarly have no pure g modes, no modes whose spherical limit is a perturbation with polar parity and vanishing perturbed pressure and density. In spherical stars of this kind, the r modes and g modes form a degenerate zero-frequency subspace. We find that rotation splits the degeneracy to zeroth order in the star's angular velocity Ω, and the resulting modes are generically hybrids, whose limit as Ω-->0 is a stationary current with both axial and polar parts. Because each mode has definite parity, its axial and polar parts have alternating values of l. We show that each mode belongs to one of two classes, axial-led or polar-led, depending on whether the spherical harmonic with the lowest value of l that contributes to its velocity field is axial or polar. Newtonian barotropic stars retain a vestigial set of purely axial modes (those with l=m); however, for relativistic barotropic stars, we show that these modes must also be replaced by axial-led hybrids. We compute the post-Newtonian corrections to the l=m modes for uniform density stars. On the other hand, if the star is nonbarotropic (that is, if the perturbed star obeys an equation of state that differs from that of the unperturbed star), the r modes alone span the degenerate zero-frequency subspace of the spherical star. In Newtonian stars, this degeneracy is split only by the order-Ω2 rotational corrections. However, when relativistic effects are included, the degeneracy is again broken at zeroth order. We compute the r modes of a

  10. Rescattering effects on intensity interferometry and initial conditions in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Li, Yang

    The properties of the quark-gluon plasma are being thoroughly studied by utilizing relativistic heavy ion collisions. After its invention in astronomy in the 1950s, intensity interferometry was found to be a robust method to probe the spatial and temporal information of the nuclear collisions also. Although rescattering effects are negligible in elementary particle collisions, it may be very important for heavy ion collisions at RHIC and in the future LHC. Rescattering after production will modify the measured correlation function and make it harder to extract the dynamical information from data. To better understand the data which are dimmed by this final state process, we derive a general formula for intensity interferometry which can calculate rescattering effects easily. The formula can be used both non-relativistically and relativistically. Numerically, we found that rescattering effects on kaon interferometry for RHIC experiments can modify the measured ratio of the outward radius to the sideward radius, which is a sensitive probe to the equation of state, by as large as 15%. It is a nontrivial contribution which should be included to understand the data more accurately. The second part of this thesis is on the initial conditions in relativistic heavy ion collisions. Although relativistic hydrodynamics is successful in explaining many aspects of the data, it is only valid after some finite time after nuclear contact. The results depend on the choice of initial conditions which, so far, have been very uncertain. I describe a formula based on the McLerran-Venugopalan model to compute the initial energy density. The soft gluon fields produced immediately after the overlap of the nuclei can be expanded as a power series of the proper time t. Solving Yang-Mills equations with color current conservation can give us the analytical formulas for the fields. The local color charges on the transverse plane are stochastic variables and have to be taken care of by random

  11. Quantum Monte Carlo studies of relativistic effects in light nuclei

    NASA Astrophysics Data System (ADS)

    Forest, J. L.; Pandharipande, V. R.; Arriaga, A.

    1999-07-01

    Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energy, two- and three-body potentials, and their boost corrections. In this work we use the variational Monte Carlo method to study two kinds of relativistic effects in 3H and 4He, using relativistic Hamiltonians. The first is due to the nonlocalities in the relativistic kinetic energy and relativistic one-pion exchange potential (OPEP), and the second is from boost interaction. The OPEP contribution is reduced by ~15% by the relativistic nonlocality, which may also have significant effects on pion exchange currents. However, almost all of this reduction is canceled by changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding energy is very small. The boost interactions, on the other hand, give repulsive contributions of ~0.4 (1.9) MeV in 3H (4He) and account for ~37% of the phenomenological part of the three-nucleon interaction needed in the nonrelativistic Hamiltonians. The wave functions of nuclei are not significantly changed by these effects.

  12. Afterglows of Mildly Relativistic Supernovae: Baryon Loaded Blastwaves

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan; Ray, Alak

    2011-08-01

    Relativistic supernovae have been discovered until recently only through their association with long duration Gamma Ray Bursts (GRB). As the ejecta mass is negligible in comparison to the swept up mass, the blastwaves of such explosions are well described by the Blandford-McKee (in the ultra relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows. However, the recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, has indicated the possibility of highly baryon loaded mildly relativistic outflows which remains in nearly free expansion phase during the radio afterglow. In this work, we consider the dynamics and emission from a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating adiabatically due to its collision with the pre-explosion circumstellar wind profile of the progenitor. We show that this model explains the observed radio evolution of the prototypical SN 2009bb and demonstrate that SN 2009bb had a highly baryon loaded, mildly relativistic outflow.

  13. An X-band overmoded relativistic klystron

    SciTech Connect

    Xiao, Renzhen; Chen, Changhua; Li, Jiawei; Bai, Xianchen; Deng, Yuqun

    2014-11-15

    An X-band overmoded relativistic klystron is proposed, the operation mode of which is the TM{sub 02} mode. The drift tube could not cut off the TM{sub 01} mode; isolating the buncher cavity from the input cavity is achieved by introducing a sectional RF lossy material. Microwaves are extracted from the modulated electron beam using a cylindrical waveguide, rather than a coaxial waveguide; thereby, the output structure is significantly simplified. Particle-in-cell simulations show that microwaves with power of 1.28 GW and frequency of 9.30 GHz can be obtained, corresponding to an efficiency of 32% and relative bandwidth of about 8%.

  14. Relativistic Magnetic Reconnection in Kerr Spacetime.

    PubMed

    Asenjo, Felipe A; Comisso, Luca

    2017-02-03

    The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.

  15. Improving general relativistic astrophysics workflows with ADIOS

    NASA Astrophysics Data System (ADS)

    Bode, Tanja; Slawinska, Magdalena; Logan, Jeremy; Clark, Michael; Kinsey, Matthew; Wolf, Matthew; Klasky, Scott; Laguna, Pablo

    2013-04-01

    There are many challenges in analyzing and visualizing data from current cutting-edge general relativistic astrophysics simulations. Many of the associated tasks are time-consuming, with large performance degradation due to the magnitude and complexity of the data. The Adaptable IO System (ADIOS) is a componentization of the IO layer that has demonstrated remarkable IO performance improvements on applications running on leadership class machines while also offering new in-memory ``staging'' operations for transforming data in situ. We have incorporated ADIOS staging technologies into our Maya numerical relativity code based on Cactus infrastructure and Carpet mesh refinement. We present results that demonstrate how ADIOS yields significant gains on IO performance while utilizing leveraged investments in ADIOS plugins for visualization tools such as VisIt.

  16. RELATIVISTIC ACCRETION MEDIATED BY TURBULENT COMPTONIZATION

    SciTech Connect

    Socrates, Aristotle E-mail: socrates@astro.princeton.ed

    2010-08-10

    Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in the limit where the turbulence is trans-sonic and the accretion power approaches the Eddington limit. In this regime, the turbulent Compton y-parameter approaches unity and the turbulent Compton temperature is a significant fraction of the electron rest mass energy, in agreement with the observed phenomena.

  17. Relativistic constituent quark model with infrared confinement

    SciTech Connect

    Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-02-01

    We refine the relativistic constituent quark model developed in our previous papers to include the confinement of quarks. It is done, first, by introducing the scale integration in the space of {alpha} parameters, and, second, by cutting this scale integration on the upper limit which corresponds to an infrared cutoff. In this manner one removes all possible thresholds present in the initial quark diagram. The cutoff parameter is taken to be the same for all physical processes. We adjust other model parameters by fitting the calculated quantities of the basic physical processes to available experimental data. As an application, we calculate the electromagnetic form factors of the pion and the transition form factors of the {omega} and {eta} Dalitz decays.

  18. Chiral magnetic plasmons in anomalous relativistic matter

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-03-01

    The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long-wavelength limit, but also affect the qualitative dependence on the wave vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.

  19. Three regimes of relativistic beam - plasma interaction

    SciTech Connect

    Muggli, P.; Allen, B.; Fang, Y.; Yakimenko, V.; Babzien, M.; Kusche, K.; Fedurin, M.; Vieira, J.; Martins, J.; Silva, L.

    2012-12-21

    Three regimes of relativistic beam - plasma interaction can in principle be reached at the ATF depending on the relative transverse and longitudinal size of the electron bunch when compared to the cold plasma collisionless skin depth c?{omega}{sub pe}: the plasma wakefield accelerator (PWFA), the self-modulation instability (SMI), and the current filamentation instability (CFI) regime. In addition, by choosing the bunch density, the linear, quasi-nonlinear and non linear regime of the PWFA can be reached. In the case of the two instabilities, the bunch density determines the growth rate and therefore the occurrence or not of the instability. We briefly describe these three regimes and outline results demonstrating that all these regime have or will be reached experimentally. We also outline planned and possible follow-on experiments.

  20. Relativistic kinematics for motion faster than light

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1982-01-01

    The use of conformal coordinates in relativistic kinematics is illustrated and a simple extension of the theory of motions faster than light is provided. An object traveling at a speed greater than light discloses its presence by appearing suddenly at a point, splitting into two apparent objects which then recede from each other at sublight velocities. According to the present theory motion at speeds faster than light would not benefit a space traveler, since the twin paradox becomes inverted at such speeds. In Einstein's theory travel at the velocity of light in an intertial system is equivalent to infinite velocity for the traveler. In the present theory the converse is also true; travel at infinite velocity is equivalent to the velocity of light for the traveler.

  1. K/pi Fluctuations at relativistic energies.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; de la Barca Sánchez, M Calderón; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Clarke, R F; Codrington, M J M; Corliss, R; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; De Silva, L C; Dedovich, T G; DePhillips, M; Derevschikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Dunlop, J C; Mazumdar, M R Dutta; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E J; Geromitsos, A; Geurts, F; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jena, C; Jin, F; Jones, C L; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kikola, D P; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Korsch, W; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, N; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McDonald, D; McShane, T S; Meschanin, A; Milner, R; Minaev, N G; Mioduszewski, S; Mischke, A; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Pujahari, P R; Putschke, J; Raniwala, R; Raniwala, S; Redwine, R; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; Molen, A M Vander; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xie, W; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yang, P; Yepes, P; Yip, K; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2009-08-28

    We report K/pi fluctuations from Au + Au collisions at sqrt[s(NN)]= 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. K/pi fluctuations in central collisions show little dependence on incident energy and are on the same order as those from NA49 at the Super Proton Synchrotron in central Pb + Pb collisions at sqrt[s(NN)]=12.3 and 17.3 GeV. We report results for the collision centrality dependence of K/pi fluctuations and results for charge-separated fluctuations. We observe that the K/pi fluctuations scale with the charged particle multiplicity density.

  2. Relativistic like structure of classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Quevedo, Hernando; Sánchez, Alberto; Vázquez, Alejandro

    2015-04-01

    We analyze in the context of geometrothermodynamics a Legendre invariant metric structure in the equilibrium space of an ideal gas. We introduce the concept of thermodynamic geodesic as a succession of points, each corresponding to a state of equilibrium, so that the resulting curve represents a quasi-static process. A rigorous geometric structure is derived in which the thermodynamic geodesics at a given point split the equilibrium space into two disconnected regions separated by adiabatic geodesics. This resembles the causal structure of special relativity, which we use to introduce the concept of adiabatic cone for thermodynamic systems. This result might be interpreted as an alternative indication of the inter-relationship between relativistic physics and classical thermodynamics.

  3. The bispectrum of relativistic galaxy number counts

    SciTech Connect

    Dio, Enea Di; Durrer, Ruth; Marozzi, Giovanni; Montanari, Francesco E-mail: Ruth.Durrer@unige.ch E-mail: Francesco.Montanari@helsinki.fi

    2016-01-01

    We discuss the dominant terms of the relativistic galaxy number counts to second order in cosmological perturbation theory on sub-Hubble scales and on intermediate to large redshifts. In particular, we determine their contribution to the bispectrum. In addition to the terms already known from Newtonian second order perturbation theory, we find that there are a series of additional 'lensing-like' terms which contribute to the bispectrum. We derive analytical expressions for the full leading order bispectrum and we evaluate it numerically for different configurations, indicating how they can be measured with upcoming surveys. In particular, the new 'lensing-like' terms are not negligible for wide redshift bins and even dominate the bispectrum at well separated redshifts. This offers us the possibility to measure them in future surveys.

  4. Relativistic two-moment neutrino transport

    NASA Technical Reports Server (NTRS)

    Cernohorsky, J.; Van Weert, Ch. G.

    1992-01-01

    We implement a general relativistic neutrino transport scheme appropriate to problems in stellar collapse and neutron star formation. In this scheme the spectral energy and momentum balance equations are solved as a coupled set. We perform transport calculations on two frozen stellar background models neglecting the feedback of the neutrinos on the matter. We compare with schemes that ignore either relativity or momentum balance or both. The work performed by the neutrino stress on the matter is taken into account and has an important effect. In particular, if there is a hydrodynamical shock in the system, this work contribution boosts the energy deposition behind the shock. This may enhance the chances for a successful neutrino driven supernova explosion.

  5. Relativistic Axions from Collapsing Bose Stars

    NASA Astrophysics Data System (ADS)

    Levkov, D. G.; Panin, A. G.; Tkachev, I. I.

    2017-01-01

    The substructures of light bosonic (axionlike) dark matter may condense into compact Bose stars. We study the collapse of critical-mass stars caused by attractive self-interaction of the axionlike particles and find that these processes proceed in an unexpected universal way. First, nonlinear self-similar evolution (called "wave collapse" in condensed matter physics) forces the particles to fall into the star center. Second, interactions in the dense center create an outgoing stream of mildly relativistic particles which carries away an essential part of the star mass. The collapse stops when the star remnant is no longer able to support the self-similar infall feeding the collisions. We shortly discuss possible astrophysical and cosmological implications of these phenomena.

  6. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  7. Microscopic picture of non-relativistic classicalons

    SciTech Connect

    Berkhahn, Felix; Müller, Sophia; Niedermann, Florian; Schneider, Robert E-mail: sophia.x.mueller@physik.uni-muenchen.de E-mail: robert.bob.schneider@physik.uni-muenchen.de

    2013-08-01

    A theory of a non-relativistic, complex scalar field with derivatively coupled interaction terms is investigated. This toy model is considered as a prototype of a classicalizing theory and in particular of general relativity, for which the black hole constitutes a prominent example of a classicalon. Accordingly, the theory allows for a non-trivial solution of the stationary Gross-Pitaevskii equation corresponding to a black hole in the case of GR. Quantum fluctuations on this classical background are investigated within the Bogoliubov approximation. It turns out that the perturbative approach is invalidated by a high occupation of the Bogoliubov modes. Recently, it was proposed that a black hole is a Bose-Einstein condensate of gravitons that dynamically ensures to stay at the verge of a quantum phase transition. Our result is understood as an indication for that claim. Furthermore, it motivates a non-linear numerical analysis of the model.

  8. Relativistic Coulomb excitation of 88Kr

    NASA Astrophysics Data System (ADS)

    Moschner, K.; Blazhev, A.; Jolie, J.; Warr, N.; Boutachkov, P.; Bednarczyk, P.; Sieja, K.; Algora, A.; Ameil, F.; Bentley, M. A.; Brambilla, S.; Braun, N.; Camera, F.; Cederkäll, J.; Corsi, A.; Danchev, M.; DiJulio, D.; Fahlander, C.; Gerl, J.; Giaz, A.; Golubev, P.; Górska, M.; Grebosz, J.; Habermann, T.; Hackstein, M.; Hoischen, R.; Kojouharov, I.; Kurz, N.; Mǎrginean, N.; Merchán, E.; Möller, T.; Naqvi, F.; Nara Singh, B. S.; Nociforo, C.; Pietralla, N.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Reese, M.; Reiter, P.; Rudigier, M.; Rudolph, D.; Sava, T.; Schaffner, H.; Scruton, L.; Taprogge, J.; Thomas, T.; Weick, H.; Wendt, A.; Wieland, O.; Wollersheim, H.-J.

    2016-11-01

    To investigate the systematics of mixed-symmetry states in N =52 isotones, a relativistic Coulomb excitation experiment was performed during the PreSPEC campaign at the GSI Helmholtzzentrum für Schwerionenforschung to determine E 2 transition strengths to 2+ states of the radioactive nucleus 88Kr. Absolute transition rates could be measured towards the first and third 2+ states. For the latter a mixed-symmetry character is suggested on the basis of the indication for a strong M 1 transition to the fully symmetric 21+ state, extending the knowledge of the N =52 isotones below Z =40 . A comparison with the proton-neutron interacting boson model and shell-model predictions is made and supports the assignment.

  9. Relativistic Magnetic Reconnection in Kerr Spacetime

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.; Comisso, Luca

    2017-02-01

    The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.

  10. Relativistic stellar stability: An empirical approach

    NASA Technical Reports Server (NTRS)

    Ni, W.

    1972-01-01

    The PPN formalism which encompasses the post-Newtonian limit of nearly every metric theory of gravity is used to analyze stellar stability. This analysis enables one to infer, for any given gravitation theory, the extent to which post-Newtonian effects induce instabilities in white dwarfs, in neutron stars, and in supermassive stars. It also reveals the extent to which our current empirical knowledge of post-Newtonian gravity (based on solar-system experiments) actually guarantees that relativistic instabilities exist. In particular, it shows that: (1) for conservative theories of gravity, current solar-system experiments guarantee that the critical adiabatic index, for the stability of stars against radial pulsations exceeds the Newtonian value of 4/3 and (2) for nonconservative theories, current experiments do not permit any firm conclusion about the sign of the critical adiabatic index, and (3) in the PPN approximation to every metric theory, the standard Schwarzschild criterion for convection is valid.

  11. Ionospheric density enhancement during relativistic electron precipitation

    NASA Technical Reports Server (NTRS)

    Foster, J. C.; Doupnik, J. R.; Stiles, G. S.

    1980-01-01

    The temporal evolution of the ionospheric density enhancement produced by a widespread relativistic electron precipitation (REP) has been observed with the Chatanika Radar. The REP was associated with a substorm particle energization event, and both the ionospheric absorption and density perturbation exhibited an approximately 90 min periodicity associated with the particles' longitudinal drift. A 80-keV characteristic energy for the precipitating electrons is deduced from ground-based and satellite data. At the maximum of the event, electrons deposited approximately 50 ergs/sq cm per sec in the ionosphere, producing a peak density of 500,000/cu cm at 89 km altitude. At that time the radar observed densities greater than 100,000/cu cm between 70 km and 110 km altitude and riometer absorption at 30 MHz was approximately 12 db.

  12. Exploring Stability of General Relativistic Accretion Disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-04-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios, involving core collapse of massive stars and mergers of compact ob jects. I will present results on our recent study of the stability of such disks against runaway and non-axisymmetric instabilities, which we explore using three-dimensional hydrodynamics simulations in full general relativity. All of our models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. We will discuss the types, growth rates and pattern speeds of the unstable modes, as well as the detectability of the gravitational waves from such objects.

  13. A relativistic wave equation for the Skyrmion

    SciTech Connect

    Rajeev, S.G.

    2008-11-15

    We propose a relativistically invariant wave equation for the Skyrme soliton. It is a differential equation on the space R{sup 1,3}xS{sup 3} which is invariant under the Lorentz group and isospin. The internal variable valued in SU(2){identical_to}S{sup 3} describes the orientation of the soliton. The mass of a particle of spin and isospin both equal to j=1/2 ,3/2 ... is predicted to be M=m{radical}((1+K{sub 2}j(j+1))/(1+K{sub 1}j(j+1)) ) which agrees with the known spectrum for low angular momentum. The iso-scalar magnetic moment is predicted to be -(K{sub 1})/(4m) {sigma}, where {sigma} is the spin.

  14. Compact Relativistic Magnetron with Output Mode Converter

    NASA Astrophysics Data System (ADS)

    Andreev, Andrey; Fuks, Mikhail; Schamiloglu, Edl

    2003-10-01

    We consider a relativistic magnetron in which all of the resonators of the anode block are smoothly continued onto a conical antenna up to the radius corresponding to the cutoff frequency of the radiated wave in a cylindrical waveguide. Such a magnetron is capable of high output power, is compact, has a high resistance to microwave breakdown, is able to work with extremely high currents, and has the possibility of forming desirable output radiation patterns. The magnetic field can be provided by a small solenoid over the resonant system, which is a much smaller volume than is required for the Helmholtz coils used in traditional relativistic magnetrons. The maximum size of this magnetron is the aperture of the horn antenna. The unique aspect of such a design is the possibility of using the horn antenna for conversion of the operating mode to lower order modes, including the TE_11 mode, which is radiated as a narrow wave beam. For a magnetron operating in π-mode, the mode converter comprises a continuation of the resonantor blocks onto the horn for those resonators that correspond to the symmetry of the output mode. For example, in order to provide Gaussian mode output only two diametrically opposite resonators of even-numbered resonators must be continued onto the horn. In this case the aperture of the horn antenna can be close to the cut-off diameter for the TE_11 mode, and the output power is limited only by breakdown of the output window. In this presentation results of preliminary calculations of the magnetron with output mode converters are presented.

  15. Determining the Macroscopic Properties of Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Hardee, P. E.

    2004-08-01

    The resolved relativistic jets contain structures whose observed proper motions are typically assumed to indicate the jet flow speed. In addition to structures moving with the flow, various normal mode structures such as pinching or helical and elliptical twisting can be produced by ejection events or twisting perturbations to the jet flow. The normal mode structures associated with relativistic jets, as revealed by numerical simulation, theoretical calculation, and suggested by observation, move more slowly than the jet speed. The pattern speed is related to the jet speed by the sound speed in the jet and in the surrounding medium. In the event that normal mode structures are observed, and where proper motions of pattern and flow speed are available or can be estimated, it is possible to determine the sound speed in the jet and surrounding medium. Where spatial development of normal mode structures is observed, it is possible to make inferences as to the heating rate/macroscopic viscosity of the jet fluid. Ultimately it may prove possible to separate the microscopic energization of the synchrotron radiating particles from the macroscopic heating of the jet fluid. Here I present the relevant properties of useful normal mode structures and illustrate the use of this technique. Various aspects of the work presented here have involved collaboration with I. Agudo (Max-Planck, Bonn), M.A. Aloy (Max-Planck, Garching), J. Eilek (NM Tech), J.L. Gómez (U. Valencia), P. Hughes (U. Michigan), A. Lobanov (Max-Planck, Bonn), J.M. Martí (U. Valencia), & C. Walker (NRAO).

  16. Relativistic effects on x-ray structure factors

    NASA Astrophysics Data System (ADS)

    Batke, Kilian; Eickerling, Georg

    2016-04-01

    Today, combined experimental and theoretical charge density studies based on quantum chemical calculations and x-ray diffraction experiments allow for the investigation of the topology of the electron density at subatomic resolution. When studying compounds containing transition metal elements, relativistic effects need to be adequately taken into account not only in quantum chemical calculations of the total electron density ρ ({r}), but also for the atomic scattering factors employed to extract ρ ({r}) from experimental x-ray diffraction data. In the present study, we investigate the magnitude of relativistic effects on x-ray structure factors and for this purpose {F}({{r}}*) have been calculated for the model systems M(C2H2) (M = Ni, Pd, Pt) from four-component molecular wave functions. Relativistic effects are then discussed by a comparison to structure factors obtained from a non-relativistic reference and different quasi-relativistic approximations. We show, that the overall effects of relativity on the structure factors on average amount to 0.81%, 1.51% and 2.78% for the three model systems under investigation, but that for individual reflections or reflection series the effects can be orders of magnitude larger. Employing the quasi-relativistic Douglas-Kroll-Hess second order or the zeroth order regular approximation Hamiltonian takes these effects into account to a large extend, reducing the differences between the (quasi-)relativistic and the non-relativistic result by one order of magnitude. In order to further determine the experimental significance of the results, the magnitude of the relativistic effects is compared to the changes of the model structure factor data when charge transfer and chemical bonding is taken into account by a multipolar expansion of {F}({{r}}*).

  17. Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF6 molecules, X = S, Se, Te, Mo, and W

    NASA Astrophysics Data System (ADS)

    Ruud, Kenneth; Demissie, Taye B.; Jaszuński, Michał

    2014-05-01

    We present an analysis of the spin-rotation and absolute shielding constants of XF6 molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin-rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin-rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin-rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin-rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  18. Time-dependent closure relations for relativistic collisionless fluid equations

    SciTech Connect

    Bendib-Kalache, K.; Bendib, A.; El Hadj, K. Mohammed

    2010-11-15

    Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space ({omega},k), where {omega} and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter {omega}/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc{sup 2}/T, where m is the particle rest mass and T, the plasma temperature in energy units.

  19. Criterion for stability of a special relativistically covariant dynamical system

    NASA Astrophysics Data System (ADS)

    Horwitz, L. P.; Zucker, D.

    2017-03-01

    We study classically the problem of two relativistic particles with an invariant Duffing-like potential which reduces to the usual Duffing form in the nonrelativistic limit. We use a special relativistic generalization (RGEM) of the geometric method (GEM) developed for the analysis of nonrelativistic Hamiltonian systems to study the local stability of a relativistic Duffing oscillator. Poincaré plots of the simulated motion are consistent with the RGEM. We find a threshold for the external driving force required for chaotic behavior in the Minkowski spacetime.

  20. Magnified Views of Relativistic Outflows in Gravitationally Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Chartas, G.; Cappi, M.; Hamann, F.; Eracleous, M.; Strickland, S.; Vignali, C.; Dadina, M.; Giustini, M.; Saez, C.; Misawa, T.

    2016-06-01

    We presents results from X-ray observations of relativistic outflows in lensed quasars. The lensing magnification of the observed objects provides high signal-to-noise X-ray spectra of quasars showing the absorption signatures of relativistic outflows at redshifts near a crucial phase of black hole growth and the peak of cosmic AGN activity. We summarise the properties of the wide-angle relativistic outflow of the z = 1.51 NAL quasar HS 0810 detected in recent deep XMM-Newton and Chandra observations of this object. We also present preliminary results from a mini-survey of gravitationally lensed mini-BAL quasars performed with XMM-Newton.

  1. Relativistic persistent currents in ideal Aharonov-Bohm rings

    NASA Astrophysics Data System (ADS)

    Cotăescu, Ion I.; Băltăţeanu, Doru-Marcel; Cotăescu, Ion

    2016-11-01

    The exact solutions of the complete Dirac equation for fermions moving in ideal Aharonov-Bohm rings are used for deriving the exact expressions of the relativistic partial currents. It is shown that as in the nonrelativistic case, these currents can be related to the derivative of the fermion energy with respect to the flux parameter. A specific relativistic effect is the saturation of the partial currents for high values of the total angular momentum. Based on this property, the total relativistic persistent current at T = 0 is evaluated giving its analytical expression and showing how this depends on the ring parameters.

  2. Limits of Strong Field Rescattering in the Relativistic Regime

    NASA Astrophysics Data System (ADS)

    Klaiber, M.; Hatsagortsyan, K. Z.; Wu, J.; Luo, S. S.; Grugan, P.; Walker, B. C.

    2017-03-01

    Recollision for a laser driven atomic system is investigated in the relativistic regime via a strong field quantum description and Monte Carlo semiclassical approach. We find the relativistic recollision energy cutoff is independent of the ponderomotive potential Up , in contrast to the well-known 3.2 Up scaling. The relativistic recollision energy cutoff is determined by the ionization potential of the atomic system and achievable with non-negligible recollision flux before entering a "rescattering free" interaction. The ultimate energy cutoff is limited by the available intensities of short wavelength lasers and cannot exceed a few thousand Hartree, setting a boundary for recollision based attosecond physics.

  3. Λ polarization in peripheral collisions at moderately relativistic energies

    NASA Astrophysics Data System (ADS)

    Xie, Y. L.; Bleicher, M.; Stöcker, H.; Wang, D. J.; Csernai, L. P.

    2016-11-01

    The polarization of Λ hyperons from relativistic flow vorticity is studied in peripheral heavy ion reactions at FAIR and NICA energies, just above the threshold of the transition to the quark-gluon plasma. Previous calculations at higher energies with larger initial angular momentum, predicted significant Λ polarization based on the classical vorticity term in the polarization, while relativistic modifications decreased the polarization and changed its structure in the momentum space. At the lower energies studied here, we see the same effect namely that the relativistic modifications decrease the polarization arising from the initial shear flow vorticity.

  4. New scale-relativistic derivations of Pauli and Dirac equations

    NASA Astrophysics Data System (ADS)

    Hammad, F.

    2008-02-01

    In scale relativity, quantum mechanics is recovered by transcribing the classical equations of motion to fractal spaces and demanding, as dictated by the principle of scale relativity, that the form of these equations be preserved. In the framework of this theory, however, the form of the classical energy equations both in the relativistic and nonrelativistic cases are not preserved. Aiming to get full covariance, i.e., to restore to these equations their classical forms, we show that the scale-relativistic form of the Schrödinger equation yields the Pauli equation, whilst the Pissondes's scale-relativistic form of the Klein-Gordon equation gives the Dirac equation.

  5. Relativistic real-space multiple scattering calculations of EELS

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Rehr, J. J.; Sorini, A.; Levine, Z. H.

    2006-03-01

    We present an extension of the real space multiple scattering code FEFF8 for ab initio, relativistic calculations of electron energy loss spectra (EELS), which is applicable both to periodic and non-periodic systems. The approach explains the observed relativistic shifts in the magic angle. In addition, the method can account for experimental parameters such as collection and convergence angles of the microscope and sample orientation. We also discuss relativistic effects on inelastic electron scattering including the density correction to the stopping power. Our results are compared with other approaches and with experiment. B. Jouffrey, P. Schattschneider and C. Hebert, Ultramicroscopy 102, 61 (2004).

  6. Electron-Ion collisions in relativistically strong laser fields

    SciTech Connect

    Balakin, A. A.

    2008-04-15

    Electron-ion collisions in relativistically strong electromagnetic fields are considered. Analytical and numerical analyses both show that all qualitative effects characteristic of collisions in nonrelativistic strong fields [1-3] occur at relativistic intensities of an electromagnetic wave as well. Expressions for Joule plasma heating and for the energy distributions of fast particles are derived from simple analytic considerations and are confirmed by numerical simulations. It is found, in particular, that, due to the relativistic increase in the mass of a scattered electron, Joule heating in ultrarelativistic fields becomes more intense as the field amplitude grows.

  7. Rayleigh-Brillouin spectrum in special relativistic hydrodynamics

    SciTech Connect

    Garcia-Perciante, A. L.; Garcia-Colin, L. S.

    2009-06-15

    In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to nonequilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic nonequilibrium thermodynamics. The answer will clearly require deeper examination of this problem.

  8. Relativistic heavy ion fragmentation at HISS (Heavy Ion Spectrometer System)

    SciTech Connect

    Tull, C.E.

    1990-10-01

    An experiment was conducted at the Lawrence Berkeley Laboratory to measure projectile fragmentation of relativistic heavy ions. Charge identification was obtained by the use of a Cerenkov Hodoscope operating above the threshold for total internal reflection, while velocity measurement was performed by use of a second set of Cerenkov radiators operating at the threshold for total internal reflection. Charge and mass resolution for the system was {sigma}{sub Z} = 0.2 e and {sigma}{sub A} = 0.2 u. Measurements of the elemental and isotopic production cross sections for the fragmentation of {sup 40}Ar at 1.65{center dot}A GeV have been compared with an Abrasion-Ablation Model based on the evaporation computer code GEMINI. The model proves to be an accurate predictor of the cross sections for fragments between Chlorine and Boron. The measured cross section were reproduced using simple geometry with charge dispersions induced by zero-point vibrations of the giant dipole resonance for the prompt abrasion stage, and injecting an excitation energy spectrum based on a final state interaction with scaling factor E{sub fsi} = 38.8 MeV/c. Measurement of the longitudinal momentum distribution widths for projectile fragments are consistent with previous experiment and can be interpreted as reflecting the Fermi momentum distribution in the initial projectile nucleus. Measurement of the transverse momentum indicate an additional, unexplained dependence of the reduced momentum widths on fragment mass. This dependence has the same sign and similar slope to previously measured fragments of {sup 139}La, and to predictions based on phase-space constraints on the final state of the system.

  9. Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations for Z between 2 and 106

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.

    1976-01-01

    Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.

  10. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  11. A generalized twistor dynamics of relativistic particles and strings

    SciTech Connect

    Soroka, V.A.; Sorokin, D.P.; Tkach, V.I.; Volkov, D.V. )

    1992-09-30

    In this paper, a generalization of relativistic particle and sting dynamics based on a notion of twistor shift and containing a fundamental length constant is considered, which results in a modification of particle (or string) interactions with background fields.

  12. Relativistic Feedback Rates in the Presence of the Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Lucia, R. J.; Dwyer, J. R.; Liu, N.; Rassoul, H.

    2013-12-01

    It has been shown that relativistic feedback allows runaway electron avalanche discharges in the atmosphere to become self-sustaining. Since relativistic feedback is also capable of increasing the flux of runaway electrons and x-rays by a factor of 10^13 under certain thunderstorm conditions, it provides a plausible mechanism for the generation of terrestrial gamma-ray flashes (TGFs). Relativistic feedback has been previously investigated without the presence of a geomagnetic field. However, for altitudes near the tops of thunderclouds and above, the effects of the magnetic field on the feedback rates can be important in some cases. We use detailed three-dimensional Monte Carlo simulations of runaway electron avalanches in the presence of the earth's magnetic field to investigate the field's impact on relativistic feedback. In particular, we shall present results for fundamental parameters such as avalanche lengths, feedback factors, and the feedback threshold, above which an electric field is unstable.

  13. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    SciTech Connect

    Tran, Truong X.; Longhi, Stefano; Biancalana, Fabio

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  14. Relativistic differential-difference momentum operators and noncommutative differential calculus

    SciTech Connect

    Mir-Kasimov, R. M.

    2013-09-15

    The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics (QM) in the Relativistic Configuration Space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated as the independent term of the total Hamiltonian. This relativistic kinetic energy term is not distinguishing in form from its nonrelativistic counterpart. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generating function for the matrix elements of the unitary irreps of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the noncommutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS.

  15. Portable radiography system using a relativistic electron beam

    DOEpatents

    Hoeberling, Robert F.

    1990-01-01

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.

  16. Portable radiography system using a relativistic electron beam

    DOEpatents

    Hoeberling, R.F.

    1987-09-22

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.

  17. An extreme long-lived relativistic electron enhancement event

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochao

    2015-04-01

    An extreme long-lived intense relativistic electron enhancement event beginning in November 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. In this event, the flux of relativistic electrons (>1.6MeV) in the outer zone increased to a very high level in two days, this flux fashion had been running to the end of January 2005. It is an extreme long-lived event. We find that the high-speed solar wind and frequent impulses of solar wind dynamic pressure induced strong long-lasting ULF waves just before the enhancement, and the energetic electron flux enhanced simultaneously. Subsequently, the whistler mode chorus intensified obviously and the relativistic electron flux enhanced rapidly. We suggest that the drift-resonant acceleration by ULF waves enhanced the energetic electrons flux firstly, and local acceleration by chorus accelerated them to relativistic level sequentially.

  18. Relativistic currents on ideal Aharonov-Bohm cylinders

    NASA Astrophysics Data System (ADS)

    Cotăescu, Ion I.; Băltăţeanu, Doru-Marcel S.; Cotăescu, Ion I.

    2016-06-01

    The relativistic theory of the Dirac fermions moving on cylinders in external Aharonov-Bohm (AB) field is built starting with a suitably restricted Dirac equation whose spin degrees of freedom are not affected. The exact solutions of this equation on finite or infinite AB cylinders allow one to derive the relativistic circular and longitudinal currents pointing out their principal features. It is shown that all the circular currents are related to the energy in the same manner on cylinders or rings either in the relativistic approach or in the nonrelativistic one. The specific relativistic effect is the saturation of the circular currents for high values of the total angular momentum. Based on this property some approximative closed formulas are deduced for the total persistent current at T = 0 on finite AB cylinders. Moreover, it is shown that all the persistent currents on finite cylinders or rings have similar nonrelativistic limits.

  19. A relativistic correlationless kinetic equation with radiation reaction fully incorporated

    NASA Astrophysics Data System (ADS)

    Lai, H. M.

    1984-06-01

    The Landau-Lifshitz expression for the Lorentz-Dirac equation is used to derive a relativistic correlationless kinetic equation for a system of electrons with radiation reaction fully incorporated. Various situations and possible applications are discussed.

  20. Relativistic effects in elastic scattering of electrons in TEM.

    PubMed

    Rother, Axel; Scheerschmidt, Kurt

    2009-01-01

    Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.

  1. Nonlinear waves and shocks in relativistic two-fluid hydrodynamics

    NASA Astrophysics Data System (ADS)

    Haim, L.; Gedalin, M.; Spitkovsky, A.; Krasnoselskikh, V.; Balikhin, M.

    2012-06-01

    Relativistic shocks are present in a number of objects where violent processes are accompanied by relativistic outflows of plasma. The magnetization parameter σ = B2/4πnmc2 of the ambient medium varies in wide range. Shocks with low σ are expected to substantially enhance the magnetic fields in the shock front. In non-relativistic shocks the magnetic compression is limited by nonlinear effects related to the deceleration of flow. Two-fluid analysis of perpendicular relativistic shocks shows that the nonlinearities are suppressed for σ<<1 and the magnetic field reaches nearly equipartition values when the magnetic energy density is of the order of the ion energy density, Beq2 ~ 4πnmic2γ. A large cross-shock potential eφ/mic2γ0 ~ B2/Beq2 develops across the electron-ion shock front. This potential is responsible for electron energization.

  2. Hydrodynamic Lagrangian of relativistic superfluids with crystalline structure

    NASA Astrophysics Data System (ADS)

    Peletminskii, A. S.

    2009-09-01

    We propose a relativistic Lagrangian formulation of macroscopic dynamics of superfluid systems. The constructed Lagrangian provides the description of ordinary superfluids and superfluids with a crystalline ordering, where both phase and translational symmetries are simultaneously broken (e.g., supersolids or crystalline superfluids in neutron stars). The covariant conservation laws and equations of motion for the field variables associated with the broken symmetries are obtained. The connection to Khalatnikov-Lebedev relativistic hydrodynamic theory is discussed.

  3. Relativistic tidal forces and the possibility of measuring them

    SciTech Connect

    Mashhoon, B.; Theiss, D.S.

    1982-11-22

    The relativistic corrections to the Newtonian tidal accelerations generated by a rotating system are studied. The possibility of testing the relativistic theory of gravitation by measuring such effects in a laboratory in orbit around the Earth is considered. A recent proposal to measure a rotation-dependent tidal acceleration as an alternative to the Stanford gyroscope experiment is critically examined and it is shown that such an experiment does not circumvent the basic difficulties associated with the gyroscope experiment.

  4. Relativistic Photoionization Computations with the Time Dependent Dirac Equation

    DTIC Science & Technology

    2016-10-12

    fields often occurs in the relativistic regime. A complete description of this phenomenon requires both relativistic and quantum mechanical treatment...photoionization, or other relativis- tic quantum electronics problems. While the Klein-Gordon equation captures much of the relevant physics, especially... quantum number. The orbital angular momentum is a bad quantum number because the stationary states have `0 6= `3 and `1 6= `2, so that they are not

  5. A search for relativistic electron induced stratospheric ozone depletion

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  6. Filamentation of a relativistic short pulse laser in a plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Tripathi, V. K.; Sawhney, B. K.

    2006-06-01

    An intense short pulse laser propagating through a plasma undergoes filamentation instability under the combined effects of relativistic mass variation and ponderomotive force-induced electron density depression. These two nonlinearities superimpose each other. In a tenuous plasma, the filament size scales as {\\sim}( c / \\omega _p\\; a_0 ) \\sqrt 2 \\gamma _0^{1/2} , where ω p is the plasma frequency, a0 is the normalized laser amplitude and γ 0 is the relativistic gamma factor.

  7. Relativistic mechanical-thermodynamical formalism—description of inelastic collisions

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.; Fernández, L. A.

    2016-01-01

    We present a relativistic formalism inspired by the Minkowski four-vectors that also includes conservation laws such as the first law of thermodynamics. It remains close to the relativistic four-vector formalism developed for a single particle, but is also related to the classical treatment of problems that require both Newton's second law and the energy conservation law. We apply the developed formalism to inelastic collisions to better show how it works.

  8. Quasielastic scattering with the relativistic Green’s function approach

    SciTech Connect

    Meucci, Andrea; Giusti, Carlotta

    2015-05-15

    A relativistic model for quasielastic (QE) lepton-nucleus scattering is presented. The effects of final-state interactions (FSI) between the ejected nucleon and the residual nucleus are described in the relativistic Green’s function (RGF) model where FSI are consistently described with exclusive scattering using a complex optical potential. The results of the model are compared with experimental results of electron and neutrino scattering.

  9. Effects of retardation in relativistic equations with confining interaction

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    A method has been developed for solving two body relativistic bound state equations in momentum space with a confining interaction. A total of six different three dimensional reductions of the Bethe-Salpeter equations are studied with particular emphasis placed on the competing roles of relativistic kinematics and retardation. The results indicate that these two effects counteract each other and this sheds some light on why nonrelativistic models of meson spectroscopy have been quite successful.

  10. Exact Solutions of Relativistic Bound State Problem for Spinless Bosons

    NASA Astrophysics Data System (ADS)

    Aslanzadeh, M.; Rajabi, A. A.

    2017-01-01

    We investigated in detail the relativistic bound states of spin-zero bosons under the influence of Coulomb-plus-linear potentials with an arbitrary combination of scalar and vector couplings. Through an exact analytical solution of three-dimensional Klein-Gordon equation, closed form expressions were derived for energy eigenvalues and wave functions and some correlations between potential parameters were found. We also presented the relativistic description of bound states and nonrelativistic limit of the problem in some special cases.

  11. Radiation reaction in a system of relativistic gravitating particles

    NASA Astrophysics Data System (ADS)

    Galtsov, D. V.

    A Lorentz-covariant approach is developed to the description of electromagnetic and gravitational radiation in general relativity. A model of a relativistic system of gravitating point particles is constructed in which energy losses can be interpreted in terms of radiation-reaction forces. These forces are applied not only to the point particles but also to fields generated by these particles in the near zone. It is concluded that radiation friction in a system of relativistic gravitating particles is collective in character.

  12. Relativistic three-body recombination with the QED vacuum.

    PubMed

    Hu, Huayu; Müller, Carsten

    2011-08-26

    Electron-positron pair annihilation into a single photon is studied when a second free electron is present. Focussing on the relativistic regime, we show that the photon emitted in the three-lepton interaction may exhibit distinct angular distributions and polarization properties. Moreover, the process can dominate over two-photon annihilation in relativistic electron-positron plasmas of few-MeV temperature. An analogy with three-body recombination of electrons with ions is drawn.

  13. Time Ephemeris and General Relativistic Scale Factor

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2010-11-01

    Time ephemeris is the location-independent part of the transformation formula relating two time coordinates such as TCB and TCG (Fukushima 2009). It is computed from the corresponding (space) ephemerides providing the relative motion of two spatial coordinate origins such as the motion of geocenter relative to the solar system barycenter. The time ephemerides are inevitably needed in conducting precise four dimensional coordinate transformations among various spacetime coordinate systems such as the GCRS and BCRS (Soffel et al. 2003). Also, by means of the time average operation, they are used in determining the information on scale conversion between the pair of coordinate systems, especially the difference of the general relativistic scale factor from unity such as LC. In 1995, we presented the first numerically-integrated time ephemeris, TE245, from JPL's planetary ephemeris DE245 (Fukushima 1995). It gave an estimate of LC as 1.4808268457(10) × 10-8, which was incorrect by around 2 × 10-16. This was caused by taking the wrong sign of the post-Newtonian contribution in the final summation. Four years later, we updated TE245 to TE405 associated with DE405 (Irwin and Fukushima 1999). This time the renewed vale of LC is 1.48082686741(200) × 10-8 Another four years later, by using a precise technique of time average, we improved the estimate of Newtonian part of LC for TE405 as 1.4808268559(6) × 10-8 (Harada and Fukushima 2003). This leads to the value of LC as LC = 1.48082686732(110) × 10-8. If we combine this with the constant defining the mean rate of TCG-TT, LG = 6.969290134 × 10-10 (IAU 2001), we estimate the numerical value of another general relativistic scale factor LB = 1.55051976763(110) × 10-8, which has the meaning of the mean rate of TCB-TT. The main reasons of the uncertainties are the truncation effect in time average and the uncertainty of asteroids' perturbation. As a compact realization of the time ephemeris, we prepared HF2002, a Fortran

  14. Time ephemeris and general relativistic scale factor

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2010-01-01

    Time ephemeris is the location-independent part of the transformation formula relating two time coordinates such as TCB and TCG (Fukushima 1995). It is computed from the corresponding (space) ephemerides providing the relative motion of two spatial coordinate origins such as the motion of geocenter relative to the solar system barycenter. The time ephemerides are inevitably needed in conducting precise four dimensional coordinate transformations among various spacetime coordinate systems such as the GCRS and BCRS (Soffel et al. 2003). Also, by means of the time average operation, they are used in determining the information on scale conversion between the pair of coordinate systems, especially the difference of the general relativistic scale factor from unity such as LC. In 1995, we presented the first numerically-integrated time ephemeris, TE245, from JPL's planetary ephemeris DE245 (Fukushima 1995). It gave an estimate of LC as 1.4808268457(10) × 10-8, which was incorrect by around 2 × 10-16. This was caused by taking the wrong sign of the post-Newtonian contribution in the final summation. Four years later, we updated TE245 to TE405 associated with DE405 (Irwin and Fukushima 1999). This time the renewed vale of LC is 1.48082686741(200) × 10-8 Another four years later, by using a precise technique of time average, we improved the estimate of Newtonian part of LC for TE405 as 1.4808268559(6) × 10-8 (Harada and Fukushima 2003). This leads to the value of LC as LC = 1.48082686732(110) × 10-8. If we combine this with the constant defining the mean rate of TCG-TT, LG = 6.969290134 × 10-10 (IAU 2001), we estimate the numerical value of another general relativistic scale factor LB = 1.55051976763(110) × 10-8, which has the meaning of the mean rate of TCB-TT. The main reasons of the uncertainties are the truncation effect in time average and the uncertainty of asteroids' perturbation. The former is a natural limitation caused by the finite length of numerical

  15. New relativistic Hamiltonian: the angular magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Paillard, Charles; Mondal, Ritwik; Berritta, Marco; Dkhil, Brahim; Singh, Surendra; Oppeneer, Peter M.; Bellaiche, Laurent

    2016-10-01

    Spin-Orbit Coupling (SOC) is a ubiquitous phenomenon in the spintronics area, as it plays a major role in allowing for enhancing many well-known phenomena, such as the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, the Rashba effect, etc. However, the usual expression of the SOC interaction ħ/4m2c2 [E×p] • σ (1) where p is the momentum operator, E the electric field, σ the vector of Pauli matrices, breaks the gauge invariance required by the electronic Hamiltonian. On the other hand, very recently, a new phenomenological interaction, coupling the angular momentum of light and magnetic moments, has been proposed based on symmetry arguments: ξ/2 [r × (E × B)] M, (2) with M the magnetization, r the position, and ξ the interaction strength constant. This interaction has been demonstrated to contribute and/or give rise, in a straightforward way, to various magnetoelectric phenomena,such as the anomalous Hall effect (AHE), the anisotropic magnetoresistance (AMR), the planar Hall effect and Rashba-like effects, or the spin-current model in multiferroics. This last model is known to be the origin of the cycloidal spin arrangement in bismuth ferrite for instance. However, the coupling of the angular momentum of light with magnetic moments lacked a fundamental theoretical basis. Starting from the Dirac equation, we derive a relativistic interaction Hamiltonian which linearly couples the angular momentum density of the electromagnetic (EM) field and the electrons spin. We name this coupling the Angular MagnetoElectric (AME) coupling. We show that in the limit of uniform magnetic field, the AME coupling yields an interaction exactly of the form of Eq. (2), thereby giving a firm theoretical basis to earlier works. The AME coupling can be expressed as: ξ [E × A] • σ (3) with A being the vector potential. Interestingly, the AME coupling was shown to be complementary to the traditional SOC, and together they restore the gauge invariance of the

  16. Relativistic coupled-cluster calculations of transition properties in highly charged inert-gas ions

    NASA Astrophysics Data System (ADS)

    Nandy, D. K.

    2016-11-01

    We have carried out an extensive investigation of various spectroscopic properties of highly charged inert-gas ions using a relativistic coupled-cluster method through a one-electron detachment procedure. In particular, we have calculated the atomic states 2 s22 p53/2 2P, 2 s22 p51/2 2P, and 2 s 2 p61/2 2S in F-like inert-gas ions; 3 s23 p53/2 2P, 3 s23 p51/2 2P, and 3 s 3 p61/2 2S states in Cl-like Kr, Xe, and Rn; and 4 s24 p53/2 2P, 4 s24 p51/2 2P, and 4 s 4 p61/2 2S states in Br-like Xe and Rn. Starting from a single-reference Dirac-Hartree-Fock wave function, we construct our exact atomic states by including the dynamic correlation effects in an all-order perturbative fashion. Employing this method, we estimate the ionization potential energies of three low-lying orbitals present in their respective closed-shell configurations. Since the considered highly charged inert-gas ions exhibit huge relativistic effects, we have taken into account the corrections due to Breit interaction as well as from the dominant quantum electrodynamic correction such as vacuum polarization and self-energy effects in these systems. Using our calculated relativistic atomic wave functions and energies, we accurately determine various transition properties such as wavelengths, line strengths, oscillator strengths, transition probabilities, and lifetimes of the excited states.

  17. Relativistic description of nuclear matrix elements in neutrinoless double-β decay

    NASA Astrophysics Data System (ADS)

    Song, L. S.; Yao, J. M.; Ring, P.; Meng, J.

    2014-11-01

    Background: Neutrinoless double-β (0 ν β β ) decay is related to many fundamental concepts in nuclear and particle physics beyond the standard model. Currently there are many experiments searching for this weak process. An accurate knowledge of the nuclear matrix element for the 0 ν β β decay is essential for determining the effective neutrino mass once this process is eventually measured. Purpose: We report the first full relativistic description of the 0 ν β β decay matrix element based on a state-of-the-art nuclear structure model. Methods: We adopt the full relativistic transition operators which are derived with the charge-changing nucleonic currents composed of the vector coupling, axial-vector coupling, pseudoscalar coupling, and weak-magnetism coupling terms. The wave functions for the initial and final nuclei are determined by the multireference covariant density functional theory (MR-CDFT) based on the point-coupling functional PC-PK1. Correlations beyond the mean field are introduced by configuration mixing of both angular momentum and particle number projected quadrupole deformed mean-field wave functions. Results: The low-energy spectra and electric quadrupole transitions in 150Nd and its daughter nucleus 150Sm are well reproduced by the MR-CDFT calculations. The 0 ν β β decay matrix elements for both the 01+→01+ and 01+→02+ decays of 150Nd are evaluated. The effects of particle number projection, static and dynamic deformations, and the full relativistic structure of the transition operators on the matrix elements are studied in detail. Conclusions: The resulting 0 ν β β decay matrix element for the 01+→01+ transition is 5.60 , which gives the most optimistic prediction for the next generation of experiments searching for the 0 ν β β decay in 150Nd.

  18. Non-linear relativistic contributions to the cosmological weak-lensing convergence

    SciTech Connect

    Andrianomena, Sambatra; Clarkson, Chris; Patel, Prina; Umeh, Obinna; Uzan, Jean-Philippe E-mail: chris.clarkson@gmail.com E-mail: umeobinna@gmail.com

    2014-06-01

    Relativistic contributions to the dynamics of structure formation come in a variety of forms, and can potentially give corrections to the standard picture on typical scales of 100 Mpc. These corrections cannot be obtained by Newtonian numerical simulations, so it is important to accurately estimate the magnitude of these relativistic effects. Density fluctuations couple to produce a background of gravitational waves, which is larger than any primordial background. A similar interaction produces a much larger spectrum of vector modes which represent the frame-dragging rotation of spacetime. These can change the metric at the percent level in the concordance model at scales below the equality scale. Vector modes modify the lensing of background galaxies by large-scale structure. This gives in principle the exciting possibility of measuring relativistic frame dragging effects on cosmological scales. The effects of the non-linear tensor and vector modes on the cosmic convergence are computed and compared to first-order lensing contributions from density fluctuations, Doppler lensing, and smaller Sachs-Wolfe effects. The lensing from gravitational waves is negligible so we concentrate on the vector modes. We show the relative importance of this for future surveys such as Euclid and SKA. We find that these non-linear effects only marginally affect the overall weak lensing signal so they can safely be neglected in most analyses, though are still much larger than the linear Sachs-Wolfe terms. The second-order vector contribution can dominate the first-order Doppler lensing term at moderate redshifts and are actually more important for survey geometries like the SKA.

  19. Relativistic Fluid Dynamics: Physics for Many Different Scales

    NASA Astrophysics Data System (ADS)

    Andersson, Nils; Comer, Gregory L.

    2007-12-01

    The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as heavy ions in collisions, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple) fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion) interesting and relevant applications of the general theory.

  20. Relativistic Landau models and generation of fuzzy spheres

    NASA Astrophysics Data System (ADS)

    Hasebe, Kazuki

    2016-07-01

    Noncommutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In the first half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish SU(2) “gauge” transformation between the relativistic Landau model and the Pauli-Schrödinger nonrelativistic quantum mechanics. After the SU(2) transformation, the Dirac operator and the angular momentum operators are found to satisfy the SO(3, 1) algebra. In the second half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymmetric quantum mechanics as the square of the Dirac-Landau operator. Finally, we apply the level projection method to real graphene system to generate valley fuzzy spheres.

  1. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.

    PubMed

    Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.

  2. Stability of general-relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  3. Exact general relativistic disks with magnetic fields

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.

    1999-11-01

    The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault, and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bic̆ák, Lynden-Bell, and Katz [Phys. Rev. D 47, 4334 (1993)] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.

  4. K/pi Fluctuations at Relativistic Energies

    SciTech Connect

    STAR Collaboration; Abelev, B.I.

    2009-08-24

    We report results for K/{pi} fluctuations from Au+Au collisions at {radical}sNN = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for K/{pi} fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at {radical}sNN = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of K/{pi} fluctuations as well as results for K{sup +}/{pi}{sup +}, K{sup -}/{pi}{sup -}, K{sup +}/{pi}{sup -}, and K{sup -}/{pi}{sup +} fluctuations. We observe that the K/{pi} fluctuations scale with the multiplicity density, dN/d{eta}, rather than the number of participating nucleons.

  5. The relativistic inverse stellar structure problem

    SciTech Connect

    Lindblom, Lee

    2014-01-14

    The observable macroscopic properties of relativistic stars (whose equations of state are known) can be predicted by solving the stellar structure equations that follow from Einstein’s equation. For neutron stars, however, our knowledge of the equation of state is poor, so the direct stellar structure problem can not be solved without modeling the highest density part of the equation of state in some way. This talk will describe recent work on developing a model independent approach to determining the high-density neutron-star equation of state by solving an inverse stellar structure problem. This method uses the fact that Einstein’s equation provides a deterministic relationship between the equation of state and the macroscopic observables of the stars which are composed of that material. This talk illustrates how this method will be able to determine the high-density part of the neutron-star equation of state with few percent accuracy when high quality measurements of the masses and radii of just two or three neutron stars become available. This talk will also show that this method can be used with measurements of other macroscopic observables, like the masses and tidal deformabilities, which can (in principle) be measured by gravitational wave observations of binary neutron-star mergers.

  6. Simulation studies of relativistic gyroklystron amplifiers

    SciTech Connect

    Saraph, G.P.; Anderson, J.P.; Lawson, W.; Granatstein, V.L.

    1997-12-31

    High power, pulsed gyroklystrons operating in the X, Ku, and Ka bands are being developed for driving future linear colliders. Various design aspects of two and three cavity, coaxial, relativistic gyroklystron systems are studied. Nonlinear simulations predict that over 40% efficiency, 45--50 dB gain, and 100--160 MW power levels are possible for the fundamental and second harmonic designs operating at 8.6, 17.1, and 35.0 GHz frequencies. Gyroklystron designs should also satisfy phase and frequency synchronization criteria for driving large accelerators. Small manufacturing tolerances can lead to 10--20 MHz changes in cold cavity frequencies. It is desirable to have some frequency tunability to compensate for this effect. It is shown that the desired frequency tunability can be achieved by making small adjustments in the axial magnetic field level. Effect of voltage pulse on the device efficiency and output phase is studied using time-dependent simulations. The pulse-shape plays an important role in determining phase stability. Advance design features such as radial coupling slots in the input and output cavities and dielectric loading are studied using HFSS simulations. An improved three cavity, Ku band design will be presented based on these features. In addition, a possible implementation scheme for energy recovery using a single-stage depressed collector will be presented. It is shown that the energy recovery could boost the net device efficiency above 50%.

  7. Relativistic electrons from sparks in the laboratory

    NASA Astrophysics Data System (ADS)

    Østgaard, N.; Carlson, B. E.; Nisi, R. S.; Gjesteland, T.; Grøndahl, Ø.; Skeltved, A.; Lehtinen, N. G.; Mezentsev, A.; Marisaldi, M.; Kochkin, P.

    2016-03-01

    Discharge experiments were carried out at the Eindhoven University of Technology in 2013. The experimental setup was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the high voltage (HV) electrode. Five thin (1 mm) plastic detectors (5 cm2 each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers is developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated at this location, that could be in the strong electric field from counterstreamers of opposite polarity. Comparing our measurements with modeling results, we find that ˜300 keV electrons produced about 30-60 cm from the negative electrode are the most likely source of our measurements. A statistical analysis of expected detection of photon bursts by these fiber detectors indicates that only 20%-45% of the detected bursts could be from soft (˜10 keV) photons, which further supports that the majority of detected bursts are produced by relativistic electrons.

  8. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  9. Stability of general-relativistic accretion disks

    SciTech Connect

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-15

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a {Gamma}-law equation of state with {Gamma}=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  10. Relativistic extended thermodynamics of rarefied polyatomic gas

    NASA Astrophysics Data System (ADS)

    Pennisi, Sebastiano; Ruggeri, Tommaso

    2017-02-01

    The goal of the present paper is to construct a relativistic extended thermodynamics (ET) theory of rarefied polyatomic gases. This is achieved by adopting the closure procedure for the 14 generalized moments of a distribution function that, as in the classical case, depends on an additional continuous variable representing the energy of the internal modes of a molecule. This permits the theory to take into account the energy exchange between translational modes and internal modes of a molecule in binary collisions. The theory includes the ET theory of monatomic gases as a singular limit and converges to the corresponding ET theory of polyatomic gases in the classical limit. In contrast to a monatomic gas in which the order of magnitude of the dynamical pressure is O(1 /c2) , the dynamical pressure in a polyatomic gas is not small due to the internal motion of molecules as is the case in the classical limit. Therefore the present theory might result particularly useful in cosmology to describe some aspects of the post-recombination era.

  11. Efficient acceleration of relativistic magnetohydrodynamic jets

    NASA Astrophysics Data System (ADS)

    Toma, Kenji; Takahara, Fumio

    2013-08-01

    Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although the conversion mechanism from the Poynting into the particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating the transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences between the fast magnetosonic point of the MHD flow and the sonic point of the de Laval nozzle.

  12. A nonlinear relativistic nuclear model for protoneutronstars

    NASA Astrophysics Data System (ADS)

    Razeira, M.; Vasconcellos, C. A. Z.; Dillig, M.

    2003-08-01

    In the last few decades, studies on the internal structure, composition, dynamics and evolution of protoneutron stars, neutron stars, pulsars, hybrid and strange stars became central topics for theoretical and experimental research. Since the observation of the first pulsar in 1967, whose characteristic observational features allowed its identification as a rotating neutron star, nuclear models have been widely employed in the description of the holly graal of modern physics, the equation of state of dense matter. As under the pull of gravity the energy density in the core of these compact stars is thought to approach or even exceed more than 6 times the density of ordinary nuclear matter, predictions on the structure of the stars depend sensitively on the equation of state provided by model calculations. Combined with the equations of the general relativity metric, predictions on the mass, radius, crust extent and moment of inertia of the stars are then susceptible to the comparison to observation. In this work, a theoretical modeling for protoneutron stars (nuclear matter at finite temperature) is studied in the framework of an effective many-body relativistic mean field theory and the Sommerfeld approximation which contains the fundamental baryon octet and leptonic degrees of freedom, sigma, omega, rho and delta mesons, chemical equilibrium and charge neutrality. Our predictions include the determination of the mass of protoneutron stars, the mass-radius relation, relative population, gravitational redshift among other properties.

  13. Gravitational mass of relativistic matter and antimatter

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron-Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 - 4 ×10-7

  14. Heat dissipation in relativistic single charged fluids

    NASA Astrophysics Data System (ADS)

    Garcia-Perciante, A. L.; Sandoval-Villalbazo, A.; Brun-Battistini, D.

    2015-11-01

    When the temperature of a fluid is increased its out of equilibrium behavior is significantly modified. In particular kinetic theory predicts that the heat flux is not solely driven by a temperature gradient but can also be coupled to other thermodynamic vector forces. We explore the nature of heat conduction in a single component charged fluid in special relativity, where the electromagnetic field is introduced as an external force. We obtain an electrothermal effect, similar to the mixture's cross-effect, which is not present in the non-relativistic simple fluid. The general lines of the corresponding calculation will be shown, emphasizing the importance of reference frame invariance and the origin of the extra heat sources, in particular the role of the modified inertia and the difference in fluid's and molecules' proper times. The constitutive equation for the heat flux obtained using Chapman-Enskog's expansion in Marle's approximation will be analyzed together with the corresponding transport coefficients.The impact of this effect in the overall dynamics of the system here considered will be briefly discussed. The authors acknowledge support from CONACyT through grant CB2011/167563.

  15. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mohseni, F.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1 / 2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.

  16. Reconfinement shocks in relativistic AGN jets

    SciTech Connect

    Nalewajko, Krzysztof; Sikora, Marek

    2008-12-24

    Stationary knots observed in many AGN jets can be explained in terms of a reconfinement shock that forms when relativistic flow of the jet matter collides with the external medium. The position of these knots can be used, together with information on external pressure profile, to constrain dynamical parameters of the jet. We present a semi-analytical model for the dynamical structure of reconfinement shocks, taking into account exact conservation laws both across the shock surface and in the zone of the shocked jet matter. We show that, due to the transverse pressure gradient in the shock zone, the position of the reconfinement is larger than predicted by simple models. A portion of kinetic energy is converted at the shock surface to internal energy, with efficiency increasing strongly with both bulk Lorentz factor of the jet matter and the jet half-opening angle. Our model may be useful as a framework for modeling non-thermal radiation produced within the stationary features.

  17. Entropy production in relativistic jet boundary layers

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna; Begelman, Mitchell C.

    2015-01-01

    Hot relativistic jets, passing through a background medium with a pressure gradient p ∝ r-η where 2 < η ≤ 8/3, develop a shocked boundary layer containing a significant fraction of the jet power. In previous work, we developed a self-similar description of the boundary layer assuming isentropic flow, but we found that such models respect global energy conservation only for the special case η = 8/3. Here, we demonstrate that models with η < 8/3 can be made self-consistent if we relax the assumption of constant specific entropy. Instead, the entropy must increase with increasing r along the boundary layer, presumably due to multiple shocks driven into the flow as it gradually collimates. The increase in specific entropy slows the acceleration rate of the flow and provides a source of internal energy that could be channelled into radiation. We suggest that this process may be important for determining the radiative characteristics of tidal disruption events and gamma-ray bursts from collapsars.

  18. The Relativistic Heavy Ion Collider at Brookhaven

    SciTech Connect

    Hahn, H.

    1988-01-01

    The conceptual design of a Relativistic Heavy Ion Collider (RACK) to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 5 /times/ 10/sup 26/cm/sup /minus/2/sec/sup /minus/1/ at an energy of 100 GeV/u in each beam. Collisions with different ion species, including protons, will be possible. The collider consists of two interlaced, but otherwise separate, superconducting magnet rings. The 9.7 m long dipoles will operate at 3.5 T. Their 8 cm aperture was determined by the dimensions of gold ion beams taking into account diffusion due to intrabeam scattering. Heavy ion beams will be available from the Tandem Van de Graaff/Booster/AGS complex. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 24 refs., 7 figs., 2 tabs.

  19. WDM production with intense relativistic electrons

    NASA Astrophysics Data System (ADS)

    Coleman, Josh; Andrews, Heather; Klasky, Mark; Colgan, James; Burris-Mog, Trevor; Creveling, Dan; Miller, Craig; Welch, Dale; Berninger, Mike

    2016-10-01

    The production of warm dense matter (WDM) through collisional heating with intense relativistic electrons is underway. A 100-ns-long monochromatic bunch of electrons with energies of 19.1-19.8 MeV and currents of 0.2-1.7 kA is used to heat 100- μm-thick foils with Z <29. The principal objective of these experiments is to develop a controlled method of measuring the equation of state with particle beams and benchmark numerical models. Measurements indicate the formation of a warm dense plasma near the end of the pulse, which is on the order of the beam size. These plasmas expand 5 mm in the first microsecond and slow down to <0.5 mm/ μs over the next 10 μs. These plasmas also produce both emitted and absorbed spectra amongst a continuum for Ti, Fe, and Cu. Cu-I spectra is dominated by stark broadening, indicating a cool plasma with ne >1018 cm-3. At these densities our plasma is collisionally dominated making it possible to spectrally model the density and temperature in LTE. Preliminary density gradient measurements will also be presented indicating the spatial extent of the solid density cutoff. This work was supported by the National Nuclear Se- curity Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

  20. Relativistic positioning in Schwarzschild space-time

    NASA Astrophysics Data System (ADS)

    Puchades, Neus; Sáez, Diego

    2015-04-01

    In the Schwarzschild space-time created by an idealized static spherically symmetric Earth, two approaches -based on relativistic positioning- may be used to estimate the user position from the proper times broadcast by four satellites. In the first approach, satellites move in the Schwarzschild space-time and the photons emitted by the satellites follow null geodesics of the Minkowski space-time asymptotic to the Schwarzschild geometry. This assumption leads to positioning errors since the photon world lines are not geodesics of any Minkowski geometry. In the second approach -the most coherent one- satellites and photons move in the Schwarzschild space-time. This approach is a first order one in the dimensionless parameter GM/R (with the speed of light c=1). The two approaches give different inertial coordinates for a given user. The differences are estimated and appropriately represented for users located inside a great region surrounding Earth. The resulting values (errors) are small enough to justify the use of the first approach, which is the simplest and the most manageable one. The satellite evolution mimics that of the GALILEO global navigation satellite system.